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Preface

The following text represents a real-time operating-system course textbook. The
course is held in the third semester of the Master’s study program in Electrical
Engineering at the Faculty of Electrical Engineering of the University of Ljubljana,
Slovenia. It introduces the students of Electronics into the operating systems and
real-time concepts having the embedded systems perspective in mind.

Although the covered mechanisms and principles are general, they are given
through Linux operating system and POSIX application programming interface
examples. An important part of the course is the hands-on laboratory work where
the examples can be carried out. The Phytec’s phyCORE-i.MX27 development
kit with the Freescale’s i.MX27 microcontroller is used as an embedded system
platform.

The textbook is a kind of a crash course. The topics are explained by examples
providing a flying start to a beginner. The reader should consult other sources for
a detailed explanation.

The first three chapters describe the operating system and network configu-
ration basic principles. In Chapter 1, the students get familiar with the oper-
ating system parts, common Linux commands and program compiling. Chapter
2 describes the fundamentals of the network structure. In Chapter 3, a brief
description of the graphical user interface with the X window system is presented.

The focus of Chapter 4 is on the Phytec’s phyCORE-i.MX27 embedded sys-
tem platform. It describes installation of the embedded Linux operating system,
booting with the Barebox boot-loader and working with some peripheral devices
(framebuffer, touchscreen, serial port, ethernet, etc.), and gives examples of a
graphical application written in the Qt, cross-compilation and remote debugging.

Chapter 5 deals with the real-time properties and how to achieve them in
Linux. A real-time application code skeleton is drafted by shedding light on
various aspects, such as priority, scheduling policy, stack and heap memory page
faults, etc.

In Chapters 6 and 7, the inter-process communication and simultaneous access
are discussed. Various communication techniques are presented by the POSIX-
compliant C code examples. The same approach is continued with the resource-
access techniques. The circumstances leading to deadlock situations with possible
solutions are presented.

Chapter 8 enables a glimpse into kernel programming and provides a small
tutorial of programming, compiling and cross-compiling the “Hello World!” kernel
module.

The textbook is available in pdf format on the Internet at http://fides.fe.uni-
lj.si/∼janezp/operating_systems_embedded_systems_and_real-time_systems.
pdf . Also the source code of the examples in the textbook is available at http://
fides.fe.uni-lj.si/∼janezp/operating_systems_embedded_systems_and_real-time
_systems__code.zip.





Chapter 1

Operating system

An operating system is a suite of programs and data making a computer work
(e.g. managing the hardware resources, providing services for application pro-
grams, etc.). Linux [1, 2] refers to the family of the Unix-like [3] computer oper-
ating systems using the Linux kernel. The Linux operating systems are made up
of three parts:

- kernel,
- shell and
- programs.

1.1 Operating-system parts

1.1.1 Kernel

At the computer boot, BIOS (Basic Input/Output System) performs start-up
tasks to recognize and start the hardware. Then it loads and executes the par-
tition boot code from the designated boot device (e.g. hard disk) containing the
first stage of the bootstrap loader or shortly the boot-loader. A first-stage boot-
loader is a small program that loads the more complex second-stage boot-loader
code into RAM (Random-Access Memory) and starts it. A second-stage boot-
loader, such as GRUB (GRand Unified Bootloader) or LILO (LInux LOader),
loads a kernel and transfers execution to it. The second-stage boot-loaders usu-
ally can be configured to give a user multiple booting choices. These choices can
include different operating systems, different versions of the same operating sys-
tem, different operating-system loading options or standalone programs that can
run without an operating system (e.g. memory test programs, games, etc.). A
second-stage boot-loader configuration file (e.g. /boot/grub/grub.cfg for GRUB
and /etc/lilo.conf for LILO) contains information about the kernel location,
options, etc.

A kernel [4] is the center of the operating system. It allocates the memory and
CPU (Central Processing Unit) time to programs, handles the file storage and
communications, responds to system calls, etc. Traditionally, the kernel image on
the Unix platforms is stored in the /unix file. The kernels that support the virtual
memory feature have the vm prefix (/vmunix). The linux kernel (/vmlinux) can
usually be found in a statically linked, /vmlinuz executable file, where the letter
z at the end denotes that it is compressed (zipped).

The kernel initializes the hardware, mounts the root file system (see subsection
1.2.3), starts the operating system scheduler and the first process called init
(/sbin/init). Then it goes idle. The init process spawns all other processes.
It sets up all the non-operating system services and structures in order to create
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a user environment (e.g. ftp (File Transfer Protocol) and ssh (Secure SHell)
services, getty (GET TeletYpe) text login program, gdm (GNOME (GNU (GNU’s
Not Unix) Object Model Environment) Display Manager) GUI (Graphical User
Interface) login program, etc.). The init process runs as a daemon and typically
has PID (Process IDentifier) 1. The daemon process is a process that runs in a
background.

1.1.2 Shell

When a user logs in, a login program (e.g. /sbin/getty (or an equivalent process
in a graphical environment) started by the init process) checks the username
and password and then starts another program called shell. A shell provides
an interface between the user and the kernel [5]. The command line shell is a
CLI (Command Line Interpreter), while the graphical shells provide a GUI. The
shell interprets the user commands and arranges for them to be carried out. The
commands themselves are programs. When they terminate, the shell gives the
user another prompt (e.g. user@host:working_directory$).

As an illustration of the way the shell and kernel work together, suppose a user
types the rm myfile command (which has the effect of removing the file myfile).
The shell searches for the file containing the rm program and then requests the
kernel, through the system calls, to execute the rm program on myfile. When
the rm myfile process finishes running, the shell returns the prompt to the user,
indicating that it is waiting for further commands.

To make typing of the commands easier, most command line shells provide the
file completion and history features. By typing a part of the name of a command,
filename or directory and pressing the Tab key, the shell will complete the rest of
the name automatically. If the shell finds more than one name beginning with the
given letters, it will do nothing on the first Tab and will display the possibilities
on the second Tab stroke. The shell also keeps a list of the previous commands
that can be displayed by the history command. To repeat a command, use the
cursor keys to scroll up and down the history list.

The command line shells can be closed either by executing the exit command
or by pressing Ctrl-D.

1.1.3 Programs

The programs are executable files providing common services. They are con-
sidered as a part of the operating system. In Linux, they reside in the /sbin,
/bin, /usr/sbin and /usr/bin directories (e.g. the rm program executing the rm
command can be found in /bin/rm).

1.2 File storage

Everything in Linux is either a file or a process. In this section, a few words
about the files follow. The files are grouped together in a directory structure.
It is a hierarchical structure, like an inverted tree. The top of the hierarchy is
traditionally called the root directory /. All the files and directories appear under
the root directory. A part of a typical Linux directory structure is shown in
Fig. 1.1.

According to Fig. 1.1, the /boot directory contains the /boot/grub subdirec-
tory and vmlinuz-2.6.32-5-686 file. Note that the /vmlinuz file is a symbolic
link to the /boot/vmlinuz-2.6.32-5-686 file. The symbolic link indicates the
physical location of the file in the directory structure. As indicated, each file or
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/
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/sbin
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grubenv

...

...

...
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Figure 1.1: Part of a standard Linux directory structure

directory location can be described by a full path from the root directory down-
wards. A full path is often referred to as absolute path. Besides the absolute
path, a location can also be given by a relative path describing a path to a file or
directory from the current working directory (see subsection 1.3.1).

Linux is, as all the Unix operating systems are, case-sensitive. So the
data.txt, Data.txt and DATA.txt files are three separate files. The same applies
to the commands; RM is not the same as rm.

1.2.1 Directory structure

FHS (File system Hierarchy Standard) [6, 7] defines the main directories and their
contents in Linux, although some distributions do not follow FHS completely. A
short list of the most important directories with a description follows:

/ primary hierarchy root and root directory of the entire file
system hierarchy

/bin essential command binaries (e.g. /bin/rm) needing to be
available in a single user mode available to all users

/boot boot loader files (e.g. kernel - /boot/vmlinuz-2.6.32-5-686)
/dev essential devices (e.g. hard disk - /dev/sda,

terminal - /dev/tty0, to nothing - /dev/null,
from nothing - /dev/zero)

/etc host-specific system-wide static configuration files
(e.g. /etc/passwd)

/etc/X11 configuration files for the X Window System version 11
/home users’ home directories
/lib libraries essential for binaries in /bin and /sbin
/lost+found parts of the restored files at the file system check

(e.g. at fsck command)
/media removable media (e.g. CD-ROM) mounting points
/mnt temporarily mounted file systems
/opt optional application software packages
/proc process file system (procfs) mounting point; documenting the

kernel and process status as the text files (e.g. the
/proc/cmdline file contains kernel parameters at boot, the
/proc/1 directory contains information about the /sbin/init
process (PID = 1))

/root root user home directory
/sbin essential system binaries (e.g. /sbin/init, /sbin/getty)
/srv data served by the system (e.g. directory with the files served

by TFTP (Trivial File Transfer Protocol) - /srv/tftp)
/sys system file system (sysfs) mounting point; documenting

the device status as text files (e.g. the /sys/block/sda
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directory contains information about the hard disk)
/tmp temporary files not preserved at a reboot
/usr majority of utilities and applications
/usr/bin non-essential command binaries
/usr/include standard C include files (e.g. stdio.h)
/usr/lib libraries for binaries in /usr/bin and /usr/sbin
/usr/local locally installed software, software not installed from the packages
/usr/sbin non-essential system binaries
/usr/share shared data
/usr/src source code (e.g.; kernel source code with its header files)
/var variable files expected to continually change during normal

operation of the system
/var/cache cache data locally generated as a result of time-consuming

operations
/var/lib data (e.g. databases)
/var/lock lock files keeping track of resources shared by multiple

applications
/var/log various log files
/var/mail users’ mailboxes
/var/run contains running system information since the last boot

(e.g. currently logged-in users, running daemons)
/var/spool data waiting for processing (e.g. print queues, unread mail)
/var/tmp temporary files preserved at a reboot

1.2.2 Storage devices

As the data storage devices, the hard disk drives are usually used. A hard disk
drive is divided into MBR (Master Boot Record) and partitions. MBR is the first
sector of a hard disk drive containing a first-stage boot-loader code (see subsection
1.1.1) and a partition table. Each hard disk drive has the MBR although it is not
used at the computer boot and does not contain the boot-loader code.

Partitions are logical storage units used to treat one physical hard disk drive
as multiple disks. The first sector of each partition is the partition boot sector
containing the partition boot-loader. The partition boot sector is also called VBR
(Volume Boot Record). The MBR boot-loader finds the partition marked as a
bootable and loads that partition boot-loader that starts the operating system
code. There can be only four partitions, i.e. the primary or physical partitions.
Extended partitions are introduced to allow more. An extended partition is a
primary partition divided into sub-partitions. The sub- or logical partitions are
used in the same way as the pure primary partitions.

In Linux, the hard disks and partitions, as other devices, are represented as
files in the /dev directory (e.g. /dev/sda - first hard disk drive, /dev/sda1 - first
partition on the first hard disk drive, /dev/sda2 - second partition on the first
hard disk drive, /dev/sdb - second hard disk drive, etc.).

1.2.3 Partitions and file systems

To store files onto a partition, it has to be formatted. In other words, it has to
contain a file system. A file system organizes the files and directories, keeps track
of which areas of the media correspond to which file and which are not being used,
etc. There are multiple types of the file systems (e.g. NTFS (New Technology File
System) is usually used by the Windows operating systems, FAT32 (32-bit File
Allocation Table) is usually used by the USB (Universal Serial Bus) keys, and
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ext3 (third extended file system) is usually used by default in Linux, etc.)
The journaling file system is a type of the file system that keeps track of changes

that will be made in a journal before committing them to the file system [8]. A
journal is usually a circular log in a dedicated area of the file system. Because of
the described feature, a journaled file system is less likely to become corrupted at
a system crash or power failure (e.g. ext3 is a journaled file system, while NTFS
and FAT32 are not).

A virtual file system is an abstraction layer on top of a more concrete file
system (e.g. procfs and sysfs are virtual file systems mounted at the /proc and
/sys directories, see subsection 1.2.1).

Linux can work with many hard disk drives, many different partitions and
file systems at the same time in one single directory structure (see subsection
1.2.1). A file system that contains a root directory (/) is called a root file system.
Another file system can be mounted at an arbitrary directory or mounting point.
Mounting a file system simply means making a particular file system accessible at
a certain point in the directory structure (e.g. /home is often a separate partition
mounted at the /home directory in a root file system. That means that the top
directory in this separate partition can be accessed at the /home location in the
directory structure. The same usually applies to /boot which is also often a
separate partition. Sometimes, /var is a separate partition, too.). The root file
system is mounted at the computer boot by a kernel (see subsection 1.1.1).

1.3 Login and basic commands

A common user interface to the computer consists of a display and keyboard (and
mouse). It is called a console or a terminal. A display and keyboard (and mouse)
physically attached to the computer are called the system console. Besides the
system console, Linux provides also virtual consoles. The system console (actual
display and keyboard (and mouse)) can be used to switch between the multiple
virtual consoles to access the unrelated user interfaces.

Usually, Linux has six virtual text consoles or terminals with a login prompt
to a shell and one virtual graphical console with a login screen to GUI. To switch
to the first virtual console, press Ctrl-Alt-F1, to switch to the second virtual
console, press Ctrl-Alt-F2, etc. The first six virtual consoles are textual, the
seventh is graphical.

The user logs into Linux by typing her/his username and password. After the
login procedure on a text terminal, a command line shell (see subsection 1.1.2)
responds with a prompt indicating that the shell is prepared for the next command
[9]. In the graphical terminal, GUI is started. The command line shell can be
started in GUI by the Terminal program which opens a command line shell in
a window. There are several shell programs available. Linux usually uses bash
(Bourne Again SHell, a successor of bsh (Bourne SHell)). The shell program is
terminated by the exit command or by pressing Ctrl-D representing the EOF
(End Of File) character. A shell termination automatically means logout on the
text terminal, while on the graphical terminal only the Terminal window is closed.

The shell signs its readiness to accept a new command with a command
prompt. The command prompt is a sequence of characters in the command line
shell usually including the information about the user, host machine and current
working directory. In Linux, it typically ends with the $ character for a normal
user and # character for a super user or root user.

user@host:working_directory$ normal user prompt
root@host:working_directory# super user prompt



6 CHAPTER 1. OPERATING SYSTEM

1.3.1 Naming conventions, special directory names and wildcards

A filename is a sequence of characters used to identify a file. The filenames in Linux
can contain any character other than the forward slash (/) and null character.
Spaces are permitted. The signs, such as the dollar sign ($), percentage sign
(%) and brackets ({}), are also permitted but not recommended because of their
special meanings to the shell. The filename must be unique within a directory.
However, multiple files and directories with the same name can reside in different
directories. Such files have different absolute paths, thus enabling the system to
distinguish them.

∼ (home directory)
After the login procedure, the user finds her/him in her/his home directory which
contains the user’s files. In Linux, the normal user’s home directory is named
with the username and is placed in the /home directory (e.g. /home/username).
An exception is a super user whose home directory is /root. The current (normal
or super) user’s home directory can also be marked with the ∼ character (e.g. the
root@host:∼# prompt indicates that the current working directory is /root).
Home directory of another user can be obtained by ∼username.

. (current working directory)
The dot character denotes the current working directory used when a file is referred
to by a relative path (as opposed to a file designated by a full path from a root
(/) directory).

.. (parent directory)
The parent directory is a directory above the current directory (.). That is a
directory in which the current directory (.) is located. In the current directory
full or absolute path, the parent directory is a predecessor of the current directory.
The parent directory of the root directory is the root directory.

* (asterisk wildcard)
The asterisk wildcard represents any sequence of characters including none
(e.g. *.txt means all files ending with the .txt extension).

? (question mark wildcard)
The question mark wildcard represents one arbitrary character (e.g. *.??? means
all files ending with a three-character extension).

1.3.2 Files and directories

A command consists of a command name and arguments. The arguments are usu-
ally optional. If an argument begins with the - character, it is called a parameter
or an option (e.g. ls -l).

ls (list)

The ls command lists the contents of a directory. It is a program in the /bin
directory.

Examples:

ls list the current working directory
ls -l list the current working directory in a long format (with details)
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(with details)
ls /home list the /home directory
ls -d *.dat list the current working directory for the .dat

files/directories, for directories print only the names not the
contents

ls -a list all files in the current working directory including those
whose names begin with a dot

ls ∼ list the user’s home directory

cd (change directory)

The cd command changes the current working directory. It is a part of the bash.

Examples:

cd mydir change to the mydir directory
cd .. change to the parent directory
cd change to the home directory
cd ../somedir change to the somedir directory residing in the parent

directory

pwd (print working directory)

The pwd command displays the name of (absolute path to) the current working
directory. It is a program in the /bin directory.

Example:

pwd print the absolute path to the working directory

cp (copy)

The cp command creates a copy of a file. It is a program in the /bin directory.

Examples:

cp file1 file2 copy file1 into file2, both in the current directory
cp data dir copy the data file in the current directory into the dir

subdirectory
cp /home/user/data /home/user/backup/data copy the data file in

the /home/user directory into a file with the same name in
the /home/user/backup subdirectory

cp *.txt dir copy all the .txt files into the dir subdirectory
cp -r /home/user/data/* /home/user/backup copy all files and

directories in the /home/user/data directory into
the /home/user/backup directory
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dd (data duplication)

The dd command performs a low-level copy of a part of a file or device. It is a
program in the /bin directory.

Examples:

dd if=file1 of=file2 copy file1 (if - input file) into file2 (of - output
file), same as the cp command

dd if=/dev/sda of=mbr bs=512 count=1 create an MBR image (first
512 bytes; bs - block size, count - number of blocks)
of the /dev/sda disk into the mbr file

dd if=sect of=/dev/sda ibs=512 skip=3 count=1 obs=1k seek=5
copy 1537th to 2048th byte of the sect file (ibs -
input block size) into 5121th to 5632th byte of
/dev/sda (obs - output block size)

If logged as a super user, handle the dd command with an extreme care especially
when the output file is a device (i.e. hard disk). A misuse can cause loss of data
(e.g. corruption of the partition table).

mv (move)

The mv command renames a file and/or moves it from one directory to another.
It is a program in the /bin directory.

Examples:

mv data dir move the data file in the current directory into the
dir subdirectory

mv data1 ../data2 move the data1 file to the parent directory and
rename it into data2

rm (remove)

The rm command deletes a file. It is a program in the /bin directory.

Examples:

rm data delete the data file without prompting for confirmation
rm -r dir remove the dir directory with all files and subdirectories in

it, prompt for removal of the write-protected files
rm -r -f dir remove the dir directory with all files and subdirectories in

it without prompting for confirmation

mkdir (make directory)

The mkdir command creates a new directory. It is a program in the /bin directory.
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Example:

mkdir mydir create a new directory called mydir

rmdir (remove directory)

The rmdir command deletes an empty directory. It is a program in the /bin
directory.

Example:

rmdir dir remove the dir directory if empty

clear (clear)

The clear command clears the text terminal screen or Terminal window. It is a
program in the /usr/bin directory.

Example:

clear clear the screen

cat (concatenate)

The cat command displays the contents of a file on the screen or concatenates
the files. It is a program in the /bin directory.

Examples:

cat data display the contents of the data file
cat file1 file2 > file3 concatenate the file1 and file2 files into the

file3 file (see section 1.4)

less (less)

The less command displays the contents of a file on the screen in its own en-
vironment. Listing with the cursor up and down, page up and page down keys
is enabled. It is a program in the /usr/bin directory. To terminate the less
environment, press q.

Example:

less data display the contents of the data file
less -N data display the contents of the data file with the line numbers
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Searching for a particular phrase or sequence of characters is possible. To find
all the occurrences of a phrase consisting for instance of two words, i.e. word1
word2, type /word1 word2 in the less environment. No quotes are needed. The
space character is treated as any other character. To display the next occurrence
of the searched phrase, type n.

head (head)

The head command displays the first ten (by default) lines of a file on the screen.
It is a program in the /usr/bin directory.

Examples:

head data display the first ten lines of the data file
head -5 data display the first five lines of the data file

tail (tail)

The tail command displays the last ten (by default) lines of a file on the screen.
It is a program in the /usr/bin directory.

Examples:

tail data display the last ten lines of the data file
tail -5 data display the last five lines of the data file
tail -f log display the last ten lines of the log file, update as new lines

are being added to log, to terminate, press Ctrl-C
tail -f log | grep sometext monitor the lines added to the log file,

filter out the lines containing sometext (see subsections
1.3.3 and section 1.4), to terminate, press Ctrl-C

mount (mount)

The mount command attaches (i.e. mounts) a file system to a specified mounting
point. It is a program in the /bin directory.

Examples:

mount list all mounted file systems
mount -t ext3 list the mounted file systems of the ext3 type
mount /dev/sda2 /mnt/second mount the second partition of the

/dev/sda hard-disk drive to the /mnt/second mounting
point; the file system type is guessed if possible (can be
performed only by a super user)

mount -t ext3 /dev/sda2 /mnt/second mount the second partition of the
/dev/sda hard-disk drive containing a file system of the
ext3 type to the /mnt/second mounting point (can be
performed only by a super user)
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umount (unmount)

The umount command detaches (i.e. unmounts) a file system mounted to a speci-
fied mounting point. It is a program in the /bin directory.

Example:

umount /mnt/second unmount the file system mounted to /mnt/second

fdisk (fixed disk)

The fdisk command is a partition table manipulator. It is used for creating
and modifying partitions, assigning a file system to a partition, etc. The fdisk
command can be executed only by a super user. It is a program in the /sbin
directory.

Example:

fdisk /dev/sda start the menu-driven partition-table manipulation utility
on the /dev/sda hard-disk drive

mkfs (make a file system)

The mkfs command builds a file system on a given partition. The mkfs command
can be executed only by a super user. It is a program in the /sbin directory.

Examples:

mkfs /dev/sda2 create a file system of the default type (i.e. ext2) on
the second partition of the /dev/sda hard-disk drive

mkfs -v /dev/sda2 create a file system of the default type (i.e. ext2) on
the second partition of the /dev/sda hard-disk drive
and print the progress information

mkfs -t ext3 /dev/sda2 create the ext3 type file system on the second
partition of the /dev/sda hard-disk drive; mkfs is in
fact a front-end for various file system builders
(e.g. mkfs.ext3)

1.3.3 Searching

grep (global regular expression print)

The grep command searches for a particular phrase or a sequence of characters
in a file. It is a program in the /bin directory. The following characters have a
special meaning in the search description:

. any single character
* arbitrary characters
[] any single character listed within brackets
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^ beginning of a line
$ end of a line
\\ escape sequence for special characters

Examples:

grep ’pattern’ *.txt search all the .txt files in the current directory
and print all lines containing the pattern word

grep ’pattern’ /home/user/data/* search all files in the
/home/user/data directory and print all lines
containing a pattern

grep -l ’pattern’ /home/user/data/* print the filenames of the
files in /home/user/data containing the
pattern

grep -i ’pattern’ data word print all lines in the data file
containing the case-insensitive pattern word

grep -v ’pattern’ data print all lines in the data file not containing
the word pattern

grep -n ’pattern’ data print all lines in the data file containing the
word pattern with the line numbers

grep -c ’pattern’ data print the number of lines in the data file
containing the pattern word

grep ’j..k’ data print all lines in the data file containing a
four-character word beginning with j and
ending with k (e.g. jack)

grep ’j*k’ data print all lines in the data file containing a word
beginning with j and ending with k (e.g.
jack, jailbreak)

grep ’j[ao]ck’ data print all lines in the data file containing the
word jack or jock

grep ’^jack’ data print all lines in the data file starting with the
word jack

grep ’jack$’ data print all lines in the data file ending with the
word jack

grep ’\\[jack\\]’ data print all lines in the data file containing the
sequence [jack]

wc (word count)

The wc command counts the lines, words and characters (bytes) in a file. It is a
program in the /usr/bin directory.

Examples:

wc data count the lines, words and bytes of the data file
wc -l data count the lines in the data file
wc -w data count the words in the data file
wc -c data count the bytes in the data file
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find (find)

The find command finds the files, directories, etc., matching a given name pat-
tern. It searches the entire directory structure beneath one or more given directo-
ries. All subdirectories are included recursively. The find command is a program
in the /usr/bin directory.

Examples:

find /usr . -name ’*.txt’ -type f
search /usr and current directory for the files ending with .txt

find . -name ’data’ -type d
search the current directory for the data directories

find . -not -name ’*.txt’ -type f
search the current directory for the non .txt files

find . -name ’*.txt’ -type f -exec grep -l ’pattern’ {} \;
search the current directory for the .txt files and print the filenames of
those containing the pattern word

find . -name ’*.dat’ -exec ls -ld {} \;
search the current directory for the .dat files, directories, etc., and
print their names in a long format

find . -name ’*.dat’ -exec rm -r {} \;
search the current directory for the .dat files, directories, etc., and
remove them

In the last three examples, the -exec option is used to execute another command
on the found results. The list of the files, directories, etc., found by the find com-
mand is passed to the following command at the {} placeholder. The command
is executed for each item in the list and is ended by \;.

1.3.4 File compressing

gzip (GNU zip)

The gzip command compresses a file. A compressed file has a .gz extension. The
original file is removed. It is a program in the /bin directory.

Example:

gzip data compress the data file

gunzip (GNU unzip)

The gunzip command uncompresses a compressed file. The original file is restored.
The compressed file is removed. It is a program in the /bin directory.

Example:

gunzip data.gz uncompress the data.gz file
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zcat (zip concatenate)

The zcat command expands a compressed file to a standard output. It is a
program in the /bin directory.

Example:

zcat data.gz print the contents of the data file

tar (tape archiver)

The tar command creates or expands a collection of files within a single file. A
collection of files usually has a .tar extension. If a collection is also compressed,
it is called a tarball. The .tar.gz or .tgz extension is used in that case. It is a
program in the /bin directory.

Examples:

tar -cvf data.tar ./dir/*.dat in the current directory create the
data.tar collection containing all .dat files in the
dir subdirectory

tar -cvzf data.tar.gz ./dir in the current directory create the
data.tar.gz compressed collection containing the
entire dir subdirectory

tar -xvf data.tar expand the data.tar collection file
tar -xvzf data.tar.gz expand the data.tar.gz compressed collection file

1.3.5 Miscellaneous commands

date (date)

The date command retrieves or sets the system date and time. It is a program in
the /bin directory.

Examples:

date print the system date and time
date -s "12/20/2012 23:59:59"

set a new system date and time
(can be performed only by a super user)

date ’+DATE: %m/%d/%y%nTIME:%H:%M:%S’
print the system date and time in the specified format
(%n stands for a new line)

df (disk free)

The df command reports the amount of the used and free disk space for every
mounted file system. It is a program in the /bin directory.
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Examples:

df print the space information for the mounted file systems
df -h print the space information for the mounted file systems in a

human-readable format

du (disk usage)

The du command reports the size of each subdirectory in kB. It is a program in
the /usr/bin directory.

Examples:

du *.dat print the size in kB for each .dat file and each subdirectory
in all directories in the current working directory whose
name ends with .dat

du -s -h *.dat print the summary size of all .dat files and subdirectories
in a human-readable form

echo (echo)

The echo command displays its argument on the screen. It is a program in the
/bin directory.

Examples:

echo Hello world print the Hello world to the screen
echo $PATH print the value of the PATH environment variable (see

section 1.7)

exit (exit)

The exit command terminates the command line shell. It is a part of the bash.

Example:

exit terminate the command line shell

history (history)

The history command displays a list of the executed commands. It is a part of
the bash.
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Examples:

history print the history list
!100 execute the command number 100 in the history list
history -c clear the history list

poweroff (power off)

The poweroff command brings the operating system down in a safe way. All
logged-in users are notified that the system is going down. The poweroff com-
mand can be performed only by a super user. It is a program in the /sbin
directory.

Example:

poweroff stop the operating system

shutdown (shutdown)

The shutdown command brings the operating system down in a safe way. All
logged-in users are notified that the system is going down. The shutdown com-
mand can be performed only by a super user. It is a program in the /sbin
directory.

Examples:

shutdown -h now stop the operating system immediately
shutdown -r 10:00 reboot the operating system at 10:00

sleep (sleep)

The sleep command waits for a given amount of seconds. It is a program in the
/bin directory.

Example:

sleep 10 sleep for ten seconds

sort (sort)

The sort command sorts the lines in a given file alphabetically and numerically.
It is a program in the /usr/bin directory.
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Examples:

sort list -o sorted sort the lines in file list and save to the file sorted
sort -r list reverse sort and print the lines in file list

su (substitute user)

The su command changes the user identity. It is a program in the /bin directory.

Examples:

su - become the root user as if root would actually log in (all
start-up scripts are processed, see page 29)

su jekyll become the jekyll user
su - hyde become the hyde user as if the hyde user would actually log in

sudo (substitute user do)

The sudo command allows running the programs with the security privileges of
another user (normally a super user). It is a program in the /usr/bin directory.

Examples:

sudo -u hyde ls ∼hyde list the hyde home directory as the hyde user
sudo ./setup run the setup program in the current directory

as a super user

touch (touch)

The touch command sets the last access date and time of a file to the current
date and time. If the file does not exist, it creates an empty file. It is a program
in the /usr/bin directory.

Example:

touch data set the last access date and time of the data file to the
current one, create an empty data file, if it does not exist

tty (teletypewriter)

The tty command prints the name of the terminal or console. It is a program in
the /usr/bin directory.
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Example:

tty print the current terminal device

who (who)

The who command displays who is logged in the system. It is a program in the
/usr/bin directory.

Example:

who display the information about the logged users

whoami (who am I)

The whoami command displays the current username. It is a program in the
/usr/bin directory.

Example:

whoami print the username

1.3.6 Getting help

man (manual)

The man command provides an in-depth information about a requested command
or allows users to search for commands related to a particular keyword [10, 11].
To terminate, press q. It is a program in the /usr/bin directory.

Examples:

man ls print the manual pages of the ls command
man -k list print the manual pages related to the list keyword

whatis (what is)

The whatis command provides a short description of a command. It is a program
in the /usr/bin directory.

Example:

whatis ls print a short description of the ls command
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info (information)

The info command provides information about a requested topic stored in the
hypertext files. It is similar to the man command, although newer. To terminate,
press q. It is a program in the /usr/bin directory.

Example:

info ls display the information file about the ls command

1.4 Redirection

When a command or program is started from a shell, it is given three open
files: stdin (standard input), stdout (standard output) and stderr (standard
error). Each file has an FD (File Descriptor) number or a handle. The handles
for the three standard files are: 0 (stdin), 1 (stdout) and 2 (stderr).

The standard input file pointer points to a device where the input comes from.
By default it is a console (or more precisely its input device (e.g. keyboard)) from
which the command is started. A standard input of a command can be redirected
to an arbitrary file with < character (or 0<, where zero stands for the standard
input handle). If a command is run with:

command < infile

then its standard input file pointer points to the infile file instead of the console
input device (e.g. keyboard).

Many commands expecting to receive a filename as an argument use a stan-
dard input when the filename argument is not given (e.g. grep ’pattern’, the
argument with a file to be searched is missing, therefore grep searches a standard
input, or, in other words everything that is typed until Ctrl-D (i.e. EOF)). Thus,
the commands:

grep ’pattern’ data
grep ’pattern’ < data

are equivalent. The first searches the data file for pattern, the second searches
the standard input for pattern, while the standard input file pointer points to
the data file.

The standard output file pointer points to a device where the output from a
command normally goes to. By default it is a console (or more precisely its output
device (e.g. display)) to which the command output is printed. The standard
output of a command can be redirected to an arbitrary file with > character (or
1>, where one stands for the standard output handle). If a command is run with:

command > outfile

then its standard output file pointer points to the outfile file instead of the
console output device (e.g. display). The command output is saved into outfile
instead of printed to a standard output device.

The standard error file pointer points to a device where the error output from a
command goes to. By default it is the same console (or more precisely its output
device (e.g. display)) to which the command output is printed. The command
error and regular output are therefore both printed to the same device by default.
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As they are still two files, they can be divided by redirection to separate the
output from error messages. A standard error of a command can be redirected to
an arbitrary file by appending 2> and a filename. If a command is run with:

command 2> errfile

then its standard error file pointer points to the errfile file instead of the console
output device (e.g. display). The command error output is saved into errfile
instead of printed to an output device.

Linux treats the input (e.g. keyboard), output (e.g. display) and error (e.g. dis-
play) devices as files.

Besides the described redirection operators < (i.e. 0<), > (i.e. 1>) and 2>, there
are also >> (i.e. 1>>) and 2>> that append the command output and error
to an existing file instead of creating a new empty file. With a single > (1> or
2>) redirection operator, the &n can be used as a filename, where n stands for a
handle. Thus, 2>&1 means redirect the standard error (2>) to the file with handle
1 (&1). In other words, redirect the standard error to a standard output file. For
instance, in the line:

command < infile >> outfile 2>&1 ,

the command standard input is redirected to infile, the standard output is
redirected to outfile, the existing contents of outfile are not deleted, the new
contents are appended, the standard error is also redirected to outfile.

The output from one command can be assigned as an input into another com-
mand by a pipe (|) operator. With pipes, the multiple commands can be glued
together in a powerful way. For instance, in the line:

command1 < infile | command2 | command3 >> outfile ,

the standard input of command1 is infile, the standard input of command2 is the
standard output from command1, the standard input of command3 is the standard
output from command2 and the standard output from command3 is appended to
outfile.

1.4.1 Named pipes

As described above, the commands can be glued together using a pipe (|) oper-
ator. Such pipe is called an anonymous or unnamed pipe. The pipe is used for
communication among processes (e.g. commands). It is also called a FIFO (First
In First Out) referring to the property that the order of the data going in is the
same as the order of the data coming out. With the anonymous pipes, there is
one reading and one writing process. That is not the case with the named pipes
where more than one reading and more than one writing process may use the pipe.
The named pipe is created with the mkfifo command. A pipe is visible in the
file system as a file. The example given below demonstrates how a named pipe
works:

mkfifo pipe1 create the pipe1 named pipe
ls -l > pipe1 write a list of files in the current directory to pipe1

Manipulate the list of the files in another terminal with:

grep .dat < pipe1 read from pipe1 and print the .dat lines
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rm pipe1 destroy the pipe1 named pipe

Note that the ls command in the first terminal appears to hang. This happens
because the other end of the pipe is not yet connected. The ls command is sus-
pended (blocked) until the grep command opens the pipe in the second terminal.

1.5 Ownership and access rights

Each file, directory, etc., has an owner and associated access rights or permissions.
They can be displayed by using the long option with the ls command (i.e. ls -l),
for instance:

-rwxr-xr-- 1 maya civilization 123 Dec 20 23:59 doomsday

The above line with a long file description has nine fields. The last field is the
name of the file (i.e. doomsday). The third field defines the user owning the file
(i.e. the file doomsday is owned by the maya user). The fourth field gives the
group of the users for which the access rights on the file can be set separately
(i.e. access rights on the doomsday file can be set separately for the users in the
civilization group). It is called the group owner of the file. The lists of groups
and users belonging to a particular group can be found in /etc/groups. A user
can be a member of an arbitrary number of groups and has to be a member of at
least one group.

The ten characters in the first field (i.e. -rwxr-xr--) are the access rights for
the file. The first character indicates the file type which can be:

- file
d directory
b block special file (e.g. /dev/sda)
c character special file (e.g. /dev/console)
l symbolic link (e.g. /vmlinuz)
p pipe (e.g. /dev/xconsole; see subsection 1.4.1)
s domain socket (e.g. /dev/log; socket is a communication endpoint,

e.g. the IP address and port number (see section 2.4) represent an IP
socket for exchanging data over TCP/IP (see section 2.1), or the Unix
domain socket for exchanging data between processes within the
operating system kernel)

The access rights on the file have the following meaning:

r read permission to read/copy the file
w write permission to change/rename/delete the file
x execute permission to run the file as a program

The access rights on the directory have a slightly different meaning:

r read permission to list the files in the directory
w write permission to add/rename/delete the files in the directory
x execute permission to change (e.g. with the cd command) into the

directory and access files in that directory by name



22 CHAPTER 1. OPERATING SYSTEM

The nine characters following the type character are divided into three sections
defining the permissions for the owner, group and all other users. Each sec-
tion is three characters long and represents the read, write and execute permis-
sions, respectively (e.g. -rwxr-xr-- declares that doomsday is a file whose owner
(i.e. maya) has full permissions (i.e. rwx - read, write and execute), every user in
the civilization group has the read and execute permissions (i.e. r-x) and all
other users have only the read permission (i.e. r--)).

A sticky bit (t) can appear instead of the execute (x) permission for a directory.
A file in a sticky directory may only be renamed/deleted by the user having a write
permission to the directory and the user is the owner of the file (e.g. drwxrwtrw-
means that the owner of the directory has full permissions; a member of a group
also has full permissions, but can rename/delete only the files he/she owns; all
other users have the read and write permissions to the directory meaning that
they can rename/delete the files in the directory but cannot change into it). The
sticky bit feature is useful for the directories which must be publicly writable but
should deny the users to rename/delete each others files (e.g. /tmp). The super
user can always do everything. The access rights do not apply to the super user.

The fifth field declares the size of the file in bytes (i.e. doomsday is 123 bytes
long). The following three fields specify the date and time of the last access or
modification of the file (i.e. doomsday was last accessed on 20th of December at
23:59). If the last access was less than six months ago, then the time is given,
otherwise the year is displayed instead of the time.

The second field is the number of hard links to the file. A pointer to the
physical location of the file on the disk is called inode (information node). The
file system keeps track of where a particular file is stored using the inode pointer
structure, where a directory is a special kind of the file containing a list of inodes
pointing to the files in the directory. An inode pointer to a file is called a hard
link. More than one inode can point to the same physical file (e.g. the directories
typically have more hard links, one of them is in the parent directory (dirname),
one is within itself (.) and one is in every child directory (..)), thus making the
same file to appear in different places under different names. The same but in a
slightly different way can be achieved using soft or symbolic links. A soft link is
a symbolic path in the directory structure indicating the location of another file.

The hard links cannot cross the file system boundaries, while the soft links
can. The soft links are not updated, while the hard links always refer to the
source (e.g. a file is physically deleted when the last hard link to it is deleted; on
the other hand, if the file is deleted, then all the soft links to it become invalid).

groups (groups)

The groups command lists the user groups of which the given user is a member.
If a username is not specified, the list for the current user is displayed. It is a
program in the /usr/bin directory.

Examples:

groups list the groups of which the current user is a member
groups maya list the groups of which the maya user is a member
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chmod (change mode)

The chmod command sets new access rights on the file. It is a program in the
/bin directory.

Examples:

chmod 644 data set the -rw-r--r-- (or binary 0.110.100.100 = 644)
permission to the data file

chmod -R 400 dir recursively set the readonly owner permission to
the dir directory and all its subdirectories

chmod ug+rw,o-x data add the read/write permissions to the owner (user)
and group, withdraw the execute permission to other

chmod a=r data set the read permission to all (i.e. a is equivalent to
ugo (user, group, other))

chown (change owner)

The chown command sets a new user and/or group owner of the file. It is a
program in the /bin directory.

Examples:

chown maya doomsday
set the maya user to be the new owner of the doomsday file

chown maya:civilization doomsday
set the maya user and civilization group to be the new owner of the
doomsday file

chown :civilization doomsday
set the civilization group to be the new owner of the doomsday file

ln (link)

The ln command creates a hard or a soft link to a file. It is a program in the
/bin directory.

Examples:

ln ../data copy in the current directory create a hard link named
copy to the data file in the parent directory

ln -s ../data copy in the current directory create a symbolic link named
copy to the data file in the parent directory

1.6 Processes and jobs

Linux is a multitasking system. Each task is called a process. A process is a
program that is currently being executed. It is identified by a unique process
identifier PID (e.g. the init program has PID = 1). A process may be in the
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foreground, in the background, or suspended. In general, the shell does not return
with a prompt until the current foreground process finishes executing. If a process
takes a long time to finish, then it holds up the terminal. By running such a
process in the background, the prompt is returned immediately. Other tasks can
be carried out while the original process continues executing in the background.

In Linux, a process can be stopped or suspended by pressing Ctrl-Z. By
pressing Ctrl-C, a process is killed or terminated. The program is a file with an
execute permission. The program can be run from the shell prompt in the same
way as any command (e.g. the ./program command will execute the program file
in the current directory). To run a program in the background, the & sign has to
be added. For instance, the command:

./long_program &

will start the long_program file in the current directory in the background. The
prompt will be returned immediately although long_program has not finished
executing yet.

The information about a process can be obtained with the ps command. The
most common process properties are:

PID process identifier number,
TTY control terminal to which the process has the

input, output and error,
TIME cumulative CPU time used by the process,
CMD name of the process (i.e. executable program),
UID or USER user identifier, the user who owns the process,
PPID parent process identifier number, the parent process

that spawned the process,
C or %CPU percentage of the CPU time used by the process,
STIME or START start time of the process,
SZ process virtual memory usage in kB,
RSS process real memory usage in kB,
PSR processor number to which the process is assigned,
S or STAT process status code,
PRI process priority number,
NI process nice value,
%MEM percentage of the memory used by the process, and
VSZ process virtual memory size in kB.

A process has one of the following states:

running process is either running or ready (waiting to be assigned to
CPU) to run (STAT = R),

waiting process is waiting for an event (interruptible sleep, STAT = S)
or a resource (non-interruptible sleep, STAT = D),

stopped process is suspended (STAT = T), and
zombie terminated process, a dead process that for some reason still

appears on the list (STAT = Z).

Additional characters may further describe the process status (STAT):

< high-priority process (not nice to others),
N low-priority process (nice to others),
L process with locked memory pages,
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s process is a session leader,
l multi-threaded process, and
+ foreground process.

ps (process status)

The ps command lists the current processes with their status information. It is a
program in the /bin directory.

Examples:

ps list the current running processes
ps -e list all processes
ps -f list the processes in a full format
ps -F list the processes in an extra full format
ps -ly list the processes in a long format
ps aux list all processes (BSD (Berkeley Software Distribution) syntax)
ps -e | grep program print the information on the program process

bg (background)

The bg command continues a suspended job (i.e. process) in the background. It
is a part of the bash.

Examples:

bg continue the most recently suspended job in the background
bg 3 continue the job number three in the background

jobs (jobs)

The jobs command lists the user’s jobs currently running in the foreground,
background or stopped. It is a part of the bash.

Example:

jobs list the current jobs

fg (foreground)

The fg command continues a suspended job (i.e. process) in the foreground or
transfers a job running in the background to the foreground. It is a part of the
bash.
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Examples:

fg continue the most recently suspended job in the foreground
fg 3 continue jthe ob number three in the foreground

kill (kill)

The kill command sends a signal to a process, usually a request for termination
of the process. It is a program in the /bin directory. Some most frequently used
signals with their codes are:

TSTP 20 stop executing (suspend) (Ctrl-Z)
STOP 19 stop executing (suspend)
CONT 18 continue executing if stopped
ILL 4 sent to the process at an attempt of executing an unknown

instruction
SEGV 11 sent to the process at segmentation violation
INT 2 request to terminate (Ctrl-C)
TERM 15 request to terminate (default)
QUIT 3 terminate the process and perform a core dump
ABRT 6 abort the process
KILL 9 terminate immediately

All the signals, except KILL and STOP, can be intercepted by the process, meaning
that a special function can be called when the process (i.e. program) receives the
signal. The two exceptions, i.e. KILL and STOP, are only seen by the kernel. The
TSTP signal is sent when Ctrl-Z is pressed. It is basically the same as STOP,
although it can be intercepted. The ILL and SEGV signals are sent by the kernel
when a process tries to perform an illegal instruction or makes an invalid memory
reference (i.e. segmentation fault). The INT signal is sent when Ctrl-C is pressed
and is similar to TERM. QUIT performs a core dump which is a current working
memory state of a process. The ABRT signal is also similar to TERM, but cannot be
blocked. That means that the process will be unconditionally terminated when
the ABRT signal handler function returns.

Examples (for a process with PID = 123):

kill 123 terminate (TERM) the process
kill -TSTP 123 suspend the process (the same as Ctrl-Z)
kill -s CONT 123 continue the process (the same as the fg command)
kill -9 123 immediately terminate (KILL) the process

killall (kill all)

The killall command sends a signal to a group of processes in the same way as
the kill command. It is a program in the /usr/bin directory.
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Examples:

killall prog terminate (TERM) all prog processes
killall -TSTP prog suspend all prog processes
killall -s CONT prog continue all prog processes
killall -9 prog immediately terminate (KILL) all prog processes

top (top)

The top command provides an ongoing look at the processor activity in real time.
It displays a listing of the most CPU-intensive processes. It is a program in the
/usr/bin directory. To terminate, press q.

Examples:

top display the top processes (the default refresh rate is 1s)
top -d 0.1 display the top processes with a 100ms refresh

lsof (list the open files)

The lsof command displays a list of the open files and the processes that have
opened them. Since in Linux everything is either a file or a process, everything
that the processes are working with is listed. An open file may be a regular file,
directory, device, pipe or socket (see the table on page 21). It is a program in the
/usr/bin directory.

Examples:

lsof config.txt list the processes using the config.txt file
lsof -c prog list the files opened by the processes whose names

start with prog
lsof -u hyde list the files opened by the processes owned by

the hyde user
lsof +p 123 list the files opened by the process whose PID is 123
lsof -i list the opened IP sockets
lsof -i :80 list the opened IP sockets at port 80 (see section 2.4)
lsof -U list the opened Unix domain sockets
lsof -i -n -P list the opened IP sockets without resolving the

hostnames (no DNS, see section 2.7) and port names

nice (nice)

The nice command invokes a program with a given nice value which modifies the
scheduling priority. A higher nice value means a lower priority (the process is nice
to others). The range for a nice value goes from -20 (the highest priority) to 19
(the lowest priority). The negative nice values can be set only by a super user. It
is a program in the /usr/bin directory.
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Examples:

nice -10 prog run prog with nice = 10
nice --10 prog run prog with nice = -10

strace (system call/signal trace)

The strace command monitors and prints out the running process system calls
and received signals. It is a program in the /usr/bin directory.

Examples:

strace prog
run the prog process and trace its system calls and received signals,
write the output of strace to a standard error file

strace -o out.txt prog
run the prog process and trace its system calls and received signals,
write the output of strace to the out.txt file

1.7 Variables and functions

The variables are a set of the name-value pairs that can affect the way the running
processes will behave. They create an environment in which a process runs. A
variable can be created or changed by:

name=value

The variables can be used in a command line or in scripts (see section 1.9). They
are referenced by putting the $ sign in front of the name. For instance, to display
the value, the echo command can be used:

echo $name

The variables are split into two categories: the environment or global variables
and shell or local variables. The shell variables are local to the command line
shell in which they are created. They are not inherited by a child process (i.e. a
command or program running from the command line shell). The child processes
will not be aware of them. When a new variable is created, it is a shell variable by
default. On the other hand, a child process inherits from the parent process all the
environment variables. To elevate a shell variable into an environment variable,
it has to be exported (see page 30). The environment variables are written in the
uppercase and the shell variables are written in the lowercase by a non-obligatory
convention.

A function is a group of several commands for a later execution using a single
name. It can be executed just like a regular command. In contrast to a regular
command, a function does not create any new process at execution. A function
can be created by:

name()
{

command1
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command2
...

}

A function can be an environment (i.e. global) function or a shell (i.e. local)
function. The rules apply in the same way as for the variables.

A default set of the shell and environment variables and functions is defined
at shell initialization. Here is a short list of some most common variables:

HOME user’s home directory (e.g. /home/username)
HOSTNAME host machine name
OSTYPE operating system type (e.g. linux-gnu1)
PATH colon-separated list of directories in which the shell looks for

commands
PPID shell parent process identifier
PS1 primary prompt string
PS2 secondary prompt string (e.g. used when defining a function)
SHELL shell binary (e.g. /bin/bash)
TERM user’s terminal (e.g. linux)
USER username

The start-up scripts can be used to permanently customize or add a variable
or a function. They are processed at login each time the shell is invoked. Dif-
ferent shells use different start-up files. Most commonly, the /etc/profile and
∼/.profile start-up scripts are executed at login. Which start-up scripts will
be processed also depends on how the shell is invoked (e.g. at login, or by exe-
cuting a shell binary, or to run a script). Some shells also have a logout script
(e.g. ∼/.bash_logout for the bash).

set (set)

The set command displays the names and values of all shell variables and func-
tions. It is a part of the bash.

Example:

set list all variables and functions

env (environment)

The env command displays the names and values of the environment shell variables
and functions. It is a program in the /usr/bin directory.

Example:

env list all environment variables and functions

1GNU/Linux is a GNU Unix-like operating system (i.e. software collection of applications,
libraries and developer tools) with a Linux kernel.
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export (export)

The export command makes a local (i.e. shell) variable or function global (i.e. en-
vironment). It is a part of the bash.

Examples:

export var make the var shell variable an environment variable
export var=val create a var environment variable with value val

unset (unset)

The unset command removes a variable or a function. It is a part of the bash.

Examples:

unset var remove the var variable
unset -f func remove the func function

1.8 Text file editing

There is a number of different text editors available, but the vi (visual) text
editor [12] comes with the most versions of Linux. It has powerful features to
aid programmers although it is sometimes considered as a terribly user-unfriendly
editor.

The vi editor uses the full screen, therefore it needs to know what kind of a
terminal it is dealing with. The terminal type is defined with the TERM variable
that should be correctly set end exported. To edit a file with the vi editor, type:

vi filename

If the filename is not given, vi will ask for it at an attempt to save the file.
The vi editor has two modes: a command and insert. The command mode

allows an entry of commands to manipulate the text. The insert mode, on the
other hand, inserts the typed characters into the edited file at the cursor position.
vi starts in the command mode. To change the mode from the command to insert,
use the i command. To change the mode from insert to command, press Esc.

Most commands are one or a few characters long. The most common com-
mands are:

:w save the changes
:wq save the changes and exit
:q! exit without saving the changes
a enter the insert mode after the cursor
i enter the insert mode
h move the cursor left
j move the cursor down
k move the cursor up
l move the cursor right
x delete the character at the cursor
:d or dd delete the line
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u undo
J join two lines
y copy
p paste
mc set the c marker
‘c go to the c marker
"b b buffer
/string search for string
n repeat the last search command
:s/pattern/string replace (substitute) pattern with string
:s/pattern/string/g replace pattern with string in the entire file
& repeat the last replace command

To specify / character in string or pattern, use \/. For \ character, use \\.

A copy and paste example:

put the cursor on the first character of the block
mc set the c marker

move the cursor after the last character of the block
"by‘c copy from the current cursor position to the c marker into the b buffer

move the cursor to the paste position
"bp paste the b buffer

A cut and paste example:

put the cursor on the first character of the block
mc set the c marker

move the cursor after the last character of the block
"bd‘c cut from the current cursor position to the c marker into the b buffer

move the cursor to the paste position
"bp paste the b buffer

1.9 Shell scripts

A shell provides an interface between the user and kernel. It is a command inter-
preter. Besides, it is also a fairly powerful programming language [13, 14]. A shell
program is called a script. To run a script, it has to have an execute permission.
A detailed explanation of the shell programming exceeds the scope of this script.
A glimpse into the shell programming is given with the following example script
named countdown.

#!/bin/bash

check()
{

if [ "$1" != "" -a "$1" != "-m" -a "$1" != "-h" -a "$1" != "-d" ]
then

echo "description: countdown to doomsday (20/12/2012, 24:00)"
echo " usage: countdown [-m] [-h] [-d]"
echo " options: -m ... to a minute precisely"
echo " -h ... to an hour precisely"
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echo " -d ... to a day precisely"
exit

fi
}

display()
{

d=$(($1 / 86400))
h=$(($1 % 86400 / 3600))
m=$(($1 % 3600 / 60))
s=$(($1 % 60))
case "$2" in

"" )
printf "\r%4d days, %02d:%02d:%02d to doomsday" $d $h $m $s
sleep 1
;;

"-m" )
printf "\r%4d days, %02d:%02d to doomsday" $d $h $m
sleep $s
;;

"-h" )
printf "\r%4d days, %02d hours to doomsday" $d $h
sleep $(($1 % 3600))
;;

"-d" )
printf "\r%4d days to doomsday" $d
sleep $(($1 % 86400))

esac
}

check $1
difference=1
while [ $difference -gt 0 ]
do

difference=$((1356048000 - ‘date +%s‘))
display $difference $1

done
printf "\n"
echo "kaboom!"

The script counts down to the moment set for 20th of December 2012 at 24:00.
Depending on the specified option, the remaining time is displayed up to a day
(-d), hour (-h), minute (-m) or second (default) precisely. The script is run simply
by typing its name in the command line (e.g. ./countdown -m). The first line of
the script begins with a shebang or hashbang sequence #!. It defines a path to
CLI (in our case the bash) which will be used to run the script. The countdown
script consists of two functions (check() and display()) and the main part. The
check() function checks the specified option, and the display() function displays
the remaining time and waits until the next change is due. The main part of the
script first calls check() and then in a loop calculates and displays the remaining
time until 20th of December 2012 at 24:00 (= 1356048000 seconds from 1st of
January 1970 UTC (Universal Time Coordinated)). The script ends with its final
message when the moment arrives.



1.10. PROGRAMMING IN C AND C++ 33

1.10 Programming in C and C++

To accomplish some special task, the user can write a program in the C or C++
programming language [15, 16]. A detailed explanation of the C and C++ pro-
gramming languages far exceeds the scope of this textbook. When a program is
written, it has to be built before it can be run. The very basics on how to build a
C program will be demonstrated here by an example. The C version of the shell
script example from section 1.9 is presumed to be distributed among the check.h,
check.c, display.h, display.c and countdown.c files as follows:

/* check.h */
extern void check(int argc, char **argv);

/* check.c */
#include <string.h>
#include <stdio.h>
#include <stdlib.h>
void check(int argc, char **argv)
{
if(argc > 1)
if(strcmp(argv[1], "-m") && strcmp(argv[1], "-h") &&

strcmp(argv[1], "-d"))
{
printf("description: countdown to doomsday(20/12/2012,24:00)\n");
printf(" usage: countdown [-m] [-h] [-d]\n");
printf(" options: -m ... to a minute precisely\n");
printf(" -h ... to an hour precisely\n");
printf(" -d ... to a day precisely\n");
exit(0);

}
}

/* display.h */
extern void display(int secs, int argc, char **argv);

/* display.c */
#include <stdio.h>
#include <unistd.h>
void display(int secs, int argc, char **argv)
{

int d = secs / 86400;
int h = secs % 86400 / 3600;
int m = secs % 3600 / 60;
int s = secs % 60;
if(argc == 1)
{

printf("\r%4d days, %02d:%02d:%02d to doomsday", d, h, m, s);
fflush(stdout);
sleep(1);

} else switch(argv[1][1])
{
case ’m’:

printf("\r%4d days, %02d:%02d to doomsday", d, h, m);
fflush(stdout);
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sleep(s);
break;

case ’h’:
printf("\r%4d days, %02d hours to doomsday", d, h);
fflush(stdout);
sleep(secs % 3600);
break;

case ’d’:
printf("\r%4d days to doomsday", d);
fflush(stdout);
sleep(secs % 86400);

}
}

/* countdown.c */
#include <time.h>
#include <stdio.h>
#include "check.h"
#include "display.h"
int main(int argc, char *argv[])
{

int difference;
check(argc, argv);
do
{

difference = 1356048000 - time(NULL);
display(difference, argc, argv);

} while(difference > 0);
printf("\nkaboom!\n");
return 0;

}

Building the final executable program consists of two steps. First, the source files
(with .c extension) are compiled to the object files (with .o extension). Then the
object files are linked into an executable file. In our case, compiling and linking
can be done with a few gcc [17] (gcc stands for the GNU Compiler Collection,
also used to mean the GNU C Compiler) calls:

gcc -c check.c
gcc -c display.c
gcc -c countdown.c
gcc -o countdown check.o display.o countdown.o

The -c flag tells gcc to compile only. The -o flag defines the name of the output
file. The subsequent arguments are the input files.
The same can be achieved by only one gcc call:

gcc -o countdown check.c display.c countdown.c

Building the programs consisting of numerous source files can become an awkward
task. Therefore, the make utility is used. It reads the file named Makefile (if not
specified otherwise with the -f option) and performs the requested action. In
general, the makefile is a set of rules of the following form:
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target: prerequisites
command

...

The target is the name of the output file or an action to be carried out. The
prerequisites are the input files used to create the target. The subsequent com-
mands are performed by make for the requested target. It should be noted that
tab character has to be at the beginning of every command line. For instance, in
our case, Makefile can be:

# Makefile
all: countdown

check.o: check.c check.h
gcc -c check.c

display.o: display.c display.h
gcc -c display.c

countdown.o: countdown.c check.h display.h
gcc -c countdown.c

countdown: check.o display.o countdown.o
gcc -o countdown check.o display.o countdown.o

clean:
rm *.o countdown

The make command without arguments will follow the rule for the all target
(default). The prerequisite for all is the countdown. The prerequisites for the
countdown are check.o, display.o and countdown.o. Therefore, make will first
compile the three files (execute gcc -c ... commands of the prerequisite targets)
and then link them (command gcc -o ... of the countdown target). The same
can be achieved with the countdown target:

make countdown

Cleanup can be performed by the clean target:

make clean

which removes all the object files and final executable.
The make utility also automatically determines which pieces of the target need

to be recompiled. The pieces, which have not changed since the last compilation
are not recompiled.

To run the executable program (e.g. ./countdown), it has to have an execute
permission.

The C++ source code files have the .cpp suffix2. Regarding the suffix, the gcc
invokes an appropriate compiler (gcc is a collection of compilers). For instance,
the C compiler is called on page 34 because of the .c suffix. With the .cpp suffix,
the C++ compiler is invoked. Thus, the C++ source file is compiled to the object
file in the same way as the C file:

2Suffixes .C, .cc, .CPP, .c++, .cp, and .cxx are also used for the C++ source files.
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gcc -c source.cpp

The g++ program explicitly invokes the C++ compiler. It actually calls gcc with
the default language set to C++. All files are treated as the C++ files regardless
of their suffix.

g++ -c source.cpp

When linking the object files into a final executable, g++ automatically links in
the libstdc++.a standard C++ runtime library. With gcc, the library is not
linked by default and has to be manually included.

g++ -o executable object1.o object2.o object3.o
gcc -o executable -lstdc++ object1.o object2.o object3.o

1.10.1 Source code modifications

To fix a bug in an already released program, a program modification has to be
applied. Such a program modification is called a patch. If a program is distributed
as a binary executable file, then the patch is also a program modifying or replacing
the executable. The end user actually has to run the patch.

When the program source code is available, the final executable file can be
compiled and linked by the end user. The patch has to contain the source code
modifications, i.e. the textual differences between the original and patched source
files. Such a patch can be created by the diff command and applied by the patch
command.

diff (difference)

The diff command prints the differences between two files or directories. It is a
program in the /usr/bin directory.

Examples:

diff org.c new.c print the differences between the org.c and new.c
files, i.e. changes required in org.c to become
new.c

diff -u org.c new.c print the differences in a unified format to be
used as an input for the patch command

diff -p org.c new.c print additional identical lines before and after
each difference

diff orgdir newdir run diff on files that exist in orgdir and
newdir, report the files that do not exist in both
directories

diff -r orgdir newdir diff orgdir and newdir, recursively descend any
matching subdirectories

diff -N orgdir newdir diff files in orgdir and newdir, the file found in
only one directory is compared against an empty
file

diff -uprN orgdir newdir > patch-org.diff
create the patch-org.diff file for patching
orgdir to newdir
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patch (patch)

The patch command updates an original file or directory with a patch file obtained
by the diff command. A patched version of a file or directory is produced. It is
a program in the /usr/bin directory.

Examples:

patch < patch-org.diff
apply patch-org.diff to files/directories in the current directory;
patch-org.diff has to be in a unified format

patch -p1 < patch-org.diff
apply the patch, skip the given number of leading slashes in
filenames in patch-org.diff (e.g. if a file is referenced to as
orgdir/main/source.c, then with -p1 the patch will look for
main/source.c in the current directory)

patch -p1 -R < patch-org.diff
reverse the patch, obtain the original version

1.10.2 Debugging the C and C++ programs

To debug a program, it has to be compiled with a debugging information in it.
To include the debugging information, use the -g option with gcc or g++. For
instance, an example program from section 1.10 should be compiled with:

gcc -g -o countdown check.c display.c countdown.c

Now, the obtained executable program (e.g. ./countdown) can be debugged with
gdb (GNU Debugger) [18]. A detailed description of the gdb features and its
commands exceeds the scope of this textbook. Instead, a simple gdb session of
the countdown case is presented for illustration. Invoke gdb with the command:

gdb countdown

The debugger responds with its prompt:

(gdb) break display.c:9 set the breakpoint on line 9 in display.c
(gdb) break 13 set the breakpoint on line 13 in countdown.c
(gdb) run start the program, it stops at the first

breakpoint (countdown.c, line 13)
(gdb) step step into the display() function
(gdb) continue continue to the next breakpoint (display.c,

line 9)
(gdb) next execute one line
(gbd) print s print the value of the s variable
(gdb) ...
(gdb) quit close the gdb session

1.11 Installing a software package

Linux refers to the family of the Unix-like computer operating systems using
the Linux kernel. A particular Linux version is called a distribution. There
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are many Linux distributions available (e.g. Debian, Fedora (Red Hat), Ubuntu,
etc.). Besides, the operating system distributions usually include a large collection
of the software applications, such as the software development tools (e.g. gcc),
interpreted programming languages (e.g. python), typesetting software (e.g. tex),
networking applications (e.g. protocol servers (see Chapter 2)), office applications
(e.g. open office), etc. The software in the Linux distribution is organized in
packages.

The software package management depends on the distribution. For instance,
there are various programs and tools available in the Debian distribution [19].
The main package management program is dpkg (debian package manager). It
can be invoked with various options to unpack, list, install, configure, remove,
etc., a particular package. On the next level, there is APT (Advanced Pack-
age Tool) consisting of several programs (e.g. apt-get). APT can retrieve the
specified package from the Internet and call dpkg to install it. The list of the
Internet package archives from where the packages can be obtained resides in the
/etc/apt/sources.list file. There are also other package management tools
(e.g. aptitude, synaptic, dselect, etc.). A few basic package management com-
mands for the Debian distribution follow. They have to be executed by a super
user.

dpkg --get-selections print a list of all the currently installed
packages

apt-get update update the private list of packages with the
current available versions

apt-get upgrade upgrade the installed packages to the current
available versions

apt-get dist-upgrade upgrade the installed packages to the current
available versions, install extra packages
required while upgrading the existing ones,
remove the obsolete packages

apt-get install pkg download and install the pkg package
apt-get remove pkg remove the pkg package
apt-get purge remove pkg remove the pkg package and its configuration

files
apt-cache search wrd1 wrd2 find the packages with wrd1 and wrd2 words

in description
apt-cache show pkg print the information about the pkg package
apt-cache showpkg pkg print a detailed information about the pkg

package (available versions, packages
depending on pkg)

apt-cache depends pkg print the packages on which the pkg package
depends

When installing a new package, the list of the already installed packages needs to
be updated with the current available versions first. Thus, the apt-get install
pkg command is normally preceded with the apt-get update command.

root@host:∼# apt-get update
root@host:∼# apt-get install pkg
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Network

A host is a machine (e.g. computer, printer, etc.) that can be connected to the
network [20]. Only two hosts are connected to the network in Fig. 2.1. The
connection is simple. The first host can communicate only with the second and
vice versa.

host2host1

Figure 2.1: Two host network

The principle is extended to the n hosts in Fig. 2.2. In general, each host has
n− 1 connections to every other host in the network. This means that each host
should have n− 1 network interfaces.

host5

host4

host2

host3

n = 5

host1

Figure 2.2: n hosts network

To avoid such number of the network interfaces, a hub or a switch is introduced
in Fig. 2.3. (Actually, there are three kinds of the network devices: a hub forwards
the received packet to all ports, a switch forwards the received packet to a port
regarding the destination MAC address (see below) and a router forwards the
received packet to a port regarding the destination IP address (see sections 2.1
and 2.2). Often, the hubs and switches are both called the switches, although
that is not strictly exact. This textbook also uses the term switch for both.) A
switch is a machine connecting all the hosts into a uniform network. Each host
has a unique address and only one network interface. It listens to the network to
receive packets with its address. If a packet needs to be sent to a particular host,
it has to be labeled with the corresponding address. For instance, the network
interface Media Access Control (MAC) addresses can be used.

The MAC address is a unique identifier of the network interface. It is assigned
by the network interface manufacturer. The MAC address is stored in the interface
read-only memory and cannot be changed. Therefore, it is sometimes referred to
as a burned-in address. It is a 48-bit number (e.g. 01:23:45:67:89:ab) meaning
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switch

host2 host3 host4

...

host1 host5

Figure 2.3: Network with a switch

that there are 248 or 281.474.976.710.656 MAC addresses available. It is expected
that the 48-bit address space will be exhausted no sooner than by 2100.

Most hosts today are connected into the Ethernet network [21] which has
become, over the years, the dominant Local Area Network (LAN) technology.
The Ethernet is a broadcast network. This means that the hosts are connected
to a network through a single shared medium as shown in Fig. 2.3. Since all the
hosts share the same medium, the messages do not have to be routed from the
source to the destination. All hosts receive all messages. The MAC addresses
are used for host identification. Such configuration raises the media access or
collision problem. A collision occurs when two or more hosts try to broadcast at
the same time. The Ethernet protocol uses special techniques to prevent collisions
(e.g. before broadcasting, a host listens to the media if it is idle). If a collision
nevertheless occurs, the Ethernet protocol tries to cope with it as well as possible.

The information is sent around the Ethernet network in data packets called
Ethernet frames. The Ethernet frame structure shown in Fig. 2.4 consists of:

- preamble with a start delimiter (seven 10101010 bytes for synchronization
followed by a 10101011 delimiter indicating the start of the frame)

- destination MAC address (6 bytes)
- source MAC address (6 bytes),
- data length (2 bytes),
- data (from 0 to 1500 bytes),
- pad (because of the collision detection mechanism, the Ethernet data

packet must be at least 64 bytes long (without preamble), if data is less
than 46 bytes long, this dummy field is used to compensate), and

- checksum (4 bytes used for error detection and recovery).

(6 bytes)

destination source length pad checksum

(0 - 1500 bytes)(6 bytes) (46 - 0 bytes) (4 bytes)(2 bytes)

preambule

(8 bytes)

data

IP packet ( ig. 2.5)F

Figure 2.4: Ethernet frame

The Ethernet defines several physical wiring variants, from the coaxial cable to
the twisted pair and fiber optic. Today, the Unshielded Twisted Pair (UTP) cables
are mostly used with a 100Mbps or 1Gbps (bps - bits per second) bandwidth.

2.1 Internet protocol suite

Above the Ethernet protocol there lays the Internet protocol (IP) [22, 23]. While
the Ethernet covers the physical medium and some low-level operation like the
message-collision detection, the Internet protocol is responsible for addressing the
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hosts and routing the packets from a source host to the destination host across
one or more IP networks. The IP packet is encapsulated into the data field of the
Ethernet frame as shown in Fig. 2.5. It has its own header with the information
like the protocol version, packet length, fragmentation information, time to live,
transportation protocol, destination and source IP address, etc., to list the most
important IP header fields.

Transp  prot  pack  ( ig. 2. ). . . F 7

frame footer

(4 bytes)

frame header IP header IP data

(22 bytes) (20 - 60 bytes) (0 - 1480(1440) bytes)

Figure 2.5: Internet protocol packet in Ethernet frame

The hosts using the Internet protocol for communication are labeled with the
IP addresses. An IP address is a numerical label assigned to each host attached
to the network. It serves as a host identification. The length of the IP address is
defined by the IP version. Currently, the IPv4 and IPv6 versions are in use. The IP
address is a 32-bit number in IPv4 and a 128-bit number in IPv6. Although IPv4
is obsolete and will be replaced by IPv6 in future, it still carries more than 90%
of the worldwide Internet traffic today. This textbook uses the IPv4 examples.

Since the IP address in IPv4 is a 32-bit number, there are 232 (4.294.967.296)
unique addresses available. An IP address is canonically represented in a human-
readable dot-decimal notation consisting of four decimal numbers, each ranging
from 0 to 255, separated by dots (e.g. 172.16.254.1). Each part represents a group
of 8 bits (octet) of the address.

If the network shown in Fig. 2.3 uses IP for communication, the switch could
theoretically have 232 (4.294.967.296) ports, which is of course not feasible. To
solve the issue of the numerous ports, the switches can be arbitrary connected
together as depicted in Fig. 2.6.

unused ports

host2 host3 host4

...

host1 host5 ...

172.16.254.2 172.16.254.3 172.16.254.4 172.16.254.5

...

switch

...

172.16.254.1

...

172.16.254.0 - 172.16.254.15

...

... ...

...

172.16.254.0 - 172.16.254.15

...

Figure 2.6: Above: a one-switch network, below: a uniform network

The switch does not know about the IP addresses. It forwards the packets
regarding the destination MAC address. The Address Resolution Protocol (ARP)
is used to find the corresponding MAC address for a given IP address. For example,
host One wants to send a packet to host Two with the 172.16.254.2 IP address.
In order to send the packet, One needs to know the Two’s MAC address. First,
One uses its local ARP table to find the MAC address for 172.16.254.2. If the
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MAC address is found, One can send the packet. If it is not found, One sends a
broadcast ARP message with the ff:ff:ff:ff:ff:ff MAC destination address requesting
an answer for 172.16.254.2. Two responds with its MAC address. One inserts an
entry for Two into its ARP table for a future use. Two can do the same for One.
Thus One obtained the Two’s MAC address and the packet can be sent.

The Time To Live (TTL) field in the IP header defines the maximum time
the packet is allowed to remain in the Internet system. Every host processing a
packet (see section 2.2) must decrease TTL by at least one. If TTL is zero, the
packet is destroyed. The undeliverable packet is therefore discarded.

Above the Internet protocol, there lays the transportation protocol. Two trans-
portation protocols are mainly used: the User Datagram Protocol (UDP) and the
Transmission Control Protocol (TCP). The transportation protocol packet is en-
capsulated into the IP data field as shown in Fig. 2.7. Among other information,
its header contains the source and destination port number (see section 2.4).

frame footer

(4 bytes)

UDP, TCP header data

(22 bytes) (UDP 4 bytes, TCP 20 - 60 bytes)
(UDP 0 - 1476(1436) bytes)
(TCP 0 - 1460(1380) bytes)

IP header

(20 - 60 bytes)

frame header

Figure 2.7: Transportation protocol packet in the IP packet in the Ethernet frame

UDP uses a simple transmission model without providing reliability, ordering
or data integrity. The sender is not informed back if the packet has been suc-
cessfully delivered. The UDP packets can arrive out of order, duplicated or go
missing without a notice. It is used in applications where dropping a packet is
preferable to waiting for it (e.g. Domain Name System (DNS) and Dynamic Host
Configuration Protocol (DHCP), see sections 2.7 and 2.9).

On the other hand, TCP provides a reliable and ordered packet delivery. It
is designed for accuracy rather than speed. TCP establishes a stream from the
sender to the receiver. This means that when a process on one host (i.e. sender)
desires to send a chunk of data to a process on another host (i.e. receiver), it just
makes a single request to TCP. TCP further handles the IP details by chopping the
data into IP packets and restoring the original form at the destination. The entire
chunk of data sent in a number of subsequent packets is managed by TCP and is
called a stream. TCP automatically takes care of errors like lost, duplicate or out
of order packets, etc., by requesting retransmission or reordering, etc. Therefore,
TCP guarantees the delivery. It is used by a majority of Internet applications
(e.g. HyperText Transfer Protocol (HTTP), Secure SHell (SSH), File Transfer
Protocol (FTP), see section 2.4).

The described protocols are often referred to as the Internet protocol suite
[24]. The Internet protocol suite is a set of communication protocols used for
the Internet. It can be illustrated with four layers as shown in Fig. 2.8. The
Internet protocol suite is commonly called TCP/IP. TCP/IP stands for the entire
suite although only the names of the two most important protocols are explicitly
stated.

link layer (Ethernet ...)

internet layer (IP ...)

transport layer (UDP, TCP ...)

application layer (DNS, DHCP, HTTP, SSH, FTP ...)

Figure 2.8: Four layers of the Internet protocol suite
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2.2 Gateway

In theory, we now have 4.294.967.296 hosts connected to a uniform network. But
since each host can hear all the other hosts, only two hosts can communicate over
the network at the same time. For this reason, one uniform network is divided into
an arbitrary number of subnets connected together through special hosts called
the routers or gateways (Fig. 2.9).

...

172.16.254.128 - 172.16.254.159

172.16.254.128 / 255.255.255.224

IP: 172.16.254.146

Sub: 255.255.255.224

IP: 172.16.254.1

Sub: 255.255.255.240

Gw: 172.16.254.11

Gw

172.16.254.0 - 172.16.254.15

172.16.254.0 / 255.255.255.240

Gw3

IP: 172.16.254.11

Sub: 255.255.255.240

IP: 172.16.254.129

Sub: 255.255.255.224

Gw1

Gw: 172.16.254.132 IP: 172.16.254.132

Sub: 255.255.255.224

Gw2

Gw: 172.16.254.146

Gw

...

IP: 172.16.254.167

Sub: 255.255.255.240

Gw:

172.16.254.160 - 172.16.254.175

172.16.254.160 / 255.255.255.240

Figure 2.9: Subnets with gateways

A subnet is a uniform network in which hosts within a certain range of the
IP addresses reside. It is described with two 32-bit numbers, subnet address and
subnet mask. The subnet mask defines which (left side) bits constitute a subnet
address.

Example:
Subnet address: 172.16.254.0 =10101100.00010000.11111110.0000 0000
Subnet mask: 255.255.255.240 =11111111.11111111.11111111.1111 0000
The subnet contains 16 IP addresses from 172.16.254.0 to 172.16.254.15.

Besides their IP addresses, the hosts in a subnet also know their subnet mask.
The IP address therefore decomposes into two parts, i.e. the subnet address and
the host address.

Example:
Host IP address: 172.16.254.1 =10101100.00010000.11111110.0000 0001
Subnet mask: 255.255.255.240 =11111111.11111111.11111111.1111 0000
The host resides in a 172.16.254.0 subnet. Its address is 0.0.0.1.

A gateway is a host with (at least) two network interfaces. It connects (at least)
two subnets. Each host, including the gateways, knows its default gateway. The
packets sent to the IP addresses within the subnet range will be delivered directly.
A packet addressed outside the subnet cannot travel directly to the destination
host. It will be delivered to the default gateway for further dispatching to its
ultimate destination. A host can act as a gateway only if IP forwarding is enabled
(see page 63).
An example (Fig. 2.9): The host 172.16.254.1 sends a packet to host 172.16.254.
167. Since the destination is not within the subnet 172.16.254.0/255.255.255.240
range the packet is sent to the default gateway 172.16.254.11 (Gw1). The destina-
tion address is not within the subnet 172.16.254.128/255.255.255.224 range either.
It is forwarded to next default gateway 172.16.254.132 (Gw2), and then for the
same reason to gateway 172.16.254.146 (Gw3). Since the destination address is
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within the subnet 172.16.254.160/255.255.255.240 gateway Gw3 dispatches the
packet to its final destination 172.16.254.167.

Since the whole network is divided into subnets, the hosts inside a subnet
and the hosts inside another subnet can communicate simultaneously. The hosts
inside a subnet cannot hear the hosts in other subnets. Each host can hear only
the hosts in its own subnet.

2.3 Routing table

In section 2.2, special hosts called the gateways were introduced. They are used to
receive the packets with the destination outside a particular subnet and dispatch
them further. Each host knows the IP address of its default gateway. Also, every
host, with the exception of the gateways, has only one network interface (Figs.
2.6 and 2.9). To enable a host to use more than one gateway and to have more
than one network interface, a routing table is used. If a host has more than one
network interface, then it also has to have more than one IP address. One IP
address per a network interface has to be assigned.

In fact, every host has a routing table with at least the default gateway listed.
Besides the default gateway, the routing table defines where a packet destined to
a particular subnet should be dispatched. In other words, it lists the routes to
particular network destinations by containing information about the topology of
the network immediately around a host. The routing tables are different from one
operating system to another, but a routing table always contains the following
information:

- subnet,
- gateway, and
- network adapter.

Example: A host with two ethernet network interfaces is shown in Fig. 2.10.
The IP addresses of the eth0 and eth1 network interfaces are 212.235.187.70 and
172.16.254.1, respectively.

host

eth0: 212.235.187.70

172.16.254.0 - 172.16.254.15

172.16.254.0 / 255.255.255.240

172.16.254.11
Gw

eth1: 172.16.254.1

212.235.187.64 - 212.235.187.95

212.235.187.64 / 255.255.255.224
Gw

212.235.187.65

Figure 2.10: Host connected to two subnets with two network interfaces

Since the host has two network interfaces attached to two different subnets, it
has a direct access to those two subnets. The routing table lists which network
interface and gateway should be used to reach a particular network destination.

As seen from Table 2.1, the host does not have two but three network inter-
faces: lo0, eth0 and eth1. The lo0 interface is a loopback virtual network interface.
For further explanation of the loopback network interface, its 127.0.0.0/255.0.0.0
IP address and subnet, see section 2.8.
Table 2.1 defines that a packet destined to the subnet:

- 127.0.0.0/255.0.0.0 is dispatched directly through the lo0 interface,
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subnet gateway interface
127.0.0.0/255.0.0.0 not defined lo0 (127.0.0.1)
172.16.254.0/255.255.255.240 not defined eth1 (172.16.254.1)
212.235.187.64/255.255.255.224 not defined eth0 (212.235.187.70)
172.16.254.128/255.255.255.224 172.16.254.11 eth1 (172.16.254.1)
172.16.254.160/255.255.255.240 172.16.254.11 eth1 (172.16.254.1)
0.0.0.0/0.0.0.0 212.235.187.65 eth0 (212.235.187.70)

Table 2.1: Routing table

- 172.16.254.0/255.255.255.240 is dispatched directly through the eth1
interface,

- 212.235.187.64/255.255.255.224 is dispatched directly through the eth0
interface,

- 172.16.254.128/255.255.255.224 is dispatched to the 172.16.254.11 gateway
through the eth1 interface,

- 172.16.254.160/255.255.255.240 is dispatched to the 172.16.254.11 gateway
through the eth1 interface, and

- 0.0.0.0/0.0.0.0 (all other subnets) is dispatched to the 212.235.187.65
(default) gateway through the eth0 interface.

2.4 Port number

When a packet is received, the host operating system needs to know to which
application or process the packet should be delivered. The ports serve that pur-
pose. They complement the IP address. A port is a 16-bit number, thus ranging
from 0 to 65.535, which is commonly attached to the IP address with a colon (:)
delimiter. Each host process that can receive a packet listens at a unique port.
If the host receives a packet addressed to 172.16.254.1:8000, then 172.16.254.1 is
obviously the host IP address, while the port number 8000 tells the operating
system to deliver the packet to a process listening there.

The processes on a host machine providing a specific network service use the
well-known port numbers from 0 to 1023. The well-known port numbers are as-
signed to services by convention [25]. For instance, the web site server process
listens at port 80 (reserved for the HyperText Transfer Protocol (HTTP)). A pro-
cess or a program providing a service is a daemon. Daemons usually run in the
background.
An example: A web browser application on the 172.16.254.2 host connected to
the 2049 port wants to receive a web site on the 172.16.254.1 host by HTTP.
It sends a request to 172.16.254.1:80 with information that the request came
from 172.16.254.2:2049. The web site server on the 172.16.254.1 host, which
listens at port 80, gets the request and sends the requested content back to
172.16.254.2:2049.
Some well-known port number / transport layer protocol / service description
combinations are listed in Table 2.2.

2.5 Private network

In general, every host using the Internet Protocol for communication has its unique
IP address. But if the host is not connected to the global network or Internet,
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port protocol description
20 TCP File Transfer Protocol data transfer (FTP)
21 TCP File Transfer Protocol command (FTP)
22 TCP Secure SHell (SSH), Secure CoPy (SCP), Secure FTP (SFTP)
23 TCP Telnet
25 TCP Simple Mail Transfer Protocol (SMTP)
53 UDP Domain Name System (DNS)
67 UDP Dynamic Host Configuration Protocol (DHCP)
68 UDP Dynamic Host Configuration Protocol (DHCP)
69 UDP Trivial File Transfer Protocol (TFTP)
80 TCP HyperText Transfer Protocol (HTTP)
143 TCP Internet Message Access Protocol (IMAP)
156 TCP Structured Query Language service (SQL)
443 TCP HTTP over Secure Sockets Layer (SSL) (HTTPS)

Table 2.2: Some well-known port numbers and assigned services

there is no need for a unique IP address. For instance, the hosts using the Internet
Protocol in a private network completely isolated from the Internet can have the
IP addresses already used on the Internet. The same IP addresses can be used
again and again in different isolated private networks, thus conserving the IP
address space.

Three ranges of the IP addresses (Table 2.3) are reserved for the use in private
networks [26]. These IP addresses are never used on the Internet. If a packet with
a private address appears on the Internet, it is not routed to its destination since
there is none.

from to number of addresses
10.0.0.0 10.255.255.255 16.777.216
172.16.0.0 172.31.255.255 1.048.576
192.168.0.0 192.168.255.255 65.536

Table 2.3: Reserved private IP addresses

2.5.1 Network Address Translation (NAT)

When a private network needs to be connected to the Internet, NAT has to be used
to translate the private IP addresses into one public IP address. A host providing
NAT has two network interfaces. One is connected to the private network and
the other the with public IP address to the Internet (Fig. 2.11). NAT hides the
private IP addresses from the Internet. Concerning the Internet, all the hosts in
the private network are hidden behind one public IP address that is the IP address
of the host providing NAT.

NAT in general maps the outside port numbers to individual inside private IP
addresses. To demonstrate the principle of NAT, the following example will be
used.

The web browser application on the 172.16.254.2 host connected to the
2049 port wants to receive a web site on the 212.235.187.72 host by HTTP
(Fig. 2.11). The 172.16.254.2 host resides in a private network. It sends a
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NAT

host2 host3 host4

private network

host5 ...

172.16.254.2

212.235.187.72

172.16.254.4 172.16.254.5

switch

172.16.254.1 172.16.254.3

172.16.254.12

...

switch

host1

212.235.187.71

web site

...

internet

Figure 2.11: Private network with the Internet access through NAT

request to 212.235.187.72:80 with the information that the request came from
172.16.254.2:2049. Since the 212.235.187.72 destination IP address is not inside
the private network, the 172.16.254.12 host providing NAT receives the packet. It
translates the packet to the Internet by sending it forward under its own public
IP address. For instance, the packet addressed to 212.235.187.72:80 and sent from
172.16.254.2:2049 becomes a packet still addressed to 212.235.187.72:80 and sent
from 212.235.187.71:9342. The host providing NAT also saves the information that
the packet sent from the 9342 port was originally received from 172.16.254.2:2049
in a NAT table.
The web site server on the 212.235.187.72 host, which listens at port 80, gets the
request and sends the requested content back to the 212.235.187.71:9342. There-
fore, the host providing NAT receives the answer. According to the entry in the
NAT table, the NAT host knows that the answer received on port 9342 needs to
be further dispatched to its final 172.16.254.2:2049 destination. The configuration
of the host providing NAT can be found in subsection 2.14.1.

If the received data has no matching entry in the NAT table, it is ignored and
is not dispatched to the private network. Thus the host in the private network
cannot receive an unrequested packet. In other words, the unrequested ingoing
traffic is blocked. Every entry in the NAT table has a timeout after which it is
removed, if not in use. Each new outgoing connection is recorded in the NAT
table. If the NAT table is full (e.g. no port available), the new connection is
rejected. All new outgoing traffic is blocked until at least one timeouted entry is
removed. This phenomenon is also called the NAT overflow.

The described mechanism allows the private network hosts to access the In-
ternet services (e.g. HTTP servers). But on the other hand, they cannot provide
services (e.g. they cannot be an HTTP server). They cannot listen at their ports
on the Internet. Only the host providing NAT can do that. To overcome this
obstacle, the host providing NAT can forward its listening port to a host inside
the private network. This is called port forwarding (see subsection 2.14.2). With
port forwarding, the host providing NAT can forward its Internet services to a
host inside the private network.
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2.6 Broadcast IP address

If a host wants to send a packet to all the other hosts in the subnet, the packet
should be sent to the broadcast address. The broadcast address addresses all the
hosts in the subnet. The subnet broadcast address is an "all-ones" host part of
the IP address [27].
An example: to broadcast a packet to the entire 172.16.254.0 subnet with the
255.255.255.240 subnet mask, the 172.16.254.15 broadcast address has to be used
(the last four bits of the IP address represent the host part and they are "all-
ones").

There is a special definition for the 255.255.255.255 IP broadcast address. It
is the broadcast address of the zero network or 0.0.0.0. In IP, the standard zero
network stands for this network that is a local network. In general, the packets
sent to the 255.255.255.255 IP address are not forwarded outside the subnet by a
gateway, if the gateway is not configured otherwise.

2.7 Domain name

The IP addresses are not human-friendly. It is easier to remember the host do-
main name (e.g. queen.fe.uni-lj.si) than its IP address (e.g. 212.235.187.71). A
domain name usually describes a host and its location (e.g. si ... Slovenia, uni-lj
... University of Ljubljana, fe ... Faculty of Electrical Engineering and queen is the
machine name). They are read from right to left.

To resolve a domain name into a corresponding IP address, the Domain Name
System (DNS) is used [28, 29]. DNS is a hierarchical distributed database and
serves as the telephone book for the Internet by translating the human-friendly
domain names into the IP addresses. To use DNS, each host has at least one DNS
server IP address (apart from the already mentioned its own IP address, subnet
mask and default gateway). When a host wants to send a packet to a domain
name, it first asks its DNS server for the IP address of the destination. Of course,
the DNS server does not have all the IP addresses for all the domain names. It
directs the host to the next DNS server serving a particular domain.

For instance, a host wants to send a packet to queen.fe.uni-lj.si. It asks its
DNS server for the IP address. The DNS server answers on which DNS server
the si domain addresses are. So the host contacts the obtained DNS server which
points forward to the next DNS server with the uni-lj.si domain addresses. The
host asks the third DNS server and receives a direction to the DNS server with the
fe.uni-lj.si domain. Finally, on its fourth query, the host obtains the 212.235.187.71
destination address and sends a packet.

The table of the frequently used domain names is kept locally to avoid us-
ing DNS to resolve the same domain name again and again. It resides in the
/etc/hosts file where pairs of the IP addresses and host domain names are listed.

2.7.1 Uniform Resource Locator (URL)

URL is a reference to a particular resource (e.g. file in some directory on a host)
on the network [30]. It defines a protocol to be used for accessing the resource, the
host and location of the resource in the host directory structure, etc. Its syntax
is:

scheme://usename:password@host:port/path?queries#fragment

In general, there are eight fields, but all the fields are not specified in most URLs.
Individual fields can be omitted. The fields in URL are:
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- scheme specifies the protocol to be used for accessing the resource
(e.g. http, ftp),

- username to be used when authentication is required,
- password to be used when authentication is required,
- host is the domain name or IP address of the machine with the resource,
- port specifies the port number (see section 2.4) where the server process

listens,
- path specifies where on the host machine the resource can be found,
- queries contain data (e.g. parameter names and values separated by

ampersands - par1=val1&par2=val2) to be passed to the server process,
and

- fragment specifies a part of the resource.

Examples of URLs can be found on page 55.

2.8 localhost IP address

The standard name for a local machine is localhost (localhost means this
machine) [31]. Its standard IP address is 127.0.0.1. This means that if one
tries to send a packet to localhost, the operating system acting as a DNS server
resolves the name localhost into the 127.0.0.1 IP address. The destination IP
address will be routed to the loopback network interface virtually created by an
operating system. Thus the local machine will receive the packet bypassing the
local network interface hardware.

For instance, a host is an HTTP server and has a loopback network interface
configured. A request for the http://localhost URL from the web browser
installed on the same host will be resolved into http://127.0.0.1 and routed to
the loopback network interface. The host will receive the request and return the
home page of the local web site that will be displayed.

Although the 127.0.0.1 IP address is the most commonly used as a localhost
address, any other IP address from the 127.0.0.0/255.0.0.0 subnet can be used.
Therefore, any IP address in the range from 127.0.0.0 to 127.255.255.255 should
function in the same manner. The IP addresses in the 127.0.0.0/255.0.0.0 subnet
are reserved for the loopback purposes.

2.9 Dynamic Host Configuration
Protocol (DHCP)

A host connected to the network has the following IP configuration information:

- IP address,
- subnet mask,
- default gateway IP address,
- DNS server IP address, and
- domain name (stored in DNS).

The host has to be configured before it can communicate with other hosts on the
network. To avoid manual configuration of each host, DHCP can be used [32].
With DHCP, a host can be configured automatically without administrator inter-
vention. The use of DHCP also prevents two hosts to be accidentally configured
with the same IP address.

The hosts configured by DHCP are the DHCP clients. A host providing a
DHCP service is called a DHCP server. A DHCP server manages a pool of the
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client IP configuration parameters, such as the IP address, subnet mask, default
gateway, DNS sever and domain name. It keeps a track of the allocated configu-
rations and their leases. A lease is a length of time the configuration allocation is
valid.

At boot, a DHCP client broadcasts a request over its subnet to discover an
available DHCP server. The request is sent to the "all-ones" subnet broadcast
address or to the general 255.255.255.255 broadcast address. In general, if the
gateways connected to the subnet are not configured otherwise, the request can
be heard only in DHCP client’s subnet.

When a DHCP server receives a request from a DHCP client, it reserves an IP
configuration (IP address, etc.) for the client. The DHCP server broadcasts its
offer back to the client. Since the client does not have a valid IP address yet, the
DHCP server offer is again sent to the broadcast address. The offer contains the
client MAC address, the IP address that the server is offering, the subnet mask,
the lease duration, and the IP address of the DHCP server making the offer, etc.

The DHCP client receives the server offer and broadcasts back an acceptance
packet. If multiple DHCP offers are received from several DHCP servers, the
client accepts only one. The servers will be informed whose offer is accepted by
receiving the client broadcasted acceptance. By broadcasting, the client informs
all the servers about its decision with a single packet. The rejected servers will
withdraw their offers and return the offered IP configuration (IP address, etc.) to
the pool of available configurations.

Finally, the DHCP server receives the acceptance from the client and broad-
casts back the acknowledgement. The IP configuration process is completed. The
DHCP client configures its network interface with the obtained IP configuration.
An IP configuration is valid only for a predefined amount of time, a lease. Once
half of the lease interval expires, the client starts a renewal.

The DHCP server software can be found in the isc-dhcp-server package of
the Debian Linux distribution. The server binary (e.g. dhcpd) is installed in the
/usr/sbin directory. If not running, it can be started with the following command
issued as a super user:

/etc/init.d/isc-dhcp-server start

The messages are logged into the /var/log/syslog file. The DHCP server con-
figuration is set in the /etc/dhcp/dhcpd.conf file. For instance, an entry:

subnet 192.168.56.0 netmask 255.255.255.0 {
host imx27 {

hardware ethernet 00:50:c2:5e:00:9a;
fixed-address 192.168.56.100;
option host-name "imx27";

}
}

defines that the 192.168.56.100 IP address will be assigned to the host named
imx27 with the Ethernet network interface 00:50:c2:5e:00:9a MAC address.
The imx27 host resides in the 192.168.56.0/255.255.255.0 subnet.
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2.10 Basic network-related commands

hostname (hostname)

The hostname command displays or sets the host machine name. It is a program
in the /bin directory.

Examples:

hostname display the host machine name
hostname queen set the host machine name to the queen (can be

performed only by a super user)

The change of the host machine name made by the hostname command is tem-
porary. The name used at the system boot resides in the /etc/hostname. To
permanently set the host machine name, the /etc/hostname file has to be edited.

ifdown (interface down)

The ifdown command takes the network interface down. It can be executed only
by a super user. It is a program in the /sbin directory.

Example:

ifdown eth0 take the eth0 interface down

ifup (interface up)

The ifup command brings the network interface up regarding the configuration
in the /etc/network/interfaces. It can be executed only by a super user. It is
a program in the /sbin directory.

Example:

ifup eth0 bring the eth0 interface up

ifconfig (interface configuration)

The ifconfig command is a system administration utility for setting and viewing
the network interface parameters to be executed only by a super user. It is a
program in the /sbin directory.

Examples:

ifconfig display the status of the currently active interfaces
ifconfig eth0 display the status of the eth0 interface
ifconfig eth0 down set the eth0 interface inactive
ifconfig -a display the status of all the interfaces
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(inactive included)
ifconfig eth0 up set the eth0 interface active
ifconfig eth0 172.16.254.1 netmask 255.255.255.240

temporary set the IP address and subnet mask for
the eth0 interface

The configuration changes made with the ifconfig command are temporary.
The network interface configurations used at the system boot reside in the
/etc/network/interfaces. To permanently set the network interface configura-
tion, the /etc/network/interfaces file has to be edited. The network interface
configuration changes made in /etc/network/interfaces can take effect with-
out booting by using the ifdown command followed by the ifup command on the
changed interface.

route (route)

The route command displays and manipulates the routing table (see section 2.3).
It can be executed only by a super user. The route command is a program in the
/sbin directory.

Examples:

route display the routing table using the host names obtained by the
DNS (DNS servers listed in the /etc/resolv.conf) or
/etc/hosts file

route -n display the routing table using the IP addresses
route add -net 172.16.254.0 netmask 255.255.255.240 eth0

add a route to the 172.16.254.0/255.255.255.240 subnet
through the eth0 interface

route del -net 172.16.254.0 netmask 255.255.255.240
delete the route to the 172.16.254.0/255.255.255.240 subnet

route add -net 172.16.254.128 netmask 255.255.255.224
gw 172.16.254.11 eth0

add a route to the 172.16.254.128/255.255.255.224 subnet via
the 172.16.254.11 gateway through the eth0 interface

route del -net 172.16.254.128 netmask 255.255.255.224
delete the route to the 172.16.254.128/255.255.255.224 subnet

route add -net default gw 172.16.254.12 eth0
add a default route to the unlisted subnets via the
172.16.254.12 gateway through the eth0 interface

route del -net default
delete the default route to the unlisted subnets

route add -host 172.16.254.162 eth1
add a route to the 172.16.254.162 host through the eth1
interface

route del -host 172.16.254.162
delete the route to the 172.16.254.162 host

route add -net 172.16.254.176 netmask 255.255.255.240 reject
add a blocking route to mask-out the
172.16.254.176/255.255.255.240 subnet

The routing table changes made with the route command are temporary. They
will not be re-established at the next system boot. After the system boot,
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the routing table is built with respect to the /etc/network/interfaces file.
Special static routes can be added. The eth1 interface configuration in the
/etc/network/interfaces is for instance:

iface eth1 inet static
address 172.16.254.1
network 172.16.254.0
netmask 255.255.255.240
up route add -net 172.16.254.128 netmask 255.255.255.224

gw 172.16.254.11
down route del -net 172.16.254.128 netmask 255.255.255.224

The configuration specifies the interface IP address and subnet which automati-
cally adds a route to the 172.16.254.0/255.255.255.240 subnet through eth1.
An additional static route through eth1 to the 172.16.254.128/255.255.255.
224 subnet via the 172.16.254.11 gateway is added with an up line. The lines
up and down are executed when the interface is brought up and token down, re-
spectively. To avoid booting, the ifdown and ifup commands can be used.

ping (ping)

The ping command checks if there is a network connection to another host. It is
a program in the /bin directory.

Examples:

ping queen.fe.uni-lj.si get response from the queen.fe.uni-lj.si
host, to terminate, press Ctrl-C

ping -c 5 212.235.187.71 ping the 212.235.187.71 host five times

telnet (telecommunications network)

The telnet command enables the text terminal connection to a remote host.
All the data transfers, including the usernames and passwords, are in a clear
text. Therefore, the telnet session is insecure and considered obsolete. Use ssh
instead. The telnet command is a program in the /usr/bin directory.

Example:

telnet queen.fe.uni-lj.si
open the telnet session to the queen.fe.uni-lj.si host

ssh (secure shell)

The ssh command opens a command line shell at a remote host. The data traffic is
encrypted by a symmetric encryption. It is a program in the /usr/bin directory.
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Examples (see also pages 65 and 73):

ssh freddie@queen.fe.uni-lj.si
open the command line shell as the freddie user at
the queen.fe.uni-lj.si host

ssh queen.fe.uni-lj.si
open the command line shell with the client machine username at the
queen.fe.uni-lj.si host

ssh freddie@212.235.187.71
open the command line shell as the freddie user at the host with the
212.235.187.71 IP address

The SSH network protocol is used to secure the communication between the client
and the server (remote) host over an insecure network [33]. On the client side, an
SSH client process (e.g. /usr/bin/ssh) is required. On the server side, the SSH
server process (e.g. /usr/sbin/sshd) continually listens for the clients request-
ing an SSH connection. Before an SSH session begins, an asymmetric encryption
(public keys are exchanged, the data is encrypted with a public key, decrypted
with a private key) is used to obtain a symmetric encryption key (the data is
encrypted and decrypted with the same key). At the first connection to a remote
host, the SSH protocol asks if the host should be added to the list of the known
hosts residing in the client ∼/.ssh/known_hosts file. The host keys in the known
host list are used in further sessions for host validation to avoid the man-in-the-
middle attacks (i.e. prevent logging into a fake host used to sniff the session).
If the ∼/.ssh/known_hosts file is removed, the next connection to each remote
host is considered as the first. The SSH system-wide client and server configura-
tion, including the encryption keys, can be found in the /etc/ssh directory. An
individual user SSH client configuration adjusting the system-wide settings to a
particular user can be found in the ∼/.ssh directory.

scp (secure copy)

The scp command copies the files between the hosts using the SSH connection.
It is a program in the /usr/bin directory.

Examples:

scp *.mp3 freddie@queen.fe.uni-lj.si:/home/freddie/mp3
copy the .mp3 files in the current directory into the
/home/freddie/mp3 directory on the queen.fe.uni-lj.si remote host
using the freddie user account

scp -r freddie@212.235.187.71:/home/freddie/mp3 ./mp3
recursively copy all the files and directories in the /home/freddie/mp3
directory residing on the 212.235.187.71 remote host to the mp3
directory in the current directory on the local host using the freddie
user account

ftp (file transfer program)

The ftp command enables transferring the files to and from a remote host using
FTP. All data transfers, including usernames and passwords, are in a clear text.
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Therefore, the FTP session is insecure and considered obsolete. Use sftp instead.
The ftp command is a program in the /usr/bin directory. After logging into a
remote host, the ftp command opens its own CLI, where the FTP commands can
be used. To terminate, use the quit command.

Examples:

ftp queen.fe.uni-lj.si log the into queen.fe.uni-lj.si remote host
and open CLI

ftp 212.235.187.71 log into the 212.235.187.71 remote host
and open CLI

sftp (secure file transfer program)

The sftp command enables transferring the files to and from a remote host using
SFTP which is an extension of the SSH protocol. It is a program in the /usr/bin
directory. After logging into a remote host, the sftp command opens its own CLI,
where the SFTP commands can be used. To terminate, use the quit command.

Examples:

sftp freddie@queen.fe.uni-lj.si
log into the queen.fe.uni-lj.si remote host as the freddie user and
open CLI

sftp queen.fe.uni-lj.si
log into the queen.fe.uni-lj.si remote host with the client machine
username and open CLI

sftp freddie@212.235.187.71
log into the 212.235.187.71 remote host as the freddie user and open
CLI

SFTP is used to secure the file transfer between the client and server (remote)
host over an insecure network. On the client side, an SFTP client process
(e.g. /usr/bin/sftp) is required. There is no SFTP server process on the server
side. The SSH server process (e.g. /usr/sbin/sshd) continually listens for the
clients requesting an SSH connection which includes the SFTP requests.

wget (world wide web get)

The wget command is a client program retrieving the content from a server using
HTTP, HTTPS or FTP. On the server side, appropriate web server processes
serving the HTTP, HTTPS and FTP requests are required. The wget command
is a program in the /usr/bin directory.

Examples:

wget http://queen.fe.uni-lj.si/∼freddie/data.tar.gz
download the data.tar.gz file from the World Wide Web home
directory of the freddie user (e.g. /home/freddie/public_html) at
queen.fe.uni-lj.si using HTTP

wget -o log.txt http://212.235.187.71
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download the title page (e.g. /var/www/index.html) at
212.235.187.71 using HTTP, save the progress messages to log.txt

wget -k -r -l 3 http://queen.fe.uni-lj.si/∼freddie
download a complete web site of the freddie user at
queen.fe.uni-lj.si up to three levels deep using HTTP, convert the
links to point to the downloaded files to enable offline viewing

wget ftp://queen.fe.uni-lj.si/pub/data.tar.gz
download the data.tar.gz file from a pub subdirectory (e.g.
/var/ftp/pub) at queen.fe.uni-lj.si as an anonymous user using
FTP

wget ftp://freddie:vocal@212.235.187.71/pub/data.tar.gz
download the data.tar.gz file from a pub subdirectory (e.g.
/home/freddie/pub) at 212.235.187.71 as the freddie user with
the vocal password using FTP

The Apache is the most widely used HTTP server program on the Linux-powered
servers. Its main title page is index.html in the /var/www directory. The
paths specified in URL (see subsection 2.7.1) are relative to the /var/www HTTP
home directory. With an appropriate HTTP server configuration, each user
can have his/hers own HTTP home directory. If so, and if the user is spec-
ified in URL, then the path is relative to the user’s HTTP home directory
(e.g. /home/username/public_html). The configuration of the Apache HTTP
server resides in the /etc/apache2 directory. Similar applies to the FTP servers
(e.g. /var/ftp is an FTP home directory for the anonymous user, and the user’s
home directory (e.g. /home/username) is used when the user is specified).

2.11 Network File System (NFS)

NFS is a distributed file system protocol [34] allowing a transparent network access
to the files on the NFS server host. The files on the server are accessed from a
client as they are local (see Fig. 2.12). On the server side, the NFS server process
(e.g. nfsd kernel module) continually listens for the client requests. The NFS client
software can be found in the nfs-common and portmap packages of the Debian
Linux distribution, while the NFS server also requires the nfs-kernel-server
package.

nfs_server

/home

mount nfs_server.sdomain.com:/home /mnt

network

nfs_client

/mnt

Figure 2.12: Network file system

The server directories exportable to the NFS clients are listed in the
/etc/exports file. Each line begins with an absolute path to the directory to
be exported, followed by a list of clients accessing the directory, e.g.:

/home nfs_client.cdomain.com(rw,no_root_squash,sync)
172.16.254.0/255.255.255.240(ro)
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The above line exports the /home directory and grants a read-write access to
the nfs_client host (instead of the domain name, the IP address can also be
used), and a read-only access to all hosts in the 172.16.254.0/255.255.255.240
subnet. In this example, the no_root_squash and sync options are also used.
The no_root_squash option means that the root on the client is also considered
the root on the server. The sync option specifies that the NFS server replies
to requests only after the changes have been committed (e.g. written to the
disk). Thus, the data cannot be lost or corrupted at an eventual server crash.
The /etc/exports file can be edited only by a super user. The changes in
/etc/exports become effective by the command:

root@nfs_server:∼# exportfs -r

A super user on the client host can mount the exported directory by:

root@queen:∼# mount nfs_server.sdomain.com:/home /mnt

The IP address can be used instead of the NFS server domain name.

2.12 HyperText Markup Language (HTML)

HTML is the predominant markup language for the web pages where the docu-
ments written in HTML are the basic building blocks [35]. An HTML document
consists of elements holding the web site content. An element starts and ends
with a pair of tags enclosed in angle brackets. A detailed description of HTML far
exceeds the scope of this textbook. For demonstration, an example of a default
HTML document (e.g. /var/www/index.html) on the web site server follows:

<html>
<body>

<h1>
It works!

</h1>
<p>

This page is the default web page for this server.
</p>
<p>

The web server software is running but no content has been
added yet.

</p>
</body>

</html>

2.13 Programming in the JavaScript and PHP Hypertext
Preprocessor (PHP) languages

Both scripting languages, i.e. JavaScript [36] and PHP [37], are used for creating
dynamic web pages, i.e. the HTML documents. The main difference between the
two is in who interprets the code. When JavaScript is used, the server sends the
entire dynamic HTML document to the client, i.e. the web browser application,
which runs the JavaScript code to obtain the final HTML document. JavaScript is
the client-side scripting language. On the other hand, the PHP code in a dynamic
HTML document runs on the server side, i.e. the PHP module of the web site
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server process. The obtained final HTML document is then sent to the client.
Therefore, the PHP is a server-side scripting language.

A detailed description of the two scripting languages far exceeds the scope of
this textbook. A simple calculator example implemented in JavaScript and PHP
is given in Fig. 2.13. There are two input fields for the operands and operation
selection drop down menu. The result is displayed when the = button is pressed.

123 = 579+ 456

Figure 2.13: Simple calculator example of a dynamic HTML document

The first is the JavaScript code. The final HTML document actually con-
sists of one form element. The = button submits the input values to the
same URL (see subsection 2.7.1) using the get method. That means that
the parameter name and value pairs are passed in the queries field of URL
(e.g. http://queen.fe.uni-lj.si/calculator.html?first=123&operation=
add&second=456). To extract a particular parameter value from the queries
string the getParam() function is used.

<html>
<head>
<script language="javascript">
function getParam(name)
{
var i, queries;
if(window.location.search.length == 0) return "";
queries = window.location.search.substring(1).split(’&’);
for(i = 0; i < queries.length; i++)
if(queries[i].indexOf(name) == 0)
return queries[i].split(’=’)[1];

return "";
}

</script>
</head>
<body>
<script language="javascript">
var address = window.location.href.split(’?’)[0].split(’#’)[0];
var first = getParam("first") * 1;
var operation = getParam("operation");
var second = getParam("second") * 1;
document.write("<form action=’" + address + "’ method=’get’>");
document.write("<input type=’text’ name=’first’ value=’" +

first + "’ />");
document.write("&nbsp;<select name=’operation’>");
if(operation == "sub")
{
document.write("<option value=’add’>+</option>");
document.write("<option value=’sub’ selected>-</option>");

} else
{
document.write("<option value=’add’ selected>+</option>");
document.write("<option value=’sub’>-</option>");

}
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document.write("</select>&nbsp;");
document.write("<input type=’text’ name=’second’ value=’" +

second + "’ />&nbsp;");
document.write("<input type=’submit’ value=’=’ />&nbsp;");
if(operation == "add") document.write(first + second);
else document.write(first - second);
document.write("</form>");

</script>
</body>

</html>

The same can be achieved on the server side with an equivalent code in PHP:

<html>
<head>
<script language="php">
function getParam($name)
{
return $_GET[$name];

}
</script>

</head>
<body>
<script language="php">
$address = "http://" . $_SERVER[’SERVER_NAME’] .

$_SERVER[’PHP_SELF’];
$first = getParam("first");
$operation = getParam("operation");
$second = getParam("second");
echo "<form action=’" . $address . "’ method=’get’>";
echo "<input type=’text’ name=’first’ value=’" . $first . "’ />";
echo "&nbsp;<select name=’operation’>";
if($operation == "sub")
{
echo "<option value=’add’>+</option>";
echo "<option value=’sub’ selected>-</option>";

} else
{
echo "<option value=’add’ selected>+</option>";
echo "<option value=’sub’>-</option>";

}
echo "</select>&nbsp;";
echo "<input type=’text’ name=’second’ value=’" . $second .

"’ />";
echo "&nbsp;<input type=’submit’ value=’=’ />&nbsp;";
if($operation == "add") echo $first + $second;
else echo $first - $second;
echo "</form>";

</script>
</body>

</html>

In both cases, i.e. JavaScript and PHP, the get method is used to pass the pa-
rameters to the server. The name/value pairs are sent as queries in URL. A
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large parameter set, i.e. hundreds of characters, can cause problems because of
the extremely long URL. Another problem are eventual non-ASCII characters in
the parameter names or values which should not appear in URL. In such cases,
the post method has to be used. The parameters are not part of URL with the
post method. They are sent within the body of the HTML request. The posted
parameters are received on the sever side meaning that they cannot be obtained
by JavaScript. Note that both methods, i.e. get and post, send the parameters
as a plain text, thus unsecured. To use the post method, only two lines in the
PHP example have to be modified. Instead of the array of the $_GET queries, the
array of the $_POST posted parameters has to be used, and the form element has
to use the post method:

...
line 6: return $_POST[$name];

...
line 16: echo "<form action=’" . $address . "’ method=’post’>";

...

The PHP scripts are enclosed in the <script language="php"> ... </script>
element. The shorter <?php ... ?> form is more commonly used.

2.14 Firewall

A firewall represents a system for the network traffic control. It can be imple-
mented as a hardware device or a piece of software. A firewall is configured by
a set of rules upon which an individual packet is permitted or denied its further
route to its final destination. By denying the packets not meeting the specified
criteria, the firewall prevents an unauthorized access. It can be used to protect
an individual host or an entire subnet. In the latter case, it is positioned on a key
machine connecting different subnets (e.g. gateway, host providing NAT).

The firewall is a part of the Linux kernel. The rules upon which the firewall
operates are managed by the iptables command [38]. It is a program in the
/sbin directory. The iptables command can be performed only by a super user.
The firewall management is slightly different form distribution to distribution. A
few basics for the Debian distribution follow.

The firewall configuration is organized in tables containing chains which them-
selves contain rules. The most important are the filter and nat tables. The filter
is the default table with three predefined chains:

- INPUT for the arriving packets to a local host,
- OUTPUT for the departing packets from alocal host, and
- FORWARD for the arriving packets not destined to a local host and to be only

routed through.
The nat table provides the NAT rules in the following three predefined chains:

- PREROUTING for packet translation at arrival before routing,
- POSTROUTING for packet translation at departure after routing, and
- OUTPUT for translation of the locally generated packets.

There are also the mangle (packet alteration) and raw (exceptions) tables which
exceed the scope of this textbook. None of the chains in none of the tables con-
tains no rules by default. Their default policy is ACCEPT meaning that a packet
matching no rule is accepted. An individual table can be listed with the -L option:

root@host:∼# iptables -t nat -L
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Chain PREROUTING (policy ACCEPT)
target prot opt source destination

Chain POSTROUTING (policy ACCEPT)
target prot opt source destination

Chain OUTPUT (policy ACCEPT)
target prot opt source destination

The default firewall status is sometimes referred to as off. In fact, the firewall
cannot be turned off. By default it just accepts all packets and denies none. A
packet is tested against the rules in a chain orderly until it is accepted, dropped
or some other final target is specified. If a rule is not matched, testing proceeds
with the next rule. If no rule is matched, the chain default policy is applied. A
few examples of setting the rules follow.

Deleting the rules. Delete all rules in all chains in the filter table:

iptables -t filter -F

Setting the default policy. Set the default policy to DROP for the INPUT chain in
the filter table. A packet matching no rule in the INPUT chain is dropped.

iptables -t filter -P INPUT DROP

Block a specific IP address. Add a rule to drop all packets received from the
172.16.254.1 host.

iptables -t filter -A INPUT -s 172.16.254.1 -j DROP

Allow connections to the SSH server on a local host. The SSH server listens on
port 22 and uses TCP on the transport layer. Connections are allowed on the
eth0 network interface.

iptables -t filter -A INPUT -i eth0 -p tcp --dport 22 -m state
--state NEW,ESTABLISHED -j ACCEPT

iptables -t filter -A OUTPUT -o eth0 -p tcp --sport 22 -m state
--state ESTABLISHED -j ACCEPT

Allow connections to the SSH server only from the 172.16.254.0/255.255.255.
240 subnet.

iptables -t filter -A INPUT -i eth0 -p tcp -s
172.16.254.0/255.255.255.240 --dport 22 -m state --state

NEW,ESTABLISHED -j ACCEPT
iptables -t filter -A OUTPUT -o eth0 -p tcp --sport 22 -m state

--state ESTABLISHED -j ACCEPT

Allow connections to the SSH, HTTP and HTTPS servers on a local host. The
SSH server listens on port 22, HTTP on port 80 and HTTPS on port 443.

iptables -t filter -A INPUT -i eth0 -p tcp -m multiport --dports
22,80,443 -m state --state NEW,ESTABLISHED -j ACCEPT
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iptables -t filter -A OUTPUT -o eth0 -p tcp -m multiport --sports
22,80,443 -m state --state ESTABLISHED -j ACCEPT

Allow connections to the SSH server on a remote host.

iptables -t filter -A OUTPUT -o eth0 -p tcp --dport 22 -m state
--state NEW,ESTABLISHED -j ACCEPT

iptables -t filter -A INPUT -i eth0 -p tcp --sport 22 -m state
--state ESTABLISHED -j ACCEPT

Allow ping from a remote to a local host. Ping uses the ICMP (Internet Control
Message Protocol) internet layer protocol.

iptables -t filter -A INPUT -p icmp --icmp-type echo-request -j ACCEPT
iptables -t filter -A OUTPUT -p icmp --icmp-type echo-reply -j ACCEPT

Allow ping from a local to a remote host.

iptables -t filter -A OUTPUT -p icmp --icmp-type echo-request -j ACCEPT
iptables -t filter -A INPUT -p icmp --icmp-type echo-reply -j ACCEPT

Allow access to a localhost through a loopback network interface.

iptables -t filter -A INPUT -i lo -j ACCEPT
iptables -t filter -A OUTPUT -o lo -j ACCEPT

Allow one subnet to another communication. The packets received from a subnet
at the eth0 network interface are allowed to continue their route to another subnet
at the eth1 network interface.

iptables -t filter -A FORWARD -i eth0 -o eth1 -j ACCEPT

Allow connections to the DNS server on a remote host. The DNS server listens
on port 53 and uses UDP on the transport layer. Connections are allowed on the
eth0 network interface.

iptables -t filter -A OUTPUT -p udp -o eth0 --dport 53 -j ACCEPT
iptables -t filter -A INPUT -p udp -i eth0 --sport 53 -j ACCEPT

Log the packet information. The rule is always matched. Therefore, a log record is
made for all the packets tested against the rule. Logging is specified by the LOG
target which is not final. Thus, a packet is neither accepted nor dropped and
testing proceeds with the next rule. If this rule is the first rule in the INPUT chain,
all the received packets are logged. The system logging is provided by the syslog
daemon (e.g. /usr/sbin/rsyslogd). The records are written into the kernel log
file /var/log/kern.log. The log records are prefixed for easier recognition.

iptables -t filter -A INPUT -j LOG --log-prefix "IPTables received
packet (INPUT chain): "

Thr current set of rules can be saved with the iptables-save command. It
is a program in the /sbin directory.

iptables-save > /etc/iptables.up.rules
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Such saved set of rules can be activated with the iptables-restore command.
It is a program in the /sbin directory.

iptables-restore < /etc/iptables.up.rules

There are no rules at the boot by default. The firewall is turned off. To activate a
set of rules at the boot the iptables-restore command has to be issued in the
/etc/network/if-pre-up.d/iptables file, for instance:

#!/bin/bash
/sbin/iptables-restore < /etc/iptables.up.rules

2.14.1 NAT configuration

The NAT service can be configured by a rule in the POSTROUTING chain of the nat
table. The command below adds a rule to set up masquerading for all the packets
leaving at the eth1 network interface. The MASQUERADE target actually provides
the NAT service, i.e. assigns a port to the packet original source (see subsection
2.5.1). The case is shown in Fig. 2.14.

iptables -t nat -A POSTROUTING -o eth1 -j MASQUERADE

NAT

eth0

host

private network

172.16.254.12

internet

eth1

eth0

iptables -t nat -A POSTROUTING -o eth1 -j MASQUERADE
iptables -t filter -A FORWARD -i eth0 -j ACCEPT
sysctl -w net.ipv4.ip_forward=1

route add -net default gw 172.16.254.12 eth0

Figure 2.14: NAT configuration

The host providing the NAT service is a gateway to the IP addresses outside
the private network range. A packet received at the eth0 network interface is
forwarded to the eth1 network interface. Thus, it is first tested against the rules
in the FORWARD chain in the filter table. The following rule ensures acceptance in
the FORWARD chain (e.g. when the default policy of the FORWARD chain is DROP):

iptables -t filter -A FORWARD -i eth0 -j ACCEPT

Finally, the IP forwarding must be enabled. The IP forwarding enables the host
providing NAT to act as a gateway forwarding the IP packets from one subnet to
another. The kernel parameters are maintained by the sysctl command. The IP
forwarding status can be obtained by:

sysctl net.ipv4.ip_forward

If it is disabled (i.e. net.ipv4.ip_forward=0), it can be enabled by:
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sysctl -w net.ipv4.ip_forward=1

A change of a kernel parameter made by the sysctl command is temporary. The
kernel parameters used at the system boot reside in /etc/sysctl.conf. The IP
forwarding is disabled by default. To permanently enable the IP forwarding, line

net.ipv4.ip_forward=1

must be added into the /etc/sysctl.conf file.

2.14.2 Port forwarding

An IP socket consists of an IP address and a port number (see section 2.4). It
represents a communication endpoint for exchanging the data over TCP/IP (see
section 2.1). When a TCP/IP packet arrives to the host with a specified IP
address, the port number identifies the process to which the packet is delivered. A
packet destined to a particular process must first reach the host where the process
runs. To avoid this requirement, the port where the process receives the packets
can be forwarded to an arbitrary unused port on another host. This technique
is called port forwarding. For instance, the port forwarding must be used to
enable a private network host behind NAT (see subsection 2.5.1) to provide an
Internet service. As shown in Fig. 2.15, the 172.16.254.1:80 port on host A is
forwarded to the 212.235.187.71:8000 port on host B. Thus a packet addressed
to 212.235.187.71:8000 is received by host B and immediately forwarded to
172.16.254.1:80 on host A. Since host A has no unique IP address, the packets
addressed directly to 172.16.254.1:80 can be received only if dispatched inside
a private network (e.g. the 172.16.254.0/255.255.255.240 subnet).

172.16.254.1:80

process

8000 212.235.187.71:8000

host B

eth0

host A

private network

212.235.187.71

internet

eth1

eth0

iptables -t nat -A PREROUTING -p tcp -d 212.235.187.71
--dport 8000 -j DNAT --to 172.16.254.1:80

iptables -t filter -A FORWARD -i eth1 -j ACCEPT
sysctl -w net.ipv4.ip_forward=1

route add -net default gw 172.16.254.12 eth0

172.16.254.12

80

172.16.254.1

Figure 2.15: Port forwarding

The configuration in Fig. 2.15 can be achieved with a single iptables command
on host B. All the TCP transport layer packets received on the 212.235.187.71
IP address port 8000 are forwarded to 172.16.254.1:80.
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iptables -t nat -A PREROUTING -p tcp -d 212.235.187.71 --dport 8000
-j DNAT --to 172.16.254.1:80

The packet received at the eth1 network interface on port 8000 is prerouted to
172.16.254.1:80 and thus forwarded to the eth0 network interface. Therefore,
it is also tested against the rules in the FORWARD chain in the filter table. The
following rule ensures acceptance in the FORWARD chain (e.g. when the default
policy of the FORWARD chain is DROP):

iptables -t filter -A FORWARD -i eth1 -j ACCEPT

Finally, the IP forwarding must be enabled (see page 63). Host B also acts as a
gateway to the IP addresses outside the private network range.

The packets received at 212.235.187.71:8000 are merely repacked and sent
forward to 172.16.254.1:80. There is no encryption making the link from host
B to host A vulnerable to eavesdropping. Security can be improved by the port
forwarding over SSH.

Port forwarding over SSH

The SSH network protocol is used by the ssh command for opening a secure com-
mand line shell at a remote host (see page 53). It can also be used to encrypt the
network traffic belonging to other applications. This is called port forwarding over
SSH, or sometimes SSH tunneling, since SSH provides a secured tunnel between
two hosts. The SSH port forwarding can be used only for the traffic using TCP on
the transport layer. The ports can be forwarded over SSH locally or remotely. The
local port forwarding over SSH shown in Fig. 2.16 forwards a port to a local host.
A secured tunnel between hosts A (e.g. 172.16.254.1) and B (e.g. 172.16.254.2)
is established. The command issued on local host A

ssh -L8000:C:80 user@B
(or ssh -L8000:172.16.254.3:80 user@172.16.254.2)

opens a remote shell and logs into host B, as it would without the -L option
(e.g. ssh user@B). The -L option additionally forwards the TCP port 80 on host
C (e.g. 172.16.254.3) to port 8000 on local host A. The forwarded port is active
during the SSH session, until logout. When the remote shell is closed, the SSH
tunnel ceases to exist.

If the SSH tunnel is opened with the above command, the forwarded port
80 on host C can be reached only from local host A (e.g. localhost:8000
or 127.0.0.1:8000). The 172.16.254.3:80 port is not visible to others as
172.16.254.1:8000. This restriction can be omitted by the -g option permit-
ting any host to connect to a locally forwarded port. The 172.16.254.3:80 port
becomes generally visible as the 172.16.254.1:8000 port.

ssh -g -L8000:C:80 user@B
(or ssh -g -L8000:172.16.254.3:80 user@172.16.254.2)

The connection from host B, where the SSH server resides, to host C is an
ordinary unsecured TCP connection. It is not encrypted and is therefore avoided.
Normally, the forwarded port resides on the same host as the SSH server, which
is achieved with the following command:

ssh -L8000:localhost:80 user@B
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localhost:8000

80

(with -g option)

172.16.254.2

172.16.254.1:8000

SSH server

SSH tunnel

172.16.254.3

8000
172.16.254.1

host C

ssh -L8000:C:80 user@B

remote host B

local host A

Figure 2.16: Local port forwarding over SSH

(or ssh -L8000:localhost:80 user@172.16.254.2)

As depicted in Fig. 2.17, the localhost:80 port on remote host B is forwarded
to localhost:8000 on local host A.

localhost:8000

80

172.16.254.2

SSH server

SSH tunnel

8000
172.16.254.1

ssh -L8000:localhost:80 user@B

remote host B

local host A

Figure 2.17: Local port forwarding over SSH with no unencrypted connections

The situation is reversed with the remote port forwarding in Fig. 2.18. A
command issued on local host A forwards a port to remote host B where the SSH
server resides:

ssh -R8000:C:80 user@B
(or ssh -R8000:172.16.254.3:80 user@172.16.254.2)

The command again opens a remote shell and logs into host B. The -R option
additionally forwards the TCP port 80 on host C to port 8000 on remote host
B. The forwarded port is active during the SSH session, until logout. When the
remote shell is closed, the SSH tunnel ceases to exist. The connection from host
A to host C is an ordinary unsecured TCP connection. It is not encrypted and is



2.14. FIREWALL 67

localhost:8000

80

172.16.254.2

SSH server

SSH tunnel

172.16.254.3

8000

172.16.254.1

host C

ssh -R8000:C:80 user@B

remote host B

local host A

Figure 2.18: Remote port forwarding over SSH

therefore avoided. Normally, the forwarded port resides on local host A:

ssh -R8000:localhost:80 user@B
(or ssh -R8000:localhost:80 user@172.16.254.2)

As depicted in Fig. 2.19, the localhost:80 port on local host A is forwarded to
localhost:8000 on remote host B.

80

localhost:8000
172.16.254.2

SSH server

SSH tunnel

8000

172.16.254.1

ssh -R8000:localhost:80 user@B

remote host B

local host A

Figure 2.19: Remote port forwarding over SSH with no unencrypted connections

The forwarded port can be reached only from remote host B (e.g. localhost:80
00 or 127.0.0.1:8000). The port is not visible to others as 172.16.254.2:8000.
This restriction can be omitted only by modifying the SSH server configuration
on remote host B.





Chapter 3

Graphical User Interface (GUI)

The Linux operating systems are completely text-based. This means that GUI
is not a part of the operating system. In Linux, GUI is just another program
providing graphical features. Such approach enables Linux to run without GUI
(e.g. when a host is a server and GUI would just waste its resources). There are
many different GUIs available and the user can choose among them. More than
one GUI can run on the same machine at the same time (e.g. various look and fill
GUIs in different virtual consoles). The X window system usually represents the
heart of GUI on the Linux operating systems.

3.1 X window system

GUI in general consists of three parts. The first is an X window system [39]. It is a
software enabling the graphical programs to run on Linux. It provides a hardware
abstraction layer. Thus, the graphical programs do not need to take care about
particular input/output hardware devices attached to the computer (e.g. mouse,
keyboard, display). The X window system handles the hardware. The graphical
program uses the X window system generalized commands for interaction with
the hardware devices.

The X window system provides a place for graphics, but does not control the
window with a running graphical program. This is a job for the window manager
which is a piece of the software controlling the windows. It is responsible for
window moving, hiding, resizing, closing, etc., and what will the mouse actions or
keyboard shortcuts cause them. The window manager decides which window is
on the top, which one accepts the input, etc.

So far, the X window system provides a place for the graphics and the window
manager provides the windows. The additional features, like taskbars, menus,
utility programs (e.g. file manager, search tool, text editor, etc.), icons, etc., are
delivered by another piece of the software called the desktop manager or desktop
environment. Some window managers support the virtual desktops or workspaces.

The X window system is often called X11, since the current major version is
11. It uses a client-server model shown in Fig. 3.1. The X server takes care about
the input/output hardware, i.e. the mouse, keyboard and display. On the other
side, the X server communicates with the X clients. The X client is a common
name for a graphical program. The X server provides the X clients with the user
input actions. On the other side, it listens to the X client requests for the graphical
output. The window manager and the desktop environment are also the X clients.

The Unix domain sockets (see the table on page 21) are used for communication
between the X server and X client when they both run on the same machine [40].
The X server always runs on a local machine, while the X clients can also run on
a remote host (Fig. 3.2). The remote X client communicates with the X server
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input device
(e.g. mouse)

input device
(e.g. keyboard)
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Figure 3.1: Client-server model of the X window system

over TCP/IP (see section 2.1) using the X11 forwarding (see section 3.1.1).

input/output devices

X client

X client

X server

X client

local
machine

remote host

TCP/IP

Figure 3.2: X clients running on a local or remote machine

A new single session of the X window system can be started from the text
terminal CLI by the startx script [11]. It starts a new X server program and,
if specified, an X client connected to it. Thus, startx can be viewed as a script
for starting a single graphical program, i.e. an X client. Arguments immediately
following the startx command are used to start the X client. The -- special
argument marks the end of the client arguments and start of the server arguments.
A particular X server program (e.g. /usr/bin/X) and a particular display (see the
following paragraph) can be specified. The following examples start a new X
session on the localhost:1.0 display. The first available virtual terminal is used
as the localhost:1.0 display. Usually, that is the eighth virtual terminal. To
switch to it, press Ctrl-Alt-F8.

startx -- :1
the program named X found in the search path (see page 29) is used as
an X server by default

startx xcalc -- /usr/bin/X :1
use program /usr/bin/X as an X server and the xcalc program as an
X client

startx -- :1 -nolisten tcp
the X server is started with the -nolisten tcp option that prevents
the X clients to connect through TCP/IP
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The configuration files can be found in the /etc/X11 directory.
When a new X client is started, it has to know to which X server to connect

[40]. Or in other words, it has to know which display (mouse, keyboard) to use.
The default display to be used is given in the DISPLAY environment variable (the
variable has to be exported, see section 1.7) having the following form:

host:display.screen

The first field, i.e. host, is a domain name or an IP address of the computer
to which the display (mouse, keyboard) is physically attached. If host is not
specified, localhost is used by default. The second field, i.e. display number,
represents a set of monitors sharing the same input devices (e.g. the mouse and
keyboard). Most computers have only one display though consisting of more than
one monitor. Two or more monitors in one display can be configured as a single
logical screen allowing the windows to be moved back and forth. Or, the monitors
can be configured as individual screens, each with its own windows, which cannot
be moved to another monitor. In the latter case, the screen number defines which
monitor to use. If screen is not specified, screen 0 is used by default. DISPLAY
variable examples:

:0 use the 0.0 display on a local machine
queen.fe.uni-lj.si:1 use the 1.0 display on queen.fe.uni-lj.si
212.235.187.71:0.1 use the 0.1 display/screen on 212.235.187.71

As already mentioned, the Unix domain sockets are used when the X server and
X client run on the same machine, i.e. when the domain name or IP address in
the DISPLAY variable points to the local machine.

Most X client programs accept the -display command line option, which
temporary overrides the DISPLAY variable. Example:

freddie@queen:∼$ DISPLAY=:0
freddie@queen:∼$ export DISPLAY
freddie@queen:∼$ xcalc run xcalc on localhost:0.0
freddie@queen:∼$ xcalc -display :1 run xcalc on localhost:1.0

An X client started inside the X session connects to a corresponding X server.
When an X client is started outside the X session, for instance from another virtual
terminal, it cannot connect to the X server by default. The X server has to allow
the connection. The connections accepted by the X server can be maintained
with the xhost command [11]. The xhost command has to be executed from an
X client (e.g. xterm) connected to the X server in question. Example usages of
the xhost command:

xhost +local:
allow connection for the X clients running on a local machine

xhost +inet:queen.fe.uni-lj.si
allow connection for the X clients running on queen.fe.uni-lj.si

xhost print a list of allowed connections
xhost + turn the access control off, allow connection for all X clients
xhost - turn the access control on, allow connection only for the X clients

running on the listed hosts
xhost -local:

prohibit connection for the X clients running on a local machine
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xhost -inet:212.235.187.71
prohibit connection for the X clients running on 212.235.187.71

A typical use of the xhost command is shown in Fig. 3.3. First, the X server is
started from the text terminal on a local machine. Then, the xhost command is
executed to allow connections from a remote host. It has to be issued in an X
terminal program connected to the X server. The SSH text terminal connection
to a remote host follows. The X client program (e.g. xcalc) is started on a remote
host with a display on a local machine, where its window pops up.

remote host

X server
(xcalc window)

TCP/IP

172.16.254.1

X client
(xcalc)

xcalc -display 172.16.254.1:1

172.16.254.2

local machine

startx -- :1
xhost +inet:172.16.254.2
ssh user@172.16.254.2

Figure 3.3: Starting an X client on a remote host

A regular TCP/IP X client connection to the X server is not encrypted. So
it is vulnerable to eavesdropping and therefore represents a serious security risk.
For that reason, the TCP/IP connections of the X clients to the X server are
normally closed, which is achieved with the -nolisten tcp option. If the X
server is started with the -nolisten tcp option, then the X clients running on
remote hosts cannot connect, despite allowing the connection with the xhost
command. With TCP/IP closed, the X clients can no longer run on remote hosts.
To overcome this awkwardness, the X11 port forwarding over SSH is used. The
X11 forwarding over SSH derives from a regular port forwarding over SSH (see
subsection 2.14.2).

3.1.1 X11 forwarding over SSH

The X server listens for the X client TCP/IP connections on the port number
starting with 6000. The actual port number depends on the display number
of the X server (see page 71). If the X server display number is for instance 1
(i.e. the X server display is localhost:1.0), then this X server listens for the TCP/IP
connections on port 6001, which is the case in Fig. 3.3. The situation is shown in
a more detail in Fig. 3.4.

6001

remote host

X server
(DISPLAY=:1.0)
(xcalc window)

TCP/IP

X client
(xcalc)

local machine

172.16.254.1 172.16.254.2

54321

Figure 3.4: X server listening port number
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To make the connection between the local and remote host secured, the X
server listening port can be forwarded to the remote host over SSH. The X11 port
forwarding over an SSH tunnel is shown in Fig. 3.5. It can be achieved by using
the -X option of the ssh command [33].

SSH tunnel

remote host

X server
(DISPLAY=:0.0)

X client
(xcalc)

(DISPLAY=localhost:10.0)

startx -- :1 &
xhost +local:

DISPLAY=:1
export DISPLAY
ssh -X user@172.16.254.2

echo $DISPLAY
localhost:10.0

xcalc

Unix domain sockets

54321

X server
(DISPLAY=:1.0)
(xcalc window)

virtual
text

terminal

172.16.254.2

Ctrl-Alt-F8Ctrl-Alt-F1

SSH
server

6010

Ctrl-Alt-F7

local machine

22

172.16.254.1

51234

SSH
client

Figure 3.5: X11 port forwarding over a secured SSH tunnel

The ssh command opens a remote shell and logs into the remote host
(i.e. 172.16.254.2). Additionally, the DISPLAY environment variable on the remote
host is set (i.e. localhost:10.0) and a corresponding port is forwarded (i.e. the
6010 port). The X client (i.e. xcalc) started on the remote host connects to the
forwarded port according to its DISPLAY value. The connection between the local
and remote host is encrypted. The SSH client on a local machine connects to
the X server through the Unix domain sockets. An individual X server (there
can be more than one) to which the SSH client connects is defined by the SSH
client DISPLAY value on a local machine. Of course, the X server has to allow the
connection.





Chapter 4

Embedded system

A general-purpose computer (e.g. Personal Computer (PC)) is designed to be as
flexible as possible. It has to be able to perform a wide range of different tasks, like
document editing, performing numerically intensive calculations, e-mail and In-
ternet access, digital media playback, games, acting as a server, etc. On the other
side, there are specialized devices designed to perform only one or a few specific
functions. The computing unit in such a specialized device is called an embed-
ded system. It is an embedded part of a device. Today, the embedded systems
can be found practically everywhere. Our modern life in fact depends on them.
They are widely used in telecommunications (e.g. mobile phones, equipment as
switches, routers, etc.), consumer electronics (e.g. household appliances, entertain-
ment devices as mp3 players, videogame consoles, digital cameras, etc.), avionics
(e.g. inertial guidance systems, Global Positioning System (GPS) receivers, etc.),
medical equipment (e.g. vital signs monitoring, medical imaging equipment, etc.),
to mention a few.

An embedded system is a specialized computer dedicated to a specific task.
Because an embedded system targets a specific task, it can be optimally designed,
which reduces its size and cost. As a computing core of an embedded system, var-
ious microprocessors, microcontrollers and Digital Signal Processors (DSP) are
osed. They always represent a Central Processing Unit (CPU) of an embedded
system. A microprocessor is a general name for CPU implemented on a single
Integrated Circuit (IC). DSP is a specialized microprocessor adapted to fast pro-
cessing of sampled digital signals. A microcontroller is a small microprocessor
which besides CPU also contains some memory (e.g. usually some flash memory
for storing a program and a small amount of the Random Access Memory (RAM)
as the program working memory) and/or various input/output peripheral devices
(e.g. timer, serial port, etc.) on a single IC. It makes an embedded system even
smaller and more compact. A microcontroller with a powerful CPU and substan-
tial amount of memory is also called a System on Chip (SoC). SoC is capable of
running a complex software (e.g. the Linux operating system).

A general-purpose computer usually uses a keyboard, mouse and display as a
user interface. The embedded systems, on the other hand, often have a very lim-
ited user interface or even none. The buttons for issuing the user commands, Light
Emitting Diodes (LED) for signaling various states, small Liquid Crystal Displays
(LCD) with a simple menu-driven controls, etc., are used. The more sophisticated
embedded systems use graphical touch-screen displays, which are approaching to
the functionality of a general-purpose user interface, while minimizing the required
space. Some embedded systems also provide a remote user interface through a
serial (e.g. Universal Asynchronous Receiver/Transmitter (UART), Universal Se-
rial Bus (USB)) or network (e.g. Ethernet) connection. The user interface de-
vices (e.g. the touch-screen display) are no longer needed. The interface of a
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remote general-purpose computer connected to the embedded system is used in-
stead (e.g. the embedded system running the Linux operating system provides a
regular text terminal on the UART serial port; a keyboard and display of a remote
general-purpose computer are used as a user interface).

The software is divided into subroutines and processes. A subroutine is a
short program performing a specific task. A program taking a considerable time
to complete or running indefinitely is referred to as a process. A subroutine is a
short process. The software architecture defines when an individual subroutine or
process is executed. The following software architecture types or their combination
are the ones most commonly used in embedded systems:

Indefinite control loop. An embedded system performs its subroutines one
after another. When the last subroutine ends, the first one is called again. An
individual subroutine must wait for all the other subroutines to complete to be
called again. There are no processes.

Interrupt triggered event handlers. A subroutine, or in this case an event
handler, is called at interrupt, which is triggered by an event (e.g. a predefined
amount of time has elapsed, data arrived at a serial port, etc.). An individual
event handler is called every time its event occurs. In the remaining time when
there are no interrupts to be handled, one process can run.

Cooperative multitasking operating system. An operating system enables
multiple processes to run seemingly simultaneously by CPU time-sharing. It as-
signs CPU to a scheduled process. The process occupying CPU is never inter-
rupted by the operating system. It must cooperate and voluntarily return CPU
to the operating system after some amount of time. The process resumes its work
when next scheduled. One non-cooperative process can hang the whole system by
holding CPU for itself. If the processes are simple short subroutines, cooperative
multitasking is very similar to an indefinite control loop.

Pre-emptive multitasking operating system. Again, the operating system
enables multiple processes to run seemingly simultaneously by CPU time-sharing.
These time processes are not aware of time-sharing. The operating system has
a full control. It assigns CPU to a scheduled process and interrupts it later to
schedule the next process. Thus, the operating system can deal with important
external events by immediately assigning the CPU time to the relevant process.
It can improve the CPU usage by putting a process (which is for instance waiting
for some data) on hold and in the meantime scheduling another process which
will fully utilize CPU, etc. A part of the operating system code distributing the
CPU time among processes is called a kernel. Since various processes share the
same common resources (e.g. memory), the problem of a simultaneous resource
access arises. To avoid collisions, some synchronization strategies are required
(e.g. message queues, mutexes, semaphores).

Real-time operating system (RTOS). RTOSes belong to a special class of
the operating systems. Subroutines and processes have deadlines when they have
to complete (e.g. an answer to an event has to be delivered in a specified amount
of time). Thus, a scheduling policy of a RTOS primary takes care about when
an individual subroutine has to complete. The time is the most important pa-
rameter. RTOS which can deterministically guarantee that all subroutines will
always complete on time is called a hard RTOS. A soft ROTS, on the other hand,
occasionally misses a deadline. The same RTOS can be hard for the high-priority
subroutines and soft for the low-priority ones. A RTOS can be cooperative or
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pre-emptive.

Microkernel and monolithic kernel. A monolithic kernel is a type of the
pre-emptive operating system kernel. Every system service like the process and
memory management, interrupt handling, input/output communication, file sys-
tem management, etc., is part of the monolithic kernel. Therefore, the monolithic
kernel is in general relatively large (e.g. the Linux kernel). The microkernel is
another type of the pre-emptive operating system kernel often used in embedded
systems. It reduces the kernel to only the basic process and memory management.
Other system services are excluded from the kernel and are provided as normal
processes called the servers. When a user process requires a system service, it
does not contact the microkernel, but the server process providing the service.

Linux running on an embedded system is called embedded Linux. Linux and
embedded Linux are actually the same operating system. Although the embedded
Linux kernel is usually tailored to the target embedded system and has therefore
a smaller footprint than the complete desktop version of the Linux kernel.

There is no unique recipe of how to build and program an embedded system.
A huge variety of developing environments and boards are available for different
CPUs and software architectures. Thus, a tutorial/demonstration of the Phytec’s
phyCORE-i.MX27 development kit [41] running the embedded Linux follows. The
CPU is a Freescale i.MX27 microcontroller or SoC based on the ARM926EJ-S ar-
chitecture (32-bit Reduced Instruction Set Computing (RISC) engine at 400MHz).

4.1 Installing an operating system

In this section, the procedure how to install embedded an Linux operating system
on the phyCORE-i.MX27 is described.

Erasing the NOR flash memory and uploading a boot-loader

There is 32MB of the NOR flash memory on the phyCORE-i.MX27 at ad-
dresses from 0xc0000000 to 0xc1ffffff. Erasing and uploading the data to
the phyCORE-i.MX27 NOR flash is performed with a special software running
on a remote PC connected to the phyCORE-i.MX27 through a UART serial port
as shown in Fig. 4.1. The on-board switches must be appropriately set with the
power on to boot the phyCORE-i.MX27 over UART1. First, the entire 32MB of
the NOR flash is erased. This has to be done in several subsequent steps, since
only 4MB can be erased at once. The result is a completely bare phyCORE-
i.MX27 embedded system without any software. The boot-loader (see subsection
1.1.1) is uploaded into the first 256kB of the NOR flash. A Barebox boot-loader
compiled for the i.MX27 microcontroller is used. It can be cross-compiled on a
remote PC, or obtained at Phytec [42].

COM

phyCORE-i.MX27

32MB
NOR
flash

RS-232

flash
manipulating

software

remote PC

boot with
UART

UART

Figure 4.1: Erasing the NOR flash and uploading a boot-loader
1To boot phyCORE-i.MX27 with UART, set switches 3, 5 and 7 of S5 into position on.
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Barebox boot-loader

A Barebox boot-loader [43] is used in embedded systems to boot the Linux oper-
ating system. With the Barebox, the phyCORE-i.MX27 provides a remote text
terminal at the UART serial port2 as shown in Fig. 4.2. Since there is no op-
erating system yet, the phyCORE-i.MX27 cannot actually boot. Since the boot3
fails, the Barebox shell is started instead.

COM

192.168.56.2

barebox RS-232
TFTP
server

remote PC

UART

phyCORE-i.MX27

(cross-over cable)

text
terminal

Ethernet

192.168.56.100

eth0

DHCP
server

Figure 4.2: phyCORE-i.MX27 embedded system connection to a remote PC

The Barebox shell is a CLI with its own Unix-like commands. Some examples of
the Barebox commands are listed below:

addpart /dev/nor0
256k(barebox)ro,128k(bareboxenv),256k(splash),4M(kernel),-(root)
add five partitions to the /dev/nor0 device

bootm /dev/nor0.kernel
boot the Linux kernel image from /dev/nor0.kernel

dhcp
invoke the DHCP client to obtain the IP parameters from the DHCP server

echo -a /env/config "eth0.ethaddr=$eth0.ethaddr"
append the line to /env/config

edit /env/config
edit the /env/config file, to save changes to RAM, press Ctrl-D

erase /dev/nor0.kernel
erase the /dev/nor0.kernel partition (to erase the NOR flash partition, it
has to be unprotected)

help
print a list of the available commands

ping 192.168.56.2
check the network connection to the 192.169.56.2 host

protect /dev/nor0.kernel
enable the write protection on the /dev/nor0.kernel partition (only the
NOR flash partitions can be protected)

readline "enter MAC address:" eth0.ethaddr
prompt and read the user input line into the eth0.ethaddr variable

saveenv
save the /env environment into /dev/env0 in flash

tftp linuximage /dev/nor0.kernel
get the linuximage file from the TFTP server using the TFTP protocol and
save it to /dev/nor0.kernel

unprotect /dev/nor0.kernel
disable the write protection on the /dev/nor0.kernel partition (only the
NOR flash partitions can be protected)

2UART settings: 115200 baud, 8 data bits, 1 stop bit, no parity, no flow control.
3To boot phyCORE-i.MX27 from NOR flash, set all switches of S5 into position off.
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The Barebox configuration or environment resides in the /env directory. It con-
tains the /env/config configuration file and scripts in /env/bin. The environ-
ment is loaded into the RAM disk from /dev/env0 representing the subsequent
128kB of the NOR flash. In case /dev/env0 is empty (e.g. at the first start), the
Barebox default hard-coded environment is loaded. The modifications made in
/env are lost after reset. To make them permanent, the environment has to be
saved into the subsequent 128kB of the NOR flash (i.e. the saveenv command
has to be issued).

The /env/bin/init initialization script is automatically started at the Bare-
box start-up. If not interrupted, it starts the /env/bin/boot kernel boot script.
Both scripts are controlled by the /env/config configuration file. The lines in
/env/config have the following meaning:

Ethernet network interface:
ip=dhcp use the DHCP server to obtain the IP parameters
eth0.ipaddr IP address (not needed if obtained by DHCP)
eth0.netmask subnet mask (not needed if DHCP used)
eth0.gateway default gateway (not needed if DHCP used)
eth0.serverip IP address of the host running servers

(e.g. DHCP, TFTP, NFS etc.)
eth0.ethaddr MAC address (printed on the board

(e.g. 00:50:c2:5e:00:9a))

NOR and NAND flash:
nor_parts partition descriptions to be added to /dev/nor0 (e.g.

/dev/nor0.barebox (256kB read-only4),
/dev/nor0.bareboxenv (128kB, same as /dev/env0),
/dev/nor0.splash (256kB),
/dev/nor0.kernel (4MB) and
/dev/nor0.root (rest, < 28MB))

nand_parts partition descriptions to be added to /dev/nand0

Image files:
bareboximage Barebox image file name on the TFTP server
bareboxenvimage Barebox environment image file name on the TFTP

server
splashimage splash screen image file name on the TFTP server
kernelimage kernel image file name on the TFTP server
rootfsimage root file system image file name on the TFTP server

Splash screen, Linux kernel and root file system location:
splash_loc splash screen location (possible locations:

nor ... NOR flash (/dev/nor0.splash) and
nand ... NAND flash (/dev/nand0.splash.bb))

kernel_loc Linux kernel location (possible locations:
nor ... NOR flash (/dev/nor0.kernel),
nand ... NAND flash (/dev/nand0.kernel.bb), and
net ... obtain the kernel from TFTP server)

rootfs_loc root file system location
rootfs_type file system type with the root file system (e.g. jffs2)

4The five partitions are created by the addpart command example on page 78. The read-
only property has no effect in the boot-loader. It is an argument to the kernel, thus making the
partition read-only in Linux.
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root_mtdblock_nor number of the mtdblock device with the root file
system, used when rootfs_loc=nor (e.g. 4 for the
/dev/mtdblock4 device which corresponds to
/dev/nor0.root in the Barebox)

root_mtdblock_nand number of the mtdblock device with the root file
system, used when rootfs_loc=nand (e.g. 9 for the
/dev/mtdblock9 device which corresponds to
/dev/nand0.root.bb in the Barebox)

nfsroot root file system directory exported on the NFS server,
used when rootfs_loc=net

Linux kernel arguments:
display LCD type
bootargs string with arbitrary additional kernel arguments

Uploading the kernel and root file system to the NOR flash

The /env/bin/boot boot script tries to boot Linux. Since there is neither the
kernel on /dev/nor0.kernel nor the root file system on /dev/nor0.root, the
boot fails. The Linux kernel and root file system for the i.MX27 microcontroller
can be cross-compiled on a remote PC, or they can be obtained at Phytec. Up-
loading to the phyCORE-i.MX27 NOR flash can be performed with a special
software from a remote PC (Fig. 4.1) or by using the Barebox shell commands
(Fig. 4.2). The first case is slow because of the serial connection. In the second
case, TFTP over Ethernet is used. Thus, the remote PC has to be a TFTP server
(the TFTP server software can be found in the tftpd-hpa package of the Debian
Linux distribution, the tftp-hpa package for the TFTP client). The TFTP server
serves the files in the /srv/tftp directory. The Linux kernel and root file system
images have to be placed there. If the phyCORE-i.MX27 obtains its IP address
by DHCP (i.e. eth0.ipaddr, eth0.netmask and eth0.gateway are not defined),
then the remote PC has to be also a DHCP server. With a remote PC properly
set (i.e. the TFTP and DHCP servers running, the kernel and root file system
files in /srv/tftp), the Linux kernel and root file system can be uploaded to the
phyCORE-i.MX27 with the following commands:

dhcp
unprotect /dev/nor0.kernel
erase /dev/nor0.kernel
tftp linuximage /dev/nor0.kernel
protect /dev/nor0.kernel
unprotect /dev/nor0.root
erase /dev/nor0.root
tftp root.jffs2 /dev/nor0.root
protect /dev/nor0.root

The IP parameters are obtained from the DHCP server. The NOR flash kernel
and root file system partitions are erased and uploaded with the corresponding
images obtained from the TFTP server. The same can be achieved by an update
script in the /env/bin directory:

update -t kernel -d nor
update -t rootfs -d nor
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The script is controlled by the /env/config configuration file.

The same technique can be used for refreshing the Barebox boot-loader or up-
loading the splash screen:

dhcp
unprotect /dev/nor0.barebox
erase /dev/nor0.barebox
tftp barebox-image /dev/nor0.barebox
protect /dev/nor0.barebox
unprotect /dev/nor0.splash
erase /dev/nor0.splash
tftp Splashscreen_i.MX27_240x320.bmp /dev/nor0.splash
protect /dev/nor0.splash

Or with the update script:

update -t barebox -d nor
update -t splash -d nor

The Barebox’s environment (i.e. the second 128kB NOR flash partition) can
be uploaded in the same way. If not, the default hard-coded environment is used.
The environment /env directory modifications made from the Barebox shell are
lost after reset. To make changes permanent, the environment has to be saved by
the saveenv command (see page 79). When the Barebox boot-loader is running
from the NOR flash, /dev/env0 points to /dev/nor0.bareboxenv.

Uploading to the NOR flash from Linux

At this point, the phyCORE-i.MX27 is installed with an embedded Linux. The
NOR flash partitions can be found in the /dev directory as Memory Technology
Devices (MTD). MTDs come in two flavors, i.e. as character and block devices
(see table on page 21). The data from/to a character device (e.g. keyboard) is
read/written one character at a time. The character devices do not use buffering
and usually do not support a random access. The data from/to a block device
(e.g. hard disk) is read/written in blocks. The block devices in general use buffer-
ing (i.e. the blocks are accessed through a cache memory) and support a random
access. NOR flash MTDs on phyCORE-i.MX27 are:

/dev/mtd0 - /dev/mtd4
NOR flash partitions as character devices

/dev/mtd0ro - /dev/mtd4ro
NOR flash partitions as read-only character devices

/dev/mtdblock0 - /dev/mtdblock4
NOR flash partitions as block devices

The boot-loader, its environment, splash screen and Linux kernel can be replaced
(e.g. with a newer version) from Linux. The embedded Linux flash_eraseall
command erases an MTD character device. Of course, the device has to have a
write permission. Note that the boot-loader is usually marked as read-only (see
the footnote on page 79) and therefore cannot be erased by the flash_eraseall
command. New contents can be copied to the erased device with the dd command
using block devices. For instance, the Linux kernel (i.e. the fourth NOR flash
partition) is replaced with:
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scp user@192.168.56.2:/home/user/newlinuximage .
flash_eraseall /dev/mtd3
dd if=newlinuximage of=/dev/mtdblock3

First, a new Linux kernel image file is uploaded from a remote PC. Clearly, the
SSH server has to run on a remote PC and the SSH client on the phyCORE-
i.MX27. Then the fourth partition of the NOR flash is erased and reloaded with
the obtained kernel image. This technique cannot be used for replacing the root
file system since the Linux kernel is running from it.

4.1.1 Mounting an additional memory

Besides 32MB of the NOR flash, the phyCORE-i.MX27 embedded system also
provides 512kB of the Static RAM (SRAM) and 64MB of the NAND flash on-
board. The external memory devices, like Secure Digital (SD) memory cards or
USB keys, can be used as well. The procedures how to mount various types of
the additional memory are described here.

/etc/fstab file system table

The /etc/fstab file is a file system table. It lists the available partitions and
specifies their mounting procedure. The mount command reads the /etc/fstab
file to find out how a specified device should be mounted. Each line in /etc/fstab
contains the information about one partition organized in six columns: partition
device, mount point, file system type, mount, dump and file system check options.
For instance, the line:

/dev/mtdblock9 /media/nand jffs2 defaults,noauto 0 0

specifies that the /dev/mtdblock9 device will be mounted to /media/nand. It
contains a file system of the Journaled Flash File System version 2 (JFFS2) type.
It will not be mounted automatically (e.g. at the boot or when the mount -a
command is issued). Otherwise the default option values will be used. The file
system will neither be dumped (i.e. backed up) nor checked. With this line in
/etc/fstab, the /dev/mtdblock9 device can be mounted with the command:

mount /media/nand

which is equivalent to:

mount -t jffs2 /dev/mtdblock9 /media/nand

Journaled Flash File System version 2 (JFFS2)

First of all, the JFFS2 is designed for being used with the flash memory devices
[44], although it can be used on other media as well. It uses compression and
decompression on the fly. Thus, the partition capacity is virtually enlarged. For
instance, checking the summary size of all files and directories in / with the com-
mand:

du -s -h /

reports more than 28MB, which is the root file system partition size (see page 79).
Both mount commands in the previous paragraph presume that the /dev/mtd

block9 device contains the file system of the JFFS2 type. If not, the mount fails



4.1. INSTALLING AN OPERATING SYSTEM 83

with one exception. The mount succeeds if the device has been previously erased
(e.g. with the flash_eraseall /dev/mtd9 command, see page 82). In this case,
an empty JFFS2 is automatically built.

A JFFS2 image can be built from an existing directory tree with the
mkfs.jffs2 command. The structure of the memory device for which the JFFS2
image is created has to be given for optimal performance. For instance, the fol-
lowing command builds a JFFS2 image from the data directory in the current
directory and saves it to the image.jffs2 file:

mkfs.jffs2 -r ./data -o image.jffs2

The created image file can be normally used. But to optimize performance for the
phyCORE-i.MX27 NOR flash, its erase block size of 128kB (i.e. 0x20000) has to
be given :

mkfs.jffs2 -r ./data -o image.jffs2 -e 0x20000

For the phyCORE-i.MX27 NAND flash, the erase block size is 16kB (i.e. 0x4000).
Also, no clean markers are required at the beginning of each block:

mkfs.jffs2 -r ./data -o image.jffs2 -e 0x4000 -n

The image file is loaded to the previously erased device with the dd command:

flash_eraseall /dev/mtd9
dd if=image.jffs2 of=/dev/mtdblock9

SRAM

SRAM MTDs on phyCORE-i.MX27 are:

/dev/mtd10 SRAM as a character device,
/dev/mtd10ro SRAM as a read-only character device, and
/dev/mtdblock10 SRAM as a block device.

The /dev/mtdblock10 device has to contain a mountable file system. A Virtual
File Allocation Table (VFAT) file system can be used because of its simplicity.
Building a file system and mounting SRAM are performed with the following
commands:

mkfs.vfat /dev/mtdblock10
mount -t vfat /dev/mtdblock10 /media/sram

With the following line in /etc/fstab:

/dev/mtdblock10 /media/sram vfat defaults,noauto 0 0

the last mount command can be abbreviated to:

mount /media/sram

NAND flash

The NAND flash partitions are defined at the Barebox boot-loader start-up. The
configuration is given in the /env/config file in the nand_parts line (see page
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79). The NAND flash MTDs on the phyCORE-i.MX27 are:

/dev/mtd5 - /dev/mtd9
NAND flash partitions as character devices

/dev/mtd5ro - /dev/mtd9ro
NAND flash partitions as read-only character devices

/dev/mtdblock5 - /dev/mtdblock9
NAND flash partitions as block devices

The file system can be built on any NAND flash partition not marked as read-only.
For instance, a JFFS2 is automatically built on the second NAND flash partition
when mounted to /media/nand2 with the following commands:

flash_eraseall /dev/mtd6
mount -t jffs2 /dev/mtdblock6 /media/nand2

With the following line in /etc/fstab:

/dev/mtdblock6 /media/nand2 jffs2 defaults,noauto 0 0

the last mount command can be abbreviated to:

mount /media/nand2

NOR flash

If the phyCORE-i.MX27 does not boot from the NOR flash (see subsection 4.1.2),
then it can be mounted as an additional memory. The NOR flash partitions are de-
fined at the Barebox boot-loader start-up with the nor_parts line in /env/config
(see page 79) and are visible as the MTD devices in Linux (see page 81).

The file system can be built on any NOR flash partition not marked as read-
only. For instance, a JFFS2 is automatically built on the second NOR flash
partition when mounted to /media/nor2 with the following commands:

flash_eraseall /dev/mtd1
mount -t jffs2 /dev/mtdblock1 /media/nor2

With the following line in /etc/fstab:

/dev/mtdblock1 /media/nor2 jffs2 defaults,noauto 0 0

the last mount command can be abbreviated to:

mount /media/nor2

SD memory card

The Linux operating system reports a new /dev/mmcblk0 device when an SD
memory card is inserted into a slot. A fresh card does not contain any partitions
created with the fdisk command:

fdisk /dev/mmcblk0

n add a new partition
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p primary partition
1 partition number

the first and last sector define the partition size and its place on the
card

t change the partition system identification
select the partition

83 Linux identification

w write the changes to the memory card and exit fdisk

The above procedure creates one partition on the /dev/mmcblk0 memory card.
The partition is visible as the /dev/mmcblk0p1 device. It does not contain a file
system yet. The file system of the ext2 type (second extended file system) is
created with the mkfs.ext2 command. Finally, it can be mounted.

mkfs.ext2 /dev/mmcblk0p1
mount -t ext2 /dev/mmcblk0p1 /media/sdcard

With the following line in /etc/fstab:

/dev/mmcblk0p1 /media/sdcard ext2 defaults,noauto 0 0

the last mount command can be abbreviated to:

mount /media/sdcard

USB key

The Linux operating system reports a new /dev/sda device when an USB mass
storage device is inserted into a slot. A fresh key does not contain any partitions
created with the fdisk command:

fdisk /dev/sda

n add a new partition
p primary partition
1 partition number

the first and last sector define the partition size and its place on the
key

t change the partition system identification
select the partition

83 Linux identification

w write the changes to the memory card and exit fdisk

The above procedure creates one partition on the USB key /dev/sda. The parti-
tion is visible as a /dev/sda1 device. It does not contain a file system yet. The
file system of the ext2 type is created with the mkfs.ext2 command. Finally, it
can be mounted.

mkfs.ext2 /dev/sda1
mount -t ext2 /dev/sda1 /media/usb
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With the following line in /etc/fstab:

/dev/sda1 /media/usb ext2 defaults,noauto 0 0

the last mount command can be abbreviated to:

mount /media/usb

NFS

The files on a remote PC can be accessed through NFS (see section 2.11). Of
course, the remote PC has to be an NFS server and the phyCORE-i.MX27 has to
be an NFS client. The directory (e.g. /home/user/dir) to be accessed from the
phyCORE-i.MX27 has to be exported in the /etc/exports file on the remote PC.
Usually, the rw, no_root_squash and sync options are used. With everything in
place, the exported directory can be easily mounted into the phyCORE-i.MX27
directory tree with:

mount 192.168.56.2:/home/user/dir /media/nfs

NFS mounted on the phyCORE-i.MX27 is especially handy during software de-
velopment since every change made on a remote PC instantly appears on the
embedded system.

4.1.2 Booting from other devices

The boot-loader, operating system kernel and root file system are all uploaded into
the NOR flash. Thus, the phyCORE-i.MX27 embedded system boots from the
NOR flash. How to place and configure a boot-loader, kernel or root file system to
other devices (i.e. NAND flash, SD memory card, USB key and NFS) is described
here.

Uploading to the NAND flash

There is 64MB of the NAND flash memory on the phyCORE-i.MX27 at the ad-
dresses from 0x00000000 to 0x03ffffff. Erasing and uploading the data to the
phyCORE-i.MX27 NAND flash can be performed from the Barebox shell (see
page 78) or from Linux.

First, the entire 64MB of the NAND flash is erased. The NAND flash is
configured according to the nand_parts line in /env/config (see page 79). Thus,
the following devices are created in the Barebox /dev directory:

nand0 whole NAND flash device
nand0.xxx partition named xxx (defined by nand_parts)
nand0.xxx.bb bad block-aware partition named xxx

The whole NAND flash is erased by the Barebox shell command5:

erase /dev/nand0

or it can be erased partition by partition:

5Note that the NAND flash cannot be protected.
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erase /dev/nand0.barebox.bb
erase /dev/nand0.bareboxenv.bb
erase /dev/nand0.splash.bb
erase /dev/nand0.kernel.bb
erase /dev/nand0.root.bb

The boot-loader, splash screen, kernel and NAND root file system images are
obtained from the remote PC and uploaded to the NAND flash partitions by the
tftp commands:

dhcp
tftp barebox-image /dev/nand0.barebox.bb
tftp Splashscreen_i.MX27_240x320.bmp /dev/nand0.splash.bb
tftp linuximage /dev/nand0.kernel.bb
tftp root.jffs2 /dev/nand0.root.bb

If the phyCORE-i.MX27 IP configuration is not static, then its IP address is
obtained by DHCP. Clearly, the remote PC has to be a TFTP and DHCP server
(see Fig. 4.2). The same can be achieved by the update script in the /env/bin
directory:

update -t barebox -d nand
update -t splash -d nand
update -t kernel -d nand
update -t rootfs -d nand

The script is controlled by the /env/config configuration file.
The Barebox environment (i.e. the second 128kB NAND flash partition) can

be uploaded in the same way. If not, the default hard-coded environment is used.
The environment /env directory modifications made from the Barebox shell are
lost after reset. To make the changes permanent the environment has to be saved
by the saveenv command (see page 79). When the Barebox boot-loader is running
from the NAND flash, /dev/env0 points to /dev/nand0.bareboxenv.bb.

The same can be achieved from Linux. The NAND flash partitions must
not be marked as read-only (e.g. the boot-loader partition is usually read-only),
otherwise they cannot be erased and uploaded. The images are again obtained
from the remote PC, this time by the scp commands. To erase the entire 64MB
of the NAND flash, all the NAND partitions have to be erased (see page 83). The
images are uploaded by the dd commands:

scp user@192.168.56.2:/home/user/barebox-image .
flash_eraseall /dev/mtd5
dd if=barebox-image of=/dev/mtdblock5
rm barebox-image
flash_eraseall /dev/mtd6
scp user@192.168.56.2:/home/user/Splashscreen_i.MX27_240x320.bmp .
flash_eraseall /dev/mtd7
dd if=Splashscreen_i.MX27_240x320.bmp of=/dev/mtdblock7
rm Splashscreen_i.MX27_240x320.bmp
scp user@192.168.56.2:/home/user/linuximage .
flash_eraseall /dev/mtd8
dd if=linuximage of=/dev/mtdblock8
rm linuximage
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scp user@192.168.56.2:/home/user/root.jffs2 .
flash_eraseall /dev/mtd9
dd if=root.jffs2 of=/dev/mtdblock9
rm root.jffs2

This time the remote PC has to be an SSH server, while the phyCORE-i.MX27
is an SSH client.

The Barebox environment can be uploaded in the same way. Note that the
root file system NAND partition cannot be erased and uploaded if the Linux kernel
is running from it.

Creating a root file system on an external device

Besides the NOR and NAND flash, the root file system can be located on external
memory devices like the SD memory card, USB key or NFS. The root file system
is created on an external device simply by expanding the root.tgz file which
can be built on a remote PC or obtained at Phytec. The expansion is performed
by the tar command, e.g:

cd /media/sdcard
tar -xvzf /media/nfs/root.tgz

The above two commands presume that the SD memory card is mounted on
/media/sdcard and that the remote PC directory with root.tgz is exported and
mounted as NFS on /media/nfs. The root file system is expanded to the SD
memory card.

Boot configurations

At power on, the phyCORE-i.MX27 loads and runs the boot-loader code from
either the NOR or NAND flash. On page 78, the Barebox boot-loader is started
from the NOR flash. To run the boot-loader from the NAND6 flash, the on-board
switches have to be appropriately set.

The boot-loader runs the /env/bin/boot script which starts the Linux kernel
according to the kernel_loc line in /env/config (see pages 79 and 79). The
kernel is placed to either the NOR or NAND flash, or it is uploaded from a
remote PC. In the latter case, the remote PC has to be properly set (as on page
80, Fig. 4.2), the kernel image file name is given in the kernelimage line of
/env/config. Examples:

kernel_loc=nor start the kernel from /dev/nor0.kernel (the kernel
partition has to be listed in nor_parts)

kernel_loc=nand start the kernel from /dev/nand0.kernel.bb (the kernel
partition has to be listed in nand_parts)

kernel_loc=net upload the kernel image from the eth0.serverip host

Finally, the root file system is mounted according to the rootfs_loc line in
/env/config (see page 80). The /env/bin/boot script is prepared for the root
file system to be found on either the NOR or NAND flash or NFS. When placed
on an external memory device like the SD memory card or USB key, a few lines
should be added. Examples:

6To boot phyCORE-i.MX27 from the NAND flash, set switch 4 of S5 into position on.
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the root file system on the NOR flash:
rootfs_loc=nor
root_mtdblock_nor=4 the number of the mtdblock device with the

root file system according to the nor_parts
list (e.g. /dev/mtdblock4)

the root file system on the NAND flash:
rootfs_loc=nand
root_mtdblock_nand=9 the number of the mtdblock device with the

root file system according to the nor_parts
and nand_parts lists (e.g. /dev/mtdblock9)

the root file system on NFS:
rootfs_loc=net
nfsroot=$eth0.serverip:/home/user/phycore/nfsroot

the exported directory with the root file
system

the root file system on the SD memory card:
rootfs_loc=mmc

the code in /env/bin/boot, the kernel arguments introducing the ext2 root
file system on the /dev/mmcblk0p1 partition on the SD card added:
if [ x$rootfs_loc = xmmc ]; then

bootargs="$bootargs root=/dev/mmcblk0p1"
rootfs_type=ext2

else
if [ x$rootfs_loc = xnand ]; then

...
if [ x$rootfs_type = xubifs ]; then

...
fi

the root file system on the USB key:
rootfs_loc=usb

the code in /env/bin/boot, the kernel arguments introducing the ext2 root
file system on the /dev/sda1 partition on the USB key added:
if [ x$rootfs_loc = xusb ]; then

bootargs="$bootargs root=/dev/sda1"
rootfs_type=ext2

else
if [ x$rootfs_loc = xnand ]; then

...
if [ x$rootfs_type = xubifs ]; then

...
fi

The /env/bin/boot script can be started manually from the Barebox shell.
It accepts one argument (i.e. nor, nand or net). If the argument is not given,
/env/bin/boot starts the kernel which mounts the root file system, as defined in
/env/config. Otherwise, the kernel_loc and rootfs_loc parameters are altered
(i.e. to nor, nand or net, respectively). Additional argument values can be defined
to accommodate an arbitrary combination of kernel_loc and rootfs_loc. For
instance, to upload the kernel from the remote PC and use the root file system on
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the SD memory card when /env/bin/boot is called with the netmmc argument,
add the following code:

if [ x$1 = xnetmmc ]; then
kernel_loc=net
rootfs_loc=mmc

fi

4.1.3 Accessing an embedded system over the network

At this point, an embedded Linux operating system is installed on the phyCORE-
i.MX27. If the phyCORE-i.MX27 is connected to the network with a unique IP
address obtained over DHCP or statically assigned, it can be accessed from a
remote host. The command line shell can be opened over SSH (see page 53) with
the command:

ssh root@phycore

which is equivalent to the remote text terminal at the UART serial port. In the
above command, phycore is the host name of the phyCORE-i.MX27 embedded
system. To be resolved into its IP address, it should be listed in the remote hosts
/etc/hosts file (see section 2.7), e.g.:

192.168.56.100 phycore

4.2 Audio and video

The Advanced Linux Sound Architecture (ALSA) is an interface to the sound-
related hardware [45]. It is a Linux kernel component. ALSA is a software
framework (i.e. a collection of the software libraries) providing device drivers
and Application Programming Interface (API) to the sound-related hardware.
The command-line aplay sound file player can be used for playback simple audio
streams with the ALSA sound card driver:

aplay audio.wav

To capture the audio stream command-line sound file, the arecord recorder is
available. The following command captures the audio stream on the hw:0,1 device
(e.g. a microphone) for five seconds:

arecord -d 5 -D hw:0,1 -c 2 -f S16_LE audio.wav

A two-channel stream is written into the audio.wav file in the S16_LE (signed
16-bit little endian) format.

To configure the ALSA sound settings and adjust the volume, use the
alsamixer graphical program.

The MP3-encoded audio files can be played with the madplay (MAD stands for
the MPEG Audio Decoder, since MP3 is an MPEG-2 audio layer III, the standard
was developed by the Moving Picture Experts Group (MPEG)) command-line
decoder and player:

madplay audio.mp3
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The GStreamer is a framework for creating streaming media applications [46]
(e.g. media players). It is based on plug-ins linked and arranged in a pipeline. An
element in the pipeline (i.e. plug-in) has a source or a sink, or both. The source
generates a stream for the next element in the pipeline and the sink receives the
stream from the previous one. The GStreamer pipeline can be created with the
command-line gst-launch tool. Plug-ins are connected with exclamation marks,
e.g.:

gst-launch audiotestsrc freq=1000 wave=1 ! alsasink
audiotestsrc plug-in generates a 1kHz square testing signal played
by the alsasink plug-in (i.e. sound card)

gst-launch videotestsrc ! videoflip ! ffmpegcolorspace ! fbdevsink
videotestsrc plug-in generates a test screenshot rotated by
the videoflip plug-in, converted to an appropriate color space by
the ffmpegcolorspace plug-in and shown on the fbdevsink plug-in

gst-launch filesrc location=audio.mp3 ! mad ! alsasink
the audio.mp3 (filesrc) source is decoded (mad) and played (alsasink)

gst-launch filesrc location=audio.mp3 ! mad ! wavenc ! filesink
location=audio.wav

decode audio.mp3 and encode it into audio.wav
gst-launch filesrc location=audio.wav ! wavparse ! alsasink

decode and play audio.wav

Two or more streams of data (e.g. audio and video) are merged together in a
container. The container format specifies how various data coexist in one file. An
example of a container format is MPEG. The GStreamer is capable of extract-
ing and playing individual streams. After the container has been demultiplexed,
multiple streams are created. The command:

gst-launch filesrc location=film.mpg ! mpegdemux name=dmx
dmx.audio_00 ! queue ! mad ! alsasink

is composed of two parts. The film.mpg file is demultiplexed into the dmx pre-
fixed streams (e.g. dmx.audio_xx or dmx.video_xx) in the first part. In the sec-
ond part, the MP3 dmx.audio_00 stream is decoded and played. Other streams
(i.e. dmx.video_00) are thrown away. The third part handling the video stream
has to be added to play audio and video:

gst-launch filesrc location=film.mpg ! mpegdemux name=dmx
dmx.video_00 ! queue ! mpeg2dec ! videoflip !

ffmpegcolorspace ! fbdevsink
dmx.audio_00 ! queue ! mad ! alsasink

The MPEG2 dmx.video_00 stream is decoded, rotated, converted to an appro-
priate color space and played on the framebuffer device (e.g. /dev/fb0 which
corresponds to LCD).

4.2.1 Streaming

The audio or video stream or both merged together in a container can be con-
stantly sent over the network to an arbitrary receiver. This is called streaming.
The streaming provider transmits the media stream from its media source (e.g. file,
microphone, camera, etc.). The streaming receiver presents the received data on
the fly.
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An audio stream can be for instance sent from the phyCORE-i.MX27 to a
remote PC (see Fig. 4.2) and played there. A remote PC is a TCP server listening
on port 5000. It decodes and plays the received data:

user@remotepc:∼$ gst-launch-0.10 tcpserversrc host=192.168.56.2
port=5000 ! mad ! alsasink

The remote PC host address is required since the tcpserversrc plug-in listens
at localhost (i.e. 127.0.0.1, see section 2.8) by default. The phyCORE-i.MX27 is
a streaming provider transmitting the audio stream to a remote PC:

root@phycore:∼# gst-launch filesrc location=audio.mp3 !
tcpclientsink host=192.168.56.2 port=5000

The streaming direction can be reversed from a remote PC to the phyCORE-
i.MX27. Instead of TCP, UDP can be used (see page 42):

root@phycore:∼# gst-launch udpsrc port=5000 ! mad ! alsasink
user@remotepc:∼$ gst-launch-0.10 filesrc location=audio.mp3 !

udpsink host=192.168.56.100 port=5000

The audio stream is played on the phyCORE-i.MX27. At first, the sound is all
right. After a while, it starts racing toward the end, thus skipping parts of the
stream. The cause is UDP which does not guarantee the packet deliverance. The
packets are sent as fast as possible. Since they arrive ahead of time, most of them
are not received. The stream provider has to take care about the transmitting
speed when using UDP.

The video stream can be sent also:

root@phycore:∼# gst-launch tcpserversrc host=192.168.56.100
port=5000 ! mpegdemux name=dmx

dmx.video_00 ! queue ! mpeg2dec ! videoflip !
ffmpegcolorspace ! fbdevsink

dmx.audio_00 ! queue ! mad ! alsasink
user@remotepc:∼$ gst-launch-0.10 filesrc location=film.mpg !

tcpclientsink host=192.168.56.100 port=5000

Or, for instance, a camera-captured live video7 is streamed from the phyCORE-
i.MX27 to a receiver (e.g. remote PC):

user@remotepc:∼$ gst-launch-0.10 udpsrc port=5000
caps=application/x-rtp ! rtpmp4vdepay ! ffdec_mpeg4 !

decodebin ! ffmpegcolorspace ! ximagesink
root@phycore:∼# gst-launch v4l2src device=/dev/video2 !

video/x-raw-bayer ! bayer2rgb ! ffmpegcolorspace ! videoscale !
video/x-raw-yuv ! mfw_vpuencoder codec-type=std_mpeg4 !

rtpmp4vpay send-config=TRUE ! udpsink host=192.168.56.2 port=5000

The video frames are read from a camera device (i.e. /dev/video2). The video
stream in a raw bayer video format is converted to RGB (Red Green Blue) and

7A live camera video is sent to a framebuffer device (i.e. LCD) by the gst-launch v4l2src
device=/dev/video2 ! video/x-raw-bayer ! bayer2rgb ! ffmpegcolorspace ! fbdevsink
command.
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further to a YUV color space. Then it is encoded into the MPEG-4 video format
payloaded as real-time protocol packets. The packets are sent by UDP. The re-
ceiver extracts the MPEG-4 video from the real-time protocol packets and decodes
and displays it in a window.

4.3 Developing an embedded application

The embedded Linux operating system is installed on the Phytec phyCORE-
i.MX27 development kit. In general, full functionality of the Linux operating
system is therefore available (see Chapters 1 and 2). Thus, the phyCORE-i.MX27
can execute the shell scripts, run the C programs, or act as an HTTP and PHP
server, etc., to name a few possibilities. The shell scripts can be used without any
restrictions (as described in section 1.9). The HTTP and PHP servers are also
already installed and running by default. A small memory footprint lighttpd
and the php5-cgi daemons are used as the HTTP and PHP servers. Their con-
figurations can be found in the /etc/lighttpd and /etc/php5 directories. The
HTTP, JavaScript or PHP documents can be hosted with no further action.

A few words about compiling and debugging the C and C++ programs for
an embedded system can be found in the following paragraphs. If an embedded
system is viewed as a Linux box, then the C or C++ source code can be written,
compiled and debugged directly on the embedded system as described in section
1.10. To do so, the gcc, g++, gdb and make have to be installed, which is normally
not the case because of the embedded-system limited resources. Therefore, the
executable code is cross-compiled on the remote PC (Fig. 4.2).

Cross-compilation means building an executable code for the target platform
(i.e. the phyCORE-i.MX27 with the ARM9 microcontroller) on another platform
called the host (i.e. a remote PC with the Intel64 microprocessor). A cross-
compiler running on a host platform and producing executable code for the target
platform is required. For instance, the countdown example from section 1.10 can
be compiled for the phyCORE-i.MX27 with the following command on a remote
PC8:

arm-v5te-linux-gnueabi-gcc -o countdown check.c display.c
countdown.c

The arm-v5te-linux-gnueabi-gcc program is a cross-compiler. The generated
executable file (i.e. countdown) is built for the target platform. Therefore, it
cannot run on a host platform. It has to be uploaded to the target platform and
run there.

Since gdb is not available on the target platform, the generated executable
file has to be debugged remotely. First, the executable file with the debugging
information is required on the host platform:

arm-v5te-linux-gnueabi-gcc -g -o countdown_dbg check.c display.c
countdown.c

To enable remote debugging, the gdbserver program [18] is launched on the target
platform:

gdbserver 192.168.56.100:10000 countdown

8The arm-v5te-linux-gnueabi-gcc cross-compiler resides in the /opt/OSELAS.Toolchain-201
1.02.0/arm-v5te-linux-gnueabi/gcc-4.5.2-glibc-2.13-binutils-2.21-kernel-2.6.36-sani
tized/bin directory which should be included in the variable PATH.
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gdbserver is a much smaller program than gdb. It listens on the target plat-
form IP address on port 10000. The debugged program countdown is the final
executable file. The debugging information does not need to be included. The
remote debugging session starts with the gdb9 connection from the host platform
to gdbserver on the target platform:

arm-v5te-linux-gnueabi-gdb countdown_dbg
(gdb) target remote 192.168.56.100:10000

The arm-v5te-linux-gnueabi-gdb program is a cross-debugger running on the
host platform and used to remotely debug the application running on the target
platform. The debugged executable file on the host platform (i.e. countdown_dbg)
has to include the debugging information. The embedded application can now be
debugged as explained in subsection 1.10.2.

4.4 Programming devices

A few basic primers of the peripheral-device programming can be found in this
section. Since the embedded Linux is installed, the devices are in general seen as
files in the /dev directory.

4.4.1 System and virtual consoles

The system console is represented as a /dev/console10 character special file in
Linux. It is a text entry and display device for the system administration mes-
sages. On the phyCORE.i-MX27 system, the console is connected to the first serial
interface (i.e. /dev/ttymxc0). Besides the system console, there are also virtual
consoles (see page 5). The following few lines in the C programming language11
illustrate how the virtual or system console can be used. The console device is
opened for reading and writing, read from, written to and closed when done.

char buffer[SIZE];
int num_of_bytes, error, descriptor = open("/dev/console", O_RDWR);

...
num_of_bytes = read(descriptor, buffer, SIZE);

...
num_of_bytes = write(descriptor, buffer, SIZE);

...
error = close(descriptor);

Of course, the SIZE has to be defined. Declarations of the open(), close(),
read() and write() functions are in the fcntl.h header file, which has to be
included. The read() and write() functions return the number of bytes actually

9The arm-v5te-linux-gnueabi-gdb cross-debugger resides in the /opt/OSELAS.Toolchain-20
11.02.0/arm-v5te-linux-gnueabi/gcc-4.5.2-glibc-2.13-binutils-2.21-kernel-2.6.36-san
itized/opt/OSELAS.Toolchain-2011.02.0/arm-v5te-linux-gnueabi/gcc-4.5.2-glibc-2.13-b
inutils-2.21-kernel-2.6.36-sanitized/bin directory which should be included in the variable
PATH.

10In general, the /dev/tty1, /dev/tty2, etc. devices are virtual consoles or virtual terminals
(see page 5). The /dev/console device (sometimes linked to /dev/tty0) represents the system
console, which is a physical device (e.g. a message written to the system console is displayed
there irrespective of the current virtual console). Another magic device is /dev/tty. For an
individual process, /dev/tty is its controlling terminal.

11For a description of the used functions, see [10, 11].
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read or written, respectively. The close() function returns zero on success, -1
otherwise.

The console input is typically line buffered12. A key-press does not appear
until a new-line character. Thus, read() waits until Enter is pressed and then
reads up to the SIZE characters. The console attributes (e.g. input processing)
can be set by the ioctl() function.

struct termios console;
...

error = ioctl(descriptor, TCGETS, &console);
console.c_lflag &= ∼(ECHO | ICANON);
error = ioctl(descriptor, TCSETS, &console);

Declaration of the ioctl() function is in the sys/ioctl.h header file and the
termios structure is defined in termios.h. Both header files have to be included.
The ioctl() function returns -1 if an error occurs. The termios structure con-
tains the terminal information. The current terminal settings are read, the echo13

and canonical mode are disabled, and the modified settings are saved back. One
character at a time is read now, since each typed character arrives immediately.

The console is opened in the blocking mode if not specified otherwise. That
means that although the canonical mode is disabled, read() waits until the first
character arrives. To make the read() function return immediately in all cases,
the console has to be opened in the non-blocking mode:

descriptor = open("/dev/console", O_RDWR | O_NONBLOCK);

With the non-blocking mode set, read() does not wait for a character (or line in
the canonical mode) to arrive. If there is none, it returns -1.

4.4.2 Framebuffer

The first framebuffer is represented as the /dev/fb0 character special file in Linux.
There can be more than one framebuffer devices. A framebuffer provides an
abstraction layer to the video display hardware (e.g. LCD). It drives the hardware
from the memory buffer containing the current frame of the video data. The
application does not need to know the details about the used video hardware. It
accesses the hardware through the framebuffer device. In other words, the video
driver is not a part of the application itself.

The following few lines in the C programming language14 illustrate how the
framebuffer can be used. Before usage, the framebuffer device has to be opened for
reading and writing and mapped into the memory. One red pixel at the location x
= 100, y = 200 is displayed. Afterward, mapping is removed and the framebuffer
device closed.

int error, descriptor = open("/dev/fb0", O_RDWR);
short int *buffer = mmap(0, 153600, PROT_READ | PROT_WRITE,

MAP_SHARED, descriptor, 0);
...

buffer[48100] = 0xf800;

12The input is processed in a canonical mode, which means that reading is suspended until
a delimiter arrives. The delimiters are special characters like End-Of-Line (EOL), End-Of-File
(EOF), etc.

13With echo enabled, every typed character is automatically echoed.
14For description of the used functions, see [10, 11].
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...
error = munmap(buffer, 153600);
error = close(descriptor);

The declarations of the open() and close() functions are in fcntl.h and the
declarations of mmap() and munmap() are in sys/mmap.h. Both header files have
to be included. The munmap() and close() functions return zero on success, -1
otherwise.

Mapping of the framebuffer device is 153600 bytes long. The constant de-
rives from the video hardware resolution and the number of bytes per pixel. The
phyCORE.i-MX27 has a 240×320 pixel LCD in a highcolor format (16-bit color
depth or two bytes per pixel) attached, which explains the number. The informa-
tion about the framebuffer (e.g. resolution, color depth, etc.) can be retrieved by
the ioctl() function.

struct fb_fix_screeninfo fix;
struct fb_var_screeninfo var;

...
error = ioctl(descriptor, FBIOGET_FSCREENINFO, &fix);
error = ioctl(descriptor, FBIOGET_VSCREENINFO, &var);

Declaration of the ioctl() function is in the sys/ioctl.h header file and the fb_
fix_screeninfo and fb_var_screeninfo structures are defined in linux/fb.h.
Both header files have to be included. The ioctl() function returns -1 if an error
occurs. The length of the framebuffer memory is in the fix.smem_len element
(i.e. 153600). The resolution can be found in var.xres (i.e. 240) and var.yres
(i.e. 320), and the color depth in var.bits_per_pixel (i.e. 16).

The buffer pointer points to an array of 76800 (i.e. 240×320) 16-bit integers,
each describing one pixel. The pixel at the x, y location is described by the
buffer[y×240+ x] element. For the pixel at the location x = 100, y = 200, the
index is 48100.

A single 16-bit integer in the buffer array defines the color of the corresponding
pixel in a highcolor format. The bit masks for the red, green and blue components
can be retrieved from the var.red, var.green and var.blue structures obtained
by the ioctl() function call. The highcolor format is composed from individual
color components:

highcolor = ((red >> (8 - var.red.length)) << var.red.offset) |
((green >> (8 - var.green.length)) << var.green.offset) |

((blue >> (8 - var.blue.length)) << var.blue.offset);

In the 16-bit highcolor standard, the most significant five bits represent the red
component (i.e. var.read.length = 5, var.red.offset = 11), the next six bits
are the green component (i.e. var.green = 6, var.green.offset = 5), and
the last five least significant bits give the blue component (i.e. var.blue = 5,
var.blue.offset = 0). That explains the 0xf800 constant representing bright
and pure red.

4.4.3 Touchscreen

On the phyCORE.i-MX27, the touchscreen is accessed through the /dev/input/
event0 special file. It is a part of the input subsystem in the Linux kernel. The
input subsystem is an abstraction layer to various input devices, such as the key-
board, mouse, touchscreen, etc. It makes the input events (e.g. keystroke, mouse
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movement, touchscreen press, etc.) available through a standard file interface.
To avoid writing directly to the touchscreen device, specific software standard-

ized services are provided by the tslib library. The library contains a source code
with the functions for the touchscreen special file handling (e.g. opening, reading
touch events, closing, etc.), plug-in modules performing filtering and smoothing
the input data, and testing utilities like calibration, etc. It supports a range of
various touchscreen devices.

The following few lines in the C programming language illustrate how the
touchscreen can be used. Before usage, the touchscreen device has to be opened
and configured. The raw or filtered input data reading is at hand. Afterward, the
touchscreen device is closed.

struct ts_sample sample[SIZE];
struct tsdev *touchscreen = ts_open("/dev/input/event0", 0);
int num_of_events, error = ts_config(touchscreen);

...
num_of_events = ts_read_raw(touchscreen, sample, SIZE);

...
num_of_events = ts_read(touchscreen, sample, SIZE);

...
error = ts_close(touchscreen);

The SIZE identifier has to be defined to establish the number of samples in the
array. To use the tslib data structures and functions, the tslib.h header file
has to be included15.
The touchscreen device is opened by the ts_open() function for reading only.
The configuration is done in the ts_config() call which returns zero on suc-
cess, -1 otherwise. The plug-in modules specified in the configuration file are
dynamically linked16 during the configuration. The default configuration file is
/etc/ts.conf17. Another configuration file can be specified at the runtime by
the TSLIB_CONFFILE environment variable. The precompiled plug-in library files
(i.e. modules) reside in the /usr/lib/ts directory18. Another plug-in directory
can be specified at the runtime by the TSLIB_PLUGINDIR environment variable.
The ts_close() function returns zero on success, -1 otherwise.

The ts_read_raw() and ts_read() functions read the touchscreen event
data. Each event is stored in one ts_sample structure holding coordinates,
pressure and time of the event (i.e. touch). The ts_read_raw() function reads
the raw data directly from the touchscreen device not using the linked plug-
in modules. On the other hand, the ts_read() function returns the values
that have passed through a chain of the linked modules performing data fil-
tering and smoothing. If the module linear is linked, then adjustment to the
framebuffer (e.g. 240×320 pixel LCD on the phyCORE.i-MX27) coordinates is
also done. Calibration of the touchscreen to the framebuffer is carried out by
running the ts_calibrate utility, which is a part of tslib. The utility cal-
culates the calibration coefficients for the touchscreen device specified in the

15The source files with the tslib functionality (e.g ts_*.c files with the used functions) also
have to be compiled and linked. They can be specified as the gcc input files or the precompiled
tslib library file can be used.

16The libdl.a standard library has to be searched by a linker to link the dynamic linking
functions. The library can be specified as the gcc option (i.e. -ldl).

17The default configuration filename is specified by the TS_CONF identifier, normally defined
as the gcc option (i.e. -DTS_CONF=\"/etc/ts.conf\").

18The default plug-in directory is specified by the PLUGIN_DIR identifier, normally defined as
the gcc option (i.e. -DPLUGIN_DIR=\"/usr/lib/ts\").
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TSLIB_TSDEVICE19 environment variable. The coefficients are saved into the
/etc/pointercal file used by the linear module. Another calibration file can
be specified at the runtime by the TSLIB_CALIBFILE environment variable.

Both read functions wait until the SIZE events happen. To make the
ts_read_raw() and ts_read() functions return immediately, the touchscreen
device has to be opened in the non-blocking mode. The second argument of the
ts_open() function is the non-blocking mode switch:

touchscreen = ts_open("/dev/input/event0", 1);

The read functions now return immediately, returning the number of events read.
If there are no events available, -1 is returned.

4.4.4 Qt for the embedded Linux

Writing the code dealing directly with the framebuffer and touchscreen, as de-
scribed in subsections 4.4.2 and 4.4.3, can be quite an awkward task. A widget
library or GUI toolkit can be used instead. Widget is an element used in graphical
applications (i.e. button, label, edit box, etc.). There are many different widget
libraries available for the Linux operating system (e.g. Qt, wxWidgets, etc.).

Qt is installed in the root file system for the i.MX27 microcontroller obtained
at Phytec or cross-compiled on a remote PC. The Qt widget library is a cross-
platform application and user-interface framework [47] (i.e. collection of the soft-
ware libraries). It uses the standard C++ programming language. A detailed
explanation of the C++ programming language and Qt modules far exceeds the
scope of this textbook. To demonstrate this technique, a simple example applica-
tion written in C++ using Qt is presented.

The example in fact consists of two executables: a launcher and an application
named Countdown. The launcher serves as a desktop with application icons,
although it is an application itself. Its look on the phyCORE.i-MX27 LCD is
shown in the left part of Fig. 4.3.

above

grid layout

name close

app appapp

app appapp

app appapp

Figure 4.3: Launcher application (left) and its layout structure (right)

There can be up to nine applications on the desktop. Only one place (i.e. bomb
icon for the Countdown application) is taken. The application is started by touch-
ing the icon. The launcher source code resides in several files.

19If the TSLIB_TSDEVICE variable is not defined, the touchscreen /dev/input/event0 is cali-
brated by default.
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// main.cpp
#include "launcher.h"

int main(int argc, char *argv[])
{

QApplication app(argc, argv, QApplication::GuiServer);
Launcher launcher;
return app.exec();

}

For any GUI application using Qt, there is precisely one QApplication object.
QApplication contains the main event loop. It performs event handling. An event
is received from the underlying window system and dispatched to the relevant
widget. QApplication parses the command-line arguments and sets its internal
state accordingly. It must be created before any other object related to the user
interface. Event handing is started by exec() which enters the main event loop.
The exec() function returns when the application is closed. For the non-GUI Qt
applications, use QCoreApplication instead of QApplication.

The GUI application requires the window system (i.e. X11, see section 3.1) to
provide a hardware abstraction layer. The window system on the other hand uses
a significant part of the embedded-system resources. Qt for the embedded Linux
eliminates the need for the window system by implementing its own compact
window system QWS (QT Window System). QWS is a lightweight user interface
server with a small memory footprint. One QWS server is required to which the
QWS clients connect. A Qt for the embedded Linux application becomes a QWS
server by specifying the QApplication::GuiServer type of the QApplication
object or by running the application with the -qws command-line option. Other
applications are the QWS clients.

The launcher application main widget is an object of the Launcher type. Its
constructor creates child widgets and arranges them in a final layout depicted in
the right part of Fig. 4.3. The Qt layout objects are used. The child widgets
are: the selected application name label, close symbol and application icons. The
cursor is set to invisible and the main widget is shown in the full-screen mode with-
out window decorations. The inherited connect() function connects the quit()
signal from the close object (i.e. close symbol child widget) to the inherited
close() slot in this Launcher widget. Since they are inherited, the connect()
function and close() slot are not declared in the Launcher class. The close()
slot closes the widget. The signals and slots are used for communication between
the objects.

// launcher.h
#include <QtGui>

class Launcher : public QWidget
{

QLabel *name;
public:

Launcher();
protected:

void mouseMoveEvent(QMouseEvent *);
};

// launcher.cpp
#include "launcher.h"
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#include "close.h"
#include "app.h"

const char *apps[9][3] = {{"Countdown", ":/bomb.png", "./countdown"}};

Launcher::Launcher()
{

name = new QLabel();
Close *close = new Close();

QHBoxLayout *above = new QHBoxLayout();
above->addWidget(name, 0, Qt::AlignTop);
above->addWidget(close, 0, Qt::AlignTop | Qt::AlignRight);

QGridLayout *grid = new QGridLayout();
QVBoxLayout *layout = new QVBoxLayout();
layout->addLayout(above);
layout->addLayout(grid);

for(int i = 2; i >= 0; i--) for(int j = 0; j < 3; j++)
{

App *app = new App(apps[3 * (2 - i) + j]);
grid->addWidget(app, i, j);

}

QCursor cursor;
cursor.setShape(Qt::BlankCursor);

setCursor(cursor);
setLayout(layout);
showFullScreen();

connect(close, SIGNAL(quit()), this, SLOT(close()));
}

void Launcher::mouseMoveEvent(QMouseEvent *event)
{

QWidget *widget = childAt(event->pos());

if(widget) name->setText(widget->objectName());
else name->setText(QString(""));

}

The mouseMoveEvent() event handler receives the mouse-move events for the
widget. The touchscreen stylus (i.e. mouse) position is checked. When a child
widget is pointed at, its object name is set as the text of the child name, which
thus provides an additional explanation.

A close symbol is represented with the child widget of the Close type. The class
dealing with signals or slots must inherit QObject20 and must state Q_OBJECT in its
private section. The Close constructor creates a symbol consisting of two crossed
lines. When the mouse is released, the mouseReleaseEvent() event handler emits
the quit() signal (which is connected to the launcher close() slot).

20Close inherits QLabel, which inherits QFrame, which inherits QWidget, which inherits QObject.



4.4. PROGRAMMING DEVICES 101

// close.h
#include <QtGui>

class Close : public QLabel
{

Q_OBJECT
public:

Close();
protected:

void mouseReleaseEvent(QMouseEvent *);
signals:

void quit();
};

// close.cpp
#include "close.h"

Close::Close()
{

QPixmap symbol(10, 10);
symbol.fill();

QPainter painter(&symbol);
painter.drawLine(0, 0, 9, 9);
painter.drawLine(0, 9, 9, 0);
painter.end();

symbol.setMask(symbol.createMaskFromColor(Qt::white));

setPixmap(symbol);
setObjectName(QString("Quit"));

}

void Close::mouseReleaseEvent(QMouseEvent *event)
{

if(rect().contains(event->pos())) emit quit();
}

The App object represents an application on the desktop. The constructor
receives a three-string array with the application name, icon and executable. If
the strings are not null, the constructor loads the icon image, sets the object name
to the application name and saves the executable. The mouse-released event on
this widget starts the application (i.e. mouseReleaseEvent() event handler).

// app.h
#include <QtGui>

class App : public QLabel
{

QProcess process;
public:

App(const char *[]);
protected:

void mouseReleaseEvent(QMouseEvent *);
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};

// app.cpp
#include "app.h"

App::App(const char *app[])
{

QPixmap image(80, 80);
if(app[0])
{

image = QPixmap(QString(app[1]));
image = image.scaled(80, 80);

} else
{

image.fill();
image.setMask(image.createMaskFromColor(Qt::white));

}

setPixmap(image);
setObjectName(QString(app[0]));

process.setObjectName(QString(app[2]));
}

void App::mouseReleaseEvent(QMouseEvent *event)
{

QString name = process.objectName();
if(rect().contains(event->pos()) && !name.isEmpty())

process.start(name);
}

The icon is obtained from the :/bomb.png resource. The colon sign indicates
the resource, not the file. The bomb.qrc XML-based (eXtensible Markup Lan-
guage) resource collection file specifies the resources. The resource binary files are
stored in the application executable. The bomb.png image file is listed as a single
resource.

<!-- bomb.qrc -->
<!DOCTYPE RCC>

<RCC version="1.0">
<qresource>

<file>bomb.png</file></qresource></RCC>

The launcher executable is built from nine input files (i.e. sources, headers and
resources): main.cpp, launcher.h, launcher.cpp, close.h, close.cpp, app.h,
app.cpp, bomb.qrc and bomb.png. Building the executable consists of:

- generating the C++ source file21 containing the resource data specified in the
.qrc file,

21C++ file containing the resources is generated with the Qt resource compiler rcc (e.g. rcc
-name bomb bomb.qrc -o qrc_bomb.cpp), which resides in the sysroot-host/bin subdirectory
of BSP (Board Support Package, can be obtained at Phytec) version (i.e. PD11.1.1) platform
(i.e. phyCORE-i.MX27) directory.
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- generating the C++ source files22 containing the meta-object code,
- cross-compiling the C++ source files23 (the rcc- and moc-created files
included), and

- linking the compiled object files24 into the final executable.

The above steps can be performed manually. Writing Makefile and using the make
utility is more convenient (see page 34), though, all the more so since Makefile
can be generated automatically. For that purpose, Qt provides the qmake utility.
Makefile is generated out of the qmake project file (.pro). The latter contains
all the information needed (e.g. list of the input files, building options, etc.) to
build the executable. Fortunately, qmake can also create a simple project file.
The input files found in the current directory are listed by default. Thus, the
launcher executable is built in three steps: creating the qmake project file25,
generating Makefile26 and building the executable with the make utility27:

qmake -project
qmake -spec qws/linux-ptx-g++
make

The Countdown application is started by touching the bomb icon (Fig. 4.3).
The application displays the time left to the 20th of December 2012 at 24:00 (the
left part of Fig. 4.4). Its source code is spread over several files.

// main.cpp
#include "close.h"
#include "counter.h"

int main(int argc, char *argv[])
{

QApplication app(argc, argv);
22The Qt’s C++ extensions (e.g. signals and slots) are handled by the Meta-Object Compiler

(moc). It generates a C++ source file containing the meta-object code for every class with
Q_OBJECT macro (e.g. moc close.h -o moc_close.cpp). The Meta-Object Compiler resides in
the sysroot-host/bin subdirectory of the BSP version platform directory.

23Using the arm-v5te-linux-gnueabi-g++ C++ cross compiler, which resides in /opt/OSELAS.
Toolchain-2011.02.0/arm-v5te-linux-gnueabi/gcc-4.5.2-glibc-2.13-binutils-2.21-kerne
l-2.6.36-sanitized/bin directory.

24Linker is called by arm-v5te-linux-gnueabi-g++ C++ cross compiler.
25qmake utility resides in the sysroot-cross/bin subdirectory of the BSP version (i.e.

PD11.1.1) platform (i.e. phyCORE-i.MX27) directory. With the -project option, it creates
a current_directory_name.pro project file.

26Makefile is generated out of the current_directory_name.pro project file. qmake uses
qt.conf configuration file, e.g.:

# qt.conf
[Paths]
Prefix=.../...BSPversion.../...platform.../sysroot-target/usr
Binaries=.../...BSPversion.../...platform.../sysroot-host/bin

qt.conf is in the same directory as qmake. The Binaries path defines the absolute path to the
directory with the required binaries (e.g. moc, rcc, etc.). The Prefix path is suffixed by the
/mkspecs/ and -spec option value. The obtained location specifies the platform configuration
directory with the cross-compiler settings for the target. The QMAKESPEC variable can be used
instead of the -spec option, e.g.:

export QMAKESPEC=qws/linux-ptx-g++
qmake

In case neither the -spec option nor QMAKESPEC are defined, the default configuration directory
(i.e. prefix/mkspecs/default) is used.

27The C++ cross compiler arm-v5te-linux-gnueabi-g++ is used. It resides in /opt/OSELAS.To
olchain-2011.02.0/arm-v5te-linux-gnueabi/gcc-4.5.2-glibc-2.13-binutils-2.21-kernel-
2.6.36-sanitized/bin directory, which should be included in the PATH variable.
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layout

close

counter

Figure 4.4: Countdown application (left) and its layout structure (right)

Close *close = new Close();
Counter *counter = new Counter();

QVBoxLayout *layout = new QVBoxLayout();
layout->addWidget(close, 0, Qt::AlignTop | Qt::AlignRight);
layout->addWidget(counter, 0, Qt::AlignTop | Qt::AlignCenter);

QCursor cursor;
cursor.setShape(Qt::BlankCursor);

QWidget countdown;

QFont font = countdown.font();
font.setPointSize(20);

countdown.setFont(font);
countdown.setCursor(cursor);
countdown.setLayout(layout);
countdown.showFullScreen();

QObject::connect(close, SIGNAL(quit()), &countdown, SLOT(close()));

return app.exec();
}

As in every GUI application using Qt, there is one QAplication object handling
the event loop. The application main widget (i.e. countdown) is a QWidget object.
The child close and counter widgets are created and arranged as depicted in the
right part of Fig. 4.4. The main widget is shown in the full-screen mode without
window decorations, the cursor is invisible and its font size is enlarged. The
QObject connect() member function connects the quit() signal from the close
object (i.e. close symbol child widget) to the close() slot of the application main
widget (i.e. countdown). The close() slot closes the widget.

The close child widget is identical to one in the launcher application. The
close.h and close.cpp source files are the same as on page 101.

The amount of the remaining time is refreshed once per second. The counter
constructor sets the reference moment (i.e. 20th of December 2012 at 24:00) and
starts the timer generating the timeout() signal every 1000ms. The signal is



4.4. PROGRAMMING DEVICES 105

connected to the change() slot which refreshes the displayed text.

// counter.h
#include <QtGui>

class Counter : public QLabel
{

Q_OBJECT
QDateTime doomsday;
QTimer timer;

public:
Counter();

public slots:
void change();

};

// counter.cpp
#include "counter.h"

Counter::Counter()
{

doomsday.setDate(QDate(2012, 12, 21));
doomsday.setTime(QTime(0 ,0));
doomsday.setTimeSpec(Qt::UTC);
connect(&timer, SIGNAL(timeout()), this, SLOT(change()));
timer.start(1000);

}

void Counter::change()
{

int secs = QDateTime::currentDateTime().secsTo(doomsday);
QString text;
setText(text.sprintf("%d day(s)\n%02d:%02d:%02d\nto doomsday",
secs / 86400, secs % 86400 / 3600, secs % 3600 / 60, secs % 60));

}

The Countdown executable is built in the same way as the launcher (see pages
102 and 103).

To debug the source code, the executable with the debugging information is
required. Therefore, the -g cross-compiler option has to be used (see section 4.3).
The qmake-generated Makefile specifies the option if the following line is added
into the project file:

CONFIG += debug

Now debugging can be performed as described in section 4.3.

4.4.5 Serial port

There are three serial port connectors (i.e. UART ports) available on the
phyCORE-i.MX27 development kit. They can be accessed through the /dev/ttx
mxc0, /dev/ttymxc1 and /dev/ttymxc2 character special files. The first /dev/
ttymxc0 serial port is used as a system console by default (see subsection 4.4.1).
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The following few lines in the C programming language28 illustrate how the serial
port can be used. It is opened for reading and writing, configured, read from,
written to and closed when done.

char buffer[SIZE];
struct termios terminal;
int num_of_bytes, error, descriptor = open("/dev/ttymxc1", O_RDWR);

...
memset(&terminal, 0, sizeof(terminal));
terminal.c_cflag = B115200 | CS8;
terminal.c_lflag = ICANON;
terminal.c_iflag = ICRNL;
error = ioctl(descriptor, TCSETS, &terminal);

...
num_of_bytes = read(descriptor, buffer, SIZE);

...
num_of_bytes = write(descriptor, buffer, SIZE);

...
error = close(descriptor);

The string.h (memset()), termios.h (termios), fcntl.h (open(), read(),
write() and close()) and sys/ioctl.h (ioctl()) header files have to be in-
cluded and SIZE has to be defined. The serial port configuration is defined by the
termios structure29. The read() and write() functions return the number of
bytes actually read or written, respectively. The ioctl() and close() functions
return -1 if an error occurs.

The carriage-return mapping to a new-line character is not needed in case
the canonical mode is not used. Return behavior of the read() function is then
defined by the c_cc[VMIN] and c_cc[VTIME]30 constants. c_cc[VMIN] defines
the minimum number of characters for the non-canonical read and c_cc[VTIME]
the timeout in tenths of second. For instance:

- c_cc[VMIN] = 0 and c_cc[VTIME] = 0
The read() function returns immediately. If no input data is available, then zero
is returned. This is a non-blocking read or polling of the serial port. Note that
the repeat serial port polling can consume a significant amount of the CPU time.

- c_cc[VMIN] = 0 and c_cc[VTIME] > 0
The read() function returns when the required number of characters arrive
(i.e. SIZE characters), or when the c_cc[VTIME] tenths of a second expire. If
no input data is available after the c_cc[VTIME] expiration, then zero is returned.
This is timed read. c_cc[VTIME] is the overall timeout.

- c_cc[VMIN] > 0 and c_cc[VTIME] = 0
The read() function returns when at least the c_cc[VMIN] characters arrive. If

28For the description of the used functions, see [10, 11].
29The serial port in the example above is configured to the 115200 baud (B115200 flag), eight

data bits (CS8 flag), one stop bit (default, use CSTOPB flag for two stop bits), no parity check
(default, use PARENB flag to enable parity, even by default, and the PARODD flag to use odd parity)
and no flow control (default, use IXON, IXOFF and CRTSCTS). The line-buffered input (i.e. canonical
mode) is specified (see page 95). The carriage-return (CR) character is mapped to a new-line
(NL), which represents a delimiter in the canonical mode. Otherwise, Enter (i.e. CR) does not
terminate the input and the read() function never returns.

30The c_cc array holds a list of special control characters and is a member of the termios
structure.
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available, up to the required number of characters (i.e. SIZE (> c_cc[VMIN])
characters) can be read though. This is a counted read. The read() function can
block indefinitely while waiting for the c_cc[VMIN] characters.

- c_cc[VMIN] > 0 and c_cc[VTIME] > 0
The read() function returns when at least the c_cc[VMIN] characters arrive, or
when the c_cc[VTIME] tenths of a second between two characters expire. The
timer is not started until the first character is received. Thus, read() can block
indefinitely in case the serial line is idle. If available, up to the required num-
ber of characters (i.e. SIZE (> c_cc[VMIN]) characters) can be read. Note that
c_cc[VTIME] is not overall, but is an inter-character timeout.

If the serial port is opened in the non-blocking mode, then the read() function
immediately returns in all cases:

descriptor = open("/dev/ttymxc1", O_RDWR | O_NONBLOCK);

With the non-blocking mode set, read() never waits, neither for a new-line char-
acter in the canonical mode nor for the minimum number of characters or timeout
in the non-canonical mode. If no character is available, -1 is returned, or zero in
case of a serial port polling.

4.4.6 Ethernet31

The socket interface defines a method for the inter-process communication locally
or across the network. The socket is a communication endpoint represented as a
regular file descriptor. The traffic is organized in a client-server communication
model, where the server waits for the client request and the client requests a
service from the server.

The connection-oriented TCP or connectionless UDP transportation protocols
above IP are mostly used on the Ethernet (see section 2.1). The client must
connect to the server when a connection-oriented protocol is used. Therefore,
a socket can be used for communication with only one computer at a time. A
connection-oriented TCP provides a reliable and ordered data delivery. On the
other hand, a single socket can be used for communication with many different
computers when a connectionless protocol is used. But a connectionless UDP
does not provide reliability and ordering. The server and client processes using a
connection-oriented and connectionless protocol are depicted in Fig. 4.5.

Connection-oriented protocol

The connection-oriented server from Fig. 4.5 is realised in the following lines in
the C programming language. The socket is created and bound to the specified
PORT_NUMBER. The server listens to the socket where up to NUM_OF_CONN unac-
cepted connections can wait. When a connection from the client is accepted, the
data can be received and sent with the read() and write() functions. The con-
nection and socket file descriptors are closed at the end. All the pre-processor
macros (PORT_NUMBER, NUM_OF_CONN and SIZE) have to be defined.

int socketfd, error, size, connectionfd, num_of_bytes;
struct sockaddr_in server, client;
char buffer[SIZE];

...
31For a description of the functions used in this subsection, see [10, 11].
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Figure 4.5: Client-server relationship in a connection-oriented (TCP) and connec-
tionless (UDP) protocol

socketfd = socket(AF_INET, SOCK_STREAM, 0);
memset(&server, 0, sizeof(struct sockaddr_in));
server.sin_family = AF_INET;
server.sin_port = htons(PORT_NUMBER);
server.sin_addr.s_addr = htonl(INADDR_ANY);
error = bind(socketfd, (struct sockaddr *)&server,

sizeof(struct sockaddr_in));
...

error = listen(socketfd, NUM_OF_CONN);
size = sizeof(struct sockaddr_in);
connectionfd = accept(socketfd, (struct sockaddr *)&client, &size);

...
num_of_bytes = read(connectionfd, buffer, SIZE);

...
num_of_bytes = write(connectionfd, buffer, SIZE);

...
error = close(connectionfd);
error = close(socketfd);

The string.h (memset()) and netinet/in.h (sockaddr_in, socket(),
htons(), htonl(), bind(), listen(), accept(), read(), write() and close())
header files have to be included. The socket() function creates a communication
endpoint and returns the socket file descriptor. On an error, -1 is returned. The
AF_INET and SOCK_ STREAM arguments specify that IPv4 and connection-oriented
TCP are used (see section 2.1). For instance, AF_UNIX instead of AF_INET would
create a Unix domain socket (see page 21 and section 6.7). The bind() function
sometimes fails at the server rerun since the socket is still hanging in the kernel.
The kernel needs a minute or so to clear. The htons() and htonl() functions
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convert the short and long integers to the big-endian byte order. Conversion is
performed when the host uses the little-endian byte order. IP defines the big-
endian as a standard network byte order. The INADDR_ANY argument specifies
the IP address of the host where the server process runs. If the host has multi-
ple network interfaces (i.e. multiple IP addresses), than the server is allowed to
receive the packets destined to any of the interfaces. The bind() and listen()
functions return zero on success, -1 otherwise. The accept() function returns the
connection file descriptor, -1 on an error. The shutdown() function can be used
to cut the communication off in only one direction. The close() function cuts
both ways.

The connection-oriented client from Fig. 4.5 is realized in the following lines
in the C programming language. Now, the IPv4 connection-oriented socket is
created and the connection to the server with a specified IP address and port
number is established. The read() and write() functions are used to receive and
send data. The socket is closed at the end. The PORT_NUMBER and SIZE macros
have to be defined.

int descriptor, error, num_of_bytes;
struct sockaddr_in dest;
char buffer[SIZE];

...
descriptor = socket(AF_INET, SOCK_STREAM, 0);
memset(&dest, 0, sizeof(struct sockaddr_in));
dest.sin_family = AF_INET;
dest.sin_port = htons(PORT_NUMBER);
dest.sin_addr.s_addr = inet_addr("192.168.56.100");
error = connect(descriptor, (struct sockaddr *)&dest,

sizeof(struct sockaddr_in));
...

num_of_bytes = write(descriptor, buffer, SIZE);
...

num_of_bytes = read(descriptor, buffer, SIZE);
...

error = close(descriptor);

The same header files as with the server are required. The inet_addr() function
converts the IP address string to an integer in the network byte order. The
connect() function returns zero on success, -1 otherwise.

In the code above, the server process is defined by its host IP address and
explicit port number. There are number of network database administration func-
tions (e.g. gethostbyname(), getservbyname() etc.) that can help to obtain the
server process data and much more.

The accept() function accepts the next connection in a queue. If there is
none, then it waits. Similarly the read() function waits until at least one byte
is received. As a consequence, the server code on page 107 can handle only one
client at a time, which is almost useless. Blocking can be solved in several different
ways. One way is the usage of the fork() function (see page 131) which creates
a new process (i.e. child) duplicating the calling process (i.e. parent). It returns
PID of the child process to the parent, -1 on a failure. Zero is returned to the
child. For instance, accepting connections can be made continuous regardless of
the number of clients being currently served:

...
while(1)
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{
pid_t id;
connectionfd = accept(socketfd, (struct sockaddr *)&client, &size);
id = fork();
if(id == 0) break;
parent process

...
if(... && children terminated)
{

error = close(socketfd);
terminate parent

}
}
client handling code (i.e. child process)
error = close(connectionfd);

After each accepted connection, a duplication of the server process is created. A
new process breaks the while loop and starts handling a recently connected client.
The original process stays in the while loop and waits for the next connection.

Another way is to use the select() function to monitor if a file descriptor
is ready and the operation can be performed without blocking. The following C
code implements monitoring for the accept() and read() operations. Thus none
of the functions waits.

...
fd_set rfd;
int num_of_fd;
struct timeval interval = {0, 0};

...
do
{

FD_ZERO(&rfd);
FD_SET(socketfd, &rfd);
interval.tv_sec = 1;
num_of_fd = select(socketfd + 1, &rfd, NULL, NULL, &interval);

} while(FD_ISSET(socketfd, &rfd) == 0);
connectionfd = accept(socketfd, (struct sockaddr *)&client, &size);

...
do
{

FD_ZERO(&rfd);
FD_SET(connectionfd, &rfd);
interval.tv_sec = 1;
num_of_fd = select(connectionfd + 1, &rfd, NULL, NULL, &interval);

} while(FD_ISSET(connectionfd, &rfd) == 0);
num_of_bytes = read(connectionfd, buffer, SIZE);

...

The select() function monitors three sets of the file descriptors. The first set
is watched for reading (i.e. rfd), the second for writing (none given in the code
above) and the third for exceptions (none given in the code above). The first
argument helps to reduce the number of the file descriptors to be monitored. The
file descriptors given in any of the sets must be lower than the first argument.
If no file descriptor is ready, then the last argument specifies the amount of the
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time elapsed before return (i.e. one second). The file descriptor set is handled by
the FD_ZERO(), FD_SET(), FD_CLR() and FD_ISSET() macros which clear the set,
add and remove a descriptor and test if a descriptor is included in the set. The
select() function modifies the three sets leaving only the ready file descriptors.
It returns the total number of the ready descriptors, -1 on an error. In the code
above, each do-while loop terminates when its file descriptor is ready for a reading
operation. Since the socket and connection file descriptors are ready, the accept()
and read() functions do not block, respectively.

In spite of select(), reporting a file descriptor as ready for reading, the
subsequent read operation may block. This can for instance happen when the
data arrives (i.e. select() reports a ready status) but is then discarded due to
some error (e.g. checksum). Thus, if non-blocking is absolutely required, then a
file descriptor should be set into the non-blocking mode, which in fact means that
the descriptor can be polled. The fcntl() function can be used.

...
error = fcntl(socketfd, F_SETFL, O_NONBLOCK);
do connectionfd = accept(socketfd, (struct sockaddr *)&client, &size);
while(connectionfd < 0);

...
error = fcntl(connectionfd, F_SETFL, O_NONBLOCK);
do num_of_bytes = read(connectionfd, buffer, SIZE);
while(num_of_bytes < 0);

...

The fcntl.h header file has to be included to use fcntl(). It returns a nonnega-
tive value on success, -1 on an error. The O_NONBLOCK flag is set for the socket and
connection file descriptors. Therefore, the accept() and read() functions return
immediately. Polling in the do-while loop lasts until the function (accept() or
read()) succeeds.

Connectionless protocol

The following lines in the C programming language represent the connectionless
server from a Fig. 4.5. Since the connection establishment is not required, a
connectionless server is a simplified version of the connection-oriented one from
page 107. The socket is created and bound to the specified PORT_NUMBER. The data
is received and sent with the recvfrom() and sendto() functions. The socket file
descriptor is closed at the end. The pre-processor PORT_NUMBER and SIZE macros
have to be defined.

int socketfd, error, size, num;
struct sockaddr_in server, client;
char buffer[SIZE];

...
socketfd = socket(AF_INET, SOCK_DGRAM, 0);
memset(&server, 0, sizeof(struct sockaddr_in));
server.sin_family = AF_INET;
server.sin_port = htons(PORT_NUMBER);
server.sin_addr.s_addr = htonl(INADDR_ANY);
error = bind(socketfd, (struct sockaddr *)&server,

sizeof(struct sockaddr_in));
...

size = sizeof(struct sockaddr_in);
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num = recvfrom(socketfd, buffer, SIZE, 0, (struct sockaddr *)&client,
&size);

...
num = sendto(socketfd, buffer, SIZE, 0, (struct sockaddr *)&client,

sizeof(struct sockaddr_in));
...

error = close(socketfd);

The string.h (memset()) and netinet/in.h (sockaddr_in, socket(), htons(),
htonl(), bind(), recvfrom(), sendto() and close()) header files have to be
included. For a brief function behaviour explanation, see page 108.

The second argument of the socket() function is SOCK_DGRAM. It specifies
the usage of the connectionless UDP. Since the socket is not connected, the data
cannot be received by the read() function. The recvfrom() function has to be
used instead. Besides receiving the data, the function also fills the structure with
the client IP address and port number. Thus the server knows who to answer. For
the same reason, the sendto() function has to be used instead of write(). The
packet destination is given in the structure with the client IP address and port
number. The recvfrom() and sendto() functions return the number of bytes
received or sent, respectively, -1 on an error.

The connectionless client from Fig. 4.5 is realized in the following lines in the
C programming language. An IPv4 connectionless socket is created. The server
IP address and port number have to be prepared before the packet is sent. The
sendto() and recvfrom() functions are used to send and receive the data. The
socket is closed at the end. The PORT_NUMBER and SIZE macros have to be defined.

int descriptor, size, error, num;
struct sockaddr_in dest;
char buffer[SIZE];

...
descriptor = socket(AF_INET, SOCK_DGRAM, 0);
memset(&dest, 0, sizeof(struct sockaddr_in));
dest.sin_family = AF_INET;
dest.sin_port = htons(PORT_NUMBER);
dest.sin_addr.s_addr = inet_addr("192.168.56.100");

...
num = sendto(descriptor, buffer, SIZE, 0, (struct sockaddr*)&dest,

sizeof(struct sockaddr_in));
...

size = sizeof(struct sockaddr_in);
num = recvfrom(descriptor, buffer, SIZE, 0, (struct sockaddr *)&dest,

&size);
...

error = close(descriptor);

The same header files as with the server are required. The inet_addr() function
converts the IP address string to the integer in the network byte order. The server
process host IP address and port number can be obtained by the network database
administration functions (e.g. gethostbyname(), getservbyname(), etc.).

The recvfrom() function waits until at least one byte is received. Therefore,
the server can serve one client request at a time. Since the protocol is connection-
less, requests from different clients can be served one after another. Thus, more
clients can be served quasi simultaneously in spite of the recvfrom() blocking.
The same blocking solving techniques as with the connection-oriented protocol can
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be applied, though (see pages from 109 to 111). For instance, using fork(), the
server can process the client request and wait for another request at the same time.
The select() function monitors if the socket file descriptor is ready for reading
and consequently recvfrom() does not block. Or, the socket file descriptor is set
into the non-blocking mode by the fcntl() function, thus enabling polling.





Chapter 5

Real-time operating system

The major goal of GPOS (General Purpose Operating System) like Linux is an
efficient use of the hardware resources and high process throughput. GPOS does
not have a deterministic timing behavior, which means that the amount of the time
consumed by the operating system is not known in advance. As a consequence,
GPOS cannot guarantee that a process with a deadline is executed in time. The
deadline can be missed.

RTOS (Real-Time Operating System) does the same thing with the determin-
istic timing behavior [48]. If the maximum time needed for each of the operating
system operations is known in advance, then the operating system can be consid-
ered as RTOS. RTOS absolutely guaranteeing these maximum times is called a
hard RTOS. A hard RTOS can ensure that all the deadlines are always met. In a
hard RTOS, the latencies are deterministic. On the other hand, RTOS guarantee-
ing these maximum times for most of the time (but not all of the time) is called
a soft RTOS. The deadlines can be occasionally missed in a soft RTOS. In a soft
RTOS, the latencies are deterministic most of the time, but not all of the time.

From the process point of view, the same RTOS can be either hard or soft,
depending on the process priority. In an extreme case, a process with the highest
priority can use 100% of the CPU time. Consequently, RTOS does not assign
CPU to any other low-priority process. Low-priority processes therefore miss
their deadlines. They have to wait until the highest-priority process finishes.

GPOSes are not so strict regarding the priorities. GPOS typically ensures some
amount of the CPU time to all the processes. The high-priority processes receive
more and the low-priority processes less of the CPU time. But the high-priority
processes do not completely block the low-priority ones.

The RTOS in the above paragraph where a high-priority process takes prece-
dence over a low-priority one is pre-emptive. The operating system interrupts the
low-priority process in order to assign CPU to the high-priority one. The low-
priority process continues when the high-priority process finishes. The opposite
is a cooperative model. The operating system cannot interrupt the process and
assign CPU to another process in a cooperative model. Once CPU is given to a
process, the process has to explicitly return the control to the operating system.
The processes must cooperate in the cooperative RTOS. Linux is a pre-emptive
GPOS.

5.1 Real-time pre-emptive kernel

As already mentioned, Linux is a pre-emptive GPOS. To make Linux RTOS, its
kernel has to be changed. The kernel must be configured as fully pre-emptable.
The today’s standard Linux kernel (version 2.6) is not fully pre-emptable by de-
fault.
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For example, when a low-priority process makes a system call, it cannot be
pre-empted by a high-priority process. A high-priority process must wait until
the system call completes. The situation can be solved by the CONFIG_PREEMPT
kernel configuration option1 enabling a pre-emption during the system calls. The
CONFIG_PREEMPT option reduces the latencies at the cost of a smaller throughput
because of more frequent context switching2.

But even with CONFIG_PREEMPT, the kernel is still not fully pre-emptable
(e.g. spinlock3 and RCU4 (Read-Copy Update) read-side critical sections, inter-
rupt handlers, etc.). An additional pre-emption can be introduced into the Linux
kernel by the CONFIG_PREEMPT_RT kernel patch5 (see subsection 1.10.1) [49]. The
patch reimplements the kernel locking primitives to be pre-emptable, the prior-
ity inversion prevention protocols (see pages 151 and 152), converts the interrupt
handlers into the pre-emptable kernel threads, etc. Of course, an appropriate
CONFIG_PREEMPT_RT patch version has to be applied regarding the kernel version.
The patch is not available for all kernel versions. The information about the op-
erating system and the kernel version can be checked by the uname (unix name)
command:

uname -a

The CONFIG_PREEMPT_RT patched kernel for instance responds with (kernel name,
host machine name, kernel version with the compilation date and time, CPU
architecture, operating system name):

Linux phyCORE 2.6.33.3-rt19 #1 PREEMPT RT Thu Dec 20 23:59:59 UTC
2012 armv5tejl GNU/Linux

5.2 Programming a real-time application7

An application has to be written in a special way to achieve a real-time behavior
in a pre-emptive Linux kernel environment. The deadline must not be missed
because of some lengthy system operation. Thus, an application has to make sure
that:

- its priority and scheduling policy are appropriately set and
- memory page faults never happen.

1The kernel options set before the kernel compilation define the kernel configuration. The
kernel shipped with Linux distributions like Debian is compiled with a default set of options. To
change an option, the kernel has to be recompiled.

2The context switch is a procedure switching CPU from one process to another. It saves the
state (e.g. CPU register values, etc.) of the pre-empted process and restores the state of the
pre-empting process.

3Spinlock is a lock (i.e. infinitive loop) when a process or a thread6 waits for the locked
resource to become available (i.e. unlocked). The process or thread remains active while waiting,
doing no progress except for repeatedly checking the resource. This is also called busy waiting.

4RCU allows the concurrent reads and updates by maintaining multiple versions of an object.
It replaces conventional object locking by a reader or updater, or read-write lock when concurrent
reads are allowed (i.e. the reader does not lock the object for other readers).

5Patch is an incremental software upgrade containing the differences from the previous ver-
sion.

6Thread is a (sub)process created by another process (see page 129). The difference between
the two is that the threads created by the same process share the same address space. Different
processes do not.

7For the description of the functions used in this section, see [10, 11].
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5.2.1 Setting the application priority and scheduling policy

The application priority and scheduling policy are set by the sched_setscheduler
() function. The policy can be retrieved by the sched_getscheduler() and the
priority by the sched_getparam() function. The application has to run with the
super user privileges to make the sched_setscheduler() function call work. The
priority and scheduling policy of a process can also be found in the 40th and 41st
field (i.e. rt_priority and policy fields) of the /proc/[PID]/stat file. [PID]
stands for the PID number of the process. An example code:

#include <sched.h>
#include <stdlib.h>
#include <stdio.h>

void terminate(char* msg)
{

perror(msg);
exit(0);

}

int main(int argc, char* argv[])
{

int policy;
struct sched_param param;
param.sched_priority = 50;

/* set process priority and scheduling policy */
if(sched_setscheduler(0, SCHED_FIFO, &param) == -1)

terminate("sched_setscheduler() failed");

/* get scheduling policy */
policy = sched_getscheduler(0);
if(policy == -1) terminate("sched_getscheduler() failed");
printf("policy: %s", policy == SCHED_OTHER ? "SCHED_OTHER" :

policy == SCHED_FIFO ? "SCHED_FIFO" :
policy == SCHED_RR ? "SCHED_RR" : "unknown");

/* get priority */
if(sched_getparam(0, &param) == -1)

terminate("sched_getparam() failed");
printf("priority: %d\n", param.sched_priority); return 0;

}

The first argument (i.e. zero) in the sched_*() functions denotes the calling
process. SCHED_OTHER specifies the standard round-robin time-sharing8 scheduling
policy. The process priority is not used in scheduling decisions and is always zero.
SCHED_FIFO and SCHED_RR specify first in first out and round-robin real-time
scheduling policies. The process priority can be set from 1 to 99 for both policies.
In the SCHED_FIFO policy, a high-priority process pre-empts a low-priority one.
The processes with the same priority are executed one after another. To start
the next process, the previous has to complete. SCHED_RR is a slight enhancement

8Equal CPU time slices in a circular order are assigned to the processes. No priority is
assigned.
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of SCHED_FIFO. The processes with the same priority run simultaneously in the
round-robin time-sharing scheduling policy.

5.2.2 Process memory

Address space. A virtual memory assigned to a process is called the address
space. It is in general divided into the code, data and stack segment. By de-
fault, the process address space is not limited, although the limit can be set by
setrlimit() and retrieved by the getrlimit() function. The address space limit
can also be found in the /proc/[PID]/limits file, where [PID] stands for the
PID number of the process. If limited, the address space can be exceeded by the
dynamic memory allocation or stack expansion (see page 121). An example code:

#include <sys/resource.h>
#include <stdlib.h>
#include <stdio.h>

void terminate(char* msg)
{

perror(msg);
exit(0);

}

int main(int argc, char* argv[])
{

struct rlimit limit;

/* set address space limit to 1MB */
limit.rlim_cur = 1024 * 1024;
limit.rlim_max = RLIM_INFINITY;
if(setrlimit(RLIMIT_AS, &limit) == -1)

terminate("setrlimit() failed");

/* get address space limit */
if(getrlimit(RLIMIT_AS, &limit) == -1)

terminate("getrlimit() failed");
printf("maximum address space size: ");
if(limit.rlim_cur == RLIM_INFINITY) printf("unlimited\n");
else printf("%d bytes\n", limit.rlim_cur);

}

A code segment, also called text section, holds the executable instructions
(i.e. machine code) of the process. The global constant data resides there as
well. Its boundaries can be found in 26th and 27th field (i.e. the startcode and
endcode fields) of the /proc/[PID]/stat file. The code segment is read-only.

A data segment consists of the data, BSS (Block Started by Symbol) and heap
section. The initialized global and static variables reside in the data section. The
uninitialized global and static variables are in the BSS section which is set to zero.
The uninitialized global and static variables are thus in fact initialized to zero at
the process start. A heap section is used for the dynamic memory allocation.
Therefore, the heap size varies during the runtime. By default, the maximum
data segment size is not limited, although the limit can be set by setrlimit()
and retrieved by the getrlimit() function (in the code on page 118 replace
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RLIMIT_AS with RLIMIT_DATA). The data segment limit can also be found in the
/proc/[PID]/limits file, where [PID] stands for the PID number of the process.
The memory is dynamically allocated by the malloc()9 and released by the
free() function. Normally, the memory is allocated in the heap section of the
data segment. The current data segment size is defined by the program break
adjusted according to the current heap size (Fig. 5.1). The program break is an
address where the data segment ends. Thus, it defines the top of the heap. The
program break can be increased or decreased by the sbrk() function. It cannot
be set beyond the maximum data segment size.
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Figure 5.1: Heap section variations in a data segment

Heap management (e.g. increasing and decreasing the program break, fragmenta-
tion, etc.) is a part of the memory allocation function (i.e. malloc()) implemen-
tation. The kernel in fact does not know about the heap and dynamic memory
allocation. It just receives the sbrk() requests sent by the memory allocation
function to increase or decrease the process data segment (i.e. program break).
The program break cannot be decreased until the contiguous memory on top of
the heap is released. An unreleased block on top of the heap can hold the program
break high, although the heap below is unused. To avoid the described situation,
the memory can be allocated outside the heap as an individual memory mapping
by the mmap() function (see page 95). The mapped memory is in the process
address space but is not part of the data segment. It is immediately returned to
the kernel when released. The memory allocation function decides when mmap()
will be used. The behaviour can be controlled by the mallopt() function. An
example code:

#include <malloc.h>
#include <stdlib.h>
#include <unistd.h>

void terminate(char* msg, int pf)
{

if(pf == 0) perror(msg);
else printf(msg);
exit(0);

}

void *allocate(int size)

9Or malloc() similar functions (e.g. realloc()).
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{
void *ptr = malloc(size);
if(ptr == NULL) terminate("malloc() failed", 0);
return ptr;

}

int main(int argc, char* argv[])
{

/* get initial program break, heap size is zero */
void *ptr[3], *brk_start = sbrk(0);

/* use mmap() instead of sbrk() for requests equal to or */
/* larger than 50kB if not enough space on heap */
int err = mallopt(M_MMAP_THRESHOLD, 50 * 1024);
/* program break is page-aligned (e.g. page size: 4kB) */
/* leave at least 50kB pad of free memory on top of the heap */
/* at sbrk() call */
err = err + mallopt(M_TOP_PAD, 50 * 1024);
/* do not decrease program break until at least 70kB */
/* (pad included) of memory on top of the heap is free */
/* note: the above is required but not sufficient to decrease */
/* program break */
/* when sbrk() is actually called depends on free() */
/* implementation */
err = err + mallopt(M_TRIM_THRESHOLD, 70 * 1024);
if(err < 3) terminate("mallopt() failed\n", 1);

/* allocate 1kB using sbrk(), heap size increased to 52kB */
ptr[0] = allocate(1024);
printf("heap size: %dkB\n",(sbrk(0) - brk_start) / 1024);

/* allocate 50kB, enough space on heap, mmap() is not used */
ptr[1] = allocate(50 * 1024);
printf("heap start: 0x%08x end: 0x%08x allocated at: 0x%08x\n",

brk_start, sbrk(0), ptr[1]);

/* allocate 50kB, not enough space on heap, mmap() is used */
ptr[2] = allocate(50 * 1024);
printf("heap start: 0x%08x end: 0x%08x allocated at: 0x%08x\n",

brk_start, sbrk(0), ptr[2]);
free(ptr[2]);

/* allocate 2kB using sbrk(), heap size increased to 104kB */
ptr[2] = allocate(2 * 1024);
printf("heap size: %dkB\n", (sbrk(0) - brk_start) / 1024);

/* release 52kB on top of the heap, heap size decreased to 52kB */
free(ptr[2]);
free(ptr[1]);
printf("heap size: %dkB\n", (sbrk(0) - brk_start) / 1024);

free(ptr[0]);

return 0;
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}

The memory allocation fails if there is not enough unused address space available.
The program break increase or individual mapping cannot be performed. The
memory allocation error occurs10.

Stack segment. The memory space for the process current data is called stack.
The local variables11, function return addresses, etc.12 are stored there. The stack
is organized as an LIFO (last in first out) data structure (Fig. 5.2). The local
variables, return address, etc., are placed on top of the stack at the function call
and released at return. Thus the stack size varies during the runtime. A stack and
heap usually grow in the opposite directions. The growth direction is platform-
dependent. In Fig. 5.2, the stack grows downwards from the higher to the lower
addresses. A stack overflow occurs if the maximum stack size is exceeded, which
results in a segmentation-violation fault signal sent to the process (see page 26).
Segmentation violation also happens if there is no address space left for the stack
expansion.
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Figure 5.2: Stack

The process stack bottom address can be found in 28th field (i.e. startstack
field) of the /proc/[PID]/stat file, where [PID] stands for the PID number of
the process. The current top of the stack (i.e. stack pointer value) is in 29th
field (i.e. kstkesp field) of the same file. By default, the maximum stack seg-
ment size is set to 8MB, although the limit can be set by the setrlimit()
and retrieved by the getrlimit() function (in the code on page 118 replace
RLIMIT_AS with RLIMIT_STACK). The maximum stack size can be found in the
/proc/[PID]/limits.

5.2.3 Preventing the memory page faults

The virtual memory assigned to a process can be larger than the physical memory
(i.e. RAM) on the machine. Consequently, the entire address space of the process

10The last error number variable errno is set to ENOMEM (i.e. not enough space).
11The command line arguments are actually local variables of the main() function and can be

found at the bottom of the stack.
12e.g. the local constant data and register values to be restored at the function return also

reside on the stack.
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cannot be loaded into the physical memory. Only a currently in use portion
of the address space is loaded into the physical memory. The rest is stored in
some auxiliary memory storage, e.g. hard disk drive. A process is not aware of
which parts of its address space are loaded into the physical memory and which are
stored elsewhere. The operating system kernel provides retrieving of the requested
memory into the physical memory and storing the currently not required memory
back to the auxiliary storage. A special hardware MMU (Memory Management
Unit) built into CPU is used.

The memory is retrieved and stored in fixed-size blocks called pages13. A page
fault takes place when a process accesses the memory on a page not loaded into
the physical memory. The page has to be retrieved from the auxiliary memory
first, which is time expensive. The process has to wait. Therefore, a real-time
process can miss its deadline.

Page faults can be avoided by locking all the required memory pages into the
physical memory. A locked memory page cannot be paged out into the auxiliary
memory. Thus, the pages used by a real-time application have to be locked.

The Linux kernel does not limit the maximum amount of the locked memory
for a process with the super-user privileges. The physical memory size is of course
an ultimate limit. For an unprivileged process, the limit is set to 64kB and can
be lowered by the setrlimit() and retrieved by the getrlimit() function (in
the code on page 118 replace RLIMIT_AS with RLIMIT_MEMLOCK). The maximum
amount of the locked memory can be found in the /proc/[PID]/limits, where
[PID] stands for the PID number of the process. The amount of the currently
locked memory can be found in the VmLck field of the /proc/[PID]/status file.

The entire memory used by a process can be locked with the mlockall()
function. The function locks the pages with the code, data and stack segment, as
well as individual mappings and shared memory. Since the amount of the memory
used by a process is normally greater than 64kB, the mlockall() function has to
be called with the super-user privileges. The memory is automatically unlocked
on process termination.

Heap page faults. The page faults because of the dynamically-allocated memory
access can be avoided in two ways. In the first approach, all required memory is
reserved and locked at the beginning of the code. The memory is never released.
No page fault can happen since all the allocated memory is locked. The memory
requirements have to be known in advance. Thus, the dynamic memory allocation
is not really dynamic. An example code:

#include <malloc.h>
#include <stdlib.h>
#include <sys/mman.h>

13A detailed information about the pages mapped into the physical memory can be found
in the /proc/[PID]/smaps file, where [PID] stands for the PID number of the process. Each
mapping (i.e. part of the process address space) is provided with the following data:
Size size of the mapping
Rss (Resident set size) amount of the memory currently loaded into the physical

memory (sum of the private and shared14 memory)
Pss (Proportional set size) = private + shared / number of the processes sharing the

memory
Shared Clean amount of the unmodified15 shared memory
Shared Dirty amount of the modified shared memory
Private Clean amount of the unmodified private memory
Private Dirty amount of the modified private memory
14The memory simultaneously accessed by several processes (e.g. libraries).
15The memory having an identical copy in the auxiliary memory storage.
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void terminate(char* msg)
{

perror(msg);
exit(0);

}

void *allocate(int size)
{

void *ptr = malloc(size);
if(ptr == NULL) terminate("malloc() failed");
return ptr;

}

int main(int argc, char* argv[])
{

void *ptr1, *ptr2, ... , *ptrn;

/* lock current and future memory used by the process */
if(mlockall(MCL_CURRENT | MCL_FUTURE) == -1)

terminate("mlockall() failed");

/* allocate all required memory */
ptr1 = allocate(...);
ptr2 = allocate(...);

...
ptrn = allocate(...);

/* allocated memory is locked, page fault cannot occur */

return 0;
}

A heap of a sufficient size is locked at the beginning of the code in the second
approach. Individual mappings outside the heap are not allowed. Therefore, the
dynamic memory is allocated from a locked heap, so no page fault can occur. Of
course, the maximum amount of the allocated memory at any runtime moment
has to be estimated in advance. The memory losses due to fragmentation have to
be considered. An example code:

#include <malloc.h>
#include <stdlib.h>
#include <sys/mman.h>

void terminate(char* msg, int pf)
{

if(pf == 0) perror(msg);
else printf(msg);
exit(0);

}

int main(int argc, char* argv[])
{

void *ptr;
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/* disable individual mappings outside the heap */
int err = mallopt(M_MMAP_MAX, 0);
/* disable decreasing program break (heap trimming) */
/* note: released but locked heap memory is unlocked at */
/* program break decrease */
err = err + mallopt(M_TRIM_THRESHOLD, -1);
if(err < 2) terminate("mallopt() failed\n", 1);

/* lock current and future memory used by the process */
if(mlockall(MCL_CURRENT | MCL_FUTURE) == -1)

terminate("mlockall() failed", 0);

/* allocate and free a sufficient chunk of memory */
/* heap is increased to its final size (e.g. 100kB + padding) */
ptr = malloc(100 * 1024);
if(ptr == NULL) terminate("malloc() failed", 0);
free(ptr);

/* chunk of memory on heap is locked */
/* page fault will not occur if program break is not increased */

return 0;
}

Although the page faults are eliminated, the memory allocation functions
(e.g. malloc(), free(), etc.) are however still unpredictable. They are not deter-
ministic because of heap fragmentation. The time to allocate or free the memory
space on a heap is neither constant nor known in advance.

Stack page faults. To avoid the page faults because of the stack data access,
a sufficient chunk of memory has to be locked for the stack usage. This can be
achieved by a simple trick. A page used for the stack is locked at the first access. It
is never unlocked. To prevent the page faults because of stack growing, the stack
should be completely used once at the beginning of the code. This is done by
calling a dummy function (i.e. touch_stack()) with a large local array accessed
once per every page. After return, the accessed stack space will be released, but
locked. Of course, the required amount of the stack space has to be estimated in
advance. An example code:

#include <unistd.h>
#include <sys/mman.h>
#include <stdlib.h>

/* touch 100kB on stack (every page is accessed once) */
void touch_stack()
{

char stack_space[100 * 1024];
int i, page_size = sysconf(_SC_PAGESIZE);
for(i = 0; i < 100 * 1024; i = i + page_size) stack_space[i] = 0;

}

int main(int argc, char* argv[])
{

/* lock current and future memory used by the process */
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if(mlockall(MCL_CURRENT | MCL_FUTURE) == -1)
{

perror("mlockall() failed");
exit(0);

}

/* lock stack */
touch_stack();

/* chunk of memory is locked for the stack */
/* page fault will not occur if the stack does not grow over */
/* the locked chunk */

return 0;
}

5.2.4 High-resolution timer

In the Linux kernel, the accuracy of the time operations (e.g. timeouts, CPU
time measurements, etc.) is limited by a software clock. Its precision is typically
in the range of milliseconds. A sub-millisecond resolution is often required in
real-time applications. Since the kernel software clock is not accurate enough, a
high-resolution timer has to be used. A high-resolution timer measures the time
as accurately as the hardware allows. The hardware precision can be found out by
the clock_getres() function. The clock_gettime() function is used to retrieve
the high-resolution timer value, and the clock_nanosleep() function realizes the
timeout with a sub-millisecond precision. The example code:

/* hrt_example.c */

#include <stdio.h>
#include <stdlib.h>
#include <time.h>

void terminate(char *msg, int err)
{

if(err == 0) perror(msg);
else printf("%s failed: %s\n", msg, strerror(err));
exit(0);

}

int main(int argc, char* argv[])
{

struct timespec t;
int err;

/* get high resolution timer precision */
if(clock_getres(CLOCK_MONOTONIC, &t) == -1)

terminate("clock_getres() failed", 0);
printf("HRT precision: %dns\ n", t.tv_sec * 1000000000 + t.tv_nsec);

/* get current high resolution timer value */
if(clock_gettime(CLOCK_MONOTONIC, &t) == -1)
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terminate("clock_gettime() failed", 0);
printf("HRT value: %ds %dns\n", t.tv_sec, t.tv_nsec);

/* sleep for 10000000100ns since clock_gettime() call */
t.tv_sec = t.tv_sec + 10;
t.tv_nsec = t.tv_nsec + 100;
if(t.tv_nsec > 999999999)
{

t.tv_sec = t.tv_sec + 1;
t.tv_nsec = t.tv_nsec - 1000000000;

}
err = clock_nanosleep(CLOCK_MONOTONIC, TIMER_ABSTIME, &t, NULL);
if(err != 0) terminate("clock_nanosleep()", err);

return 0;
}

To use high resolution timer functions, the librt.a library has to be linked. Use
the -lrt option with the gcc complier (e.g. gcc -o hrt_example hrt_example.c
-lrt).

The sub-millisecond timeout can also be realized with a timer created by the
create_timer() function. The timer is armed by the timer_settime() function.
On expiration, the timer can do nothing, send a signal (see section 6.2), or start
a new thread (see page 129). The timeout is carried out while the process waits
for a blocked signal in the sigwait() function. The timer is deleted by the
delete_timer() function. To employ timer functions, the gcc complier -lrt
option has to be used. An example code:

#include <stdio.h>
#include <stdlib.h>
#include <signal.h>
#include <time.h>

void terminate(char *msg, int err)
{

if(err == 0) perror(msg);
else printf("%s failed: %s\n", msg, strerror(err));
exit(0);

}

int main(int argc, char* argv[])
{

sigset_t sset;
struct sigevent ev;
timer_t timer;
struct itimerspec tset;
int err, sig;

/* block SIGUSR1 */
if(sigemptyset(&sset) == -1) terminate("sigemptyset() failed", 0);
if(sigaddset(&sset, SIGUSR1) == -1)

terminate("sigaddset() failed", 0);
if(sigprocmask(SIG_BLOCK, &sset, NULL) == -1)

terminate("sigprocmask() failed", 0);
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/* create timer that sends SIGUSR1 on expiration */
ev.sigev_notify = SIGEV_SIGNAL;
ev.sigev_signo = SIGUSR1;
ev.sigev_value.sival_ptr = &timer;
if(timer_create(CLOCK_MONOTONIC, &ev, &timer) == -1)

terminate("timer_create() failed", 0);

/* get current time value */
if(clock_gettime(CLOCK_MONOTONIC, &(tset.it_value)) == -1)

terminate("clock_gettime() failed", 0);

/* arm timer to start after 5s and expire every 10s */
tset.it_value.tv_sec = tset.it_value.tv_sec + 5;
tset.it_interval.tv_sec = 10;
tset.it_interval.tv_nsec = 0;
if(timer_settime(timer, TIMER_ABSTIME, &tset, NULL) == -1)

terminate("timer_settime() failed", 0);

/* sleep for initial 5s */
err = sigwait(&sset, &sig);
if(err != 0) terminate("sigwait()", err);

/* sleep for another 10s */
err = sigwait(&sset, &sig);
if(err != 0) terminate("sigwait()", err);

/* delete timer */
if(timer_delete(timer) == -1)

terminate("timer_delete() failed", 0);

return 0;
}

When a signal is delivered to a process, it is handled by the process signal handler
function. A blocked signal is not delivered. It waits to be unblocked as a pending
signal. The sigwait() function suspends the process execution and waits for the
pending (i.e. blocked) signal to arrive. On arrival, sigwait() returns, the process
continues and the signal is removed from the pending signal list. Thus, the signal
is actually never handled by the signal handler. For sigwait() and other signal
functions, see section 6.2.

5.2.5 Real-time application skeleton

A real-time application should not miss its deadlines. The task has to be al-
ways performed on time. To keep the latencies as low as possible, a real-time
pre-emptive kernel is required. The priority, scheduling policy and page-fault pre-
venting technique have to be set in the application initialisation. An example
skeleton code:

#include ...

void touch_stack() { ... }

int main(int argc, char* argv[])
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{
/* initialization */
sched_setscheduler(...); /* priority and scheduling */
mlockall(...);
mallopt(...); malloc(...); free(...); /* heap */
touch_stack(...); /* stack */

clock_gettime(...); /* get current time value */
while(1)
{

/* do the task */

/* set next time limit according to current time */
...

/* wait for next time limit */
clock_nanosleep(...);

}

return 0; /* never reached */
}

After initializations, the application runs in the indefinite loop. It wakes up and
performs the task on time, then sleeps until the next time limit. The sigwait()
function can be used instead of clock_nanosleep(). In that case, the indefinite
loop would look like:

/* block signal */
sigemptyset(...); sigaddset(...); sigprocmask(...);

timer_create(...); /* create timer */
clock_gettime(...); /* get current time value */

...
timer_settime(...); /* arm timer */
while(1)
{

/* do the task */

/* wait for the next deadline */
sigwait(...);

}



Chapter 6

Inter-process communication1

Processes and threads can communicate with each other in several ways. A thread
is a “subprocess” created inside a process. A process can contain multiple threads
managed by a kernel like the independent processes. The treads existing inside a
process share the resources, such as the address space, code and context (i.e. vari-
ables, etc.). Yet, each thread maintains its own stack, CPU state, scheduling
policy and priority, set of pending and blocked signals, etc. Different processes do
not share the resources, which is the difference between the two.

The inter-process and inter-thread communication is a technique to transfer
data among different processes and threads. The treads and processes can com-
municate through signals, pipes, named pipes or FIFOs, message queues, shared-
memory segments, memory-mapped files or sockets, to name some mechanisms
available. Describing the inter-process communication mechanisms in detail ex-
ceeds the scope of this textbook. A few examples follow.

The inter-process communication mechanisms [50] can be divided into the
asynchronous and synchronous ones. With the asynchronous mechanisms (e.g. sig-
nals, shared-memory segments and memory-mapped files), the receiver does not
have any control when the data is delivered. On the other side, with the syn-
chronous mechanisms (e.g. pipes, message queues and sockets), the receiver explic-
itly asks for the data. If the data is not available, the receiver can wait (blocking
mode) or continue empty-handed (non-blocking mode)2.

From the real-time perspective, one must be aware that inter-process commu-
nication in any form is not carried out instantly. Some delay is always present.

6.1 Creating/terminating threads and processes

6.1.1 Threads

A new thread inside a process can be created with the pthread_create() func-
tion. A thread is started by invoking a specified function. To use POSIX [51]
(Portable Operating System Interface) thread functions, the libpthread.a li-
brary has to be linked. Use the -lpthread option with the gcc compiler. An
example code:

#include <pthread.h>
#include <stdio.h>
#include <stdlib.h>

1The functions used in this chapter are POSIX-compliant [51]. For a detailed explanation,
one can also use [10, 11].

2Since the communication channel (i.e. pipe size) is limited, the sender may also wait or
continue without sending.
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void pthread_create_err(pthread_t *thread, const pthread_attr_t
*attr, void *(*start_routine)(void *), void *arg)

{
int err = pthread_create(thread, attr, start_routine, arg);
if(err == 0) return;
printf("pthread_create() failed: %s\n", strerror(err));
exit(0);

}

void *thread1(void *arg)
{

thread process 1
on error, use pthread_exit() (the main and other threads are not

terminated)
on fatal error, use exit() (the main and other threads are also terminated)

return NULL;
}

void *thread2(void *arg)
{

thread process 2
on error, use pthread_exit() (the main and other threads are not

terminated)
on fatal error, use exit() (the main and other threads are also terminated)

return NULL;
}

...

int main(int argc, char *argv[])
{

pthread_t id1, id2, ...;

/* start threads */
pthread_create_err(&id1, NULL, thread1, NULL);
pthread_create_err(&id2, NULL, thread2, NULL);

...

main process
to terminate a single thread, use pthread_cancel()
on error, use exit() (threads are terminated)

return 0;
}

The exit() function is used for normal process termination. All the threads,
including the main one, are terminated when one of the threads calls exit() or
when the main thread ends. A single thread can exit with the pthread_exit()
function or can be terminated with the phtread_cancel() function.
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6.1.2 Processes

A child process can be created with the fork() function. It is an exact duplicate
of the parent process. PID of the child process is returned to the parent and
zero to the child. In the following example code, the fork() is wrapped into the
fork_child() function:

#include <unistd.h>
#include <stdlib.h>
#include <sys/wait.h>
#include <errno.h>

void terminate(char *msg, int child)
{

if(msg != NULL) perror(msg);

/* terminate child process with error */
if(child > 0) _exit(0);

/* terminate child process with fatal error */
if(child < 0) _exit(1);

/* terminate children then parent */
if(kill(0, SIGTERM) == -1) terminate("kill() failed", 0);
exit(0);

}

/* SIGTERM handler */
void sigterm(int signo)
{

/* exit child process */
terminate(NULL, 1);

}

/* SIGCHLD handler */
void sigchld(int signo)
{

/* handle terminated child processes */
while(1)
{

int status;

/* terminate zombie */
pid_t pid = waitpid(-1, &status, WNOHANG);3

if(pid == -1)
{

/* no children left */
if(errno == ECHILD) break;

terminate("wait() failed", 0);

3The waitpid() function returns immediately (WNOHANG option) with PID of the terminated
child process, zero if there is none and -1 on an error (no children left is classified as an error).
The terminated child in the zombie state is released.
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}

/* no zombies left */
if(pid == 0) break;

/* child fatal error, terminate other children and parent */
if(WIFEXITED(status) && WEXITSTATUS(status) != 0)

terminate(NULL, 0);
}

}

pid_t fork_child()
{

pid_t pid = fork();
if(pid == -1) terminate("fork() failed", 0);
return pid;

}

int child1(sigset_t sset)
{

/* unblock SIGTERM in child process */
if(sigprocmask(SIG_UNBLOCK, &sset, NULL) == -1)

terminate("sigprocmask() failed", 1);

child process 1
on error, use terminate(..., 1)
on fatal error, use terminate(..., -1)

return 0;
}

int child2(sigset_t sset)
{

/* unblock SIGTERM in child process */
if(sigprocmask(SIG_UNBLOCK, &sset, NULL) == -1)

terminate("sigprocmask() failed", 1);

child process 2
on error, use terminate(..., 1)
on fatal error, use terminate(..., -1)

return 0;
}

...

int main(int argc, char *argv[])
{

sigset_t sset;
struct sigaction act;
pid_t pid1, pid2, ...;

/* block SIGTERM and define handler */
if(sigemptyset(&sset) == -1)
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terminate("sigemptyset() failed", 0);
act.sa_handler = sigterm;
act.sa_mask = sset;
act.sa_flags = 0;
if(sigaddset(&sset, SIGTERM) == -1)

terminate("sigaddset() failed", 0);
if(sigprocmask(SIG_BLOCK, &sset, NULL) == -1)

terminate("sigprocmask() failed", 0);
if(sigaction(SIGTERM, &act, NULL) == -1)

terminate("sigaction() failed", 0);

/* define SIGCHLD handler */
act.sa_handler = sigchld;
if(sigaction(SIGCHLD, &act, NULL) == -1)

terminate("sigaction() failed", 0);

/* start child processes */
pid1 = fork_child();
if(pid1 == 0) return child1(sset);
pid2 = fork_child();
if(pid2 == 0) return child2(sset);

...

parent process
to terminate a single child, use kill(pid, SIGTERM)
on error, use terminate(..., 0)

/* terminate children before return */
if(kill(0, SIGTERM) == -1) terminate("kill() failed", 0);
return 0;

}

Creating child processes is easy. The situation gets slightly more complicated
when for some reason all child processes and parent process have to be terminated
(e.g. because of a fatal error in one of the child processes).

The terminating mechanism is controlled by two signals, i.e. SIGTERM and
SIGCHLD. The sigterm() and sigchld() signal handler functions are defined for
both signals (see section 6.2) and SIGTERM is blocked. Therefore, the SIGTERM
handler should never be called in the parent process. At child creation, SIGTERM
is unblocked. Thus, the SIGTERM handler can be called in the child processes.

On child completion, SIGCHLD is sent to the parent while the child remains as
a zombie process (see page 24). The signal is also sent if the _exit() function is
used. So the parent is noticed about the child termination, the parent SIGCHLD
handler sigchld() is called. The handler terminates the child zombie process in
waitpid() and further decides whether the child termination was fatal and all
other children and the parent should also be terminated. The parent terminates
all its children by sending SIGTERM with the kill() function. The mechanism
is shown in Fig. 6.1. The while loop in sigchld() ensures that all zombies are
terminated when more than one are waiting (e.g. if two children terminate at the
same time, the parent receives only one SIGCHLD).
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Figure 6.1: Child process normal (above) and fatal (below) termination

6.2 Signals

When a signal (see page 26) is delivered to a process, the process is immediately
interrupted. The default action specified for the signal (i.e. terminate, stop or
continue the process, ignore the signal, etc.) takes place. A signal is sent to a
process with the kill()4 function, which returns zero on success, -1 otherwise.
Its declaration is in the signal.h header file. A signal can be sent to an arbitrary
process identified by PID.

int error = kill(pid, signal_number);

Instead of performing a default action on the signal arrival, a signal can be
caught by the signal handler function. The signal handler is established by the
sigemptyset() and sigaction() functions. sigemptyset() creates an empty
set of signals used as a set of signals temporary blocked during handler execution,
and sigaction() defines the handler. Both functions return zero on success, -1
otherwise. Their declarations are in the signal.h header file. Only the signal-safe
functions have to be used in the signal handler5.

4When a signal is sent to a thread in the same process, the pthread_kill() function has to
be used instead of kill(). When a signal is sent to a multithreaded process, it is delivered to
one of threads which does not block the signal. It is unspecified which thread gets the signal
since the signals sent by kill() are process-directed.

5A signal-safe or reentrant function can be interrupted and safely called again before the
original call completes. Reentrancy is required for all functions used in the main program and
signal handler, since the process can be interrupted by the signal handler at any point, e.g. in
the middle of a function call.
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void sighandler(int signo) {...}
...

struct sigaction act;
act.sa_handler = sighandler;
int error = sigemptyset(&act.sa_mask);
act.sa_flags = 0;
error = sigaction(signal_number, &act, NULL);

A signal may be blocked. A blocked signal is not delivered until unblocked. In
the meanwhile, the signal is pending. The sigemptyset(), sigaddset() and
sigprocmask() functions are used to define the blocked signals. sigemptyset()
creates an empty set of signals, sigaddset() adds a signal to the set and
sigprocmask()6 sets a mask of the blocked signals for the process. The func-
tions return zero on success, -1 otherwise. Their declarations are in the signal.h
header file.

sigset_t sset;
int error = sigemptyset(&sset);
error = sigaddset(&sset, signal_number);
error = sigprocmask(SIG_BLOCK, &sset, NULL);

A blocked signal does not interrupt the process. A process can wait for a blocked
signal to arrive, or check if there are any signals pending (i.e. already arrived
blocked signals). That indicates that signals can be accepted synchronously. Thus,
the process can decide when the signal will be handled. Waiting for a blocked
signal arrival is implemented in the sigwait() function. The function waits for
any blocked signal specified in a given signal set. It returns when a blocked signal
(from the set) arrives. If there is at least one signal (from the set) pending,
sigwait() returns immediately. The accepted signal is removed from the list of
pending signals, its number is returned in sig_no. The sigwait() returns zero
on success, an error number otherwise. Its declaration is in the signal.h header
file.

int error, sig_no;
/* sset is subset of set of blocked signals */
error = sigwait(&sset, &sig_no);

6.3 Pipes and named pipes

Pipes are used for a serial unidirectional communication. The data is sent on the
pipe write end and received on its read end. The data order is always preserved
(first in first out). Regular pipes can be used for communication between two
threads of the same process or between two related processes (i.e. two children of
the same parent process, or a child and parent process). A pipe is created with the
pipe() function. The read and write end file descriptors are returned in fd[0]
and fd[1]. A file descriptor is closed by the close() function. Both functions
return zero on success, -1 otherwise. The declarations are in the unistd.h header
file.

int error, fd[2];
error = pipe(fd);

6Use the pthread_sigmask() function instead of sigprocmask() in a multithreaded process
to set a mask of the blocked signals for a single thread.
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...
error = close(fd[0]);
error = close(fd[1]);

A file descriptor created in one thread can be used in another since the threads in a
multithreaded process share resources. When a file descriptor is closed, it is closed
for all threads. A different situation occurs with the parent and child processes
when a pipe is created before the child is forked. The child inherits copies of the
file descriptors. Thus the parent and child both have their own copies of the read
and write end file descriptors of the same pipe. The unused file descriptors should
be closed (e.g. when the parent writes to the pipe and the child reads from it, the
parent read end and the child write end file descriptors should be closed).

A named pipe has a name in the file system. Thus, it can be used for com-
munication between two unrelated processes. The named pipe is created with
mkfifo() and destroyed by the unlink() function. Both functions return zero on
success, -1 otherwise. Declarations are in the unistd.h header file. The named
pipe must have the read and write access rights (see section 1.5) in order to enable
writing to and reading from the pipe. The access rights are given in the second
argument of mkfifo(). A file descriptor to the named pipe is created with the
open() function which returns -1 on an error. Its declaration is in the fcntl.h
header file.

int error, fd[2];
error = mkfifo("named pipe filename", 0600); /* rw------- */
fd[0] = open("named pipe filename", O_RDONLY);
fd[1] = open("named pipe filename", O_WRONLY);

...
error = close(fd[0]);
error = close(fd[1]);
error = unlink("named pipe filename");

Once the file descriptors are available, writing to and reading from a regular
or named pipe can be performed with the standard write() and read() func-
tions. Both functions return the number of bytes written or read, -1 on an error.
Declarations are in the unistd.h header file.

char buffer[SIZE];
int num_of_bytes = write(fd[1], buffer, SIZE);
num_of_bytes = read(fd[0], buffer, SIZE);

The capacity is the maximum number of bytes a pipe can hold. The default
capacity on Linux is 64kB. When a pipe is full, no additional bytes can be written
until some are read out.

A pipe is opened in the blocking mode by default. Therefore, read() blocks
until at least one byte is available. Similarly, write() blocks until enough space
is available. Blocking automatically synchronizes the write and read end of the
pipe. To make read() and write() return immediately, the non-blocking mode
has to be specified. The non-blocking mode can be specified with the O_NONBLOCK
flag in the open() function. Or, it can be specified later by the fcntl() function.
fcntl() returns -1 on an error. Its declaration is in the fcntl.h header file.

file descriptor = open("filename", other flags | O_NONBLOCK);

... or, if file descriptor was opened without O_NONBLOCK ...
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int error = fcntl(file descriptor, F_SETFL, O_NONBLOCK);

Writing to a pipe with the write() function is an atomic operation of up to
PIPE_BUF bytes (e.g. 4kB on Linux). PIPE_BUF is a kernel-dependent predefined
constant defined in the linux/limits.h header file. It cannot be altered. It is
guaranteed that a write request up to the PIPE_BUF bytes is written in a contiguous
sequence. Larger requests may be interleaved with the data written to the same
pipe by other threads or processes.

A read request to a pipe with no open write end file descriptor returns imme-
diately with the zero bytes read (i.e. EOF). A write request to a pipe with no open
read end file descriptor sends the SIGPIPE signal which by default terminates the
process.

6.4 Message queues

A message is an indivisible block of data sent and received as a whole. Processes
can exchange messages through message queues. Messages have priority. The
message with the highest priority is delivered first. If there are several messages
with the same priority, the oldest is delivered first. The message queue has a
name7 in the virtual file system8. Therefore, it can be used by unrelated processes.
A message queue is created with mq_open() and destroyed by the mq_unlink()
function. To create a new message queue, the O_CREAT flag and access rights have
to be specified. Without O_CREAT, mq_open() opens the already existing queue.
The message queue descriptor is closed by the mq_close() function. All functions
return -1 on an error. Their declarations are in the mqueue.h header file. To use
the message queue functions, the librt.a library has to be linked. Use the -lrt
option with the gcc complier.

/* rw------- */
mqd_t mqdw = mq_open("/mqname", O_CREAT | O_WRONLY, 0600, NULL);
mqd_t mqdr = mq_open("/mqname", O_RDONLY);

...
int error = mq_close(mqdr);
error = mq_close(mqdw);
error = mq_unlink("/mqname");

Once the message queue descriptor is available, writing to it can be performed
by the mq_send() function, which returns zero on success. Reading from the
message queue is done with the mq_receive() function. The received message
buffer size must be large enough to hold the longest message possible (e.g. 8kB).
The maximum message length9 can be obtained by the mq_getattr() function,
which returns zero on success. All functions return -1 on an error. Declarations
are in the mqueue.h header file.

struct mq_attr attrw, attrr;
int error = mq_getattr(mqdw, &attrw);
error = mq_getattr(mqdr, &attrr);

...
char *bufw = malloc(attrw.mq_msgsize);

7The message queue name is preceded by / character (e.g. /mq1).
8A virtual file system with message queues can be mounted by a super user with the mount

-t mqueue none mounting point command (see page 10).
9And other message queue properties like the mode (blocking/non-blocking), number of mes-

sages in a queue and maximum number of messages in queue.



138 CHAPTER 6. INTER-PROCESS COMMUNICATION

char *bufr = malloc(attrr.mq_msgsize);
...

error = mq_send(mqdw, bufw, attrw.mq_msgsize, priority);
...

int priority, num_of_bytes;
num_of_bytes = mq_receive(mqdr, bufr, attrr.mq_msgsize, &priority);

...
free(bufr);
free(bufw);

The message queue descriptor is opened in the blocking mode by default.
Therefore, mq_receive() blocks until the message is available. Similarly,
mq_send() blocks if the queue is full. To make mq_receive() and mq_send()
return immediately, the non-blocking mode has to be specified. The non-blocking
mode can be specified with the O_NONBLOCK flag in the mq_open() function. Or,
it can be specified later by the mq_setattr() function, which returns zero on
success, -1 otherwise. Its declaration is in the mqueue.h header file.

mqdescriptor = open("/mqname", other flags | O_NONBLOCK , ...);

... or, if message queue descriptor was opened without O_NONBLOCK ...
int error;
struct mq_attr attr;
attr.mq_flags = O_NONBLOCK;
int error = mq_setattr(mqdescriptor, &attr, NULL);

An asynchronous notification on the message arrival can be enabled/disabled
with the mq_notify() function. It is disabled by default. With the asynchronous
notification enabled, either a signal is sent or a new thread is started on the
message arrival. The process can immediately react in the signal handler or thread
function.

6.5 Shared-memory segments

A shared memory provides the simplest and the fastest form of an inter-process
communication. The same memory segment is shared among the unrelated pro-
cesses. Access to a shared memory is by all means equivalent to a privately-
allocated memory (e.g. with malloc()) access. A modification done by one pro-
cess is instantly seen to all the others. Since there is no synchronization provided,
a race conditions10 can occur (e.g. two processes write to the same location at
the same time, or one process reads data before it is actually written by another,
etc.).

A shared memory segment has a name11 in the virtual file system12. Therefore,
it can be used by unrelated processes. A shared-memory segment is created with
the shm_open() and destroyed by the shm_unlink() function. To create a new
shared-memory segment, the O_CREAT flag and access rights have to be specified.
Without O_CREAT, shm_open() opens the already existing memory segment, the
third argument with the access rights is ignored. Both functions return -1 on an
error. Their declarations are in the fcntl.h header file. To use the shared-memory

10A race condition occurs when the output depends on a sequence or timing of outside events.
11The shared memory segment name is preceded by / character (e.g. /shm1).
12A virtual file system of the tmpfs type mounted on /dev/shm.
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segment functions, the librt.a library has to be linked. Use the -lrt option
with the gcc complier. The shared-memory segment descriptor is closed with the
standard close() function (see page 135).

The default size of a newly-created shared-memory segment is zero bytes. The
segment size is defined by the ftruncate() function. To define the segment size,
the segment must be opened for writing (e.g. with O_RDWR flag). ftruncate()
returns zero on success, -1 otherwise. Its declaration is in the unistd.h header
file.

/* rw------- */
int shmdw = shm_open("/shmname", O_CREAT | O_RDWR, 0600);
int error = ftruncate(shmdw, size in bytes);
int shmdr = shm_open("/shmname", O_RDONLY, ignored);

...
error = close(shmdr);
error = close(shmdw);
error = shm_unlink("/shmname");

The pointer to the shared memory is obtained from the segment descriptor with
the mmap() function. The function maps a file into the process address space. The
memory protection mode is passed in the third argument and the fourth argument
defines visibility of the shared-memory updates to other processes. Of course, the
protection mode must not conflict with the opening mode13 and visibility to other
processes has to be granted to share the segment. Once the pointer is obtained, the
shared memory can be accessed. Mapping is omitted by the munmap() function.
Both functions return -1 on an error. Their declarations are in the sys/mman.h
header file.

void *ptrw = mmap(NULL, size in bytes, PROT_WRITE, MAP_SHARED, shmdw, 0);
void *ptrr = mmap(NULL, size in bytes, PROT_READ, MAP_SHARED, shmdr, 0);

...
int error = munmap(ptrr, size in bytes);
error = munmap(ptrw, size in bytes);

6.6 Memory-mapped files

A file can be mapped into the process address space. An entire file is copied into
the memory. Its contents can be read or modified as any other allocated memory
(e.g. with malloc()). The changes made are automatically written back to the
file. If modifications are written back immediately, they can be instantly seen by
other unrelated processes mapping the same file. Therefore, a memory-mapped
file can be used for the inter-process communication.

The mechanism is very similar as with the shared-memory segment although
communication through a mapped file is slower since a true file is involved. A
new file is created with open() with the O_CREAT flag and the access rights are
specified. Without O_CREAT, open() opens the already existing file. The opened
file is closed with close() and destroyed by the unlink() function (see page 135).

Before the file is mapped into the memory, it must be ensured that the file
is large enough. The default size of a newly created file is zero bytes. The file
length can be set by writing a dummy byte at the end position. The lseek() and

13The segment must be opened for reading (e.g. with O_RDWR flag) for mmap() to succeed, even
when the memory protection mode allows only writing (e.g. PROT_WRITE).



140 CHAPTER 6. INTER-PROCESS COMMUNICATION

write() functions (see page 136) are used. lseek() returns zero, -1 on an error.
Its declaration is in the unistd.h header file.

/* rw------- */
int fdr, fdw = open("filename", O_CREAT | O_RDWR, 0600);
off_t offset = lseek(fdw, size in bytes - 1, SEEK_SET);
int num_of_bytes = write(fdw, "", 1);
offset = lseek(fdw, 0, SEEK_SET);
fdr = open("filename", O_RDONLY);

...
int error = close(fdr);
error = close(fdw);
error = unlink("filename");

A file is mapped into the memory with the mmap() function and unmapped by
munmap() (see page 139).

6.7 Sockets

A socket is a communication endpoint represented by the file descriptor. Com-
munication through sockets is the most flexible inter-process communication tech-
nique. Besides the regular inter-process communication among the processes run-
ning on the same host machine, the sockets enable a communication among the
processes running on different hosts (see subsection 4.4.6). A client-server model
is used. The server process waits for the client to initiate the communication. The
server normally answers to the client request.

The communication through a socket is defined by the style (connection-
oriented or connectionless), domain (e.g. local (the socket address is the filename),
Internet (the socket address is the IP address and port number), etc.) and proto-
col (e.g. Unix domain protocol, TCP, UDP, etc.). All combinations of the styles,
domains and protocols are not supported. The socket communication in the In-
ternet domain is explained in subsection 4.4.6. This section focuses on the local
domain.

The server and client code in the local domain is very similar to the code in
the Internet domain in subsection 4.4.6. Only slight modifications are required.
In contrast to the Internet domain, in the local domain, the data delivery on a
connectionless socket is as reliable as on a connection-oriented socket. Reordering
never takes place. However, packets are discharged on a connectionless socket
when its buffer is full.

Connection-oriented local-domain sockets

The following lines in the C programming language represent a connection-oriented
server in the local domain. AF_UNIX and sockaddr_un are used instead of AF_INET
and sockaddr_in regarding the code on page 107. Note that the socket path
(filename) is relative and that the unlink() function at the end removes the
socket from the file system.

int socketfd, error, size, connectionfd, num_of_bytes;
struct sockaddr_un server, client;
char buffer[SIZE];

...
socketfd = socket(AF_UNIX, SOCK_STREAM, 0);
memset(&server, 0, sizeof(struct sockaddr_un));
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server.sun_family = AF_UNIX;
strcpy(server.sun_path, "filename");
error = bind(socketfd, (struct sockaddr *)&server,

sizeof(struct sockaddr_un));
...

error = listen(socketfd, NUM_OF_CONN);
size = sizeof(struct sockaddr_un);
connectionfd = accept(socketfd, (struct sockaddr *)&client, &size);

...
num_of_bytes = read(connectionfd, buffer, SIZE);

...
num_of_bytes = write(connectionfd, buffer, SIZE);

...
error = close(connectionfd);
error = close(socketfd);
error = unlink("filename");

The connection-oriented client code derived from the code on page 109 is as ex-
pected.

int descriptor, error, num_of_bytes;
struct sockaddr_un dest;
char buffer[SIZE];

...
descriptor = socket(AF_UNIX, SOCK_STREAM, 0);
memset(&dest, 0, sizeof(struct sockaddr_un));
dest.sun_family = AF_UNIX;
strcpy(dest.sun_path, "filename");
error = connect(descriptor, (struct sockaddr *)&dest,

sizeof(struct sockaddr_un));
...

num_of_bytes = write(descriptor, buffer, SIZE);
...

num_of_bytes = read(descriptor, buffer, SIZE);
...

error = close(descriptor);

The blocking avoiding techniques described on pages from 109 to 111 can be
applied in the local domain. The fork(), select() and fcntl() functions can
be used in the same way as in the Internet domain.

Connectionless local-domain sockets

The following lines in the C programming language represent a connectionless
server in the local domain. The code is similar to the code in the Internet do-
main (see page 111) with the local-domain specialties (AF_UNIX, sockaddr_un,
unlink()).

int socketfd, error, size, num;
struct sockaddr_un server, client;
char buffer[SIZE];

...
socketfd = socket(AF_UNIX, SOCK_DGRAM, 0);
memset(&server, 0, sizeof(struct sockaddr_un));
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server.sun_family = AF_UNIX;
strcpy(server.sun_path, "server socket filename");
error = bind(socketfd, (struct sockaddr *)&server,

sizeof(struct sockaddr_un));
...

size = sizeof(struct sockaddr_un);
num = recvfrom(socketfd, buffer, SIZE, 0,

(struct sockaddr *)&client, &size);
...

num = sendto(socketfd, buffer, SIZE, 0, (struct sockaddr *)&client,
sizeof(struct sockaddr_un));

...
error = close(socketfd);
error = unlink("server socket filename");

A connectionless client code in the local domain follows. The socket path name is
not automatically assigned in the Unix-domain protocol. The client must bind14

its socket to some file to define the return path for the server. Otherwise, the server
cannot answer. Thus, there are two socket files, the server’s and the client’s. The
client’s code is in fact the same as the server’s.

int socketfd, error, size, num;
struct sockaddr_un client, dest;
char buffer[SIZE];

...
socketfd = socket(AF_UNIX, SOCK_DGRAM, 0);
memset(&client, 0, sizeof(struct sockaddr_un));
client.sun_family = AF_UNIX;
strcpy(client.sun_path, "client socket filename");
error = bind(socketfd, (struct sockaddr *)&client,

sizeof(struct sockaddr_un));
memset(&dest, 0, sizeof(struct sockaddr_un));
dest.sun_family = AF_UNIX;
strcpy(dest.sun_path, "server socket filename");

...
num = sendto(socketfd, buffer, SIZE, 0, (struct sockaddr *)&dest,

sizeof(struct sockaddr_un));
...

size = sizeof(struct sockaddr_un);
num = recvfrom(socketfd, buffer, SIZE, 0, (struct sockaddr *)&dest,

&size);
...

error = close(socketfd);
error = unlink("client socket filename");

Abstract sockets

A regular Unix-domain socket is a file in the file system. An abstract Unix-
domain socket is equivalent to the regular one except it does not exist in the file
system. The socket is abstract if the first byte in its path is zero. In this section,
the socket paths in the code (connection-oriented and connectionless, server and
client) should be given by:

14Binding on the client side is not required in the Internet domain (see page 112).
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strcpy(sockaddr_un structure.sun_path + 1, "abstract socket name");

Since the abstract socket does not exist in the file system, unlink() is not required
after closing. But, it can be used for communication between two unrelated pro-
cesses though.

Socket pair

A socket pair provides a similar functionality as a pair of regular pipes (see section
6.3). One regular pipe provides a unidirectional communication. For a bidirec-
tional communication, two pipes or a pair of sockets are/is required. A pair of
connected sockets represents a bidirectional communication channel. The data
written on one socket can be read on the other and vice versa.

A socket pair is created by the socketpair() function, which returns zero on
success, -1 otherwise. Its declaration is in the sys/socket.h header file. The
socket pairs can be created only in the Unix-domain protocol.

int error, sfd[2], num_of_bytes;
char buffer[SIZE];

...
error = socketpair(AF_UNIX, SOCK_STREAM or SOCK_DGRAM, 0, sfd);

...
num_of_bytes = write(sfd[0], buffer, SIZE);
num_of_bytes = read(sfd[1], buffer, SIZE);

...
or in the other direction
num_of_bytes = write(sfd[1], buffer, SIZE);
num_of_bytes = read(sfd[0], buffer, SIZE);

...
error = close(sfd[0]);
error = close(sfd[1]);

The sockets obtained by socketpair() do not have a name in the file system.
Thus unlink() is not required after closing. A socket pair cannot be used for
communication between two unrelated processes.





Chapter 7

Resource sharing and synchronization1

When two or more processes or threads use the same resource at the same time,
a race condition can occur. The final result is not deterministic and depends on
a sequence of events, which depends on timing.

Example: Processes A and B share global variable i located in a shared-memory
segment. Both processes at some point increment the variable. Incrementing is
performed in three steps: read the current value from the shared memory, in-
crement the value and write the updated value back. If both processes try to
increment variable i at the same time, a wrong result can be obtained:

event value of i in shared memory
... N

A reads i N
A increments i N
A is pre-empted by B N
B reads i N
B increments i N
B writes i back N + 1
B stops, A continues N + 1
A writes i back N + 1 (should be N + 2)

...

A resource-access control is required to avoid race conditions. It is provided
by semaphores and mutexes.

7.1 Semaphore

A counting semaphore is an abstract-initialized kernel variable which cannot be
less than zero [52]. It can be decremented or locked by a wait system call or incre-
mented or unlocked by post system call. A wait call on semaphore S is denoted
by P (S)and a post call by V (S). Normally, a semaphore holds the current num-
ber of the available units of a particular resource. The initial value is the total
number of the resource units. The process the locks corresponding semaphore
before using the resource and unlocks it after. If the semaphore value is zero,
it cannot be locked. The kernel blocks the process until some other process un-
locks the semaphore. A simultaneous resource-access problem can be solved using
semaphore S:

1The functions used in this chapter are POSIX-compliant [51]. For a detailed explanation
one can also use [10, 11].
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event value of S value of i in a shared memory
... 1 N

A calls P (S) 0 N
A reads i 0 N
A increments i 0 N
A is pre-empted by B 0 N
B calls P (S) 0 N
kernel blocks B, A continues 0 N
A writes i back 0 N + 1
A calls V (S) 1 N + 1
kernel unblocks B 1 N + 1
A is blocked, B continues 1 N + 1
B’s P (S) call continues 0 N + 1
B reads i 0 N + 1
B increments i 0 N + 1
B writes i back 0 N + 2
B calls V (S) 1 N + 2
B stops, A continues 1 N + 2

...

If the semaphore initial value is one, as in the example above, the semaphore
is named a binary semaphore. If the total number of the resource units is greater
than one (e.g. the number of CPUs), then the corresponding counting semaphore
has the information of how many units are available, but not which. An additional
mechanism is required to locate the free units.

A semaphore is created/initialized with the sem_init() and destroyed by
the sem_destroy() function. Both functions return zero on success, -1 other-
wise. The declarations are in the semaphore.h header file. Only one process
creates/initializes the semaphore, others just use it. To use the semaphore func-
tions, the librt.a library has to be linked. Use the -lrt option with the gcc
compiler.

sem_t semaphore;
sem_t *semptr = &semaphore;
int error = sem_init(semptr, SHARED, initial value);

...
error = sem_destroy(semptr);

If a semaphore is used by related processes (i.e. threads), then SHARED=0. If a
semaphore is used by unrelated processes, it must be created/initialized in the
shared memory segment with SHARED=1. A semaphore created/initialized with
sem_init() does not have a name in the file system.

A semaphore with a name2 in a virtual file system is created with the
sem_open() and destroyed by the sem_unlink() function. To create a new
semaphore, the O_CREAT flag, access rights and initial value have to be specified. A
read and write access should be granted. Without O_CREAT, sem_open() opens the
already existing semaphore. Only one process creates the semaphore, others just
open it. An opened semaphore is closed by the sem_close() function. All func-
tions return -1 on an error. Their declarations are in the semaphore.h header file.

2A semaphore is created in a virtual file system of the tmpfs type mounted on /dev/shm. Its
name is sem.name. The name passed in the sem_open() function is preceded by / character
(e.g. /name).



7.1. SEMAPHORE 147

To use the semaphore functions, the librt.a library has to be linked. Use the
-lrt option with the gcc complier.

/* rw------- */
sem_t *semptr1 = sem_open("/name, O_CREAT, 0600, initial value);
sem_t *semptr2 = sem_open("/name, 0);

...
int error = sem_close(semptr2);
error = sem_close(semptr1);
error = sem_unlink("/name);

Once a semaphore is initialized, the wait and post system calls are performed
by the sem_wait() and sem_post() functions. Both functions return zero on
success, -1 otherwise. Their declarations are in the semaphore.h header file. Also
use the -lrt option with the gcc complier.

int error = sem_wait(semptr);
error = sem_post(semptr);

7.1.1 Recursive deadlock

A recursive deadlock occurs when a process locks the semaphore several times,
until its value is zero, before unlocking it. The process is therefore blocked and
waits indefinitely for itself to unlock the semaphore (see Fig. 7.1). This typically
happens in recursive functions. A recursive deadlock can be dealt with by using
a mutex instead of a semaphore (see subsection 7.2.1).

blocked

time
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Figure 7.1: Recursive deadlock

7.1.2 Deadlock because of process termination

A process locks the semaphore. Then one or more other processes try to lock
the same semaphore. They are blocked and are waiting for unlock. If the first
process terminates for any reason before it unlocks the semaphore, the processes
waiting for unlock are blocked indefinitely (see Fig. 7.2). A deadlock because of
the process termination can be dealt with by using a mutex instead of a semaphore
(see subsection 7.2.1).

7.1.3 Circular deadlock

A circular deadlock occurs when two or more processes develop circular semaphore
locking. The first process locks semaphore S1 and then waits for semaphore S2,
which was locked by the second process, which waits for semaphore S3, which was
locked by the third process, which waits for semaphore S4, ..., which was locked by
the n-th process, which waits for semaphore S1. A two process circular deadlock
is shown in Fig. 7.3.

A circular deadlock can be avoided by semaphore ordering. When a process
wants to lock two or more semaphores at the same time, the locking must be
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Figure 7.2: Deadlock because of process termination
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Figure 7.3: Circular deadlock

performed in order. In the example above, each process locked two semaphores in
order (i.e. i-th process locked Si first, then tried to lock Si+1), except for the n-th
process, which locked the two semaphores disorderly (i.e. Sn first, S1 after). If the
n-th process had stuck to the order, a circular deadlock would not have happen.

7.1.4 A priority-inversion problem

A priority-inversion problem occurs in real-time scheduling policies, where a prior-
ity takes precedence. It is only in one case that a high-priority process is forced to
wait for a low-priority one. A low-priority process for instance locks the semaphore
and is afterward pre-empted by a high-priority process which tries to lock the same
semaphore. Since the semaphore is locked, the high-priority process is blocked
until the low-priority process unlocks the semaphore. The problem arises if the
third, a medium-priority process, pre-empts the low-priority process before the
latter manages to unlock the semaphore3. Thus the high-priority process is in
effect blocked by the medium-priority process for an undefined amount of time
(Fig. 7.4).

A semaphore cannot deal with the priority-inversion problem. The priority-
inversion prevention protocol on the mutex must be used (see pages 151 and 152).

7.2 MUTual EXclusion (mutex)

A mutex is a binary semaphore with ownership [53]. Since it is binary, it has two
states: locked and unlocked. But unlike the binary semaphore, a locked mutex
is owned. This means that only the process locking the mutex can unlock it. A
simple principle of the ownership solves most of the semaphore problems.

3A single processor system is presumed.
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A mutex with default attributes is created/initialized with pthread_mutex_in
it() and destroyed by the pthread_mutex_destroy() function. A mutex has
to be unlocked when pthread_mutex_destroy() is called. Both functions re-
turn zero on success and an error number otherwise. The declarations are in
the pthread.h header file. Only one thread creates/initializes the mutex, others
just use it. A mutex does not have a name in the file system. Thus, it can be
used by related processes/threads. If a mutex is used by unrelated processes, it
must be created/initialized in a shared-memory segment and it must have the
PTHREAD_PROCESS_SHARED attribute (see subsection 7.2.1). To use the mutex
functions, the librt.a library has to be linked. Use the -lrt option with the gcc
compiler.

pthread_mutex_t mutex;
int error = pthread_mutex_init(&mutex, NULL);

...
error = pthread_mutex_destroy(&mutex);

The second argument in pthread_mutex_init() defines the mutex attributes.
NULL stands for the default attribute values. A mutex with default attributes
does not check for errors. For instance, the ownership is not checked. Thus the
ownership error, when a process not owning the mutex unlocks it, is not reported,
which can lead to an undefined behavior. The same applies to other errors as well
(i.e. unlocking an unlocked mutex, etc.). A default mutex without error checking
is fast, but has to be used carefully.

Once a mutex is initialized, locking and unlocking are performed by the
pthread_mutex_lock() and pthread_mutex_unlock() functions. Both functions
return zero on success and an error number otherwise. Their declarations are in
the pthread.h header file. Also use the -lrt option with the gcc complier.

int error = pthread_mutex_lock(&mutex);
error = pthread_mutex_unlock(&mutex);

7.2.1 Mutex attributes

The non-default attribute values are assigned to a mutex at initialization by pass-
ing the pthread_mutexattr_t structure. Before usage, the structure must be
initialized to the default values with pthread_mutexattr_init() and can be de-
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stroyed afterwards with the pthread_mutexattr_destroy() function. Both func-
tions return zero on success and an error number otherwise. Their declarations
are in the pthread.h header file. Use the -lrt option with the gcc complier.

pthread_mutexattr_t attr;
pthread_mutex_t mutex;
int error = pthread_mutexattr_init(&attr);

...
error = pthread_mutex_init(&mutex, &attr);
error = pthread_mutexattr_destroy(&attr);

The non-default attribute values are assigned with various functions. All of
them return zero on success and an error number otherwise. Their declarations
are in the pthread.h header file4 and the -lrt option has to be used with the
gcc complier.

If the mutex is to be used by unrelated processes, the PTHREAD_PROCESS_SHAR
ED attribute is requested. The attribute is set by the pthread_mutexattr_setp
shared() function.

err = pthread_mutexattr_setpshared(&attr, PTHREAD_PROCESS_SHARED);

Error checking on the mutex lock and unlock operations is activated by the
PTHREAD_MUTEX_ERRORCHECK attribute. The errors like EDEADLK (mutex is al-
ready locked) or EPERM5 (mutex is locked by another process), etc., are returned
by pthread_mutex_lock() and pthread_mutex_unlock(). The EDEADLK error is
in fact a recursive deadlock (see subsection 7.1.1). Recursion can be addressed due
to the mutex ownership. The process locking the mutex owns it. So, the process
can lock the same mutex again. Each lock increases the internal counter. Thus,
unlocking has to be performed the same number of times to finally unlock the mu-
tex. A recursive locking is enabled by the PTHREAD_MUTEX_RECURSIVE attribute.
Both attributes can be set by the pthread_mutexattr_settype() function.

err = pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_ERRORCHECK);
err = pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_RECURSIVE);

The deadlock because of the process termination (see subsection 7.1.2) is addressed
by the PTHREAD_MUTEX_ROBUST attribute set with the pthread_mutexattr_setro
bust_np()6 function. Because of the ownership, the kernel knows which mu-
texes are owned/locked by the terminated process. The kernel unlocks those
mutexes, but it also marks their state as inconsistent. When another process
tries to lock such a mutex, pthread_mutex_lock() locks the mutex and returns
the EOWNERDEAD5 error number indicating the mutex inconsistent state. The re-
source protected by the mutex may be corrupted. If and when the resource
is recovered, the pthread_mutex_consistent_np()6 function should be called.

4Some of the following mutex attributes are part of XSI (X/Open System Interface) extension
to POSIX (Portable Operating System Interface) standard. The #define _XOPEN_SOURCE 700
definition before the system header files specifies the usage of the XSI extension to the recent
POSIX.1-2008 standard. The definition of the _XOPEN_SOURCE constant is required to use those
mutex attributes.

5To use the error constants, the errno.h header file needs to be included. The error descrip-
tion can be obtained with the strerror() function, whose declaration is in string.h.

6The POSIX functions pthread_mutexattr_setrobust() and pthread_mutexattr_consis
tent() are not implemented in the GNU C Library for the Linux kernel (i.e. glibc package).
The equivalent non-portable versions pthread_mutexattr_setrobust_np() and pthread_mutex
attr_consistent_np() have to be used.
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pthread_mutex_consistent_np()6 marks the mutex state as consistent again. It
has to be called before unlocking. If recovery is not possible and unlocking is done
without pthread_mutex_consistent_np()6, the next pthread_mutex_lock()
fails with the ENOTRECOVERABLE5 error.

err = pthread_mutexattr_setrobust_np(&attr, PTHREAD_MUTEX_ROBUST);
...
...

err = pthread_mutex_lock(&mutex);
if(err == EOWNERDEAD)
{

process owning the mutex terminated, mutex is inconsistent, recover
...

if(recovery successful) err = pthread_mutex_consistent_np(&mutex);
else panic!

} else if(err == ENOTRECOVERABLE) panic!
...

err = pthread_mutex_unlock(&mutex);

The ownership is again the key for solving the priority-inversion problem (see
subsection 7.1.4). The ownership alone is not enough, though. A priority-inversion
prevention protocol must be used. The priority ceiling and priority inheritance
are the most common priority-inversion avoidance protocols.

Priority ceiling

A priority is assigned to each mutex. The mutex priority is equal or higher than
the priority of any process using the mutex. To prevent the priority-inversion,
the process priority is boosted to the mutex priority when the process locks the
mutex7 and lowered back to its original value on the mutex unlock (Fig. 7.5).
While holding the mutex, the process can be pre-empted only by a process not
using the mutex (i.e. its priority is higher than the mutex’s). Therefore, the
priority inversion cannot happen.
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Figure 7.5: Priority ceiling protocol

The priority ceiling protocol solves the priority-inversion problem, but on the

7If a process locks more than one mutex with different priorities, then the process priority
equals to the highest priority of the locked mutexes.
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other hand causes a potential CPU time starvation. Example: The high- and low-
priority processes use mutex M . The high-priority process locks mutex M rarely,
while the low-priority process locks it frequently. Every time the low-priority pro-
cess locks mutex M , its priority is boosted. In most cases, this would not be
required since the high-priority process only rarely locks mutex M . Nevertheless,
a low-priority process frequently blocks both, the high- and the medium-priority
processes. After unlocking mutex M , the high-priority process immediately pre-
empts the low-priority one, the medium-priority process has to wait further. Thus
the high- and especially the medium-priority processes can miss their deadlines
because of the unnecessary low-process priority boosts. The medium-priority pro-
cess is most deprived.

The priority-ceiling protocol eliminates the circular deadlock (see subsection
7.1.3) since the processes holding mutex M run at the same priority. A circular
dependence cannot develop although the mutexes are not ordered (see Fig. 7.6).
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Figure 7.6: Circular dependence cannot develop with the priority-ceiling protocol

The priority-ceiling protocol is assigned to a mutex by the PTHREAD_PRIO_PRO
TECT attribute set with the pthread_mutexattr_setprotocol() function. The
mutex priority is defined by the pthread_mutexattr_setprioceiling() func-
tion. If a mutex with the PTHREAD_PRIO_PROTECT attribute has a lower priority
than the process trying to lock it, pthread_mutex_lock() returns the EINVAL5

error.

err = pthread_mutexattr_setprotocol(&attr, PTHREAD_PRIO_PROTECT);
err = pthread_mutexattr_setprioceiling(&attr, priority);

Only the processes with the real-time SCHED_FIFO and SCHED_RR scheduling poli-
cies (see page 117) can lock the mutex with the priority-ceiling protocol. This is be-
cause the Linux kernel boosts the process priority at the pthread_mutex_lock()
call with an internal call to sched_setscheduler(). The latter returns the er-
ror if a non-zero priority is assigned to the non-real-time SCHED_OTHER scheduling
policy.

Priority inheritance

The priority of a low-priority process is boosted only when a low-priority
process holding the mutex in fact blocks the high-priority one waiting for
it. A low-priority process priority is equaled to the priority of a blocked
high-priority process. A low-priority process inherits a high-priority process
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priority8. Therefore, while blocking a high-priority process, a low-priority process
cannot be blocked by a medium-priority one (see Fig. 7.7). A priority inversion
cannot happen.
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Figure 7.7: Priority-inheritance protocol

The priority-inheritance protocol does not cause the CPU time starvation.
But it neither solves the circular deadlock like the priority-ceiling protocol. Nev-
ertheless, the main drawback of the priority-inheritance protocol is the worst-case
blocked time. Theoretically, it can rise to the sum of the mutex-protected critical
sections of all lower-priority processes (see Fig. 7.8).
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Figure 7.8: Worst-case blocked time with the priority inheritance

The priority-inheritance protocol is assigned to a mutex by the PTHREAD_PRIO_
INHERIT attribute set with the pthread_mutexattr_setprotocol() function.

8The priority is inherited recursively. Example: The process with the lowest priority holds
M1. The high-priority process is blocked by a low-priority process because of M2. At the
moment, low-priority process is running with priority boosted to high, the lowest- and high-
priority processes are blocked. If a low-priority process tries to lock M1, it is blocked by the
lowest-priority process. The priority of the lowest-priority process is not boosted only to low,
but recursively to high.
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err = pthread_mutexattr_setprotocol(&attr, PTHREAD_PRIO_INHERIT);

The additional mutex functionality defined with various attributes (error
checking, recursion, robustness, priority ceiling and inheritance) is not priceless,
though. With each attribute, locking and unlocking become slower.



Chapter 8

Loadable kernel modules

A loadable kernel module is a part of the kernel code which can be loaded and
unloaded on demand. Support for a special hardware (i.e. device driver) or for
the custom operating system service (i.e. custom system call) can be added by
the kernel module. The loadable kernel modules extend the kernel functionality
without rebooting.

The information about the currently loaded modules is available in the
/proc/modules virtual file. The lsmod command prints /proc/modules in a read-
able format. A single module is installed into the kernel by the insmod command,
e.g. the dummy.ko module with the command-line name parameter is installed
with:

insmod ./dummy.ko name="circbuf"

The module is removed from the kernel with the rmmod command, e.g:

rmmod dummy

The high-level loadable kernel module handling modprobe command can be used
instead of insmod and rmmod. modprobe checks the configuration file to find an
appropriate module(s) from a specified generic identifier. It also uses dependency
file to load the dependent modules that must be loaded before the requested
module. modprobe can remove the unused auto-loaded modules, etc. The loadable
kernel module handling insmod, rmmod and modprobe commands can be performed
only by a super user.

8.1 Kernel module programming

A detailed explanation of writing the kernel module code [54, 55] far exceeds the
scope of this textbook. An explanation of a simple circular buffer device driver
code follows to taste the matter. The module creates a dummy circular buffer
device in the /dev directory.

The kernel module must have the init_module() and cleanup_module()
functions. The former performs module initialization and is called at the module
installation into the kernel. The latter is called at the module removal from the
kernel to undo the module specifics. init_module() must return zero on success.
A nonzero value indicates an error and the module is therefore not installed.

/* dummy.c */
#include "dummy.h"
#include <linux/fs.h>
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#include <linux/sched.h>
#include <asm/uaccess.h>
#include <linux/miscdevice.h>

static int begin = 0, end = 0, size = 0;
static char *buffer = NULL, *name = "dummy";
module_param(name, charp, 0);

...

static struct file_operations fops = {
.owner = THIS_MODULE,
.open = dummy_open,
.ioctl = dummy_ioctl,
.read = dummy_read,
.write = dummy_write,
.release = dummy_release

};
static struct miscdevice dev = {MISC_DYNAMIC_MINOR, NULL, &fops};

int init_module()
{

dev.name = name;
return misc_register(&dev);

}

void cleanup_module()
{

kfree(buffer);
misc_deregister(&dev);

}

MODULE_LICENSE("GPL");

A command-line argument (see the insmod example on page 155) is passed to
the kernel module global variables by the module_param() macro. The macro
takes three parameters: global variable, its type (e.g. charp for type char *) and
access rights to the /sys/modules/module_name/parameters/parameter_name
virtual file with parameter value. If the access rights are not given, the parameter
is not exported and a virtual file is not created. In the code above, the name
command-line argument is passed to the name global pointer.

In Linux, a device is represented with a file by a convention located in the /dev
directory. The device is identified by a major and minor number listed by the ls
-l command. The device driver handling the device registers has a unique major
number. The major number identifies the device driver. The minor numbers are
used for the devices handled by the same driver (e.g. /dev/sda1 and /dev/sda2
hard disk partitions have the same major and different minor numbers, since they
are two devices handled by the same driver). An exception is a miscellaneous
device driver with the major number 10. It is a set of small character device
drivers each handling one minor number.

The loadable kernel module is an object1 file (see page 34) linking into the ker-

1By convention, the kernel modules have the .ko (i.e. kernel object) extension to distinguish
from the conventional object files with the .o extension.



8.1. KERNEL MODULE PROGRAMMING 157

nel with insmod. Thus, the symbols2 used in the code are resolved upon installing
the module. This further means that only the external symbols defined in the
kernel can be used. The standard C library functions cannot be used. Another
consequence of linking against the entire kernel is a uniform name space. The
global symbol defined in the loadable kernel module code is seen to the entire ker-
nel3 and must therefore be unique. Naming such symbols with a unique module-
defined prefix4 is recommended. To keep the global symbol private to the module,
declare it as static. The list of the available symbols is in /proc/kallsyms. The
loadable kernel module shares the kernel code space5. It does not have its own
memory. Thus, the module segmentation fault is the kernel segmentation fault.
An uncontrolled memory writing can easily corrupt the kernel data. Therefore,
the loadable kernel modules should be coded with an extreme caution.

In the code on page 155, a small device driver is registered with a miscellaneous
driver by the kernel-provided misc_register() function at module initialization.
A unique minor number is automatically selected (MISC_DYNAMIC_MINOR). The
driver is unregistered by misc_deregister() at the module removal.

A miscellaneous device is represented by the miscdevice structure. The
second element is the device name (set in init_module()), the third is the
file_operations structure. The latter is a collection of the function pointers. A
particular function is called on the corresponding system call (e.g. open(), read(),
etc.) to the device. The C language standard version C99 enables a more readable
defining of the structure elements6. The only element in the file_operations
structure not being a function pointer is the owner element. It points to the
module that owns the operations. It is used by the kernel to prevent the module
removal while its operations are in use.

The Linux kernel is released under GNU GPL (GNU General Public License).
This means that the source code is available and can be modified in any way.
The modifications, however, can be distributed further only under GNU GPL. A
loadable kernel module is actually a part of the kernel and can be compiled into
it. If a kernel extended with a module is distributed, it must be under GNU GPL.
Thus, the proprietary modules should not be distributed as a part of the kernel.
The MODULE_LICENSE() macro defines the module license. When a proprietary
module is loaded into the kernel, a tainted kernel message is issued to warn the
user that the loaded software is not free. If MODULE_LICENSE() is not specified,
the module is considered proprietary.

The code handling system calls to a simple circular buffer device is needed to
finish an example device driver.

...

static int dummy_open(struct inode *inode, struct file *file)
{

printk(KERN_INFO "/dev/%s opened by pid %d\n", name, current->pid);
return 0;

}

2The symbol is a variable or a function.
3The global symbol can be used by the kernel code, but not by other loadable kernel modules.

To make it visible to other modules, the symbol has to be exported by the EXPORT_SYMBOL()
macro. All said about the global symbols is true for the functions by default. The kernel must
be configured with CONFIG_KALLSYMS_ALL to support the global variables.

4The kernel prefixes are a lowercase by convention.
5This is not true for the microkernels (see page 77).
6E.g., the .open = dummy_open line defines the open structure element which is a pointer to

the function that is called on the open() system call to the device. Thus, the dummy_open()
module function is called on the open() system call.
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static int dummy_ioctl(struct inode *inode, struct file *file,
unsigned int cmd, unsigned long arg)

{
if(cmd == GET_SIZE) *((int *)arg) = size;
if(cmd == SET_SIZE)
{
begin = 0, end = 0, size = 0;

buffer = krealloc(buffer, arg, GFP_KERNEL);
if(buffer == NULL) return -ENOMEM;
size = arg;

}
if(cmd == NUM)
{

int num = end - begin;
if(num < 0) num = num + size;
*((int *)arg) = num;

}
return 0;

}

static ssize_t dummy_read(struct file *file, char *buf,
size_t count, loff_t *ppos)

{
int i;
for(i = 0; i < count && begin != end; i = i + 1)
{

put_user(buffer[begin], buf + i);
begin = begin + 1;
if(begin >= size) begin = 0;

}
return i;

}

static ssize_t dummy_write(struct file *file, const char *buf,
size_t count, loff_t *ppos)

{
int i, tmp;
for(i = 0; i < count; i = i + 1, end = tmp)
{

tmp = end + 1;
if(tmp >= size) tmp = 0;
if(tmp == begin) break;
get_user(buffer[end], buf + i);

}
return i;

}

static int dummy_release(struct inode *inode, struct file *file)
{

printk(KERN_INFO "/dev/%s closed by pid %d\n", name, current->pid);
return 0;

}

...
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The dummy_open() and dummy_release() functions are called on the open()
and close() system calls, respectively. Both functions issue7 a message with the
prink() kernel function. The current kernel macro provides a pointer to the
structure with the calling process data (e.g. PID, name, process state, etc.).

The dummy_read() and dummy_write() functions are called on the read() and
write() system calls. They implement a circular FIFO buffer. The data is stored
in the buffer with a space for size characters. The begin and end indices point to
the oldest character and the first empty space, respectively. Both functions return
the number of characters read or written. The put_user() and get_user() kernel
functions are used to copy the buffer data from the kernel address space to the
process address space and vice versa. The ordinary assignment (i.e. buf[i] =
buffer[begin];) would not do.

The most interesting is the dummy_ioctl() function called on the ioctl()
system call. It handles the device properties defined in dummy.h with the _IOR()
macro.

/* dummy.h */
#include <linux/ioctl.h>
#define GET_SIZE _IOR(0, 0, int *)
#define SET_SIZE _IOR(0, 1, int)
#define NUM _IOR(0, 2, int *)

The GET_SIZE property retrieves the current buffer size. SET_SIZE resets the
buffer and sets a new buffer size. A corresponding memory space is allocated by
krealloc()8. dummy_ioctl() returns -ENOMEM if allocation fails. In this case,
ioctl() returns -1 with the errno set to ENOMEM. The allocated memory is freed
with kfree()8 on the module removal in cleanup_module(). The NUM property
retrieves the number of characters currently stored in the buffer.

With the described module installed into the kernel, the simple circular buffer
device can be used by a process as any other device/file.

#include "dummy.h"
...

char buf[SIZE];
int dev = open("/dev/circbuf", O_RDWR);
int err = ioctl(dev, SET_SIZE, 10);

...
int n = write(dev, buf, 5);

...
err = ioctl(dev, NUM, &n);
n = read(dev, buf, n);

...
err = close(dev);

8.2 Compiling a kernel module

A kernel module is compiled for a particular kernel version. If the module is
compiled for a running system, then the running kernel header files are needed.

7The message is displayed on the console if the loglevel (i.e. KERN_INFO) is below a certain
value. If the system and kernel syslogd and klogd logging daemons are running, the message is
also written into /var/log/messages.

8Kernel versions of realloc() and free().
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They can be found in the /lib/modules/kernel_version/build9 directory. The
following Makefile is needed in the working directory with the module source file.

# Makefile
KSRC=/lib/modules/kernel_version/build
obj-m := dummy.o
all:

make -C $(KSRC) M=$(PWD) modules
clean:

make -C $(KSRC) M=$(PWD) clean

The Makefile above suits a module with one source file (i.e. dummy.c). If the
kernel module source code consists of more than one file, they have to be stated.

...
obj-m := module_name.o
module_name-objs := scr1.o src2.o ...

...

With the Makefile ready, a cleanup and building loadable kernel module object
file from a scratch is performed by two make commands.

make clean
make

8.2.1 Cross-compiling a kernel module

A kernel module can be cross-compiled for the target system on a host system
(see section 4.3). The cross compiler, target architecture and directory with the
target kernel source have to be specified in Makefile. To cross-compile for the
Phytec phyCORE-i.MX27 development kit, Makefile has to be modified.

# Makefile (cross compile for phyCORE-i.MX27)
KSRC=...OSELAS.BSP-Phytec-phyCORE-i.MX27-PD11.1.1/

platform-phyCORE-i.MX27/build-target/linux-2.6.3810

obj-m := dummy.o
all:

make -C $(KSRC) ARCH=arm
CROSS_COMPILE=arm-v5te-linux-gnueabi- M=$(PWD) modules

clean:
make -C $(KSRC) M=$(PWD) clean

The command-line ARCH and CROSS_COMPILE arguments are added. They specify
the ARM architecture11 and the corresponding cross-compiler prefix. The path
to the cross-compiler executable (i.e. arm-v5te-linux-gnueabi-gcc) has to be
included in the command search path12.

9If the running kernel header files are not installed, install the linux-headers-kernel_version
package (see section 1.11). The kernel_version can be obtained by the uname -r command.

10Subdirectory with the target kernel source on the host.
11The Phytec phyCORE-i.MX27 development kit is based on the ARM926EJ-S architecture.
12The arm-v5te-linux-gnueabi-gcc cross compiler resides in the /opt/OSELAS.Toolchain-201

1.02.0/arm-v5te-linux-gnueabi/gcc-4.5.2-glibc-2.13-binutils-2.21-kernel-2.6.36-sani
tized/bin directory which should be included in the PATH variable.
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•	 Linux	operating	system	used	as	an	example	platform

•	 PHYTEC	phyCORE-i.MX27	development	kit	used	as	an	embedded	system	platform

•	 explanation	of	real-time	concepts	with	real-time	application	development

•	 interprocess	communication	and	simultaneous	resource	access	with	presentation
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