```
#include <string.h>
#define MAXPAROLA 30
#define MAXRIGA 80
   int freq[MAXPAROLA] ; /* vettore di contatori
delle frequenze delle lunghezze delle parole
   f = fopen(argv[1], "rf") ;
if(f==NULL)
```

Operating Systems

Introduction to the Operating Systems Course

Stefano Scanzio
Dipartimento di Automatica e Informatica
Politecnico di Torino
skenz.it/os stefano.scanzio@polito.it

Operating Systems course

Operating Systems (01JEZBV) (6 credits, 60 hours)

Stefano Scanzio
CNR – National Research Council of Italy
stefano.scanzio@polito.it
https://t.me/zioskenz

www: https://www.skenz.it/ss
(link to courses, CV, publications, theses)

Assistants

Marco Palena
DAUIN
marco.palena@polito.it

Paolo Pasini

DAUIN

paolo.pasini@polito.it

Material

Slides, information, programs, tutorials, previous exam texts, labs assignments and solutions, can be found at the address:

https://www.skenz.it/os

Slides:

- \triangleright u = unit
- > s = section
- > e = exercise

(Available progressively during the course)

Communication

- Telegram group:
 - https://t.me/+rRJqH5Ofo0RiMTZk

Open to other communication services.

Organization

- > Schedule
 - Lesson/Practice: 1 block of 4.5 hours (Wednesday)
 - not always used, see https://www.skenz.it/os for the updated calendar
 - Laboratory: 3 block of 1.5 hours (see calendar)
 - Monday 16:30-17:30 from surname F to MA
 - Monday 17:30-19:00 from surname MB to MZ
 - Friday 17:30-19:00 from surname A to E
- There is no formal distinction between teaching and practice hours
 - Theory is introduced, and examples and exercises can be illustrated in the same block

Organization

- Lesson/Practice
 - In classroom
 - Concurrently transmitted in VC (try to attend in classroom)
 - Not guaranteed in case of technical problems
 - Not guaranteed the possibility to ask questions remotely
 - Recorded lectures will be provided as backup lessons (if too many students will not attend the lectures, they will be provided at the end of the course)

Laboratories

- In-person in the LAIB
 - The introduction of one slot (i.e., Monday 16:30-17:30 or Monday 17:30-19:00 or Friday 17:30-19:00) of each laboratory will be transmitted on VC
 - which laboratory will be communicated later

Laboratories

- > Laboratory (really important complement to theory)
 - Practice with Linux operating system
 - Application of the theoretical aspects on Linux
 - Script programming (bash)
- Some other informations:
 - Possibility to use virtual machines (VM) running remotely at Polito
 - Guide to run VM will be provided in the course website

Topics

- Introduction to Operating Systems
- Processes (concept, control, signals, IPC, etc.)
- > Thread (concept, Pthread library, etc.)
- > Synchronization (s/w, h/w, semaphores, etc.)
- Deadlock
- Linux environment
 - Commands and system administration
 - Shell (UNIX/Linux command interpreter)
 - Scripting languages (bash)

Topics

- Linux useful in many aspects of working life (systems engineers, web servers, scripting, data analysis, machine learning, ...)
- > Preparing for Google Technical Internship Interviews

•

- Operating systems
 - You should understand processes, threads, concurrency issues, locks, mutexes, semaphores, monitors and how they all work. Understand deadlock, livelock and how to avoid them. Know what resources a process needs and a thread needs. Understand how context switching works, how it's initiated by the operating system and underlying hardware. Know a little about scheduling. The world is rapidly moving towards multi-core, so know the fundamentals of "modern" concurrency constructs

Textbooks

Textbooks

Chapters 1-7, 11, 12 (9 chapters out of 17)

> Theoretical aspects

Alternative (+ concise, + technical)

- A. Silberschatz, P. Baer, and G. Gagne, Operating System Concepts, Ninth Edition, John Wiley & Sons Inc., 919 pages, 2012, ISBN 978-1-118-06333-0
- Andrew S. Tanenbaum, Modern Operating Systems, Third Edition,
 Prentice Hall, 1076 pages, 2009, ISBN 978-0-136-00663-3

UNIX/Linux environment

W. R. Stevens, and S. A. Rago, Advanced programming in the UNIX Environment, Third Edition, Addison-Wesley Publishing Company, 927 pages, 2013, ISBN 978-0-321-63773-4

In addition to the **slides**, most answers can be found on the **Internet**

Exam rules

Exam rules

- Using the university platform "Exam"
 - In classroom using your own PCs
- > It consists in 6 to 18 open or close questions
 - About topics presented in the lectures or developed during the classroom and laboratory practices
- > Test lasts about 120 minutes
- Written test evaluated 36/30 points
 - Marks larger or equal to 32 or 33 (depending on the exam)
 - Converted in "30 with honor"

Exam rules

Exam rules

- Books and notes are not allowed
- > Cellular phones etc. are forbidden
- > The reference material provided if necessary
 - Directly in the "exam" platform
 - Such as 3 cheat sheets related to: shell commands,
 BASH and threads

Exam rules

Exam rules

- All students have to read the University regulations related to the exams
- Obtain the necessary hardware and software tools needed for it (remember to check internet connection)
- ➤ In case of irregularities, professors reserve the right to perform an oral verification