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• Architectural Support (HW/SW interface)
• Processes and Threads
• Scheduling
• Synchronization
• Virtual Memory
• Disks and Filesystems
• Networking

Main OS Topics
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Architectural 
Support



Programmed I/O
• CPU has dedicated, special instructions
• CPU has additional wires (I/O bus)
• Instruction specifies device and operation

Memory-mapped I/O
• Device communication goes over 

memory bus
• Reads/Writes to special addresses 

converted into I/O operations by 
dedicated device hardware

• Each device appears as if it is part of the 
memory address space

• Predominant device interfacing 
technique

Device Interfacing Techniques
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Interrupt-driven operation with memory-mapped I/O:
• CPU initiates device operation (e.g., read from disk): 

writes an operation descriptor to a designated 
memory location

• CPU continues its regular computation
• The device asynchronously performs the operation
• When the operation is complete, interrupts the CPU

Bulk Data Transfers: Use DMA
• CPU sets up DMA request
• Device puts data on bus, RAM accepts it
• Device interrupts CPU when all done

I/O Summary

5



1. Privilege mode bit (0=kernel, 1=user)
Where? x86 → EFLAGS reg., MIPS →status reg.

2. Privileged instructions
user mode → no way to execute unsafe insns

3. Memory protection
user mode →memory accesses outside a  
process’ memory region are prohibited

4. Timer interrupts
kernel must be able to periodically regain 
control from running process

5. Efficient mechanism for switching modes
must be fast because it happens a lot!

Supporting dual mode operation
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Processes and 
Threads
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For each process, the OS has a PCB containing:
• location in memory
• location of executable on disk
• which user is executing this process
• process privilege level
• process identifier (pid)  
• process arguments (for identification with ps)
• process status (Ready, waiting, finished, etc.)
• register values
• scheduling information
• PC, SP, eflags/status register

… and more!

Usually lives on the kernel stack

Process Control Block (PCB)
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Creating and Managing Processes

9[UNIX]

fork
Create a child process as a clone of the current 

process. Returns to both parent and child. Returns 

child pid to parent process, 0 to child process.

exec
(prog, args)

Run the application prog in the current process

with the specified arguments.

wait(pid) Pause until the child process has exited.

exit
Tell the kernel the current process is complete, and its 

data structures (stack, heap, code) should be garbage 

collected. Why not necessarily PCB?

kill
(pid, type)

Send an interrupt of a specified type to a process.

(a bit of a misnomer, no?)

[UNIX]



Allow applications to behave like operating systems.

Signals (virtualized interrupt)

10[UNIX][UNIX]

ID Name Default Action Corresponding Event

2 SIGINT Terminate
Interrupt 

(e.g., ctrl-c from keyboard)

9 SIGKILL Terminate
Kill program 

(cannot override or ignore)

14 SIGALRM Terminate Timer signal

17 SIGCHLD Ignore Child stopped or terminated

20 SIGTSTP
Stop until next 

SIGCONT
Stop signal from terminal 
(e.g. ctrl-z from keyboard)



Process: 
• Privilege Level
• Address Space
• Code, Data, Heap
• Shared I/O resources
• One or more Threads:

• Stack
• Registers
• PC, SP

Process vs. Thread
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Thread Memory Layout
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Scheduling



1. Initialize devices
2. Initialize “first process”
3. while (TRUE) {

• while device interrupts pending
- handle device interrupts

• while system calls pending
- handle system calls

• if run queue is non-empty
- select process and switch to it

• otherwise
- wait for device interrupt

}

Kernel Operation  (conceptual, simplified)
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Processes P1, P2, P3 with compute time 12, 3, 3

Scenario 1: arrival order P1, P2, P3

Scenario 2: arrival order P2, P3, P1

First In First Out (FIFO)

P1 P2 P3

Time 0 12 15 18Time 0

(12+15+18)/3 = 15

Average Response Time:

P1P2 P3

183 6Time 0

15

Average Response Time:

(3+6+18)/3 = 9

Note: this is always non-preemptive



FIFO Roundup
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The Good

The Bad

The Ugly

– Poor avg. response time if
tasks have variable size
– Average response time very 
sensitive to arrival time

– Not responsive to 
interactive tasks

+ Simple
+ Low-overhead
+ No Starvation
+ Optimal avg. response time if 

all tasks same size



Schedule in order of estimated completion† time

Scenario : each job takes as long as its number 

Would another schedule improve avg response time?

Shortest Job First (SJF)

Average Response Time:

P5P1 P2

151Time 0

P4P3

3 6 10

†with preemption, remaining time

(1+3+6+10+15)/5 = 7



SJF Roundup
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The Good

The Bad

The Ugly

– Pessimal variance in 
response time

– Needs estimate of 
execution time
– Can starve long jobs
– Frequent context switches

+ Optimal average 
response time (when jobs 
available simultaneously)



• Each process allowed to run for a quantum
• Context is switched (at the latest) at the end of 

the quantum 

What is a good quantum size?
• Too long, and it morphs into FIFO
• Too short, and much time lost context 

switching
• Typical quantum: about 100X cost of context 

switch (~100ms vs. << 1 ms)

Round Robin (RR)



Mixture of one I/O Bound tasks + two CPU Bound Tasks
I/O bound: compute, go to disk, repeat
→ RR doesn’t seem so fair after all….

More Problems with Round Robin
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compute go to disk

wait 190 ms………….

100 ms quanta100 ms quanta

100 ms quanta

compute go to disk



RR Roundup
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The Good

The Bad

The Ugly

– Overhead of context 
switching
– Mix of I/O and CPU bound

– Particularly bad for 
simultaneous, equal 
length jobs

+ No starvation
+ Can reduce response time
+ Low Initial waiting time



Multi-Level Feedback Queues
• Like multilevel queue, but 

assignments are not static

• Jobs start at the top
• Use your quantum? move down

• Don’t? Stay where you are

Need parameters for:
• Number of queues

• Scheduling alg. per queue

• When to upgrade/downgrade job
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Lowest priority

Highest priority

Quantum = 2

Quantum = 4

Quantum = 8

RR



Synchronization



Dijkstra introduced in the THE Operating System

Stateful:
• a value (incremented/decremented atomically)
• a queue
• a lock

Interface:
• Init(starting value)
• P (procure): decrement, “consume” or “start using”
• V (vacate): increment, “produce” or “stop using”

No operation to read the value!

What is a Semaphore?

24

[Dijkstra 1962]

Dutch 4410: P = Probeer (‘Try'), V = Verhoog ('Increment', 'Increase by one')



Implementation of P and V
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P() {
acquire(&guard);
while(n <= 0) {

waiting.enq(self);
release(&guard);
sleep();
acquire(&guard);

}
n -= 1;
release(&guard);

}

V() {
acquire(&guard);
n += 1;
if(!waiting.empty()) {

wake(waiting.deq());
}
release(&guard);

}

P():
• block (sit on Q) til n > 0
• when so, decrement value by 1

V():
• increment value by 1
• resume a thread waiting on Q

(if any)

Implementation requires:
• TAS spinlocks
• System calls for sleep

and wake



• must be initialized! 
• keeps state
• reflects the sequence of past operations
• >0 reflects number of future P operations 

that will succeed

Not possible to:
• read the count
• grab multiple semaphores at same time
• decrement/increment by more than 1!

Semaphore’s count:

26



Producer-Consumer with Semaphores
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void produce(int item) 
{

empty.P(); //need space

mutex_in.P();
buf[in] = item;
in = (in+1)%N;
mutex_in.V();
filled.V(); //new item!

}

int consume() 
{

filled.P(); //need item

mutex_out.P();
int item = buf[out];
out = (out+1)%N;
mutex_out.V();
empty.V(); //more space!

return item;
}

Shared:
int buf[N];
int in = 0, out = 0;
Semaphore mutex_in(1), mutex_out(1);
Semaphore empty(N), filled(0);



A mechanism to wait for events

3 operations on Condition Variable x
• x.wait(): sleep until woken up (could wake up 

on your own)
• x.signal(): wake at least one process waiting 

on condition (if there is one). No history 
associated with signal.

• x.broadcast(): wake all processes waiting on 
condition

Condition Variables

28!! NOT the same thing as UNIX wait & signal !!



You must hold the monitor lock to call these 
operations.

To wait for some condition:
while not some_predicate():

CV.wait()
• atomically releases monitor lock & yields processor
• as CV.wait() returns, lock automatically reacquired

When the condition becomes satisfied:
CV.broadcast(): wakes up all threads
CV.signal(): wakes up at least one thread

Using Condition Variables

29



Kid and Cook Threads 

30

kid_main() {

play_w_legos()
BK.kid_eat()
bathe()
make_robots()
BK.kid_eat()
facetime_Edward()
facetime_grandma()
BK.kid_eat()

}

cook_main() {

wake()
shower()
drive_to_work()
while(not_5pm)
BK.makeburger()

drive_to_home()
watch_got()
sleep()

}

Monitor BurgerKing {
Lock mlock

int numburgers = 0
condition hungrykid

kid_eat:
with mlock:
while (numburgers==0)

hungrykid.wait()
numburgers -= 1

makeburger:
with mlock:
++numburger
hungrykid.signal()

}

Ready
Running



Readers and Writers
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Monitor ReadersNWriters {

int waitingWriters=0, waitingReaders=0, nReaders=0, nWriters=0;
Condition canRead, canWrite;

BeginWrite()
with monitor.lock:
++waitingWriters
while (nWriters >0 or nReaders >0)

canWrite.wait();
--waitingWriters
nWriters = 1;

EndWrite()
with monitor.lock:
nWriters = 0
if WaitingWriters > 0
canWrite.signal();

else if waitingReaders > 0
canRead.broadcast();

}

void BeginRead()
with monitor.lock:
++waitingReaders
while (nWriters>0 or waitingWriters>0)
canRead.wait();

--waitingReaders
++nReaders

void EndRead()
with monitor.lock:
--nReaders;
if (nReaders==0 and waitingWriters>0)
canWrite.signal();



self.allCheckedIn = Condition(self.lock)
self.allLeaving = Condition(self.lock)

def checkin():
with self.lock:
nArrived++
if nArrived < nThreads:       // not everyone has checked in
while nArrived < nThreads:
allCheckedIn.wait()          // wait for everyone to check in

else:
nLeaving = 0               // this thread is the last to arrive
allCheckedIn.broadcast()  // tell everyone we’re all here!

nLeaving++
if nLeaving < nThreads:             // not everyone has left yet
while nLeaving < nThreads:
allLeaving.wait()              // wait for everyone to leave

else:
nArrived = 0               // this thread is the last to leave
allLeaving.broadcast()     // tell everyone we’re outta here!

Implementing barriers is not easy.  
Solution here uses a “double-turnstile”

Checkin with 2 condition variables

32



Virtual Memory



TERMINOLOGY ALERT:
Page: the data itself
Frame: physical location

Paged Translation
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Page number – Upper bits
• Must be translated into a physical frame number

Page offset – Lower bits
• Does not change in translation

For given logical address space 2m and page size 2n

Logical Address Components

35

page number page offset

m - n n
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+ Allocate only PTEs in use
+ Can use smaller pages
+ Simple memory allocation
− more lookups per memory reference

Multi-Level Page Tables

index 1    |    index 2   |   offset

Frame | Access

Frame



32-bit machine, 1KB page size

• Logical address is divided into:
– a page offset of 10 bits (1024 = 2^10)

– a page number of 22 bits (32-10)

• Since the page table is paged, the page number is 
further divided into:
– a 12-bit first index

– a 10-bit second index

• Thus, a logical address is as follows:

Two-Level Paging Example

page number page offset

12 10 10
37

index 1 index 2 offset
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+ First Level requires less contiguous memory
− even more lookups per memory reference

This one goes to three!



Index is an index into:
• table of memory frames (if bottom level)

• table of page table frames (if multilevel page table)

• backing store (if page was swapped out)

Synonyms:
• Valid bit == Present bit

• Dirty bit == Modified bit

• Referenced bit == Accessed bit

Complete Page Table Entry (PTE)

39

Valid Protection	R/W/X Ref Dirty Index



Cache of virtual to physical page translations
Major efficiency improvement

40

Translation Lookaside Buffer (TLB)



Mapped
• to a physical frame

Not Mapped  (→ Page Fault)
• in a physical frame, but not currently mapped
• still in the original program file
• zero-filled (heap/BSS, stack)
• on backing store (“paged or swapped out”)
• illegal: not part of a segment

→ Segmentation Fault

(the contents of) A Virtual Page Can Be

41



• Find a free frame
- or evict one from memory (next slide)

- which one? (next lecture)

• Issue disk request to fetch data for page
- what to fetch? (requested page or more?)

• Block current process
• Context switch to new process
• When disk completes, set valid bit to 1   (& 

other permission bits), put current process 
in ready queue

When a page needs to be brought in…

42



• Find all page table entries that refer to old page
- Frame might be shared
- Core Map (frames → pages)

• Set each page table entry to invalid
• Remove any TLB entries

- Hardware copies of now invalid PTE
- “TLB Shootdown”

• Write changes on page back to disk, if needed
- Dirty/Modified bit in PTE indicates need
- Text segments are (still) on program image on disk

When a page is swapped out…

43

Valid Protection	R/W/X Ref Dirty Index



• Random: Pick any page to eject at random
• Used mainly for comparison

• FIFO: The page brought in earliest is evicted
• Ignores usage

• OPT: Belady’s algorithm
• Select page not used for longest time

• LRU: Evict page that hasn’t been used for the longest
• Past could be a good predictor of the future

• MRU: Evict the most recently used page
• LFU: Evict least frequently used page

Page Replacement Algorithms

44



Filesystems

45



I/O systems are accessed 
through a series of 
layered abstractions

The abstraction stack

File System API 

& Performance

Device 

Access

Application

Library

File System

Block Cache

Block Device Interface

Device Driver

Memory-mapped I/O,

DMA, Interrupts

Physical Device



Must specify:

• cylinder #

(distance from spindle)

• head #

• sector #

• transfer size

• memory address

Reading from disk

47



Disk Latency = Seek Time + Rotation Time + Transfer Time
• Seek: to get to the track (5-15 millisecs (ms))

• Rotational Latency: to get to the sector (4-8 millisecs (ms)) 

(on average, only need to wait half a rotation)

• Transfer: get bits off the disk (25-50 microsecs (μs)

Disk overheads

48

Track
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Seek Time

Rotational
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Circular list treatment:

• head moves from one end to other

• servicing requests as it goes

• reaches the end, returns to beginning

• no requests serviced on return trip

+ More uniform wait time than SCAN

Disk Scheduling: C-SCAN

49

C-SCAN Schedule?
Total Head movement?

Head pointer @ 53

Queue: 98, 183, 37, 122, 14, 124, 65, 67



Directories
• file name ➜ file number  

Index structures
• file number ➜ block

Free space maps
• find a free block; better: find a free block nearby

Locality heuristics
• policies enabled by above mechanisms

- group directories

- make writes sequential

- defragment

Implementation Basics

50



Directory: provides names for files
• a list of human readable names
• a mapping from each name to a specific 

underlying file or directory

Directory

51

directory index 
structure

Storage 
Block

File 
Number

871

File 
Name:

foo.txt



Identifies file system’s key parameters:
• type
• block size
• inode array location and size

(or analogous structure for other FSs)
• location of free list

FFS Superblock

52

block number 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

blocks:

Remaining blocksi-node 
blocks

super
block



FFS: Index Structures

53



• Type
- ordinary file
- directory
- symbolic link
- special device

• Size of the file (in #bytes)
• # links to the i-node
• Owner (user id and group id)
• Protection bits
• Times: creation, last accessed, 

last modified

What else is in an inode?

54

File 
Metadata



Read & Open:
(1) inode #2  (root always has inumber 2), find root’s blocknum (912)
(2) root directory (in block 912), find foo’s inumber (31)
(3) inode #31, find foo’s blocknum (194)
(4) foo (in block 194), find bar’s inumber (73) 
(5) inode #73, find bar’s blocknum (991)
(6) bar (in block 991), find baz’s inumber (40)
(7) inode #40, find data blocks (302, 913, 301)
(8) data blocks (302, 913, 301)

FFS: Steps to reading /foo/bar/baz

194

…

301 302

…

912 913

…

991

baz 40
ni  80
nit 87

nd I
remembe
r.I do
and I

bin 47
foo 31
usr 98

fie 23
far 81
bar 73

under
stand
.

I hear
and I
forget.
I see a

912 194 302
913
301

991

2 31 40 73

inodes data blocks

1 23 4 8 8857 6

Caching allows 
first few steps to 

be skipped



• Use inode number to index into inode
array

Finding inodes in FFS
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Super Block Inodes Data Blocks

b0 b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

…

To find address of inode 11: 
addr(b1) + 11 * size(inode)

512 bytes/block
128 bytes/inode



Blocks written to create two 1-block files: dir1/file1 and dir2/file2

LFS vs FFS
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inode

directory

data

inode map

dir1 dir2

file1
file2

Unix FFS

Log-Structured FS

file1 file2

dir1 dir2



• Inode map: a table indicating where each inode
is on disk
• Normally cached in memory
• Inode map blocks are written as part of the segment 

when updated
• Still no seeking to write to imap☺

• How do we find the blocks of the Inode map? 
• Listed in a fixed checkpoint region, updated 

periodically – same function as superblock in FFS

Finding Inodes in LFS
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CR seg 1 seg 2 seg 2free free



• To change data in block 1, create a new block 1
• Update the inode (create a new one)
• Update the imap

Overwriting Data in LFS

59

file1 file2

dir1 dir2

file1

No need to change dir1, since file1 
still has the same inode number

Segment 1 Segment 2



• Kept at the beginning of each segment
• For each data block in segment, SSB 

holds
• The file the data block belongs to (inode#)
• The offset (block#) of the data block within 

the file

Segment Summary Block

60

file1 file2

dir1 dir2

SSB



• During cleaning, to determine whether 
data block D is live:
• Use inode# to find in imap where inode is 

currently on disk
• Read inode (if not already in memory)
• Check whether pointer for block block#

refers to D’s address
• If not, D is dead

• Update file’s inode with correct pointer if 
D is live and compacted to new segment

Segment Summary Block
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Networking



Network abstraction is usually layered
• Like Object Oriented-style inheritance
• Also like the hw/sw stack

Network Layering

63

Application

Transport

Network

Link

Physical

Application

Presentation

Session

Transport

Network

Link

Physical

Actual 5-Layer Internet 
Protocol Stack

Proposed 7-Layer ISO/OSI 
reference model (1970’s)



Internet Protocol Stack

64

Application exchanges messages HTTP, FTP, DNS

Transport
Transports messages; 
exchanges segments

TCP, UDP

Network
Transports segments; 
exchanges datagrams

IP, ICMP (ping)

Link
Transports datagrams; 

exchanges frames
Ethernet, WiFi

Physical
Transports frames; 

exchanges bits
wires, signal encoding



network

link

physical

application

transport

network

link

physical

destination

Encapsulation

HT

message M

source

router

application

transport

network

link

physical

Msegment

HT MHNdatagram

HT MHNHLframe

HT MHNHL

HT MHNHT MHN

HT MHNHL

HT MHNHL

HT MHN

M

HT M
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Headers
Transport src & dst ports + …

Network src & dest IP addr + …

Link src & dest MAC addr + …



1. the client asks its local nameserver
2. the local nameserver asks one of the root nameservers
3. the root nameserver replies with the address of the 

authoritative nameserver
4. the server then queries that nameserver
5. repeat until host is reached, cache result.

Example: Client wants IP addr of  www.amazon.com

1. Queries root server to find com DNS server
2. Queries .com DNS server to get amazon.com DNS server
3. Queries amazon.com DNS server to get  IP address for 

www.amazon.com

DNS Lookup

66



User Datagram Protocol (UDP)
• unreliable, unordered delivery
• no-frills extension of best-effort IP

Transmission Control Protocol (TCP)
• reliable, in-order delivery
• congestion control 
• flow control
• connection setup

Both provide: 
• port numbers to identify sending/receiving processes
• additional headers inside IP packet

Transport services and protocols

67



UDP Segment Format

68

32 bits

length (in bytes) 
of UDP segment, 
including header

source port # dest port #

length checksum

application message
(payload)

(IP address will be added when the segment is turned 
into a datagram/packet at the Network Layer)

UDP header size: 8 bytes



C    |    B 

src dst
A    |    B 

src dst

UDP Sockets and Ports

69

application

transport

network

link

physical

P1

process
socket

application

transport

network

link

physical

P3

application

transport

network

link

physical

P4

Host receives 2 UDP segments:
• checks dst port, directs segment to socket w/that port
• different src IP or port but same dst port → same socket
• application must sort it out

host: IP 
address A host: IP 

address C

server: IP 
address B

sources

destination

sources

9157 5775

6428

9157| 6428 5785| 6428



TCP Segment Format

70

32 bits

source port # dest port #

sequence number

acknowledgment number

HL U A P R S F receive window

checksum urg data pointer

options (variable length)

application message
(payload)

(IP address will be added when the segment is turned 
into a datagram/packet at the Network Layer)

TCP header size: 20-60 bytes

HL: header len
U: urgent data
A: ACK # valid
P: push data now
RST, SYN, FIN:
connection commands
(setup, teardown)

# bytes receiver 
willing to accept



TCP Sockets and Ports

71

application

transport

network

link

physical

P1

process
socket

application

transport

network

link

physical

P4

application

transport

network

link

physical

P5

Host receives 3 TCP segments:
• all destined to IP addr B, port 80
• demuxed to different sockets with socket’s 4-tuple

host: IP 
address A host: IP 

address C

server: IP 
address B

sources

destination

sources

915

B| 80

A|915

P2

P6
517915

P3
B| 80

C|517

B| 80

C|915

915  | 80

A    |    B 

915  | 80

C   |   B 

517  | 80

C   |   B 

src dst



3 round-trips: 
1. set up a connection
2. send data & receive a response
3. tear down connection

FINs work (mostly) like SYNs to 
tear down connection

Need to wait after a FIN for 
straggling packets

TCP Usage Pattern
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TCP Congestion Window

73

When first item in 
window is 

acknowledged, 
sender can send 

the 5th item.



Receiver detects a lost packet 
(i.e., a missing seq), ACKs the 
last id it successfully received

Sender can detect the loss 
without waiting for timeout

TCP Fast Retransmit

74



Additive-Increase/Multiplicative-Decrease (AIMD):
• window size++ every RTT if no packets dropped
• window size/2 if packet is dropped

- drop evident from the acknowledgments

→ slowly builds up to max bandwidth, and hover there

- Does not achieve the max possible

+ Shares bandwidth well with other TCP connections

This linear-increase, exponential backoff in the face of 
congestion is termed TCP-friendliness

TCP Congestion Control
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• Initial phase: exponential increase
• Assuming no other losses in the network 

except those due to bandwidth

TCP Slow Start

76
Time

B
a

n
d

w
id

th

Max Bandwidth



• Internetworking protocol
- Network layer

• Common address format
• Common packet format for the Internet

- Specifies what packets look like

- Fragments long packets into shorter packets

- Reassembles fragments into original shape

• IPv4 vs IPv6
- IPv4 is what most people use

- IPv6 more scalable and clears up some of the messy parts

IP

77



IPv4 packet layout
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Version IHL TOS Total Length

Identification Flags Fragment Offset

TTL Protocol Header Checksum

Source Address

Destination Address

Options

Payload

0 1 2 3Byte:



• Source assigns each datagram an “identification”
• At each hop, IP can divide a long datagram into N 

smaller datagrams
• Sets the More Fragments bit except on the last 

packet
• Receiving end puts the fragments together based 

on Identification and More Fragments and Fragment 
Offset (times 8)

IP Fragmentation Mechanics

79

ID 8 | F | 0

MAC1 |MAC2 

ID 8 | T | 0

MAC2 |MAC3

ID 8 | T | 16

MAC2 |MAC3

ID 8 | F | 32

MAC2 |MAC3



• Maps IP address to interface or port and to MAC address
• Longest Prefix Matching
• Your laptop/phone has a routing table too!

Routing Table
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Address/Mask IF or Port MAC

128.84.216/23 en0 c4:2c:03:28:a1:39

127/8 lo0 127.0.0.1

128.84.216.36/32 en0 74:ea:3a:ef:60:03

128.84.216.80/32 en0 20:aa:4b:38:03:24

128.84.217.255/32 en0 ff:ff:ff:ff:ff:ff

130.18/16 en1 c8:d4:58:1a:32:de

Prefix of 
address 
to match

Number of 
bits in prefix

Netmask: a “1” for each bit that matters
For /16, netmask is 255.255.0.0



for ever:
receive IP packet p
if isLocal(p.dest): return localDelivery(p)
if --p.TTL == 0: return dropPacket(p)
matches = { }
for each entry e in routing table:

if p.dest & e.netmask == e.address & e.netmask:
matches.add(e)

bestmatch = matches.maxarg(e.netmask)
forward p to bestmatch.port/bestmatch.MAC

Router Function
often implemented in hardware
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Destination: 128.84.216.33
Entry: 128.84.216.0/23
Netmask: 255.255.254.0

Dest & Netmask = 128.84.216.0
Entry & Netmask = 128.84.216.0


