Review CS 4410 Operating Systems Summer 2019

Edward Tremel

Main OS Topics

- Architectural Support (HW/SW interface)
- Processes and Threads
- Scheduling
- Synchronization
- Virtual Memory
- Disks and Filesystems
- Networking

Architectural Support

Device Interfacing Techniques

Programmed I/O

- CPU has dedicated, special instructions
- CPU has additional wires (I/O bus)
- Instruction specifies device and operation

Memory-mapped I/O

- Device communication goes over memory bus
- Reads/Writes to special addresses converted into I/O operations by dedicated device hardware
- Each device appears as if it is part of the memory address space
- Predominant device interfacing technique

I/O Summary

Interrupt-driven operation with memory-mapped I/O:

- CPU initiates device operation (*e.g.*, read from disk): writes an operation descriptor to a designated memory location
- CPU continues its regular computation
- The device asynchronously performs the operation
- When the operation is complete, interrupts the CPU

Bulk Data Transfers: Use DMA

- CPU sets up DMA request
- Device puts data on bus, RAM accepts it
- Device interrupts CPU when all done

Supporting dual mode operation

- 1. Privilege mode bit (0=kernel, 1=user)
 Where? x86 → EFLAGS reg., MIPS →status reg.
- 2. Privileged instructionsuser mode → no way to execute unsafe insns
- Memory protection
 user mode → memory accesses outside a
 process' memory region are prohibited
- 4. Timer interrupts kernel must be able to periodically regain control from running process
- 5. Efficient mechanism for switching modes must be fast because it happens a lot!

Processes and Threads

Process Control Block (PCB)

For each process, the OS has a PCB containing:

- location in memory
- location of executable on disk
- which user is executing this process
- process privilege level
- process identifier (pid)
- process arguments (for identification with ps)
- process status (Ready, waiting, finished, etc.)
- register values
- scheduling information
- PC, SP, eflags/status register
 - ... and more!

Usually lives on the kernel stack

Creating and Managing Processes

fork	Create a child process as a clone of the current process. Returns to both parent and child. Returns child pid to parent process, 0 to child process.		
exec (prog, args)	Run the application prog in the current process with the specified arguments.		
wait(pid)	Pause until the child process has exited.		
exit	Tell the kernel the current process is complete, and its data structures (stack, heap, code) should be garbage collected. Why not necessarily PCB?		
<pre>kill (pid, type)</pre>			

Signals (virtualized interrupt)

Allow applications to behave like operating systems.

ID	Name	Default Action	Corresponding Event
2	SIGINT	Terminate	Interrupt (e.g., ctrl-c from keyboard)
9	SIGKILL	Terminate	Kill program (cannot override or ignore)
14	SIGALRM	Terminate	Timer signal
17	SIGCHLD	Ignore	Child stopped or terminated
20	SIGTSTP	Stop until next SIGCONT	Stop signal from terminal (e.g. ctrl-z from keyboard)

Process vs. Thread

Process:

- Privilege Level
- Address Space
- Code, Data, Heap
- Shared I/O resources
- One or more Threads:
 - Stack
 - Registers
 - PC, SP

Scheduling

Kernel Operation (conceptual, simplified)

- Initialize devices
- 2. Initialize "first process"
- 3. while (TRUE) {
 - while device interrupts pending
 - handle device interrupts
 - while system calls pending
 - handle system calls
 - if run queue is non-empty
 - select process and switch to it
 - otherwise
 - wait for device interrupt

First In First Out (FIFO)

Processes P₁, P₂, P₃ with compute time 12, 3, 3

Scenario 1: arrival order P₁, P₂, P₃

Scenario 2: arrival order P₂, P₃, P₁

FIFO Roundup

- + Simple
- + Low-overhead
- No Starvation
- Optimal avg. response time if all tasks same size

- Poor avg. response time if tasks have variable size
- Average response time very sensitive to arrival time

 Not responsive to interactive tasks

Shortest Job First (SJF)

Schedule in order of estimated completion[†] time

Scenario: each job takes as long as its number

Average Response Time: (1+3+6+10+15)/5 = 7

Would another schedule improve avg response time?

†with preemption, remaining time

SJF Roundup

+ Optimal average response time (when jobs available simultaneously)

Pessimal variance in response time

- Needs estimate of execution time
- Can starve long jobs
- Frequent context switches

Round Robin (RR)

- Each process allowed to run for a quantum
- Context is switched (at the latest) at the end of the quantum

What is a good quantum size?

- Too long, and it morphs into FIFO
- Too short, and much time lost context switching
- Typical quantum: about 100X cost of context switch (~100ms vs. << 1 ms)

More Problems with Round Robin

Mixture of one I/O Bound tasks + two CPU Bound Tasks I/O bound: compute, go to disk, repeat

→ RR doesn't seem so fair after all....

Time

RR Roundup

- + No starvation
- + Can reduce response time
- + Low Initial waiting time

- Overhead of context switching
- Mix of I/O and CPU bound

 Particularly bad for simultaneous, equal length jobs

Multi-Level Feedback Queues

• Like multilevel queue, but Highest priority assignments are not static ——— Quantu

Jobs start at the top

• Use your quantum? move down

Don't? Stay where you are

Need parameters for:

- Number of queues
- Scheduling alg. per queue
- When to upgrade/downgrade job

Synchronization

What is a Semaphore?

Dijkstra introduced in the THE Operating System

Stateful:

- a value (incremented/decremented atomically)
- a queue
- a lock

Interface:

- Init(starting value)
- P (procure): decrement, "consume" or "start using"
- V (vacate): increment, "produce" or "stop using"

No operation to read the value!

Implementation of P and V

P():

- block (sit on Q) til n > 0
- when so, decrement value by 1

V():

- increment value by 1
- resume a thread waiting on Q (if any)

Implementation requires:

- TAS spinlocks
- System calls for sleep and wake

```
acquire(&guard);
while(n <= 0) {
    waiting.enq(self);
    release(&guard);
    sleep();
    acquire(&guard);
n -= 1;
release(&guard);
```

```
V()
    acquire(&guard);
    n += 1;
    if(!waiting.empty()) {
       wake(waiting.deq());
    release(&guard);
```

Semaphore's count:

- must be initialized!
- keeps state
 - reflects the sequence of past operations
 - >0 reflects number of future P operations that will succeed

Not possible to:

- read the count
- grab multiple semaphores at same time
- decrement/increment by more than 1!

Producer-Consumer with Semaphores

```
Shared:
int buf[N];
int in = 0, out = 0;
Semaphore mutex_in(1), mutex_out(1);
Semaphore empty(N), filled(0);
```

```
void produce(int item)
  empty.P(); //need space
  mutex in.P();
  buf[in] = item;
  in = (in+1)\%N;
  mutex in.V();
  filled.V(); //new item!
```

```
int consume()
{
    filled.P(); //need item
    mutex_out.P();
    int item = buf[out];
    out = (out+1)%N;
    mutex_out.V();
    empty.V(); //more space!
    return item;
```

Condition Variables

A mechanism to wait for events

3 operations on Condition Variable x

- x.wait(): sleep until woken up (could wake up on your own)
- x.signal(): wake at least one process waiting on condition (if there is one). No history associated with signal.
- x.broadcast(): wake all processes waiting on condition

Using Condition Variables

You must hold the monitor lock to call these operations.

```
To wait for some condition:
while not some_predicate():
CV.wait()
```

- atomically releases monitor lock & yields processor
- as CV.wait() returns, lock automatically reacquired

When the condition becomes satisfied:

```
CV.broadcast(): wakes up all threads
CV.signal(): wakes up at least one thread
```

Kid and Cook Threads


```
kid_main() {
    play_w_legos()
    BK.kid_eat()
    bathe()
    make_robots()
    BK.kid_eat()
    facetime_Edward()
    facetime_grandma()
    BK.kid_eat()
}
```

```
Monitor BurgerKing {
  Lock mlock
  int numburgers = 0
  condition hungrykid
  kid eat:
   with mlock:
    while (numburgers==0)
         hungrykid.wait()
     numburgers -= 1
  makeburger:
   with mlock:
     ++numburger
     hungrykid.signal()
```

```
cook_main() {

wake()
shower()
drive_to_work()
while(not_5pm)
BK.makeburger()
drive_to_home()
watch_got()
sleep()

30
```

Readers and Writers

```
Monitor ReadersNWriters {
 int waitingWriters=0, waitingReaders=0, nReaders=0, nWriters=0;
 Condition canRead, canWrite;
                                     void BeginRead()
BeginWrite()
                                       with monitor.lock:
  with monitor.lock:
                                         ++waitingReaders
    ++waitingWriters
                                         while (nWriters>0 or waitingWriters>0)
    while (nWriters >0 or nReaders >0)
                                           canRead.wait();
      canWrite.wait();
                                         --waitingReaders
    --waitingWriters
                                         ++nReaders
    nWriters = 1;
EndWrite()
                                     void EndRead()
  with monitor.lock:
                                       with monitor.lock:
    nWriters = 0
                                         --nReaders;
    if WaitingWriters > 0
                                         if (nReaders==0 and waitingWriters>0)
      canWrite.signal();
                                           canWrite.signal();
    else if waitingReaders > 0
      canRead.broadcast();
```

Checkin with 2 condition variables

```
self.allCheckedIn = Condition(self.lock)
self.allLeaving = Condition(self.lock)
def checkin():
  with self.lock:
    nArrived++
    if nArrived < nThreads:</pre>
                                  // not everyone has checked in
      while nArrived < nThreads:
        allCheckedIn.wait()
                                       // wait for everyone to check in
    else:
      nLeaving = 0
                                  // this thread is the last to arrive
      allCheckedIn.broadcast() // tell everyone we're all here!
    nLeaving++
    if nLeaving < nThreads:</pre>
                                         // not everyone has left yet
      while nLeaving < nThreads:</pre>
        allLeaving.wait()
                                        // wait for everyone to leave
    else:
                                  // this thread is the last to leave
      nArrived = 0
      allLeaving.broadcast()
                                  // tell everyone we're outta here!
```

Implementing barriers is not easy.
Solution here uses a "double-turnstile"

Virtual Memory

Paged Translation

TERMINOLOGY ALERT:

Page: the data itself

Frame: physical location

No more external fragmentation!

Logical Address Components

Page number – Upper bits

Must be translated into a physical frame number

Page offset – Lower bits

Does not change in translation

For given logical address space 2^m and page size 2ⁿ

Multi-Level Page Tables

Physical Memory

- + Allocate only PTEs in use
- + Can use smaller pages
- + Simple memory allocation
- more lookups per memory reference

Two-Level Paging Example

32-bit machine, 1KB page size

- Logical address is divided into:
 - a page offset of 10 bits $(1024 = 2^{10})$
 - a page number of 22 bits (32-10)
- Since the page table is paged, the page number is further divided into:
 - a 12-bit first index
 - a 10-bit second index
- Thus, a logical address is as follows:

page number		page offset
index 1	index 2	offset
12	10	10

This one goes to three!

Physical Memory

Complete Page Table Entry (PTE)

Valid	Protection R/W/X	Ref	Dirty	Index
		l	1	

Index is an index into:

- table of memory frames (if bottom level)
- table of page table frames (if multilevel page table)
- backing store (if page was swapped out)

Synonyms:

- Valid bit == Present bit
- Dirty bit == Modified bit
- Referenced bit == Accessed bit

Translation Lookaside Buffer (TLB)

Cache of virtual to physical page translations Physical Memory

Major efficiency improvement

(the contents of) A Virtual Page Can Be

Mapped

to a physical frame

Not Mapped (→ Page Fault)

- in a physical frame, but not currently mapped
- still in the original program file
- zero-filled (heap/BSS, stack)
- on backing store ("paged or swapped out")
- illegal: not part of a segment
 - → Segmentation Fault

When a page needs to be brought in...

- Find a free frame
 - or evict one from memory (next slide)
 - which one? (next lecture)
- Issue disk request to fetch data for page
 - what to fetch? (requested page or more?)
- Block current process
- Context switch to new process
- When disk completes, set valid bit to 1 (& other permission bits), put current process in ready queue

When a page is swapped out...

- Find all page table entries that refer to old page
 - Frame might be shared
 - Core Map (frames → pages)
- Set each page table entry to invalid
- Remove any TLB entries
 - Hardware copies of now invalid PTE
 - "TLB Shootdown"
- Write changes on page back to disk, if needed
 - Dirty/Modified bit in PTE indicates need
 - Text segments are (still) on program image on disk

Valid	Protection 	Ref	Dirty	Index
-------	--------------------	-----	-------	-------

Page Replacement Algorithms

- Random: Pick any page to eject at random
 - Used mainly for comparison
- FIFO: The page brought in earliest is evicted
 - Ignores usage
- OPT: Belady's algorithm
 - Select page not used for longest time
- LRU: Evict page that hasn't been used for the longest
 - Past could be a good predictor of the future
- MRU: Evict the most recently used page
- LFU: Evict least frequently used page

Filesystems

The abstraction stack

I/O systems are accessed through a series of layered abstractions

File System API

8 Performance

Device Access Application

Library

File System

Block Cache

Block Device Interface

Device Driver

Memory-mapped I/O, DMA, Interrupts

Physical Device

Reading from disk

Must specify:

cylinder #
 Surface (distance from spindle)

head #

- sector #
- transfer size
- memory address

Disk overheads

Disk Latency = **Seek Time** + **Rotation Time** + Transfer Time

- **Seek:** to get to the track (5-15 millisecs (ms))
- Rotational Latency: to get to the sector (4-8 millisecs (ms))
 (on average, only need to wait half a rotation)
- Transfer: get bits off the disk (25-50 microsecs (μs)

Disk Scheduling: C-SCAN

Circular list treatment:

- head moves from one end to other
- servicing requests as it goes
- reaches the end, returns to beginning
- no requests serviced on return trip
- + More uniform wait time than SCAN

C-SCAN Schedule? Total Head movement?

Head pointer @ 53

Queue: 98, 183, 37, 122, 14, 124, 65, 67

Implementation Basics

Directories

• file name → file number

Index structures

• file number → block

Free space maps

find a free block; better: find a free block nearby

Locality heuristics

- policies enabled by above mechanisms
 - group directories
 - make writes sequential
 - defragment

Directory

Directory: provides names for files

- a list of human readable names
- a mapping from each name to a specific underlying file or directory

FFS Superblock

Identifies file system's key parameters:

- type
- block size
- inode array location and size (or analogous structure for other FSs)
- location of free list

FFS: Index Structures

What else is in an inode?

- Type
 - ordinary file
 - directory
 - symbolic link
 - special device
- Size of the file (in #bytes)
- # links to the i-node
- Owner (user id and group id)
- Protection bits
- Times: creation, last accessed, last modified

File Metadata

Direct Pointer		
DP		
Direct Pointer		
Indirect Pointer		
Dbl. Indirect Ptr.		

Tripl. Indirect Ptr.

FFS: Steps to reading /foo/bar/baz

Read & Open:

- (1) inode #2 (root always has inumber 2), find root's blocknum (912)
- (2) root directory (in block 912), find foo's inumber (31)
- (3) inode #31, find foo's blocknum (194)
- (4) foo (in block 194), find bar's inumber (73)
- (5) inode #73, find bar's blocknum (991)
- (6) bar (in block 991), find baz's inumber (40)
- (7) inode #40, find data blocks (302, 913, 301)
- (8) data blocks (302, 913, 301)

Caching allows first few steps to be skipped

Finding inodes in FFS

Use inode number to index into inode array

512 bytes/block 128 bytes/inode

To find address of inode 11: addr(b1) + 11 * size(inode)

LFS vs FFS

Blocks written to create two 1-block files: dir1/file1 and dir2/file2

Finding Inodes in LFS

- Inode map: a table indicating where each inode is on disk
 - Normally cached in memory
 - Inode map blocks are written as part of the segment when updated
 - Still no seeking to write to imap ©
- How do we find the blocks of the Inode map?
 - Listed in a fixed checkpoint region, updated periodically – same function as superblock in FFS

Overwriting Data in LFS

- To change data in block 1, create a new block 1
 - Update the inode (create a new one)
 - Update the imap

No need to change dir1, since file1 still has the same inode number

Segment Summary Block

- Kept at the beginning of each segment
- For each data block in segment, SSB holds
 - The file the data block belongs to (inode#)
 - The offset (block#) of the data block within the file

Segment Summary Block

- During cleaning, to determine whether data block D is live:
 - Use inode# to find in imap where inode is currently on disk
 - Read inode (if not already in memory)
 - Check whether pointer for block block# refers to D's address
 - If not, D is dead
- Update file's inode with correct pointer if
 D is live and compacted to new segment

Networking

Network Layering

Network abstraction is usually *layered*

- Like Object Oriented-style inheritance
- Also like the hw/sw stack

Application		
Presentation		
Session		
Transport		
Network		
Link		
Physical		

Proposed 7-Layer ISO/OSI reference model (1970's)

Application
Transport
Network
Link
Physical

Actual 5-Layer Internet Protocol Stack

Internet Protocol Stack

Application	exchanges messages	HTTP, FTP, DNS
Transport	Transports messages; exchanges segments	TCP, UDP
Network	Transports segments; exchanges datagrams	IP, ICMP (ping)
Link	Transports datagrams; exchanges frames	Ethernet, WiFi
Physical	Transports frames; exchanges bits	wires, signal encoding

Encapsulation

Headers

src & dst ports + ...

src & dest IP addr + ...

src & dest MAC addr + ...

application transport network link physical

destination

application transport network link physical router

DNS Lookup

- 1. the client asks its local nameserver
- 2. the local nameserver asks one of the *root nameservers*
- 3. the root nameserver replies with the address of the authoritative nameserver
- 4. the server then queries that nameserver
- 5. repeat until host is reached, cache result.

Example: Client wants IP addr of www.amazon.com

- 1. Queries root server to find com DNS server
- 2. Queries .com DNS server to get amazon.com DNS server
- Queries amazon.com DNS server to get IP address for www.amazon.com

Transport services and protocols

User Datagram Protocol (UDP)

- unreliable, unordered delivery
- no-frills extension of best-effort IP

"Unreliable
Datagram Protocol"

Transmission Control Protocol (TCP)

- reliable, in-order delivery
- congestion control
- flow control
- connection setup

Both provide:

- port numbers to identify sending/receiving processes
- additional headers inside IP packet

UDP Segment Format

UDP header size: 8 bytes

(IP address will be added when the segment is turned into a datagram/packet at the Network Layer)

UDP Sockets and Ports

Host receives 2 UDP segments:

- checks dst port, directs segment to socket w/that port
- different src IP or port but same dst port → same socket

TCP Segment Format

HL: header len

U: urgent data

A: ACK # valid

P: push data now

RST, SYN, FIN:

connection commands

(setup, teardown)

bytes receiver

willing to accept

TCP header size: 20-60 bytes

(IP address will be added when the segment is turned into a datagram/packet at the Network Layer)

TCP Sockets and Ports

Host receives 3 TCP segments:

- all destined to IP addr B, port 80
- demuxed to different sockets with socket's 4-tuple

TCP Usage Pattern

3 round-trips:

- 1. set up a connection
- 2. send data & receive a response
- 3. tear down connection

FINs work (mostly) like SYNs to tear down connection

Need to wait after a FIN for straggling packets

TCP Congestion Window

When first item in window is acknowledged, sender can send the 5th item.

TCP Fast Retransmit

Receiver detects a lost packet (*i.e.*, a missing seq), ACKs the last id it successfully received

Sender can detect the loss without waiting for timeout

TCP Congestion Control

Additive-Increase/Multiplicative-Decrease (AIMD):

- window size++ every RTT if no packets dropped
- window size/2 if packet is dropped
 - drop evident from the acknowledgments
- → slowly builds up to max bandwidth, and hover there
 - Does not achieve the max possible
 - + Shares bandwidth well with other TCP connections

This linear-increase, exponential backoff in the face of congestion is termed *TCP-friendliness*

TCP Slow Start

- Initial phase: exponential increase
- Assuming no other losses in the network except those due to bandwidth

IP

- Internetworking protocol
 - Network layer
- Common address format
- Common packet format for the Internet
 - Specifies what packets look like
 - Fragments long packets into shorter packets
 - Reassembles fragments into original shape
- IPv4 vs IPv6
 - IPv4 is what most people use
 - IPv6 more scalable and clears up some of the messy parts

IPv4 packet layout

IP Fragmentation Mechanics

- Source assigns each datagram an "identification"
- At each hop, IP can divide a long datagram into N smaller datagrams
- Sets the More Fragments bit except on the last packet
- Receiving end puts the fragments together based on *Identification* and *More Fragments* and *Fragment* Offset (times 8)

Routing Table

- Maps IP address to interface or port and to MAC address
- Longest Prefix Matching
- Your laptop/phone has a routing table too!

Address/Mask	IF or Port	MAC
128.84.216/23	en0	c4:2c:03:28:a1:39
127/8	lo0	127.0.0.1
128.84.216.36/32	en0	74:ea:3a:ef:60:03
128.84.216.80/32	en0	20:aa:4b:38:03:24
128.84.217.255/32	en0	ff:ff:ff:ff:ff
130.18/16	en1	c8:d4:58:1a:32:de

Prefix of address to match

Number of bits in prefix

Netmask: a "1" for each bit that matters For /16, netmask is 255.255.0.0

Router Function

often implemented in hardware

```
for ever:
```

```
receive IP packet p
if isLocal(p.dest): return localDelivery(p)
if --p.TTL == 0: return dropPacket(p)
matches = { }
for each entry e in routing table:
    if p.dest & e.netmask == e.address & e.netmask:
        matches.add(e)
bestmatch = matches.maxarg(e.netmask)
forward p to bestmatch.port/bestmatch.MAC
```

Destination: 128.84.216.33

Entry: 128.84.216.0/23

Netmask: 255.255.254.0

Dest & Netmask = 128.84.216.0

Entry & Netmask = 128.84.216.0