
Review
CS 4410

Operating Systems

Summer 2019

Edward Tremel

• Architectural Support (HW/SW interface)
• Processes and Threads
• Scheduling
• Synchronization
• Virtual Memory
• Disks and Filesystems
• Networking

Main OS Topics

2

Architectural
Support

Programmed I/O
• CPU has dedicated, special instructions
• CPU has additional wires (I/O bus)
• Instruction specifies device and operation

Memory-mapped I/O
• Device communication goes over

memory bus
• Reads/Writes to special addresses

converted into I/O operations by
dedicated device hardware

• Each device appears as if it is part of the
memory address space

• Predominant device interfacing
technique

Device Interfacing Techniques

4

CPU

Screen

Mouse

KB M
e

m
o

ry

I/O
Bus

Memory
Bus

Interrupt-driven operation with memory-mapped I/O:
• CPU initiates device operation (e.g., read from disk):

writes an operation descriptor to a designated
memory location

• CPU continues its regular computation
• The device asynchronously performs the operation
• When the operation is complete, interrupts the CPU

Bulk Data Transfers: Use DMA
• CPU sets up DMA request
• Device puts data on bus, RAM accepts it
• Device interrupts CPU when all done

I/O Summary

5

1. Privilege mode bit (0=kernel, 1=user)
Where? x86 → EFLAGS reg., MIPS →status reg.

2. Privileged instructions
user mode → no way to execute unsafe insns

3. Memory protection
user mode →memory accesses outside a
process’ memory region are prohibited

4. Timer interrupts
kernel must be able to periodically regain
control from running process

5. Efficient mechanism for switching modes
must be fast because it happens a lot!

Supporting dual mode operation

6

Processes and
Threads

7

For each process, the OS has a PCB containing:
• location in memory
• location of executable on disk
• which user is executing this process
• process privilege level
• process identifier (pid)
• process arguments (for identification with ps)
• process status (Ready, waiting, finished, etc.)
• register values
• scheduling information
• PC, SP, eflags/status register

… and more!

Usually lives on the kernel stack

Process Control Block (PCB)

8

Creating and Managing Processes

9[UNIX]

fork
Create a child process as a clone of the current

process. Returns to both parent and child. Returns

child pid to parent process, 0 to child process.

exec
(prog, args)

Run the application prog in the current process

with the specified arguments.

wait(pid) Pause until the child process has exited.

exit
Tell the kernel the current process is complete, and its

data structures (stack, heap, code) should be garbage

collected. Why not necessarily PCB?

kill
(pid, type)

Send an interrupt of a specified type to a process.

(a bit of a misnomer, no?)

[UNIX]

Allow applications to behave like operating systems.

Signals (virtualized interrupt)

10[UNIX][UNIX]

ID Name Default Action Corresponding Event

2 SIGINT Terminate
Interrupt

(e.g., ctrl-c from keyboard)

9 SIGKILL Terminate
Kill program

(cannot override or ignore)

14 SIGALRM Terminate Timer signal

17 SIGCHLD Ignore Child stopped or terminated

20 SIGTSTP
Stop until next

SIGCONT
Stop signal from terminal
(e.g. ctrl-z from keyboard)

Process:
• Privilege Level
• Address Space
• Code, Data, Heap
• Shared I/O resources
• One or more Threads:

• Stack
• Registers
• PC, SP

Process vs. Thread

11

Thread Memory Layout

12

Data

Insns

Stack 1

PC

Thread 1

PC

PC

SP
Stack 2

Thread 2
SP

Stack 3

Thread 3
SP

Virtual
Address
Space(Heap subdivided, shared, & not shown.)

Scheduling

1. Initialize devices
2. Initialize “first process”
3. while (TRUE) {

• while device interrupts pending
- handle device interrupts

• while system calls pending
- handle system calls

• if run queue is non-empty
- select process and switch to it

• otherwise
- wait for device interrupt

}

Kernel Operation (conceptual, simplified)

14

Processes P1, P2, P3 with compute time 12, 3, 3

Scenario 1: arrival order P1, P2, P3

Scenario 2: arrival order P2, P3, P1

First In First Out (FIFO)

P1 P2 P3

Time 0 12 15 18Time 0

(12+15+18)/3 = 15

Average Response Time:

P1P2 P3

183 6Time 0

15

Average Response Time:

(3+6+18)/3 = 9

Note: this is always non-preemptive

FIFO Roundup

16

The Good

The Bad

The Ugly

– Poor avg. response time if
tasks have variable size
– Average response time very
sensitive to arrival time

– Not responsive to
interactive tasks

+ Simple
+ Low-overhead
+ No Starvation
+ Optimal avg. response time if

all tasks same size

Schedule in order of estimated completion† time

Scenario : each job takes as long as its number

Would another schedule improve avg response time?

Shortest Job First (SJF)

Average Response Time:

P5P1 P2

151Time 0

P4P3

3 6 10

†with preemption, remaining time

(1+3+6+10+15)/5 = 7

SJF Roundup

18

The Good

The Bad

The Ugly

– Pessimal variance in
response time

– Needs estimate of
execution time
– Can starve long jobs
– Frequent context switches

+ Optimal average
response time (when jobs
available simultaneously)

• Each process allowed to run for a quantum
• Context is switched (at the latest) at the end of

the quantum

What is a good quantum size?
• Too long, and it morphs into FIFO
• Too short, and much time lost context

switching
• Typical quantum: about 100X cost of context

switch (~100ms vs. << 1 ms)

Round Robin (RR)

Mixture of one I/O Bound tasks + two CPU Bound Tasks
I/O bound: compute, go to disk, repeat
→ RR doesn’t seem so fair after all….

More Problems with Round Robin

20

compute go to disk

wait 190 ms………….

100 ms quanta100 ms quanta

100 ms quanta

compute go to disk

RR Roundup

21

The Good

The Bad

The Ugly

– Overhead of context
switching
– Mix of I/O and CPU bound

– Particularly bad for
simultaneous, equal
length jobs

+ No starvation
+ Can reduce response time
+ Low Initial waiting time

Multi-Level Feedback Queues
• Like multilevel queue, but

assignments are not static

• Jobs start at the top
• Use your quantum? move down

• Don’t? Stay where you are

Need parameters for:
• Number of queues

• Scheduling alg. per queue

• When to upgrade/downgrade job

22

Lowest priority

Highest priority

Quantum = 2

Quantum = 4

Quantum = 8

RR

Synchronization

Dijkstra introduced in the THE Operating System

Stateful:
• a value (incremented/decremented atomically)
• a queue
• a lock

Interface:
• Init(starting value)
• P (procure): decrement, “consume” or “start using”
• V (vacate): increment, “produce” or “stop using”

No operation to read the value!

What is a Semaphore?

24

[Dijkstra 1962]

Dutch 4410: P = Probeer (‘Try'), V = Verhoog ('Increment', 'Increase by one')

Implementation of P and V

25

P() {
acquire(&guard);
while(n <= 0) {

waiting.enq(self);
release(&guard);
sleep();
acquire(&guard);

}
n -= 1;
release(&guard);

}

V() {
acquire(&guard);
n += 1;
if(!waiting.empty()) {

wake(waiting.deq());
}
release(&guard);

}

P():
• block (sit on Q) til n > 0
• when so, decrement value by 1

V():
• increment value by 1
• resume a thread waiting on Q

(if any)

Implementation requires:
• TAS spinlocks
• System calls for sleep

and wake

• must be initialized!
• keeps state
• reflects the sequence of past operations
• >0 reflects number of future P operations

that will succeed

Not possible to:
• read the count
• grab multiple semaphores at same time
• decrement/increment by more than 1!

Semaphore’s count:

26

Producer-Consumer with Semaphores

27

void produce(int item)
{

empty.P(); //need space

mutex_in.P();
buf[in] = item;
in = (in+1)%N;
mutex_in.V();
filled.V(); //new item!

}

int consume()
{

filled.P(); //need item

mutex_out.P();
int item = buf[out];
out = (out+1)%N;
mutex_out.V();
empty.V(); //more space!

return item;
}

Shared:
int buf[N];
int in = 0, out = 0;
Semaphore mutex_in(1), mutex_out(1);
Semaphore empty(N), filled(0);

A mechanism to wait for events

3 operations on Condition Variable x
• x.wait(): sleep until woken up (could wake up

on your own)
• x.signal(): wake at least one process waiting

on condition (if there is one). No history
associated with signal.

• x.broadcast(): wake all processes waiting on
condition

Condition Variables

28!! NOT the same thing as UNIX wait & signal !!

You must hold the monitor lock to call these
operations.

To wait for some condition:
while not some_predicate():

CV.wait()
• atomically releases monitor lock & yields processor
• as CV.wait() returns, lock automatically reacquired

When the condition becomes satisfied:
CV.broadcast(): wakes up all threads
CV.signal(): wakes up at least one thread

Using Condition Variables

29

Kid and Cook Threads

30

kid_main() {

play_w_legos()
BK.kid_eat()
bathe()
make_robots()
BK.kid_eat()
facetime_Edward()
facetime_grandma()
BK.kid_eat()

}

cook_main() {

wake()
shower()
drive_to_work()
while(not_5pm)
BK.makeburger()

drive_to_home()
watch_got()
sleep()

}

Monitor BurgerKing {
Lock mlock

int numburgers = 0
condition hungrykid

kid_eat:
with mlock:
while (numburgers==0)

hungrykid.wait()
numburgers -= 1

makeburger:
with mlock:
++numburger
hungrykid.signal()

}

Ready
Running

Readers and Writers

31

Monitor ReadersNWriters {

int waitingWriters=0, waitingReaders=0, nReaders=0, nWriters=0;
Condition canRead, canWrite;

BeginWrite()
with monitor.lock:
++waitingWriters
while (nWriters >0 or nReaders >0)

canWrite.wait();
--waitingWriters
nWriters = 1;

EndWrite()
with monitor.lock:
nWriters = 0
if WaitingWriters > 0
canWrite.signal();

else if waitingReaders > 0
canRead.broadcast();

}

void BeginRead()
with monitor.lock:
++waitingReaders
while (nWriters>0 or waitingWriters>0)
canRead.wait();

--waitingReaders
++nReaders

void EndRead()
with monitor.lock:
--nReaders;
if (nReaders==0 and waitingWriters>0)
canWrite.signal();

self.allCheckedIn = Condition(self.lock)
self.allLeaving = Condition(self.lock)

def checkin():
with self.lock:
nArrived++
if nArrived < nThreads: // not everyone has checked in
while nArrived < nThreads:
allCheckedIn.wait() // wait for everyone to check in

else:
nLeaving = 0 // this thread is the last to arrive
allCheckedIn.broadcast() // tell everyone we’re all here!

nLeaving++
if nLeaving < nThreads: // not everyone has left yet
while nLeaving < nThreads:
allLeaving.wait() // wait for everyone to leave

else:
nArrived = 0 // this thread is the last to leave
allLeaving.broadcast() // tell everyone we’re outta here!

Implementing barriers is not easy.
Solution here uses a “double-turnstile”

Checkin with 2 condition variables

32

Virtual Memory

TERMINOLOGY ALERT:
Page: the data itself
Frame: physical location

Paged Translation

34

stack

text

data

heap

Process
View

STACK 0

TEXT 0

DATA 0

HEAP 1

Physical
Memory

HEAP 0

TEXT 1

STACK 1
Virtual
Page 0

Virtual
Page N

Frame 0

Frame M

No more
external

fragmentation!

Page number – Upper bits
• Must be translated into a physical frame number

Page offset – Lower bits
• Does not change in translation

For given logical address space 2m and page size 2n

Logical Address Components

35

page number page offset

m - n n

36

+ Allocate only PTEs in use
+ Can use smaller pages
+ Simple memory allocation
− more lookups per memory reference

Multi-Level Page Tables

index 1 | index 2 | offset

Frame | Access

Frame

32-bit machine, 1KB page size

• Logical address is divided into:
– a page offset of 10 bits (1024 = 2^10)

– a page number of 22 bits (32-10)

• Since the page table is paged, the page number is
further divided into:
– a 12-bit first index

– a 10-bit second index

• Thus, a logical address is as follows:

Two-Level Paging Example

page number page offset

12 10 10
37

index 1 index 2 offset

38

+ First Level requires less contiguous memory
− even more lookups per memory reference

This one goes to three!

Index is an index into:
• table of memory frames (if bottom level)

• table of page table frames (if multilevel page table)

• backing store (if page was swapped out)

Synonyms:
• Valid bit == Present bit

• Dirty bit == Modified bit

• Referenced bit == Accessed bit

Complete Page Table Entry (PTE)

39

Valid Protection	R/W/X Ref Dirty Index

Cache of virtual to physical page translations
Major efficiency improvement

40

Translation Lookaside Buffer (TLB)

Mapped
• to a physical frame

Not Mapped (→ Page Fault)
• in a physical frame, but not currently mapped
• still in the original program file
• zero-filled (heap/BSS, stack)
• on backing store (“paged or swapped out”)
• illegal: not part of a segment

→ Segmentation Fault

(the contents of) A Virtual Page Can Be

41

• Find a free frame
- or evict one from memory (next slide)

- which one? (next lecture)

• Issue disk request to fetch data for page
- what to fetch? (requested page or more?)

• Block current process
• Context switch to new process
• When disk completes, set valid bit to 1 (&

other permission bits), put current process
in ready queue

When a page needs to be brought in…

42

• Find all page table entries that refer to old page
- Frame might be shared
- Core Map (frames → pages)

• Set each page table entry to invalid
• Remove any TLB entries

- Hardware copies of now invalid PTE
- “TLB Shootdown”

• Write changes on page back to disk, if needed
- Dirty/Modified bit in PTE indicates need
- Text segments are (still) on program image on disk

When a page is swapped out…

43

Valid Protection	R/W/X Ref Dirty Index

• Random: Pick any page to eject at random
• Used mainly for comparison

• FIFO: The page brought in earliest is evicted
• Ignores usage

• OPT: Belady’s algorithm
• Select page not used for longest time

• LRU: Evict page that hasn’t been used for the longest
• Past could be a good predictor of the future

• MRU: Evict the most recently used page
• LFU: Evict least frequently used page

Page Replacement Algorithms

44

Filesystems

45

I/O systems are accessed
through a series of
layered abstractions

The abstraction stack

File System API

& Performance

Device

Access

Application

Library

File System

Block Cache

Block Device Interface

Device Driver

Memory-mapped I/O,

DMA, Interrupts

Physical Device

Must specify:

• cylinder #

(distance from spindle)

• head #

• sector #

• transfer size

• memory address

Reading from disk

47

Disk Latency = Seek Time + Rotation Time + Transfer Time
• Seek: to get to the track (5-15 millisecs (ms))

• Rotational Latency: to get to the sector (4-8 millisecs (ms))

(on average, only need to wait half a rotation)

• Transfer: get bits off the disk (25-50 microsecs (μs)

Disk overheads

48

Track

Sector
Seek Time

Rotational

Latency

Circular list treatment:

• head moves from one end to other

• servicing requests as it goes

• reaches the end, returns to beginning

• no requests serviced on return trip

+ More uniform wait time than SCAN

Disk Scheduling: C-SCAN

49

C-SCAN Schedule?
Total Head movement?

Head pointer @ 53

Queue: 98, 183, 37, 122, 14, 124, 65, 67

Directories
• file name ➜ file number

Index structures
• file number ➜ block

Free space maps
• find a free block; better: find a free block nearby

Locality heuristics
• policies enabled by above mechanisms

- group directories

- make writes sequential

- defragment

Implementation Basics

50

Directory: provides names for files
• a list of human readable names
• a mapping from each name to a specific

underlying file or directory

Directory

51

directory index
structure

Storage
Block

File
Number

871

File
Name:

foo.txt

Identifies file system’s key parameters:
• type
• block size
• inode array location and size

(or analogous structure for other FSs)
• location of free list

FFS Superblock

52

block number 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

blocks:

Remaining blocksi-node
blocks

super
block

FFS: Index Structures

53

• Type
- ordinary file
- directory
- symbolic link
- special device

• Size of the file (in #bytes)
• # links to the i-node
• Owner (user id and group id)
• Protection bits
• Times: creation, last accessed,

last modified

What else is in an inode?

54

File
Metadata

Read & Open:
(1) inode #2 (root always has inumber 2), find root’s blocknum (912)
(2) root directory (in block 912), find foo’s inumber (31)
(3) inode #31, find foo’s blocknum (194)
(4) foo (in block 194), find bar’s inumber (73)
(5) inode #73, find bar’s blocknum (991)
(6) bar (in block 991), find baz’s inumber (40)
(7) inode #40, find data blocks (302, 913, 301)
(8) data blocks (302, 913, 301)

FFS: Steps to reading /foo/bar/baz

194

…

301 302

…

912 913

…

991

baz 40
ni 80
nit 87

nd I
remembe
r.I do
and I

bin 47
foo 31
usr 98

fie 23
far 81
bar 73

under
stand
.

I hear
and I
forget.
I see a

912 194 302
913
301

991

2 31 40 73

inodes data blocks

1 23 4 8 8857 6

Caching allows
first few steps to

be skipped

• Use inode number to index into inode
array

Finding inodes in FFS

56

Super Block Inodes Data Blocks

b0 b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

…

To find address of inode 11:
addr(b1) + 11 * size(inode)

512 bytes/block
128 bytes/inode

Blocks written to create two 1-block files: dir1/file1 and dir2/file2

LFS vs FFS

57

inode

directory

data

inode map

dir1 dir2

file1
file2

Unix FFS

Log-Structured FS

file1 file2

dir1 dir2

• Inode map: a table indicating where each inode
is on disk
• Normally cached in memory
• Inode map blocks are written as part of the segment

when updated
• Still no seeking to write to imap☺

• How do we find the blocks of the Inode map?
• Listed in a fixed checkpoint region, updated

periodically – same function as superblock in FFS

Finding Inodes in LFS

58

CR seg 1 seg 2 seg 2free free

• To change data in block 1, create a new block 1
• Update the inode (create a new one)
• Update the imap

Overwriting Data in LFS

59

file1 file2

dir1 dir2

file1

No need to change dir1, since file1
still has the same inode number

Segment 1 Segment 2

• Kept at the beginning of each segment
• For each data block in segment, SSB

holds
• The file the data block belongs to (inode#)
• The offset (block#) of the data block within

the file

Segment Summary Block

60

file1 file2

dir1 dir2

SSB

• During cleaning, to determine whether
data block D is live:
• Use inode# to find in imap where inode is

currently on disk
• Read inode (if not already in memory)
• Check whether pointer for block block#

refers to D’s address
• If not, D is dead

• Update file’s inode with correct pointer if
D is live and compacted to new segment

Segment Summary Block

61

Networking

Network abstraction is usually layered
• Like Object Oriented-style inheritance
• Also like the hw/sw stack

Network Layering

63

Application

Transport

Network

Link

Physical

Application

Presentation

Session

Transport

Network

Link

Physical

Actual 5-Layer Internet
Protocol Stack

Proposed 7-Layer ISO/OSI
reference model (1970’s)

Internet Protocol Stack

64

Application exchanges messages HTTP, FTP, DNS

Transport
Transports messages;
exchanges segments

TCP, UDP

Network
Transports segments;
exchanges datagrams

IP, ICMP (ping)

Link
Transports datagrams;

exchanges frames
Ethernet, WiFi

Physical
Transports frames;

exchanges bits
wires, signal encoding

network

link

physical

application

transport

network

link

physical

destination

Encapsulation

HT

message M

source

router

application

transport

network

link

physical

Msegment

HT MHNdatagram

HT MHNHLframe

HT MHNHL

HT MHNHT MHN

HT MHNHL

HT MHNHL

HT MHN

M

HT M

65

Headers
Transport src & dst ports + …

Network src & dest IP addr + …

Link src & dest MAC addr + …

1. the client asks its local nameserver
2. the local nameserver asks one of the root nameservers
3. the root nameserver replies with the address of the

authoritative nameserver
4. the server then queries that nameserver
5. repeat until host is reached, cache result.

Example: Client wants IP addr of www.amazon.com

1. Queries root server to find com DNS server
2. Queries .com DNS server to get amazon.com DNS server
3. Queries amazon.com DNS server to get IP address for

www.amazon.com

DNS Lookup

66

User Datagram Protocol (UDP)
• unreliable, unordered delivery
• no-frills extension of best-effort IP

Transmission Control Protocol (TCP)
• reliable, in-order delivery
• congestion control
• flow control
• connection setup

Both provide:
• port numbers to identify sending/receiving processes
• additional headers inside IP packet

Transport services and protocols

67

UDP Segment Format

68

32 bits

length (in bytes)
of UDP segment,
including header

source port # dest port #

length checksum

application message
(payload)

(IP address will be added when the segment is turned
into a datagram/packet at the Network Layer)

UDP header size: 8 bytes

C | B

src dst
A | B

src dst

UDP Sockets and Ports

69

application

transport

network

link

physical

P1

process
socket

application

transport

network

link

physical

P3

application

transport

network

link

physical

P4

Host receives 2 UDP segments:
• checks dst port, directs segment to socket w/that port
• different src IP or port but same dst port → same socket
• application must sort it out

host: IP
address A host: IP

address C

server: IP
address B

sources

destination

sources

9157 5775

6428

9157| 6428 5785| 6428

TCP Segment Format

70

32 bits

source port # dest port #

sequence number

acknowledgment number

HL U A P R S F receive window

checksum urg data pointer

options (variable length)

application message
(payload)

(IP address will be added when the segment is turned
into a datagram/packet at the Network Layer)

TCP header size: 20-60 bytes

HL: header len
U: urgent data
A: ACK # valid
P: push data now
RST, SYN, FIN:
connection commands
(setup, teardown)

bytes receiver
willing to accept

TCP Sockets and Ports

71

application

transport

network

link

physical

P1

process
socket

application

transport

network

link

physical

P4

application

transport

network

link

physical

P5

Host receives 3 TCP segments:
• all destined to IP addr B, port 80
• demuxed to different sockets with socket’s 4-tuple

host: IP
address A host: IP

address C

server: IP
address B

sources

destination

sources

915

B| 80

A|915

P2

P6
517915

P3
B| 80

C|517

B| 80

C|915

915 | 80

A | B

915 | 80

C | B

517 | 80

C | B

src dst

3 round-trips:
1. set up a connection
2. send data & receive a response
3. tear down connection

FINs work (mostly) like SYNs to
tear down connection

Need to wait after a FIN for
straggling packets

TCP Usage Pattern

72

TCP Congestion Window

73

When first item in
window is

acknowledged,
sender can send

the 5th item.

Receiver detects a lost packet
(i.e., a missing seq), ACKs the
last id it successfully received

Sender can detect the loss
without waiting for timeout

TCP Fast Retransmit

74

Additive-Increase/Multiplicative-Decrease (AIMD):
• window size++ every RTT if no packets dropped
• window size/2 if packet is dropped

- drop evident from the acknowledgments

→ slowly builds up to max bandwidth, and hover there

- Does not achieve the max possible

+ Shares bandwidth well with other TCP connections

This linear-increase, exponential backoff in the face of
congestion is termed TCP-friendliness

TCP Congestion Control

75

• Initial phase: exponential increase
• Assuming no other losses in the network

except those due to bandwidth

TCP Slow Start

76
Time

B
a

n
d

w
id

th

Max Bandwidth

• Internetworking protocol
- Network layer

• Common address format
• Common packet format for the Internet

- Specifies what packets look like

- Fragments long packets into shorter packets

- Reassembles fragments into original shape

• IPv4 vs IPv6
- IPv4 is what most people use

- IPv6 more scalable and clears up some of the messy parts

IP

77

IPv4 packet layout

78

Version IHL TOS Total Length

Identification Flags Fragment Offset

TTL Protocol Header Checksum

Source Address

Destination Address

Options

Payload

0 1 2 3Byte:

• Source assigns each datagram an “identification”
• At each hop, IP can divide a long datagram into N

smaller datagrams
• Sets the More Fragments bit except on the last

packet
• Receiving end puts the fragments together based

on Identification and More Fragments and Fragment
Offset (times 8)

IP Fragmentation Mechanics

79

ID 8 | F | 0

MAC1 |MAC2

ID 8 | T | 0

MAC2 |MAC3

ID 8 | T | 16

MAC2 |MAC3

ID 8 | F | 32

MAC2 |MAC3

• Maps IP address to interface or port and to MAC address
• Longest Prefix Matching
• Your laptop/phone has a routing table too!

Routing Table

80

Address/Mask IF or Port MAC

128.84.216/23 en0 c4:2c:03:28:a1:39

127/8 lo0 127.0.0.1

128.84.216.36/32 en0 74:ea:3a:ef:60:03

128.84.216.80/32 en0 20:aa:4b:38:03:24

128.84.217.255/32 en0 ff:ff:ff:ff:ff:ff

130.18/16 en1 c8:d4:58:1a:32:de

Prefix of
address
to match

Number of
bits in prefix

Netmask: a “1” for each bit that matters
For /16, netmask is 255.255.0.0

for ever:
receive IP packet p
if isLocal(p.dest): return localDelivery(p)
if --p.TTL == 0: return dropPacket(p)
matches = { }
for each entry e in routing table:

if p.dest & e.netmask == e.address & e.netmask:
matches.add(e)

bestmatch = matches.maxarg(e.netmask)
forward p to bestmatch.port/bestmatch.MAC

Router Function
often implemented in hardware

81

Destination: 128.84.216.33
Entry: 128.84.216.0/23
Netmask: 255.255.254.0

Dest & Netmask = 128.84.216.0
Entry & Netmask = 128.84.216.0

