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1.1 Origin of Operations Research 
 
The term Operations Research (OR) was first coined by MC Closky and Trefthen in 1940 in a 
small town, Bowdsey of UK. The main origin of OR was during the second world war – The  
military commands of UK and USA engaged several inter-disciplinary teams of scientists to 
undertake scientific research into strategic and tactical military operations.  
 
Their mission was to formulate specific proposals and to arrive at the decision on optimal 
utilization of scarce military resources and also to implement the decisions effectively. In simple 
words, it was to uncover the methods that can yield greatest results with little efforts. Thus it had 
gained popularity and was called “An art of winning the war without actually fighting it” 
 
The name Operations Research (OR) was invented because the team was dealing with research 
on military operations. The encouraging results obtained by British OR teams motivated US 
military management to start with similar activities. The work of OR team was given various 
names in US: Operational Analysis, Operations Evaluation, Operations Research, System 
Analysis, System Research, Systems Evaluation and so on. 
 
The first method in this direction was simplex method of linear programming developed in 1947 
by G.B Dantzig, USA. Since then, new techniques and applications have been developed to yield 
high profit from least costs. 
 
Now OR activities has become universally applicable to any area such as transportation, hospital 
management, agriculture, libraries, city planning, financial institutions, construction management 
and so forth. In India many of the industries like Delhi cloth mills, Indian Airlines, Indian 
Railway, etc are making use of OR activity. 
 
1.2 Concept and Definition of OR  
 
Operations research signifies research on operations. It is the organized application of modern 
science, mathematics and computer techniques to complex military, government, business or 
industrial problems arising in the direction and management of large systems of men, material, 
money and machines. The purpose is to provide the management with explicit quantitative 
understanding and assessment of complex situations to have sound basics for arriving at best 
decisions. 
Operations research seeks the optimum state in all conditions and thus provides optimum 
solution to organizational problems. 
 
Definition: OR is a scientific methodology – analytical, experimental and quantitative – which 
by assessing the overall implications of various alternative courses of action in a management 
system provides an improved basis for management decisions. 
 



1.3 Characteristics of OR (Features) 
 
The essential characteristics of OR are 

1. Inter-disciplinary team approach – The optimum solution is found by a team of 
scientists selected from various disciplines. 

2. Wholistic approach to the system – OR takes into account all significant factors and 
finds the best optimum solution to the total organization. 

3. Imperfectness of solutions – Improves the quality of solution. 
4. Use of scientific research – Uses scientific research to reach optimum solution. 
5. To optimize the total output – It tries to optimize by maximizing the profit and 

minimizing the loss. 
 
1.4 Applications of OR  
 
Some areas of applications are 

 Finance, Budgeting and Investment  
 Cash flow analysis , investment portfolios 
 Credit polices, account procedures 

 Purchasing, Procurement and Exploration 
 Rules for buying, supplies 
 Quantities and timing of purchase 
 Replacement policies 

 Production management  
 Physical distribution 
 Facilities planning  
 Manufacturing  
 Maintenance and project scheduling  

 Marketing  
 Product selection, timing  
 Number of salesman, advertising 

 Personnel management  
 Selection of suitable personnel on minimum salary  
 Mixes of age and skills  

 Research and development  
 Project selection 
 Determination of area of research and development  
 Reliability and alternative design 

 
1.5 Phases of OR  
 
OR study generally involves the following major phases 

1. Defining the problem and gathering data  
2. Formulating a mathematical model 
3. Deriving solutions from the model 
4. Testing the model and its solutions 



5. Preparing to apply the model  
6. Implementation 

 
 
Defining the problem and gathering data 
 

 The first task is to study the relevant system and develop a well-defined statement of the 
problem. This includes determining appropriate objectives, constraints, interrelationships 
and alternative course of action. 

 The OR team normally works in an advisory capacity. The team performs a detailed 
technical analysis of the problem and then presents recommendations to the management. 

 Ascertaining the appropriate objectives is very important aspect of problem definition. 
Some of the objectives include maintaining stable price, profits, increasing the share in 
market, improving work morale etc. 

 OR team typically spends huge amount of time in gathering relevant data. 
o To gain accurate understanding of problem  
o To provide input for next phase. 

 OR teams uses Data mining methods to search large databases for interesting patterns 
that may lead to useful decisions.  

 
Formulating a mathematical model  
 
This phase is to reformulate the problem in terms of mathematical symbols and expressions. The 
mathematical model of a business problem is described as the system of equations and related 
mathematical expressions. Thus 
 

1. Decision variables (x1, x2 … xn) – ‘n’ related quantifiable decisions to be made. 
2. Objective function – measure of performance (profit) expressed as mathematical 

function of decision variables. For example P=3x1 +5x2 + … + 4xn 
3. Constraints – any restriction on values that can be assigned to decision variables in 

terms of inequalities or equations. For example x1 +2x2 ≥ 20 
4. Parameters – the constant in the constraints (right hand side values) 

 
The advantages of using mathematical models are 

 Describe the problem more concisely 
 Makes overall structure of problem comprehensible 
 Helps to reveal important cause-and-effect relationships 
 Indicates clearly what additional data are relevant for analysis 
 Forms a bridge to use mathematical technique in computers to analyze 

 
Deriving solutions from the model 
 
This phase is to develop a procedure for deriving solutions to the problem. A common theme is 
to search for an optimal or best solution. The main goal of OR team is to obtain an optimal 
solution which minimizes the cost and time and maximizes the profit. 
 



Herbert Simon says that “Satisficing is more prevalent than optimizing in actual practice”. 
Where satisficing = satisfactory + optimizing 
 
Samuel Eilon says that “Optimizing is the science of the ultimate; Satisficing is the art of the 
feasible”. 
 
To obtain the solution, the OR team uses 

 Heuristic procedure (designed procedure that does not guarantee an optimal solution) is 
used to find a good suboptimal solution. 

 Metaheuristics provides both general structure and strategy guidelines for designing a 
specific heuristic procedure to fit a particular kind of problem. 

 Post-Optimality analysis is the analysis done after finding an optimal solution. It is also 
referred as what-if analysis. It involves conducting sensitivity analysis to determine 
which parameters of the model are most critical in determining the solution. 

 
Testing the model 
 
After deriving the solution, it is tested as a whole for errors if any. The process of testing and 
improving a model to increase its validity is commonly referred as Model validation. The OR 
group doing this review should preferably include at least one individual who did not participate 
in the formulation of model to reveal mistakes. 
 
A systematic approach to test the model is to use Retrospective test. This test uses historical 
data to reconstruct the past and then determine the model and the resulting solution. Comparing 
the effectiveness of this hypothetical performance with what actually happened, indicates 
whether the model tends to yield a significant improvement over current practice. 
 
Preparing to apply the model 
 
After the completion of testing phase, the next step is to install a well-documented system for 
applying the model. This system will include the model, solution procedure and operating 
procedures for implementation. 
 
The system usually is computer-based. Databases and Management Information System may 
provide up-to-date input for the model. An interactive computer based system called Decision 
Support System is installed to help the manager to use data and models to support their decision 
making as needed. A managerial report interprets output of the model and its implications for 
applications. 
 
Implementation 
 
The last phase of an OR study is to implement the system as prescribed by the management. The 
success of this phase depends on the support of both top management and operating 
management. 
 
The implementation phase involves several steps 



1. OR team provides a detailed explanation to the operating management 
2. If the solution is satisfied, then operating management will provide the explanation to the 

personnel, the new course of action. 
3. The OR team monitors the functioning of the new system 
4. Feedback is obtained 
5. Documentation 
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2.6 Formulation of LP Problems 
 
2.1 Introduction to Linear Programming 
 
A linear form is meant a mathematical expression of the type a1x1 + a2x2 + …. + anxn, where a1, 
a2, …, an are constants and x1, x2 … xn are variables. The term Programming refers to the process 
of determining a particular program or plan of action. So Linear Programming (LP) is one of the 
most important optimization (maximization / minimization) techniques developed in the field of 
Operations Research (OR). 
 
The methods applied for solving a linear programming problem are basically simple problems; a 
solution can be obtained by a set of simultaneous equations. However a unique solution for a set 
of simultaneous equations in n-variables (x1, x2 … xn), at least one of them is non-zero, can be 
obtained if there are exactly n relations. When the number of relations is greater than or less than 
n, a unique solution does not exist but a number of trial solutions can be found. 
 
In various practical situations, the problems are seen in which the number of relations is not 
equal to the number of the number of variables and many of the relations are in the form of 
inequalities (≤ or ≥) to maximize or minimize a linear function of the variables subject to such 
conditions. Such problems are known as Linear Programming Problem (LPP). 
 
Definition – The general LPP calls for optimizing (maximizing / minimizing) a linear function 
of variables called the ‘Objective function’ subject to a set of linear equations and / or 
inequalities called the ‘Constraints’ or ‘Restrictions’.  
 
2.2 General form of LPP 
 
We formulate a mathematical model for general problem of allocating resources to activities. In 
particular, this model is to select the values for x1, x2 … xn so as to maximize or minimize  

Z = c1x1 + c2x2 +………….+cnxn   
subject to restrictions 

a11x1 + a12x2 + …..........+a1nxn (≤ or ≥) b1 
a21x1 + a22x2 + ………..+a2nxn (≤ or ≥) b2 
. 
. 
. 
am1x1 + am2x2 + ……….+amnxn (≤ or ≥) bm 

and 
x1 ≥ 0, x2 ≥ 0,…, xn ≥ 0 

 
Where  

Z = value of overall measure of performance 
xj = level of activity (for j = 1, 2, ..., n) 
cj = increase in Z that would result from each unit increase in level of activity j 
bi = amount of resource i that is available for allocation to activities (for i = 1,2, …, m) 
aij = amount of resource i consumed by each unit of activity j 



 

Resource 
 

Resource usage per unit of activity Amount of resource 
available Activity       

1     2 ……………………..  n 
1 
2 
. 
. 
. 

m 

a11 a12 …………………….a1n 
a21 a22 …………………….a2n 

. 

. 

. 
am1 am2 …………………….amn 

b1 
b2 
. 
. 
. 

bm 
Contribution to 

Z per unit of 
activity 

c1  c2 ………………………..cn  

             
    Data needed for LP model 

 
 The level of activities x1, x2………xn are called decision variables. 
 The values of the cj, bi, aij (for i=1, 2 … m and j=1, 2 … n) are the input constants for the 

model. They are called as parameters of the model. 
 The function being maximized or minimized Z = c1x1 + c2x2 +…. +cnxn is called 

objective function. 
 The restrictions are normally called as constraints. The constraint ai1x1 + ai2x2 … ainxn 

are sometimes called as functional constraint (L.H.S constraint). xj ≥ 0 restrictions are 
called non-negativity constraint. 

 
 
2.3 Assumptions in LPP 
 

a) Proportionality 
b) Additivity 
c) Multiplicativity 
d) Divisibility  
e) Deterministic 

 
2.4 Applications of Linear Programming 
 

1. Personnel Assignment Problem 
2. Transportation Problem 
3. Efficiency on Operation of system of Dams 
4. Optimum Estimation of Executive Compensation 
5. Agriculture Applications 
6. Military Applications 
7. Production Management  
8. Marketing Management  
9. Manpower Management 



10. Physical distribution 
 

2.5 Advantages of Linear Programming Techniques 
 

1. It helps us in making the optimum utilization of productive resources. 
2. The quality of decisions may also be improved by linear programming techniques. 
3. Provides practically solutions. 
4. In production processes, high lighting of bottlenecks is the most significant advantage of 

this technique. 
 
2.6 Formulation of LP Problems 
 
Example 1 
A firm manufactures two types of products A and B and sells them at a profit of Rs. 2 on type A 
and Rs. 3 on type B. Each product is processed on two machines G and H. Type A requires 1 
minute of processing time on G and 2 minutes on H; type B requires 1 minute on G and 1 minute 
on H. The machine G is available for not more than 6 hours 40 minutes while machine H is 
available for 10 hours during any working day. Formulate the problem as a linear programming 
problem. 
 
Solution 
Let  

x1 be the number of products of type A 
  x2 be the number of products of type B 
 
After understanding the problem, the given information can be systematically arranged in the 
form of the following table. 
 

 Type of products (minutes)  

Machine Type A (x1 units) Type B (x2 units) Available 
time (mins) 

G 1 1 400 
H 2 1 600 

Profit per unit Rs. 2 Rs. 3  
 
Since the profit on type A is Rs. 2 per product, 2 x1 will be the profit on selling x1 units of type A. 
similarly, 3x2 will be the profit on selling x2 units of type B. Therefore, total profit on selling x1 
units of A and x2 units of type B is given by  
    Maximize Z = 2 x1+3 x2   (objective function) 
 
Since machine G takes 1 minute time on type A and 1 minute time on type B, the total number of 
minutes required on machine G is given by   x1+ x2. 
 
Similarly, the total number of minutes required on machine H is given by 2x1 + 3x2. 
 
But, machine G is not available for more than 6 hours 40 minutes (400 minutes). Therefore,  



    x1+ x2 ≤ 400 (first constraint)   
 
Also, the machine H is available for 10 hours (600 minutes) only, therefore, 
    2 x1 + 3x2 ≤ 600 (second constraint) 
 
Since it is not possible to produce negative quantities 
    x1 ≥ 0 and x2 ≥ 0 (non-negative restrictions) 
 
Hence  

Maximize Z = 2 x1 + 3 x2 
Subject to restrictions 

   x1 + x2  ≤ 400 
   2x1 + 3x2 ≤ 600 

and non-negativity constraints    
x1 ≥ 0 , x2 ≥ 0 

 
Example 2 
A company produces two products A and B which possess raw materials 400 quintals and 450 
labour hours. It is known that 1 unit of product A requires 5 quintals of raw materials and 10 man 
hours and yields a profit of Rs 45. Product B requires 20 quintals of raw materials, 15 man hours 
and yields a profit of Rs 80. Formulate the LPP. 
 
Solution  
Let 

 x1 be the number of units of product A 
  x2 be the number of units of product B 
 

 Product A Product B Availability 
Raw materials 5 20 400 
Man hours 10 15 450 
Profit Rs 45 Rs 80  

       
Hence 

Maximize Z = 45x1 + 80x2 
Subject to 

5x1+ 20 x2 ≤ 400 
  10x1 + 15x2 ≤ 450 

 x1 ≥ 0 , x2 ≥ 0 
 
Example 3 
A firm manufactures 3 products A, B and C. The profits are Rs. 3, Rs. 2 and Rs. 4 respectively. 
The firm has 2 machines and below is given the required processing time in minutes for each 
machine on each product.  
 

 Products 
Machine A B C 



X 4 3 5 
Y 2 2 4 

Machine X and Y have 2000 and 2500 machine minutes. The firm must manufacture 100 A’s, 
200 B’s and 50 C’s type, but not more than 150 A’s. 
 
Solution 
Let 

 x1 be the number of units of product A 
  x2 be the number of units of product B 
  x3 be the number of units of product C 
      

 Products  
Machine A B C Availability 

X 4 3 5 2000 
Y 2 2 4 2500 

Profit 3 2 4  
 

Max Z = 3x1 + 2x2 + 4x3 
Subject to  

4x1 + 3x2 + 5x3 ≤ 2000 
        2x1 + 2x2 + 4x3 ≤ 2500 
                    100 ≤ x1 ≤ 150     
         x2 ≥ 200 
         x3 ≥ 50  
 
Example 4 
A company owns 2 oil mills A and B which have different production capacities for low, high 
and medium grade oil. The company enters into a contract to supply oil to a firm every week 
with 12, 8, 24 barrels of each grade respectively. It costs the company Rs 1000 and Rs 800 per 
day to run the mills A and B. On a day A produces 6, 2, 4 barrels of each grade and B produces 
2, 2, 12 barrels of each grade. Formulate an LPP to determine number of days per week each mill 
will be operated in order to meet the contract economically. 
 
Solution  
Let  

x1 be the no. of days a week the mill A has to work  
x2 be the no. of  days per week the mill B has to work 
 
 

   
Grade A B Minimum requirement 
Low 6 2 12 
High 2 2 8 

Medium 4 12 24 
Cost per day Rs 1000 Rs 800  

 



Minimize Z = 1000x1 + 800 x2  
Subject to 

 6x1 + 2x2 ≥ 12 
                   2x1 + 2x2 ≥ 8 
                   4x1 +12x2 ≥ 24 

x1 ≥ 0 , x2 ≥ 0 
 

Example 5 
A company has 3 operational departments weaving, processing and packing with the capacity to 
produce 3 different types of clothes that are suiting, shirting and woolen yielding with the profit 
of Rs. 2, Rs. 4 and Rs. 3 per meters respectively. 1m suiting requires 3mins in weaving 2 mins in 
processing and 1 min in packing. Similarly 1m of shirting requires 4 mins in weaving 1 min in 
processing and 3 mins in packing while 1m of woolen requires 3 mins in each department. In a 
week total run time of each department is 60, 40 and 80 hours for weaving, processing and 
packing department respectively. Formulate a LPP to find the product to maximize the profit. 
 
Solution 

Let 
 x1 be the number of units of suiting  
 x2 be the number of units of shirting 
 x3 be the number of units of woolen  
 

 Suiting Shirting Woolen Available time 
Weaving 3 4 3 60 

Processing 2 1 3 40 
Packing 1 3 3 80 
Profit 2 4 3  

 
Maximize Z = 2x1 + 4x2 + 3x3 
Subject to  

3x1 + 4x2 + 3x3 ≤ 60 
       2x1 + 1x2 + 3x3 ≤ 40 
       x1 + 3x2 + 3x3 ≤ 80 
       x1≥0, x2 ≥0, x3≥0 
 
Example 6  
ABC Company produces both interior and exterior paints from 2 raw materials m1 and m2. The 
following table produces basic data of problem. 
 

 Exterior paint Interior paint Availability 
M1 6 4 24 
M2 1 2 6 

Profit per ton 5 4  
A market survey indicates that daily demand for interior paint cannot exceed that for exterior 
paint by more than 1 ton. Also maximum daily demand for interior paint is 2 tons. Formulate 



LPP to determine the best product mix of interior and exterior paints that maximizes the daily 
total profit. 
 
Solution 

Let 
 x1 be the number of units of exterior paint  

  x2 be the number of units of interior paint 
 

Maximize Z = 5x1 + 4x2  
Subject to  

6x1 + 4x2 ≤ 24 
x1 + 2x2 ≤ 6 
x2 – x1≤ 1 
x2≤ 2 

      x1≥0, x2 ≥0 
 
b) The maximum daily demand for exterior paint is atmost 2.5 tons 
  x1≤ 2.5 
c) Daily demand for interior paint is atleast 2 tons 
  x2 ≥ 2 
d) Daily demand for interior paint is exactly 1 ton higher than that for exterior paint. 
  x2 > x1 + 1 
 

Example 7 
A company produces 2 types of hats. Each hat of the I type requires twice as much as labour time 
as the II type. The company can produce a total of 500 hats a day. The market limits daily sales 
of I and II types to 150 and 250 hats. Assuming that the profit per hat are Rs.8 for type A and Rs. 
5 for type B. Formulate a LPP models in order to determine the number of hats to be produced of 
each type so as to maximize the profit. 

 
Solution 

Let x1 be the number of hats produced by type A 
Let x2 be the number of hats produced by type B 

 
Maximize Z = 8x1 + 5x2 
Subject to  

2x1 + x2 ≤ 500 (labour time) 
       x1 ≤ 150 
       x2 ≤ 250 

      x1≥0, x2 ≥0 
Example 8 
A manufacturer produces 3 models (I, II and III) of a certain product. He uses 2 raw materials A 
and B of which 4000 and 6000 units respectively are available. The raw materials per unit of 3 
models are given below. 

Raw materials I II III 
A 2 3 5 



B 4 2 7 
The labour time for each unit of model I is twice that of model II and thrice that of model III. 
The entire labour force of factory can produce an equivalent of 2500 units of model I. A model 
survey indicates that the minimum demand of 3 models is 500, 500 and 375 units respectively. 
However the ratio of number of units produced must be equal to 3:2:5. Assume that profits per 
unit of model are 60, 40 and 100 respectively. Formulate a LPP. 
 
Solution  
Let  

x1 be the number of units of model I  
 x2 be the number of units of model II 
 x3 be the number of units of model III 
   

Raw materials I II III Availability 
A 2 3 5 4000 
B 4 2 7 6000 

Profit 60 40 100  
  

x1 + 1/2x2 + 1/3x3 ≤ 2500 [ Labour time ] 
  
x1 ≥ 500, x2 ≥ 500, x3 ≥ 375 [ Minimum demand ] 
 
The given ratio is x1: x2: x3 = 3: 2: 5 
x1 / 3 = x2 / 2 = x3 / 5 = k 
x1 = 3k; x2 = 2k; x3 = 5k 
x2 = 2k → k = x2 / 2 
Therefore x1 = 3 x2 / 2 → 2 x1 = 3 x2 
Similarly 2 x3 = 5 x2 
 

Maximize Z= 60x1 + 40x2 + 100x3 
Subject to 2x1 + 3x2 + 5x3 ≤ 4000 
                  4x1 + 2x2 + 7x3 ≤ 6000 

x1 + 1/2x2 + 1/3x3 ≤ 2500 
2 x1 = 3 x2 
2 x3 = 5 x2 

and x1 ≥ 500, x2 ≥ 500, x3 ≥ 375 
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3.5.3 Unbounded solution 

  
3.1 Graphical Solution Procedure 
 
The graphical solution procedure   

1. Consider each inequality constraint as equation. 
2. Plot each equation on the graph as each one will geometrically represent a straight line. 
3. Shade the feasible region. Every point on the line will satisfy the equation of the line. If 

the inequality constraint corresponding to that line is ‘≤’ then the region below the line 
lying in the first quadrant is shaded. Similarly for ‘≥’ the region above the line is shaded. 
The points lying in the common region will satisfy the constraints. This common region 
is called feasible region. 

4. Choose the convenient value of Z and plot the objective function line. 
5. Pull the objective function line until the extreme points of feasible region.  

a. In the maximization case this line will stop far from the origin and passing 
through at least one corner of the feasible region. 

b. In the minimization case, this line will stop near to the origin and passing through 
at least one corner of the feasible region. 

6. Read the co-ordinates of the extreme points selected in step 5 and find the maximum or 
minimum value of Z. 

 
3.2 Definitions 

 
1. Solution – Any specification of the values for decision variable among (x1, x2… xn) is 

called a solution. 
2. Feasible solution is a solution for which all constraints are satisfied. 
3. Infeasible solution is a solution for which atleast one constraint is not satisfied. 
4. Feasible region is a collection of all feasible solutions. 
5. Optimal solution is a feasible solution that has the most favorable value of the objective 

function. 
6. Most favorable value is the largest value if the objective function is to be maximized, 

whereas it is the smallest value if the objective function is to be minimized. 
7. Multiple optimal solution – More than one solution with the same optimal value of the 

objective function. 
8. Unbounded solution – If the value of the objective function can be increased or 

decreased indefinitely such solutions are called unbounded solution. 
9. Feasible region – The region containing all the solutions of an inequality  
10. Corner point feasible solution is a solution that lies at the corner of the feasible region. 

3.3 Example problems 
 
Example 1 
Solve 3x + 5y < 15 graphically 
 
Solution 



Write the given constraint in the form of equation i.e. 3x + 5y = 15 
Put x=0 then the value y=3 
Put y=0 then the value x=5 
Therefore the coordinates are (0, 3) and (5, 0). Thus these points are joined to form a straight line 
as shown in the graph. 
Put x=0, y=0 in the given constraint then 
0<15, the condition is true. (0, 0) is solution nearer to origin. So shade the region below the line, 
which is the feasible region. 
 

 
 
Example 2 
Solve 3x + 5y >15 
 
Solution 
Write the given constraint in the form of equation i.e. 3x + 5y = 15 
Put x=0, then y=3  
Put y=0, then x=5  
So the coordinates are (0, 3) and (5, 0) 
Put x =0, y =0 in the given constraint, the condition turns out to be false i.e. 0 > 15 is false. 
So the region does not contain (0, 0) as solution. The feasible region lies on the outer part of the 
line as shown in the graph. 

 



 
 
Example 3 
 
Max Z = 80x1 + 55x2 
Subject to 

4x1+ 2x2 ≤ 40 
 2x1 + 4x2 ≤ 32 

 x1 ≥ 0 , x2 ≥ 0 
 
Solution 
 
The first constraint 4x1+ 2 x2 ≤ 40, written in a form of equation 
4x1+ 2 x2 = 40 
 
Put x1 =0, then x2 = 20 
Put x2 =0, then x1 = 10 
 
The coordinates are (0, 20) and (10, 0) 
 
The second constraint 2x1 + 4x2 ≤ 32, written in a form of equation 
2x1 + 4x2 =32 
 
Put x1 =0, then x2 = 8 
Put x2 =0, then x1 = 16 
 
The coordinates are (0, 8) and (16, 0) 
 
The graphical representation is  

 
 



The corner points of feasible region are A, B and C. So the coordinates for the corner points are 
A (0, 8) 
B (8, 4) (Solve the two equations 4x1+ 2 x2 = 40 and 2x1 + 4x2 =32 to get the coordinates) 
C (10, 0) 
 
We know that Max Z = 80x1 + 55x2 
 
At A (0, 8) 
Z = 80(0) + 55(8) = 440 
 
At B (8, 4) 
Z = 80(8) + 55(4) = 860 
 
At C (10, 0) 
Z = 80(10) + 55(0) = 800 
 
The maximum value is obtained at the point B. Therefore Max Z = 860 and x1 = 8, x2 = 4 
 
Example 4 
 
Minimize Z = 10x1 + 4x2  
Subject to 

3x1 + 2x2 ≥ 60 
            7x1 + 2x2 ≥ 84 
            3x1 +6x2 ≥ 72 

x1 ≥ 0 , x2 ≥ 0 
 
Solution 
 
The first constraint 3x1 + 2x2 ≥ 60, written in a form of equation 
3x1 + 2x2 = 60 
Put x1 =0, then x2 = 30 
Put x2 =0, then x1 = 20 
The coordinates are (0, 30) and (20, 0) 
 
The second constraint 7x1 + 2x2 ≥ 84, written in a form of equation 
7x1 + 2x2 = 84 
Put x1 =0, then x2 = 42 
Put x2 =0, then x1 = 12 
The coordinates are (0, 42) and (12, 0) 
 
The third constraint 3x1 +6x2 ≥ 72, written in a form of equation 
3x1 +6x2 = 72 
Put x1 =0, then x2 = 12 
Put x2 =0, then x1 = 24 
The coordinates are (0, 12) and (24, 0) 



 
The graphical representation is 
 

   
  
The corner points of feasible region are A, B, C and D. So the coordinates for the corner points 
are 
A (0, 42) 
B (6, 21) (Solve the two equations 7x1 + 2x2 = 84 and 3x1 + 2x2 = 60 to get the coordinates) 
C (18, 3) Solve the two equations 3x1 +6x2 = 72 and 3x1 + 2x2 = 60 to get the coordinates) 
D (24, 0) 

 
We know that Min Z = 10x1 + 4x2 
 
At A (0, 42) 
Z = 10(0) + 4(42) = 168 
 
At B (6, 21) 
Z = 10(6) + 4(21) = 144 
 
At C (18, 3) 
Z = 10(18) + 4(3) = 192 



 
At D (24, 0) 
Z = 10(24) + 4(0) = 240 
 
The minimum value is obtained at the point B. Therefore Min Z = 144 and x1 = 6, x2 = 21 
 
Example 5 
 
A manufacturer of furniture makes two products – chairs and tables. Processing of this product is 
done on two machines A and B. A chair requires 2 hours on machine A and 6 hours on machine 
B. A table requires 5 hours on machine A and no time on machine B. There are 16 hours of time 
per day available on machine A and 30 hours on machine B. Profit gained by the manufacturer 
from a chair and a table is Rs 2 and Rs 10 respectively. What should be the daily production of 
each of two products? 
 
Solution 
 
Let x1 denotes the number of chairs 
Let x2 denotes the number of tables 
 

 Chairs Tables Availability 
Machine A 
Machine B 

2 
6 

5 
0 

16 
30 

Profit Rs 2 Rs 10  
 
 
 
 
 
LPP 
Max Z = 2x1 + 10x2 
Subject to 

2x1+ 5x2 ≤ 16 
 6x1 + 0x2 ≤ 30 

 x1 ≥ 0 , x2 ≥ 0 
 
Solving graphically 
The first constraint 2x1+ 5x2 ≤ 16, written in a form of equation 
2x1+ 5x2 = 16 
Put x1 = 0, then x2 = 16/5 = 3.2 
Put x2 = 0, then x1 = 8 
The coordinates are (0, 3.2) and (8, 0) 
 
The second constraint 6x1 + 0x2 ≤ 30, written in a form of equation 
6x1 = 30 → x1 =5 



 
The corner points of feasible region are A, B and C. So the coordinates for the corner points are 
A (0, 3.2) 
B (5, 1.2) (Solve the two equations 2x1+ 5x2 = 16 and x1 =5 to get the coordinates) 
C (5, 0) 
 
We know that Max Z = 2x1 + 10x2 
At A (0, 3.2) 
Z = 2(0) + 10(3.2) = 32 
 
At B (5, 1.2) 
Z = 2(5) + 10(1.2) = 22 
 
At C (5, 0) 
Z = 2(5) + 10(0) = 10 
 
Max Z = 32 and x1 = 0, x2 = 3.2 
The manufacturer should produce approximately 3 tables and no chairs to get the max profit. 
3.4 Special Cases in Graphical Method 
 
3.4.1 Multiple Optimal Solution 
 
Example 1 
Solve by using graphical method 
 
Max Z = 4x1 + 3x2 
Subject to 

4x1+ 3x2 ≤ 24 
 x1 ≤ 4.5 

x2 ≤  6 
 x1 ≥ 0 , x2 ≥ 0 

 
Solution 
 



The first constraint 4x1+ 3x2 ≤ 24, written in a form of equation 
4x1+ 3x2 = 24 
Put x1 =0, then x2 = 8 
Put x2 =0, then x1 = 6 
The coordinates are (0, 8) and (6, 0) 
 
The second constraint x1 ≤ 4.5, written in a form of equation 
x1 = 4.5  
 
The third constraint x2 ≤ 6, written in a form of equation 
x2 = 6  
 

 
The corner points of feasible region are A, B, C and D. So the coordinates for the corner points 
are 
A (0, 6) 
B (1.5, 6) (Solve the two equations 4x1+ 3x2 = 24 and x2 = 6 to get the coordinates) 
C (4.5, 2) (Solve the two equations 4x1+ 3x2 = 24 and x1 = 4.5 to get the coordinates) 
D (4.5, 0) 
 
We know that Max Z = 4x1 + 3x2 
At A (0, 6) 
Z = 4(0) + 3(6) = 18 
 
At B (1.5, 6)  
Z = 4(1.5) + 3(6) = 24 
 
At C (4.5, 2)  
Z = 4(4.5) + 3(2) = 24 



 
At D (4.5, 0)  
Z = 4(4.5) + 3(0) = 18 
 
Max Z = 24, which is achieved at both B and C corner points. It can be achieved not only at B 
and C but every point between B and C. Hence the given problem has multiple optimal solutions. 
 
3.4.2 No Optimal Solution 
 
Example 1 
 
Solve graphically 
 
Max Z = 3x1 + 2x2 
Subject to 

x1+ x2 ≤ 1 
x1+ x2 ≥ 3 
x1 ≥ 0 , x2 ≥ 0 

 
Solution 
 
The first constraint x1+ x2 ≤ 1, written in a form of equation 
x1+ x2 = 1 
Put x1 =0, then x2 = 1 
Put x2 =0, then x1 = 1 
The coordinates are (0, 1) and (1, 0) 
 
The first constraint x1+ x2 ≥ 3, written in a form of equation 
x1+ x2 = 3 
Put x1 =0, then x2 = 3 
Put x2 =0, then x1 = 3 
The coordinates are (0, 3) and (3, 0) 
 

 



There is no common feasible region generated by two constraints together i.e. we cannot identify 
even a single point satisfying the constraints. Hence there is no optimal solution.    

     
 
 3.4.3 Unbounded Solution 
 
Example  
Solve by graphical method  
 
Max Z = 3x1 + 5x2 
Subject to 

2x1+ x2 ≥ 7 
x1+ x2 ≥ 6 
x1+ 3x2 ≥ 9 
x1 ≥ 0 , x2 ≥ 0 

 
Solution 
 
The first constraint 2x1+ x2 ≥ 7, written in a form of equation 
2x1+ x2 = 7 
Put x1 =0, then x2 = 7 
Put x2 =0, then x1 = 3.5 
The coordinates are (0, 7) and (3.5, 0) 
 
The second constraint x1+ x2 ≥ 6, written in a form of equation 
x1+ x2 = 6 
Put x1 =0, then x2 = 6 
Put x2 =0, then x1 = 6 
The coordinates are (0, 6) and (6, 0) 
 
 
The third constraint x1+ 3x2 ≥ 9, written in a form of equation 
x1+ 3x2 = 9 
Put x1 =0, then x2 = 3 
Put x2 =0, then x1 = 9 
The coordinates are (0, 3) and (9, 0) 
 



The corner points of feasible region are A, B, C and D. So the coordinates for the corner points 
are 
A (0, 7) 
B (1, 5) (Solve the two equations 2x1+ x2 = 7 and x1+ x2 = 6 to get the coordinates) 
C (4.5, 1.5) (Solve the two equations x1+ x2 = 6 and x1+ 3x2 = 9 to get the coordinates) 
D (9, 0) 
 
We know that Max Z = 3x1 + 5x2 
At A (0, 7) 
Z = 3(0) + 5(7) = 35 
 
At B (1, 5)  
Z = 3(1) + 5(5) = 28 
 
At C (4.5, 1.5)  
Z = 3(4.5) + 5(1.5) = 21 
 
At D (9, 0) 
Z = 3(9) + 5(0) = 27 
The values of objective function at corner points are 35, 28, 21 and 27. But there exists infinite 
number of points in the feasible region which is unbounded. The value of objective function will 
be more than the value of these four corner points i.e. the maximum value of the objective 
function occurs at a point at ∞. Hence the given problem has unbounded solution. 
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1.1 Introduction 
 
General Linear Programming Problem (GLPP) 
 
Maximize / Minimize Z = c1x1 + c2x2 + c3x3 +……………..+ cnxn 
 
Subject to constraints 

a11x1 + a12x2 + …..........+a1nxn (≤ or ≥) b1 
a21x1 + a22x2 + ………..+a2nxn (≤ or ≥) b2 
. 
. 
. 
am1x1 + am2x2 + ……….+amnxn (≤ or ≥) bm 

and 
x1 ≥ 0, x2 ≥ 0,…, xn ≥ 0 

 
Where constraints may be in the form of any inequality (≤ or ≥) or even in the form of an 
equation (=) and finally satisfy the non-negativity restrictions. 
   
1.2 Steps to convert GLPP to SLPP (Standard LPP) 
 
Step 1 – Write the objective function in the maximization form. If the given objective function is 

of minimization form then multiply throughout by -1 and write Max z׳ = Min (-z) 
 
Step 2 – Convert all inequalities as equations.  

o If an equality of ‘≤’ appears then by adding a variable called Slack variable. We 
can convert it to an equation. For example x1 +2x2 ≤ 12, we can write as  

x1 +2x2 + s1 = 12. 
o If the constraint is of ‘≥’ type, we subtract a variable called Surplus variable and   

convert it to an equation. For example  
2x1 +x2 ≥ 15 
2x1 +x2 – s2 = 15 

 



Step 3 – The right side element of each constraint should be made non-negative 
2x1 +x2 – s2 = -15 
-2x1 - x2 + s2 = 15 (That is multiplying throughout by -1) 

Step 4 – All variables must have non-negative values. 
  For example: x1 +x2 ≤ 3 

          x1  > 0, x2 is unrestricted in sign  
  Then x2 is written as x2 = x2׳ – x2׳׳ where x2׳, x20 ≤   ׳׳ 
  Therefore the inequality takes the form of equation as x1 + (x2׳ – x2׳׳) + s1 = 3 

 
Using the above steps, we can write the GLPP in the form of SLPP.  
 
Write the Standard LPP (SLPP) of the following 
 
Example 1 
Maximize Z = 3x1 + x2 
    Subject to  
 2 x1 + x2 ≤ 2 
 3 x1 + 4 x2 ≥ 12 
    and x1 ≥ 0, x2  ≥ 0 
 
SLPP 
    Maximize Z = 3x1 + x2 
    Subject to  
 2 x1 + x2 + s1 = 2 
 3 x1 + 4 x2 – s2 = 12 
 x1 ≥ 0, x2  ≥ 0, s1 ≥ 0, s2  ≥ 0 
 
Example 2 
Minimize Z = 4x1 + 2 x2 
    Subject to  
 3x1 + x2 ≥ 2 
 x1 + x2 ≥ 21 

x1 + 2x2 ≥ 30 
    and x1 ≥ 0, x2  ≥ 0 
 
SLPP 
Maximize Z4 – = ׳x1 – 2 x2   
Subject to  
 3x1 + x2 – s1 = 2 
 x1 + x2 – s2 = 21 

x1 + 2x2 – s3 = 30 
     x1 ≥ 0, x2  ≥ 0, s1 ≥ 0, s2  ≥ 0, s3  ≥ 0 
 
Example 3 
Minimize Z = x1 + 2 x2 + 3x3 
     Subject to  



 2x1 + 3x2 + 3x3 ≥ – 4   
 3x1 + 5x2 + 2x3 ≤ 7 
     and x1 ≥ 0, x2  ≥ 0, x3 is unrestricted in sign 
 
SLPP 
Maximize Z׳ = – x1 – 2 x2 – 3(x3

x3 – ׳
 (׳׳

Subject to  
 –2x1 – 3x2 – 3(x3

x3 – ׳
   s1= 4 + (׳׳

 3x1 + 5x2 + 2(x3
x3 – ׳

 s2 = 7 + (׳׳
     x1 ≥ 0, x2  ≥ 0, x3

x3  ,0 ≤ ׳
 s1 ≥ 0, s2  ≥ 0 ,0 ≤ ׳׳

 
1.3 Some Basic Definitions 
 
Solution of LPP 
Any set of variable (x1, x2… xn) which satisfies the given constraint is called solution of LPP. 
 
Basic solution 
Is a solution obtained by setting any ‘n’ variable equal to zero and solving remaining ‘m’ 
variables. Such ‘m’ variables are called Basic variables and ‘n’ variables are called Non-basic 
variables. 
 
Basic feasible solution 
A basic solution that is feasible (all basic variables are non negative) is called basic feasible 
solution. There are two types of basic feasible solution. 

1. Degenerate basic feasible solution 
If any of the basic variable of a basic feasible solution is zero than it is said to be 
degenerate basic feasible solution. 

2. Non-degenerate basic feasible solution 
It is a basic feasible solution which has exactly ‘m’ positive xi, where i=1, 2, … m. In 
other words all ‘m’ basic variables are positive and remaining ‘n’ variables are zero.  

 
Optimum basic feasible solution 
A basic feasible solution is said to be optimum if it optimizes (max / min) the objective function. 
 
 
1.4 Introduction to Simplex Method 
 
It was developed by G. Danztig in 1947. The simplex method provides an algorithm (a rule of 
procedure usually involving repetitive application of a prescribed operation) which is based on 
the fundamental theorem of linear programming. 
 
The Simplex algorithm is an iterative procedure for solving LP problems in a finite number of 
steps. It consists of 

 Having a trial basic feasible solution to constraint-equations 
 Testing whether it is an optimal solution 



 Improving the first trial solution by a set of rules and repeating the process till an optimal 
solution is obtained 

 
Advantages 

 Simple to solve the problems 
 The solution of LPP of more than two variables can be obtained. 

1.5 Computational Procedure of Simplex Method  
 
Consider an example  
Maximize Z = 3x1 + 2x2 
    Subject to  
 x1 + x2 ≤ 4 
 x1 – x2 ≤ 2 
    and x1 ≥ 0, x2  ≥ 0 
 
Solution 
 
Step 1 – Write the given GLPP in the form of SLPP 

Maximize Z = 3x1 + 2x2 + 0s1 + 0s2 
     Subject to  
  x1 + x2+ s1= 4 
  x1 – x2 + s2= 2 
      x1 ≥ 0, x2  ≥ 0, s1 ≥ 0, s2 ≥ 0 
 
Step 2 – Present the constraints in the matrix form 

x1 + x2+ s1= 4 
  x1 – x2 + s2= 2 
 

    
Step 3 – Construct the starting simplex table using the notations 
 
        Cj →     3                2              0               0 

Basic 
Variables 

CB       XB  X1              X2                S1                   S2 Min ratio 
 XB /Xk 

  s1 

 
 s2 

 0         4 
 
 0         2 

  1                1              1                0 
 
  1               -1              0               1 

 

 Z= CB XB    Δj  
 
Step 4 – Calculation of Z and Δj and test the basic feasible solution for optimality by the rules 
given. 

Z= CB XB  

     = 0 *4 + 0 * 2 = 0 



 
Δj = Zj – Cj 

       = CB Xj – Cj 
Δ1 = CB X1 – Cj = 0 * 1 + 0 * 1 – 3 = -3 
Δ2 = CB X2 – Cj = 0 * 1 + 0 * -1 – 2 = -2 
Δ3 = CB X3 – Cj = 0 * 1 + 0 * 0 – 0 = 0 
Δ4 = CB X4 – Cj = 0 * 0 + 0 * 1 – 0 = 0 

Procedure to test the basic feasible solution for optimality by the rules given 
 
Rule 1 – If all Δj  ≥ 0, the solution under the test will be optimal. Alternate optimal solution will 

exist if any non-basic Δj is also zero. 
 
Rule 2 – If atleast one Δj is negative, the solution is not optimal and then proceeds to improve the 

solution in the next step. 
 
Rule 3 – If corresponding to any negative Δj, all elements of the column Xj are negative or zero, 

then the solution under test will be unbounded.   
 
In this problem it is observed that Δ1 and Δ2 are negative. Hence proceed to improve this solution 
 
Step 5 – To improve the basic feasible solution, the vector entering the basis matrix and the 
vector to be removed from the basis matrix are determined. 
 

 Incoming vector 
The incoming vector Xk is always selected corresponding to the most negative value of 
Δj. It is indicated by (↑). 

 
 Outgoing vector 

The outgoing vector is selected corresponding to the least positive value of minimum 
ratio. It is indicated by (→). 

 
Step 6 – Mark the key element or pivot element by ‘1’‘.The element at the intersection of 
outgoing vector and incoming vector is the pivot element. 

    Cj →     3                2               0               0 
Basic 
Variables 

CB       XB  X1              X2                S1                   S2 
(Xk) 

Min ratio 
 XB /Xk 

  s1 

 
 s2 

 0         4 
 
 0         2 

  1                1              1                0 
 
  1               -1              0               1 

4 / 1 = 4 
 
2 / 1 = 2 → outgoing 

  
Z= CB XB = 0 

  ↑incoming 
Δ1= -3      Δ2= -2        Δ3=0        Δ4=0 

 

 
 If the number in the marked position is other than unity, divide all the elements of that 

row by the key element.  
 Then subtract appropriate multiples of this new row from the remaining rows, so as to 

obtain zeroes in the remaining position of the column Xk. 



 
 
 
 
 
 
 
 

Basic 
Variables 

CB       XB  X1            X2                S1                   S2 
                    (Xk) 

Min ratio 
 XB /Xk 

   
 s1 

 
 x1 

 
 0         2 
 
 3         2 

(R1=R1 – R2)   
0                2              1                -1 
 
1               -1              0                 1 

2 / 2 = 1 → outgoing 
 
2 / -1 = -2 (neglect in 
case of negative) 

  
Z=0*2+3*2= 6 

                  ↑incoming 
Δ1=0        Δ2= -5       Δ3=0        Δ4=3 

 

 
Step 7 – Now repeat step 4 through step 6 until an optimal solution is obtained.  
 
 

Basic 
Variables 

CB       XB  X1          X2                S1                       S2 
 

Min ratio 
 XB /Xk 

  

 x2 

 
 x1 

 
 2         1 
 
 3         3 

(R1=R1 / 2)    
 0             1            1/2                -1/2 
(R2=R2 + R1)   
 1             0            1/2                 1/2 

 

 Z = 11 Δ1=0      Δ2=0      Δ3=5/2        Δ4=1/2  
 
Since all Δj ≥ 0, optimal basic feasible solution is obtained 
 
Therefore the solution is Max Z = 11, x1 = 3 and x2 = 1 
 
1.6 Worked Examples 
 
Solve by simplex method 
 
Example 1 
Maximize Z = 80x1 + 55x2 
    Subject to  
 4x1 + 2x2 ≤ 40 
 2x1 + 4x2 ≤ 32 
    and x1 ≥ 0, x2  ≥ 0 
 
Solution 
 
SLPP 



Maximize Z = 80x1 + 55x2 + 0s1 + 0s2 
     Subject to  
  4x1 + 2x2+ s1= 40 
  2x1 + 4x2 + s2= 32 
      x1 ≥ 0, x2  ≥ 0, s1 ≥ 0, s2 ≥ 0 
 
 
 
 

   Cj →    80               55            0                0 
Basic 
Variables 

CB       XB  X1              X2                S1                   S2 
 

Min ratio 
 XB /Xk 

  s1 

 
 s2 

 0         40 
 
 0         32 

  4                2              1                0 
 
  2                4              0                1 

40 / 4 = 10→ outgoing 
 
32 / 2 = 16  

  
Z= CB XB = 0 

  ↑incoming 
Δ1= -80      Δ2= -55      Δ3=0        Δ4=0 

 

 
  x1                  
 
 
  s2      
 

 
 80       10               
 
 
 0         12   
 

 (R1=R1 / 4)   
  1                1/2          1/4              0 
 
(R2=R2– 2R1)  
  0                 3           -1/2             1 

 
 10/1/2 = 20              
 
 
 12/3 = 4→ outgoing 
 

  
Z = 800 

                    ↑incoming 
Δ1=0       Δ2= -15      Δ3=40        Δ4=0 

 

 
  x1                  
 
 
  x2      
 

 
 80         8               
 
 
 55         4   
 

(R1=R1– 1/2R2)   
1                0             1/3              -1/6 
 
(R2=R2 / 3) 
 0                1            -1/6              1/3 

 

 Z = 860 Δ1=0      Δ2=0       Δ3=35/2       Δ4=5  
 
Since all Δj ≥ 0, optimal basic feasible solution is obtained 
 
Therefore the solution is Max Z = 860, x1 = 8 and x2 = 4 
 
 
Example 2 
Maximize Z = 5x1 + 3x2 
    Subject to  
 3x1 + 5x2 ≤ 15 
 5x1 + 2x2 ≤ 10 
    and x1 ≥ 0, x2  ≥ 0 
 
Solution 



 
SLPP 

Maximize Z = 5x1 + 3x2 + 0s1 + 0s2 
     Subject to  
  3x1 + 5x2+ s1= 15 
  5x1 + 2x2 + s2= 10 
      x1 ≥ 0, x2  ≥ 0, s1 ≥ 0, s2 ≥ 0 

 
 
 
 
  Cj →     5                3               0                0 

Basic 
Variables 

CB       XB  X1               X2                 S1                 S2 
 

Min ratio 
 XB /Xk 

  s1 

 
 s2 

 0         15 
 
 0         10 

  3                5              1                0 
 
  5                2              0                1 

15 / 3 = 5 
 
10 / 5 = 2 → outgoing 

  
Z= CB XB = 0 

  ↑incoming 
Δ1= -5       Δ2= -3       Δ3=0        Δ4=0 

 

 
  s1                  
 
 
  x1      
 

 
 0          9               
 
 
 5          2   
 

(R1=R1– 3R2)    
 0               19/5           1             -3/5 
 
(R2=R2 /5) 
 1               2/5             0                1/5 

 
 9/19/5 = 45/19 →            
 
 
 2/2/5 = 5 
 

  
Z = 10 

                    ↑ 
Δ1=0         Δ2= -1        Δ3=0        Δ4=1 

 

 
  x2                  
 
 
  x1      
 

 
 3         45/19               
 
 
 5         20/19   
 

(R1=R1 / 19/5)   
0                1              5/19         -3/19 
 
(R2=R2 –2/5 R1) 
 1               0             -2/19          5/19 

 

 Z = 235/19 Δ1=0      Δ2=0      Δ3=5/19     Δ4=16/19  
 
Since all Δj ≥ 0, optimal basic feasible solution is obtained 
 
Therefore the solution is Max Z = 235/19, x1 = 20/19 and x2 = 45/19 
 
 
Example 3 
Maximize Z = 5x1 + 7x2 
    Subject to  
 x1 + x2 ≤ 4 
 3x1 – 8x2 ≤ 24 
 10x1 + 7x2 ≤ 35 



    and x1 ≥ 0, x2  ≥ 0 
 
Solution 
 
SLPP 

Maximize Z = 5x1 + 7x2 + 0s1 + 0s2 + 0s3 
     Subject to  
  x1 + x2 + s1= 4 
  3x1 – 8x2 + s2= 24 
  10x1 + 7x2 + s3= 35 
      x1 ≥ 0, x2  ≥ 0, s1 ≥ 0, s2 ≥ 0, s3 ≥ 0 
  

  Cj →   5      7        0         0          0 
Basic 
Variables 

CB       XB  X1          X2             S1             S2           S3 
 

Min ratio 
 XB /Xk 

  s1 

 
 s2 

 
 s3 

 0         4 
 
0 24 

 
 0         35 

  1             1           1            0          0 
 
  3            -8           0            1          0 
 
 10            7           0            0          1 

4 /1 = 4→outgoing 
 

– 
 

 35 / 7 = 5 
  

Z= CB XB = 0 
                 ↑incoming 
 -5            -7           0            0          0 

 
←Δj 

  x2 

 
  
 s2 
 
  
 s3 

7       4 
 
 
0         56 

  
  
 0          7 

  1             1           1            0          0 
 
  (R2 = R2 + 8R1) 
  11           0           8            1          0 
 
  (R3 = R3 – 7R1) 
  3             0          -7            0          1 

 

  
Z = 28 

 
  2             0           7            0          0 

 
←Δj 

 
Since all Δj ≥ 0, optimal basic feasible solution is obtained 
 
Therefore the solution is Max Z = 28, x1 = 0 and x2 = 4 
 
 
Example 4 
Maximize Z = 2x – 3y + z 
    Subject to  
 3x + 6y + z ≤ 6 
 4x + 2y + z ≤ 4 
 x – y + z ≤ 3 
    and x  ≥ 0, y  ≥ 0, z ≥ 0 
 
Solution 



 
SLPP 

Maximize Z = 2x – 3y + z + 0s1 + 0s2 + 0s3 
     Subject to  
  3x + 6y + z + s1= 6 
  4x + 2y + z + s2= 4 
  x – y + z + s3= 3 
      x ≥ 0, y  ≥ 0, z ≥ 0 s1 ≥ 0, s2 ≥ 0, s3 ≥ 0 
 
 
 
 
                           Cj →     2             -3              1           0            0           0  

Basic 
Variables 

CB       XB  X             Y                 Z              S1              S2             S3 
 

Min ratio 
 XB /Xk 

  s1 

 
 s2 

 
 s3 

 0         6 
 
0 4 
 
0         3 
 

  3              6             1             1            0          0    
 
  4              2            1             0             1          0 
 
  1              -1            1             0             0         1 

6 / 3 = 2 
 
4 / 4 =1→ outgoing 
 
3 / 1 = 3 

  
Z = 0 

  ↑incoming 
-2               3             -1             0             0         0 

 
←Δj 

 
 s1                  
 
 x 

 
 s3      
 

 
 0          3         
 
 2          1   
 
 0          2 

   
 0             9/2            1/4            1         -3/4        0 
 
1              1/2            1/4            0         1/4          0 
 
0             -3/2            3/4           0         -1/4         1 

 
 3/1/4=12  
 
1/1/4=4            
 
 8/3 = 2.6→ 
 

  
Z = 2 

                                  ↑incoming  
0                4               1/2          0           1/2        0     

 
←Δj 

 
  s1            
 
  x   
 
  z 

 
0 7/3    

                                   
 2         1/3   

          
 1         8/3  

 
0                5                0            1         -2/3      -1/3 
 
1                1                0            0          1/3       -1/3 
 
0              -2                 1            0         -1/3        4/3 

 

  
Z = 10/3 

 
0                3                 0            0         1/3        2/3 

 
←Δj 

 
Since all Δj ≥ 0, optimal basic feasible solution is obtained.  
 
Therefore the solution is Max Z = 10/3, x = 1/3, y = 0 and z = 8/3 
 
Example 5 



Maximize Z = 3x1 + 5x2 
    Subject to  
 3x1 + 2x2 ≤ 18 
 x1 ≤ 4 
            x2 ≤ 6 
    and x1 ≥ 0, x2  ≥ 0 
 
 
 
 
 
 
 
Solution 
 
SLPP 

Maximize Z = 3x1 + 5x2 + 0s1 + 0s2 + 0s3 
     Subject to  
  3x1 + 2x2 + s1= 18 
  x1 + s2= 4 
  x2 + s3= 6 
      x1 ≥ 0, x2  ≥ 0, s1 ≥ 0, s2 ≥ 0, s3 ≥ 0 
 

Cj →   3    5       0         0            0 
Basic 

Variables CB XB X1 X2 S1 S2 S3 
Min ratio 
 XB /Xk 

s1 0 18 3 2 1 0 0 18 / 2 = 9  
s2 0 4 1 0 0 1 0 4 / 0 = ∞ (neglect) 
s3 0 6 0 1 0 0 1 6 / 1 = 6→  

  
Z = 0 

 
-3 

↑ 
-5 

 
0 

 
0 

 
0 

 
←Δj 

                   (R1=R1-2R3)  
s1 0 6 3 0 1 0 -2 6 / 3 = 2 → 
s2 0 4 1 0 0 1 0 4 / 1 = 4 
x2 5 6 0 1 0 0 1   -- 

  
Z = 30 

↑ 
-3 

 
0 

 
0 

 
0 

 
5 

 
←Δj 

  (R1=R1 / 3)  
x1 3 2 1 0 1/3 0 -2/3  
   (R2=R2 - R1)  

s2 0 2 0 0 -1/3 1 2/3  
x2 5 6 0 1 0 0 1  

  
Z = 36 

 
0 

 
0 

 
1 

 
0 

 
3 

 
←Δj 

 



Since all Δj ≥ 0, optimal basic feasible solution is obtained 
 
Therefore the solution is Max Z = 36, x1 = 2, x2 = 6 
 
 
Example 6 
Minimize Z = x1 – 3x2 + 2x3 
    Subject to  
 3x1 – x2 + 3x3 ≤ 7 

-2x1 + 4x2 ≤ 12 
 -4x1 + 3x2 + 8x3 ≤ 10 
    and  x1 ≥ 0, x2  ≥ 0, x3 ≥ 0 
 
 
Solution 
 
SLPP 

Min (-Z) = Max Z׳ = -x1 + 3x2 - 2x3 + 0s1 + 0s2 + 0s3 
     Subject to  
  3x1 – x2 + 3x3 + s1 = 7 

-2x1 + 4x2 + s2 = 12 
  -4x1 + 3x2 + 8x3 + s3  = 10 
      x1 ≥ 0, x2  ≥ 0, x3 ≥ 0 s1 ≥ 0, s2 ≥ 0, s3 ≥ 0 
 

                   Cj →      -1 3 -2   0     0       0  
Basic 

Variables CB XB X1 X2 X3 S1 S2 S3 
Min ratio 

XB /Xk 
s1 0 7 3 -1 3 1 0 0 - 
s2 0 12 -2 4 0 0 1 0 3→ 
s3 0 10 -4 3 8 0 0 1 10/3 

  
Z' = 0 

 
1 

↑ 
-3 

 
2 

 
0 

 
0 

 
0 

 
←Δj 

   (R1 = R1 + R2)  
s1 0 10 5/2 0 3 1 1/4 0 4→ 
   (R2 = R2 / 4)  

x2 3 3 -1/2 1 0 0 1/4 0 - 
   (R3 = R3 – 3R2)  

s3 0 1 -5/2 0 8 0 -3/4 1 - 

  
Z' = 9 

↑ 
-5/2 

 
0 

 
0 

 
0 

 
3/4 

 
0 

 
←Δj 

   (R1 = R1 / 5/2)  
x1 -1 4 1 0 6/5 2/5 1/10 0  
   (R2 = R2 + 1/2 R1)  

x2 3 5 0 1 3/5 1/5 3/10 0  
   (R3 = R3 + 5/2R1)  

s3 0 11 0 1 11 1 -1/2 1  



 Z' = 11 0 0 3/5 1/5 1/5 0  
←Δj 

 
 
Since all Δj ≥ 0, optimal basic feasible solution is obtained 
 
Therefore the solution is Z' =11 which implies Z = -11, x1 = 4, x2 = 5, x3 = 0 
 
Example 7 
Max Z = 2x + 5y 
x + y ≤ 600 
0 ≤ x ≤ 400 
0 ≤ y ≤ 300 
 
 
 
Solution 
 
SLPP 
Max Z = 2x + 5y + 0s1 + 0s2 + 0s3 
x + y + s1 = 600 
x + s2 = 400 
y + s3 = 300 
x1 ≥ 0, y  ≥ 0, s1 ≥ 0, s2 ≥ 0, s3 ≥ 0 
 
 

Cj →    2       5              0    0          0  
Basic 

Variables CB XB X Y S1 S2 S3 
Min ratio 

XB /Xk 
s1 0 600 1 1 1 0 0 600 / 1 = 600 
s2 0 400 1 0 0 1 0 - 
s3 0 300 0 1 0 0 1 300 /1 = 300→ 

  
Z = 0 

 
-2 

↑ 
-5 

 
0 

 
0 

 
0 

 
←Δj 

                 (R1 = R1 – R3)  
s1 0 300 1 0 1 0 -1 300 /1 = 300→ 
s2 0 400 1 0 0 1 0 400 / 1 = 400 
y 5 300 0 1 0 0 1 - 

  
Z = 1500 

↑ 
-2 

 
0 

 
0 

 
0 

 
5 

 
←Δj 

x 2 300 1 0 1 0 -1  
    (R2 = R2 – R1)  

s2 0 100 0 0 -1 1 1  
y 5 300 0 1 0 0 1  
        



Z = 2100 0 0 2 0 3 ←Δj 
 
 
Since all Δj ≥ 0, optimal basic feasible solution is obtained 
 
Therefore the solution is Z = 2100, x = 300, y = 300 
  
 
 

 

 

 

 

Unit 2 
 
2.1 Computational Procedure of Big – M Method (Charne’s Penalty Method) 
2.2 Worked Examples 
2.3 Steps for Two-Phase Method 
2.4 Worked Examples 
 
2.1 Computational Procedure of Big – M Method (Charne’s Penalty Method) 
 
Step 1 – Express the problem in the standard form. 
 
Step 2 – Add non-negative artificial variable to the left side of each of the equations 
corresponding to the constraints of the type ‘≥’ or ‘=’.  
 
When artificial variables are added, it causes violation of the corresponding constraints. This 
difficulty is removed by introducing a condition which ensures that artificial variables will be 
zero in the final solution (provided the solution of the problem exists).  
 
On the other hand, if the problem does not have a solution, at least one of the artificial variables 
will appear in the final solution with positive value. This is achieved by assigning a very large 
price (per unit penalty) to these variables in the objective function. Such large price will be 
designated by –M for maximization problems (+M for minimizing problem), where M > 0. 
 
Step 3 – In the last, use the artificial variables for the starting solution and proceed with the usual 
simplex routine until the optimal solution is obtained. 
     
  
2.2 Worked Examples 



 
Example 1 
Max Z = -2x1 - x2 
Subject to  
 3x1 + x2 = 3 
 4x1 + 3x2 ≥ 6 
            x1 + 2x2 ≤ 4 
    and x1 ≥ 0, x2  ≥ 0 
 
Solution 
 
SLPP 
Max Z = -2x1 - x2 + 0s1 + 0s2 - M a1 - M a2 
    Subject to  
  3x1 + x2 + a1= 3 
  4x1 + 3x2 – s1 + a2 = 6 
  x1 + 2x2  + s2 = 4 
    x1 , x2 , s1, s2, a1, a2  ≥ 0 
 

       
          Cj → -2 -1 0 0 -M -M  

Basic 
Variables CB XB X1 X2 S1 S2 A1 A2 Min ratio 

XB /Xk 
a1 -M 3 3 1 0 0 1 0 3 /3 = 1→ 
a2 -M 6 4 3 -1 0 0 1 6 / 4 =1.5 
s2 0 4 1 2 0 1 0 0  4 / 1 = 4 

  
Z = -9M 

↑ 
2 – 7M 

 
1 – 4M 

 
M  

 
0 

 
0 

 
0 

 
←Δj 

x1 -2 1 1 1/3 0 0 X 0 1/1/3 =3 
a2 -M 2 0 5/3 -1 0 X 1 6/5/3 =1.2→ 
s2 0 3 0 5/3 0 1 X 0 4/5/3=1.8 

  
Z = -2 – 2M  

 
0 

 
0 0 X 0 

 
←Δj 

x1 -2 3/5 1 0 1/5 0 X X  
x2 -1 6/5 0 1 -3/5 0 X X  
s2 0 1 0 0 1 1 X X  

  
Z = -12/5 

 
0 

 
0 

 
1/5 

 
0 

 
X 

 
X  

 
Since all Δj ≥ 0, optimal basic feasible solution is obtained 
 
Therefore the solution is Max Z = -12/5, x1 = 3/5, x2 = 6/5 
 
 



Example 2 
Max Z = 3x1 - x2 
Subject to  
 2x1 + x2 ≥ 2 
 x1 + 3x2 ≤ 3 
            x2 ≤ 4 
    and x1 ≥ 0, x2  ≥ 0 
 
Solution 
 
SLPP 
Max Z = 3x1 - x2 + 0s1 + 0s2 + 0s3 - M a1  
    Subject to  
  2x1 + x2 – s1+ a1= 2 
  x1 + 3x2 + s2  = 3 
  x2 + s3 = 4 
    x1 , x2 , s1, s2, s3, a1  ≥ 0 
 
 
 

        
            Cj → 3 -1 0 0 0 -M  

Basic 
Variables CB XB X1 X2 S1 S2 S3 A1 Min ratio 

XB /Xk 
a1 -M 2 2 1 -1 0 0 1 2 / 2 = 1→ 
s2 0 3 1 3 0 1 0 0      3 / 1 = 3 
s3 0 4 0 1 0 0 1 0 - 

  
Z = -2M 

↑ 
-2M-3 

 
-M+1 

 
M 

 
0 

 
0 

 
0 

 
←Δj 

x1 3 1 1 1/2 -1/2 0 0 X - 
s2 0 2 0 5/2 1/2 1 0 X 2/1/2 = 4→ 
s3 0 4 0 1 0 0 1 X - 

  
Z = 3 

 
0 

 
5/2 

↑ 
-3/2 

 
0 

 
0 

 
X 

 
←Δj 

x1 3 3 1 3 0 1/2 0 X  
s1 0 4 0 5 1 2 0 X  
s3 0 4 0 1 0 0 1 X  

  
Z = 9 

 
0 

 
10 

 
0 

 
3/2 

 
0 

 
X 

 
 

 
Since all Δj ≥ 0, optimal basic feasible solution is obtained 
 
Therefore the solution is Max Z = 9, x1 = 3, x2 = 0 
 
 



Example 3 
Min Z = 2x1 + 3x2 
Subject to  
 x1 + x2 ≥ 5 
 x1 + 2x2 ≥ 6 
    and x1 ≥ 0, x2  ≥ 0 
 
Solution 
 
SLPP 
Min Z = Max Z2- = ׳x1 - 3x2 + 0s1 + 0s2 - M a1 - M a2  
    Subject to  
  x1 + x2 – s1+ a1= 5 
  x1 + 2x2 – s2+ a2= 6 
  x1 , x2 , s1, s2, a1, a2  ≥ 0 
 
 
 
 
 
 
 

       
         Cj → -2 -3 0 0 -M -M  

Basic 
Variables CB XB X1 X2 S1 S2 A1 A2 Min ratio 

XB /Xk 
a1 -M 5 1 1 -1 0 1 0 5 /1 = 5 
a2 -M 6 1 2 0 -1 0 1 6 / 2 = 3→ 

  
Z11- = ׳M 

 
-2M + 2 

↑ 
-3M+3 

 
M 

 
M 

 
0 

 
0 

 
←Δj 

a1 -M 2 1/2 0 -1 1/2 1 X 2/1/2 = 4→ 
x2 -3 3 1/2 1 0 -1/2 0 X 3/1/2 =6 

  
Z2- = ׳M-9 

↑ 
(-M+1) / 2 

 
0 

 
M 

 
(-M+3)/2 

 
0 

 
X 

 
←Δj 

x1 -2 4 1 0 -2 1 X X  
x2 -3 1 0 1 1 -1 X X  

  
Z11- = ׳ 

 
0 

 
0 

 
1 

 
1 

 
X 

 
X 

 
 

 
Since all Δj ≥ 0, optimal basic feasible solution is obtained 
 
Therefore the solution is Z' = -11 which implies Max Z = 11, x1 = 4, x2 = 1 
 
Example 4 
Max Z =3x1 + 2x2 + x3 



    Subject to  
 2x1 + x2 + x3 = 12 

3x1 + 4x2 = 11 
     and x1 is unrestricted 
   x2  ≥ 0, x3 ≥ 0 
Solution 
 
SLPP 
Max Z = 3(x1

' - x1
'') + 2x2 + x3 - M a1 - M a2  

    Subject to  
  2(x1

' - x1
'') + x2 + x3 + a1= 12 

 3(x1
' - x1

'') + 4x2 + a2 = 11 
  x1

', x1
'', x2 , x3, a1, a2  ≥ 0 

 
Max Z = 3x1

' - 3x1
'' + 2x2 + x3 - M a1 - M a2  

    Subject to  
  2x1

' - 2x1
'' + x2 + x3 + a1= 12 

 3x1
' - 3x1

'' + 4x2 + a2 = 11 
  x1

', x1
'', x2 , x3, a1, a2  ≥ 0 

 
 
 

   
              Cj → 3 -3 2 1 -M -M  

Basic 
Variables CB XB X1

' X1
'' X2 X3 A1 A2 Min ratio 

XB /Xk 
a1 -M 12 2 -2 1 1 1 0 12 /2 = 6 
a2 -M 11 3 -3 4 0 0 1 11/3 =3.6→ 

  
Z = -23M 

↑ 
-5M-3 

 
5M+3 

 
-5M-2 

 
-M-1 

 
0 

 
0 

 
←Δj 

a1 -M 14/3 0 0 -5/3 1 1 X 14/3/1 = 14/3→ 
x1

' 3 11/3 1 -1 4/3 0 0 X - 

 
 

 
0 

 
-6 

 
5/3M+1 

↑ 
-M-1 

 
0 

 
X 

 
←Δj 

x3 1 14/3 0 0 -5/3 1 X X  
x1

' 3 11/3 1 -1 4/3 0 X X  

  
Z = 47/3 

 
0 

 
0 

 
1/3 

 
0 

 
X 

 
X 

 
 

 
 
Since all Δj ≥ 0, optimal basic feasible solution is obtained 
 
x1

' = 11/3,  x1
'' = 0  

x1 = x1
' - x1

'' = 11/3 – 0 = 11/3 
 



Therefore the solution is Max Z = 47/3, x1 = 11/3, x2 = 0, x3 = 14/3 
 
Example 5 
Max Z = 8x2 
Subject to  
 x1 - x2 ≥ 0 
 2x1 + 3x2 ≤ -6 
     and x1 , x2  unrestricted 
 
Solution 
SLPP 
Max Z = 8 (x2

' – x2
'') + 0s1 + 0s2 - M a1 - M a2 

    Subject to  
  (x1

' - x1
'') - (x2

' – x2
'') – s1+ a1= 0 

  -2(x1
' - x1

'') - 3(x2
' – x2

'') - s2 + a2 = 6 
  x1

', x1
'', x2

', x2
'', s1, a1, a2  ≥ 0 

 
Max Z = 8x2

' – 8x2
'' + 0s1 + 0s2 - M a1 - M a2 

    Subject to  
  x1

' - x1
'' - x2

' + x2
''– s1+ a1= 0 

  -2x1
' + 2x1

''
 - 3x2

' + 3x2
'' - s2 + a2 = 6 

  x1
', x1

'', x2
', x2

'', s1, a1, a2  ≥ 0 
  

       
 Cj → 0 0 8 -8 0 0 -M -M  

Basic 
Variables CB XB X1

' X1
'' X2

' X2
'' S1 S2 A1 A2 Min ratio 

XB /Xk 
a1 -M 0 1 -1 -1 1 -1 0 1 0 0→ 
a2 -M 6 -2 2 -3 3 0 -1 0 1 2 

  
Z = -6M 

 
M 

 
-M 

 
4M-8 

↑ 
-4M+8 

 
M 

 
M 

 
0 

 
0 

 
←Δj 

x2
'' -8 0 1 -1 -1 1 -1 0 X 0 - 

a2 -M 6 -5 5 0 0 3 -1 X 1 6/5→ 

  
Z  = -6M 

 
5M-8 

↑ 
-5M+8 

 
0 

 
0 

 
-3M+8 

 
M 

 
X 

 
0 

 
←Δj 

x2
'' -8 6/5 0 0 -1 1 -2/5 -1/5 X X  

x1
'' 0 6/5 -1 1 0 0 3/5 -1/5 X X  

  
Z = -48/5 

 
0 

 
0 

 
0 

 
0 

 
16/5 

 
8/5 

 
X 

 
X  

 
Since all Δj ≥ 0, optimal basic feasible solution is obtained 
 
x1

' = 0,  x1
'' = 6/5  

x1 = x1
' - x1

'' = 0 – 6/5 = -6/5 
 



x2
' = 0,  x2

'' = 6/5  
x2 = x2

' – x2
'' = 0 – 6/5 = -6/5 

 
Therefore the solution is Max Z = -48/5, x1 = -6/5, x2 = -6/5 
 
 
2.3 Steps for Two-Phase Method 
 
The process of eliminating artificial variables is performed in phase-I of the solution and phase-
II is used to get an optimal solution. Since the solution of LPP is computed in two phases, it is 
called as Two-Phase Simplex Method. 
 
Phase I – In this phase, the simplex method is applied to a specially constructed auxiliary linear 
programming problem leading to a final simplex table containing a basic feasible solution to 
the original problem. 

Step 1 – Assign a cost -1 to each artificial variable and a cost 0 to all other variables in 
the objective function. 
Step 2 – Construct the Auxiliary LPP in which the new objective function Z* is to be 
maximized subject to the given set of constraints. 
Step 3 – Solve the auxiliary problem by simplex method until either of the following 
three possibilities do arise 

i. Max Z* < 0 and atleast one artificial vector appear in the optimum basis at 
a positive level (Δj ≥ 0). In this case, given problem does not possess any 
feasible solution. 

ii. Max Z* = 0 and at least one artificial vector appears in the optimum basis 
at a zero level. In this case proceed to phase-II. 

iii. Max Z* = 0 and no one artificial vector appears in the optimum basis. In 
this case also proceed to phase-II. 

 
Phase II – Now assign the actual cost to the variables in the objective function and a zero cost to 
every artificial variable that appears in the basis at the zero level. This new objective function is 
now maximized by simplex method subject to the given constraints.  
 
Simplex method is applied to the modified simplex table obtained at the end of phase-I, until an 
optimum basic feasible solution has been attained. The artificial variables which are non-basic at 
the end of phase-I are removed. 
 
 
2.4 Worked Examples 
 
Example 1 
Max Z = 3x1 - x2 
Subject to  
 2x1 + x2 ≥ 2 
 x1 + 3x2 ≤ 2 
            x2 ≤ 4 



    and x1 ≥ 0, x2  ≥ 0 
 
Solution 
 
Standard LPP 
Max Z = 3x1 - x2   
    Subject to  
  2x1 + x2 – s1+ a1= 2 
  x1 + 3x2 + s2  = 2 
  x2 + s3 = 4 
    x1 , x2 , s1, s2, s3,a1  ≥ 0 
 
Auxiliary LPP 
Max Z* = 0x1 - 0x2 + 0s1 + 0s2 + 0s3 -1a1 
    Subject to  
  2x1 + x2 – s1+ a1= 2 
  x1 + 3x2 + s2  = 2 
  x2 + s3 = 4 
    x1 , x2 , s1, s2, s3,a1  ≥ 0 
 
 
 
 
 
 
Phase I 
 

            Cj → 0 0 0 0 0 -1  
Basic 

Variables CB XB X1 X2 S1 S2 S3 A1 Min ratio 
XB /Xk 

a1 -1 2 2 1 -1 0 0 1  1→ 
s2 0 2 1 3 0 1 0 0            2 
s3 0 4 0 1 0 0 1 0 - 

  
Z* = -2 

↑ 
-2 

 
-1 

 
1 

 
0 

 
0 

 
0 

 
←Δj 

x1 0 1 1 1/2 -1/2 0 0 X  
s2 0 1 0 5/2 1/2 1 0 X  
s3 0 4 0 1 0 0 1 X  

  
Z* = 0 

 
0 

 
0 

 
0 

 
0 

 
0 

 
X 

 
←Δj 

 
Since all Δj ≥ 0, Max Z* = 0 and no artificial vector appears in the basis, we proceed to phase II. 
 
Phase II 
 

            Cj → 3 -1 0 0 0  



Basic 
Variables CB XB X1 X2 S1 S2 S3 

Min ratio 
XB /Xk 

x1 3 1 1 1/2 -1/2 0 0 - 
s2 0 1 0 5/2 1/2 1 0 2→ 
s3 0 4 0 1 0 0 1 - 

  
Z = 3 

 
0 

 
5/2 

↑ 
-3/2 

 
0 

 
0 

 
←Δj 

x1 3 2 1 3 0 1 0  
s1 0 2 0 5 1 2 0  
s3 0 4 0 1 0 0 1  

  
Z = 6 

 
0 

 
10 

 
0 

 
3 

 
0 

 
←Δj 

 
Since all Δj ≥ 0, optimal basic feasible solution is obtained 
 
Therefore the solution is Max Z = 6, x1 = 2, x2 = 0 
 
Example 2 
Max Z = 5x1 + 8x2 
Subject to  

3x1 + 2x2 ≥ 3 
x1 + 4x2 ≥ 4 
x1 + x2 ≤ 5 

    and x1 ≥ 0, x2  ≥ 0 
 
Solution 
 
Standard LPP 
Max Z = 5x1 + 8x2   
    Subject to  
  3x1 + 2x2 – s1+ a1 = 3 
  x1 + 4x2 – s2+ a2  = 4 
  x1 + x2 + s3 = 5 
    x1 , x2 , s1, s2, s3, a1, a2  ≥ 0 
 
Auxiliary LPP 
Max Z* = 0x1 + 0x2 + 0s1 + 0s2 + 0s3 -1a1 -1a2 
    Subject to  
  3x1 + 2x2 – s1+ a1 = 3 
  x1 + 4x2 – s2+ a2  = 4 
  x1 + x2 + s3 = 5 
    x1 , x2 , s1, s2, s3, a1, a2  ≥ 0 
 
Phase I 
 

 Cj → 0 0 0 0 0 -1 -1  



Basic 
Variables CB XB X1 X2 S1 S2 S3 A1 A2 Min ratio 

XB /Xk 
a1 -1 3 3 2 -1 0 0 1 0 3/2 
a2 -1 4 1 4 0 -1 0 0 1 1→ 
s3 0 5 1 1 0 0 1 0 0         5 

  
Z* = -7 

 
-4 

↑ 
-6 

 
1 

 
1 

 
0 

 
0 

 
0 

 
←Δj 

a1 -1 1 5/2 0 -1 1/2 0 1 X 2/5→ 
x2 0 1 1/4 1 0 -1/4 0 0 X 4 
s3 0 4 3/4 0 0 1/4 1 0 X 16/3 

  
Z* = -1 

↑ 
-5/2 

 
0 

 
1 

 
-1/2 

 
0 

 
0 

 
X 

 
←Δj 

x1 0 2/5 1 0 -2/5 1/5 0 X X  
x2 0 9/10 0 1 1/10 -3/10 0 X X  
s3 0 37/10 0 0 3/10 1/10 1 X X  

  
Z* = 0 

 
0 

 
0 

 
0 

 
0 

 
0 

 
X 

 
X 

 
←Δj 

 
Since all Δj ≥ 0, Max Z* = 0 and no artificial vector appears in the basis, we proceed to phase II. 
 
 
 
Phase II 
 
 

 Cj → 5 8 0 0 0  
Basic 

Variables CB XB X1 X2 S1 S2 S3 
Min ratio 

XB /Xk 
x1 5 2/5 1 0 -2/5 1/5 0 2→ 
x2 8 9/10 0 1 1/10 -3/10 0 - 
s3 0 37/10 0 0 3/10 1/10 1 37 

  
Z = 46/5 

 
0 

 
0 

 
-6/5 

↑ 
-7/5 

 
0 

 
←Δj 

s2 0 2 5 0 -2 1 0 - 
x2 8 3/2 3/2 1 -1/2 0 0 - 
s3 0 7/2 -1/2 0 1/2 0 1 7→ 

  
Z = 12 

 
7 

 
0 

↑ 
-4 

 
0 

 
0 

 
←Δj 

s2 0 16 3 0 0 1 2  
x2 8 5 1 1 0 0 1/2  
s1 0 7 -1 0 1 0 2  

  
Z = 40 

 
3 

 
0 

 
0 

 
0 

 
4 

 
 

 



Since all Δj ≥ 0, optimal basic feasible solution is obtained 
 
Therefore the solution is Max Z = 40, x1 = 0, x2 = 5 
 
Example 3 
Max Z = -4x1 - 3x2 - 9x3 
Subject to  
 2x1 + 4x2 + 6x3 ≥ 15 
 6x1 + x2 + 6x3 ≥ 12 
     and x1 ≥ 0, x2  ≥ 0, x3  ≥ 0  
 
 
Solution 
 
Standard LPP 
Max Z = -4x1 - 3x2 - 9x3 
    Subject to  
  2x1 + 4x2 + 6x3 - s1+ a1= 15 
  6x1 + x2 + 6x3 - s2 + a2 = 12 
  x1 , x2 , s1, s2, a1, a2  ≥ 0 
 
Auxiliary LPP 
Max Z* = 0x1 - 0x2 - 0x3 + 0s1 + 0s2 -1a1 -1a2 
    Subject to  
  2x1 + 4x2 + 6x3 - s1+ a1= 15 
  6x1 + x2 + 6x3 - s2 + a2 = 12 
  x1 , x2 , s1, s2, a1, a2  ≥ 0 
Phase I 
 

 Cj → 0 0 0 0 0 -1 -1  
Basic 

Variables CB XB X1 X2 X3 S1 S2 A1 A2 Min ratio 
XB /Xk 

a1 -1 15 2 4 6 -1 0 1 0 15/6 
a2 -1 12 6 1 6 0 -1 0 1 2→ 

  
Z* = -27 

 
-8 

 
-5 

↑ 
-12 

 
1 

 
1 

 
0 

 
0 

 
←Δj 

a1 -1 3 -4 3 0 -1 1 1 X 1→ 
x3 0 2      1 1/6 1 0 -1/6 0 X 12 

  
Z* = -3 

 
4 

↑ 
-3 

 
0 

 
1 

 
-1 

 
0 

 
X 

 
←Δj 

x2 0 1 -4/3 1 0 -1/3 1/3 X X  
x3 0 11/6 22/18 0 1 1/18 -4/18 X X  

  
Z* = 0 

 
0 

 
0 

 
0 

 
0 

 
0 

 
X 

 
X 

 
 

 



Since all Δj ≥ 0, Max Z* = 0 and no artificial vector appears in the basis, we proceed to phase II. 
 
Phase II 
 

 Cj → -4 -3 -9 0 0  
Basic 

Variables CB XB X1 X2 X3 S1 S2 
Min ratio 

XB /Xk 
x2 -3 1 -4/3 1 0 -1/3 1/3 - 
x3 -9 11/6 22/18 0 1 1/18 -4/18 3/2→ 

  
Z = -39/2 

↑ 
-3 

 
0 

 
0 

 
1/2 

 
1 

 
←Δj 

x2 -3 3 0 1 12/11 -3/11 1/11  
x1 -4 3/2 1 0 18/22 1/22 -4/22  

  
Z = -15 

 
0 

 
0 

 
27/11 

 
7/11 

 
5/11 

 
←Δj 

 
Since all Δj ≥ 0, optimal basic feasible solution is obtained 
 
Therefore the solution is Max Z = -15, x1 = 3/2, x2 = 3, x3 = 0 
 
Example 4 
Min Z = 4x1 + x2 
Subject to  

3x1 + x2 = 3 
4x1 + 3x2 ≥ 6 
x1 + 2x2 ≤ 4 

    and x1 ≥ 0, x2  ≥ 0 
 
Solution 
 
Standard LPP 
Min Z = Max Z' = – 4x1 – x2 
    Subject to  
  3x1 + x2 + a1 = 3 
  4x1 + 3x2 – s1+ a2 = 6 
  x1 + 2x2 + s2 = 4 
    x1 , x2 , s1, s2, a1, a2  ≥ 0 
 
Auxiliary LPP 
Max Z* = 0x1 – 0x2 + 0s1 + 0s2   –1a1 –1a2 
    Subject to  
  3x1 + x2 + a1 = 3 
  4x1 + 3x2 – s1+ a2 = 6 
  x1 + 2x2 + s2 = 4 
    x1 , x2 , s1, s2, a1, a2  ≥ 0 
 



 
Phase I 
 

 Cj → 0 0 0 0 -1 -1  
Basic 

Variables CB XB X1 X2 S1 S2 A1 A2 Min ratio 
XB /Xk 

a1 -1 3 3 1 0 0 1 0 1→ 
a2 -1 6 4 3 -1 0 0 1 6/4 
s2 0 4 1 2 0 1 0 0 4 

  
Z* = -9 

↑ 
-7 

 
-4 

 
1 

 
0 

 
0 

 
0  

x1 0 1 1 1/3 0 0 X 0 3 
a2 -1 2 0 5/3 -1 0 X 1 6/5→ 
s2 0 3 0 5/3 0 1 X 0 9/5 

  
Z* = -2 

 
0 

↑ 
-5/3 

 
1 

 
0 

 
X 

 
0  

x1 0 3/5 1 0 1/5 0 X X  
x2 0 6/5 0 1 -3/5 0 X X  
s2 0 1 0 0 1 1 X X  

  
Z* = 0 

 
0 

 
0 

 
0 

 
0 

 
X 

 
X  

 
Since all Δj ≥ 0, Max Z* = 0 and no artificial vector appears in the basis, we proceed to phase II. 
 
 
 
 
Phase II 
 

 Cj → -4 -1 0 0  
Basic 

Variables CB XB X1 X2 S1 S2 
Min ratio 

XB /Xk 
x1 -4 3/5 1 0 1/5 0 3 
x2 -1 6/5 0 1 -3/5 0 - 
s2 0 1 0 0 1 1 1→ 

  
Z' = -18/5 

 
0 

 
0 

↑ 
-1/5 

 
0 

 
←Δj 

x1 -4 2/5 1 0 0 -1/5  
x2 -1 9/5 0 1 0 3/5  
s1 0 1 0 0 1 1  

  
Z' = -17/5 

 
0 

 
0 

 
0 

 
1/5 

 
←Δj 

 
Since all Δj ≥ 0, optimal basic feasible solution is obtained 



 
Therefore the solution is Max Z' = -17/5 
Min Z = 17/5, x1 = 2/5, x2 = 9/5 
 
Example 5 
Min Z = x1 –2x2– 3x3 
Subject to  

–2x1 + x2 + 3x3= 2 
2x1 + 3x2 + 4x3= 1 

    and x1 ≥ 0, x2  ≥ 0 
 
Solution 
 
Standard LPP 
Min Z = Max Z' = –x1 +2x2+ 3x3 
    Subject to  
  –2x1 + x2 + 3x3 + a1 = 2 
  2x1 + 3x2 + 4x3+ a2 = 1 
  x1 , x2 , a1, a2  ≥ 0 
 
Auxiliary LPP 
Max Z* = 0x1 + 0x2 + 0x3 –1a1 –1a2 
Subject to  
  –2x1 + x2 + 3x3 + a1 = 2 
  2x1 + 3x2 + 4x3+ a2 = 1 
  x1 , x2 , a1, a2  ≥ 0 
 
 
 
 
Phase I 
 

  Cj→ 0 0 0 -1 -1  
Basic 

Variables CB XB X1 X2 X3 A1 A2 Min Ratio 
XB / XK 

a1 -1 2 -2 1 3 1 0 2/3 
a2 -1 1 2 3 4 0 1 1/4→ 

  
Z* = -3 

 
0 

 
-4 

↑ 
-7 

 
0 

 
0 

 
←Δj 

a1 -1 5/4 -7/4 -5/4 0 1 X  
x3 0 1/4 1/2 3/4 1 0 X  

  
Z* = -5/4 

 
7/4 

 
5/4 

 
0 

 
1 

 
X 

 
←Δj 

 



Since for all Δj ≥ 0, optimum level is achieved. At the end of phase-I Max Z* < 0 and one of the 
artificial variable a1 appears at the positive optimum level. Hence the given problem does not 
posses any feasible solution.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Unit 3 
 
3.1 Special cases in Simplex Method 

3.1.1 Degenaracy 
3.1.2 Non-existing Feasible Solution 
3.1.3 Unbounded Solution 
3.1.4 Multiple Optimal Solutions 

 
3.1.1 Degeneracy 
 
The concept of obtaining a degenerate basic feasible solution in a LPP is known as degeneracy. 
The degeneracy in a LPP may arise  



 At the initial stage when at least one basic variable is zero in the initial basic feasible 
solution. 

 At any subsequent iteration when more than one basic variable is eligible to leave the 
basic and hence one or more variables becoming zero in the next iteration and the 
problem is said to degenerate. There is no assurance that the value of the objective 
function will improve, since the new solutions may remain degenerate. As a result, it is 
possible to repeat the same sequence of simplex iterations endlessly without improving 
the solutions. This concept is known as cycling or circling. 

 
Rules to avoid cycling 

 Divide each element in the tied rows by the positive coefficients of the key column in that 
row. 

 Compare the resulting ratios, column by column, first in the identity and then in the body, 
from left to right. 

 The row which first contains the smallest algebraic ratio contains the leaving variable. 
 
 
Example 1 
 
Max Z = 3x1 + 9x2 
Subject to  

x1 + 4x2 ≤ 8 
x1 + 2x2 ≤ 4 

    and x1 ≥ 0, x2  ≥ 0 
 
Solution 
 
Standard LPP 
Max Z = 3x1 + 9x2 + 0s1 + 0s2 
    Subject to  
  x1 + 4x2 + s1 = 8 
  x1 + 2x2 + s2 = 4 
  x1 , x2 , s1, s2  ≥ 0 
 
 

  Cj→ 3 9 0 0   
Basic 

Variables CB XB X1 X2 S1 S2 XB / XK S1 / X2 

s1 0 8 1 4 1 0 

 

1/4 
s2 0 4 1 2 0 1 0/2→ 

  
Z = 0 

 
-3 

↑ 
-9 

 
0 

 
0   

←Δj 
s1 0 0 -1 0 1 -1   
x2 9 2 1/2 1 0 1/2   
        



Z =18 3/2 0 0 9/2 
 
 
Since all Δj ≥ 0, optimal basic feasible solution is obtained 
 
Therefore the solution is Max Z = 18, x1 = 0, x2 = 2 
 
Note – Since a tie in minimum ratio (degeneracy), we find minimum of s1 /xk for these rows for 
which the tie exists. 
 
Example 2 
 
Max Z = 2x1 + x2 
Subject to  

4x1 + 3x2 ≤ 12 
4x1 + x2 ≤ 8 
4x1 - x2 ≤ 8 

    and x1 ≥ 0, x2  ≥ 0 
 
Solution 
 
Standard LPP 
Max Z = 2x1 + x2 + 0s1 + 0s2 + 0s3 
    Subject to  
  4x1 + 3x2 + s1 = 12 
  4x1 + x2 + s2 = 8 

4x1 - x2 + s3 = 8 
  x1 , x2 , s1, s2, s3  ≥ 0 
 
 
 
 
 
 
 
 

  Cj→ 2 1 0 0 0    
Basic 

Varibles CB XB X1 X2 S1 S2 S3 XB / XK S1 / X1 S2 / X1 

s1 0 12 4 3 1 0 0 12/4=3   
s2 0 8 4 1 0 1 0 8/4=2 4/0=0 1/4 
s3 0 8 4 -1 0 0 1 8/4=2 4/0=0 0/4=0→ 

  
Z = 0 

↑ 
-2 

 
-1 

 
0 

 
0 

 
0 

 
←Δj 

  

s1 0 4 0 4 1 0 -1 4/4=1   
s2 0 0 0 2 0 1 -1 0→   



x1 2 2 1 -1/4 0 0 1/4 -   

  
Z = 4 

 
0 

↑ 
-3/2 

 
0 

 
0 

 
1/2 

 
←Δj 

  

s1 0 4 0 0 1 -2 1 0→   
x2 1 0 0 1 0 1/2 -1/2 -   
x1 2 2 1 0 0 1/8 1/8 16   

  
Z = 4 

 
0 

 
0 

 
0 

 
3/4 

↑ 
-1/4 

 
←Δj 

  

s3    0         4 0 0 1 -2 1    
x2    1         2 0 1 1/2 -1/2 0    
x1    2        3/2 1 0 -1/8 3/8 0    

  
Z = 5 

 
0 

 
0 

 
1/4 

 
1/4 

 
0 

 
←Δj 

  

 
 
Since all Δj ≥ 0, optimal basic feasible solution is obtained 
 
Therefore the solution is Max Z = 5, x1 = 3/2, x2 = 2 
 
3.1.2 Non-existing Feasible Solution 
 
The feasible region is found to be empty which indicates that the problem has no feasible 
solution. 
 
Example  
Max Z = 3x1 +2x2 
Subject to  

2x1 + x2 ≤ 2 
3x1 + 4x2 ≥ 12 

    and x1 ≥ 0, x2  ≥ 0 
 
 
 
 
 
Solution 
 
Standard LPP 
Max Z = 3x1 +2 x2 + 0s1 + 0s2 – Ma1 
    Subject to  
  2x1 + x2 + s1 = 2 
  3x1 + 4x2 - s2 + a1 = 12 
  x1 , x2 , s1, s2, s3  ≥ 0 
 

  Cj→ 3 2 0 0 -M  



Basic 
Variables CB XB X1 X2 S1 S2 A1 Min Ratio 

XB / XK 
s1 0 2 2 1 1 0 0 2/1=2→ 
a1 -M 12 3 4 0 -1 1 12/4=3 

  
Z= -12M 

 
-3M-3 

↑ 
-4M-2 

 
0 

 
M 

 
0 

 
←Δj 

x2 2 2 2 1 1 0 0  
a1 -M 4 -5 0 -4 -1 1  

  
Z= 4-4M 

 
1+5M 

 
0 

 
2+4M 

 
M 

 
0  

 
Δj ≥ 0 so according to optimality condition the solution is optimal but the solution is called 
pseudo optimal solution since it does not satisfy all the constraints but satisfies the optimality 
condition. The artificial variable has a positive value which indicates there is no feasible 
solution. 
 
3.1.3 Unbounded Solution 
 
In some cases if the value of a variable is increased indefinitely, the constraints are not violated. 
This indicates that the feasible region is unbounded at least in one direction. Therefore, the 
objective function value can be increased indefinitely. This means that the problem has been 
poorly formulated or conceived. 
 
In simplex method, this can be noticed if Δj value is negative to a variable (entering) which is 
notified as key column and the ratio of solution value to key column value is either negative or 
infinity (both are to be ignored) to all the variables. This indicates that no variable is ready to 
leave the basis, though a variable is ready to enter. We cannot proceed further and the solution is 
unbounded or not finite. 
  
Example 1 
Max Z = 6x1 - 2x2 
Subject to  

2x1 - x2 ≤ 2 
x1  ≤ 4 

    and x1 ≥ 0, x2  ≥ 0 
 
Solution 
Standard LPP 
Max Z = 6x1 - 2x2 + 0s1 + 0s2 
    Subject to  
  2x1 - x2 + s1 = 2 
  x1 + s2 = 4 
  x1 , x2 , s1, s2  ≥ 0 
 

  Cj→ 6 -2 0 0  



Basic 
Variables CB XB X1 X2 S1 S2 

Min Ratio 
XB / XK 

s1 0 2 2 -1 1 0 1→ 
s2 0 4 1 0 0 1 4 

  
Z = 0 

↑ 
-6 

 
2 

 
0 

 
0 

 
←Δj 

x1 6 1 1 -1/2 1/2 0 - 
s2 0 3 0 1/2 -1/2 1 6→ 

  
Z = 6 

 
0 

↑ 
-1 

 
3 

 
0 

 
←Δj 

x1 6 4 1 0 0 1  
x2 -2 6 0 1 -1 2  

  
Z = 12 

 
0 

 
0 

 
2 

 
2 

 
←Δj 

 
The optimal solution is x1 = 4, x2 = 6 and Z =12 
 
In the starting table, the elements of x2 are negative and zero. This is an indication that the 
feasible region is not bounded. From this we conclude the problem has unbounded feasible 
region but still the optimal solution is bounded. 
 
Example 2 
 
Max Z = -3x1 + 2x2 
Subject to  

x1  ≤ 3 
x1 - x2 ≤ 0 

    and x1 ≥ 0, x2  ≥ 0 
 
Solution 
Standard LPP 
Max Z = -3x1 + 2 x2 + 0s1 + 0s2 
    Subject to  
  x1  + s1 = 3 
  x1 - x2 + s2 = 0 
  x1 , x2 , s1, s2  ≥ 0 
 
 

  Cj→ -3 2 0 0  
Basic 

Variables CB XB X1 X2 S1 S2 
Min Ratio 
XB / XK 

s1 0 3 1 0 1 0  
s2 0 0 1 -1 0 1  

  
Z = 0 

 
3 

↑ 
-2 

 
0 

 
0 

 
←Δj 



 
Corresponding to the incoming vector (column x2), all elements are negative or zero. So x2 
cannot enter the basis and the outgoing vector cannot be found. This is an indication that there 
exists unbounded solution for the given problem. 
 
3.1.4 Multiple Optimal Solution 
 
When the objective function is parallel to one of the constraints, the multiple optimal solutions 
may exist. After reaching optimality, if at least one of the non-basic variables possess a zero 
value in Δj, the multiple optimal solution exist. 
 
Example  
Max Z = 6x1 + 4x2 
Subject to  

2x1 + 3x2 ≤ 30 
3x1 + 2x2 ≤ 24 
x1 + x2 ≥ 3 

    and x1 ≥ 0, x2  ≥ 0 
 
Solution 
 
Standard LPP 
Max Z = 6x1 + 4x2 + 0s1 + 0s2 + 0s3 - Ma1 
    Subject to  
  2x1 + 3x2 + s1 = 30 
  3x1 + 2x2 + s2 = 24 
  x1 + x2 – s3 + a1= 3 
    x1 , x2 , s1, s2, s3, a1  ≥ 0 
 
 
 
 
 
 
 
 
 
 
 

  Cj→ 6 4 0 0 0 -M  
Basic 

Variables CB XB X1 X2 S1 S2 S3 A1 Min Ratio 
XB / XK 

s1 0 30 2 3 1 0 0 0 15 
s2 0 24 3 2 0 1 0 0 8 
a1 -M 3 1 1 0 0 -1 1 3→ 
  ↑       



Z = -3M -M-6 -M-4 0 0 M 0 ←Δj 
s1 0 24 0 1 1 0 2 X 12 
s2 0 15 0 -1 0 1 3 X 5→ 
x1 6 3 1 1 0 0 -1 X - 

  
Z = 18 

 
0 

 
2 

 
0 

 
0 

↑ 
-6 

 
X 

 
←Δj 

s1 0 14 0 5/3 1 -2/3 0 X 42/5→ 
s3 0 5 0 -1/3 0 1/3 1 X - 
x1 6 8 1 2/3 0 1/3 0 X 12 

  
Z = 48 

 
0 

↑ 
0 

 
0 

 
2 

 
0 

 
X 

 
←Δj 

 
Since all Δj ≥ 0, optimum solution is obtained as x1 = 8, x2 = 0, Max Z = 48 
 
Since Δ2 corresponding to non-basic variable x2 is obtained zero, this indicates that alternate 
solution or multiple optimal solution also exist. Therefore the solution as obtained above is not 
unique. 
 
Thus we can bring x2 into the basis in place of s1. The new optimum simplex table is obtained as 
follows 
 

  Cj→ 6 4 0 0 0 -M  
Basic 

Variables CB XB X1 X2 S1 S2 S3 A1 Min Ratio 
XB / XK 

x2 4 42/5 0 1 3/5 -2/5 0 X  
s3 0 39/5 0 0 1/5 1/5 1 X  
x1 6 12/5 1 0 -2/5 3/5 0 X  

  
Z = 48 

 
0 

 
0 

 
0 

 
2 

 
0 

 
X 

 
←Δj 

 
Module 3 
 
Unit 1 
 
1.4 The Revised Simplex Method 
1.5 Steps for solving Revised Simplex Method in Standard Form-I 
1.6 Worked Examples 

 
1.1 The Revised Simplex Method 
 
While solving linear programming problem on a digital computer by regular simplex method, it 
requires storing the entire simplex table in the memory of the computer table, which may not be 
feasible for very large problem. But it is necessary to calculate each table during each iteration. 
The revised simplex method which is a modification of the original method is more economical 



on the computer, as it computes and stores only the relevant information needed currently for 
testing and / or improving the current solution. i.e. it needs only 
 

 The net evaluation row Δj to determine the non-basic variable that enters the basis. 
 The pivot column 
 The current basis variables and their values (XB column) to determine the minimum 

positive ratio and then identify the basis variable to leave the basis. 
 
The above information is directly obtained from the original equations by making use of the 
inverse of the current basis matrix at any iteration. 
 
There are two standard forms for revised simplex method 

 Standard form-I – In this form, it is assumed that an identity matrix is obtained after 
introducing slack variables only. 
 

 Standard form-II – If artificial variables are needed for an identity matrix, then two-
phase method of ordinary simplex method is used in a slightly different way to handle 
artificial variables. 

 
1.2 Steps for solving Revised Simplex Method in Standard Form-I 
 
Solve by Revised simplex method 
Max Z = 2x1 + x2 
Subject to 
 3 x1 + 4 x2 ≤ 6 
 6 x1 + x2 ≤ 3 
and  x1, x2 ≥ 0 
 
 
 
 
SLPP 
Max Z = 2x1 + x2+ 0s1+ 0s2 
Subject to 
 3 x1 + 4 x2 + s1 = 6 
 6 x1 + x2 + s2 = 3 
and  x1, x2, s1, s2 ≥ 0 
 
Step 1 – Express the given problem in standard form – I 

 Ensure all bi ≥ 0 
 The objective function should be of maximization 
 Use of non-negative slack variables to convert inequalities to equations 

 The objective function is also treated as first constraint equation  
 

Z - 2x1 - x2 + 0s1 + 0s2 = 0 
 3 x1 + 4 x2 + s1 + 0s2= 6                                            -- (1) 



 6 x1 + x2 + 0s1 + s2= 3 
and  x1, x2, s1, s2 ≥ 0 
 
Step 2 – Construct the starting table in the revised simplex form 

Express (1) in the matrix form with suitable notation 
 

 
 
Column vector corresponding to Z is usually denoted by e1. It is the first column of the basis 
matrix B1, which is usually denoted as B1 = [β0

(1), β1
(1), β2

(1) … βn
(1)] 

 
Hence the column β0

(1), β1
(1), β2

(1) constitutes the basis matrix B1 (whose inverse B1
-1 is also B1) 

 
 

Basic 
variables 

B1
-1  

XB 
 

Xk 
 

XB / Xk 

  
a1 

(1) 
 

 
a2 

(1) 
 

e1 
(Z) β1

(1) β2
(1)  

Z 1 0 0 0    -2 -1 
s1 0 1 0 6    3 4 
s2 0 0 1 3    6 1 

 
Step 3 – Computation of Δj for a1 

(1) and a2 
(1) 

  
  

Δ1 = first row of B1
-1 * a1 

(1) = 1 * -2 + 0 * 3 + 0 *6 = -2 
 Δ2 = first row of B1

-1 * a2 
(1) = 1 * -1 + 0 * 4 + 0 *1 = -1 

 
Step 4 – Apply the test of optimality 
 

Both Δ1 and Δ2 are negative. So find the most negative value and determine the incoming 
vector. 
Therefore most negative value is Δ1 = -2. This indicates a1 

(1) (x1) is incoming vector. 
 
Step 5 – Compute the column vector Xk 
  
 Xk = B1

-1 * a1 
(1) 



 
 
Step 6 – Determine the outgoing vector. We are not supposed to calculate for Z row. 
 

 
Basic 

variables 

B1
-1  

XB 
 

Xk 
 

XB / Xk 
e1 
(Z) β1

(1) β2
(1) 

Z 1 0 0 0 -2 - 
s1 0 1 0 6 3 2 
s2 

 
 

0 
 
 

0 
 
 

1 
 
 

3 
 
 

6 
↑ 

incoming 

1/2→outgoing 
 
 

 
Step 7 – Determination of improved solution 
 
 Column e1 will never change, x1 is incoming so place it outside the rectangular boundary 

 
 β1

(1) β2
(1) XB   X1 

R1 0 0 0   -2 
R2 1 0 6    3 
R3 0 1 3    6 

 
Make the pivot element as 1 and the respective column elements to zero. 
 

 β1
(1) β2

(1) XB   X1 
R1 0 1/3 1    0 
R2 1 -1/2 9/2    0 
R3 0 1/6 1/2    1 

 
 Construct the table to start with second iteration 
 

 
Basic 

variables 

B1
-1  

XB 
 

Xk 
 

XB / Xk 

  
a4 

(1) 
 

 
a2 

(1) 
 

e1 
(Z) β1

(1) β2
(1)  

Z 1 0 1/3 1    0 -1 
s1 0 1 -1/2 9/2    0 4 
x1 0 0 1/6 1/2    1 1 

 
Δ4 = 1 * 0 + 0 * 0 + 1/3 *1 = 1/3 

 Δ2 = 1 * -1 + 0 * 4 + 1/3 *1 = -2/3 
 



Δ2 is most negative. Therefore a2 
(1) is incoming vector. 

 
Compute the column vector 

 

 
 

Determine the outgoing vector 
  

 
Basic 

variables 

B1
-1  

XB 
 

Xk 
 

XB / Xk 
e1 
(Z) β1

(1) β2
(1) 

Z 1 0 1/3 1 -2/3 - 
s1 0 1 -1/2 9/2 7/2 9/7→outgoing 
x1 

 
 

0 
 
 

0 
 
 

1/6 
 
 

1/2 
 
 

1/6 
↑ 

incoming 

3 
 
 

 
Determination of improved solution 
 

 β1
(1) β2

(1) XB X2 
R1 0 1/3 1 -2/3 
R2 1 -1/2 9/2 7/2 
R3 0 1/6 1/2 1/6 

 
 

 β1
(1) β2

(1) XB X2 
R1 4/21 5/21 13/7 0 
R2 2/7 -1/7 9/7 1 
R3 -1/21 8/42 2/7 0 

 
 

 
Basic 

variables 

B1
-1  

XB 
 

Xk 
 

XB / Xk 

  
a4 

(1) 
 

 
a3 

(1) 
 

e1 
(Z) β1

(1) β2
(1)  

Z 1 4/21 5/21 13/7    0 0 
x2 0 2/7 -1/7 9/7    0 1 
x1 0 -1/21 8/42 2/7    1 0 

 
Δ4 = 1 * 0 + 4/21 * 0 + 5/21 *1 = 5/21 

 Δ3 = 1 * 0 + 4/21 * 1 + 5/21 *0 = 4/21 
 
Δ4 and Δ3 are positive. Therefore optimal solution is Max Z = 13/7, x1= 2/7, x2 = 9/7 



 
1.3 Worked Examples 
 
Example 1 
 
Max Z = x1 + 2x2 
Subject to 
 x1 + x2 ≤ 3 
 x1 + 2x2 ≤ 5 

3x1 + x2 ≤ 6 
and  x1, x2 ≥ 0 
 
Solution 
 
SLPP 
Max Z = x1 + 2x2+ 0s1+ 0s2+ 0s3 
Subject to 
 x1 + x2 + s1 = 3 
 x1 + 2x2 + s2 = 5 
 3x1 + x2 + s3 = 6 
and  x1, x2, s1, s2, s3  ≥ 0 
 
Standard Form-I 

Z - x1 - 2x2 - 0s1 - 0s2 - 0s3= 0 
 x1 + x2 + s1 + 0s2 + 0s3= 3 
 x1 + 2x2 + 0s1 + s2 + 0s3 = 5 
 3x1 + x2 + 0s1 + 0s2 + s3 = 6 
and  x1, x2, s1, s2 , s3 ≥ 0 
 
Matrix form 
 

 
 
Revised simplex table       Additional table 
 

 
Basic 

B1
-1  

XB 
 

Xk 
 

XB / Xk 
  

a1 
(1) 

 
a2 

(1) e1 β1
(1) β2

(1) β3
(1)  



variables (Z)   
Z 1 0 0 0 0    -1 -2 
s1 0 1 0 0 3    1 1 
s2 0 0 1 0 5    1 2 
s3 0 0 0 1 6    3 1 

 
Computation of Δj for a1 

(1) and a2 
(1) 

  
 Δ1 = first row of B1

-1 * a1 
(1) = 1 * -1 + 0 * 1 + 0 *1 + 0 *3= -1 

 Δ2 = first row of B1
-1 * a2 

(1) = 1 * -2 + 0 * 1 + 0 *2+ 0 *1 = -2 
 

Δ2 = -2 is most negative. So a2 
(1) (x2) is incoming vector. 

 
Compute the column vector Xk 
  Xk = B1

-1 * a2 
(1) 

 
 

 
Basic 

variables 

B1
-1  

XB 
 

Xk 
 

XB / Xk 
e1 

(Z) β1
(1) β2

(1) β3
(1) 

Z 1 0 0 0 0 -2 - 
s1 0 1 0 0 3 1 3 
s2 0 0 1 0 5 2 5/2→ 
s3 
 

0 
 

0 
 

0 
 

1 
 

6 
 

1 
↑ 

6 
 

Improved Solution 
 
 β1

(1) β2
(1) β3

(1) XB Xk 
R1 0 0 0 0 -2 
R2 1 0 0 3 1 
R3 0 1 0 5 2 
R4 0 0 1 6 1 
 
 
 β1

(1) β2
(1) β3

(1) XB Xk 
R1 0 1 0 5 0 
R2 1 -1/2 0 1/2 0 
R3 0 1/2 0 5/2 1 
R4 0 -1/2 1 7/2 0 



 
Revised simplex table for II iteration 
 

 
Basic 

variables 

B1
-1  

XB 
 

Xk 
 

XB / Xk 

  
a1 

(1) 
 

 
a4 

(1) 
 

e1 
(Z) β1

(1) β2
(1) β3

(1)  

Z 1 0 1 0 5    -1 0 
s1 0 1 -1/2 0 1/2    1 0 
x2 0 0 1/2 0 5/2    1 1 
s3 0 0 -1/2 1 7/2    3 0 

 
Δ1 = 1 * -1 + 0 * 1 + 1 *1 + 0 *3= 0 

 Δ4 = 1 * 0 + 0 * 0 + 1 *1+ 0 *0 = 1 
 
Δ1 and Δ4 are positive. Therefore optimal solution is Max Z = 5, x1= 0, x2 = 5/2 
 
Example 2 
Max Z = 80x1 + 55x2 
Subject to 
 4x1 +2x2 ≤ 40 
 2x1 + 4x2 ≤ 32 
and  x1, x2 ≥ 0 
 
Solution 
Max Z = 80x1 + 55x2 
Subject to 
 2x1 +x2 ≤ 20 (divide by 2) 
 x1 + 2x2 ≤ 16 (divide by 2) 
 and  x1, x2 ≥ 0 
 
 
 
SLPP 
Max Z = 80x1 + 55x2+ 0s1+ 0s2 
Subject to 
 2x1 +x2+ s1 = 20 
 x1 + 2x2 + s2 = 16 
and  x1, x2, s1, s2 ≥ 0 
 
Standard form-I 
Z - 80x1 - 55x2 - 0s1 - 0s2 = 0 
2x1 +x2+ s1 + 0s2= 20 
x1 + 2x2 + 0s1 + s2 = 16 
and  x1, x2, s1, s2 ≥ 0 
 
Matrix form 



 
 
Revised simplex table       Additional table 
 

 
Basic 

variables 

B1
-1  

XB 
 

Xk 
 

XB / Xk 

  
a1 

(1) 
 

 
a2 

(1) 
 

e1 
(Z) β1

(1) β2
(1)  

Z 1 0 0 0    -80 -55 
s1 0 1 0 20    2 1 
s2 0 0 1 16    1 2 

 
Computation of Δj for a1 

(1) and a2 
(1) 

  
 Δ1 = first row of B1

-1 * a1 
(1) = 1 * -80 + 0 * 2 + 0 *1 = -80 

 Δ2 = first row of B1
-1 * a2 

(1) = 1 * -55 + 0 * 1 + 0 *2 = -55 
 

Δ1 = -80 is most negative. So a1 
(1), (x1) is incoming vector. 

 
Compute the column vector Xk 
 
Xk = B1

-1 * a1 
(1) 

 

 
 

 
Basic 

variables 

B1
-1  

XB 
 

Xk 
 

XB / Xk 
e1 
(Z) β1

(1) β2
(1) 

Z 1 0 0 0 -80 - 
s1 0 1 0 20 2 10→ 
s2 
 

0 
 

0 
 

1 
 

16 
 

1 
↑ 

   16 
 

 
Improved solution 
 



 β1
(1) β2

(1) XB Xk 
R1 0 0 0 -80 
R2 1 0 20 2 
R3 0 1 16 1 
 
 β1

(1) β2
(1) XB Xk 

R1 40 0 800 0 
R2 1/2 0 10 1 
R3 -1/2 1 6 0 
 
Revised simplex table for II iteration 
 

 
Basic 

variables 

B1
-1  

XB 
 

Xk 
 

XB / Xk 

  
a3 

(1) 
 

 
a2 

(1) 
 

e1 
(Z) β1

(1) β2
(1)  

Z 1 40 0 800    0 -55 
x1 0 1/2 0 10    1 1 
s2 0 -1/2 1 6    0 2 

 
Computation of Δj for a3 

(1) and a2 
(1) 

  
 Δ3 = first row of B1

-1 * a3 
(1) = 1 * 0 + 40 * 1 + 0 *0 = 40 

 Δ2 = first row of B1
-1 * a2 

(1) = 1 * -55 + 40 * 1 + 0 *2 = -15 
 

Δ2 = -15 is most negative. So a2 
(1) (x2) is incoming vector. 

 
Compute the column vector Xk 
 

 
 

 
Basic 

variables 

B1
-1  

XB 
 

Xk 
 

XB / Xk 
e1 
(Z) β1

(1) β2
(1) 

Z 1 40 0 800 -15 - 
x1 0 1/2 0 10 1/2 20 
s2 
 

0 
 

-1/2 
 

1 
 

6 
 

3/2 
↑ 

4→ 
 

 
Improved solution 
 β1

(1) β2
(1) XB Xk 

R1 40 0 800 -15 



R2 1/2 0 10 1/2 
R3 -1/2 1 6 3/2 
 
 β1

(1) β2
(1) XB Xk 

R1 35 10 860 0 
R2 2/3 -1/3 8 0 
R3 -1/3 2/3 4 1 
 
Revised simplex table for III iteration 
 

 
Basic 

variables 

B1
-1  

XB 
 

Xk 
 

XB / Xk 

  
a3 

(1) 
 

 
a4 

(1) 
 

e1 
(Z) β1

(1) β2
(1)  

Z 1 35 10 860    0 0 
x1 0 2/3 -1/3 8    1 0 
x2 0 -1/3 2/3 4    0 1 

 
Computation of Δ3

 and Δ4 
  
 Δ3 = 1 * 0 + 35 * 1 + 10 *0 = 35 
 Δ4 = 1 * 0 + 35 * 0 + 10 *1 = 10 
 
Δ3 and Δ4 are positive. Therefore optimal solution is Max Z = 860, x1= 8, x2 = 4 
 
 
 
 
 
Example 3 
Max Z = x1 + x2+ x3 
Subject to 
 4x1 + 5x2 + 3x3≤ 15 
 10x1 + 7x2+ x3 ≤ 12 
and  x1, x2, x3 ≥ 0 
 
Solution 
 
SLPP 
Max Z = x1 + x2+ x3+ 0s1+ 0s2 
Subject to 
 4x1 + 5x2 + 3x3+ s1 = 15 
 10x1 + 7x2+ x3 + s2 = 12 
and  x1, x2, x3, s1, s2 ≥ 0 
 
Standard form-I 

Z - x1 - x2 - x3 - 0s1 - 0s2 = 0 



4x1 +5x2 + 3x3+ s1 + 0s2= 15 
10x1 + 7x2+ x3 + 0s1+ s2 = 12 

and  x1, x2, x3, s1, s2 ≥ 0 
 
Matrix form 
 

 
 
Revised simplex table       Additional table 
 

 
Basic 

variables 

B1
-1  

XB 
 

Xk 

 
XB / 
Xk 

  
a1 

(1) 
 

 
a2 

(1) 
 

 
a3 

(1) 
 

e1 
(Z) β1

(1) β2
(1)  

Z 1 0 0 0    -1 -1 -1 
s1 0 1 0 15    4 5 3 
s2 0 0 1 12    10 7 1 

 
Computation of Δj for a1 

(1), a2 
(1) and a3 

(1) 
  
 Δ1 = first row of B1

-1 * a1 
(1) = 1 * -1 + 0 * 4 + 0 *10 = -1 

 Δ2 = first row of B1
-1 * a2 

(1) = 1 * -1 + 0 * 5 + 0 *7 = -1 
 Δ3 = first row of B1

-1 * a3 
(1) = 1 * -1 + 0 * 3 + 0 *1 = -1 

 
There is a tie, so perform the computation of Δj with second row 
 

Δ1 = second row of B1
-1 * a1 

(1) = 0 * -1 + 1 * 4 + 0 *10 = 4 
 Δ2 = second row of B1

-1 * a2 
(1) = 0 * -1 + 1 * 5 + 0 *7 = 5 

 Δ3 = second row of B1
-1 * a3 

(1) = 0 * -1 + 1 * 3 + 0 *1 = 3 
 
Since Δj ≥ 0, we obtain pure optimum solution where Max Z = 0, x1= 0, x2= 0 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Unit 2 
 
2.1 Computational Procedure of Revised Simplex Table in Standard Form-II 
2.2 Worked Examples 
2.3 Advantages and Disadvantages 
 
2.1 Computational Procedure of Revised Simplex Table in Standard Form-II 
 
Phase I – When the artificial variables are present in the initial solution with positive values 
 
Step 1 – First construct the simplex table in the following form 
 

Variables in 
the basis e1 e2 β1

(2) β2
(2) … βm

(2) XB
(2) Xk

(2) 

x0 1 0 0 0 … 0   
x'n +1 0 1 0 0 … 0   
xn +1 0 0 1 0 … 0   
xn +2 0 0 0 1 … 0   



. 

. 
. 
. 

. 

. 
. 
. 

. 

.  . 
.   

xn +m 0 0 0 0 … 1   
 
Step 2 – If x'n +1 < 0, compute Δj = second row of B2

-1 * aj
(2) and continue to step 3. If max x'n +1 = 

0 then go to phase II. 
 
Step 3 – To find the vector to be introduced into the basis 

 If Δj ≥ 0, x'n +1 is at its maximum and hence no feasible solution exists for the problem 
 If at least one Δj < 0, the vector to be introduced in the basis, Xk

(2), corresponds to such 
value of k which is obtained by Δk = min Δj 

 If more than one value of Δj are equal to the maximum, we select Δk such that k is the 
smallest index. 

 
Step 4 – To compute Xk

(2)  by using the formula Xk
(2) = B2

-1 ak
(2) 

 

Step 5 – To find the vector to be removed from the basis. 
 The vector to be removed from the basis is obtained by using the minimum ratio rule. 
 
Step 6 – After determining the incoming and outgoing vector, next revised simplex table can be 
easily obtained 
 Repeat the procedure of phase I to get max x'n +1 = 0 or all Δj for phase I are ≥ 0. 

If max x'n +1 comes out of zero in phase I, all artificial variables must have the value zero. 
It should be noted carefully that max x'n +1 will always come out to be zero at the end of 
phase I if the feasible solution to the problem exists. 

Proceed to phase II 
 
 
Phase II - x'n +1 is considered like any other artificial variable; it can be removed from the basic 
solution. Only x0 must always remain in the basic solution. However there will always be at least 
one artificial vector in B2, otherwise it is not possible to have an m+2 dimensional bases. The 
procedure in phase II will be the same as described in standard form-I 
 
2.1 Worked Examples 
 
Solve by revised simplex method 
 
Example 1 
Min Z = x1 + 2x2 
Subject to 
 2x1 + 5x2 ≥ 6 
 x1 + x2 ≥ 2 
and  x1, x2  ≥ 0 
 
Solution 
 



SLPP 
Min Z = Max Z' = -x1 - 2x2+ 0s1+ 0s2 
Subject to 
 2x1 + 5x2 - s1 + a1= 6 
 x1 + x2 - s2 + a2 = 2 
and  x1, x2, s1, s2 ≥ 0 
 
Standard form-II 
Z' + x1 + 2x2 = 0 
-3x1 - 6x2 + s1 + s2 + av = -8     where av = - (a1 + a2) 
2x1 + 5x2 - s1 + a1= 6 
x1 + x2 – s2 + a2 = 2 
and  x1, x2, s1, s2 ≥ 0 
 
The second constraint equation is formed by taking the negative sum of two constraints. 
 
Matrix form 

 
Phase -I 
I Iteration 
 

Basic 
variables 

B2
-1     a1

(2) a2
(2) a3

(2) a4
(2) e1 e2 β1

(2) β2
(2) XB Xk XB/Xk  

e1 1 0 0 0 0    1 2 0 0 
av 0 1 0 0 -8    -3 -6 1 1 
a1 0 0 1 0 6    2 5 -1 0 
a2 0 0 0 1 2    1 1 0 -1 

 
Calculation of Δj 
Δ1 = second row of B2

-1 * a1
(2) = -3 

Δ2 = second row of B2
-1 * a2

(2) = -6 
Δ3 = second row of B2

-1 * a3
(2) = 1 

Δ4 = second row of B2
-1 * a4

(2) = 1 
 
Δ2 is most negative. Therefore a2

(2) (x2) is incoming vector 
 



Compute the column vector Xk 
Xk = B2

-1 * a2 
(2) 

 

 
 

Basic 
variables 

B2
-1    

e1 e2 β1
(2) β2

(2) XB Xk XB/Xk 
e1 1 0 0 0 0 2  
av 0 1 0 0 -8 -6  
a1 0 0 1 0 6 5 6/5→ 
a2 
 

0 
 

0 
 

0 
 

1 
 

2 
 

1 
↑ 

2 
 

 
Improved Solution 
 
 β1

(1) β2
(1) XB Xk 

R1 0 0 0 2 
R2 0 0 -8 -6 
R3 1 0 6 5 
R4 0 1 2 1 
 
 β1

(1) β2
(1) XB Xk 

R1 -2/5 0 -12/5 0 
R2 6/5 0 -4/5 0 
R3 1/5 0 6/5 1 
R4 -1/5 1 4/5 0 
 
II iteration 
 

Basic 
variables 

B2
-1     a1

(2) a5
(2) a3

(2) a4
(2) e1 e2 β1

(2) β2
(2) XB Xk XB/Xk  

z' 1 0 -2/5 0 -12/5    1 0 0 0 
av 0 1 6/5 0 -4/5    -3 0 1 1 
x2 0 0 1/5 0 6/5    2 1 -1 0 
a2 0 0 -1/5 1 4/5    1 0 0 -1 

 
Calculation of Δj 
Δ1 = -3/5, Δ5 = 6/5, Δ3 = -1/5, Δ4 = 1 



Δ1 is most negative. Therefore a1
(2) (x1) is incoming vector 

 
Compute the column vector Xk 
Xk = B2

-1 * a1 
(2) 

 

 
 

Basic 
variables 

B2
-1    

e1 e2 β1
(2) β2

(2) XB Xk XB/Xk 
z' 1 0 -2/5 0 -12/5 1/5  
av 0 1 6/5 0 -4/5 -3/5  
x2 0 0 1/5 0 6/5 2/5 3 
a2 

 

0 
 

0 
 

-1/5 
 

1 
 

4/5 
 

3/5 
↑ 

4/3→ 
 

 
Improved Solution 
 
 
 
 
 
 β1

(1) β2
(1) XB Xk 

R1 -2/5 0 -12/5 1/5 
R2 6/5 0 -4/5 -3/5 
R3 1/5 0 6/5 2/5 
R4 -1/5 1 4/5 3/5 
 
 β1

(1) β2
(1) XB Xk 

R1 -1/3 -1/3 -8/3 0 
R2 1 1 0 0 
R3 1/3 -2/3 2/3 0 
R4 -1/3 5/3 4/3 1 
 
III iteration 

Basic 
variables 

B2
-1     a6

(2) a5
(2) a3

(2) a4
(2) e1 e2 β1

(2) β2
(2) XB Xk XB/Xk  

z' 1 0 -1/3 -1/3 -8/3    0 0 0 0 



av 0 1 1 1 0    0 0 1 1 
x2 0 0 1/3 -2/3 2/3    0 1 -1 0 
x1 0 0 -1/3 5/3 4/3    1 0 0 -1 

 
Since av =0 in XB column. We proceed to phase II 
 
Phase II 
 

Basic 
variables 

B2
-1     a3

(2) a4
(2) e1 e2 β1

(2) β2
(2) XB Xk XB/Xk  

z' 1 0 -1/3 -1/3 -8/3    0 0 
av 0 1 1 1 0    1 1 
x2 0 0 1/3 -2/3 2/3    -1 0 
x1 0 0 -1/3 5/3 4/3    0 -1 

 
Δ3 = first row of B2

-1 * a3
(2) = 1/3 

Δ4 = first row of B2
-1 * a4

(2) = 1/3 
 
Δ3 and Δ4 are positive. Therefore optimal solution is Z' = -8/3→ Z =8/3, x1= 4/3, x2 = 2/3 
 
Example 2 
Max Z = x1 + 2x2 + 3x3 - x4 
Subject to 
 x1 + 2x2 + 3x3 = 15 
 2x1 + x2 + 5x3 = 20 

x1 + 2x2 + x3 + x4 = 10 
and  x1, x2, x3 ≥ 0 
 
Solution 
 
SLPP 
Max Z = x1 + 2x2 + 3x3 - x4 
Subject to 
 x1 + 2x2 + 3x3 + a1= 15 
 2x1 + x2 + 5x3 + a2 = 20 

x1 + 2x2 + x3 + x4 + a3 = 10 
and  x1, x2, a1, a2 ≥ 0 
 
Standard form-II 
Z - x1 - 2x2 - 3x3 + x4 = 0 
-4x1 - 5x2 - 9x3 - x4 + av = -45   where av = - (a1 + a2+ a3)    
x1 + 2x2 + 3x3 + a1= 15 
2x1 + x2 + 5x3 + a2 = 20 
x1 + 2x2 + x3 + x4 + a3 = 10 
x1, x2, a1, a2, a3  ≥ 0 



 
Matrix form 

 
 
Phase I 
I Iteration 
 

Basic 
variables 

B2
-1     a1

(2) a2
(2) a3

(2) a4
(2) e1 e2 β1

(2) β2
(2) β3

(2) XB Xk XB/Xk  
e1 1 0 0 0 0 0    -1 -2 -3 1 
av 0 1 0 0 0 -45    -4 -5 -9 -1 
a1 0 0 1 0 0 15    1 2 3 0 
a2 0 0 0 1 0 20    2 1 5 0 
a3 0 0 0 0 1 10    1 2 1 1 

 
Calculation of Δj 
Δ1 = second row of B2

-1 * a1
(2) = -4 

Δ2 = second row of B2
-1 * a2

(2) = -5 
Δ3 = second row of B2

-1 * a3
(2) = -9 

Δ4 = second row of B2
-1 * a4

(2) = -1 
 
Δ3 is most negative. Therefore a3

(2) (x3) is incoming vector 
 
Compute the column vector Xk 
Xk = B2

-1 * a3 
(2) 

 



 
 

Basic 
variables 

B2
-1    

e1 e2 β1
(2) β2

(2) β3
(2) XB Xk XB/Xk 

e1 1 0 0 0 0 0 -3  
av 0 1 0 0 0 -45 -9  
a1 0 0 1 0 0 15 3 5 
a2 0 0 0 1 0 20 5 4→ 
a3 
 

0 
 

0 
 

0 
 

0 
 

1 10 
 

1 
↑ 

10 
 

 
Improved Solution 
 

 β1
(2) β2

(2) β3
(2) XB Xk 

R1 0 0 0 0 -3 
R2 0 0 0 -45 -9 
R3 1 0 0 15 3 
R4 0 1 0 20 5 
R5 0 0 1 10 1 

 
 

 β1
(2) β2

(2) β3
(2) XB Xk 

R1 0 3/5 0 12 0 
R2 0 9/5 0 -9 0 
R3 1 -3/5 0 3 0 
R4 0 1/5 0 4 1 
R5 0 -1/5 1 6 0 

 
II Iteration 
 

Basic 
variables 

B2
-1     a1

(2) a2
(2) a6

(2) a4
(2) e1 e2 β1

(2) β2
(2) β3

(2) XB Xk XB/Xk  
z 1 0 0 3/5 0 12    -1 -2 0 1 
av 0 1 0 9/5 0 -9    -4 -5 0 -1 
a1 0 0 1 -3/5 0 3    1 2 0 0 
x3 0 0 0 1/5 0 4    2 1 1 0 
a3 0 0 0 -1/5 1 6    1 2 0 1 



 
Calculation of Δj 
Δ1 = -2/5, Δ2 = -16/5, Δ6 = 9/5, Δ4 = -1 
Δ4 is most negative. Therefore a4

(2) (x4) is incoming vector 
 
Compute the column vector Xk 

 
 

Basic 
variables 

B2
-1    

e1 e2 β1
(2) β2

(2) β3
(2) XB Xk XB/Xk 

Z 1 0 0 3/5 0 12 1  
av 0 1 0 9/5 0 -9 -1  
a1 0 0 1 -3/5 0 3 0  
x3 0 0 0 1/5 0 4 0  
a3 
 

0 
 

0 
 

0 
 

-1/5 
 

1 6 
 

1 
↑ 

6→ 
 

 
Improved Solution 
 

 β1
(2) β2

(2) β3
(2) XB Xk 

R1 0 3/5 0 12 1 
R2 0 9/5 0 -9 -1 
R3 1 -3/5 0 3 0 
R4 0 1/5 0 4 0 
R5 0 -1/5 1 6 1 

 
 
 

 β1
(2) β2

(2) β3
(2) XB Xk 

R1 0 4/5 -1 6 0 
R2 0 8/5 1 -3 0 
R3 1 -3/5 0 3 0 
R4 0 1/5 0 4 0 
R5 0 -1/5 1 6 1 

 
III Iteration 



 
Basic 

variables 
B2

-1     a1
(2) a2

(2) a6
(2) a7

(2) e1 e2 β1
(2) β2

(2) β3
(2) XB Xk XB/Xk  

Z 1 0 0 4/5 -1 6    -1 -2 0 0 
av 0 1 0 8/5 1 -3    -4 -5 0 0 
a1 0 0 1 -3/5 0 3    1 2 0 0 
x3 0 0 0 1/5 0 4    2 1 1 0 
x4 0 0 0 -1/5 1 6    1 2 0 1 

 
Calculation of Δj 
Δ1 = 1/5, Δ2 = -7/5, Δ6 = 8/5, Δ7 = 1 
Δ2 is most negative. Therefore a2

(2) (x2) is incoming vector 
 
Compute the column vector Xk 

 
 

Basic 
variables 

B2
-1    

e1 e2 β1
(2) β2

(2) β3
(2) XB Xk XB/Xk 

z 1 0 0 4/5 -1 6 -16/5  
av 0 1 0 8/5 1 -3 -7/5  
a1 0 0 1 -3/5 0 3 7/5 15/7→ 
x3 0 0 0 1/5 0 4 1/5 20 
x4 
 

0 
 

0 
 

0 
 

-1/5 
 

1 6 
 

9/5 
↑ 

30/9 
 

 
Improved Solution 
 
 

 β1
(2) β2

(2) β3
(2) XB Xk 

R1 0 4/5 -1 6 -16/5 
R2 0 8/5 1 -3 -7/5 
R3 1 -3/5 0 3 7/5 
R4 0 1/5 0 4 1/5 
R5 0 -1/5 1 6 9/5 

 
 β1

(2) β2
(2) β3

(2) XB Xk 



R1 16/7 4/7 -1 90/7 0 
R2 1 1 1 0 0 
R3 5/7 -3/7 0 15/7 1 
R4 -1/7 2/7 0 25/7 0 
R5 -9/7 4/7 1 15/7 0 

 
IV Iteration 
 

Basic 
variables 

B2
-1     a1

(2) a5
(2) a6

(2) a7
(2) e1 e2 β1

(2) β2
(2) β3

(2) XB Xk XB/Xk  
z 1 0 16/7 4/7 -1 90/7    -1 0 0 0 
av 0 1 1 1 1 0    -4 0 0 0 
x2 0 0 5/7 -3/7 0 15/7    1 1 0 0 
x3 0 0 -1/7 2/7 0 25/7    2 0 1 0 
x4 0 0 -9/7 4/7 1 15/7    1 0 0 1 

 
Since av =0 in XB column. We proceed to phase II 
 
Phase II 
 

Basic 
variables 

B2
-1     a1

(2) e1 e2 β1
(2) β2

(2) β3
(2) XB Xk XB/Xk  

z 1 0 16/7 4/7 -1 90/7    -1 
av 0 1 1 1 1 0    -4 
x2 0 0 5/7 -3/7 0 15/7    1 
x3 0 0 -1/7 2/7 0 25/7    2 
x4 0 0 -9/7 4/7 1 15/7    1 

 
Δ1 = 0 
 
Δ1 is positive. Therefore optimal solution is Z =90/7, x1= 0, x2 = 15/7, x3 = 25/7, x4 = 15/7 
 
 
 
 
Unit 3 
 
3.1 Duality in LPP 
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3.5 Rules for Converting any Primal into its Dual 
3.6 Example Problems 
3.7 Primal-Dual Relationship 



3.8 Duality and Simplex Method 
 
3.1 Duality in LPP 
 
Every LPP called the primal is associated with another LPP called dual. Either of the problems 
is primal with the other one as dual. The optimal solution of either problem reveals the 
information about the optimal solution of the other. 
 
Let the primal problem be  
 
Max Zx = c1x1 + c2x2 + … +cnxn    
Subject to restrictions 

a11x1 + a12x2 + … + a1nxn ≤ b1 
a21x1 + a22x2 + … + a2nxn ≤ b2 
. 
. 
. 
am1x1 + am2x2 + … + amnxn ≤  bn 

and 
x1 ≥ 0, x2 ≥ 0,…, xn ≥ 0 
 

The corresponding dual is defined as 
 
Min Zw = b1w1 + b2w2 + … + bmwm   
Subject to restrictions 

a11w1 + a21w2 + … + am1wm ≥ c1 
a12w1 + a22w2 + … + am2wm ≥ c2 
. 
. 
. 
a1nw1 + a2nw2 + ……….+amnwm  ≥ cn 

and 
w1, w2, …, wm ≥ 0 

 
 
 
 
Matrix Notation 
Primal 

Max Zx = CX 
Subject to 

AX ≤ b and X ≥ 0 
 
Dual 

Min Zw = bT W 
Subject to 



AT W ≥ CT and W ≥ 0 
 

3.2 Important characteristics of Duality 
 

1. Dual of dual is primal 
2. If either the primal or dual problem has a solution then the other also has a solution and 

their optimum values are equal. 
3. If any of the two problems has an infeasible solution, then the value of the objective 

function of the other is unbounded. 
4. The value of the objective function for any feasible solution of the primal is less than the 

value of the objective function for any feasible solution of the dual. 
5. If either the primal or dual has an unbounded solution, then the solution to the other 

problem is infeasible. 
6. If the primal has a feasible solution, but the dual does not have then the primal will not 

have a finite optimum solution and vice versa. 
 
3.3 Advantages and Applications of Duality 
 

1. Sometimes dual problem solution may be easier than primal solution, particularly when 
the number of decision variables is considerably less than slack / surplus variables. 

2. In the areas like economics, it is highly helpful in obtaining future decision in the 
activities being programmed. 

3. In physics, it is used in parallel circuit and series circuit theory. 
4. In game theory, dual is employed by column player who wishes to minimize his 

maximum loss while his opponent i.e. Row player applies primal to maximize his 
minimum gains. However, if one problem is solved, the solution for other also can be 
obtained from the simplex tableau. 

5. When a problem does not yield any solution in primal, it can be verified with dual. 
6. Economic interpretations can be made and shadow prices can be determined enabling the 

managers to take further decisions. 
 
3.4 Steps for a Standard Primal Form 
 
Step 1 – Change the objective function to Maximization form 
 
Step 2 – If the constraints have an inequality sign ‘≥’ then multiply both sides by -1 and convert 
the inequality sign to ‘≤’. 
 
Step 3 – If the constraint has an ‘=’ sign then replace it by two constraints involving the 
inequalities going in opposite directions. For example x1+ 2x2 = 4 is written as 

x1+2x2 ≤ 4 
x1+2x2 ≥ 4 (using step2) →  - x1-2x2 ≤ - 4  

 
Step 4 – Every unrestricted variable is replaced by the difference of two non-negative variables. 
 
Step5 – We get the standard primal form of the given LPP in which. 



o All constraints have ‘≤’ sign, where the objective function is of maximization 
form. 

o All constraints have ‘≥’ sign, where the objective function is of minimization 
from. 

 
3.5 Rules for Converting any Primal into its Dual 
 

1. Transpose the rows and columns of the constraint co-efficient. 
2. Transpose the co-efficient (c1,c2,…cn) of the objective function and the right side 

constants (b1,b2,…bn)  
3. Change the inequalities from ‘≤’ to ‘≥’ sign. 
4. Minimize the objective function instead of maximizing it. 

 
3.6 Example Problems 
 
Write the dual of the given problems 
 
Example 1 
Min Zx = 2x2 + 5x3  
Subject to  

x1+x2 ≥ 2 
2x1+x2+6x3 ≤ 6 
x1 - x2 +3x3 = 4 
x1, x2 , x3 ≥ 0 
 

Solution  
 Primal  
 Max Zx' = -2x2 – 5x3  
 Subject to  

-x1-x2 ≤ -2 
2x1+x2+6x3 ≤ 6 
x1 - x2 +3x3 ≤ 4 
-x1 + x2 -3x3 ≤ -4 
x1, x2 , x3 ≥ 0 

 
 
 
Dual  

Min Zw = -2w1 + 6w2 + 4w3 – 4w4 
Subject to  

-w1 + 2w2 +w3 –w4 ≥ 0 
  -w1 + w2 - w3 +w4 ≥ -2 
  6w2 + 3w3 –3w4 ≥ -5 
  w1, w2, w3, w4 ≥ 0 
 
Example 2 



Min Zx = 3x1- 2x2 + 4x3  
Subject to  

3x1+5x2 + 4x3 ≥ 7 
6x1+x2+3x3 ≥ 4 
7x1 - 2x2 -x3 ≥ 10 
x1 - 2x2 + 5x3 ≥ 3  
4x1 + 7x2 - 2x3 ≥ 2  
x1, x2 , x3 ≥ 0 
 

Solution 
Primal  
 Max Zx' = -3x1 + 2x2 - 4x3  
  Subject to  

-3x1 - 5x2 - 4x3 ≤ -7 
-6x1 - x2 - 3x3 ≤ -4 
-7x1 + 2x2 + x3 ≤ - 10 
-x1 + 2x2 - 5x3  ≤ - 3  
-4x1 - 7x2 + 2x3 ≤ - 2  
x1, x2 , x3 ≥ 0 

  
Dual 

Min Zw = -7w1 - 4w2 - 10w3 – 3w4 -2w5 
Subject to  

-3w1 - 6w2 - 7w3 –w4 – 4w5 ≥ -3 
  -5w1 - w2 + 2w3 + 2w4 – 7w5 ≥ 2 
  -4w1 - 3w2 + w3 - 5w4 + 2w5 ≥ -4 
  w1, w2, w3, w4, w5 ≥ 0 
 
Example 3 
Max Z = 2x1+ 3x2 + x3  
Subject to  

4x1+ 3x2 + x3 = 6 
x1+ 2x2 + 5x3 = 4  
x1, x2  ≥ 0 
 

 
 
Solution 
 
Primal  
  Max Zx = 2x1+ 3x2 + x3  

Subject to  
4x1+ 3x2 + x3 ≤ 6 
-4x1 - 3x2 - x3 ≤ -6 
x1 + 2x2 + 5x3 ≤ 4  
-x1 - 2x2 - 5x3 ≤ -4  



x1, x2  ≥ 0 
 

Dual  
Min Zw = 6w1 - 6w2 + 4w3 –4w4  
Subject to  

  4w1 - 4w2 + w3 –w4 ≥ 2 
  3w1 - 3w2 + 2w3 - 2w4 ≥ 3 
  w1 - w2 + 5w3 - 5w4 ≥ 1 
  w1, w2, w3, w4≥ 0 
 
Example 4 
Min Zx = x1+ x2 + x3  
Subject to  

x1 - 3x2 + 4x3 = 5 
x1 - 2x2 ≤ 3 
2x2 - x3 ≥ 4  
x1, x2  ≥ 0 ,x3 is unrestricted in sign 
 

Solution  
Primal  
 Max Z' = - x1- x2 – x3' + x3''  
 Subject to  

x1 - 3x2 + 4(x3' - x3'') ≤ 5 
-x1+ 3x2 - 4(x3' - x3'') ≤ -5 
x1 - 2x2 ≤ 3 

             -2x2 + x3' - x3'' ≤ -4  
x1, x2 , x3', x3'' ≥ 0 

  
Dual 
  Min Zw = 5w1 - 5w2 + 3w3 – 4w4  

Subject to  
w1 - w2 + w3 ≥ -1 

  -3w1 + 3w2 - 2w3 - 2w4 ≥ -1 
  4w1 - 4w2 + w4 ≥ -1 
             -4w1 + 4w2 - w4 ≥ 1 
  w1, w2, w3, w4, ≥ 0 
 
3.7 Primal –Dual Relationship 
 
Weak duality property 
If x is any feasible solution to the primal problem and w is any feasible solution to the dual 
problem then CX ≤ bT W. i.e. ZX ≤ ZW 
 
Strong duality property 
If x* is an optimal solution for the primal problem and w* is the optimal solution for the dual 
problem then CX* = bT W* i.e. ZX = ZW 



 
Complementary optimal solutions property 
At the final iteration, the simplex method simultaneously identifies an optimal solution x* for 
primal problem and a complementary optimal solution w* for the dual problem where ZX = ZW. 

 
Symmetry property 
For any primal problem and its dual problem, all relationships between them must be symmetric 
because dual of dual is primal. 
 
Fundamental duality theorem 

 If one problem has feasible solution and a bounded objective function (optimal solution) 
then the other problem has a finite optimal solution. 

 If one problem has feasible solution and an unbounded optimal solution then the other 
problem has no feasible solution 

 If one problem has no feasible solution then the other problem has either no feasible 
solution or an unbounded solution. 

 
If kth constraint of primal is equality then the dual variable wk is unrestricted in sign 
 
If pth variable of primal is unrestricted in sign then pth constraint of dual is an equality. 
 
Complementary basic solutions property 
Each basic solution in the primal problem has a complementary basic solution in the dual 
problem where ZX = ZW. 

 
Complementary slackness property 
The variables in the primal basic solution and the complementary dual basic solution satisfy the 
complementary slackness relationship as shown in the table. 
 

Primal variable Associated dual variable 
Decision variable (xj) Zj –Cj (surplus variable) j = 1, 2, ..n 
Slack variable (Si) Wi (decision variable) i = 1, 2, .. n 

 
  
 
 
 
3.8 Duality and Simplex Method 
 
1. Solve the given primal problem using simplex method. Hence write the solution of its 
dual  

Max Z = 30x1 + 23x2 + 29x3 
Subject to  

6x1 + 5x2 + 3x3 ≤ 26 
        4x1 + 2x2 + 6x3 ≤ 7 
                    x1 ≥ 0, x2 ≥ 0  



Solution 
Primal form 

Max Z = 30x1 + 23x2 + 29x3 
Subject to  

6x1 + 5x2 + 3x3 ≤ 26 
        4x1 + 2x2 + 6x3 ≤ 7 
                    x1 ≥ 0, x2 ≥ 0  
 
SLPP 

Max Z = 30x1 + 23x2 + 29x3+ 0s1+ 0s2 
Subject to  

6x1 + 5x2 + 3x3 + s1 = 26 
        4x1 + 2x2 + 6x3 + s2 = 7 
                    x1, x2, s1, s2 ≥ 0  
 

  Cj→ 30 23 29 0 0  
Basic 

Variables CB XB X1 X2 X3 S1 S2 
Min Ratio 
XB / XK 

s1 0 26 6 5 3 1 0 26/6 
s2 0 7 4 2 6 0 1 7/4→ 

  
Z = 0 

↑ 
-30 

 
-23 

 
-29 

 
0 

 
0 

 
←Δj 

s1 0 31/2 0 2 -6 1 -3/2 31/4 
x1 30 7/4 1 1/2 3/2 0 1/4 7/2→ 

  
Z = 105/2 

 
0 

↑ 
-8 

 
16 

 
0 

 
15/2 

 
←Δj 

s1 0 17/2 -4 0 -12 1 -5/2  
x2 23 7/2 2 1 3 0 1/2  

  
Z =161/2 

 
16 

 
0 

 
40 

 
0 

 
23/2 

 
←Δj 

 
Δj ≥ 0 so the optimal solution is Z = 161/2, x1 = 0, x2 = 7/2, x3 = 0  
  
The optimal solution to the dual of the above problem will be 
Zw* = 161/2, w1 = Δ4 = 0, w2 = Δ5 = 23/2 
In this way we can find the solution to the dual without actually solving it.  
 
2. Use duality to solve the given problem. Also read the solution of its primal. 

Min Z = 3x1 + x2  
Subject to 

 x1 + x2 ≥ 1 
                   2x1 + 3x2 ≥ 2 
                   x1 ≥ 0 , x2 ≥ 0 
 
Solution 



Primal 
Min Z =Max Z' = -3x1 - x2  
Subject to 

- x1 - x2 ≤ -1 
                   -2x1 - 3x2 ≤ - 2 
                   x1 ≥ 0 , x2 ≥ 0 
Dual 
    Min Zw = -w1 - 2w2  

Subject to  
-w1 - 2w2 ≥ -3 

  -w1 - 3w2 ≥ -1 
  w1, w2 ≥ 0 
 
Changing the dual form to SLPP 

Max Zw
' = w1 + 2w2 + 0s1+ 0s2 

Subject to  
w1 + 2w2 + s1= 3 

  w1 + 3w2 + s2 = 1 
  w1, w2, s1, s2 ≥ 0 
 

  Cj→ 1 2 0 0  
Basic 

Variables CB WB W1 W2 S1 S2 
Min Ratio 
WB / WK 

s1 0 3 1 2 1 0 3/2 
s2 0 1 1 3 0 1 1/3← 

  
Zw

' = 0 
 

-1 
↑ 
-2 

 
0 

 
0 

 
←Δj 

s1 0 7/3 1/3 0 1 -2/3 7 
w2 2 1/3 1/3 1 0 1/3 1→ 

  
Zw

' = 2/3 
↑ 

-1/3 
 

0 
 

0 
 

2/3 
 

←Δj 
s1 0 2 0 -1 1 -1  
w1 1 1 1 3 0 1  

  
Zw

' = 1 
 
0 

 
1 

 
0 

 
1 

 
←Δj 

 
Δj ≥ 0 so the optimal solution is Zw

' = 1, w1 = 1, w2 = 0  
  
The optimal solution to the primal of the above problem will be 
Zx* = 1, x1 = Δ3 = 0, x2 = Δ4 = 1 
 
3. Write down the dual of the problem and solve it. 

Max Z = 4x1 + 2x2  
Subject to  

- x1 - x2  ≤ -3 



        -x1 + x2  ≤ -2 
                    x1 ≥ 0, x2 ≥ 0  
 
Solution 
Primal 

Max Z = 4x1 + 2x2  
Subject to  

- x1 - x2  ≤ -3 
        -x1 + x2  ≤ -2 
                    x1 ≥ 0, x2 ≥ 0  
Dual 
    Min Zw = -3w1 - 2w2  

Subject to  
-w1 - w2 ≥ 4 

  -w1 + w2 ≥ 2 
  w1, w2 ≥ 0 
 
Changing the dual form to SLPP 

Max Zw
' = 3w1 + 2w2 + 0s1+ 0s2 - Ma1- Ma2 

Subject to  
-w1 - w2 - s1 + a1= 4 

  -w1 + w2 - s2 + a2= 2 
  w1, w2, s1, s2, a1, a2 ≥ 0 
 

  Cj→ 3 2 0 0 -M -M  
Basic 

Variables CB WB W1 W2 S1 S2 A1 A2 Min Ratio 
WB / WK 

a1 -M 4 -1 -1 -1 0 1 0 - 
a2 -M 2 -1 1 0 -1 0 1 2→ 

  
Zw

' = -6M 
 

2M - 3 
↑ 
-2 

 
M 

 
M 

 
0 

 
0 

 
←Δj 

a1 -M 6 -2 0 -1 -1 1 X  
w2 2 2 -1 1 0 -1 0 X  

  
Zw

' = -6M+4 
 

2M-5 
 

0 
 

M 
 

M-2 
 
0 

 
X 

 
←Δj 

 
Δj ≥ 0 and at the positive level an artificial vector (a1) appears in the basis. Therefore the dual 
problem does not posses any optimal solution. Consequently there exists no finite optimum 
solution to the given problem. 
  
4. Use duality to solve the given problem. 

Min Z = x1 - x2  
Subject to 

 2x1 + x2 ≥ 2 
                   -x1 - x2 ≥ 1 
                   x1 ≥ 0 , x2 ≥ 0 



 
Solution 
Primal 

Min Z =Max Z' = -x1 + x2  
Subject to 

- 2x1 - x2 ≤ -2 
                   x1 + x2 ≤ -1 
                   x1 ≥ 0 , x2 ≥ 0 
Dual 
    Min Zw = -2w1 - w2  

Subject to  
-2w1 + w2 ≥ -1 

  -w1 + w2 ≥ 1 
  w1, w2 ≥ 0 
 
Changing the dual form to SLPP 

Max Zw
' = 2w1 + w2 + 0s1+ 0s2 - Ma1 

Subject to  
2w1 - w2 + s1= 1 

  -w1 + w2 - s2 + a1 = 1 
  w1, w2, s1, s2 ≥ 0 
 
Auxiliary LPP 

Max Zw
' = 0w1 + 0w2 + 0s1+ 0s2 - 1a1 

Subject to  
2w1 - w2 + s1= 1 

  -w1 + w2 - s2 + a1 = 1 
  w1, w2, s1, s2, a1 ≥ 0 
 
Phase I 
 
 
 
 
 
 
 

  Cj→ 0 0 0 0 -1  
Basic 

Variables CB WB W1 W2 S1 S2 A1 Min Ratio 
XB / XK 

s1 0 1 2 -1 1 0 0 - 
a1 -1 1 -1 1 0 -1 1 1→ 

  
Zw

' = -1 
 
1 

↑ 
-1 

 
0 

 
1 

 
0 

 
←Δj 

s1 0 2 1 0 1 -1 X  
w2 0 1 -1 1 0 -1 X  



  
Zw

' = 0 
 
0 

 
0 

 
0 

 
0 

 
X 

 
←Δj 

 
Δj ≥ 0 and no artificial vector appear at the positive level of the basis. Hence proceed to phase II  
  
Phase II 
 

  Cj→ 2 1 0 0  
Basic 

Variables CB WB W1 W2 S1 S2 
Min Ratio 
XB / XK 

s1 0 2 1 0 1 -1 2→ 
w2 1 1 -1 1 0 -1 - 

  
Zw

' = 1 
↑ 
-3 

 
0 

 
0 

 
-1 

 
←Δj 

w1 2 2 1 0 1 -1 - 
w2 1 3 0 1 1 -2 - 

  
Zw

' = 7 
 
0 

 
0 

 
3 

↑ 
-4 

 
←Δj 

 
 
Δj = -4 and all the elements of s2 are negative; hence we cannot find the outgoing vector. This 
indicates there is an unbounded solution. Consequently by duality theorem the original primal 
problem will have no feasible solution.  
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1.8 Advantage of Dual Simplex over Simplex Method 
 
1.1 Introduction 



 
Any LPP for which it is possible to find infeasible but better than optimal initial basic solution 
can be solved by using dual simplex method. Such a situation can be recognized by first 
expressing the constraints in ‘≤’ form and the objective function in the maximization form. After 
adding slack variables, if any right hand side element is negative and the optimality condition is 
satisfied then the problem can be solved by dual simplex method. 
 
Negative element on the right hand side suggests that the corresponding slack variable is 
negative. This means that the problem starts with optimal but infeasible basic solution and we 
proceed towards its feasibility. 
 
The dual simplex method is similar to the standard simplex method except that in the latter the 
starting initial basic solution is feasible but not optimum while in the former it is infeasible but 
optimum or better than optimum. The dual simplex method works towards feasibility while 
simplex method works towards optimality. 
 
1.2  Computational Procedure of Dual Simplex Method 
 
The iterative procedure is as follows 
 
Step 1 - First convert the minimization LPP into maximization form, if it is given in the 
minimization form. 
 
Step 2 - Convert the ‘≥’ type inequalities of given LPP, if any, into those of ‘≤’ type by 
multiplying the corresponding constraints by -1. 
 
Step 3 – Introduce slack variables in the constraints of the given problem and obtain an initial 
basic solution. 
 
Step 4 – Test the nature of Δj in the starting table 

 If all Δj and XB are non-negative, then an optimum basic feasible solution has been 
attained. 

 If all Δj are non-negative and at least one basic variable XB is negative, then go to step 5. 
 If at least Δj one is negative, the method is not appropriate. 

 
Step 5 – Select the most negative XB. The corresponding basis vector then leaves the basis set B. 
Let Xr be the most negative basic variable. 
 
Step 6 – Test the nature of Xr 

 If all Xr are non-negative, then there does not exist any feasible solution to the given 
problem. 

 If at least one Xr is negative, then compute Max (Δj / Xr ) and determine the least negative 
for incoming vector. 

 
Step 7 – Test the new iterated dual simplex table for optimality. 



Repeat the entire procedure until either an optimum feasible solution has been attained in a finite 
number of steps. 
 
1.3  Worked Examples 
 
Example 1 
 
Minimize Z = 2x1 + x2 
    Subject to  
 3x1 + x2 ≥ 3 
 4x1 + 3x2 ≥ 6 

x1 + 2x2 ≥ 3 
    and x1 ≥ 0, x2  ≥ 0 
 
Solution 
 
Step 1 – Rewrite the given problem in the form 
 
Maximize Z2 – = ׳x1 – x2   
Subject to  
 –3x1 – x2 ≤ –3 
 –4x1 – 3x2 ≤ –6 

–x1   – 2x2 ≤ –3 
x1, x2  ≥ 0 

 
Step 2 – Adding slack variables to each constraint 
 
Maximize Z2 – = ׳x1 – x2   
Subject to  
 –3x1 – x2 + s1 = –3 
 –4x1 – 3x2 + s2 = –6 

–x1 – 2x2 + s3 = –3 
x1, x2, s1,s2, s3  ≥ 0 

 
Step 3 – Construct the simplex table 
 
 
 
 Cj → -2 -1 0 0 0  
Basic 
variables CB XB X1 X2 S1 S2 S3 

 

s1 0 -3 -3 -1 1 0 0  
s2 0 -6 -4 -3 0 1 0 → outgoing 
s3 0 -3 -1 -2 0 0 1  

  
Z0 = ׳ 

 
2 

↑ 
1 

 
0 

 
0 

 
0 

 
←Δj 



 
Step 4 – To find the leaving vector 
Min (-3, -6, -3) = -6. Hence s2 is outgoing vector 
 
Step 5 – To find the incoming vector 
Max (Δ1 / x21, Δ2 / x22) = (2/-4, 1/-3) = -1/3. So x2 is incoming vector 
 
Step 6 –The key element is -3. Proceed to next iteration  
 
 Cj → -2 -1 0 0 0  
Basic 
variables CB XB X1 X2 S1 S2 S3  

s1 0 -1 -5/3 0 1 -1/3 0 → outgoing 
x2 -1 2 4/3 1 0 -1/3 0  s3 0 1 5/3 0 0 -2/3 1  

  
Z2- = ׳ 

↑ 
2/3 

 
0 

 
0 

 
1/3 

 
0 

 
←Δj 

 
Step 7 – To find the leaving vector 
Min (-1, 2, 1) = -1. Hence s1 is outgoing vector 
 
Step 8 – To find the incoming vector 
Max (Δ1 / x11, Δ4 / x14) = (-2/5, -1) = -2/5. So x1 is incoming vector 
 
Step 9 –The key element is -5/3. Proceed to next iteration  
 
 Cj → -2 -1 0 0 0  
Basic 
variables CB XB X1 X2 S1 S2 S3  

x1 -2 3/5 1 0 -3/5 1/5 0  
x2 -1 6/5 0 1 4/5 -3/5 0  
s3 0 0 0 0 1 -1 1  

  
Z12/5- = ׳ 

 
0 

 
0 

 
2/5 

 
1/5 

 
0 

 
←Δj 

 
Step 10 – Δj ≥ 0 and XB ≥ 0, therefore the optimal solution is Max Z12/5- = ׳, Z = 12/5, and 
x1=3/5, x2 = 6/5 
 
Example 2 
 
Minimize Z = 3x1 + x2 
    Subject to  
 x1 + x2 ≥ 1 
 2x1 + 3x2 ≥ 2 
    and x1 ≥ 0, x2  ≥ 0 
 



Solution 
 
Maximize Z3 – = ׳x1 – x2   
Subject to  
 –x1 – x2 ≤ –1 
 –2x1 – 3x2 ≤ –2 

x1, x2  ≥ 0 
 
SLPP 
Maximize Z3 – = ׳x1 – x2   
Subject to  
 –x1 – x2 + s1 = –1 
 –2x1 – 3x2 + s2 = –2 

x1, x2, s1,s2  ≥ 0 
 

 Cj → -3 -1 0 0  
Basic 
variables CB XB X1 X2 S1 S2  

s1 0 -1 -1 -1 1 0  
s2 0 -2 -2 -3 0 1 →  
 
 

 
Z0 = ׳ 

 
3 

↑ 
1 

 
0 

 
0 

 
←Δj 

s1 0 -1/3 -1/3 0 1 -1/3 →  
x2 -1 2/3 2/3 1 0 -1/3  
 
 

 
Z2/3- = ׳ 

 
7/3 

 
0 

 
0 

↑ 
1/3 

 
←Δj 

s2 0 1 1 0 -3 1  
x2 -1 1 1 1 -1 0  
 
 

 
Z1- = ׳ 

 
2 

 
0 

 
1 

 
0 

 
←Δj 

 
Δj ≥ 0 and XB ≥ 0, therefore the optimal solution is Max Z1- = ׳, Z = 1, and x1= 0, x2 = 1 
 
 
Example 3 
 
Max Z = –2x1 – x3 
    Subject to  
 x1 + x2 – x3 ≥ 5 

x1 – 2x2 + 4x3 ≥ 8 
    and  x1 ≥ 0, x2  ≥ 0, x3 ≥ 0 
 
Solution 
 
Max Z = –2x1 – x3 



Subject to 
 –x1 – x2 + x3 ≤ –5  
 –x1 + 2x2 – 4x3 ≤ –8 
 x1, x2, x3 ≥ 0 
 
SLPP 
Max Z = –2x1 – x3 
Subject to 
 –x1 – x2 + x3 + s1 = –5  
 –x1 + 2x2 – 4x3 + s2 = –8 
 x1, x2, x3, s1, s2 ≥ 0 
 
 Cj → -2 0 -1 0 0  
Basic 
variables CB XB X1 X2 X3 S1 S2  

s1 0 -5 -1 -1 1 1 0  
s2 0 -8 -1 2 -4 0 1 → 

  
Z = 0 

 
2 

 
0 

↑ 
1 

 
0 

 
0 

 
←Δj 

s1 0 -7 -5/4 -1/2 0 1 1/4 → 
x3 -1 2 1/4 -1/2 1 0 -1/4  

  
Z = -2 

 
7/4 

↑ 
1/2 

 
0 

 
0 

 
1/4 

 
←Δj 

x2 0 14 5/2 1 0 -2 -1/2  
x3 -1 9 3/2 0 1 -1 -1/2  

  
Z = -9 

 
1/2 

 
0 

 
0  

 
1 

 
1/2 

 
←Δj 

 
Δj ≥ 0 and XB ≥ 0, therefore the optimal solution is Z = -9, and x1= 0, x2 = 14, x3 = 9 
 
 
 
 
 
Example 4 
 
Find the optimum solution of the given problem without using artificial variable. 
Max Z = –4x1 –6x2 – 18x3 
    Subject to  
 x1 + 3x3 ≥ 3 

x2 + 2x3 ≥ 5 
    and  x1 ≥ 0, x2  ≥ 0, x3 ≥ 0 
 
Solution 
 



Max Z = –4x1 –6x2 – 18x3 
Subject to 
 –x1 – 3x3 ≤ –3  
 –x2 – 2x3 ≤ –5 
 x1, x2, x3 ≥ 0 
 
SLPP 
Max Z = –4x1 –6x2 – 18x3 
Subject to 
 –x1 – 3x3 + s1 = –3  
 –x2 – 2x3 + s2 = –5 
 x1, x2, x3, s1, s2 ≥ 0 
 
 Cj → -4 -6 -18 0 0  
Basic 
variables CB XB X1 X2 X3 S1 S2  

s1 0 -3 -1 0 -3 1 0  
s2 0 -5 0 -1 -2 0 1 → 
 
 

 
Z = 0 

 
4 

↑ 
6 

 
18 

 
0 

 
0 

 
←Δj 

s1 0 -3 -1 0 -3 1 0 → 
x2 -6 5 0 1 2 0 -1  
 
 

 
Z = -30 

 
4 

 
0 

↑ 
6 

 
0 

 
6 

 
←Δj 

x3 -18 1 1/3 0 1 -1/3 0  
x2 -6 3 -2/3 1 0 2/3 -1  
 
 

 
Z = -36 

 
2 

 
0 

 
0 

 
2 

 
6 

 
←Δj 

 
Δj ≥ 0 and XB ≥ 0, therefore the optimal solution is Z = -36, and x1= 0, x2 = 3, x3 = 1 
 
 
 
 
1.4  Advantage of Dual Simplex over Simplex Method 
 
The main advantage of dual simplex over the usual simplex method is that we do not require any 
artificial variables in the dual simplex method. Hence a lot of labor is saved whenever this 
method is applicable. 
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2.1 Introduction to Transportation Problem 
 



The Transportation problem is to transport various amounts of a single homogeneous commodity 
that are initially stored at various origins, to different destinations in such a way that the total 
transportation cost is a minimum. 
 
It can also be defined as to ship goods from various origins to various destinations in such a 
manner that the transportation cost is a minimum. 
 
The availability as well as the requirements is finite. It is assumed that the cost of shipping is 
linear. 
 
2.2 Mathematical Formulation 
 
Let there be m origins, ith origin possessing ai units of a certain product 
 
Let there be n destinations, with destination j requiring bj units of a certain product 
 
Let cij be the cost of shipping one unit from ith source to jth destination 
 
Let xij be the amount to be shipped from ith source to jth destination 
  
It is assumed that the total availabilities Σai satisfy the total requirements Σbj i.e. 
 
Σai = Σbj (i = 1, 2, 3 … m and j = 1, 2, 3 …n) 
 
The problem now, is to determine non-negative of xij satisfying both the availability constraints 
 

 
as well as requirement constraints 
 

 
and the minimizing cost of transportation (shipping) 

 
 
This special type of LPP is called as Transportation Problem. 
 
2.3 Tabular Representation 
 
Let ‘m’ denote number of factories (F1, F2 … Fm) 
 
Let ‘n’ denote number of warehouse (W1, W2 … Wn) 
 
    W→      



F 
↓ 

W1 W2 … Wn Capacities 
(Availability) 

F1 c11 c12 … c1n a1 
F2 c21 c22 … c2n a2 
. 
. 

. 

. 
. 
. 

. 

. 
. 
. 

. 

. 
Fm cm1 cm2 … cmn am 
Required b1 b2 … bn Σai = Σbj 
 
    W→ 
F 
↓ 

 
W1 

 
W2 

 
… 

 
Wn 

 
Capacities 
(Availability) 

F1 x11 x12 … x1n a1 
F2 x21 x22 … x2n a2 
. 
. 

. 

. 
. 
. 

. 

. 
. 
. 

. 

. 
Fm xm1 xm2 … xmn am 
Required b1 b2 … bn Σai = Σbj 
 
In general these two tables are combined by inserting each unit cost cij with the corresponding 
amount xij in the cell (i, j). The product cij xij gives the net cost of shipping units from the factory 
Fi to warehouse Wj. 
 
2.4 Some Basic Definitions 
 

 Feasible Solution 
A set of non-negative individual allocations (xij ≥ 0) which simultaneously removes 
deficiencies is called as feasible solution. 

 
 Basic Feasible Solution 

A feasible solution to ‘m’ origin, ‘n’ destination problem is said to be basic if the number 
of positive allocations are m+n-1. If the number of allocations is less than m+n-1 then it 
is called as Degenerate Basic Feasible Solution. Otherwise it is called as Non- 
Degenerate Basic Feasible Solution. 

 
 

 Optimum Solution 
A feasible solution is said to be optimal if it minimizes the total transportation cost. 

 
2.5 Methods for Initial Basic Feasible Solution 
 
Some simple methods to obtain the initial basic feasible solution are 
 

1. North-West Corner Rule 
2. Row Minima Method 
3. Column Minima Method 



4. Lowest Cost Entry Method (Matrix Minima Method) 
5. Vogel’s Approximation Method (Unit Cost Penalty Method) 

 
North-West Corner Rule 
 
Step 1 

 The first assignment is made in the cell occupying the upper left-hand (north-west) corner 
of the table.  

 The maximum possible amount is allocated here i.e. x11 = min (a1, b1). This value of x11 
is then entered in the cell (1,1) of the transportation table. 

 
Step 2  

i. If b1 > a1, move vertically downwards to the second row and make the second allocation 
of amount x21 = min (a2, b1 - x11) in the cell (2, 1). 

ii. If b1 < a1, move horizontally right side to the second column and make the second 
allocation of amount x12 = min (a1 - x11, b2) in the cell (1, 2). 

iii. If b1 = a1, there is tie for the second allocation. One can make a second allocation of 
magnitude x12 = min (a1 - a1, b2) in the cell (1, 2) or x21 = min (a2, b1 - b1) in the cell (2, 1) 

 
Step 3 
Start from the new north-west corner of the transportation table and repeat steps 1 and 2 until all 
the requirements are satisfied. 
 
Find the initial basic feasible solution by using North-West Corner Rule 
 
1. 
 
 
 
 
 
 
 
 
 
 
Solution 
 
 
 W1 W2 W3 W5 Availability 

F1 
5 2   7    2    0 (19) (30)   

F2 
 6 3  9     3    0  (30) (40)  

F3 
  4 14 18   14  0   (70) (20) 

    W→ 
F 
↓ 

 
W1 

 
W2 

 
W3 

 
W4 

 
Factory 
Capacity 

F1 19 30 50 10 7 
F2 70 30 40 60 9 
F3 40 8 70 20 18 
Warehouse 
Requirement 5 8 7 14 34 



 
Requirement 

 
5 
0 
 

 
8 
6 
0 

 
7 
4 
0 

 
14 
0 
 

 

 
Initial Basic Feasible Solution 
x11 = 5, x12 = 2, x22 = 6, x23 = 3, x33 = 4, x34 = 14 
The transportation cost is 5 (19) + 2 (30) + 6 (30) + 3 (40) + 4 (70) + 14 (20) = Rs. 1015 
 
2.   
  
 D1 D2 D3 D4 Supply 
O1 1 5 3 3 34 
O2 3 3 1 2 15 
O3 0 2 2 3 12 
O4 2 7 2 4 19 
Demand 21 25 17 17 80 
 
 
Solution 
 
 D1 D2 D3 D4 Supply 
 21 13    
O1 (1) (5)   34   13   0 
  12 3   
O2  (3) (1)  15    3    0 
   12   
O3   (2)  12     0       
   2 17  
O4   (2) (4) 19      17 
Demand 
 
 
 

21 
0 
 
 

25 
12 
0 
 

17 
14 
2 
0 

17 
0 
 
 

 

 
 
Initial Basic Feasible Solution 
x11 = 21, x12 = 13, x22 = 12, x23 = 3, x33 = 12, x43 = 2, x44 = 17 
The transportation cost is 21 (1) + 13 (5) + 12 (3) + 3 (1) + 12 (2) + 2 (2) + 17 (4) = Rs. 221 
 
3.      
 
From To Supply 

 
2 11 10 3 7 4 
1 4 7 2 1 8 
3 1 4 8 12 9 



 
 
Solution 
 
From To Supply 
 3 1     

 

(2) (11)    4  1  0    
 2 4 2   
 (4) (7) (2)  8  6  2  0 
   3 6  
   (8) (12) 9  6  0 

Demand 
3 
0 
 

3 
2 
0 

4 
0 
 

5 
3 
0 

6 
0 
 

 

 
Initial Basic Feasible Solution 
x11 = 3, x12 = 1, x22 = 2, x23 = 4, x24 = 2, x34 = 3, x35 = 6 
The transportation cost is 3 (2) + 1 (11) + 2 (4) + 4 (7) + 2 (2) + 3 (8) + 6 (12) = Rs. 153 
 
Row Minima Method 
 
Step 1 

 The smallest cost in the first row of the transportation table is determined. 
 Allocate as much as possible amount xij = min (a1, bj) in the cell (1, j) so that the capacity 

of the origin or the destination is satisfied. 
 
Step 2 

 If x1j = a1, so that the availability at origin O1 is completely exhausted, cross out the first 
row of the table and move to second row. 

 If x1j = bj, so that the requirement at destination Dj is satisfied, cross out the jth column 
and reconsider the first row with the remaining availability of origin O1. 

 If x1j = a1 = bj, the origin capacity a1 is completely exhausted as well as the requirement at 
destination Dj is satisfied. An arbitrary tie-breaking choice is made. Cross out the jth 
column and make the second allocation x1k = 0 in the cell (1, k) with c1k being the new 
minimum cost in the first row. Cross out the first row and move to second row. 

 
Step 3 
Repeat steps 1 and 2 for the reduced transportation table until all the requirements are satisfied 
 
 
Determine the initial basic feasible solution using Row Minima Method 
 
1.  
 
 W1 W2 W3 W4 Availability 
F1 19 30 50 10 7 

Demand 3 3 4 5 6  



F2 70 30 40 60 9 
F3 40 80 70 20 18 
Requirement 5 8 7 14  
      
 
Solution 
 
 W1 W2 W3 W4  
    7 

X F1 (19) (30) (50) (10) 

F2 
 
(70) (30) (40) (60) 9 

F3 
 
(40) (80) (70) (20) 18 

 5 8 7 7  
 
 

 
 
 
 
 
 
 
 
 

 
 W1 W2 W3 W4  
    7 

X F1 (19) (30) (50) (10) 
  8 1  

X F2 (70) (30) (40) (60) 
 
F3 

 
(40) 

 
(80) 

 
(70) 

 
(20) 

 
18 

 5 X 6 7  
 
 
 
 W1 W2 W3 W4  
    7 

X F1 (19) (30) (50) (10) 
  8 1  

X F2 (70) (30) (40) (60) 
 5  6 7 

X F3 (40) (80) (70) (20) 
 X X X X  

 W1 W2 W3 W4  
    7 

X F1 (19) (30) (50) (10) 
  8    
F2 (70) (30) (40) (60) 1 

F3 
 
(40) (80) (70) (20) 18 

 5 X 7 7  



 
Initial Basic Feasible Solution 
x14 = 7, x22 = 8, x23 = 1, x31 = 5, x33 = 6, x34 = 7 
The transportation cost is 7 (10) + 8 (30) + 1 (40) + 5 (40) + 6 (70) + 7 (20) = Rs. 1110 
 
 
2. 
 A B C Availability 
I 50 30 220 1 
II 90 45 170 4 
III 250 200 50 4 
Requirement 4 2 3  
 
Solution 
 
 A B C Availability 

I  1      1  0            (30)  

II 3 1  4  3  0 (90) (45)  

III 1  3 4  1  0 (250)  (50) 
Requirement 4 

1 
0 

2 
1 
0 

3 
0 

 

 
Initial Basic Feasible Solution 
x12 = 1, x21 = 3, x22 = 1, x31 = 1, x33 = 3 
The transportation cost is 1 (30) + 3 (90) + 1 (45) + 1 (250) + 3 (50) = Rs. 745 
 
Column Minima Method 
 
Step 1 
Determine the smallest cost in the first column of the transportation table. Allocate xi1 = min (ai, 
b1) in the cell (i, 1). 
 
Step 2 

 If xi1 = b1, cross out the first column of the table and move towards right to the second 
column 

 If xi1 = ai, cross out the ith row of the table and reconsider the first column with the 
remaining demand. 

 If xi1 = b1= ai, cross out the ith row and make the second allocation xk1 = 0 in the cell (k, 
1) with ck1 being the new minimum cost in the first column, cross out the column and 
move towards right to the second column. 

 
Step 3 



Repeat steps 1 and 2 for the reduced transportation table until all the requirements are satisfied. 
 
Use Column Minima method to determine an initial basic feasible solution 
 
1. 
 
 W1 W2 W3 W4 Availability 
F1 19 30 50 10 7 
F2 70 30 40 60 9 
F3 40 80 70 20 18 
Requirement 5 8 7 14  
      
Solution 
 
 W1 W2 W3 W4  

F1 
5    2 (19) (30) (50) (10) 

 
F2 (70) (30) (40) (60) 9 

 
F3 (40) (80) (70) (20) 18 

 X 8 7 14  
 
 W1 W2 W3 W4  

F1 
5 2   

X (19) (30) (50) (10) 
 
F2 (70) (30) (40) (60) 9 

 
F3 (40) (80) (70) (20) 18 

 X 6 7 14  
 
 
 
 
 

 
 

 

 

 

 W1 W2 W3 W4  

F1 
5 2   

X (19) (30) (50) (10) 

F2 
 6   3 (70) (30) (40) (60) 

 
F3 (40) (80) (70) (20) 18 

 X X 7 14  
 W1 W2 W3 W4  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Initial Basic Feasible Solution 
x11 = 5, x12 = 2, x22 = 6, x23 = 3, x33 = 4, x34 = 14 
 
The transportation cost is 5 (19) + 2 (30) + 6 (30) + 3 (40) + 4 (70) + 14 (20) = Rs. 1015 
 

 

 

2. 

 D1 D2 D3 D4 Availability 
S1 11 13 17 14 250 
S2 16 18 14 10 300 
S3 21 24 13 10 400 
Requirement 200 225 275 250  
 
      

F1 
5 2   

X (19) (30) (50) (10) 

F2 
 6 3  

X (70) (30) (40) (60) 
 
F3 (40) (80) (70) (20) 18 

 X X 4 14  

 W1 W2 W3 W4  

F1 
5 2   

X (19) (30) (50) (10) 

F2 
 6 3  

X (70) (30) (40) (60) 

F3 
  4  

14 (40) (80) (70) (20) 
 X X X 14  

 W1 W2 W3 W4  

F1 
5 2   

X (19) (30) (50) (10) 

F2 
 6 3  

X (70) (30) (40) (60) 

F3 
  4 14 

X (40) (80) (70) (20) 
 X X X X  



Solution 

 

 

 

 

 

 
Initial Basic Feasible Solution 
x11 = 200, x12 = 50, x22 = 175, x24 = 125, x33 = 275, x34 = 125 
The transportation cost is 
200 (11) + 50 (13) + 175 (18) + 125 (10) + 275 (13) + 125 (10) = Rs. 12075 
 
Lowest Cost Entry Method (Matrix Minima Method) 
 
Step 1 
Determine the smallest cost in the cost matrix of the transportation table. Allocate xij = min (ai, 
bj) in the cell (i, j) 
 
Step 2 

 If xij = ai, cross out the ith row of the table and decrease bj by ai. Go to step 3. 
 If xij = bj, cross out the jth column of the table and decrease ai by bj. Go to step 3. 
 If xij = ai = bj, cross out the ith row or jth column but not both. 

 
Step 3 
Repeat steps 1 and 2 for the resulting reduced transportation table until all the requirements are 
satisfied. Whenever the minimum cost is not unique, make an arbitrary choice among the 
minima. 
 
 

 

Find the initial basic feasible solution using Matrix Minima method 

1. 

 W1 W2 W3 W4 Availability 
F1 19 30 50 10 7 
F2 70 30 40 60 9 
F3 40 8 70 20 18 
Requirement 5 8 7 14  

 D1 D2 D3 D4  

S1 
200 50     250   50   0   (11) (13)   

S2 
 175  125 300   125  0  (18)  (10) 

S3 
  275 125 400  125   0   (13) (10) 

 200 
0 
 

225 
175 
0 

275 
0 
 

250 
0 
 

 



      
Solution 

 

 

 

 

 

 

 

 

 W1 W2 W3 W4  

F1 
   7 

X (19) (30) (50) (10) 

F2 
 
(70) (30) (40) (60) 9 

F3 
3 8  7 

X (40) (8) (70) (20) 
 2 X 7 X  

 W1 W2 W3 W4  

F1 
 
(19) (30) (50) (10) 7 

F2 
 
(70) (30) (40) (60) 9 

F3  8   10 
(40) (8) (70) (20) 

 5 X 7 14  
      

 W1 W2 W3 W4  

F1 
   7 

X (19) (30) (50) (10) 

F2 
 
(70) (30) (40) (60) 9 

F3 
 8   10 (40) (8) (70) (20) 

 5 X 7 7  

 W1 W2 W3 W4  

F1 
   7 

X (19) (30) (50) (10) 

F2 
 
(70) (30) (40) (60) 9 

F3 
 8  7 3 (40) (8) (70) (20) 

 5 X 7 X  



 

 

 

Initial Basic Feasible Solution 
x14 = 7, x21 = 2, x23 = 7, x31 = 3, x32 = 8, x34 = 7 
The transportation cost is 7 (10) + 2 (70) + 7 (40) + 3 (40) + 8 (8) + 7 (20) = Rs. 814 
 

2. 

   To Availability 

From 
2 11 10 3 7 4 
1 4 7 2 1 8 
3 9 4 8 12 9 

Requirement 3 3 4 5 6  
 

Solution 

To 

From 

   4  4  0    (3)  
3    5 8  5  0 (1)    (1) 
 3 4 1 1 9   5  4  1  0  (9) (4) (8) (12) 
3 
0 
 

3 
0 
 

4 
0 
 

5 
1 
0 

6 
1 
0 

 

Initial Basic Feasible Solution 
x14 = 4, x21 = 3, x25 = 5, x32 = 3, x33 = 4, x34 = 1, x35 = 1 
The transportation cost is 4 (3) + 3 (1) + 5(1) + 3 (9) + 4 (4) + 1 (8) + 1 (12) = Rs. 78 
 
 
Vogel’s Approximation Method (Unit Cost Penalty Method) 

Step1 

 W1 W2 W3 W4  

F1 
   7 

X (19) (30) (50) (10) 

F2 
2  7  

X (70) (30) (40) (60) 

F3 
3 8  7 

X (40) (8) (70) (20) 
 X X X X  



For each row of the table, identify the smallest and the next to smallest cost. Determine the 
difference between them for each row. These are called penalties. Put them aside by enclosing 
them in the parenthesis against the respective rows. Similarly compute penalties for each 
column. 

Step 2 

Identify the row or column with the largest penalty. If a tie occurs then use an arbitrary choice. 
Let the largest penalty corresponding to the ith row have the cost cij. Allocate the largest possible 
amount xij = min (ai, bj) in the cell (i, j) and cross out either ith row or jth column in the usual 
manner. 

Step 3 

Again compute the row and column penalties for the reduced table and then go to step 2. Repeat 
the procedure until all the requirements are satisfied. 

Find the initial basic feasible solution using vogel’s approximation method 

1. 

 W1 W2 W3 W4 Availability 
F1 19 30 50 10 7 
F2 70 30 40 60 9 
F3 40 8 70 20 18 
Requirement 5 8 7 14  
      
Solution 

 W1 W2 W3 W4 Availability Penalty 
F1 19 30 50 10 7 19-10=9 
F2 70 30 40 60 9 40-30=10 
F3 40 8 70 20 18 20-8=12 
Requirement 5 8 7 14   
Penalty 40-19=21 30-8=22 50-40=10 20-10=10   
 

 

 W1 W2 W3 W4 Availability Penalty 
F1 (19) (30) (50) (10) 7 9 
F2 (70) (30) (40) (60) 9 10 
F3 (40) 8(8) (70) (20) 18/10 12 
Requirement 5 8/0 7 14   
Penalty 21 22 10 10   
 



 W1 W2 W3 W4 Availability Penalty 
F1 5(19) (30) (50) (10) 7/2 9 
F2 (70) (30) (40) (60) 9 20 
F3 (40) 8(8) (70) (20) 18/10 20 
Requirement 5/0 X 7 14   
Penalty 21 X 10 10   
 

 W1 W2 W3 W4 Availability Penalty 
F1 5(19) (30) (50) (10) 7/2 40 
F2 (70) (30) (40) (60) 9 20 
F3 (40) 8(8) (70) 10(20) 18/10/0 50 
Requirement X X 7 14/4   
Penalty X X 10 10   
 
 
 W1 W2 W3 W4 Availability Penalty 
F1 5(19) (30) (50) 2(10) 7/2/0 40 
F2 (70) (30) (40) (60) 9 20 
F3 (40) 8(8) (70) 10(20) X X 
Requirement X X 7 14/4/2   
Penalty X X 10 50   
 
 W1 W2 W3 W4 Availability Penalty 
F1 5(19) (30) (50) 2(10) X X 
F2 (70) (30) 7(40) 2(60) X X 
F3 (40) 8(8) (70) 10(20) X X 
Requirement X X X X   
Penalty X X X X   
 
Initial Basic Feasible Solution 
x11 = 5, x14 = 2, x23 = 7, x24 = 2, x32 = 8, x34 = 10 
The transportation cost is 5 (19) + 2 (10) + 7 (40) + 2 (60) + 8 (8) + 10 (20) = Rs. 779 
 
 
 
 
2. 
 
  Stores Availability 
  I II III IV  

Warehouse 
A 21 16 15 13 11 
B 17 18 14 23 13 
C 32 27 18 41 19 

Requirement  6 10 12 15  



       
 
Solution 
 
  Stores Availability Penalty 
  I II III IV   

Warehouse 
A (21) (16) (15) (13) 11 2 
B (17) (18) (14) (23) 13 3 
C (32) (27) (18) (41) 19 9 

Requirement  6 10 12 15   
Penalty  4 2 1 10   
        
 
  Stores Availability Penalty 
  I II III IV   

Warehouse 
A (21) (16) (15) 11(13) 11/0 2 
B (17) (18) (14) (23) 13 3 
C (32) (27) (18) (41) 19 9 

Requirement  6 10 12 15/4   
Penalty  4 2 1 10   
        
 
  Stores Availability Penalty 
  I II III IV   

Warehouse 
A (21) (16) (15) 11(13) X X 
B (17) (18) (14) 4(23) 13/9 3 
C (32) (27) (18) (41) 19 9 

Requirement  6 10 12 15/4/0   
Penalty  15 9 4 18   
        
 
 
 
 
 
 
 
 
 
  Stores Availability Penalty 
  I II III IV   

Warehouse 
A (21) (16) (15) 11(13) X X 
B 6(17) (18) (14) 4(23) 13/9/3 3 
C (32) (27) (18) (41) 19 9 

Requirement  6/0 10 12 X   
Penalty  15 9 4 X   



        
 
  Stores Availability Penalty 
  I II III IV   

Warehouse 
A (21) (16) (15) 11(13) X X 
B 6(17) 3(18) (14) 4(23) 13/9/3/0 4 
C (32) (27) (18) (41) 19 9 

Requirement  X 10/7 12 X   
Penalty  X 9 4 X   
        
 
  Stores Availability Penalty 
  I II III IV   

Warehouse 
A (21) (16) (15) 11(13) X X 
B 6(17) 3(18) (14) 4(23) X X 
C (32) 7(27) 12(18) (41) X X 

Requirement  X X X X   
Penalty  X X X X   
 
        

Initial Basic Feasible Solution 
x14 = 11, x21 = 6, x22 = 3, x24 = 4, x32 = 7, x33 = 12 
The transportation cost is 11 (13) + 6 (17) + 3 (18) + 4 (23) + 7 (27) + 12 (18) = Rs. 796 
 
 
 
 
 
 
 
 
 
 
 
 
Unit 3 
 
3.1 Examining the Initial Basic Feasible Solution for Non-Degeneracy 
3.2 Transportation Algorithm for Minimization Problem 
3.3 Worked Examples 
 
3.1 Examining the Initial Basic Feasible Solution for Non-Degeneracy 
 
Examine the initial basic feasible solution for non-degeneracy. If it is said to be non-degenerate 
then it has the following two properties 



 Initial basic feasible solution must contain exactly m + n – 1 number of individual 
allocations. 

 These allocations must be in independent positions 
 
Independent Positions 
 

       

       

      

 
 

      

      

      

 
 
Non-Independent Positions 
 

 
 

 
 

 
 
3.2 Transportation Algorithm for Minimization Problem (MODI Method) 
 
Step 1 
Construct the transportation table entering the origin capacities ai, the destination requirement bj 
and the cost cij 
 
Step 2 



Find an initial basic feasible solution by vogel’s method or by any of the given method. 
 
Step 3 
For all the basic variables xij, solve the system of equations ui + vj = cij, for all i, j for which cell 
(i, j) is in the basis, starting initially with some ui = 0, calculate the values of ui and vj on the 
transportation table 
 
Step 4  
Compute the cost differences dij = cij – ( ui + vj ) for all the non-basic cells 
 
Step 5 
Apply optimality test by examining the sign of each dij 

 If all dij ≥ 0, the current basic feasible solution is optimal 
 If at least one dij < 0, select the variable xrs (most negative) to enter the basis. 
 Solution under test is not optimal if any dij is negative and further improvement is 

required by repeating the above process. 
 
Step 6 
Let the variable xrs enter the basis. Allocate an unknown quantity Ө to the cell (r, s). Then 
construct a loop that starts and ends at the cell (r, s) and connects some of the basic cells. The 
amount Ө is added to and subtracted from the transition cells of the loop in such a manner that 
the availabilities and requirements remain satisfied. 
 
Step 7 
Assign the largest possible value to the Ө in such a way that the value of at least one basic 
variable becomes zero and the other basic variables remain non-negative. The basic cell whose 
allocation has been made zero will leave the basis. 
 
Step 8 
Now, return to step 3 and repeat the process until an optimal solution is obtained. 
 
3.3 Worked Examples 
 
Example 1 
Find an optimal solution 
 
 W1 W2 W3 W4 Availability 
F1 19 30 50 10 7 
F2 70 30 40 60 9 
F3 40 8 70 20 18 
Requirement 5 8 7 14  
      
Solution 
 
1. Applying vogel’s approximation method for finding the initial basic feasible solution 
 



 W1 W2 W3 W4 Availability Penalty 
F1 5(19) (30) (50) 2(10) X X 
F2 (70) (30) 7(40) 2(60) X X 
F3 (40) 8(8) (70) 10(20) X X 
Requirement X X X X   
Penalty X X X X   
 
 
Minimum transportation cost is 5 (19) + 2 (10) + 7 (40) + 2 (60) + 8 (8) + 10 (20) = Rs. 779 
 
2. Check for Non-degeneracy 
The initial basic feasible solution has m + n – 1 i.e. 3 + 4 – 1 = 6 allocations in independent 
positions. Hence optimality test is satisfied. 
 
3. Calculation of ui and vj : -  ui + vj  = cij 

 
 
 
 
 
 

 
Assign a ‘u’ value to zero. (Convenient rule is to select the ui, which has the largest number of 
allocations in its row) 
Let u3 = 0, then 
u3 + v4= 20 which implies 0 + v4 = 20, so v4 = 20 
u2 + v4= 60 which implies u2 + 20 = 60, so u2 = 40 
u1 + v4= 10 which implies u1 + 20 = 10, so u1 = -10 
u2 + v3= 40 which implies 40 + v3 = 40, so v3 = 0 
u3 + v2= 8 which implies 0 + v2 = 8, so v2 = 8 
u1 + v1= 19 which implies -10 + v1= 19, so v1 = 29 
4. Calculation of cost differences for non basic cells dij = cij – ( ui + vj ) 
 

cij  ui + vj 
  (30) (50)      -2 -10   

(70) (30)      69 48     
(40)   (70)    29   0   

 
 

dij = cij – ( ui + vj ) 
  32 60   

1 -18     
11   70   

 
5. Optimality test 

    ui 
 (19)    (10) u1= -10 

    (40)  (60) u2 = 40 
   (8)   (20)     u3 = 0 
vj v1 = 29 v2 = 8 v3 = 0 v4 = 20  



dij < 0 i.e. d22 = -18 
so x22 is entering the basis 
 
6. Construction of loop and allocation of unknown quantity Ө 
 

 
 
We allocate Ө to the cell (2, 2). Reallocation is done by transferring the maximum possible 
amount Ө in the marked cell. The value of Ө is obtained by equating to zero to the corners of the 
closed loop. i.e. min(8-Ө, 2-Ө) = 0 which gives Ө = 2. Therefore x24 is outgoing as it becomes 
zero. 
 
5 (19)   2 (10) 
 2 (30) 7 (40)  
 6 (8)  12 (20) 
 
Minimum transportation cost is 5 (19) + 2 (10) + 2 (30) + 7 (40) + 6 (8) + 12 (20) = Rs. 743 
 
7. Improved Solution 

 
 
 
 
 
 

 
cij  ui + vj 

  (30) (50)      -2 8   
(70)     (60)  51     42 
(40)   (70)    29   18   

 
 

dij = cij – ( ui + vj ) 
  32 42   

19     18 
11   52   

 
Since dij > 0, an optimal solution is obtained with minimal cost Rs.743 
 

    ui 
 (19)    (10) u1= -10 

   (30)  (40)  u2 = 22 
   (8)   (20)   u3 = 0 
vj v1 = 29 v2 = 8 v3 = 18 v4 = 20  



Example 2 
Solve by lowest cost entry method and obtain an optimal solution for the following problem 
 

    Available 

From 
50 30 220 1 
90 45 170 3 

250 200 50 4 
Required 4 2 2  

 
Solution 
By lowest cost entry method 
 

    Available 

From 
 1(30)  1/0 

2(90) 1(45)  3/2/0 
2(250)  2(50) 4/2/0 

Required 4/2/2 2/1/0 2/0  
 
Minimum transportation cost is 1 (30) + 2 (90) + 1 (45) + 2 (250) + 2 (50) = Rs. 855 
  
Check for Non-degeneracy 
The initial basic feasible solution has m + n – 1 i.e. 3 + 3 – 1 = 5 allocations in independent 
positions. Hence optimality test is satisfied. 
 
Calculation of ui and vj : -  ui + vj  = cij 

 
 
 
 
 
 

 
Calculation of cost differences for non-basic cells dij = cij – ( ui + vj ) 
 

cij  ui + vj 
50   220  75   -125 
    170      -110 
  200      205   

 
 

dij = cij – ( ui + vj ) 
-25   345 
       280 
       -5   

 
Optimality test 

   ui 
  (30)      u1= -15 

  (90)  (45)      u2 = 0 
  (250)   (50)     u3 = 160 
vj v1 = 90 v2 = 45 v3 = -110  



dij < 0 i.e. d11 = -25 is most negative 
So x11 is entering the basis 
 
Construction of loop and allocation of unknown quantity Ө 
 

 
 
min(2-Ө, 1-Ө) = 0 which gives Ө = 1. Therefore x12 is outgoing as it becomes zero. 
 

   
1(50) 

   

1(90) 2(45)  
 

2(250)  
 2(50) 

 
Minimum transportation cost is 1 (50) + 1 (90) + 2 (45) + 2 (250) + 2 (50) = Rs. 830 
 
 
 
 
 
 
 
 
II Iteration 
 
Calculation of ui and vj : -  ui + vj  = cij 

 
 
 
 
 
 

 
Calculation of dij = cij – ( ui + vj ) 
 

cij  ui + vj 
       30 220    5 -150 

   ui 
 (50)       u1= -40 

  (90)  (45)      u2 = 0 
  (250)   (50)     u3 = 160 
vj v1 = 90 v2 = 45 v3 = -110  



    170      -110 
  200      205   

 
dij = cij – ( ui + vj ) 
  25 370 
       280 
       -5   

 
Optimality test 
dij < 0 i.e. d32 = -5  
So x32 is entering the basis 
 
Construction of loop and allocation of unknown quantity Ө 
 

 
 
2 – Ө = 0 which gives Ө = 2. Therefore x22 and x31 is outgoing as it becomes zero. 
 

   
1(50) 

   

3(90) 0(45)  
 

 
 2(200) 2(50) 

 
Minimum transportation cost is 1 (50) + 3 (90) + 2 (200) + 2 (50) = Rs. 820 
 
III Iteration 
 
Calculation of ui and vj : -  ui + vj  = cij 
 

 
 
 
 
 
 

 
Calculation of dij = cij – ( ui + vj ) 

   ui 
 (50)       u1= -40 

  (90)  (45)      u2 = 0 
   (200)  (50)     u3 = 155 
vj v1 = 90 v2 = 45 v3 = -105  



 
cij  ui + vj 

       30 220    5 -145 
    170      -105 

     250          245     
 

dij = cij – ( ui + vj ) 
  25 365 
       275 

         5     
 
Since dij > 0, an optimal solution is obtained with minimal cost Rs.820 
 
 
Example 3 
Is x13 = 50, x14 = 20, x21 = 55, x31 = 30, x32 = 35, x34 = 25 an optimal solution to the 
transportation problem. 
 
  

     Available 

From 
6 1 9 3 70 
11 5 2 8 55 
10 12 4 7 90 

Required 85 35 50 45  
 
 
 
 
 
 
 
 
Solution 
 

     Available 

From 
  50(9) 20(3) X 

55(11)    X 
30(10) 35(12)  25(7) X 

Required X X X X  
 
Minimum transportation cost is 50 (9) + 20 (3) + 55 (11) + 30 (10) + 35 (12) + 25 (7) = Rs. 2010 
 
Check for Non-degeneracy 
The initial basic feasible solution has m + n – 1 i.e. 3 + 4 – 1 = 6 allocations in independent 
positions. Hence optimality test is satisfied. 



 
Calculation of ui and vj : -  ui + vj  = cij 
 

 
 
 
 
 
 

 
Calculation of cost differences for non-basic cells dij = cij – ( ui + vj ) 
 

cij  ui + vj 
      6 1            6 8     

        5       2       8          13       14       8 
    4        13   

 
 
           dij = cij – ( ui + vj ) 
      0 -7     

        -8       -12       0 
    -9   

 
Optimality test 
dij < 0 i.e. d23 = -12 is most negative 
So x23 is entering the basis 
 
Construction of loop and allocation of unknown quantity Ө 

 
 
min(50-Ө, 55-Ө, 25-Ө) = 25 which gives Ө = 25. Therefore x34 is outgoing as it becomes zero. 
 

    
  25(9) 45(3) 

30(11)  25(2)  
55(10) 35(12)   
 
Minimum transportation cost is 25 (9) + 45 (3) + 30 (11) + 25 (2) + 55 (10) + 35 (12) = Rs. 1710 
 
II iteration 

    ui 
   (9)  (3)  u1= -4 

  (11)     u2 = 1 
  (10)  (12)   (7)  u3 = 0 
vj v1 = 10 v2 = 12 v3 = 13 v4 = 7  



 
Calculation of ui and vj : -  ui + vj  = cij 
 

 
 
 
 
 
 

 
Calculation of cost differences for non-basic cells dij = cij – ( ui + vj ) 
 

cij  ui + vj 
      6 1            18 20     

        5         8          13         -4 
    4       7      1       -5 

 
 
           dij = cij – ( ui + vj ) 
      -12 -19     

        -8         12 
    3       12 

 
Optimality test 
dij < 0 i.e. d12 = -19 is most negative 
So x12 is entering the basis 
 
Construction of loop and allocation of unknown quantity Ө 

 
 
min(25-Ө, 30-Ө, 35-Ө) = 25 which gives Ө = 25. Therefore x13 is outgoing as it becomes zero. 
 

    
 25(1)  45(3) 

5(11)  50(2)  
80(10) 10(12)   
 
Minimum transportation cost is 25 (1) + 45 (3) + 5 (11) + 50 (2) + 80 (10) + 10 (12) = Rs. 1235 
 
III Iteration 

    ui 
   (9)  (3)  u1= 8 

  (11)   (2)   u2 = 1 
  (10)  (12)    u3 = 0 
vj v1 = 10 v2 = 12 v3 = 1 v4 = -5  



 
Calculation of ui and vj : -  ui + vj  = cij 

 
 
 
 
 
 
 

 
Calculation of cost differences for non-basic cells dij = cij – ( ui + vj ) 
 

cij  ui + vj 
      6         9          -1   -10   

        5         8          13         15 
    4       7      1       14 

 
 
           dij = cij – ( ui + vj ) 
      7        19   

        -8         -7 
    3       -7 

 
Optimality test 
dij < 0 i.e. d22 = -8 is most negative 
So x22 is entering the basis 
 
Construction of loop and allocation of unknown quantity Ө 
 

 
 
min(5-Ө, 10-Ө) = 5 which gives Ө = 5. Therefore x21 is outgoing as it becomes zero. 
 

    
 25(1)  45(3) 
 5(5) 50(2)  

85(10) 5(12)   
 
Minimum transportation cost is 25 (1) + 45 (3) + 5 (5) + 50 (2) + 85 (10) + 5 (12) = Rs. 1195 
 

    ui 
  (1)   (3)  u1= -11 

  (11)   (2)   u2 = 1 
  (10)  (12)    u3 = 0 
vj v1 = 10 v2 = 12 v3 = 1 v4 = 14  



IV Iteration 
 
Calculation of ui and vj : -  ui + vj  = cij 
 

 
 

 

 

Calculation of cost differences for non-basic cells dij = cij – ( ui + vj ) 
 

cij  ui + vj 
      6         9          -1   -2   
      11           8        3           7 

    4       7      9       14 
 

           dij = cij – ( ui + vj ) 
      7        11   
      8           1 

    -5       -7 
 

Optimality test 
dij < 0 i.e. d34 = -7 is most negative 
So x34 is entering the basis 
 
Construction of loop and allocation of unknown quantity Ө 

 

min(5-Ө, 45-Ө) = 5 which gives Ө = 5. Therefore x32 is outgoing as it becomes zero. 
    
 30(1)  40(3) 
 5(5) 50(2)  

85(10)   5(7) 
 

Minimum transportation cost is 30 (1) + 40 (3) + 5 (5) + 50 (2) + 85 (10) + 5 (7) = Rs. 1160 
 

    ui 
  (1)   (3)  u1= -11 

   (5)  (2)   u2 = -7 
  (10)  (12)    u3 = 0 
vj v1 = 10 v2 = 12 v3 = 9 v4 = 14  



V Iteration 
 
Calculation of ui and vj : -  ui + vj  = cij 

 
 
 
 

 

Calculation of cost differences for non-basic cells dij = cij – ( ui + vj ) 
 

cij  ui + vj 
      6         9          6   -2   
      11           8        10           7 

  12 4      5 2   
 

           dij = cij – ( ui + vj ) 
      0        11   
      1           1 

  7 2   
 

Since dij > 0, an optimal solution is obtained with minimal cost Rs.1160. Further more d11 = 0 
which indicates that alternative optimal solution also exists. 
 

Module 5 
 
Unit 1 
 
1.6 Introduction to Assignment Problem 
1.7 Algorithm for Assignment Problem 
1.8 Worked Examples 
1.9 Unbalanced Assignment Problem 
1.10 Maximal Assignment Problem 
 
1.1 Introduction to Assignment Problem 
 
In assignment problems, the objective is to assign a number of jobs to the equal number of 
persons at a minimum cost of maximum profit.  
 

    ui 
  (1)   (3)  u1= -4 

   (5)  (2)   u2 = 0 
  (10)    (7)  u3 = 0 
vj v1 = 10 v2 = 5 v3 = 2 v4 = 7  



Suppose there are ‘n’ jobs to be performed and ‘n’ persons are available for doing these jobs. 
Assume each person can do each job at a time with a varying degree of efficiency. Let cij be the 
cost of ith person assigned to jth job. Then the problem is to find an assignment so that the total 
cost for performing all jobs is minimum. Such problems are known as assignment problems. 
 
These problems may consist of assigning men to offices, classes to the rooms or problems to the 
research team etc. 
 
Mathematical formulation 
Cost matrix: cij=   c11    c12    c13   …   c1n 

        c21    c22     c23   …   c2n 

          . 

          . 

                                       . 

                                      cn1     cn2    cn3  …   cnn 
 

 
Subject to restrictions of the form 

 
 
 
Where xij denotes that jth job is to be assigned to the ith person. 
 
This special structure of assignment problem allows a more convenient method of solution in 
comparison to simplex method. 
 
1.2 Algorithm for Assignment Problem (Hungarian Method) 
 
Step 1 
Subtract the minimum of each row of the effectiveness matrix, from all the elements of the 
respective rows (Row reduced matrix). 
 
Step 2 
Further modify the resulting matrix by subtracting the minimum element of each column from all 
the elements of the respective columns. Thus first modified matrix is obtained. 
 
Step 3 



Draw the minimum number of horizontal and vertical lines to cover all the zeroes in the resulting 
matrix. Let the minimum number of lines be N. Now there may be two possibilities 

 If N = n, the number of rows (columns) of the given matrix then an optimal assignment 
can be made. So make the zero assignment to get the required solution. 

 If N < n then proceed to step 4 
 
Step 4 
Determine the smallest element in the matrix, not covered by N lines. Subtract this minimum 
element from all uncovered elements and add the same element at the intersection of horizontal 
and vertical lines. Thus the second modified matrix is obtained. 
 
Step 5 
Repeat step 3 and step 4 until minimum number of lines become equal to number of rows 
(columns) of the given matrix i.e. N = n. 
 
Step 6 
To make zero assignment - examine the rows successively until a row-wise exactly single zero is 
found; mark this zero by ‘1’‘to make the assignment. Then, mark a ‘X’ over all zeroes if lying in 
the column of the marked zero, showing that they cannot be considered for further assignment. 
Continue in this manner until all the rows have been examined. Repeat the same procedure for 
the columns also. 
 
Step 7 
Repeat the step 6 successively until one of the following situations arise 

 If no unmarked zero is left, then process ends 
 If there lies more than one of the unmarked zeroes in any column or row, then mark 

‘1’‘one of the unmarked zeroes arbitrarily and mark a cross in the cells of remaining 
zeroes in its row and column. Repeat the process until no unmarked zero is left in the 
matrix. 

 
Step 8 
Exactly one marked zero in each row and each column of the matrix is obtained. The assignment 
corresponding to these marked zeroes will give the optimal assignment. 
 
1.3 Worked Examples 
 
Example 1 
 
A department head has four subordinates and four tasks have to be performed. Subordinates 
differ in efficiency and tasks differ in their intrinsic difficulty. Time each man would take to 
perform each task is given in the effectiveness matrix. How the tasks should be allocated to each 
person so as to minimize the total man-hours? 
 

Tasks 
 Subordinates 
 I II III IV 
A 8 26 17 11 



B 13 28 4 26 
C 38 19 18 15 

 D 19 26 24 10 
 
Solution 
 
Row Reduced Matrix 

0 18 9 3 
9 24 0 22 

23 4 3 0 
9 16 14 0 

 
I Modified Matrix 

 
 
N = 4, n = 4 
Since N = n, we move on to zero assignment 
 
Zero assignment 
 

 

 
 
Total man-hours = 8 + 4 + 19 + 10 = 41 hours 
 
Example 2 
A car hire company has one car at each of five depots a, b, c, d and e. a customer requires a car 
in each town namely A, B, C, D and E. Distance (kms) between depots (origins) and towns 
(destinations) are given in the following distance matrix 
 
 a b c d e 
A 160 130 175 190 200 
B 135 120 130 160 175 
C 140 110 155 170 185 
D 50 50 80 80 110 
E 55 35 70 80 105 
 



Solution 
 
Row Reduced Matrix 

30 0 45 60 70 
15 0 10 40 55 
30 0 45 60 75 
0 0 30 30 60 

20 0 35 45 70 
 
I Modified Matrix 

 
 
N < n i.e. 3 < 5, so move to next modified matrix 
 
II Modified Matrix 

 
 
N = 5, n = 5 
Since N = n, we move on to zero assignment 
Zero assignment 

 
 

 
 
Minimum distance travelled = 200 + 130 + 110 + 50 + 80 = 570 kms 
 
Example 3 
Solve the assignment problem whose effectiveness matrix is given in the table 
 
 1 2 3 4 



A 49 60 45 61 
B 55 63 45 69 
C 52 62 49 68 
D 55 64 48 66 
 
Solution 
 
Row-Reduced Matrix 
4 15 0 16 
10 18 0 24 
3 13 0 19 
7 16 0 18 
 
I Modified Matrix 

 
 
N < n i.e 3 < 4, so II modified matrix 
 
II Modified Matrix 

 
 
N < n i.e 3 < 4 
 
III Modified matrix 

 
 
Since N = n, we move on to zero assignment 
 
Zero assignment 
 
Multiple optimal assignments exists 
 
Solution - I 



 

 
 
Total cost = 49 + 45 + 62 + 66 = 222 units 
 
Solution – II 

 

 
 
Minimum cost = 61 + 45 + 52 + 64 = 222 units 
 
Example 4 
Certain equipment needs 5 repair jobs which have to be assigned to 5 machines. The estimated 
time (in hours) that a mechanic requires to complete the repair job is given in the table. 
Assuming that each mechanic can be assigned only one job, determine the minimum time 
assignment. 
 
 
 
 
 

 J1 J2 J3 J4 J5 
M1 7 5 9 8 11 
M2 9 12 7 11 10 
M3 8 5 4 6 9 
M4 7 3 6 9 5 
M5 4 6 7 5 11 

 
Solution 
 
Row Reduced Matrix 

2 0 4 3 6 
2 5 0 4 3 
4 1 0 2 5 
4 0 3 6 2 
0 2 3 1 7 

 



I Modified Matrix 

 
N < n 
 
II Modified Matrix 

 
N = n 
 
Zero assignment 

 
 

 
 
Minimum time = 5 + 7 + 6 + 5 + 4 = 27 hours 
1.4 Unbalanced Assignment Problems 
 
If the number of rows and columns are not equal then such type of problems are called as 
unbalanced assignment problems. 
 
Example 1 
A company has 4 machines on which to do 3 jobs. Each job can be assigned to one and only one 
machine. The cost of each job on each machine is given in the following table 
 

 Machines 

Jobs 

 W X Y Z 
A 18 24 28 32 
B 8 13 17 19 
C 10 15 19 22 

 
Solution 



 
18 24 28 32 
8 13 17 19 
10 15 19 22 
0 0 0 0 

 
Row Reduced matrix 

0 6 10 14 
0 5 9 11 
0 5 9 12 
0 0 0 0 

 
I Modified Matrix 

 
 
N < n i.e. 2 < 4 
 
II Modified Matrix 

 
 
N < n i.e. 3 < 4 
 
III Modified Matrix 

 
 
N = n 
 
Zero assignment 
 
Multiple assignments exists 
 
Solution -I 



 
 

 
 
Minimum cost = 18 + 13 + 19 = Rs 50 
 
Solution -II 

 
 

 
 
Minimum cost = 18 + 17 + 15 = Rs 50 
 
Example 2 
Solve the assignment problem whose effectiveness matrix is given in the table 
 

 R1 R2 R3 R4 
C1 9 14 19 15 
C2 7 17 20 19 
C3 9 18 21 18 
C4 10 12 18 19 
C5 10 15 21 16 

Solution 
 

9 14 19 15 0 
7 17 20 19 0 
9 18 21 18 0 

10 12 18 19 0 
10 15 21 16 0 

 
Row Reduced Matrix 
 

9 14 19 15 0 
7 17 20 19 0 
9 18 21 18 0 

10 12 18 19 0 



10 15 21 16 0 
 
I Modified Matrix 

 
N < n i.e. 4 < 5 
 
II Modified Matrix 

 
N < n i.e. 4 < 5 
 
III Modified Matrix 

 
 
N = n 
 
Zero assignment 

 
 

 
 
Minimum cost = 19 + 7 + 12 + 16 = 54 units 
 
1.5 Maximal Assignment Problem 
 
Example 1 



A company has 5 jobs to be done. The following matrix shows the return in terms of rupees on 
assigning ith ( i = 1, 2, 3, 4, 5 ) machine to the jth job ( j = A, B, C, D, E ). Assign the five jobs to 
the five machines so as to maximize the total expected profit.  
 

 Jobs 

Machines 

 A B C D E 
1 5 11 10 12 4 
2 2 4 6 3 5 
3 3 12 5 14 6 
4 6 14 4 11 7 
5 7 9 8 12 5 

 
Solution 
 
Subtract all the elements from the highest element 
Highest element = 14 
 

9 3 4 2 10 
12 10 8 11 9 
11 2 9 0 8 
8 0 10 3 7 
7 5 6 2 9 

 
Row Reduced matrix 
 

7 1 2 0 8 
4 2 0 3 1 

11 2 9 0 8 
8 0 10 3 7 
5 3 4 0 7 

 
I Modified Matrix 

 
N < n i.e. 3 < 5 
 
II Modified Matrix 



 
N < n i.e. 4 < 5 
 
III Modified Matrix 

 
N = n 
 
Zero assignment 

 
 
Optimal assignment 1 – C   2 – E   3 – D   4 – B   5 – A  
Maximum profit = 10 + 5 + 14 + 14 + 7 = Rs. 50 
 
 
 
 
 
 
 
 
 
Unit 2 
 
2.1 Introduction to Game Theory 
2.2 Properties of a Game 
2.3 Characteristics of Game Theory 
2.4 Classification of Games 
2.5 Solving Two-Person and Zero-Sum Game 
 
2.1 Introduction to Game Theory 
 



Game theory is a type of decision theory in which one’s choice of action is determined after 
taking into account all possible alternatives available to an opponent playing the same game, 
rather than just by the possibilities of several outcome results. Game theory does not insist on 
how a game should be played but tells the procedure and principles by which action should be 
selected. Thus it is a decision theory useful in competitive situations. 
 
Game is defined as an activity between two or more persons according to a set of rules at the end 
of which each person receives some benefit or suffers loss. The set of rules defines the game. 
Going through the set of rules once by the participants defines a play. 
 
2.2 Properties of a Game 
 

1. There are finite numbers of competitors called ‘players’ 
2. Each player has a finite number of possible courses of action called ‘strategies’ 
3. All the strategies and their effects are known to the players but player does not know 

which strategy is to be chosen. 
4. A game is played when each player chooses one of his strategies. The strategies are 

assumed to be made simultaneously with an outcome such that no player knows his 
opponents strategy until he decides his own strategy. 

5. The game is a combination of the strategies and in certain units which determines the 
gain or loss. 

6. The figures shown as the outcomes of strategies in a matrix form are called ‘pay-off 
matrix’. 

7. The player playing the game always tries to choose the best course of action which 
results in optimal pay off called ‘optimal strategy’. 

8. The expected pay off when all the players of the game follow their optimal strategies is 
known as ‘value of the game’. The main objective of a problem of a game is to find the 
value of the game. 

9. The game is said to be ‘fair’ game if the value of the game is zero otherwise it s known as 
‘unfair’. 

 
 
 
 
 
2.3  Characteristics of Game Theory 
 
1. Competitive game 
A competitive situation is called a competitive game if it has the following four properties 

1. There are finite number of competitors such that n ≥ 2. In case n = 2, it is called a two-
person game and in case n > 2, it is referred as n-person game. 

2. Each player has a list of finite number of possible activities. 
3. A play is said to occur when each player chooses one of his activities. The choices are 

assumed to be made simultaneously i.e. no player knows the choice of the other until he 
has decided on his own. 



4. Every combination of activities determines an outcome which results in a gain of 
payments to each player, provided each player is playing uncompromisingly to get as 
much as possible. Negative gain implies the loss of same amount. 

 
2. Strategy 
The strategy of a player is the predetermined rule by which player decides his course of action 
from his own list during the game. The two types of strategy are 

1. Pure strategy 
2. Mixed strategy 

 
Pure Strategy 
If a player knows exactly what the other player is going to do, a deterministic situation is 
obtained and objective function is to maximize the gain. Therefore, the pure strategy is a 
decision rule always to select a particular course of action. 

 
Mixed Strategy 
If a player is guessing as to which activity is to be selected by the other on any particular 
occasion, a probabilistic situation is obtained and objective function is to maximize the 
expected gain. Thus the mixed strategy is a selection among pure strategies with fixed 
probabilities. 

 
3.  Number of persons 
A game is called ‘n’ person game if the number of persons playing is ‘n’. The person means an 
individual or a group aiming at a particular objective. 
 

Two-person, zero-sum game 
A game with only two players (player A and player B) is called a ‘two-person, zero-sum 
game’, if the losses of one player are equivalent to the gains of the other so that the sum 
of their net gains is zero. 
Two-person, zero-sum games are also called rectangular games as these are usually 
represented by a payoff matrix in a rectangular form. 

 
4. Number of activities 
The activities may be finite or infinite. 
 
 
5. Payoff  
The quantitative measure of satisfaction a person gets at the end of each play is called a payoff 
 
6. Payoff matrix 
Suppose the player A has ‘m’ activities and the player B has ‘n’ activities. Then a payoff matrix 
can be formed by adopting the following rules 

 Row designations for each matrix are the activities available to player A 
 Column designations for each matrix are the activities available to player B 
 Cell entry Vij is the payment to player A in A’s payoff matrix when A chooses the 

activity i and B chooses the activity j. 



 With a zero-sum, two-person game, the cell entry in the player B’s payoff matrix will be 
negative of the corresponding cell entry Vij in the player A’s payoff matrix so that sum of 
payoff matrices for player A and player B is ultimately zero. 

 
7. Value of the game 
Value of the game is the maximum guaranteed game to player A (maximizing player) if both the 
players uses their best strategies. It is generally denoted by ‘V’ and it is unique. 
 
2.4 Classification of Games 
 
All games are classified into 

 Pure strategy games 
 Mixed strategy games 

 
The method for solving these two types varies. By solving a game, we need to find best 
strategies for both the players and also to find the value of the game. 
 
Pure strategy games can be solved by saddle point method. 
 
The different methods for solving a mixed strategy game are 

 Analytical method 
 Graphical method 
 Dominance rule 
 Simplex method 

 
2.5 Solving Two-Person and Zero-Sum Game 
 
Two-person zero-sum games may be deterministic or probabilistic. The deterministic games will 
have saddle points and pure strategies exist in such games. In contrast, the probabilistic games 
will have no saddle points and mixed strategies are taken with the help of probabilities. 
 
Definition of saddle point 
A saddle point of a matrix is the position of such an element in the payoff matrix, which is 
minimum in its row and the maximum in its column. 
 
Procedure to find the saddle point 

 Select the minimum element of each row of the payoff matrix and mark them with 
circles. 

 Select the maximum element of each column of the payoff matrix and mark them with 
squares. 

 If their appears an element in the payoff matrix with a circle and a square together then 
that position is called saddle point and the element is the value of the game. 

 
Solution of games with saddle point 
To obtain a solution of a game with a saddle point, it is feasible to find out 



 Best strategy for player A 
 Best strategy for player B 
 The value of the game 

 
The best strategies for player A and B will be those which correspond to the row and column 
respectively through the saddle point. 
 
Examples 
Solve the payoff matrix 
1. 
 

 Player B 

Player A 

 I II III IV V 
I -2 0 0 5 3 
II 3 2 1 2 2 
III -4 -3 0 -2 6 
IV 5 3 -4 2 -6 

 
Solution 

 
Strategy of player A – II 
Strategy of player B - III 
Value of the game = 1 
 
2. 
 

 B1 B2 B3 B4 
A1 1 7 3 4 
A2 5 6 4 5 



A3 7 2 0 3 
 
Solution 
 

 
 
 
Strategy of player A – A2 
Strategy of player B – B3 
Value of the game = 4 
 
3. 
 

 B’s Strategy 

A’s 
Strategy 

 B1 B2 B3 B4 B5 
A1 8 10 -3 -8 -12 
A2 3 6 0 6 12 
A3 7 5 -2 -8 17 
A4 -11 12 -10 10 20 
A5 -7 0 0 6 2 

 
 
 
 
 
Solution 
 
 



 
 
 
 
Strategy of player A – A2 
Strategy of player B – B3 
Value of the game = 0 
 
4. 

 
 
 
 
 
 
 
 
Solution 



 
 
Value of the game = 4 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Unit 3  
 



3.1 Games with Mixed Strategies 
3.1.1 Analytical Method 
3.1.2 Graphical Method 
3.1.3 Simplex Method 

 
3.1 Games with Mixed Strategies 
 
In certain cases, no pure strategy solutions exist for the game. In other words, saddle point does 
not exist. In all such game, both players may adopt an optimal blend of the strategies called 
Mixed Strategy to find a saddle point. The optimal mix for each player may be determined by 
assigning each strategy a probability of it being chosen. Thus these mixed strategies are 
probabilistic combinations of available better strategies and these games hence called 
Probabilistic games. 
 
The probabilistic mixed strategy games without saddle points are commonly solved by any of the 
following methods 
 

Sl. 
No. Method Applicable to 

1 Analytical Method 2x2 games 
2 Graphical Method 2x2, mx2 and 2xn games 
3 Simplex Method 2x2, mx2, 2xn and mxn games 

 
3.1.1 Analytical Method 
 
A 2 x 2 payoff matrix where there is no saddle point can be solved by analytical method. 
Given the matrix  

                             
Value of the game is 

                   
 
With the coordinates 

 
 

 
 
Alternative procedure to solve the strategy 
 



 Find the difference of two numbers in column 1 and enter the resultant under column 2. 
Neglect the negative sign if it occurs. 

 Find the difference of two numbers in column 2 and enter the resultant under column 1. 
Neglect the negative sign if it occurs. 

 Repeat the same procedure for the two rows. 
 
1. Solve  

 
 
Solution 
It is a 2 x 2 matrix and no saddle point exists. We can solve by analytical method 

 
 

 
 
V = 17 / 5 
SA = (x1, x2) = (1/5, 4 /5) 
SB = (y1, y2) = (3/5, 2 /5) 
 
2.  Solve the given matrix 

 
Solution 

 
 

 
V = - 1 / 4 
SA = (x1, x2) = (1/4, 3 /4) 
SB = (y1, y2) = (1/4, 3 /4) 
3.1.2 Graphical method 



 
The graphical method is used to solve the games whose payoff matrix has 

 Two rows and n columns (2 x n) 
 m rows and two columns (m x 2) 

 
Algorithm for solving 2 x n matrix games 
 

 Draw two vertical axes 1 unit apart. The two lines are x1 = 0, x1 = 1 
 Take the points of the first row in the payoff matrix on the vertical line x1 = 1 and the 

points of the second row in the payoff matrix on the vertical line x1 = 0. 
 The point a1j on axis x1 = 1 is then joined to the point a2j on the axis x1 = 0 to give a 

straight line. Draw ‘n’ straight lines for j=1, 2… n and determine the highest point of the 
lower envelope obtained. This will be the maximin point. 

 The two or more lines passing through the maximin point determines the required 2 x 2 
payoff matrix. This in turn gives the optimum solution by making use of analytical 
method. 

 
Example 1 
Solve by graphical method 

 
 
Solution 

 
 

 



 
 
V = 66/13 
SA = (4/13, 9 /13) 
SB = (0, 10/13, 3 /13) 
 
Example 2 
 
Solve by graphical method 

 
 
Solution 

 
 

 
 

 
 
V = 8/7 
SA = (3/7, 4 /7) 
SB = (2/7, 0, 5 /7) 
 
Algorithm for solving m x 2 matrix games 
 

 Draw two vertical axes 1 unit apart. The two lines are x1 =0, x1 = 1 



 Take the points of the first row in the payoff matrix on the vertical line x1 = 1 and the 
points of the second row in the payoff matrix on the vertical line x1 = 0. 

 The point a1j on axis x1 = 1 is then joined to the point a2j on the axis x1 = 0 to give a 
straight line. Draw ‘n’ straight lines for j=1, 2… n and determine the lowest point of the 
upper envelope obtained. This will be the minimax point. 

 The two or more lines passing through the minimax point determines the required 2 x 2 
payoff matrix. This in turn gives the optimum solution by making use of analytical 
method. 

 
Example 1 
Solve by graphical method 

 
 
Solution 

 

 

 



 
V = 3/9 = 1/3 
SA = (0, 5 /9, 4/9, 0) 
SB = (3/9, 6 /9) 
 
Example 2 
 
Solve by graphical method 

 
 
Solution 

 



 

 
 
V = 73/17 
SA = (0, 16/17, 1/17, 0, 0) 
SB = (5/17, 12 /17) 
 
3.1.3 Simplex Method 
 
Let us consider the 3 x 3 matrix 
 

 
 
As per the assumptions, A always attempts to choose the set of strategies with the non-zero 
probabilities say p1, p2, p3 where p1 + p2 + p3 = 1 that maximizes his minimum expected gain. 
 
Similarly B would choose the set of strategies with the non-zero probabilities say q1, q2, q3 where 
q1 + q2 + q3 = 1 that minimizes his maximum expected loss. 
 
Step 1 
Find the minimax and maximin value from the given matrix 
 
Step 2 
The objective of A is to maximize the value, which is equivalent to minimizing the value 1/V. 
The LPP is written as 

Min 1/V = p1/V + p2/V + p3/V  
and constraints ≥ 1 

It is written as 
Min 1/V = x1 + x2 + x3  
and constraints ≥ 1 

 
Similarly for B, we get the LPP as the dual of the above LPP 

Max 1/V = Y1 + Y2 + Y3  
and constraints ≤ 1 
Where Y1 = q1/V, Y2 = q2/V, Y3 = q3/V 

 
 



Step 3 
Solve the LPP by using simplex table and obtain the best strategy for the players 
 
Example 1 
Solve by Simplex method 
 

 
 
Solution 
 

 
 
We can infer that 2 ≤ V ≤ 3. Hence it can be concluded that the value of the game lies between 2 
and 3 and the V > 0. 
 
LPP 
Max 1/V = Y1 + Y2 + Y3  
Subject to  
 3Y1 – 2Y2 + 4Y3 ≤ 1 
 -1Y1 + 4Y2 + 2Y3 ≤ 1 
 2Y1 + 2Y2 + 6Y3 ≤ 1 

Y1, Y2, Y3 ≥ 0 
 
SLPP 
Max 1/V = Y1 + Y2 + Y3 + 0s1 + 0s2 + 0s3 
Subject to  
 3Y1 – 2Y2 + 4Y3 + s1 = 1 
 -1Y1 + 4Y2 + 2Y3 + s2 =1 
 2Y1 + 2Y2 + 6Y3 + s3 = 1 

Y1, Y2, Y3, s1, s2, s3 ≥ 0 
 
 
 
 
 
 



  Cj→ 1 1 1 0 0 0  
Basic 

Variables CB YB Y1 Y2 Y3 S1 S2 S3 
Min Ratio 
YB / YK 

S1 0 1 3 -2 4 1 0 0 1/3→ 
S2 0 1 -1 4 2 0 1 0 - 
S3 0 1 2 2 6 0 0 1 1/2 

  
1/V = 0 

↑ 
-1 

 
-1 

 
-1 

 
0 

 
0 

 
0  

Y1 1 1/3 1 -2/3 4/3 1/3 0 0 - 
S2 0 4/3 0 10/3 10/3 1/3 1 0 2/5 
S3 0 1/3 0 10/3 10/3 -2/3 0 1 1/10→ 

  
1/V =1/3 

 
0 

↑ 
-5/3 

 
1/3 

 
1/3 

 
0 

 
0  

Y1 1 2/5 1 0 2 1/5 0 1/5  
S2 0 1 0 0 0 1 1 -1  
Y2 1 1/10 0 1 1 -1/5 0 3/10  

  
1/V = 1/2 

 
0 

 
0 

 
2 

 
0 

 
0 

 
1/2  

 
1/V =1/2 
V = 2 
 
y1 = 2/5 * 2 = 4/5 
y2 = 1/10 * 2 = 1/5 
y3 = 0 * 2 = 0 
 
x1 = 0*2 = 0 
x2 = 0*2 = 0 
x3 = 1/2*2 = 1 
 
SA = (0, 0, 1) 
SB = (4/5, 1/5, 0) 
Value = 2 
 
Example 2 

 
 
 
 
 
 
 



Solution 
 

 
 
Maximin = -1 
Minimax = 1 
 
We can infer that -1 ≤ V ≤ 1 
 
Since maximin value is -1, it is possible that value of the game may be negative or zero, thus the 
constant ‘C’ is added to all the elements of matrix which is at least equal to the negative of 
maximin.  
 
Let C = 1, add this value to all the elements of the matrix. The resultant matrix is 

 
 
LPP 
Max 1/V = Y1 + Y2 + Y3  
Subject to  
 2Y1 + 0Y2 + 0Y3 ≤ 1 
 0Y1 + 0Y2 + 4Y3 ≤ 1 
 0Y1 + 3Y2 + 0Y3 ≤ 1 

Y1, Y2, Y3 ≥ 0 
 
SLPP 
Max 1/V = Y1 + Y2 + Y3 + 0s1 + 0s2 + 0s3 
Subject to  
 2Y1 + 0Y2 + 0Y3 + s1 = 1 
 0Y1 + 0Y2 + 4Y3 + s2 = 1 
 0Y1 + 3Y2 + 0Y3 + s3 = 1 

Y1, Y2, Y3, s1, s2, s3 ≥ 0 
 
 
 
 
 
 
 



  Cj→ 1 1 1 0 0 0  
Basic 

Variables CB YB Y1 Y2 Y3 S1 S2 S3 
Min Ratio 
YB / YK 

S1 0 1 2 0 0 1 0 0 1/2→ 
S2 0 1 0 0 4 0 1 0 - 
S3 0 1 0 3 0 0 0 1 - 

  
1/V =0 

↑ 
-1 

 
-1 

 
-1 

 
0 

 
0 

 
0  

Y1 1 1/2 1 0 0 1/2 0 0 - 
S2 0 1 0 0 4 0 1 0 - 
S3 0 1 0 3 0 0 0 1 1/3→ 

  
1/V =1/2 

 
0 

↑ 
-1 

 
-1 

 
1/2 

 
0 

 
0  

Y1 1 1/2 1 0 0 1/2 0 0 - 
S2 0 1 0 0 4 0 1 0 1/4→ 
Y2 1 1/3 0 1 0 0 0 1/3 - 

  
1/V = 5/6 

 
0 

 
0 

↑ 
-1 

 
1/2 

 
0 

 
1/3  

Y1   1         1/2 1 0 0 1/2 0 0  
Y3   1         1/4 0 0 1 0 1/4 0  
Y2   1         1/3 0 1 0 0 0 1/3  

 
 

 
1/V =13/12 

 
0 

 
0 

 
0 

 
1/2 

 
1/4 

 
1/3  

 
1/V =13/12 
V = 12/13 
 
y1 = 1/2 * 12/13 = 6/13 
y2 = 1/3 * 12/13 = 4/13 
y3 = 1/4 * 12/13 = 3/13 
 
x1 = 1/2*12/13 = 6/13 
x2 = 1/4 * 12/13 = 3/13 
x3 = 1/3 * 12/13 = 4/13 
 
SA = (6/13, 3/13, 4/13) 
SB = (6/13, 4/13, 3/13) 
 
Value = 12/13 – C =12/13 -1 = -1/13 
 
 
Module 6 
 
Unit 1 



 
1.4  Shortest Route Problem 
1.5  Minimal Spanning Tree Problem 
1.6  Maximal Flow Problem 
 
1.1 Shortest Route Problem 
 
The criterion of this method is to find the shortest distance between two nodes with minimal 
cost. 
 
Example 1 
Find the shortest path 

 
Solution 

n 

Solved nodes 
directly 

connected to 
unsolved 

nodes 

Closest 
connected 
unsolved 

node 

Total distance 
involved 

nth nearest 
node 

Minimum 
distance 

Last 
connection 

1 a c 7 c 7 a-c 

2 a 
c 

b 
e 

13 
7+6 =13 

b 
e 

13 
13 

a-b 
c-e 

3 
b 
c 
e 

d 
f 
h 

13+5 =18 
7+11 =18 
13+8 =21 

d 
f 
- 

18 
18 
- 

b-d 
c-f 
- 

4 
e 
d 
f 

h 
g 
h 

13+8 =21 
18+9 =27 
18+5 =23 

h 
- 
- 

21 
- 
- 

e-h 
- 
- 

5 
e 
h 
d 

g 
i 
g 

13+10 =23 
21+10 =31 
18+9 =27 

g 
- 
- 

23 
- 
- 

e-g 
- 
- 

6 g 
h 

i 
i 

23+6 =29 
21+10 =31 

i 
- 

29 
- 

g-i 
- 

 
 



 
 
The shortest path from a to i is a → c →e →g → i  
Distance = 7 + 6 + 10 + 6 = 29 units 
 
Example 2 
 

 
 
 
Solution 
 

n 

Solved nodes 
directly 

connected to 
unsolved 

nodes 

Closest 
connected 
unsolved 

node 

Total 
distance 
involved 

nth nearest 
node 

Minimum 
distance 

Last 
connection 

1 1 3 1 3 1 1-3 

2 1 
3 

2 
2 

5 
1+2 =3 

- 
2 

- 
3 

- 
3-2 

3 2 
3 

5 
4 

3+1 =4 
1+6 =7 

5 
- 

4 
- 

2-5 
- 

4 2 
3 

6 
4 

3+6 =9 
1+6 =7 

- 
4 

- 
7 

- 
3-4 



5 4 4+3 =7 4 7 5-4 

5 
2 
4 
5 

6 
6 
6 

3+6 =9 
7+4 =11 
4+5 =9 

6 
- 
6 

9 
- 
9 

2-6 
- 

5-6 

6 
4 
5 
6 

7 
7 
7 

7+6 =13 
4+9 =13 
9+2 =11 

- 
- 
7 

- 
- 

11 

- 
- 

6-7 
 
The shortest path from 1 to 7 can be  

 
1 →3 → 2 → 6 →7  
Total distance is 11 units 
 

  
1 → 3 → 2 →5 → 6 →7  
Total distance = 11 units 
 
1.2 Minimal Spanning Tree Problem 
 
A tree is defined to be an undirected, acyclic and connected graph. A spanning tree is a subgraph 
of G (undirected, connected graph), is a tree and contains all the vertices of G. A minimum 
spanning tree is a spanning tree but has weights or lengths associated with edges and the total 
weight is at the minimum. 
 



Prim’s Algorithm 
 It starts at any vertex (say A) in a graph and finds the least cost vertex (say B) connected 

to the start vertex. 
 Now either from A or B, it will find the next least costly vertex connection, without 

creating cycle (say C) 
 Now either from A, B or C find the next least costly vertex connection, without creating a 

cycle and so on. 
 Eventually all the vertices will be connected without any cycles and a minimum spanning 

tree will be the result. 
 
Example 1 
Suppose it is desired to establish a cable communication network that links major cities, which is 
shown in the figure. Determine how the cities are connected such that the total cable mileage is 
minimized. 
 
 

 
 
Solution 
 
C = {LA}     C' = {SE, DE, DA, EH, NY, DC} 
C = {LA, SE}     C' = {DE, DA, EH, NY, DC} 
C = {LA, SE, DE}    C' = {DA, EH, NY, DC} 
C = {LA, SE, DE, DA}   C' = {EH, NY, DC} 
C = {LA, SE, DE, DA, EH}   C' = {NY, DC} 
C = {LA, SE, DE, DA, EH, NY}  C' = {DC} 
C = {LA, SE, DE, DA, EH, NY, DC} C' = { } 
 
The resultant network is 



 
Thus the total cable mileage is 1100 + 1300 + 780 + 900 + 800 + 200 = 5080  
 
Example 2 
For the following graph obtain the minimum spanning tree. The numbers on the branches 
represent the cost. 

 
Solution 
 
C = {A}   C' = {B, C, D, E, F, G} 
C = {A, D}   C' = {B, C, E, F, G} 
C = {A, D, B}   C' = {C, E, F, G} 
C = {A, D, B, C}  C' = {E, F, G} 
C = {A, D, B, C, G}  C' = {E, F} 
C = {A, D, B, C, G, F} C' = {E} 
C = {A, D, B, C, G, F, E} C' = { } 
 
The resultant network is 



 
 
Cost = 2 + 1 + 4 + 3 + 3 + 5 = 18 units 
 
Example 3 
Solve the minimum spanning problem for the given network. The numbers on the branches 
represent in terms of miles. 
 
 
 

 
Solution 
 
C = {1}   C' = {2, 3, 4, 5, 6} 
C = {1, 2}   C' = {3, 4, 5, 6} 
C = {1, 2, 5}   C' = {3, 4, 6} 
C = {1, 2, 5, 4}  C' = {3, 6} 
C = {1, 2, 5, 4, 6}  C' = {3} 
C = {1, 2, 5, 4, 6, 3}  C' = {} 
 
The resultant network is 



 
 
1 + 4 + 5+ 3 + 3 = 16 miles 
 
1.3 Maximal Flow Problem 
 
Algorithm 
 
Step1 
Find a path from source to sink that can accommodate a positive flow of material. If no path 
exists go to step 5 
 
Step2 
Determine the maximum flow that can be shipped from this path and denote by ‘k’ units. 
 
Step3 
Decrease the direct capacity (the capacity in the direction of flow of k units) of each branch of 
this path ‘k’ and increase the reverse capacity k1. Add ‘k’ units to the amount delivered to sink. 
 
Step4 
Goto step1 
 
Step5 
The maximal flow is the amount of material delivered to the sink. The optimal shipping schedule 
is determined by comparing the original network with the final network. Any reduction in 
capacity signifies shipment. 
 
Example 1 
Consider the following network and determine the amount of flow between the networks. 



 
 
Solution 
 
Iteration 1: 1 – 3 – 5  

 
 
Iteration 2: 1 – 2 – 3 – 4 – 5  

 
 
Iteration 3: 1 – 4 – 5  
 



 
 
Iteration 4: 1 – 2 – 5  

 
 
Iteration 5: 1 – 3 – 2 – 5  

 
 
Maximum flow is 60 units. Therefore the network can be written as 
 



 
 
Example 2 
Solve the maximal flow problem 

 
 
Solution 
 
Iteration 1: O – A – D – T  

 
 
Iteration 2: O – B – E – T  



 
 
Iteration 3: O – A – B – D – T  
 

 
 
Iteration 4: O – C – E – D – T  

 
 
Iteration 5: O – C – E – T  
 



 
Iteration 6: O – B – D – T  

 
Therefore there are no more augmenting paths. So the current flow pattern is optimal. The 
maximum flow is 13 units. 

 
 
  
 
 
 
 
 
 
 
 
 
 



Unit 2 
 
2.1 Introduction to CPM / PERT Techniques 
2.2 Applications of CPM / PERT 
2.3 Basic Steps in PERT / CPM 
2.4 Network Diagram Representation 
2.5 Rules for Drawing Network Diagrams 
2.6 Common Errors in Drawing Networks 
 
2.1 Introduction to CPM / PERT Techniques 
 
CPM (Critical Path Method) was developed by Walker to solve project scheduling problems. 
PERT (Project Evaluation and Review Technique) was developed by team of engineers 
working on the polar’s missile programme of US navy. 
 
The methods are essentially network-oriented techniques using the same principle. PERT and 
CPM are basically time-oriented methods in the sense that they both lead to determination of a 
time schedule for the project. The significant difference between two approaches is that the time 
estimates for the different activities in CPM were assumed to be deterministic while in PERT 
these are described probabilistically. These techniques are referred as project scheduling 
techniques. 
 
2.2 Applications of CPM / PERT 
 
These methods have been applied to a wide variety of problems in industries and have found 
acceptance even in government organizations. These include 

 Construction of a dam or a canal system in a region 
 Construction of a building or highway 
 Maintenance or overhaul of airplanes or oil refinery 
 Space flight 
 Cost control of a project using PERT / COST 
 Designing a prototype of a machine 
 Development of supersonic planes 

 
2.3 Basic Steps in PERT / CPM 
 
Project scheduling by PERT / CPM consists of four main steps 
 

1. Planning 
 The planning phase is started by splitting the total project in to small projects. These 

smaller projects in turn are divided into activities and are analyzed by the department or 
section.  

 The relationship of each activity with respect to other activities are defined and 
established and the corresponding responsibilities and the authority are also stated.  



 Thus the possibility of overlooking any task necessary for the completion of the project is 
reduced substantially. 

 
2. Scheduling 
 The ultimate objective of the scheduling phase is to prepare a time chart showing the start 

and finish times for each activity as well as its relationship to other activities of the 
project.  

 Moreover the schedule must pinpoint the critical path activities which require special 
attention if the project is to be completed in time. 

 For non-critical activities, the schedule must show the amount of slack or float times 
which can be used advantageously when such activities are delayed or when limited 
resources are to be utilized effectively. 

 
3. Allocation of resources 
 Allocation of resources is performed to achieve the desired objective. A resource is a 

physical variable such as labour, finance, equipment and space which will impose a 
limitation on time for the project.  

 When resources are limited and conflicting, demands are made for the same type of 
resources a systematic method for allocation of resources become essential.  

 Resource allocation usually incurs a compromise and the choice of this compromise 
depends on the judgment of managers. 

 
4. Controlling 
 The final phase in project management is controlling. Critical path methods facilitate the 

application of the principle of management by expectation to identify areas that are 
critical to the completion of the project. 

 By having progress reports from time to time and updating the network continuously, a 
better financial as well as technical control over the project is exercised. 

 Arrow diagrams and time charts are used for making periodic progress reports. If 
required, a new course of action is determined for the remaining portion of the project. 

 
2.4 Network Diagram Representation 
 
In a network representation of a project certain definitions are used 
 
1. Activity 
Any individual operation which utilizes resources and has an end and a beginning is called 
activity. An arrow is commonly used to represent an activity with its head indicating the 
direction of progress in the project. These are classified into four categories 

1. Predecessor activity – Activities that must be completed immediately prior to the start of 
another activity are called predecessor activities. 

2. Successor activity – Activities that cannot be started until one or more of other activities 
are completed but immediately succeed them are called successor activities. 

3. Concurrent activity – Activities which can be accomplished concurrently are known as 
concurrent activities. It may be noted that an activity can be a predecessor or a successor 
to an event or it may be concurrent with one or more of other activities. 



4. Dummy activity – An activity which does not consume any kind of resource but merely 
depicts the technological dependence is called a dummy activity. 

 
The dummy activity is inserted in the network to clarify the activity pattern in the following two 
situations 

 To make activities with common starting and finishing points distinguishable 
 To identify and maintain the proper precedence relationship between activities that is not 

connected by events. 
For example, consider a situation where A and B are concurrent activities. C is dependent on A 
and D is dependent on A and B both. Such a situation can be handled by using a dummy activity 
as shown in the figure. 

 
2. Event 
An event represents a point in time signifying the completion of some activities and the 
beginning of new ones. This is usually represented by a circle in a network which is also called a 
node or connector. 
The events are classified in to three categories 

1. Merge event – When more than one activity comes and joins an event such an event is 
known as merge event. 

2. Burst event – When more than one activity leaves an event such an event is known as 
burst event. 

3. Merge and Burst event – An activity may be merge and burst event at the same time as 
with respect to some activities it can be a merge event and with respect to some other 
activities it may be a burst event. 

 
 
3. Sequencing 
The first prerequisite in the development of network is to maintain the precedence relationships. 
In order to make a network, the following points should be taken into considerations 

 What job or jobs precede it? 
 What job or jobs could run concurrently? 
 What job or jobs follow it? 
 What controls the start and finish of a job? 

Since all further calculations are based on the network, it is necessary that a network be drawn 
with full care. 



2.5 Rules for Drawing Network Diagram 
 
Rule 1 
Each activity is represented by one and only one arrow in the network 

 
Rule 2 
No two activities can be identified by the same end events 

 
 
Rule 3 
In order to ensure the correct precedence relationship in the arrow diagram, following questions 
must be checked whenever any activity is added to the network 

 What activity must be completed immediately before this activity can start? 
 What activities must follow this activity? 
 What activities must occur simultaneously with this activity? 

 
In case of large network, it is essential that certain good habits be practiced to draw an easy to 
follow network 

 Try to avoid arrows which cross each other 
 Use straight arrows 
 Do not attempt to represent duration of activity by its arrow length 
 Use arrows from left to right. Avoid mixing two directions, vertical and standing arrows 

may be used if necessary. 
 Use dummies freely in rough draft but final network should not have any redundant 

dummies. 
 The network has only one entry point called start event and one point of emergence 

called the end event. 
 
2.6 Common Errors in Drawing Networks 
 
The three types of errors are most commonly observed in drawing network diagrams 
 
 
 
 



1. Dangling 
To disconnect an activity before the completion of all activities in a network diagram is known 
as dangling. As shown in the figure activities (5 – 10) and (6 – 7) are not the last activities in the 
network. So the diagram is wrong and indicates the error of dangling 
 

 
2. Looping or Cycling 
Looping error is also known as cycling error in a network diagram. Drawing an endless loop in a 
network is known as error of looping as shown in the following figure. 

 
 
3. Redundancy 
Unnecessarily inserting the dummy activity in network logic is known as the error of redundancy 
as shown in the following diagram 
 

 
 
 
 
 
 
 
 
 



Unit 3 
 
3.1 Critical Path in Network Analysis 
3.2 Worked Examples 
3.3 PERT 
3.4 Worked Examples 
 

3.1 Critical Path in Network Analysis 
 
3.1.1 Basic Scheduling Computations 
 
The notations used are 
(i, j) = Activity with tail event i and head event j 
Ei = Earliest occurrence time of event i 
Lj = Latest allowable occurrence time of event j 
Dij = Estimated completion time of activity (i, j) 
(Es)ij = Earliest starting time of activity (i, j) 
(Ef)ij = Earliest finishing time of activity (i, j) 
(Ls)ij = Latest starting time of activity (i, j) 
(Lf)ij = Latest finishing time of activity (i, j) 
 
The procedure is as follows 
 

1. Determination of Earliest time (Ej): Forward Pass computation 
 

 Step 1 
The computation begins from the start node and move towards the end node. For 
easiness, the forward pass computation starts by assuming the earliest occurrence time of 
zero for the initial project event. 

 
 Step 2 

i. Earliest starting time of activity (i, j) is the earliest event time of the tail end event 
i.e. (Es)ij = Ei 

ii. Earliest finish time of activity (i, j) is the earliest starting time + the activity time 
i.e.    (Ef)ij = (Es)ij + Dij or (Ef)ij = Ei + Dij 

iii. Earliest event time for event j is the maximum of the earliest finish times of all 
activities ending in to that event i.e. Ej = max [(Ef)ij for all immediate predecessor 
of (i, j)] or Ej =max [Ei + Dij] 

 
2. Backward Pass computation (for latest allowable time) 

 
 Step 1 

For ending event assume E = L. Remember that all E’s have been computed by forward 
pass computations. 

 



 Step 2 
Latest finish time for activity (i, j) is equal to the latest event time of event j i.e. (Lf)ij = Lj  

 
 Step 3 

Latest starting time of activity (i, j) = the latest completion time of (i, j) – the activity time 
or (Ls)ij =(Lf)ij - Dij  or (Ls)ij = Lj - Dij   

 
 Step 4 

Latest event time for event ‘i’ is the minimum of the latest start time of all activities 
originating from that event i.e. Li = min [(Ls)ij for all immediate successor of (i, j)]  = min 
[(Lf)ij - Dij]  = min [Lj - Dij] 

 
3. Determination of floats and slack times 

 
There are three kinds of floats 

 
 Total float – The amount of time by which the completion of an activity could be 

delayed beyond the earliest expected completion time without affecting the overall 
project duration time. 
Mathematically 

(Tf)ij = (Latest start – Earliest start) for activity ( i – j) 
(Tf)ij = (Ls)ij - (Es)ij  or (Tf)ij = (Lj - Dij) - Ei  

 
 Free float – The time by which the completion of an activity can be delayed beyond the 

earliest finish time without affecting the earliest start of a subsequent activity.  
Mathematically 
(Ff)ij = (Earliest time for event j – Earliest time for event i) – Activity time for ( i,  j) 

(Ff)ij = (Ej - Ei) - Dij  
 
 Independent float – The amount of time by which the start of an activity can be delayed 

without effecting the earliest start time of any immediately following activities, assuming 
that the preceding activity has finished at its latest finish time. 
Mathematically 

(If)ij = (Ej - Li) - Dij   
The negative independent float is always taken as zero. 

 
 Event slack - It is defined as the difference between the latest event and earliest event 

times. 
Mathematically 
Head event slack = Lj – Ej, Tail event slack = Li - Ei  

 
4. Determination of critical path 

 
 Critical event – The events with zero slack times are called critical events. In other 

words the event i is said to be critical if Ei = Li  
 



 Critical activity – The activities with zero total float are known as critical activities. In 
other words an activity is said to be critical if a delay in its start will cause a further delay 
in the completion date of the entire project. 

 
 Critical path – The sequence of critical activities in a network is called critical path. The 

critical path is the longest path in the network from the starting event to ending event and 
defines the minimum time required to complete the project. 

 
3.2 Worked Examples 
 
Example 1 
Determine the early start and late start in respect of all node points and identify critical path for 
the following network. 
 

 
 
Solution 
Calculation of E and L for each node is shown in the network 
 

 



 

Activity(i, j) 
Normal 
Time 
(Dij) 

Earliest Time Latest Time Float Time 
(Li - Dij ) - Ei 

Start 
(Ei) 

Finish 
(Ei + Dij ) 

Start 
(Li - Dij ) 

Finish 
(Li) 

(1, 2) 
(1, 3) 
(1, 4) 
(2, 5) 
(4, 6) 
(3, 7) 
(5, 7) 
(6, 7) 
(5, 8) 
(6, 9) 
(7, 10) 
(8, 10) 
(9, 10) 

10 
8 
9 
8 
7 

16 
7 
7 
6 
5 

12 
13 
15 

0 
0 
0 
10 
9 
8 
18 
16 
18 
16 
25 
24 
21 

10 
8 
9 

18 
16 
24 
25 
23 
24 
21 
37 
37 
36 

0 
1 
1 

10 
10 
9 

18 
18 
18 
17 
25 
24 
22 

10 
9 
10 
18 
17 
25 
25 
25 
24 
22 
37 
37 
37 

0 
1 
1 
0 
1 
1 
0 
2 
0 
1 
0 
0 
1 

Network Analysis Table 
 

From the table, the critical nodes are (1, 2), (2, 5), (5, 7), (5, 8), (7, 10) and (8, 10) 
 
From the table, there are two possible critical paths 

i. 1 → 2 → 5 → 8 → 10  
ii. 1 → 2 → 5 → 7 → 10  

 
Example 2 
Find the critical path and calculate the slack time for the following network 
 

 
 
Solution 
 
The earliest time and the latest time are obtained below 
 
 
 
 



Activity(i, j) 
Normal 
Time 
(Dij) 

Earliest Time Latest Time Float Time 
(Li - Dij ) - Ei 

Start 
(Ei) 

Finish 
(Ei + Dij ) 

Start 
(Li - Dij ) 

Finish 
(Li) 

(1, 2) 
(1, 3) 
(1, 4) 
(2, 6) 
(3, 7) 
(3, 5) 
(4, 5) 
(5, 9) 
(6, 8) 
(7, 8) 
(8, 9) 

2 
2 
1 
4 
5 
8 
3 
5 
1 
4 
3 

0 
0 
0 
2 
2 
2 
1 
10 
6 
7 
11 

2 
2 
1 
6 
7 
10 
4 
15 
7 
11 
14 

5 
0 
6 
7 
3 
2 
7 
10 
11 
8 
12 

7 
2 
7 

11 
8 

10 
10 
15 
12 
12 
15 

5 
0 
6 
5 
1 
0 
6 
0 
5 
1 
1 

 
From the above table, the critical nodes are the activities (1, 3), (3, 5) and (5, 9) 
 

 
The critical path is 1 → 3 → 5 → 9  
 
Example 3 
A project has the following times schedule 
 

Activity Times in weeks Activity Times in weeks 
(1 – 2) 
(1 – 3) 
(2 – 4) 
(3 – 4) 
(3 – 5) 
(4 – 9) 
(5 – 6) 

4 
1 
1 
1 
6 
5 
4 

(5 – 7) 
(6 – 8) 
(7 – 8) 
(8 – 9) 
(8 – 10) 
(9 – 10) 

8 
1 
2 
1 
8 
7 

 



Construct the network and compute 
1. TE and TL for each event 
2. Float for each activity 
3. Critical path and its duration 

 
Solution 
 
The network is  

 
 
Event No.: 1 2 3 4 5 6 7 8 9 10 

TE: 0 4 1 5 7 11 15 17 18 25 
TL: 0 12 1 13 7 16 15 17 18 25 

 
Float = TL (Head event) – TE (Tail event) – Duration 
 

Activity Duration TE (Tail event) TL (Head event) Float 
(1 – 2) 
(1 – 3) 
(2 – 4) 
(3 – 4) 
(3 – 5) 
(4 – 9) 
(5 – 6) 
(5 – 7) 
(6 – 8) 
(7 – 8) 
(8 – 9) 
(8 – 10) 
(9 – 10) 

4 
1 
1 
1 
6 
5 
4 
8 
1 
2 
1 
8 
7 

0 
0 
4 
1 
1 
5 
7 
7 
11 
15 
17 
17 
18 

12 
1 

13 
13 
7 

18 
16 
15 
17 
17 
18 
25 
25 

8 
0 
8 

11 
0 
8 
5 
0 
5 
0 
0 
0 
0 

 
The resultant network shows the critical path 



 
 

The two critical paths are 
i. 1 → 3 → 5 →7 → 8 → 9 →10  

ii. 1 → 3 → 5 → 7 → 8 →10  
 
3.3 Project Evaluation and Review Technique (PERT) 
 
The main objective in the analysis through PERT is to find out the completion for a particular 
event within specified date. The PERT approach takes into account the uncertainties. The three 
time values are associated with each activity 
 

1. Optimistic time – It is the shortest possible time in which the activity can be finished. It 
assumes that every thing goes very well. This is denoted by t0. 

2. Most likely time – It is the estimate of the normal time the activity would take. This 
assumes normal delays. If a graph is plotted in the time of completion and the frequency 
of completion in that time period, then most likely time will represent the highest 
frequency of occurrence. This is denoted by tm. 

3. Pessimistic time – It represents the longest time the activity could take if everything goes 
wrong. As in optimistic estimate, this value may be such that only one in hundred or one 
in twenty will take time longer than this value. This is denoted by tp. 

 
In PERT calculation, all values are used to obtain the percent expected value. 
 

1. Expected time – It is the average time an activity will take if it were to be repeated on 
large number of times and is based on the assumption that the activity time follows Beta 
distribution, this is given by 

te = ( t0 + 4 tm + tp ) / 6  
 

2. The variance for the activity is given by  
σ2 = [(tp – to) / 6] 2 

 
 



3.4 Worked Examples 
 
Example 1 
For the project 
 

 
 
Task: A B C D E F G H I J K 

Least time: 4 5 8 2 4 6 8 5 3 5 6 

Greatest time: 8 10 12 7 10 15 16 9 7 11 13 

Most likely time: 5 7 11 3 7 9 12 6 5 8 9 

 
Find the earliest and latest expected time to each event and also critical path in the network. 

Solution 

Task Least time(t0) 
Greatest time 

(tp) 
Most likely time 

(tm) 
Expected time 

(to + tp + 4tm)/6 
A 
B 
C 
D 
E 
F 
G 
H 
I 
J 
K 

4 
5 
8 
2 
4 
6 
8 
5 
3 
5 
6 

8 
10 
12 
7 
10 
15 
16 
9 
7 
11 
13 

5 
7 
11 
3 
7 
9 
12 
6 
5 
8 
9 

5.33 
7.17 
10.67 

3.5 
7 

9.5 
12 

6.33 
5 
8 

9.17 
 
 
 
 



 

Task Expected 
time (te) 

Start Finish Total float Earliest Latest Earliest Latest 
A 
B 
C 
D 
E 
F 
G 
H 
I 
J 
K 

5.33 
7.17 
10.67 

3.5 
7 

9.5 
12 

6.33 
5 
8 

9.17 

0 
0 

5.33 
0 
16 
3.5 
3.5 
23 
23 
28 

29.33 

0 
8.83 
5.33 
10 
16 

13.5 
18.5 
23 

25.5 
30.5 
29.33 

5.33 
7.17 
16 
3.5 
23 
13 

15.5 
29.33 

28 
36 

31.5 

5.33 
16 
16 

13.5 
23 
23 

30.5 
29.33 
30.5 
38.5 
38.5 

0 
8.83 

0 
10 
0 
10 
15 
0 

2.5 
2.5 
0 

 
The network is 
 

 
 
The critical path is A →C →E → H → K  
 
 
 
 
 
 
 
 
 
 
 
 



Example 2 
A project has the following characteristics 

Activity Most optimistic time 
(a) 

Most pessimistic time 
(b) 

Most likely time 
(m) 

(1 – 2) 
(2 – 3) 
(2 – 4) 
(3 – 5) 
(4 – 5) 
(4 – 6) 
(5 – 7) 
(6 – 7) 
(7 – 8) 
(7 – 9) 

(8 – 10) 
(9 – 10) 

1 
1 
1 
3 
2 
3 
4 
6 
2 
5 
1 
3 

5 
3 
5 
5 
4 
7 
6 
8 
6 
8 
3 
7 

1.5 
2 
3 
4 
3 
5 
5 
7 
4 
6 
2 
5 

Construct a PERT network. Find the critical path and variance for each event. 

Solution 

Activity (a) (b) (m) (4m) te 
(a + b + 4m)/6 

v 
[(b – a) / 6]2 

(1 – 2) 
(2 – 3) 
(2 – 4) 
(3 – 5) 
(4 – 5) 
(4 – 6) 
(5 – 7) 
(6 – 7) 
(7 – 8) 
(7 – 9) 

(8 – 10) 
(9 – 10) 

1 
1 
1 
3 
2 
3 
4 
6 
2 
5 
1 
3 

5 
3 
5 
5 
4 
7 
6 
8 
6 
8 
3 
7 

1.5 
2 
3 
4 
3 
5 
5 
7 
4 
6 
2 
5 

6 
8 
12 
16 
12 
20 
20 
28 
16 
24 
8 
20 

2 
2 
3 
4 
3 
5 
5 
7 
4 

6.17 
2 
5 

4/9 
1/9 
4/9 
1/9 
1/9 
4/9 
1/9 
1/9 
4/9 
1/4 
1/9 
4/9 

 

The network is constructed as shown below 



 

The critical path = 1 → 2 → 4 → 6 → 7 →9 →10  

Example 3 

Calculate the variance and the expected time for each activity  

 

 

 

 

 

 

 

 



Solution 

Activity (to) (tm) (tp) 
te 

(to + tp + 4tm)/6 
v 

[(tp – to) / 6]2 
(1 – 2) 
(1 – 3) 
(1 – 4) 
(2 – 3) 
(2 – 5) 
(3 – 6) 
(4 – 7) 
(5 – 8) 
(6 – 7) 
(6 – 9) 
(8 – 9) 

(7 – 10) 
(9 – 11) 
(10 – 11) 

3 
6 
7 
0 
8 

10 
8 

12 
8 

13 
4 

10 
6 

10 

6 
7 
9 
0 
12 
12 
13 
14 
9 
16 
7 
13 
8 
12 

10 
12 
12 
0 
17 
15 
19 
15 
10 
19 
10 
17 
12 
14 

6.2 
7.7 
9.2 
0.0 

12.2 
12.2 
13.2 
13.9 
9.0 

16.0 
7.0 

13.2 
8.4 

12.0 

1.36 
1.00 
0.69 
0.00 
2.25 
0.69 
3.36 
0.25 
0.11 
1.00 
1.00 
1.36 
1.00 
0.66 

 

 

 

 
 
 


