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Challenges 

•  Huge amount of data 

▪  Sampling may not be good enough 

•  Distributed environment 

▪  Log collection is hard 

▪  Hardware failures are normal 

▪  Distributed failures are hard to understand 



Example 1: Cache miss and performance 

Web 
Memcache 

MySQL 

•  Memcache layer has a bug that 
decreased the cache hit rate by 
half 

•  MySQL layer got hit hard and 
performance of MySQL degraded 

•  Web performance degraded 



Example 2: Map-Reduce Retries 

Map Task 

Attempt 1 

Attempt 2 

Attempt 3 

Attempt 4 

•  Attempt 1 hits a transient 
distributed file system issue and 
failed 

•  Attempt 2 hits a real hardware 
issue and failed 

•  Attempt 3 hits a transient 
application logic issue and failed 

•  Attempt 4, by chance, succeeded 

•  The whole process slowed down 



Example 3: RPC Hierarchy 

RPC 0 

RPC 1 
PRC 1A 

PRC 1B 
RPC 2 

RPC 3 
RPC 3A 

RPC 3B 

•  RPC 3A failed 

•  The whole RPC 0 failed because 
of that 

•  The blame was on owner of 
service 3 because the log in 
service 0 shows that. 



Example 4: Inconsistent results in RPC 

RPC 0 
RPC 1 

RPC 2 

•  RPC 0 got results from both RPC 
1 and RPC 2 

•  Both RPC 1 and RPC 2 
succeeded 

•  But RPC 0 detects that the 
results are inconsistent and fails 

•  We may not have logged any 
trace information for RPC 1 and 
RPC 2 to continue debugging. 



Opportunities 

•  Big Data Technologies 

▪  Distributed logging systems 

▪  Distributed storage systems 

▪  Distributed computing systems 

•  Deeper Analysis 

▪  Data mining and outlier detection 

▪  Time-series analysis 

Logging	  Logging	  Logging	  

Storage	  Storage	  Storage	  

Compu0ng	   Compu0ng	  Compu0ng	  

Collect 

Model 



Big Data Overview 
An example from Facebook 



Big Data 

•  What is Big Data? 

▪  Volume is big enough and hard to be managed by traditional technologies 

▪  Value is big enough not to be sampled/dropped 

•  Where is Big Data used? 

▪  Product analysis  

▪  User behavior analysis 

▪  Business intelligence 

•  Why use Big Data for Operations? 

▪  Reuse existing infrastructure. 



Overall Architecture 
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logview 

•  Features 

▪  PHP Fatal StackTrace 

▪  Group StackTrace by similarity, order by counts 

▪  Integrated with SVN/Task/Oncall tools 

▪  Low-pri: Scribe can drop logview data 

PHP	  	  Scribe	  Client	  
Scribe	  
Mid0er	  

Log	  View	   HTTP	  



logmonitor 

•  Rules 

▪  Regular-expression based:   ".*Missing Block.*" 

▪  Rule has levels: WARN, ERROR, etc 

▪  Dynamic rules 

Logmonitor	  
Stats	  Server	  

Rules	  
Storage	  

PTail	  /	  Local	  Log	  
Logmonitor	  Client	   Web	  

Modify	  
rules	  

Propagate	  
rules	  

Apply	  rules	  

<RuleName
,	  Count,	  

Examples>	  
Top	  Rules	  



Self Monitoring 

•  Goal: 

▪  Set KPIs for SOA 

▪  Isolate issues in distributed systems 

▪  Make it easy for service owners to monitor 

•  Approach 

▪  Log4J integration with Scribe 

▪  JMX/Thrift/Fb303 counters 

▪  Client-side logging + Server-side logging 

Service	  

Service	  
Owner	  

Scribe	  logs	  

PTail,	  Hive	  

JMX	  
ThriR/Fb303	  
counter	  
query	  



Global Debugging with PTail 

•  Logging instruction 

▪  Logging levels 

▪  Logging destination (log name) 

▪  Additional fields: Request ID   

Service	  1	   Service	  2	  
Service	  3	   RPC	  +	  

logging	  
instruc0ons	  

RPC	  +	  
logging	  

instruc0ons	  

Log	  data	   Log	  data	  Log	  data	  

Scribe	   PTail	  
Log	  data	  



Hive Pipelines 

•  Daily and historical data analysis 

▪  What is the trend of a metric? 

▪  When did this bug first happen? 

•  Examples 

▪  SELECT percentile(latency, “50,75,90,99”) FROM latency_log; 

▪  SELECT request_id, GROUP_CONCAT(log_line) as total_log 
FROM trace GROUP BY request_id 
HAVING total_log LIKE "%FATAL%“; 



Big Data Details 
Hadoop, Hive, Scribe 



Key Requirements 

•  Ease of use 

▪  Smooth learning curve  

▪  Easy integration 

▪  Structured/unstructured data 

▪  Schema evolution 

•  Scalable 

▪  Spiky traffic and QoS 

▪  Raw data / Drill-down support 

•  Latency 

▪  Real-time data 

▪  Historical data 

•  Reliability 

▪  Low data loss 

▪  Consistent computation 



Overall Architecture 

C++	  
Scribe-‐HDFS	  

PHP	  
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Nectar	  
Scribe	  Client	  
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Distributed Logging System - Scribe 

•  https://github.com/facebook/scribe 



Distributed Logging System - Scribe 

Scribe	  Service	  
Log	  Collec0on	  

Scribe	  Policy	  
	  

Traffic/Schema	  
management	  

Nectar	  Library	  
Easy	  integra0on/schema	  

evolu0on	  

Log	  Data	  
<category,	  
message>	  

Meta	  Data	  
Meta	  Data	  

Applica0on	  

Local	  Disk	  

ThriR	  RPC	  

Log	  Data	  

Log	  Data	  

ThriR	  RPC	  



Scribe Improvements 

•  Network efficiency 

▪  Per-RPC Compression (use quicklz) 

•  Operation interface 

▪  Category-based blacklisting and sampling 

•  Adaptive logging 

▪  Use BufferStore and NullStore to drop messages as needed 

•  QoS 

▪  Use separate hardware for now 



Distributed Storage Systems - Scribe-HDFS 

•  Architecture 

▪  Client 

▪  Mid-tier 

▪  Writers 

•  Features 

▪  Scalability: 9GB/sec 

▪  No single point of failure 
(except NameNode) 

•  Not open-sourced yet 

Scribe	  
Clients	   Calligraphus	  

Mid-‐0er	  
Calligraphus	  
Writers	  

HDFS	  

C1 

C1 

C2 

C2 

DataNode 

DataNode 

Zookeeper	  



Distributed Storage Systems - HDFS 

•  Architecture 

▪  NameNode: namespace, block locations 

▪  DataNodes: data blocks replicated 3 times 

•  Features 

▪  3000-node, PBs of spaces 

▪  Highly reliable 

▪  No random writes 

•  https://github.com/facebook/hadoop-20 

Name	  Node	  

Data	  Nodes	  

HDFS	  Client	  



HDFS Improvements 

•  Efficiency 

▪  Random read keep-alive: HDFS-941 

▪  Faster checksum  - HDFS-2080 

▪  Use fadvise - HADOOP-7714 

•  Credits: 

▪  http://www.cloudera.com/resource/hadoop-world-2011-presentation-
slides-hadoop-and-performance 



Distributed Storage Systems - HBase 

•  Architecture 

▪  <row, col-family, col, value> 

▪  Write-Ahead Log 

▪  Records are sorted in memory/files 

•  Features 

▪  100-node. 

▪  Random read/write. 

▪  Great write performance. 

▪  http://svn.apache.org/viewvc/hbase/branches/0.89-fb/ 

Master	  

Region	  Servers	  

HBase	  Client	  



Distributed Computing Systems – MR 

•  Architecture 

▪  JobTracker 

▪  TaskTracker 

▪  MR Client 

•  Features 

▪  Push computation to data 

▪  Reliable - Automatic retry 

▪  Not easy to use 

JobTracker	  

TaskTracker	  

MR	  Client	  



MR Improvements 

•  Efficiency 

▪  Faster compareBytes: HADOOP-7761 

▪  MR sort cache locality: MAPREDUCE-3235 

▪  Shuffle: MAPREDUCE-64, MAPREDUCE-318 

•  Credits: 

▪  http://www.cloudera.com/resource/hadoop-world-2011-presentation-
slides-hadoop-and-performance 



Distributed Computing Systems – Hive 

•  Architecture 

▪  MetaStore 

▪  Compiler 

▪  Execution 

•  Features 

▪  SQL  Map-Reduce 

▪  Select, Group By, Join 

▪  UDF, UDAF, UDTF, Script 

MetaStore	  

Map-‐Reduce	  
Task	  Trackers	  

Hive	  cmd	  line	  
Compiler	  
MR	  Client	  



Useful Features in Hive 

•  Complex column types 

▪  Array, Struct, Map, Union 

▪  CREATE TABLE (a struct<c1:map<string,string>,c2:array<string>>); 

•  UDFs 

▪  UDF, UDAF, UDTF 

•  Efficient Joins 

▪  Bucketed Map Join: HIVE-917 



Distributed Computing Systems – Puma 

•  Architecture 

▪  HDFS 

▪  PTail 

▪  Puma 

▪  HBase 

•  Features 

▪  StreamSQL: Select, Group By, Join 

▪  UDF, UDAF 

▪  Reliable – No data loss/duplicate  

HDFS	  

PTail	  +	  Puma	  

HBase	  



Conclusion 
Big Data can help operations 



Big Data can help Operations 

•  5 Steps to make it effective: 

▪  Make Big Data easy to use 

▪  Log more data and keep more sample whenever needed 

▪  Build debugging infrastructure on top of Big Data 

▪  Both real-time and historical analysis 

▪  Continue to improve Big Data 
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