
Operations and Big Data:
Hadoop, Hive and Scribe

Zheng Shao 微博：@邵铮9
12/7/2011 Velocity China 2011

1 Operations: Challenges and Opportunities

2 Big Data Overview

3 Operations with Big Data

4 Big Data Details: Hadoop, Hive, Scribe

5 Conclusion

Agenda

Operations
challenges and opportunities

Operations

Measure
and

Instrume
nt

Collect
Model
and

Analyze

Under-
stand Improve Monitor

Operations

Measure
and

Instrume
nt

Collect
Model
and

Analyze

Under-
stand Improve Monitor

Challenges

•  Huge amount of data

▪  Sampling may not be good enough

•  Distributed environment

▪  Log collection is hard

▪  Hardware failures are normal

▪  Distributed failures are hard to understand

Example 1: Cache miss and performance

Web
Memcache

MySQL

•  Memcache layer has a bug that
decreased the cache hit rate by
half

•  MySQL layer got hit hard and
performance of MySQL degraded

•  Web performance degraded

Example 2: Map-Reduce Retries

Map Task

Attempt 1

Attempt 2

Attempt 3

Attempt 4

•  Attempt 1 hits a transient
distributed file system issue and
failed

•  Attempt 2 hits a real hardware
issue and failed

•  Attempt 3 hits a transient
application logic issue and failed

•  Attempt 4, by chance, succeeded

•  The whole process slowed down

Example 3: RPC Hierarchy

RPC 0

RPC 1
PRC 1A

PRC 1B
RPC 2

RPC 3
RPC 3A

RPC 3B

•  RPC 3A failed

•  The whole RPC 0 failed because
of that

•  The blame was on owner of
service 3 because the log in
service 0 shows that.

Example 4: Inconsistent results in RPC

RPC 0
RPC 1

RPC 2

•  RPC 0 got results from both RPC
1 and RPC 2

•  Both RPC 1 and RPC 2
succeeded

•  But RPC 0 detects that the
results are inconsistent and fails

•  We may not have logged any
trace information for RPC 1 and
RPC 2 to continue debugging.

Opportunities

•  Big Data Technologies

▪  Distributed logging systems

▪  Distributed storage systems

▪  Distributed computing systems

•  Deeper Analysis

▪  Data mining and outlier detection

▪  Time-series analysis

Logging	 Logging	 Logging	

Storage	 Storage	 Storage	

Compu0ng	 Compu0ng	 Compu0ng	

Collect

Model

Big Data Overview
An example from Facebook

Big Data

•  What is Big Data?

▪  Volume is big enough and hard to be managed by traditional technologies

▪  Value is big enough not to be sampled/dropped

•  Where is Big Data used?

▪  Product analysis

▪  User behavior analysis

▪  Business intelligence

•  Why use Big Data for Operations?

▪  Reuse existing infrastructure.

Overall Architecture

C++	
Scribe-‐HDFS	

PHP	

Java	

Nectar	
Scribe	 Client	

Puma	

Scribe	 Policy	

Copy/Load	 Central	 HDFS	

PTail	

Near-realtime Processing

Batch Processing

HBase	

Hive	

~9GB/sec

~3GB/sec

~6GB/sec

Operations
with Big Data

logview

•  Features

▪  PHP Fatal StackTrace

▪  Group StackTrace by similarity, order by counts

▪  Integrated with SVN/Task/Oncall tools

▪  Low-pri: Scribe can drop logview data

PHP	 	 Scribe	 Client	
Scribe	
Mid0er	

Log	 View	 HTTP	

logmonitor

•  Rules

▪  Regular-expression based: ".*Missing Block.*"

▪  Rule has levels: WARN, ERROR, etc

▪  Dynamic rules

Logmonitor	
Stats	 Server	

Rules	
Storage	

PTail	 /	 Local	 Log	
Logmonitor	 Client	 Web	

Modify	
rules	

Propagate	
rules	

Apply	 rules	

<RuleName
,	 Count,	

Examples>	
Top	 Rules	

Self Monitoring

•  Goal:

▪  Set KPIs for SOA

▪  Isolate issues in distributed systems

▪  Make it easy for service owners to monitor

•  Approach

▪  Log4J integration with Scribe

▪  JMX/Thrift/Fb303 counters

▪  Client-side logging + Server-side logging

Service	

Service	
Owner	

Scribe	 logs	

PTail,	 Hive	

JMX	
ThriR/Fb303	
counter	
query	

Global Debugging with PTail

•  Logging instruction

▪  Logging levels

▪  Logging destination (log name)

▪  Additional fields: Request ID

Service	 1	 Service	 2	
Service	 3	 RPC	 +	

logging	
instruc0ons	

RPC	 +	
logging	

instruc0ons	

Log	 data	 Log	 data	 Log	 data	

Scribe	 PTail	
Log	 data	

Hive Pipelines

•  Daily and historical data analysis

▪  What is the trend of a metric?

▪  When did this bug first happen?

•  Examples

▪  SELECT percentile(latency, “50,75,90,99”) FROM latency_log;

▪  SELECT request_id, GROUP_CONCAT(log_line) as total_log
FROM trace GROUP BY request_id
HAVING total_log LIKE "%FATAL%“;

Big Data Details
Hadoop, Hive, Scribe

Key Requirements

•  Ease of use

▪  Smooth learning curve

▪  Easy integration

▪  Structured/unstructured data

▪  Schema evolution

•  Scalable

▪  Spiky traffic and QoS

▪  Raw data / Drill-down support

•  Latency

▪  Real-time data

▪  Historical data

•  Reliability

▪  Low data loss

▪  Consistent computation

Overall Architecture

C++	
Scribe-‐HDFS	

PHP	

Java	

Nectar	
Scribe	 Client	

Puma	

Scribe	 Policy	

Copy/Load	 Central	 HDFS	

PTail	

Near-realtime Processing

Batch Processing

HBase	

Hive	

~9GB/sec

~3GB/sec

~6GB/sec

Distributed Logging System - Scribe

•  https://github.com/facebook/scribe

Distributed Logging System - Scribe

Scribe	 Service	
Log	 Collec0on	

Scribe	 Policy	
	

Traffic/Schema	
management	

Nectar	 Library	
Easy	 integra0on/schema	

evolu0on	

Log	 Data	
<category,	
message>	

Meta	 Data	
Meta	 Data	

Applica0on	

Local	 Disk	

ThriR	 RPC	

Log	 Data	

Log	 Data	

ThriR	 RPC	

Scribe Improvements

•  Network efficiency

▪  Per-RPC Compression (use quicklz)

•  Operation interface

▪  Category-based blacklisting and sampling

•  Adaptive logging

▪  Use BufferStore and NullStore to drop messages as needed

•  QoS

▪  Use separate hardware for now

Distributed Storage Systems - Scribe-HDFS

•  Architecture

▪  Client

▪  Mid-tier

▪  Writers

•  Features

▪  Scalability: 9GB/sec

▪  No single point of failure
(except NameNode)

•  Not open-sourced yet

Scribe	
Clients	 Calligraphus	

Mid-‐0er	
Calligraphus	
Writers	

HDFS	

C1

C1

C2

C2

DataNode

DataNode

Zookeeper	

Distributed Storage Systems - HDFS

•  Architecture

▪  NameNode: namespace, block locations

▪  DataNodes: data blocks replicated 3 times

•  Features

▪  3000-node, PBs of spaces

▪  Highly reliable

▪  No random writes

•  https://github.com/facebook/hadoop-20

Name	 Node	

Data	 Nodes	

HDFS	 Client	

HDFS Improvements

•  Efficiency

▪  Random read keep-alive: HDFS-941

▪  Faster checksum - HDFS-2080

▪  Use fadvise - HADOOP-7714

•  Credits:

▪  http://www.cloudera.com/resource/hadoop-world-2011-presentation-
slides-hadoop-and-performance

Distributed Storage Systems - HBase

•  Architecture

▪  <row, col-family, col, value>

▪  Write-Ahead Log

▪  Records are sorted in memory/files

•  Features

▪  100-node.

▪  Random read/write.

▪  Great write performance.

▪  http://svn.apache.org/viewvc/hbase/branches/0.89-fb/

Master	

Region	 Servers	

HBase	 Client	

Distributed Computing Systems – MR

•  Architecture

▪  JobTracker

▪  TaskTracker

▪  MR Client

•  Features

▪  Push computation to data

▪  Reliable - Automatic retry

▪  Not easy to use

JobTracker	

TaskTracker	

MR	 Client	

MR Improvements

•  Efficiency

▪  Faster compareBytes: HADOOP-7761

▪  MR sort cache locality: MAPREDUCE-3235

▪  Shuffle: MAPREDUCE-64, MAPREDUCE-318

•  Credits:

▪  http://www.cloudera.com/resource/hadoop-world-2011-presentation-
slides-hadoop-and-performance

Distributed Computing Systems – Hive

•  Architecture

▪  MetaStore

▪  Compiler

▪  Execution

•  Features

▪  SQL Map-Reduce

▪  Select, Group By, Join

▪  UDF, UDAF, UDTF, Script

MetaStore	

Map-‐Reduce	
Task	 Trackers	

Hive	 cmd	 line	
Compiler	
MR	 Client	

Useful Features in Hive

•  Complex column types

▪  Array, Struct, Map, Union

▪  CREATE TABLE (a struct<c1:map<string,string>,c2:array<string>>);

•  UDFs

▪  UDF, UDAF, UDTF

•  Efficient Joins

▪  Bucketed Map Join: HIVE-917

Distributed Computing Systems – Puma

•  Architecture

▪  HDFS

▪  PTail

▪  Puma

▪  HBase

•  Features

▪  StreamSQL: Select, Group By, Join

▪  UDF, UDAF

▪  Reliable – No data loss/duplicate

HDFS	

PTail	 +	 Puma	

HBase	

Conclusion
Big Data can help operations

Big Data can help Operations

•  5 Steps to make it effective:

▪  Make Big Data easy to use

▪  Log more data and keep more sample whenever needed

▪  Build debugging infrastructure on top of Big Data

▪  Both real-time and historical analysis

▪  Continue to improve Big Data

(c) 2009 Facebook, Inc. or its licensors. "Facebook" is a registered trademark of Facebook, Inc.. All rights reserved. 1.0

