
Operator Overloading in Modelica 3.1

Hans Olsson1, Martin Otter2, Hilding Elmqvist1, Dag Brück1,
1Dassault Systèmes, Lund, Sweden (Dynasim)

2German Aerospace Centre (DLR), Institute for Robotics and Mechatronics, Germany
Hans.Olsson@3ds.com, Martin.Otter@DLR.de,

Hilding.Elmqvist@3ds.com, Dag.Bruck@3ds.com

Abstract
The constructor and operator overloading introduced
in Modelica 3.1 is discussed. The goal is that ele-
mentary operators like “+” or “*” can be overloaded
for records. This makes it possible to define and use,
in a convenient way, complex numbers, polynomials,
transfer functions, state space systems, etc. The cho-
sen approach is different to other languages: (a) Only
scalar operations need to be overloaded. Array op-
erations are then automatically available, so the
growth of the number of overloaded functions is
avoided. (b) Automatic type casts between different
data types is performed using overloaded constructor
functions. Again this reduces the number of over-
loaded functions. (c) The approach is conservative
and only allows overloading if no ambiguity is
present, in order to not introduce pitfalls into the lan-
guage. This is reached by basing the overloading on
disjoint sets of matching functions and not on a
priority match.

Keywords: overloading, automatic overloading of
arrays, overloading without ambiguities.

1 Introduction
Operator overloading is a well known concept in
computer science and is available in languages such
as Ada (ANSI 1983), C++ (ISO 1998), C#, Mathe-
matica, Matlab and Python. In 2002-2005 the Mod-
elica Association has worked on operator overload-
ing for the Modelica language and several different
versions have been designed by different people,
especially to avoid some of the known problems of
overloading from other languages. The work was
then suspended for some years to concentrate on the
improved safety in Modelica 3.0. Work has restarted
in 2008: Based on a prototype implementation in

Dymola and by applying this prototype to the Beta
version of the Modelica_LinearSystems2 library
(Baur et. al. 2009), the 7th design version from 2005
was revised considerably and finally resulted in a
version that has been included in Modelica 3.1
(Modelica 2009).

The overloading introduced in Modelica 3.1 is
seen as a first step and more features might be intro-
duced later, based on the gained experience. The de-
sign is conservative and restrictive in order to reduce
the probability to introduce pitfalls in the language.
For example, ambiguities are not allowed. This is
opposed to other languages where ambiguities are
often resolved by priorities in function matches. An
important, new feature is that it usually suffices to
overload scalar operations and that array operations
are automatically mapped to the overloaded scalar
operations. The benefit is that explosive growth of
the number of overloaded functions to define all
possible combinations of data types and number of
array dimensions is avoided.

2 Example with Complex numbers
The basic properties of operator overloading in
Modelica 3.1 shall first be demonstrated by an ex-
ample to introduce a user-defined data type Com-
plex. In section 3, the formal rules are defined and
design considerations are explained.

Assume a record “Complex” with overloaded
scalar operators is available (see below). When using
this definition in an interactive environment, e.g., in
a Modelica script file that is executed by Dymola
(Dymola 2009), then in the command window of
Dymola the output as shown in the right part of Fig-
ure 1 appears.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 219 DOI: 10.3384/ecp09430100

From this example it can be seen that the user de-
fined Complex type can hardly be distinguished from
a built-in type like Real. In particular, standard array
operations can be applied on Complex, although only
the scalar operations are overloaded. Also type casts
from Real or Integer to Complex are automatically
performed, for example in “a = 2 + 3*j” where 2 is
added to the Complex expression “3*j”).

The “essential” difference to a built-in type is the
name look-up: If a variable is declared as “Real a”,
then it is first determined whether “Real” is a built-in
type before performing another lookup. If a variable
is declared as “Complex c”, then “Complex” is
searched hierarchically from the current scope up to
the global scope. For example, if a user introduces an
own “Complex” type in the local scope, then this
type is used and not the one from the global scope.

For the example above, the following definitions
are needed:

record Complex
 Real re "Real part";
 Real im "Imaginary part";

 function j
 output Complex result;
 algorithm
 result := Complex(0,1);
 end j;

 operator ′constructor′
 function fromReal
 input Real re;
 input Real im=0;
 output Complex result;
 algorithm
 result = Complex(re=re,im=im);
 end fromReal;

 end ′constructor′;

 operator ′+′
 function add
 input Complex c1;
 input Complex c2;
 output Complex result;
 algorithm
 result := Complex(c1.re + c2.re,
 c1.im + c2.im);
 end add;
 end ′+′;

 operator ′-′
 function negate
 input Complex c;
 output Complex result;
 algorithm
 result := Complex(- c2.re,
 - c2.im);
 end negate;

 function subtract
 input Complex c1;
 input Complex c2;
 output Complex result;
 algorithm
 result := Complex(c1.re - c2.re,
 c1.im - c2.im);
 end subtract;
 end ′-′;

 // also: ′*′, ′/′, ′^′, ′==′, ′<>′

 operator ′String′
 function toString
 input Complex c;
 input String name="j";
 output String s;
 algorithm

 s := String(c.re);
 if c.im <> 0 then
 s := if c.im > 0 then
 s + " + "
 else
 s + " - ";
 s := s + String(abs(c.im))
 + name;
 end if;
 end toString;
 end ′String′;
end Complex;

function eigenValues
 input Real A [:,:];
 output Complex ev[size(A, 1)];
 import Modelica.Math.Matrices;
protected
 Integer nx=size(A, 1);
 Real evr[nx,2];
 Integer i;
algorithm
 evr := Matrices.eigenValues(A);
 for i in 1:nx loop
 ev[i] := Complex(evr[i, 1],
 evr[i, 2]);
 end for;
end eigenValues;

Script file Output window of Dymola
// Scalar operations
j = Complex.j();
a = 2 + 3*j
b = a + 4
c = -b*(a + 2*b)/(a+4)
c

// Complex arrays
A = [2,-3; 4,5]
Complex.eigenValues(A)

B = [1+2*j, 3+4*j;
 3-2*j, 2-4*j]
x = {2+3*j, 1+2*j}
B*x

Figure 1: Using the overloaded Complex data type in
a script file (left) and the output in the command win-
dow of Dymola 7.3 (right).

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 220

As can be seen, operator overloading is defined for
functions that are defined in a record. The record
definition holds a data structure in the usual way
(here: two Real variables). Operators are defined in a
record with the new construct

operator <name>
 …
end <name>

where <name> is the operator to be overloaded en-
closed in apostrophes. This has the advantage that a
valid, unique Modelica name is used which is very
close to the operator that shall be overloaded.

Inside an “operator”, one or more Modelica func-
tions are defined. There are no particular require-
ments for these functions with the exception that
every function must have exactly one output argu-
ment and that the number of arguments without a
default value must be identical to the number of ar-
guments required from the respective operator (e.g.,
function “add” inside operator ′+′ must have exactly
two arguments without a default value. If there are
more arguments, all must have a default value.

The special operator ′constructor′ serves two pur-
poses: First it gives different record constructors to
provide various ways to generate an instance of the
record. Second it is used to define automatic type
casts. Examples:

// Default record constructor:
c1 = Complex(1,2); // c1 = 1+2*j;

// Overloaded constructor "fromReal":
c2 = Complex(3); // c2 = 3+0*j;

// Automatic type cast due to "fromReal":
c3 = c1 + 5; // c3 = 6+2*j;

No overloaded operator is defined to add a Complex
to a Real. However, a constructor is defined to gen-
erate a Complex number from the literal “5” and
then there is an overloaded operator to add two
Complex numbers.

3 Rules for Overloading
In this section the rules for the operator overloading
are stated and design decisions are discussed.

3.1 Overloaded operators

A Modelica record can define the behavior for op-
erations such as constructing, adding, multiplying
etc. This is done using the specialized class opera-
tor (a restricted class similar to package) comprised
of functions implementing different variants of the
operation for the record class in which the respective
operator definition resides. The overloading is de-

fined in such a way that ambiguities are not allowed
and give an error. Furthermore, it is sufficient to de-
fine overloading for scalars. Overloaded array opera-
tions are automatically deduced from the overloaded
scalar operations, if an appropriately overloaded
function for arrays is not present. The operator
keyword is followed by the name of the operation
which can be one of:

′constructor′, ′+′, ′-′ (includes both sub-
traction and negation), ′*′, ′/′, ′^′, ′==′,
′<>′, ′>′, ′<′, ′>=′, ′<=′, ′and′,
′or′, ′not′, ′String′.

The functions defined in the operator-class in the
record must take at least one argument of this record
type as input, except for the constructor-functions
which instead must return one component of the
record type. All of the functions shall return exactly
one output.

The record may also contain additional functions,
packages of functions, and declarations of compo-
nents of the record. To avoid problems with slicing,
it is not legal to extend from a record with operators.

The precedence and associativity of the over-
loaded operators is identical to built-in operators
(e.g. ′*′ has always higher precedence as ′+′). De-
finition of new operator symbols is not allowed.
These restrictions simplify specification and imple-
mentation, and improve translation speed.

Only overloading of the most important operators
is defined. In the future, this list might be extended,
but the goal is to first get experience with a mini-
mum set of overloaded operators.

3.2 Matching Functions

All functions defined inside the operator class
must return one output and may include functions
with optional arguments, i.e. functions of the form

function f
 input A1 u1;
 …
 input Am um = am;
 …
 input An un;
 output B y;
algorithm
 …
end f;

The vector P below indicates whether argument m of
f has a default value (true for default value, false
otherwise). A call f(a1, a2,…, ak, b1 = w1 ,…, bp= wp)
with distinct names bj is a valid match for the func-
tion f, provided (treating Integer and Real as the
same type)

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 221

 Ai = typeOf(ai) for 1 ≤ i ≤ k,

 the names bj = uQj, Qj > k, AQj = typeOf(wi)
for 1 ≤ j ≤ p, and

 if the union of {i: 1 ≤ i ≤ k }, {Qj: 1 ≤ j ≤ p}, and
{m: Pm true and 1 ≤ m ≤ n } is the set
{i: 1 ≤ i ≤ n}.

This corresponds to the normal treatment of a func-
tion call with named arguments, requiring that all
inputs have some value given by a positional argu-
ment, named argument, or a default value (and that
positional and named arguments do not overlap).
Note that this only defines a valid call, but does not
explicitly define the set of domains.

3.3 Overloaded constructors and operators

As defined in detail in the Modelica language speci-
fication (Modelica 2009), using an operator (such as
‘+’) goes through a number of steps where a set of
functions is found, and if one of them is a matching
function it is used; multiple matches are seen as an
error.

Array operations are defined in terms of the sca-
lar operation, for multiplication assuming that the
scalar element form a non-commutative ring that
does not necessarily have a multiplicative identity
(since the definition in the specification implicitly
assumes that addition is associative and commuta-
tive); the operations vector*vector and vector*matrix
are explicitly excluded, since there are cases where
this does not give the “natural” interpretation, e.g.,
for complex vectors. For the future it will be possible
to extend operations with complex conjugate (allow-
ing a clean definition of vector*vector) and zero (al-
lowing e.g. matrix multiplication with zero inner di-
mensions); without invalidating existing models.

The precise rules for binary operations will be
now presented to show the flavor of the definition:

Let op denote a binary operator like ’+’and con-
sider an expression a op b where a is of type A and b
is of type B. An example is “2.0 + j”, where “2.0” is
of type Real and “j” is of type “Complex.

1. If A and B are basic types or arrays of such, then
the corresponding built-in operation is performed
(e.g., for “2 + 3”, the built-in operation for two
Integer numbers is performed).

2. Otherwise, if there exists exactly one function f

in the union of A.op and B.op such that f(a,b) is
a valid match for the function f , then a op b is
evaluated using this function. It is an error, if
multiple functions match. If A is not a record
type, A.op is seen as the empty set, and similarly

for B. Note, Having a union of the operators en-
sures that if A and B are the same, each function
only appears once. In our example, “2.0 + j” has
only a match in the Complex record after con-
verting 2.0 to Complex: Complex.’+’ and there-
fore a matching function was found.

3. Otherwise, consider the set given by f in A.op
and a record type C (different from B) with a
constructor, g, such that C.′constructor′.g(b) is a
valid match, and f(a, C.′constructor′.g(b)) is a va-

lid match; and another set given by f in B.op
and a record type D (different from A) with a
constructor, h, such that D.′constructor′.h(a) is a
valid match and f(D.′constructor′.h(a), b) is a va-
lid match. If the sum of the sizes of these sets is
one this gives the unique match. If the sum of the
sizes is larger than one there is an ambiguity
which is an error.
 Informally, this means: If there is no direct
match of “a op b”, then it is tried to find a direct
match by automatic type casts of “a” or “b”, by
converting either “a” or “b” to the needed type
using an appropriate constructor function from
one of the record types used as arguments of the
overloaded “op” functions. Example using the
Complex-definition from above:
Real a;
Complex b;
Complex c = a+b;
// interpreted as:
Complex.’+’(
Complex.’constructor’.fromReal(a),b);

4. If A or B is an array type, then the expression is
conceptually evaluated according to the rules for
arrays (Modelica 2009, section 10.6). The result-
ing scalar operations are then treated with 1-3.
Example:
Complex A[2,2], x[2];
Complex b[2] = A*x;
// interpreted as:
b[1] = A[1,1]*x[1] + A[1,2]*x[2];
b[2] = A[2,1]*x[2] + A[2,2]*x[2];
// The scalar operations can now be
// treated with the rules for scalar
// operations

5. Otherwise the expression is erroneous.

3.4 Syntactical simplification

In many cases there is only one function in the op-
erator; either because only one makes sense or be-
cause another is not yet added. This is handled by
stating that

operator function '*'
 …
end '*';

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 222

is treated in the same way as

operator '*'
 function multiply
 …
 end multiply
end '*';

The advantage of the shorter form is that it reads nic-
er, and avoids introducing an arbitrary name of a
function.

However, by stating that they are equivalent, no
loss of functionality is introduced; and one can al-
ways later add additional overloaded variants in a
safe way.

4 Design and future considerations
The overall design is intended as a first step, and in-
tended to allow future extensions in a backward
compatible way.

4.1 Operator as a “semi-package” in record

In the current design an operator defines a hierar-
chical level; grouping together the variants.

The alternative of having multiple overloaded
functions with identical names and different signa-
tures (as in C++) was considered; but rejected for
several reasons including the fact that it would no
longer be possible to uniquely reference a function
by name. However, the syntactic simplification in-
troduced avoids redundant levels.

Another alternative would be to have the opera-
tors defined in the enclosing scope of the record -
similarly to Ada. This would have required a modifi-
cation of the function call lookup to include some
form of argument-dependent name lookup (“Koenig
lookup”) as in C++ (ISO 1998, Section 3.4.2). This
would be complex to implement, and possibly influ-
ence existing function calls (note that in Modelica
function calls normally use hierarchical names in
contrast to many other languages). Furthermore it
was found that it often leads to a two-step hierarchy
where a record ‘complex’ was defined in a package
‘complexPackage’ merely containing the record and
its operations (cf. “header files”); and this was not
deemed attractive.

One of the drawbacks of this design is that new
operations on existing types cannot be added without
modification of classes, which may not be possible
for protection or licensing reasons.

Stroustrup (1994, Chapter 11) describes several
related design issues and tradeoffs for C++.

4.2 Symmetric

Binary operators are defined so that operations can
either be found in left or right operands. This is
needed in order to handle combinations with built-in
types in a clean way.

4.3 Few priority levels

For function matching there are only a few levels
defined; whereas, e.g. C++ has a much more detailed
set of priorities between functions in order to handle
type conversions and many arguments for general
functions.

A number of such detailed rules were considered
in the Modelica design group, but due to limited re-
sources they could not be investigated. Thus such
cases currently lead to ambiguities, these cases could
in the future be disambiguated with more detailed
rules – but the intent is that everything that is cur-
rently unambiguous will stay that way.

4.4 Fewer operators

It is common to define only a few operators and de-
fine others in terms of these. This is here done for
array operations, but not for e.g. relational operators
(usually everything is defined in terms of ‘<’ and/or
‘==’). It was not clear how common overloaded rela-
tional operators will be in Modelica and for what
purpose, and thus this was deemed as an issue that
will be handled in the future.

An important consideration is whether relational
operators will be used for general routines such as
sorting as in the Standard Template Library of C++
(where ‘<’ is more used as a sorting order than a ma-
thematical total order); or for more general mathe-
matical routines, e.g. computations for IEEE floating
numbers including NaN where such rules do not
hold.

4.5 Zero values and complex numbers

As indicated above matrix multiplication is currently
undefined if the inner dimension is zero. A simple
solution would be to introduce an operator ‘zero’
having no inputs and returning the additional identity
of the class. An important consideration will be
whether this operator should be required for matrix
multiplication in general; and whether it should be
used for other purposes.

Similarly vector*vector could be defined if there
existed an operator ‘conjugate’ in the class.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 223

4.6 Hierarchy of conversions

In the future it might be necessary to add another
‘constructor’-operator containing only explicit con-
structors – i.e. constructors that, as in C++, only will
be called if the constructor is explicitly invoked and
not for implicit conversions.

Without this care must be taken when designing
multiple records such that conversions form an or-
dered hierarchy.

At one point in the design it was considered to
have conversions in both directions and instead in-
troduce additional operators to disambiguate calls;
e.g. have Complex and ComplexPolar that both can
be converted automatically from the other one and
instead define operations such as addition to disam-
biguate the results:

record Complex
 …
 operator '+'
 function addComplex
 input Complex a;
 input Complex b;
 output Complex c;
 …
 function addPolar "Example only"
 input Complex a;
 input ComplexPolar b;
 output Complex c;
 …

end Complex;

The problem with this approach is that c+2 is ambi-
guous since it is not clear if 2 should be converted to
polar or Cartesian form before being added. It would
be possible to handle this by having an additional
operation for addition with Real; but it was deemed
that the resulting number of functions grew too much
and a cleaner design was to remove addPolar.

5 Conclusion
Modelica 3.1 was released in May 2009. The opera-
tor overloading as introduced in this new version was
discussed and examples are given to demonstrate the
usage. The introduced operator overloading is seen
as a first step, to gain experience with it in Modelica.
Especially, it is clear that function overloading is
missing and has to be introduced.

With respect to other languages, the design is re-
strictive, but has the advantage that it usually suffic-
es to define overloaded scalar operations between the
same types. Array operations and operations between
different types can then be automatically deduced by
a Modelica tool.

6 Acknowledgements
Partial financial support of DLR by BMBF (BMBF
Förderkennzeichen: 01IS07022F) for this work with-
in the ITEA project EUROSYSLIB
(http://www.itea2.org/public/project_leaflets/EURO
SYSLIB_profile_oct-07.pdf) is highly appreciated.

Furthermore, we would like to thank Marcus
Baur (DLR) for fruitful discussions.

References
ANSI (1983): Ada Language Reference Manual. AN-

SI/MIL-STD 1815A.

Baur M., Otter M., and Thiele B. (2009): Modelica Li-
braries for Analysis and Design of Linear Con-
trol Systems. In F. Casella (editor): Proc. of the 7th

Int. Modelica Conference, Como, Italy.
www.modelica.org/events/modelica2009

Dymola (2009). Dymola Version 7.3. Dassault Systèmes,
Lund, Sweden (Dynasim). Homepage:
www.dymola.com.

ISO (1998): International Standard, Programming
Languages – C++. ISO/IEC 14882:1998.

Modelica (2009). Modelica Language Specification 3.1.
www.modelica.org/documents/ModelicaSpec31.pdf

Stroustrup B. (1994): The Design and Evolution of C++.
Addison-Wesley.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 224

