
.js

W3C Workshop 2020

Opportunities & Challenges 
for TensorFlow.js and beyond

Jason Mayes

Senior DA - TensorFlow.js, Google

@jason_mayes

1



TensorFlow.js is an open source library for 
machine learning in JavaScript.

ML in the browser / client side means lower latency, high 
privacy, and lower serving cost. We also support Node.js 

server side for larger more complex models.



Browser MobileServer Desktop

WeChat

Electron

IoT

(via Node)



Core / Ops API
(Eager)

Layers API

Models

Client

Node.js

WebGL

CPU WASM

Headless GL

TF CPU TF GPU

Browser / WeChat / 
React Native

Server

Keras Model

TensorFlow
SavedModel

TFJS Converter



3 key user journeys
Run, Retrain, Write

5

Run existing models 

Pre-packaged JavaScript or 
Converted from Python

Retrain existing models

With transfer learning

Write models in JS 

Train from scratch



For anything you 
may dream up

6

Augmented Reality

Gesture-based interaction

Sound recognition

Accessible web apps

Sentiment analysis, abuse detection, NLP

Conversational AI

Web-page optimization

And much more when combined with other web technologies...



For anything you 
may dream up

7



.js

Limitations / Roadblocks

What have we learnt from creating TensorFlow.js?

8



Float 32
JS / WASM support Float 32, but not 16

In machine learning there are times you want to change the accuracy of the weights of the 
model to be say for example Float 16 instead of 32. This allows you to:

1. Use less memory to store the model at runtime
2. Increase execution speed

Currently JS / WASM only has support for Float 32 on the lower end of the scale.

Right now TensorFlow.js quantization only has the effect of reducing the file size sent from 
server to client, but as soon as we load into memory we then need to use Float 32 again 
meaning we miss out on the runtime benefits of this quantization.

9



Float 16
What if we could support model quantization to 
use less memory and gain faster inference in JS at 
run time?

Whilst the model accuracy may decrease, the 10% drop or so may be 
acceptable if it means it can run on devices that have less memory 
available and to run faster on lower end devices.

This would need to be available in JS and WASM.

10



Garbage Collection - WebGL
The JS garbage collector is great, but it 
does not deal with WebGL memory

In TensorFlow.js we have a tidy() function that understands when to clean 
up tensors that will no longer be used.

People new to machine learning however may not be familiar with this 
concept, especially if are used to JS cleaning up automatically which can 
lead to memory leaks.

11



Garbage Collection - WebGL
How could we clean up WebGL memory too?

Currently WebGL is the primary way we get graphics card acceleration for 
Machine Learning in JS until WebGPU is more widely available.

Is this a situation that can be solved with future version of WebGPU spec or 
is this something we can address for WebGL too which may benefit other 
use cases too? 

12



Graphics card acceleration
Currently we use WebGL to execute ops in 
the machine learning model

It would be more efficient if the browser exposed lower level APIs to the 
graphics card for more efficient utilisation of the hardware.

13



Graphics card acceleration
What lower level support do we need for efficient 
ML when using the graphics card?

Clearly WebGPU is on the way, but with an ML specific lens, are there any 
other specific needs that may need to be part of such an API in the future?

14



Model Security
Many production use cases require that their model can 
not be stolen and used elsewhere.

We have seen a number of use cases where deploying to the front end is 
preferable for privacy / latency / offline usage but the bottleneck right now 
is the concern their hard work will be copied and used elsewhere.

Some models can be a significant part of a companies’ IP and take a lot of 
money to develop. Whilst the resulting service may be free to use, 
companies are reluctant to give away the model itself.

15



Model Security
How can we prevent an end user from copying a 
front end deployed ML model in browser?

Could we have a secure way to download a set of files / JS code such that 
it is not exposed for inspection / saving locally and instead provide a way to 
communicate with that code to get pass data to it and get results without 
being able to intercept the downloaded model / pre / post processing code 
in any way?

16



Model Warmup
Often it can take a couple of uses of the model before it 
runs at optimal inference speed

Currently developers have tried approaches to warm up the model on page 
load by sending zeros to the model as input so the next time it is called by 
the user for a real task it is ready to do so efficiently.

We have also seen developers experiment with having more efficient 
models running initially in WASM, whilst a more complex model loads in 
WebGL which it then switches to when ready.

17



Model Warmup
What if there was a standard way to specify a 
better model is available and should be prepared 
and swapped to when ready?

Taking a hypothetical example of detecting an object in an image maybe 
the use case would be as follows:

1) Initially download a lightweight model like COCO-SSD that loads 
fast but only gives us bounding box data

2) In the background download a more advanced image segmentation 
model (but maybe takes several seconds to load up) to the upgrade 
the resolution of what is detected in the image and swap to that 
model when it is warmed up and ready to use.

3) How could this be defined in a library agnostic way? What other 
considerations should there be here?

18



19

See what the community has made

#MadeWithTFJS


