OPTICAL RADIOMETRY FOR OCEAN CLIMATE MEASUREMENTS

Edited by GIUSEPPE ZIBORDI CRAIG J. DONLON ALBERT C. PARR

VOLUME 47 EXPERIMENTAL METHODS IN THE PHYSICAL SCIENCES

Treatise Editors THOMAS LUCATORTO ALBERT C. PARR KENNETH BALDWIN

Experimental Methods in the Physical Sciences

Volume 47

Optical Radiometry for Ocean Climate Measurements

Edited by

Giuseppe Zibordi

Institute for Environment and Sustainability Joint Research Centre Ispra, Italy

Craig J. Donlon

European Space Agency/ESTEC Noordwijk The Netherlands

Albert C. Parr

Space Dynamics Laboratory, Utah State University, Logan, UT, USA

AMSTERDAM • BOSTON • HEIDELBERG • LONDON NEW YORK • OXFORD • PARIS • SAN DIEGO SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO

Academic Press is an imprint of Elsevier

Academic Press is an imprint of Elsevier 225 Wyman Street, Waltham, MA 02451, USA 525 B Street, Suite 1800, San Diego, CA 92101-4495, USA 32 Jamestown Road, London NW1 7BY, UK The Boulevard, Langford Lane, Kidlington, Oxford OX5 1GB, UK

Copyright © 2014 Elsevier Inc. All rights reserved.

Except as follows:

The European Union retains the copyright to the chapters -3, 3.1, 4, 4.1, 5, 5.1, 6 and 6.1The following chapters are in public domain -2, 2.1 and 4.2 James A. Yoder retains the copyright for his contribution

No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher. Details on how to seek permission, further information about the Publisher's permissions policies and our arrangements with organizations such as the Copyright Clearance Center and the Copyright Licensing Agency, can be found at our website: www..elsevier.com/permissions.

This book and the individual contributions contained in it are protected under copyright by the Publisher (other than as may be noted herein).

Notices

Knowledge and best practice in this field are constantly changing. As new research and experience broaden our understanding, changes in research methods, professional practices, or medical treatment may become necessary.

Practitioners and researchers must always rely on their own experience and knowledge in evaluating and using any information, methods, compounds, or experiments described herein. In using such information or methods they should be mindful of their own safety and the safety of others, including parties for whom they have a professional responsibility.

To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors, assume any liability for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions, or ideas contained in the material herein.

ISBN: 978-0-12-417011-7 ISSN: 1079-4042

For information on all Academic press publications visit our web site at http://store.elsevier.com/

Working together to grow libraries in Book Aid developing countries

www.elsevier.com • www.bookaid.org

Contents

List of Contributors	XV
Volumes in Series	xvii
Foreword	xxi
Preface	xxiii

1. Introduction to Optical Radiometry and Ocean Climate Measurements from Space

James A. Yoder and B. Carol Johnson

1.1. Ocean Climate and Satellite Optical Radiometry

James A. Yoder, Kenneth S. Casey and Mark D. Dowell

1.	Introduction	3
	1.1 Characteristics of a Climate-Observing System	4
2.	Global Climate Observing System Requirements for ECVs	
	and CDRs	6
	2.1 Ocean Color Radiometery	7
	2.2 Sea Surface Temperature	8
3.	From Essential Climate Variables to Climate Data Records	10
4.	Conclusion	11
	References	12

1.2. Principles of Optical Radiometry and Measurement Uncertainty

B. Carol Johnson, Howard Yoon, Joseph P. Rice and Albert C. Parr

1.	Basi	cs of Radiometry	14
	1.1	Introduction	14
	1.2	Radiance	17
	1.3	Irradiance	21
	1.4	Reflectance	23
	1.5	Distance and Aperture Areas in Radiometry	28
2.	Radi	iometric Standards and Scale Realizations	30
	2.1	Sources	30
	2.2	Radiometers	38

3.	The	Measurement Equation	42
	3.1	Background and a Review of the Concepts	42
	3.2	Measurement Equation Examples	46
	3.3	Uncertainty in Ocean Color Measurements	57
4.	Sun	nmary	61
	Ack	nowledgments	62
	Refe	erences	62

2. Satellite Radiometry

Charles R. McClain and Peter J. Minnett

2.1. Satellite Ocean Color Sensor Design Concepts and Performance Requirements

Charles R. McClain, Gerhard Meister and Bryan Monosmith

1.	Intro	oduction	74
2.	Oce	an Color Measurement Fundamentals and Related	
	Scie	nce Objectives	75
3.	Evol	ution of Science Objectives and Sensor Requirements	80
4.	Perf	ormance Parameters and Specifications	84
	4.1	Spectral Coverage and Dynamic Range	84
	4.2	Coverage and Spatial Resolution	86
	4.3	Radiometric Uncertainty	87
	4.4	SNR and Quantization	89
	4.5	Polarization	90
	4.6	Additional Characterization Requirements	91
	4.7	On-Board Calibration Systems	92
5.	Sen	sor Engineering	93
	5.1	Basic Sensor Designs: Whiskbroom and Pushbroom	95
	5.2	Design Fundamentals and Radiometric Equations	96
	5.3	Performance Considerations	99
	5.4	Sensor Implementation	104
6.	Sum	imary	107
		onyms	108
		bols and Dimensions	109
7.	Арр	endix. Historical Sensors	109
	7.1	CZCS and OCTS	110
	7.2	SeaWiFS	111
	7.3	MODIS	113
	7.4	MERIS	115
	Refe	erences	116

2.2. On Orbit Calibration of Ocean Color Reflective Solar Bands

Robert E. Eplee, Jr and Sean W. Bailey

	1.	Introduction	121
	2.	Solar Calibration	124
		2.1 SD Degradation	125
		2.2 SD Radiometric Response Trends	126
		2.3 SNR on Orbit	128
	_	2.4 Uncertainties in the Solar Calibration Data	128
	3.	Lunar Calibrations	128
		3.1 ROLO Photometric Model of the Moon	129
		3.2 Lunar Radiometric Response Trending	130
		3.3 Uncertainties in Lunar Calibration	131
		3.4 Lunar Calibration Intercomparisons	133
	4.	Spectral Calibration of Grating Instruments	135
	5.	Vicarious Calibration	137
		5.1 NIR/SWIR Band Calibration	139
		5.2 Visible Band Calibration	140
		5.3 Alternative Approaches	142
	6.	On-orbit Calibration Uncertainties	142
		6.1 Accuracy	143
		6.2 Long-term Stability of the TOA Radiances	143
		6.3 Precision of the TOA Radiances	144
		6.4 Combined Uncertainty Assessment	144
	7.	Comparison of Uncertainties Across Instruments	145
	8.	Summary of On-orbit Calibration	149
		References	150
2.3.		nermal Infrared Satellite Radiometers: Design Id Prelaunch Characterization	
	Da	avid L. Smith	
	1.	Introduction	154
	2.	Radiometer Design Principles	155
		2.1 Performance Model	159
		2.2 Signal to Noise	160
	3.	Remote Sensing Systems	161
		3.1 Along Track Scanning Radiometers (ATSR)	161
		3.2 Sea and Land Surface Temperature Radiometer (SLSTR)	164
		3.3 Advanced Very High Resolution Radiometer (AVHRR)	165
		3.4 MOderate Resolution Imaging Spectroradiometer	
		(MODIS)	166
		3.5 Visible Infrared Imaging Suite (VIIRS)	167
		3.6 Spinning Enhanced Visible and Infrared Imager (SEVIRI)	171

4.	Calibration Model	172
	4.1 Radiometric Noise	174
	4.2 Nonlinearity	174
	4.3 Offset Variations	176
5.	On-Board Calibration	176
	5.1 Calibration Sources	178
6.	Pre-launch Characterization and Calibration	182
	6.1 Blackbody Calibration	182
	6.2 Instrument Radiometric Calibration	184
7.	Conclusions	197
	References	198

Postlaunch Calibration and Stability: Thermal 2.4. Infrared Satellite Radiometers

Peter J. Minnett and David L. Smith

1.	Introduction		201
2.	On-Board Calibration		203
	2.1	(A)ATSR Radiometric Calibration	204
	2.2	AVHRR Calibration	209
	2.3	MODIS and VIIRS Radiometric Calibration	213
	2.4	MODIS Spectroradiometric Calibration Assembly for	
		On-Orbit Stability	214
	2.5	MODIS Mirror Response versus Scan Angle	216
3.	Con	nparisons with Reference Satellite Sensors	218
	3.1	Spatial Comparisons	219
	3.2	Temporal Comparisons	220
	3.3	Simultaneous Nadir Overpasses	222
	3.4	Instruments on the Same Satellite	223
4.	Valio	dating Geophysical Retrievals	225
	4.1	Cloud Screening	229
	4.2	Atmospheric Correction Algorithm	230
	4.3	Geophysical Validation	232
	4.4	Ship-Board Radiometers	236
5.	Disc	cussion	237
6.	Con	clusions	239
	Refe	erences	239

3. In Situ Optical Radiometry

Craig J. Donlon and Giuseppe Zibordi

In situ Optical Radiometry in the Visible and Near 3.1. Infrared

Giuseppe Zibordi and Kenneth J. Voss

1.	Introduction and History	248
2.	Field Radiometer Systems	249

2.	Field Radiometer Systems	2	4
----	--------------------------	---	---

	2.1	General Classification: Multispectral and Hyperspectral	249
	2.2	Irradiance Sensors	250
	2.3	Basic Radiance Sensors	252
3.	Syst	em Calibration	254
	3.1	Linearity Response	255
	3.2	Temperature Response	255
	3.3	Polarization Sensitivity	256
	3.4	Stray Light Perturbations	257
	3.5	Spectral Response	257
	3.6	Angular Response of Irradiance Sensors	258
	3.7	Rolloff of Imaging Systems	260
	3.8	Immersion Effects	260
	3.9	Absolute Response	263
4.	Mea	surement Methods	264
	4.1	In Water Systems	265
	4.2	Above Water Systems	267
	4.3	Radiometric Data Products	268
5.	Erro	rs and Uncertainty Estimates	273
	5.1	Calibration Specific Sources of Uncertainties	274
	5.2	Instrument Specific Sources of Uncertainties	276
	5.3		277
	5.4	Examples of Uncertainty Budget for Radiometric	
		Products	282
6.	Арр	lications	285
	6.1	Sky and Sea Radiance Distribution	285
	6.2	In-water Light Field Polarization	287
	6.3	Bio-Optical Models	289
	6.4	Validation of Satellite Radiometric Products	291
	6.5	In situ Data and System Vicarious Calibration	293
7.	Sum	mary and Outlook	294
	Refe	rences	295

3.2. Ship-Borne Thermal Infrared Radiometer Systems

Craig J. Donlon, Peter J. Minnett, Andrew Jessup, Ian Barton, William Emery, Simon Hook, Werenfrid Wimmer, Timothy J. Nightingale, and Christopher Zappa

1.	Intro	oduction and Background	306
2.	TIR	Measurement Theory	311
	2.1	General Considerations	311
	2.2	SST _{skin} Ship-Borne Radiometer Measurement Challenges	317
	2.3	Practical Measurement of SST _{skin} from a Ship-Borne	
		Radiometer	320
3.	TIR	Field Radiometer Design	321
	3.1	TIR Detectors	328
	3.2	TIR Radiometer Spectral Definition	336
	3.3	Beam Shaping and Steering	341
	3.4	Thermal Control System	350

x Contents

	3.5	An Environmental System to Protect and Thermally	
		Stabilize the Radiometer	351
	3.6	Instrument Control and Data Acquisition	353
	3.7	A Calibration System	354
	3.8	Summary	361
	3.9	Additional Comments	363
4.	Exan	nples of FRM Ship-Borne TIR Radiometer Design	
	and	Deployments	363
	4.1	The DAR-011 Filter Radiometer	363
	4.2	The SISTeR Filter Radiometer	364
	4.3	NASA JPL NNR	368
	4.4	The Calibrated Infrared In situ Measurement System	371
	4.5	ISAR—Quasi Operational Ocean Field Radiometers	375
	4.6	Use of Unmanned Airborne Vehicles BESST Radiometer	380
	4.7	Spectroradiometers	382
	4.8	Derivation of Air Temperature Using a Spectroradiometer	387
	4.9	TIR Cameras	389
5.	Futu	re Directions	393
6.	Con	clusions	395
	Acknowledgments		395
	References		395

4. Theoretical Investigations

Barbara Bulgarelli, Menghua Wang and Christopher J. Merchant

4.1. Simulation of In Situ Visible Radiometric Measurements

Barbara Bulgarelli and Davide D'Alimonte

1.	Overview		407
2.	The RTE and Its Solution Methods		408
	2.1	The Radiative Transfer Equation	408
	2.2	Deterministic Solutions of the RTE	410
	2.3	Monte Carlo Solutions of the RTE	410
3.	3. Simulations of In Situ Radiometric Measurement		
Perturbations			413
	3.1	Overstructure Perturbations	414
	3.2	Perturbations Induced by Sea-Surface Waves	429
4.	Sum	imary and Remarks	441
	Refe	erences	442

4.2. Simulation of Satellite Visible, Near-Infrared, and Shortwave-Infrared Measurements

Menghua Wang

1.	Introduction	452
2.	Ocean-Atmospheric System	455
3.	Simulations	457

	3.1	Ocean Radiance Contributions	457
	3.2	The TOA Atmospheric Path Radiance Contributions	464
	3.3	Atmospheric Diffuse Transmittance	470
	3.4	Simulated and Satellite-Measured TOA Radiances	471
4.	Sum	mary	478
	Disclaimer		479
	Refe	rences	479

4.3. Simulation and Inversion of Satellite Thermal Measurements

Christopher J. Merchant and Owen Embury

1.	Introduction	489
2.	Radiative Transfer Simulation for Thermal Remote Sensing	490
3.	Propagation of Thermal Radiation through Clear Sky	493
4.	Simulation of Interaction with Aerosol and Cloud	500
5.	Simulation of Surface Emission and Reflection	502
6.	Use of Simulations in Thermal Image Classification	
	(Cloud Detection)	504
7.	Use of Simulations in Geophysical Inversion (Retrieval)	509
8.	Use of Simulations in Uncertainty Estimation	516
9.	Conclusion	521
	References	523

5. In Situ Measurement Strategies

Giuseppe Zibordi and Craig J. Donlon

5.1. Requirements and Strategies for In situ Radiometry in Support of Satellite Ocean Color

Giuseppe Zibordi and Kenneth J. Voss

1.	Intro	oduction	532
2.	Ove	rview of Past and Current Field-Related Radiometric	
	Activ	/ities	533
	2.1	Field Measurements	533
	2.2	Intercomparisons	538
	2.3	Data Repositories	542
3.	Requ	uirements and Strategies for Future Satellite Ocean-Colo	r
	Missions		543
	3.1	Field Measurements for System Vicarious Calibration	544
	3.2	Field Measurements for the Validation of Satellite Data	
		Products	546
	3.3	Field Measurements for Bio-Optical Modeling	547
	3.4	Protocols Revision and Consolidation	547
	3.5	Calibration and Characterization of Field Radiometers	547
	3.6	Data Reduction, Quality Control, and (re)Processing	548

	3.7	Accuracy Tailored to Applications	549
	3.8	Archival and Access	549
	3.9	Intercomparisons to Secure Accuracy and Best	
		Practice	549
	3.10	Standardization and Networking	550
	3.11	Development and Implementation	551
4.	Sumr	nary and Way Forward	551
	References		

5.2. Strategies for the Laboratory and Field Deployment of Ship-Borne Fiducial Reference Thermal Infrared Radiometers in Support of Satellite-Derived Sea Surface Temperature Climate Data Records

Craig J. Donlon, Peter J. Minnett, Nigel Fox, and Werenfrid Wimmer

1.	Introduction		
2.	Fiducial Reference Measurements for SST CDRs		
	and	Uncertainty Budgets	559
	2.1	FRM TIR Ship-Borne Radiometer Network	562
	2.2	The Importance of Uncertainty Budgets	563
3.	Labo	pratory Intercalibration Experiments for FRM	
	Ship	-Borne Radiometers	585
4.	Ship	-Borne Radiometer Field Intercomparison Exercises	590
5.	Prot	ocols to Maintain the SI Traceability of FRM Ship-Borne	
	TIR	Radiometers for Satellite SST Validation	595
	5.1	Definition of Measurement Methodology	595
	5.2	Definition of Laboratory Calibration and Verification	
		Methodology and Procedures	595
	5.3	Predeployment Calibration Verification	596
	5.4	Postdeployment Calibration Verification	596
	5.5	/ 0	596
	5.6	Improving Traceability of Calibration and Verification	
		Measurements	596
	5.7	/	597
	5.8	Archiving of Data	597
	5.9	Periodic Consolidation and Update of Calibration	
		and Verification Procedures	598
6.		mary and Future Perspectives	598
		nowledgments	598
	References		

6. Assessment of Satellite Products for Climate Applications

Frédéric Mélin and Gary K. Corlett

6.1. Assessment of Satellite Ocean Colour Radiometry and Derived Geophysical Products

Frédéric Mélin and Bryan A. Franz

1.	Introduction		609
2.	Vali	dation of Satellite Products	610
	2.1	Validation Protocol	610
	2.2	Validation Metrics	612
	2.3	Analysis of Validation Results	614
	2.4	Model-Based Approaches to Uncertainty Analysis	
		and Error Propagation	618
3.	Con	nparison of Cross-Mission Data Products	621
	3.1	Band Shift Correction	622
	3.2	Point-by-Point Comparison	624
	3.3	Analysis of Time Series	626
	3.4	Climate Signal Analysis	628
4.	Con	clusions	631
	Acknowledgments		
	References		

6.2. Assessment of Long-Term Satellite Derived Sea Surface Temperature Records

Gary K. Corlett, Christopher J. Merchant, Peter J. Minnett and Craig J. Donlon

1.	Intro	oduction	639
2.	Background		640
	2.1	Assessment of Top of Atmosphere Brightness	
		Temperatures	641
	2.2	Validation Uncertainty Budget	643
	2.3	Reference Data Sources	647
3.	Asse	ssment of Long-Term SST Datasets	649
	3.1	Example 1: Long-Term SST Data Record Assessment	652
	3.2	Example 2: Long-Term Component Assessment	654
	3.3	Quantitative Metrics	657
	3.4	Demonstrating Traceability to SI	659
	3.5	Stability	663
	3.6	Validation of Uncertainties	669
4.	Sum	mary and Recommendations	673
	References		

This page intentionally left blank

List of Contributors

- Sean W. Bailey, Ocean Biology Processing Group, NASA Goddard Space Flight Center, Greenbelt, MD, USA; FutureTech Corporation, Greenbelt, MD, USA
- Ian Barton, CSIRO Marine and Atmospheric Research, Hobart, Tasmania, Australia
- Barbara Bulgarelli, European Commission, Joint Research Centre, Ispra, Italy
- Kenneth S. Casey, NOAA Oceanographic Data Center, Silver Spring, MD, USA
- Gary K. Corlett, Department of Physics and Astronomy, University of Leicester, Leicester, UK
- Davide D'Alimonte, Centre for Marine and Environmental Research, University of Algarve, Faro, Portugal
- Craig J. Donlon, European Space Agency/ESTEC, Noordwijk, The Netherlands
- Mark D. Dowell, European Commission, Joint Research Centre, Ispra, Varese, Italy
- Owen Embury, Department of Meteorology, University of Reading, Reading, UK
- William Emery, Aerospace Engineering Sciences Department, University of Colorado, Boulder, CO, USA
- **Robert E. Eplee, Jr,** Ocean Biology Processing Group, NASA Goddard Space Flight Center, Greenbelt, MD, USA; Science Applications International Corporation, Beltsville, MD, USA
- Nigel Fox, National Physical Laboratory (NPL), Teddington, Middlesex, UK
- Bryan A. Franz, NASA, Goddard Space Flight Center, Greenbelt, MD, USA
- Simon Hook, NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
- Andrew Jessup, Applied Physics Laboratory, University of Washington, Seattle, WA, USA
- **B. Carol Johnson,** Sensor Science Division, National Institute of Standards and Technology, Gaithersburg, MD, USA
- Charles R. McClain, NASA Goddard Space Flight Center, Greenbelt, MD, USA
- Gerhard Meister, NASA Goddard Space Flight Center, Greenbelt, MD, USA
- Frédéric Mélin, European Commission, Joint Research Centre, Ispra, Italy
- Christopher J. Merchant, Department of Meteorology, University of Reading, Reading, UK
- Peter J. Minnett, Meteorology & Physical Oceanography, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL, USA

- Bryan Monosmith, NASA Goddard Space Flight Center, Greenbelt, MD, USA
- **Timothy J. Nightingale,** RAL Space STFC Rutherford Appleton Laboratory, Harwell, Oxford, Didcot, UK
- Albert C. Parr, Sensor Science Division, National Institute of Standards and Technology, Gaithersburg, MD, USA; Space Dynamics Laboratory, Utah State University, Logan, UT, USA
- Joseph P. Rice, Sensor Science Division, National Institute of Standards and Technology, Gaithersburg, MD, USA
- **David L. Smith,** RAL Space, Science and Technologies Facilities Council, Harwell Oxford, Oxford, UK
- Kenneth J. Voss, Physics Department, University of Miami, Coral Gables, FL, USA
- Menghua Wang, NOAA Center for Satellite Applications and Research, College Park, Maryland, USA
- Werenfrid Wimmer, Ocean and Earth Science, University of Southampton, European Way, Southampton, UK
- James A. Yoder, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
- Howard Yoon, Sensor Science Division, National Institute of Standards and Technology, Gaithersburg, MD, USA
- Christopher Zappa, Ocean and Climate Physics Division, Lamont-Doherty Earth Observatory of Columbia University, Palisades, NY, USA
- Giuseppe Zibordi, European Commission, Joint Research Centre, Ispra, Italy

Foreword

The view of the Earth from space has become an icon of our time. First seen through the spectacular photographs taken by the Apollo astronauts, it showed us the Earth, which had seemed limitless to our ancestors, to be small and fragile, a vulnerable oasis for life in the vast vacuum of space. If no other benefit had ever come from the space age, those pictures alone would have justified the effort to leave the Earth, for they changed our view of the planet forever.

But those photographs, it turned out, were just the beginning of what can be learned by looking down on the Earth from space. Only from the vantage point in orbit above the planet can we really get the whole pictureseeing far enough to give a truly global view, but also with sufficient detail to get down to the local scale. Since the time of the early satellites, the number and sophistication of remote sensing measurements has grown hugely, so that we now have a nearly continuous view of the Earth from space that is highly resolved in area, time, and wavelength. Terabytes of data now flood down from our satellites, documenting the view of Earth from space in unprecedented detail. If only we can make sense of it all, it offers the chance to understand our home planet as never before, allowing us to see how every locality fits into the whole picture. For the oceans in particular, this is a transformative view, because over large areas they are only rarely visited by people or instruments to make in situ observations. Much of our uncertainty over prediction of seasonal and longer term changes originates in this ignorance of the oceans, which are the main storage for heat in the climate system and the site of half the world's biological productivity.

This book describes the latest knowledge and techniques in visible and infrared radiometry from satellites. These regions of the electromagnetic spectrum can be used to give important information about several aspects of the oceans: the infrared observations can be used to measure sea surface temperature, which is a fundamental variable needed for climate and weather prediction studies. Visible measurements characterize ocean color, from which we can derive estimates of chlorophyll and other pigments to enable characterization of the plankton community. The plankton are in turn the base of the ocean food chain and play important roles in the Earth's carbon cycle, both in the rapid changes occurring today as a result of human activities—climate change and ocean acidification—and over the longer term for in maintaining a habitable planet. As the contributions here illustrate, making sense of the flood of data from satellites is no easy task: it requires meticulous attention to detail. The sensors must be continually calibrated and the data validated, so that long-term records, constructed over time from successive instruments, can be relied on to be free from drift. This is of critical importance for studies of climate change, where any long-term change in temperature must be carefully separated from instrumental effects. To achieve this kind of reliability requires continuous and extended free exchange and cooperation between all those involved—from the designers and engineers who build the sensors, those interpreting the data, and researchers making in situ observations who provide the ground truth. However, there is a rich return on this effort for our civilization as a whole, for from it we can understand our home planet as never before.

Andrew Watson

University of Exeter 27th July 2014

Preface

Climate change science relies on the combined use of models and measurements to advance understanding of climate fluctuations and trends, and ultimately to formulate predictions. Gathering measurements for climate change investigations requires well-characterized observing systems and the implementation of strategies to detect decadal variations that are much smaller than those occurring at daily or interannual scales. This requirement imposes the collection of uninterrupted time series of highly accurate measurements traceable to accepted international standards that collectively constitute the evidence baseline for climate research.

Satellite systems provide a quasi-synoptic global sampling dimension of climate data measured using a variety of instruments operated over the Earth's surface. Like any observing system devoted to the generation of climate-quality data records, space-based instruments supporting climate change investigations need to deliver continuous highly accurate measurements with defined uncertainties. This imposes lifetime calibration and validation processes for each component of the end-to-end observing system and for the derived data products.

During the last few decades, several space missions have been designed to support ocean climate studies through measurement of physical, biological, and chemical variables. Among the various remote sensing technologies, optical sensors operating in the visible, near-infrared, and thermal infrared spectrum are well suited to measure variables such as sea surface temperature and water leaving radiance at timescales varying from hours to days and geographical-scales from tens of meters to kilometers. While the sea surface temperature has relevance for the heat, gas, and momentum coupling between the atmosphere and ocean, reconstruction of patterns associated with dynamical processes such as surface currents, eddies, and upwelling, the water-leaving radiance in the visible spectral region is fundamental for the quantification of optically significant seawater constituents, including phytoplankton biomass, that play a major role in the Earth's carbon cycle.

Optical remote sensing technologies used to generate climate-quality data records share the need for thorough prelaunch characterization and absolute calibration of the satellite radiometer. These activities are then followed by the postlaunch monitoring of the radiometer stability over the mission lifetime, the continuous assessment of data product quality, and finally, successive reanalysis and reprocessing of all data in conjunction with better understanding of error sources. The postlaunch activities largely rely on in situ reference measurements for the development and assessment of the algorithms and methods applied to determine each climate variable, and successively for the continuous validation of derived satellite products. Furthermore, reference measurements are required to homogenize climate data records obtained from multiple or successive satellite instruments. Because of this, advances in remote sensing optical technology demand progress to deliver in situ reference instrumentation, measurement methods, and field strategies. Such progress embraces the design of increasingly precise and stable field optical radiometers, the improvement of laboratory techniques for their characterization and absolute calibration, the assessment of measurement methods and field intercomparison strategies, and finally, advances in the creation and handling of data repositories.

This book, through a number of contributions from various authors, presents the state of the art for optical remote sensing and shows how it can be applied for the generation of marine climate-quality data products. The various chapters are grouped into six thematic parts each introduced by a brief overview. The different parts include: (1) requirements for the generation of climate data records from satellite ocean measurements and the basic radiometry principles addressing terminology, standards, measurement equation, and uncertainties; (2) satellite visible and thermal infrared radiometry embracing instrument design, characterization, and pre- and postlaunch calibration; (3) in situ visible and thermal infrared reference radiometry including overviews on basic principles, technology, and measurement methods required to support satellite missions devoted to climate change investigations; (4) computer model simulations as fundamental tools to support interpretation and analysis of both in situ and satellite radiometric measurements; (5) strategies for in situ reference radiometry to satisfy mission requirements for the generation of climate data records; and finally, (6) methods for the assessment of satellite data products.

The expectation of the editors is that this book will become a working tool, as either a reference text or as background literature for discussions, for students and scientists interested in ocean climate studies and satellite radiometry.

> Giuseppe Zibordi Craig J. Donlon Albert C. Parr