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Optics: The Principle of Least Time

26-1 Light

This i" the first of a number of chapters on the subject of electromagnetic
radiation. Light, with which we see, is only one small part of a vast spectrum of
the same kind of thing, the various parts of this spectrum being distinguished by
different \alues of a certain quantity which varies. This variable quantity could
be called the "wavelength." As it varies in the visible spectrum, the light apparently
changes cellar from red to violet. If we explore the spectrum systematically, from
long wavelengths toward shorter ones, we would begin with what are usually called
radiowaves. Radiowaves are technically available in a wide range of wavelengths,
some even longer than those used in regular broadcasts; regular broadcasts have
wavelengths corresponding to about 500 meters. Then there are the so-called
"short waves," i.e., radar waves, millimeter waves, and so on. There are no actual
boundaries between one range of wavelengths and another, because nature did
not present us with sharp edges. The number associated with a given name for
the waves are only approximate and, of course, so are the names we give to the
different ranges.

Then, a long way down through the millimeter waves, we come to what we
call the infrared, and thence to the visible spectrum. Then going in the other
direction, we get into a region which is called the ultraviolet. When' the ultraviolet
stops, the x-rays begin, but we cannot define precisely where this is; it is roughly at
10-8 m, or 10- 2 J.L. These are "soft" x-rays; then there are ordinary x-rays and very
hard x-rays; then 1'-rays, and so on, for smaller and smaller values of this dimension
called the wavelength.

Within this vast range of wavelengths, there are three or more regions of
approximation which are especiaJly interesting. In one of these, a condition exists
in which the wavelengths involved are very small compared with the dimensions
of the equipment available for their study; furthermore, the photon energies, using
the quantum theory, are small compared with the energy sensitivity of the equip
ment. Under these conditions we can make a rough first approximation by a
method called geometrical optics. If, on the other hand, the wavelengths are com
parable to the dimensions of the equipment, which is difficult to arrange with
visible light but easier with radiowaves, and if the photon energies are still negligi
bly smaJl, then a very useful approximation can be made by studying the behavior
of the waves, still disregarding the quantum mechanics. This method is based on
the classical theory of electromagnetic radiation, which will be discussed in a later
chapter. Next, if we go to very short wavelengths, where we can disregard the
wave character but the photons have a very large energy compared with the
sensitivity of our equipment, thirigs get simple again. This is the simple photon
picture, which we will describe only very roughly. The complete picture, which
unifies the whole thing into one model, will not be available to us for a lortg time.

In this chapter our discussion is limited to the geometrical optics region, in
which we forget about the wavelength and the photon character of the light, which
will all be explained in due time. We do not even bother to say what the light is,
but just find out how it behaves on a large scale compared with the dimensions of
interest. All this must be said in order to emphasize the fact that what we are going
to talk about is only a very crude approximation; this is one of the chapters that
we shaJl have to "unlearn" again. But we shall very quickly unlearn it, because
we shall almost immediately go on to a more accurate method.
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Although geometrical optics is just an approximation, it is of very great
importance technically and of great interest historically. We shall present this
subject more historically than some of the others in order to give some idea of the
development of a physical theory or physical idea.

First, light is, of course, familiar to everybody, and has been familiar since
time immemorial. Now one problem is, by what process do we see light? There
have been many theories, but it finally settled down to one, which is that there is
something which enters the eye-which bounces off objects into the eye. We have
heard that idea so long that we accept it, and it is almost impossible for us to
realize that very intelligent men have proposed contrary theories-that something
comes out of the eye and feels for the object, for example. Some other important
observations are that, as light goes from one place to another, it goes in straight
lines, if there is nothing in the way, and that the rays do not seem to interfere with
one another. That is, light is crisscrossing in all directions in the room, but the
light that is passing across our line of vision does not affect the light that comes
to us from some object. This was once a most powerful argument against the
corpuscular theory; it was used by Huygens. If light were like a lot of arrows
shooting along, how could other arrows go through them so easily? Such philo
sophical arguments are not of much weight. One could always say that light is
made up of arrows which go through each other!

26-2 Reflection and refraction

Table 26-1

Fig. 26-1. The angle of incidence is
equal to the angle of reflection.

(26.1)

The discussion above gives enough of the basic idea of geometrical optics
now we have to go a little further into the quantitative features. Thus far we have
light going only in straight lines between two points; now let us study the behavior
of light when it hits various materials. The simplest object is a mirror, and the
law for a mirror is that when the light hits the mirror, it does not continue in a
straight line, but bounces off the mirror into a new straight line, which changes
when we change the inclination of the mirror. The question for the ancients was,
what is the relation between the two angles involved? This is a very simple relation,
discovered long ago. The light striking a mirror travels in such a way that the two
angles, between each beam and the mirror, are equal. For some reason it is
customary to measure the angles from the normal to the mirror surface. Thus the
so-called law of reflection is

That is a simple enough proposition, but a more difficult problem is encoun
tered when light goes from one medium into another, for example from air into
water; here also, we see that it does not go in a straight line. In the water the ray
is at an inclination to its path in the air; if we change the angle ()i so that it comes
down more nearly vertically, then the angle of "breakage" is not as great. But
if we tilt the beam of light at quite an angle, then the deviation angle is very large.
The question is, what is the relation of one angle to the other? This also puzzled
the ancients for a long time, and here they never found the answer! It is, however,
one of the few places in all of Greek physics that one may find any experimental
results listed. Claudius Ptolemy made a list of the angle in water for each of a
number of different angles in air. Table 26-1 shows the angles in the air, in degrees,
and the corresponding angle as measured in the water. (Ordinarily it is said that
Greek scientists never did any experiments. But it would be impossible to obtain
this table of values without knowing the right law, except by experiment. It
should be noted, however, that these do not represent independent careful measure
ments for each angle but only some numbers interpolated from a few measure
ments, for they all fit perfectly on a parabola.)

This, then, is one of the important steps in the development of physical law:
first we observe an effect, then we measure it and list it in a table; then we try to
find the rule by which one thing can be connected with another. The above
numerical table was made in 140 A.D., but it was not until 1621 that someone
finally found the rule connecting the two angles! The rule, found by Willebrord
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Angle in water

8°
15-1/2°
22-1/2°
29°
35°
40-1/2°
45-1/2°
50°

Angle in air

10°
20°
30°
40°
50°
60°
70°
80°

Fig. 26-2. A light ray is refracted
when it passes from one medium into
another.



Snell, a Dutch mathematician, is as follows: if (Ji is the angle in air and (Jr is the
angle in the water, then it turns out that the sine of (Ji is equal to some constant
multiple of the sine of (Jr:

For water the number n is approximately 1.33. Equation (26.2) is called Snelrs
law; it permits us to predict how the light is going to bend when it goes from air
into water. Table 26-2 shows the angles in air and in water according to Snell's
law. Note the remarkable agreement with Ptolemy's list.

26-3 Fermat's principle of least time

Now in the further development of science, we want more than just a formula.
First we have an observation, then we have numbers that we measure, then we
have a law which summarizes all the numbers. But the real glory of science is that
we can find a way of thinking such that the law is evident.

The first way of thinking that made the law about the behavior of light evident
was discovered by Fermat in about 1650, and it is called the principle ofleast time,
or Fermat's principle. His idea is this: that out of all possible paths that it might
take to get from one point to another, light takes the path which requires the
shortest time.

Let us first show that this is true for the case of the mirror, that this simple
principle contains both the law of straight-line propagation and the law for the
mirror. So, we are growing in our understanding! Let us try to find the solution
to the following problem. In Fig. 26-3 are shown two points, A and B, and a
plane mirror, MM'. What is the way to get from A to B in the shortest time?
The answer is to go straight from A to B! But if we add the extra rule that the light
has to strike the mirror and come back in the shortest time, the answer is not so
easy. One way would be to go as quickly as possible to the mirror and then go to
B, on the path ADB. Of course, we then have a long path DB. Ifwe move over a
little to the right, to E, we slightly increase the first distance, but we greatly decrease
the second one, and so the total path length, and therefore the travel time, is less.
How can we find the point C for which the time is the shortest? We can find it
very nicely by a geometrical trick.

We construct on the other side of MM' an artificial point B', which is the
same distance below the plane M M' as the point B is above the plane. Then we
draw the line EB'. Now because BFM is a right angle and BF = FB', EB is
equal to EB'. Therefore the sum of the two distances, AE + EB, which is propor
tional to the time it will take if the light travels with constant velocity, is also the
sum of the two lengths AE + EB'. Therefore the problem becomes, when is the
sum of these two lengths the least? The answer is easy: when the line goes through
point C as a straight line from A to B'! In other words, we have to find the point
where we go toward the artificial point, and that wiIl be the correct one. Now if
ACB' is a straight line, then angle BCF is equal to angle B'CF and thence to angle
ACM. Thus the statement that the angle of incidence equals the angle of reflection
is equivalent to the statement that the light goes to the mirror in such a way that
it comes back to the point B' in the least possible time. Originally, the statement
was made by Hero of Alexandria that the light travels in such a way that it goes
to the mirror and to the other point in the shortest possible distance, so it is not a
modern theory. It was this that inspired Fermat to suggest to himself that perhaps
refraction operated on a similar basis. But for refraction, light obviously does not
use the path of shortest distance, so Fermat tried the idea that it takes the shortest
time.

Before we go on to analyze refraction, we should make one more remark
about the mirror. If we have a source of light at the point B and it sends light to
ward the mirror, then we see that the light which goes to A from the point B comes
to A in exactly the same manner as it would have come to A if there were an object
at B', and no mirror. Now of course the eye detects only the light which enters it
physically, so if we have an object at B and a mirror which makes the light come
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7-1/2°
15°
22°
29°
35°
40-1/2°
45°
48°

Angle in water

Table 26-2

Angle in air

10°
20°
30°
40°
50°
60°
70°
80°
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Fig. 26-3. Illustration of the principle
of least time.

(26.2)sin (Ji = n sin 8r•
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Fig. 26-4. Illustration of Fermat's
principle for refraction.
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Fig. 26-5. The minimum time corre
sponds to point C, but nearby points
correspond to nearly the same time.

into the eye in exactly the same manner as it would have come into the eye if the
object were at B', then the eye-brain system interprets that, assuming it does not
know too much, as being an object at B'. So the illusion that there is an object
behind the mirror is merely due to the fact that the light which is entering the
eye is entering in exactly the same manner, physically, as it would have entered
had there been an object back there (except for the dirt on the mirror, and our
knowledge of the existence of the mirror, and so on, which is corrected in the brain).

Now let us demonstrate that the principle of least time will give Snell's law
of refraction. We must, however, make an assumption about the speed of light
in water. We shall assume that the speed of light in water is lower than the speed
of light in air by a certain factor, n.

In Fig. 26-4, our problem is again to go from A to B in the shortest time.
To illustrate that the best thing to do is not just to go in a straight line, let us
imagine that a beautiful girl has fallen out of a boat, and she is screaming for help
in the water at point B. The line marked Xis the shoreline. We are at point A on land,
and we see the accident, and we can run and can also swim. But we can run faster
than we can swim. What do we do? Do we go in a straight line? (Yes, no doubt!)
However, by using a little more intelligence we would realize that it would be advan
tageous to travel a little greater distance on land in order to decrease the distance
in the water, because we go so much slower in the water. (Following this line of
reasoning out, we would say the right thing to do is to compute very carefully
what should be done!) At any rate, let us try to show that the final solution to the
problem is the path ACB, and that this path takes the shortest time of all possible
ones. If it is the shortest path, that means that if we take any other, it will be longer.
So, if we were to plot the time it takes against the position of point X, we would get
a curve something like that shown in Fig. 26-5, where point C corresponds to the
shortest of all possible times. This means that if we move the point X to points
near C, in the first approximation there is essentially no change in time because the
slope is zero at the bottom of the curve. So our way of finding the law will be to
consider that we move the place by a very small amount, and to demand that
there be essentially no change in time. (Of course there is an infinitesimal change
of a second order; we ought to have a positive increase for displacements in either
direction from G.) So we consider a nearby point X and we calculate how long it
would take to go from A to B by the two paths, and compare the new path with
the old path. It is very easy to do. We want the difference, of course, to be nearly
zero if the distance XC is short. First, look at the path on land. If we draw a
perpendicular XE, we see that this path is shortened by the amount EC. Let us
say we gain by not having to go that extra distance. On the other hand, in the water,
by drawing a corresponding perpendicular, CF, we find that we have to go the
extra distance XF, and that is what we lose. Or, in time, we gain the time it would
have taken to go the distance EC, but we lose the time it would have taken to go
the distance XF. Those times must be equal since, in the first approximation, there
is to be no change in time. But supposing that in the water the speed is lin times
as fast as in air, then we must have

EC = n' XF. (26.3)

Therefore we see that when we have the right point, XC sin EXC = n' XC sin XCF
or, cancelling the common hypotenuse length XC and noting that

we have

EXC = ECN = fli and XCF = BCN' = 8"

sin 8i = n sin 8r • (26.4)

So we see that to get from one point to another in the least time when the ratio
of speeds is n, the light should enter at such an angle that the ratio of the sines of
the angles 8i and Or is the ratio of the speeds in the two media.
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Fig. 26-10. A focusing optical sys
tem.
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Fig. 26-9. An optical "black box."

Fig. 26-6. A beam of light is offset as
it passes through a transparent block.
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26-4 Applications of Fermat's principle

Now let us consider some of the interesting consequences of the principle of
least time. First is the principle of reciprocity. If to go from A to B we have found
the path of the least time, then to go in the opposite direction (assuming that light
goes at the same speed in any direction), the shortest time will be the same path,
and therefore, if light can be sent one way, it can be sent the other way.

An example of interest is a glass block with plane parallel faces, set at an angle
to a light beam. Light, in going through the block from a point A to a point B
(Fig. 26-6) does not go through in a straight line, but instead it decreases the time
in the block by making the angle in the block less inclined, although it loses a little
bit in the air. The beam is simply displaced parallel to itself because the angles
in and out are the same.

A third interesting phenomenon is the fact that when we see the sun setting,
it is already below the horizon! It does not look as though it is below the horizon,
but it is (Fig. 26-7). The earth's atmosphere is thin at the top and dense at the
bottom. Light travels more slowly in air than it does in a vacuum, and so the light
of the sun can get to point S beyond the horizon more quickly if, instead of just
going in a straight line, it avoids the dense regions where it goes slowly by getting
through them at a steeper tilt. When it appears to go below the horizon, it is
actually already well below the horizon. Another example of this phenomenon is
the mirage that one often sees while driving on hot roads. One sees "water" on the
road, but when he gets there, it is as dryas the desert! The phenomenon is the
following. What we are really seeing is the sky light "reflected" on the road:
light from the sky, heading for the road, can end up in the eye, as shown in Fig.
26-8. Why? The air is very hot just above the road but it is cooler up higher.
Hotter air is more expanded than cooler air and is thinner, and this decreases the
speed of light less. That is to say, light goes faster in the hot region than in the
cool region. Therefore, instead of the light deciding to come in the straightforward
way, it also has a least-time path by which it goes into the region where it goes
faster for awhile, in order to save time. So, it can go in a curve.

As another important example of the principle of least time, suppose that we
would like to arrange a situation where we have all the light that comes out of one
point, P, collected back together at another point, P' (Fig. 26-9). That means,
of course, that the light can go in a straight line from P to P'. That is all right.
But how can we arrange that not only does it go straight, but also so that the light
starting out from P toward Q also ends up at P'? We want to bring all the light
back to what we call afocus. How? If the light always takes the path ofleast time,
then certainly it should not want to go over all these other paths. The only way
that the light can be perfectly satisfied to take several adjacent paths is to make
those times exactly equal! Otherwise, it would select the one of least time. There
fore the problem of making a focusing system is merely to arrange a device so that
it takes the same time for the light to go on all the different paths!

This is easy to do. Suppose that we had a piece of glass in which light goes
slower than it does in the air (Fig. 26-10). Now consider a ray which goes in air
in the path PQP'. That is a longer path than from P directly to P' and no doubt
takes a longer time. But if we were to insert a piece of glass of just the right thick
ness (we shall later figure out how thick) it might exactly compensate the excess
time that it would take the light to go at an angle! In those circumstances we can
arrange that the time the light takes to go straight through is the same as the time
it takes to go in the path PQP'. Likewise, if we take a ray PRR'P' which is partly
inclined, it is not quite as long as PQP', and we do not have to compensate as
much as for the straight one, but we do have to compensate somewhat. We end
up with a piece of glass that looks like Fig. 26-10. With this shape, all the light
which comes from P will go to P'. This, of course, is well known to us, and we call
such a device a converging lens. In the next chapter we shall actually calculate
what shape the lens has to have to make a perfect focus.

Take another example: suppose we wish to arrange some mirrors so that the
light from P always goes to P' (Fig. 26-11). On any path, it goes to some mirror
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Fig. 26-11. An ellipsoidal mirror.
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Fig. 26-12. A paraboloidal mirror.

and comes back, and all times must be equal. Here the light always travels in air,
so the time and the distance are proportional. Therefore the statement that all
the times are the same is the same as the statement that the total distance is the
same. Thus the sum of the two distances r 1 and r2 must be a constant. An ellipse
is that curve which has the property that the sum of the distances from two points
is a constant for every point on the ellipse; thus we can be sure that the light from
one focus will come to the other.

The same principle works for gathering the light of a star. The great 200-inch
Palomar telescope is built on the following principle. Imagine a star billions of
miles away; we would like to cause all the light that comes in to come to a focus.
Of course we cannot draw the rays that go all the way up to the star, but we still
want to check whether the times are equal. Of course we know that when the vari
ous rays have arrived at some plane KK', perpendicular to the rays, all the times
in this plane are equal (Fig. 26-12). The rays must then come down to the mirror
and proceed toward P' in equal times. That is, we must find a curve which has the
property that the sum of the distances XX' + X'P' is a constant, no matter where
X is chosen. An easy way to find it is to extend the length of the line X X' down to
a plane LL'. Now if we arrange our curve so that A'A" = A'P', B'B" = B'P',
ce" = e'p', and so on, we will have our curve, because then of course, AA' +
A'P' = AA' + A'A" will be constant. Thus our curve is the locus of all points
equidistant from a line and a point. Such a curve is called a parabola; the mirror
is made in the shape of a parabola.

The above examples illustrate the principle upon which such optical devices
can be designed. The exact curves can be calculated using the principle that, to
focus perfectly, the travel times must be exactly equal for all light rays, as well as
being less than for any other nearby path.

We shall discuss these focusing optical devices further in the next chapter;
let us now discuss the further development of the theory. When a new theoretical
principle is developed, such as the principle of least time, our first inclination might
be to say, "Well, that is very pretty; it is delightful; but the question is, does it
help at all in understanding the physics?" Someone may say, "Yes, look at how
many things we can now understand!" Another says, "Very well, but I can under
stand mirrors, too. I need a curve such that every tangent plane makes equal angles
with the two rays. I can figure out a lens, too, because every ray that comes to it
is bent through an angle given by Snell's law." Evidently the statement of least
time and the statement that angles are equal on reflection, and that the sines of
the angles are proportional on refraction, are the same. So is it merely a philo
sophical question, or one of beauty? There can be arguments on both sides.

However, the importance of a powerful principle is that it predicts new things.

It is easy to show that there are a number of new things predicted by Fermat's
principle. First, suppose that there are three media, glass, water, and air, and we
perform a refraction experiment and measure the index n for one medium against
another. Let us call n12 the index of air (I) against water (2); n 13 the index of air
(I) against glass (3). If we measured water against glass, we should find another
index, which we shall call n23' But there is no a priori reason why there should be
any connection between n 12, n 13, and n 23. On the other hand, according to the
idea of least time, there is a definite relationship. The index n 12 is the ratio of two
things, the speed in air to the speed in water; n 13 is the ratio of the speed in air to
the speed in glass; n 23 is the ratio of the speed in water to the speed in glass.
Therefore we cancel out the air, and get

(26.5)

In other words, we predict that the index for a new pair of materials can be ob
tained from the indexes of the individual materials, both against air or against
vacuum. So if we measure the speed of light in all materials, and from this get a
single number for each material, namely its index relative to vacuum, called ni
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(n 1 is the speed in air relative to the speed in vacuum, etc.), then our formula is
easy. The index for any two materials i and j is

(26.6)

Using only Snell's law, there is no basis for a prediction of this kind.* But of
course this prediction works. The relation (26.5) was known very early, and was a
very strong argument for the principle of least time.

Another argument for the principle of least time, another prediction, is that
if we measure the speed of light in water, it will be lower than in air. This is a
prediction of a completely different type. It is a brilliant prediction, because all
we have so far measured are angles; here we have a theoretical prediction which is
quite different from the observations from which Fermat deduced the idea of least
time. It turns out, in fact, that the speed in water is slower than the speed in air,
by just the proportion that is needed to get the right index!

26-5 A more precise statement of Fermat's principle

Actually, we must make the statement of the principle of least time a little
more accurately. It was not stated correctly above. It is incorrectly called the
principle of least time and we have gone along with the incorrect description for
convenience, but we must now see what the correct statement is. Suppose we had
a mirror as in Fig. 26-3. What makes the light think it has to go to the mirror?
The path of least time is clearly AB. So some people might say, "Sometimes it is a
maximum time." It is not a maximum time, because certainly a curved path would
take a still longer time! The correct statement is the following: a ray going in a
certain particular path has the property that if we make a small change (say a
one percent shift) in the ray in any manner whatever, say in the location at which
it comes to the mirror, or the shape of the curve, or anything, there will be no first
order change in the time; there will be only a second-order change in the time.
In other words, the principle is that light takes a path such that there are many
other paths nearby which take almost exactly the same time.

The following is another difficulty with the principle of least time, and one
which people who do not like this kind of a theory could never stomach. With
Snell's theory we can "understand" light. Light goes along, it sees a surface, it
bends because it does something at the surface. The idea of causality, that it goes
from one point to another, and another, and so on, is easy to understand. But
the principle of least time is a completely different philosophical principle about
the way nature works. Instead of saying it is a causal thing, that when we do one
thing, something else happens, and so on, it says this: we set up the situation, and
light decides which is the shortest time, or the extreme one, and chooses that path.
But what does it do, how does it find out? Does it smell the nearby paths, and check
them against each other? The answer is, yes, it does, in a way. That is the feature
which is, of course, not known in geometrical optics, and which is involved in
the idea of wavelength; the wavelength tells us approximately how far away the
light must "smell" the path in order to check it. It is hard to demonstrate this fact
on a large scale with light, because the wavelengths are so terribly short. But with
radiowaves, say 3-cm waves, the distances over which the radiowaves are checking
are larger. Ifwe have a source of radiowaves, a detector, and a slit, as in Fig. 26-13,
the rays of course go from S to D because it is a straight line, and if we close down
the slit it is all right-they still go. But now if we move the detector aside to D',
the waves will not go through the wide slit from S to D', because they check several
paths nearby, and say. "No, my friend, those all correspond to different times."
On the other hand, if we prevent the radiation from checking the paths by closing
the slit down to a very narrow crack, then there is but one path available, and the

* Although it can be deduced if the additional assumption is made that adding a layer
of one substance to the surface of another does not change the eventual angle of refraction
in the latter material.
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Fig. 26-13. The passage of radio
waves through a narrow slit.
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Fig. 26-14. The summation of proba
bility amplitudes for many neighboring
paths.

radiation takes it! With a narrow slit, more radiation reaches D' than reaches it
with a wide slit!

One can do the same thing with light, but it is hard to demonstrate on a large
scale. The effect can be seen under the following simple conditions. Find a small,
bright light, sayan unfrosted bulb in a street light far away or the reflection of the
sun in a curved automobile bumper. Then put two fingers in front of one eye, so
as to look through the crack, and squeeze the light to zero very gently. You will
see that the image of the light, which was a little dot before, becomes quite elon
gated, and even stretches into a long line. The reason is that the fingers are very
close together, and the light which is supposed to come in a straight line is spread
out at an angle, so that when it comes into the eye it comes in from several direc
tions. Also you will notice, if you are very careful, side maxima, a lot of fringes
along the edges too, Furthermore, the whole thing is colored. All of this will be
explained in due time, but for the present it is a demonstration that light does not
always go in straight lines, and it is one that is very easily performed.

26-() How it works

Finally, we give a very crude view of what actually happens, how the whole
thing really works, from what we now believe is the correct, quantum-dynamically
accurate viewpoint, but of course only qualitatively described. In following the
light from A to B in Fig. 26-3, we find that the light does not seem to be in the
form of waves at all. Instead the rays seem to be made up of photons, and they
actually produce clicks in a photon counter, if we are using one. The brightness of
the light is proportional to the average number of photons that come in per second,
and what we calculate is the chance that a photon gets from A to B, say by hitting
the mirror. The law for that chance is the following very strange one. Take any
path and find the time for that path; then make a complex number, or draw a little
complex vector, pei9

, whose angle 0 is proportional to the time. The number of
turns per second is the frequency of the light. Now take another path; it has, for
instance, adifferent time, so the vector for it is turned through a different angle
the angle being always proportional to the time. Take all the available paths and
add on a little vector for each one; then the answer is that the chance of arrival
of the photon is proportional to the square of the length of the final vector, from
the beginning to the end!

Now let us show how this implies the principle ofleast time for a mirror. We
consider all rays, all possible paths ADB, AEB, ACB, etc., in Fig. 26-3. The path
ADB makes a certain small contribution, but the next path, AEB, takes a quite
different time, so its angle 0 is quite different. Let us say that point C corresponds to
minimum time, where if we change the paths the times do not change. So for awhile
the times do change, and then they begin to change less and less as we get near point
C (Fig. 26-14). So the arrows which we have to add are coming almost exactly at
the same angle for awhile near C, and then gradually the time begins to increase
again, and the phases go around the other way, and so on. Eventually, we have
quite a tight knot. The total probability is the distance from one end to the other,
squared. Almost all of that accumulated probability occurs in the region where all
the arrows are in the same direction (or in the same phase). All the contributions
from the paths which have very different times as we change the path, cancel them
selves out by pointing in different directions. That is why, if we hide the extreme
parts of the mirror, it still reflects almost exactly the same, because all we did was
to take out a piece of the diagram inside the spiral ends, and that makes only a
very small change in the light. So this is the relationship between the ultimate
picture of photons with a probability of arrival depending on an accumulation of
arrows, and the principle of least time.
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