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Preface to the English
edition

In addition to correcting some misprints and inaccuracies in the German
edition, some parts of this book were revised and expanded. The sections
dealing with gradient methods were shortened in order to make space for
primal-dual active set strategies; the exposition of the latter now leads to the
systems of linear equations to be solved. Following the suggestions of several
readers, a derivation of the associated Green’s functions is provided, using
Fourier’s method. Moreover, some references are discussed in greater detail,
and some recent references on the numerical analysis of state-constrained
problems have been added.

The sections marked with an asterisk may be skipped; their contents
are not needed to understand the subsequent sections. Within the text, the
reader will find formulas in framed boxes. Such formulas contain either re-
sults of special importance or the partial differential equations being studied
in that section.

I am indebted to all readers who have pointed out misprints and sup-
plied me with suggestions for improvements—in particular, Roland Herzog,
Markus Müller, Hans Josef Pesch, Lothar v. Wolfersdorf, and Arnd Rösch.
Thanks are also due to Uwe Prüfert for his assistance with the LATEX type-
setting. In the revision of the results on partial differential equations, I was
supported by Eduardo Casas and Jens Griepentrog; I am very grateful for
their cooperation. Special thanks are due to Jürgen Sprekels for his careful
and competent translation of this textbook into English. His suggestions
have left their mark in many places. Finally, I have to thank Mrs. Jutta
Lohse for her careful proofreading of the English translation.

Berlin, July 2009

F. Tröltzsch
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Preface to the German
edition

The mathematical optimization of processes governed by partial differential
equations has seen considerable progress in the past decade. Ever faster com-
putational facilities and newly developed numerical techniques have opened
the door to important practical applications in fields such as fluid flow, mi-
croelectronics, crystal growth, vascular surgery, and cardiac medicine, to
name just a few. As a consequence, the communities of numerical analysts
and optimizers have taken a growing interest in applying their methods
to optimal control problems involving partial differential equations; at the
same time, the demand from students for this expertise has increased, and
there is a growing need for textbooks that provide an introduction to the
fundamental concepts of the corresponding mathematical theory.

There are a number of monographs devoted to various aspects of the op-
timal control of partial differential equations. In particular, the comprehen-
sive text by J. L. Lions [Lio71] covers much of the theory of linear equations
and convex cost functionals. However, the interest in the class notes of my
lectures held at the technical universities in Chemnitz and Berlin revealed
a clear demand for an introductory textbook that also includes aspects of
nonlinear optimization in function spaces.

The present book is intended to meet this demand. We focus on basic
concepts and notions such as:

• Existence theory for linear and semilinear partial differential equa-
tions

• Existence of optimal controls

xiii



xiv Preface to the German edition

• Necessary optimality conditions and adjoint equations

• Second-order sufficient optimality conditions

• Foundation of numerical methods

In this connection, we will always impose constraints on the control func-
tions, and sometimes also on the state of the system under study. In order
to keep the exposition to a reasonable length, we will not address further
important subjects such as controllability, Riccati equations, discretization,
error estimates, and Hamilton–Jacobi–Bellman theory.

The first part of the textbook deals with convex problems involving
quadratic cost functionals and linear elliptic or parabolic equations. While
these results are rather standard and have been treated comprehensively
in [Lio71], they are well suited to facilitating the transition to problems
involving semilinear equations. In order to make the theory more accessible
to readers having only minor knowledge of these fields, some basic notions
from functional analysis and the theory of linear elliptic and parabolic partial
differential equations will also be provided.

The focus of the exposition is on nonconvex problems involving semi-
linear equations. Their treatment requires new techniques from analysis,
optimization, and numerical analysis, which to a large extent can presently
be found only in original papers. In particular, fundamental results due to
E. Casas and J.-P. Raymond concerning the boundedness and continuity of
solutions to semilinear equations will be needed.

This textbook is mainly devoted to the analysis of the problems, al-
though numerical techniques will also be addressed. Numerical methods
could easily fill another book. Our exposition is confined to brief introduc-
tions to the basic ideas, in order to give the reader an impression of how the
theory can be realized numerically. Much attention will be paid to revealing
hidden mathematical difficulties that, as experience shows, are likely to be
overlooked.

The material covered in this textbook will not fit within a one-term
course, so the lecturer will have to select certain parts. One possible strat-
egy is to confine oneself to elliptic theory (linear-quadratic and nonlinear),
while neglecting the chapters on parabolic equations. This would amount
to concentrating on Sections 1.2–1.4, 2.3–2.10, and 2.12 for linear-quadratic
theory, and on Sections 4.1–4.6 and 4.8–4.10 for nonlinear theory. The chap-
ters devoted to elliptic problems do not require results from parabolic theory
as a prerequisite.

Alternatively, one could select the linear-quadratic elliptic theory and
add Sections 3.3–3.7 on linear-quadratic parabolic theory. Further topics
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can also be covered, provided that the students have a sufficient working
knowledge of functional analysis and partial differential equations.

The sections marked with an asterisk may be skipped; their contents
are not needed to understand the subsequent sections. Within the text, the
reader will find formulas in framed boxes. Such formulas contain either re-
sults of special importance or the partial differential equations being studied
in that section.

During the process of writing this book, I received much support from
many colleagues. M. Hinze, P. Maaß, and L. v. Wolfersdorf read various
chapters, in parts jointly with their students. W. Alt helped me with
the typographical aspects of the exposition, and the first impetus to writ-
ing this textbook came from T. Grund, who put my class notes into a
first LATEXversion. My colleagues C. Meyer, U. Prüfert, T. Slawig, and
D. Wachsmuth in Berlin, and my students I. Neitzel and I. Yousept, proof-
read the final version. I am indebted to all of them. I also thank Mrs.
U. Schmickler-Hirzebruch and Mrs. P. Rußkamp of Vieweg-Verlag for their
very constructive cooperation during the preparation and implementation
of this book project.

Berlin, April 2005

F. Tröltzsch
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Optimal control theory is concerned with fi nding control func-
tions that minimize cost functions for systems described by 
differential equations. The methods have found widespread appli-
cations in aeronautics, mechanical engineering, the life sciences, 
and many other disciplines.

This book focuses on optimal control problems where the state 
equation is an elliptic or parabolic partial differential equation. 
Included are topics such as the existence of optimal solutions, 
necessary optimality conditions and adjoint equations, second-
order suffi cient conditions, and main principles of selected numerical techniques. It 
also contains a survey on the Karush-Kuhn-Tucker theory of nonlinear program-
ming in Banach spaces.

The exposition begins with control problems with linear equations, quadratic cost 
functions and control constraints. To make the book self-contained, basic facts on 
weak solutions of elliptic and parabolic equations are introduced. Principles of 
functional analysis are introduced and explained as they are needed. Many simple 
examples illustrate the theory and its hidden diffi culties. This start to the book 
makes it fairly self-contained and suitable for advanced undergraduates or begin-
ning graduate students.

Advanced control problems for nonlinear partial differential equations are also 
discussed. As prerequisites, results on boundedness and continuity of solutions 
to semilinear elliptic and parabolic equations are addressed. These topics are not 
yet readily available in books on PDEs, making the exposition also interesting for 
researchers.

Alongside the main theme of the analysis of problems of optimal control, Tröltzsch 
also discusses numerical techniques. The exposition is confi ned to brief introduc-
tions into the basic ideas in order to give the reader an impression of how the 
theory can be realized numerically. After reading this book, the reader will be 
familiar with the main principles of the numerical analysis of PDE-constrained 
optimization.
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