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Identification of discrepant nuclear
data with machine learning

Deficiencies in nuclear data can have significant
impact on many applications, including
determining USLs for criticality safety

Previous Machine Learning project had already
identified discrepant nuclear data that most
contributed to bias between measured and
simulated critical benchmark responses (funded
by NCSP-ASC [ATDM-PEM-V&V])

LDRD-DR project, EUCLID, objective is “to
design small-scale experiments that address
needs and deficiencies in nuclear data”
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Optimal experiment design
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Presenter
Presentation Notes
Stress here that, in addition to the PF-4 casting operation, using machine learning to constrain and improve nuclear data benefits other criticality safety operations.


* Some 14-MeV

Justification for inclusion of diverse Criticality Pulsed—sphere TOF

benchmarks Bench- spectra
« Sometimes difficult to “disentangle” which % marJ<s | |
nuclear data contributes to bias in critical Th | 3.0 5.0 15 O
benchmark erma T ‘
) . " ) Nuclear data energy range to which simulations are sensitive (MeV)
- Single integral response from critical benchmark requires
~10° differential nuclear data points to simulate
- Difficult to consider structural/moderator/reflector material 27|
separately from fissile core

- Sensitive to a specific region of incident neutron energies
« One approach is to apply machine learning to a Pu
diverse set of measurements 160
- Integral and differential observables (e.g. k.4 and TOF Pb
spectrum) 235U
— Composed of fissile and non-fissile materials C
- Sensitive to nuclear data in different energy regions
. . RT T
« Can improve nuclear data and benefit criticality Li
_ Safety LLNL 14-MeV pulsed spheres
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LLNL pulsed-sphere experimental setup
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1. Tanja Gori¢anec et al. “Analysis of the U-238 Livermore Pulsed.Sphere Experiments Benchmark Evaluations,” International Nuclear Data
Committee Report INDC(NDS)-0742 (2017)




Pulsed-sphere MCNP model
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1. S.C. Frankle, “Possible Impact of Additional Collimators on the LLNL Pulsed Sphere Experiments (U)," LANL Report LA-UR-05-5877 (2005).
2. S.C. Frankle, “LLNL Pulsed Sphere Measurements and Detector Response Functions (U)," LANL Report LA-UR-05-5878 (2005).
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Pulsed-sphere MCNP model
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Simulated pulsed-sphere time-of-flight spectrum for plutonium pulsed sphere
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1. D. Neudecker, O. Cabellos, A. R. Clark et al, "Which nuclear data can be validated with LLNL pulsed-sphere experiments?,"

manuscript submitted to ann. nucl. energy, Jan. 6, 2021

Winter Meeting, Online, Nov. 15-19, 2020

W. Haeck, A. R. Clark, and M. Herman, “Calculating the impact of nuclear data changes with Crater,” Trans. Am Nucl. Soc.
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Presentation Notes
Point out that the uncertainties are from Monte Carlo statistics.


Estimating sensitivities with central-difference calculations

« Sensitivity of pulsed-sphere time-of-flight spectrum to group-wise nuclear data is defined
as

ag’o aRt

S =
Rt,a
g Rtla:ag’o aag a=ago

- R, = Time-of-flight spectrum at time bin ¢t
- a4 = Nuclear data parameter at group g

» Sensitivity can be numerically estimated to second-order in perturbation size with central-
differences

+ 0(Aa?)

S —
Rueg — R | _ 2Aa
tla=ago g



Sensitivity analysis procedure

1. Obtain ENDF files from nndc.bnl.gov 3. Generate MCNP input decks with

2. Perturb nuclear data with one of two Faust
codes 4. Perform MCNP runs on HPC machine,
- FRENDY'3 Snow
= Process ENDF file into ACE format with NJOY . ]
- FRENDY directly perturbs ACE file 5. Post-process MCTAL files with Faust
= Operates on MF1,3 to compute sensitivities*
- SANDY23

= Process ENDF file into PENDF format with NJOY
= SANDY perturbs either ENDF or PENDF file

= Process ENDF and PENDF files in ACE format with
NJOY

» Operates on MF3,4

K. Tada et al., “Development and Verification of a New Nuclear Data Processing System FRENDY,” J.Nucl. Sci. Technol., 54(7), pp. 806-817 (2017).

L. Fiorito, et al., “Nuclear data uncertainty propagation to integral responses using SANDY,” Ann. Nucl. Energy, Volume 101, 2017, Pages 359-366, ISSN 0306-4549.
O. Cabellos and L. Fiorito, “Examples of Monte Carlo Techniques applied for Nuclear Data Uncertainty Propagation,” EPJ Web Conf., 211 (2019) 07008

W. Haeck, A. R. Clark, and M. Herman, “Calculating the impact of nuclear data changes with Crater,” Trans. Am Nucl. Soc. Winter Meeting, Online, Nov. 15-19, 2020
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Sensitivity to fission cross section
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D. Neudecker, O. Cabellos, A. R. Clark et al, "Which
nuclear data can be validated with LLNL pulsed-sphere
experiments?," manuscript submitted to ann. nucl.
energy, Jan. 6, 2021

W. Haeck, A. R. Clark, and M. Herman, “Calculating
the impact of nuclear data changes with Crater,” Trans.
Am Nucl. Soc. Winter Meeting, Online, Nov. 15-19,
2020
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Point out that this was computed using FRENDY and central-differences. The uncertainties are again from Monte Carlo statistics.


Pulsed Sphere TOF spectra enable studying fission-source term
observables and angular distributions differently than criticality.

Critical benchmark 14-MeV LLNL pulsed sphere
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1. D. Neudecker, O. Cabellos, A. R. Clark et al, "Which nuclear data can be validated with LLNL pulsed-sphere experiments?," manuscript submitted to
ann. nucl. energy, Jan. 6, 2021
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Point out that including critical and pulsed sphere measurements can help to constrain the fission parameters, which benefits criticality safety.


Summary

» Machine learning project had already identified problematic nuclear data

« Difficult to disentangle which nuclear data contribute to bias between measured and
simulated experiments

* Inclusion of diverse benchmarks (e.g. critical and pulsed spheres) can inform nuclear
data evaluation for a greater number of nuclides and energy regions to benefit criticality
safety
— 2-MeV LLNL pulsed sphere measurements
— Experiment campaigns at NCERC

» Developed Python tool, Pulsed Sphere Sensitivity Analysis toolkit (PSSAtk)

« EUCLID using PSSAtk to design small-scale experiments that address
needs/deficiencies in nuclear data

« PSSAtk can be applied to other types of problems (e.g. reaction rate foil, beta-effective)
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Estimating sensitivities with MCNP PERT card

 Create a fictitious material
— Nuclide weight fraction is multiplied by 1 + p
— Material density is multiplied by ratio of sum of modified-to-original weight fractions

» Specify METHOD=2 on the PERT card to return AR,
» Calculate the relative sensitivity as

AR,

RTlazag,o ) p




Sensitivity to fission cross section
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Point out that this was computed using FRENDY and central-differences.
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