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1. Introduction

In this paper, we characterize optimal economic growth in an endogenous growth
model in which there are two public goods that we call public capital and public
services. We use this model to study how governments should balance the need to
provide services that would give an immediate boost to the nation’s productivity
against the need to invest in assets that would raise productivity only in the future.
We analyze the comparative static effects of changes in the fundamental techno-
logical and preference parameters of the model on the optimal values of several
variables, such as the optimal rate of growth and the optimal allocation of resources
among consumption, the provision of public services, and investment in public and
private capital. We show that the general optimal path converges in finite time to
the balanced growth optimal path. We relate our paper to important contributions
to the existing literature by obtaining them as special cases of our model.

Our view of public services is the same as that in the seminal contribution
of Barro (1990). Public services are non-accumulatable (or, perishable) public
goods that are essential to production and imperfect substitutes to other productive
resources. Such services may include the maintenance of law and order and trans-
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portation networks. Our view of public capital is the same as that in the important
contribution of Futagami et al. (1993) in which public capital is an accumulatable
public good that is essential to production and an imperfect substitute to other pro-
ductive resources. Public capital would include the stock of transportation networks
and the stock of freely available scientific knowledge.!

Barro (1990) includes public services but not public capital in his model of
endogenous growth, whereas Futagami et al. (1993) include public capital but not
public services. We include both public services and public capital to explore the
trade-off that governments routinely face between spending on public services,
which would make the present better at the expense of the future, and spending
on the accumulation of public capital, which would make the future better at the
expense of the present. A government’s dilemma, in other words, is similar to
that faced by the representative agent in the canonical Ramsey—Cass—Koopmans
model between consumption and the accumulation of capital. Even apart from this
similarity, however, it would be interesting to study how the changes in shares of
the two components of public spending are related to growth and social welfare
and to then characterize the optimal fiscal policies.

With these goals in view, we develop, in section 2, a general model in which
public capital, public services and private capital are inputs in the production pro-
cess. We explore the balanced growth optimal path in some detail, even though it
imposes stringent restrictions on the economy’s initial endowments of public and
private capital, because, as we show also in section 2, the general optimal path for
arbitrary initial endowments merges in finite time with the balanced growth optimal
path.?

In section 3, we develop the Barro (1990) and Futagami et al. (1993) models as
extreme cases of our more general model. We show that more can be learned from
our general model about the behavior of, for instance, the optimal rate of growth
than can be inferred from a simple interpolation of the corresponding results for the
extreme cases. This, therefore, confirms the value added by our generalization of
the two earlier papers. Most importantly, as we pointed out earlier, those two papers
have absolutely nothing to say about the public sector’s present-versus-future trade-
off. We also develop a model with public capital and public services, but no private
capital. This special case shows that long-run growth is possible without private
capital. And, as in Barro (1990), this special case has no transitional dynamics.
Section 4 concludes the paper.

2. A model of optimal growth

Consider an economy that is run by an ideal social planner. It has one final good,
Y, and

Y, = F(g» 8ft» K;, L)) (D



273

is the amount of Y that can be produced at time ¢ with g, units of an accu-
mulatable public good (hereafter, public capital, a stock variable), g, units of a
non-accumulatable (or, perishable) public good (hereafter, public services, a flow
variable), K, units of an accumulatable private good (hereafter, private capital, a
stock variable), and L, units of homogeneous labor.

Let L,, the total amount of labor available to — and employed by — the social
planner at time ¢, be unity (i.e., L, = 1 for all ¢). With this assumption, all quantities
represent both total and per capita quantities. In particular, we will denote the per
capita quantities of the final good and the private capital good at time ¢ by y, and
k;, respectively. Note that ¥; = y, and K, = k;.

One unit of the final good can be used to: (i) increase the stock of private
capital, k,, by one unit, (ii) increase the stock of public capital, g,,, by one unit, (iii)
provide one unit of public services, g, or (iv) provide one unit of consumption,
¢;. Therefore, if 7 is the constant fraction of y, that is used for purposes (ii) and
(i11), it follows that

8t =T Y — 8 ft (2)

and
ki =0 —1)-y —c. 3)

The nation’s utility is

o0
U= / e In ¢, dr. @)
0

where p > 0 is the rate of time preference.

The social planner’s task is to choose ¢;, g, and T to maximize utility subject
to Equations (2) and (3); the requirement — co > I%,, g5 = 0 — that investments in
private and public capital be non-negative and finite; and the initial condition that
the amounts, kg and g0, of the two capital goods that the economy starts out with
are given.’

This maximization problem’s present value Hamiltonian is H; = ¢ " Inc; 4+ A, -
[(A—=1) -y —c ]+ - [ty — gsi], where A, and u, are the present value shadow
prices of private and public capital, respectively.* The corresponding Lagrangean is
L, = H+pf-[(1—7)-y:—c/ ]+ pf-[t-y:—g ], where pF and pf are the Lagrangean
multipliers for the k, > 0 and gs: = 0 constraints, respectively. The first order
conditions are: dL,/dc¢, = 0, 0L,/0gs, = 0, dL,/dt = 0; 0L,/0g,; = —pt, and
oL, /dk, = —h Equations (2) and (3); the complementary slackness conditions

pk>0, 0-10)-yi—c¢ >0, prld-1)-y,—c]=0 ®)

pE>0, T-y—gn=20, pflt-yi—gpl=0; (6)
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and the transversality conditions

lim A; -k, = tli)rglo Wi - &t = 0. )

t—00

In addition to Equations (2), (3), (5) and (6), these first-order conditions imply,
respectively,

e P! ‘
= )“t +pt’ (8)
Ct
9 )
GutpH-(1—1)- y’+(u,+p§”>-[r- y’—l}zo, )
of ri 0g s
k __ 8
A+ P =+ pr, (10)
dy ay .
G +PH 00— =+ +pf) 1 - —=—p, (11)
085t 08s:
ay oy .
(x,+pf)-<1—r>-a—ki+(u,+pf>'r-a—,;=—xt. (12)
Note that Equations (9) and (10) imply
9
Yo, (13)
08 11

2.1. THE BALANCED GROWTH OPTIMAL OUTCOME

In this subsection, we will describe the solution to the social planner’s problem for
which l%, > 0 and g,;; > O for all 7. For this case, Equations (5) and (6) imply
p¥ = p¥ = 0forall ¢. This, in turn, implies, by way of Equation (10), that A, = u,
and, therefore, X, = [, along the optimal path. Therefore, Equations (11) and (12)
imply

fu o Oy

Mt B _)"t B 085 B akt'

This last equation and Equation (8) together imply

La v o

= = . 14
Cr 085 ok; (19



275

For simplicity, let the technology available to the social planner, Equation (1),
obey the Cobb-Douglas form:

— — 1—
Y, = (g% gl P kL7
0 < «, B < 1. In per capita terms, this technology can be written as

=% g k. (15)

Note that when o = 0, public capital, g, is absent from the production func-
tion as in Barro (1990) and when o = 1, public services, gy, is absent from the
production function as in Futagami et al. (1993). Not surprisingly, as we will show
in section 3, the Barro (1990) and Futagami et al. (1993) results can be obtained as
special cases of our model by substituting @« = 0 and o = 1, respectively.

Letm, =k, /g, and gs¢; = g5:/8 1. Then Equation (13) and the second equality
in Equation (14) together imply

g =laf (1—a)™ g P (1= pfjrars =g, (16)

m=a'-B-0=B"'=m. (17)

The contour plot of g is given in Figure 1. It shows that g,/ is increasing in « and
hump-shaped in .

Note that both m; and g, are constant along the optimal path. Therefore, k;,
gs: and gy, must all grow at the same rate, y;. And, by Equation (15), y; will also
be the growth rate of y,. In short,

M S Sy, (18)
Yt k; 8st 8ft

It is straightforward to show that the constancy of m; and g, also implies
the constancy of the marginal products dy,/0g,, and dy,/dk,. The first equality in
Equation (14) then implies that ¢, /c;, the growth rate of consumption, is constant
along the optimal path as well. Let this constant growth rate of consumption be y,.

Also, Equation (2), which implies g,/ /gs = 7 - (y//&s1) — (&:/8s:), and Equa-
tion (18), which implies that y, /g, and gs,/g,, are both constant, together imply
that y; is a constant. So, let y, = y.

Similarly, Equation (3), which implies k, [k =0 —1)- (y:/kt) — (c;/ k), and
Equation (18), which implies that y,/k; is constant, and the previous paragraph’s
result that &, /k, = y, = y together imply that ¢,/k, must be constant along the
optimal path. Therefore, we have

w_oG_k_ g _gn_ . (19)
Y C k; 8st 8 ft
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Figure 1. The contour plot of gyr, which is given by Equation (16). Note that « is measured
on the horizontal axis and B on the vertical axis. Lighter shaded areas represent level sets of
higher value.

where, by Equation (14),

oy

v 0851 P= ok,

It is straightforward to then show that

o«
T -«

y -8, — b (20)

Given that our goal is to find an expression for y exclusively in terms of only «,
B and p, which are the fundamental exogenous parameters of our model, note that
although g, in Equation (20) is endogenous we can easily substitute for it using
Equation (16) and thereby obtain the desired expression for y. Once y is expressed
exclusively in terms of «, B and p, it is clear that it is inversely related to the rate
of time preference, p. Moreover, it can be shown that y is U-shaped in « for any
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values of p and  and U-shaped in B for any values of p and «. To do this, let
y = In(y + p). It can be checked that

Iy _ 1-8
g [1—(1—a)1—B)P
—pIng —(1—p4)Ind - p))}.

It can be checked that this derivative is negative near « = 0 and positive near o = 1,
thereby indicating that ¢ is U-shaped in «. Since ¥ is a positive transformation of
y, the latter must also be U-shaped with respect to . Similarly, we get

9y alnp—oalna—(1—-a)ln(l —a)—Inl - p)

9p - (1—a)(1-pP
and can show that y is U-shaped in 8. The Mathematica contour plot of y (for

o = 0.02) in Figure 2 confirms the above conclusions.
Equation (2) implies

{BIna — In(1 — &)

o g,
T:u:[l_{_y.&f].&_ 1)
Yt Yt
Using Equations (13), (15), (19) and (20), we get
t=0=-p8-[1->0—-a) p- gyl (22)

Once Equation (16) is substituted into Equation (22) to derive an expression
for T exclusively in terms of «, 8 and p, it becomes clear that the optimal share
of total public spending to total output, 7, is negatively related to the rate of time
preference, p. The contour plot of 7 (for p = 0.02) in Figure 3 shows further that
7 is negatively related to 8. As for the dependence of T on «, it is decreasing in o
at high values of § and U-shaped at smaller values such as 8 = 0.05.

Let us now look at how the government allocates the total spending on public
goods between g, its investment in the stock of the accumulatable public good,
and g, its provision of the non-accumulatable public good. Let 6,7y, = g, and
(1-6)ty, = g71,0 < 6, < 1. (Note that these two equations imply the government
budget constraint (2).) From this, we get

0, N & &8st g
1 -6 8st & ft 1ot
which implies
Vi8sft
=— (23)
' 1+ Vi8sft
Equation (20) then implies
1
6 = 1 —4. (24)

S (l—a) ' —p-gy
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Figure 2. The contour plot of y, which is given by Equations (20) and (16), for p = 0.02.

Note that « is measured on the horizontal axis and B on the vertical axis. Lighter shaded areas
represent level sets of higher value.

1 1 1

When Equation (16) is substituted into Equation (24) to derive an expression
for 6 exclusively in terms of o, 8 and p, it can be shown that the rate of time
preference, p, is negatively related to . Moreover, the contour plot of 6 (for p =
0.02) in Figure 4 shows a direct relationship with o and a U-shaped relationship
with 8.

Finally, let s; be the fraction of (1 — t) - y, that is used for the accumulation of
private capital. That is,

5 — k, _ k) k; , 25)
A=y A=1) /k)

which gives

a—af+ B
a-(I=a) gy -p ' +a-(1-p)

St=l—

(26)

1
e
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Figure 3. The contour plot of t, which is given by Equations (22) and (16), for p = 0.02.
Note that « is measured on the horizontal axis and B on the vertical axis. Lighter shaded areas
represent level sets of higher value.

Again, when Equation (16) is substituted into Equation (26) to derive an ex-
pression for s exclusively in terms of «, B and p, it follows that, p, the rate of time
preference is negatively related to s, the optimal share of total non-public spending
that is used for the accumulation of private capital. The contour plot of s (for p =
0.02) in Figure 5 shows a U-shaped relationship with « and a direct relationship
with B.

Finally, recall from Equation (17) thatm; =k, /g =o' -B-(1—B)~! = m for
all ¢ > 0. This implies that this subsection’s simplifying assumption — that &, > 0
and g;; > 0 all along the optimal path — is satisfied by only the balanced growth
optimal path, which, in turn, imposes the condition that ky and g,y must be such
that mg = ko/gso = @' - B- (1 — B)~! = m. Such a condition can be satisfied only
by pure coincidence.

In general, mo will not equal m. And, given that investments in private and
public capital must be non-negative and finite or, equivalently, that jumps in the
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Figure 4. The contour plot of 6, which is given by Equations (24) and (16), for p = 0.02.
Note that « is measured on the horizontal axis and B on the vertical axis. Lighter shaded areas
represent level sets of higher value.

state variables are not allowed, the optimal path will not coincide with the balanced
growth optimal path. Therefore, in the following subsection, we will describe the
optimal outcome for the general case in which mo # m. Recalling that we have
shown that an optimal path with k, > 0 and g, > 0 for all ¢ is possible only when
mo = m, note that it follows that when mg # m, either I'c, or g, will be zero for
part or all of the optimal path.

2.2. TRANSITIONAL DYNAMICS

As was just stated, we will now describe the general solution to the social planner’s
problem — see the paragraph following Equation (4)—for arbitrary values of ky and
gs0- Even though the optimal outcome coincides with the balanced growth optimal
outcome of section 2.1 only in the exceptional case of ky/gso =~ -B-(1—8)"",
we will show that the balanced growth optimal outcome is more significant than
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Figure 5. The contour plot of s, which is given by Equations (26) and (16), for p = 0.02.
Note that « is measured on the horizontal axis and B on the vertical axis. Lighter shaded areas
represent level sets of higher value.

one might think. Specifically, we will show that all optimal paths merge with the
balanced optimal growth path in a finite amount of time. We will restate the social
planner’s problem in a form that, while equivalent, will enable a direct proof of
global convergence. This global convergence result will then enable us to restate
the social planner’s problem yet again as a salvage value problem that can then be
solved directly.

Note that Equation (13) is true for any optimal outcome and not just the bal-
anced growth optimal outcome of section 2.1. Therefore, we can use Equation (13)
to restate the social planner’s problem without g ¢,. Equations (13) and (15) imply
that

1
3= 10 =) (1 = I g0 [T 2y (kg 27)
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along the optimal path. Now let us define
Ve (kes &) = Yilke, &) — 8 = [1 = (1 — ) (1 = B)] - yi (ki got) (28)

as output net of public services, noting that the second equality follows from
Equation (13).

Let n, = (k, ~+ £51)/Ya: be the proportion of y,, that is used for (public and
private) investment. It can be checked that

_S,-(l—‘f)—l—@t-‘f

N R Ty @)

Also, let ¢, = I%, /(l%, + £,,) be the proportion of all investment spending that is
invested in private capital. It can be checked that

s - (1—-1)

T (-0+6, -7 (30)

b

The social planner’s problem can now be restated as follows: choose 7, and ¢,
to maximize U in Equation (4) subject to

=0 =n) - Yulks, &), (31)
ke = @00 yui ke goo) (32)
gst = (1 - d)t) N ynt(kt’ gst)’ (33)

0<n, ¢<I1

and the given initial values of ky and g.

Note that k; and g,; matter in this problem only through their effect on y,, (k;, gs/)-
So, for given values of k, and g;, and any choice of 7,, the social planner will
choose ¢, solely to maximize y,,, the rate of increase of y,;. By Equation (28), this
amounts to choosing ¢, solely to maximize
0y; (k;, gs1) i 0y; (k;, gs1) .

k
ok, o 085

Vi(ki, gs1) = st
Clearly, ¢; = 1 or, equivalently, g, = 0 is optimal when 9y, (k;, g;)/dk; >
ay; (ks gs1)/0gs: or, equivalently, m, = k, /g, < a ' B-(1=p)" =m. Similarly,
¢, = 0 or, equivalently, I%, = 0 is optimal when 0y, (k;, g,;)/0k; < 0y, (k;, 851)/0&s:
or, equivalently, m, > m. Note that m, # m is equivalent to dy,(k;, gs;)/0k; #
ay; (k¢, gs1)/0gs:. Since the sole consideration in optimally allocating total invest-
ment between public and private capital is the consequent effect on total output,
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the social planner steers all investment to the capital good with the higher marginal
productivity.

As for the m; = m case, we have seen in section 2.1 that the optimal solution
will coincide with the balanced growth optimal path from ¢ onwards. Therefore, it
follows that ¢, = ¢, where ¢ is obtained by substituting for s,, T and 6, in Equation
(30) using Equations (16), (22), (24) and (26).

In short, the social planner will, in the general optimal outcome, allocate total
investment, 7, y,;, between private and public capital as follows:

0, m,>m
6 =16, mo=m (34)

1, m;<m

Equation (34) implies that m, will decrease along the optimal path when m, >
m, stay unchanged when m, = m and increase when m, < m. In other words,
m, will approach m, its balanced growth optimal value, along the optimal path no
matter what its initial value, ko /g0, happens to be.

The question then is whether m, will become equal to m in finite time or merely
approach ever closer to m at all * without ever actually reaching it. Recall that y is
the balanced optimal growth rate as defined by Equations (20) and (16). It can be
shown that if y > 0, then m; will become equal to m in finite time. In other words, if
the balanced optimal growth rate is positive, the optimal path for arbitrary ko and
gs0 will merge with the balanced growth optimal path in finite time.> (The proof is
straightforward and given in the appendix.) We will consider only the y > 0 case
and, therefore, only the case in which all optimal paths converge to the balanced
growth optimal path.

2.2.1. When mg > m

For this case, Equation (34) implies that I%, =0and g;, > 0for0 <t < T, where
T is the time at which the optimal path merges with the balanced growth optimal
path. Note that kr = k¢ and that g, = ko/m because my = m.

Let V (k, g5) be the representative agent’s lifetime utility — see U in Equation
(4)—associated with the balanced growth optimal outcome for given initial endow-
ments, k and g, of private and public capital. It is then straightforward to show
that

y Inc
Viki, go) = — + —
P P

(35)

where y is determined in terms of «, 8 and p by Equations (20) and (16) and
¢ = (I —s)(1 — 1)y, is determined in terms of «, B, p, k, and g,; by Equations
(16), (22), (26) and (27). In other words, the lifetime utility associated with the
balanced growth outcome from time ¢ onwards is V (k;, g,;) and it is determined
entirely in terms of «, B, p, k; and gg;.
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Since all optimal paths converge to the balanced optimal growth path in finite
time, the social planner’s problem can be restated as follows: choose ¢;, g7, and T
to maximize

T

/e_’” Inc,dt + e ?TV (kr, go1)
0

subject to Equations (15) and
&t =Y —C — 8t (36)

as well as the boundary condition that k, = ko for 0 < ¢ < T, and that k, g0 and
gsT = ko/m are all given.

This is an optimal control problem with free terminal time and fixed terminal
values for the state variable g;, and the salvage term V (kr, g,7). The present value
Hamiltonian is H; = e ”" Inc¢, + i - (y — g5+ — ¢;) and the first order necessary
conditions are: Equation (36), dH,/dc; = 0H,/dgs = 0, —p1, = 0H,/0dg, and
the transversality condition H; + d(e *" - V (kr, gs7))/0t = 0 att = T, the date at
which the transition phase ends.®

The condition d H; /dg s; = 0 yields Equation (13) and the conditions 0 H; /¢, =
0 and —pi;, = 0 H,;/0dgs; together yield the first equality of Equation (14). By using
Equation (13) or, equivalently,

8fr = (I—a)- (1 —=pB)-yi(k;, gs1)

to eliminate gy, from Equation (36) and the first equality of Equation (14), we
obtain two differential equations in only two unknowns, ¢, and g, and their time-
derivatives. Therefore, these two differential equations, together with the boundary
conditions and the transversality condition, fully determine the general optimal
outcome for the my > m case.

Recall from Equation (27) that y, = y,(k;, g;) and, therefore, d0y,/dg,, =
ay; (k;, gs1)/ g5 all along the optimal path. It is straightforward to show that dy; (;,
gs1)/0gs; 1s increasing in k, and decreasing in gy,. Since k, is constant and g, is
increasing during the transition period, 0 < ¢t < T, dy,/0g,, is decreasing during
the transition period. This implies, by the first inequality in Equation (14), that
the growth rate of consumption, ¢, /c;, decreases during the transition phase of the
optimal path till it reaches the balanced optimal growth rate of y.

The transversality condition can be used to determine 7', the time it takes the
optimal path to merge with the balanced growth optimal path. It yields

e Iner + ur - (yr — g&fr —Cr) — e T p-Vikr,gr) =0
The optimality condition d H,/dc, = 0 implies iy = ! - ur = 1/cy, which then
turns the transversality condition to

n k » 88 —C
1IlCT-i-yT( ! fT) ! —p-Vikr, gr)=0
T




285

¢ /c

m =k /g,
m
Figure 6. The optimal growth rate of consumption, for arbitrary k;/gs;.

This equation determines cy and, therefore, ;7 in terms of the known parameters of
the model. Also, it can be shown that the present value co-state variable is equal to
the marginal lifetime present discounted utility of the corresponding state variable;
i.e.,

_ V(kr.gr)

“r
agsT

9

which determines pt7 in terms of the known parameters of our model.” Therefore,
T can then be determined because In iz = p - T + In 7 and both w7 and w7 are
determined.

2.2.2. Whenmy < m

The solution to the social planner’s problem for this case can be analyzed along
the lines of the moy > m case in section 2.2.1. Now g, = goofor0 < ¢t < T, k;
increases from ko to k7 = mgyo, and the optimal path once again merges with the
balanced growth optimal path at + = T, which can be determined implicitly as in
section 2.2.1. The growth rate of consumption is in this case given by

o _

¢, 0k,

Both 9y, /0dk; and, therefore, ¢,/c, decrease over time during the transition phase.
Att =T, ¢;/c; reaches the balanced optimal growth rate of y. The behavior of the
growth rate of consumption for the my < m and my > m cases can be consolidated
and expressed as follows: the farther m;, is from its balanced growth value, m, the
higher is y.; = ¢;/c; — see Figure 6.

This completes our discussion of the transition phase of the optimal outcome
for arbitrary ko and g;o. At the end of the transition phase, the optimal outcome
merges with the balanced growth optimal outcome of section 2.1.
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3. Special cases: limiting cases of the general model

In this section we will consider the special cases in which the parameter « in the
production function for the final good — see Equation (15) — takes on the values of
o = 0and o = 1. Our model reduces to Barro (1990) when @ = 0 and to Futagami
etal. (1993) when o = 1. As for §, the other parameter in the production function,
we will consider the 8 = 0 case to show, among other things, that long run growth
is possible in the absence of private capital.®

3.1. THE BARRO (1990) MODEL AS A LIMITING CASE

As the Barro model has only public services and not public capital, we set « = 0
in the production function given by Equation (15). This gives

=g k. (15B)

The social planner’s problem is now to maximize U in Equation (4) subject to
Equations (15B) and

kt =Yt —Ct — &ft- (3B)

The present value Hamiltonian is Hg, = e " In¢; + Ap, - [y — ¢, — g:]. The
first-order condjtions are given by (a) dHp,/dc; = 0, (b) dHp,;/dgs = 0 and (c)
3HB,/3kt - _)\.Bt.

Condition (b) implies Equation (13), which now takes the form

gre=U—=PB)y (13B)
Conditions (a) and (c) give us

¢t Ay
4+ L= 14B
P T ok (14B)
Using Equations (13B) and (15B), we obtain from Equation (14B) an expres-
sion for the optimal growth rate in the Barro model:

yvp=B- (1= PF_p (20B)

Note that (20B) is obtainable from our general model, simply by plugging in
o« = 0 in Equation (20).° It can be shown that 3 is increasing in B.

Equation (13B) implies that the proportion of total output that is used for the
provision of public services in Barro’s model is:

= (1-B). (22B)

Once again, note that (22B) is obtainable from our general model, simply by plug-
ging in ¢ = 0 in Equation (22).
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Finally, the optimal saving rate can be obtained, using (20B) and (22B) in the
expression for the saving rate:
1— 4

B-(1—p)a=pre"
Once again, note that (26B) is obtainable from our general model, simply by plug-
ging in @ = 0 in Equation (26). It is clear that sp is increasing in yp (and, therefore,
B) and decreasing in p.

S = (26B)

3.2. THE FUTAGAMI ET AL. (1993) MODEL AS A LIMITING CASE

As the Futagami model has only public capital and not public services, we set
« = 1 in the production function given by Equation (15). This gives

vi=gy "k (15F)

The social planner’s problem is now to maximize U in Equation (4) subject to
Equations (3), (15F) and the new government budget constraint

&st = T (2F)

The present value Hamiltonian is Hp, = e " Inc¢,+A,-[(1—7)-y, —¢; )+ g [T+
v;]. The first-order conditions are given by: (a).BH ri/0c; =0, (b) 0HE,/dT = 0,
(c) 0Hp,/08s = —jF, and (d) 0Hp,/0k; = —Apy.

From conditions (a)—(d) we obtain Equation (14), which, by way of Equation
(15F), leads to an expression for the optimal growth rate in the Futagami model: '’

vr=pF (1= —p. (20F)

Note that (20F) is obtainable from our general model, simply by plugging in
a = 1 in Equation (20).

The optimal tax rate for the Futagami model'! can be found from (2F), using
(20F) and (15F):

r=0-p)-1—p - pF.0-p¥ "] (22F)

Once again, note that (22F) is obtainable from our general model, simply by
plugging in « = 1 in Equation (22). As for our general model, the optimal tax
rate in the model with public capital is not independent of p. This is because
when the government chooses the tax rate in a model with public capital, it is
essentially choosing between current consumption versus deferred consumption
(i.e., diversion of resources towards public capital accumulation), and this does
involve the rate of time preference.

Finally, the optimal saving rate can be obtained, using (20F) and (22F) in the

expression for the savings rate:
sp=1- p . (26F)
BIHH (1= B)T=P + p.(1 = p)
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Once again, note that (26F) is obtainable from our general model, simply by
plugging in @ = 1 in Equation (26). It can be shown that sF is increasing in S.

3.3. THE GENERAL MODEL AND THE EXTREME CASES

As we have said before, since Barro (1990) incorporates public services but not
public capital and Futagami et al. (1993) has public capital but not public services,
neither paper can say anything definitive about how governments ought to allocate
resources between the provision of public services and the accumulation of public
capital. The only question that remains is whether we can “get by” with educated
guesses, based on these two papers, about how a more general model that includes
both public capital and public services would behave.

It is straightforward to show that the balanced optimal growth rate is lower in
Barro (1990) than in Futagami et al. (1993) — i.e., y5 < y& for any B and p;
compare Equations (20B) and (20F) — and that the share of output that is spent
on public goods is higher in Barro (1990) than in Futagami et al. (1993) — i.e,,
73 > 1p for any B and p; compare Equations (22B) and (22F). Since @ = 0 in our
general model yields Barro (1990) and o« = 1 yields Futagami et al. (1993), one
might be tempted to infer that in our general model, an increase in & would cause
an increase in y and a decrease in 7. But, as is shown in section 2.1, y is actually
U-shaped in « for all values of B and that t is also U-shaped in « for cases such
as p = 0.02 and B = 0.05 (see also Figures 2 and 3). This implies that more can
be learned from our general model about y and 7, to take just two variables, than
one could infer from Barro (1990) and Futagami et al. (1993). This may be seen
as a justification for our construction of a general model that encompasses Barro
(1990) and Futagami et al. (1993) because not even the qualitative behavior of the
general model — namely the signs of some important comparative static derivatives
— can be guessed by interpolating the corresponding results from the two extreme
cases. (Had y and T been monotonic in « in our model, one could have correctly
guessed that dy /do > 0 and d7/da < O in our general model by simply noting
that yg < yr and g > 7 and that @ = 0 gets us Barro (1990) and o« = 1 gets us
Futagami et al. (1993).)

3.4. MODEL WITHOUT PRIVATE CAPITAL: 8 =0 WITHO < o < 1

In this section we consider the extreme case of 8 = 0, which is a basic model
of growth without private capital. Although it is a special case of the model with
private capital, this model provides some interesting insights into the functioning
of a centrally planned economy where all capital is owned by the state. As we
will see, many of the results of this sub-section are obtainable from the previous
sub-section simply by setting 8 = 0.
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Putting 8 = 0 in (15) yields a production function
Vi =848 (15)

The government budget constraint remains as in (2), but the private budget
constraint (with k, = 0) simply reduces to

¢ =0-1)y 39

The social planner chooses 7 and g, to maximize U in Equation (4), subject to
Equations (15"), (2) and (3') and g0, the given initial endowment of public capital.

This maximization problem’s present value Hamiltonian is H, = e™” In[(1 —
)y ] + w: - [ty — g7 The first order conditions are: (a) dH;/dt = 0, (b)
0H,/dgs = 0and (c) 0H,/dgs; = —f1;. Conditions (a) and (b) imply

Ay
98 11
Conditions (a) and (c) imply

=1 -a)gy =1 (13"

i_ fy _ayt

Cr Mt B 0gs1
Equations (16’) and (14’) imply

—p=agy' —p (14)

o (1—a)/a p (20/)

o=y = g —p=a-(1-a

l—«

It is straightforward to show that y is decreasing in p, the discount rate, and
increasing in «.

Note that Equation (3') implies that y is also the optimal growth rate of GDP;
ie., ¥i = ¥:/¥:. So long-run growth is possible despite the absence of private
capital. Clearly, the expression for y in terms of g, is the same as in (20): only
sy 1s given by (16") instead of (16).

The optimal tax rate in this model is obtainable using (16'), (2), (15’) and (20'):

t=1-p-(-a) gy=1-p-(1-a)7 (22)

It is straightforward to check that the expression for t (in terms of gr) is
obtainable from (22) by putting 8 = 0, although g, is now given by (16).

In this model, it is clear that y, ¢, g; and g all grow at the same constant rate,
y, for all 7. In other words, the optimality conditions impose no restrictions on the
admissible values of gyy and, therefore, the economy is always on the balanced
growth path and there are no transitional dynamics.
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4. Conclusion

The premise of this paper has been that governments routinely juggle the needs of
public spending for the provision of public services, which are essentially a short-
term concern, with the need to accumulate public capital goods, which is a future-
oriented issue, and that it is important to get the mix right. The derivation of the
necessary conditions for the associated allocation problem has, therefore, been this
paper’s central objective. We also used the aforementioned necessary conditions
to derive the (comparative static) effects of changes in the economy’s fundamental
parameters (such as the elasticities of output with respect to public capital, public
services and private capital, and the consumers’ rate of time preference) on the
planner’s allocation decisions.

Appendix

Let mg > m, as in section 2.2.1. We know from Equation (34) that m, will decrease
over time along the transition phase of the optimal path. The question that was
left unresolved in section 2.2.1 was whether m, would become equal to m — its
balanced growth value; see Equation (17) —in finite time or forever approach closer
to m without ever reaching it. In this appendix, we will show that if the balanced
optimal growth rate — see y in Equation (20) — is positive, m; will reach m in finite
time.

Let us assume, to the contrary, that the optimal solution never merges with the
balanced growth optimal path and that, therefore, m, > m for all ¢. Then, Equation
(34) implies that the optimal path would have g;; > 0 and k, = ko for all 7. In
this case, the social planner’s problem can be restated as the choice of ¢; and g,
to maximize lifetime utility —i.e., U in Equation (4) — subject to Equation (36) and
the boundary conditions that ky and g, are given.

The first-order necessary conditions are: Equation (13), the first equality of
Equation (14) and Equation (36). This is a basic Ramsey-Cass-Koopmans optimal
growth problem for which, as is well known, the long run rate of growth is zero.'2
By setting ¢, = g;; = 0 in the necessary conditions, we get

B
(hm m,) = mgo = qUm0U=p=1 (| _ y)~(-a(-p)

[—0o0

(1= ﬂ)—l . pl—(l—a)(l—ﬁ)

By our assumption, mgo > mf = ﬁﬁ - (1 — ﬁ)_ﬂ - o P It can be checked,

however, that, by Equations (16) and (20), y > 0 implies m‘go < m?, a contradic-
tion. Therefore, y > 0 implies the convergence of the optimal growth path to the
balanced optimal growth path in finite time.

A similar argument applies for the my < m case. QED
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Notes

1. For more on these issues, see Aschauer (1989), Easterly and Rebelo (1993), and Turnovsky and
Fisher (1995).

2. This global convergence result is a familiar feature of the literature on optimal growth with two
state variables. For more on this literature, which focuses on the Uzawa-Lucas model with physical
and human capital, see Barro and Sala-i-Martin (1995, chapter 5, appendix 5B), Mulligan and Sala-
i-Martin (1993) and Caballé and Santos (1993).

3. A variable name with a dot on top indicates that variable’s time derivative.

4. See Arrow and Kurz (1970, chapter II, section 6, Proposition 7). See Barro and Sala-i-Martin
(1995, Appendix on Mathematical Methods, section 1.3.9) on the necessity of the transversality
condition. It can be checked that the Hamiltonian is strictly concave in the state and control variables.
Consequently, any outcome that satisfies the necessary conditions is the unique optimal outcome.
That is, the necessary conditions also imply sufficiency and uniqueness. See Seierstad and Sydsaeter
(1977) and Beavis and Dobbs (1990, p. 328 and Theorem 7.10).

5. Continuing our discussion of the literature on optimal growth with two state variables in the Intro-
duction — see note 2 — it should be pointed out that, unlike our analysis in this section, this literature
does not analyze transitional dynamics for the case in which consumption and investments in the
two capital goods can be transformed into each other according to a linear point-in-time technology.
Mulligan and Sala-i-Martin (1993) deal with this difficulty by allowing infinite rates of investment
or, equivalently, “jumps” in their state variables — see their “Interesting Result 8 and section VIla.
This is something that we have specifically ruled out given our conception of the natures of our two
capital goods. It is hard to think of an economic scenario that could justify a jump in our capital
goods except perhaps a massive infusion of foreign aid or a major disaster and in neither case would
these jumps be under the government’s control.

6. See Kamien and Schwartz (1991, Part II, Section 7, p. 160). The applicable necessary conditions
are their conditions a, b, ¢ and d(v).

7. See Kamien and Schwartz (1991, Part I1, Section 4, Equation (7)).

8. When 8 = 1, our model reduces to the classic AK model without public goods — see Barro and
Sala-i-Martin (1995, section 4.1).

9. In all three special cases considered in this section the existence of the balanced growth optimal
path can be established as in section 2.1.

10. Note, though, that this expression is not provided explicitly by Futagami et al. (1993).

11. Futagami et al. (1993) do not derive an expression for the tax rate for the social optimum, which
is given here by Equation (22F). The focus of their paper is to demonstrate that in a model with public
capital (unlike Barro (1990)), the welfare-maximizing tax rate for the market economy is different
from (i.e., lower than) the growth-maximizing tax rate, due to the existence of transitional dynamics.
12. See Arrow and Kurz (1970, chapter I1I).
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