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Abstract

We consider congestion control in a non-stationary queueing system. Assuming that the arrival and service

rates are bounded, periodic functions of time, a Markov decision process (MDP) formulation is developed.

We show under the infinite horizon discounted and average reward optimalitycriteria, for each fixed time,

optimal pricing and admission control strategies are non-decreasing in the number of customers in the sys-

tem. This extends stationary results to the non-stationary setting. Despite this result, the problem still seems

intractable. We propose an easily implementablepointwise stationary approximation(PSA) to approximate

the optimal policies, suggest a heuristic to improve the implementation of the PSA andverify its usefulness

via a numerical study.



DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT 

Pricing and Admission Control in Non-Stationary Queues 1

1 Introduction

Advances in telecommunications technology have sparked recent interestin real-time revenue management

for multi-class queueing systems. When the system capacity is finite, a decision-maker must dynamically

allocate resources while maintaining revenue maximization considerations. By and large this is achieved by

two congestion control mechanisms; pricing control and admission control. Pricing control is used when a

customer’s priority or class cannot be discerned upon arrival. As the system becomes more congested, the

price for admittance can be raised so that the number of arriving customersis reduced. By contrast, when

a customer’s class is revealed upon arrival, the revenue maximization and congestion control dilemmas can

be alleviated via admission control. As in the pricing problem, lower priority customers are more likely to

be admitted when the system is not operating close to capacity. The difference in the two scenarios, while

subtle, is distinct in that the amount of information available to the decision-makerand the reward received

is quite different. The pricing controller sets a price without knowing the class of an arriving customer and

may only receive that price while the admission controller receives the exact reward offered by admitted

customers.

The vast majority of the literature on congestion control assumes that the arrival and service processes

are stationary; independent of the current time. Under this assumption, a decision-maker making pricing

or admission control decisions needs only know the current number of customers in the system. With the

added complication of non-stationary arrival and/or service processes, when a customer arrives, the decision-

maker needs to know the current number of customers in the systemand the current time. This makes the

problem of finding the optimal decision intractable. The main theoretical contribution of this paper is that,

under reasonable assumptions, many of the structural results of the stationary case can be extended to the

non-stationary problem. In particular, when the arrival and service rates vary in a known periodic fashion,

an intuitive result continues to hold; as the congestion increases in the pricing problem the optimal price

increases and in the admission control problem, the admittance requirements become more strict.

This (unfortunately) does not complete the picture. In contrast to the infinitehorizon stationary problem,

the optimal decisions in either scenario are not static for each congestion level. Thus, while the structural
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results suggest for each fixed time, we can restrict attention to monotone policies, this restriction does

not make the search for optimal policies simple. To exploit the connection between the stationary and

non-stationary cases, we suggest apointwise stationary approximation(PSA) scheme that allows for the

decisions to be monotone in the congestion level, but dynamic in time. Since we useresults from the

stationary problem to implement the approximation, the procedure is intuitive andeasily implementable.

We then compare several refinements of the PSA to the average reward stationary policies that are used in

practice.

With the growth of Internet service providers and mobile network service providers, the study of conges-

tion control in queueing systems with non-stationary arrivals have centered around the telecommunication

industries. The focus of most of the work on non-stationary queueing systems has been on obtaining in-

sights for fixed polices. For example, Massey and Whitt [13] obtain the meannumber of busy servers and

the time lag between the maximum arrival time and the actual peak congestion time fora system without

control. The same authors discuss stationary approximations to non-stationary problems in [12]. Green

and Kolesar [3, 4] use a pointwise stationary approximation for the congestion in a non-stationary system.

Although, in the present study we use the same term, “PSA”, to relate to a dynamic control scheme rather

than the estimation of congestion levels, the concept is quite similar.

Monotone policies in admission control were originally discussed by Yadin and Naor [18], Heyman [6],

Lippman and Ross [9] and Miller [15]. Monotone policies in pricing control was considered by Low [11]

and more recently by Paschalidis and Tsitsiklis [16], Feng and Xiao [1] andFu, Markus, and Wang [2].

None of the models deal with the periodic non-stationary extension presentlyconsidered.

The remainder of the paper is organized as follows. In Section 2 we formulate the problems as Markov

decision processes (MDPs) and introduce the optimality criteria of interest (discounted and average reward).

We prove the existence of monotone optimal policies under each optimality criterion in Section 3. In Sec-

tion 4 we compare the average reward pricing and admission control models numerically and introduce the

pointwise stationary approximation heuristic. The concluding remarks follow inSection 5.
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2 Model Formulation

Consider a single commodity queueing system with finite capacitym over an infinite planning horizon.

Customers arrive according to a non-homogeneous Poisson process with rateΛ(t) > 0 for all t. Each

customer belongs to one of several classesj ∈ {1, . . . , ℓ}. Classj customers have a reservation price

pj < ∞, and the probability that an arrival at timet is a classj customer isqj(t) ∈ (0, 1), such that

∑ℓ
j=1 qj(t) = 1 for eacht. In the pricing scenario (from now on called thepricing control problem), if an

arriving customer sees a price lower than the reservation price, the priceis paid and the customer enters the

system. Otherwise the customer is lost forever. In theadmission control problem, upon arrival the customer

reveals the reservation price and is either accepted or rejected; rejectedcustomers are lost forever. Let the

setA ≡ {p0, p1, . . . , pℓ} be the set of possible reservation prices (p0 will be used to model a full system),

and without loss of generality, assume thatp0 > p1 · · · > pℓ > 0. It should be clear that the decision-maker

in the pricing control problem would never set a price outside of the setA since it would only result in lost

revenue.

Let the arrival rate of classj customers be denotedβj(t) ≡ qj(t)Λ(t), j ∈ {1, . . . , ℓ}. When pricea is

set, the customers that actually enter the buffer form a Poisson process with rateλa(t) ≡
∑w(a)

j=1 βj(t), where

w(pj) ≡ j. The service process is assumed to be exponential with rateµi(t) when there arei customers

in the system at timet. We assume thatµ0(t) = 0, µ1(t) > 0 andµi(t) is non-decreasing and concave

in i. Sinceµi(t) is not assumed to be strictly non-decreasing ini, buffer space can be modelled by setting

µi+1(t) = µi(t) for all i ≥ i′ for somei′. Assume that the functionsΛ(t), qj(t) andµi(t) are measurable,

bounded, periodic functions with periodT for all j ∈ {1, 2, . . . , ℓ} and i ∈ {0, 1, . . . , m}. Define the

maximal transition rateΨ ≡ supt∈[0,T ){Λ(t) + µm(t)}. We applyuniformization(see Lippman [8]) with

uniformization constantΨ, so that we may consider discrete-time problems instead of the continuous-time

problems described in Section1. This has the effect of scaling the actual rewards by a constant, but has

no effect on the optimal policies (in either case). In addition to arrival anddeparture times, we embed the

times corresponding to the beginning of a new period;0, T, 2T, etc. Thus, if{σt, t = 0, 1, . . .} represents
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the sequence of decision epochs,σt+1 − σt is the minimum of an exponential with rateΨ and the residual

time left in the current period.

In each problem, when the system is in a statex the decision-maker chooses from a set of available

actions; a set of admission prices in the pricing control problem and either accept or reject in the admission

control problem. A decision rule is a function,d, from the state space to the action space that describes what

action will be taken for each state of the system at a particular time. A policyπ is a sequence of decision

rules, i.e.,π = {d0, d1, . . .} ∈ Π whereΠ is the set of all non-anticipating policies. Each policy generates

a sequence of random variables{(Xt, dt(Xt)) : t = 0, 1, . . .} whereXt denotes the state of the system

anddt(Xt) denotes the action chosen by decision ruledt in stateXt at decision epocht. Let r(x, a) be the

expected reward when the system is in statex and actiona is chosen. Then−stage,α−discounted expected

reward of the policyπ given that the initial state isx is given by

V π
n,α(x) ≡ E

π
x

[

n−1
∑

t=0

e−ασtr(Xt, dt(Xt))

]

,

whereE
π
x denotes expectation with respect to the probability measure determined by the initial statex and

the policy π, {σt, t = 0, 1, . . .} represents the sequence of event times andα ∈ R
+. Without loss of

generality, assume thatα + Ψ = 1. Note that although policies are defined for the infinite horizon,V π
n,α(x)

is only defined for a finite number of steps. In this case, only that portion ofthe policy that corresponds

to the appropriate time horizon is used. Since the rewards we consider are bounded and non-negative

the above expectation is guaranteed to exist. Define theα−discounted expected reward to beV π
α (x) ≡

limn→∞ V π
n,α(x). Similarly, whenα = 0 define the long-run average expected reward (orgain) to be

Gπ(x) ≡ lim infn→∞ V π
n,0(x)/n. Consider the value functions and criterion given in Table 1.

A policy whose expected reward achieves the supremum in one of these criteria (for all states) is called

optimal under that criterion. Moreover, although we view the finite horizon case as interesting, we are

actually most interested in the infinite horizon discounted and average reward cases. For the remainder

of the paper we differentiate quantities identified with the pricing control problem from those with the

admission control problem by using superscriptsP andC, respectively.
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Value Function Criterion
Vn,α(x) ≡ supπ∈Π V π

n,α(x) [Finite Horizon]
Vα(x) ≡ supπ∈Π V π

α (x) [Infinite Horizon Discounted]
G(x) ≡ supπ∈Π Gπ(x) [Long-run Average]

Table 1: OPTIMALITY CRITERION CONSIDERED.

2.1 The Pricing Control Problem

Since the arrival and service rates are periodic functions of time, from the decision-maker’s perspective

under the infinite horizon discounted and average reward criteria the actual period within which events

occur is not of importance. This fact is easily seen from theprinciple of optimalitysince a decision-maker

that seesi customerss time units into the current period is faced with precisely the same dilemma if there

arei customers in the systems time units into the next period. In the pricing control problem this means

that only the current time since the last period, the number of customers currently in the system, and the

type of event that has just occurred (departure, arrival, or dummy transition due to uniformization) need to

be included in the state space. LetX
P ≡ {(i, j, z)| i ∈ {0, 1, . . . , m}, j ∈ {−1, 0, 1}, andz ∈ [0, T )} be

the state space, where at relative timez (the current time modulo T),i represents the number of customers

in the system,j = 1 denotes a customer’s arrival,j = −1 a departure, andj = 0 a “dummy” transition due

to uniformization. Note that one may conjecture that the second element of the state space is superfluous.

However, recall that the model we propose only requires pricing decisions be made at arrival times. This

is facilitated by inclusion of the “transaction type”j. The set of available actions in state(i, 1, z) ∈ X
P ,

denotedAP
i , is

AP
i =

{

{p1, . . . , pℓ} if i < m;

{p0} if i = m.

Qa(t) ≡
∑w(a)

j=1 qj(t) = λa(t)/Λ(t) is the probability that given an arrival has just occurred at timet

and pricea is set, the arrival has a class higher thana (recall class 1 is the highest class). For a functionf
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on the state space, define the mappingUP
α

(UP
α f)(i, z) ≡

∫ T

z

[Λ(t)f(i, 1, t) + µi(t)f(i,−1, t)

+ (Ψ − Λ(t) − µi(t)f(i, 0, t)]e−(t−z)dt + e−(T−z)f(i, 0, 0).

Intuitively, (UP
α f)(i, z) represents the total expected reward as measured byf starting from the next decision

epoch, given that there are currentlyi customers in the system atz time units into the period. LetvP
0,α ≡ 0

and consider the following systems of equations for(i, j, z) ∈ X
P ,

vP
n,α(i, j, z) =























maxa∈AP
i
{Qa(z)(a + (UP

α vP
n−1,α)(i + 1, z))

+(1 − Qa(z))(UP
α vP

n−1,α)(i, z)} if 0 ≤ i < m, j = 1;

(UP
α vP

n−1,α)(i − 1, z) if 0 < i ≤ m, j = −1;

(UP
α vP

n−1,α)(i, z) otherwise,

(2.1)

gP + hP (i, j, z) =























maxa∈AP
i
{Qa(z)(a + (UP

0 hP )(i + 1, z))

+(1 − Qa(z))(UP
0 hP )(i, z)} if 0 ≤ i < m, j = 1;

(UP
0 hP )(i − 1, z) if 0 < i ≤ m, j = −1;

(UP
0 hP )(i, z) otherwise,

(2.2)

The first system, (2.1), are thefinite horizon optimality equations(FHOE) and (2.2) theaverage opti-

mality equations(AOE). If we replacevP
n,α andvP

n−1,α with vP
α in (2.1) we have thediscount optimality

equations(DOE). If there exists a solution to the FHOE thenvP
n,α(x) = V P

n,α(x). Similarly, for the DOE

(whenα > 0) vP
α (x) = V P

α (x). The existence in either case is guaranteed since the rewards are bounded

and the action space is finite (cf. Theorem 11.3.2 of [17]). A solution to the AOE is a little more subtle since

the recurrent class structure must be considered. However, for the problem we consider a solution(gP , hP )

impliesgP = GP (x) (for all x) while hP is unique up to an additive constant and is called arelative value

function.
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2.2 The Admission Control Problem

In an analogous manner to the previous section, since we are interested in the infinite horizon problems, the

decision-maker is indifferent to which period decisions are being made. The state and action spaces for the

admission control problem are

X
C ≡ {(i, j, z)| i ∈ {0, 1, . . . , m}, j ∈ {−1, 0, 1, . . . ℓ}, andz ∈ [0, T )}

AC
i =

{

{accept, reject} if i < m andj > 0;

{reject} if i = m andj > 0.

wherei ≤ m, j ≤ 0 andz ∈ [0, T ) are as in the pricing control model andj > 0 denotes an arrival of class

j. Define the mappingUC
α for a function,f , on the state space to be

(UC
α f)(i, z) ≡

∫ T

z

[

ℓ
∑

j=1

βj(t)f(i, j, t) + µi(t)f(i,−1, t) + (Ψ − Λ(t) − µi(t)f(i, 0, t)]e−(t−z)dt

+ e−(T−z)f(i, 0, 0).

The analogous systems to (2.1) and (2.2) follow (vC
0,α = 0)

vC
n,α(i, j, z) =























max{pj + (UC
α vC

n−1,α)(i + 1, z),

(UC
α vC

n−1,α)(i, z)} if 0 ≤ i < m, j ≥ 1;

(UC
α vC

n−1,α)(i − 1, z) if 0 < i ≤ m, j = −1;

(UC
α vC

n−1,α)(i, z) otherwise,

(2.3)

gC + hC(i, j, z) =























max{pj + (UC
0 hC)(i + 1, z),

(UC
0 hC)(i, z)} if 0 ≤ i < m, j ≥ 1;

(UC
0 hC)(i − 1, z) if 0 < i ≤ m, j = −1;

(UC
0 hC)(i, z) otherwise.

(2.4)

Again replacingvC
n,α andvC

n−1,α with vC
α yields the DOE. The first element in each maximum refers to

accepting the arriving customer and the second corresponds to rejection.
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3 Monotone Optimal Policies

In this section we show the existence of non-decreasing optimal pricing strategies and optimal control levels.

To this end, we show that the result holds in the finite horizon case and then extend to the infinite horizon

models. To ease notation, let the set of non-increasing, concave functions (the domain will be clear from the

context) be denoted byDC. We find the following results from Lippman and Stidham [10] useful.

Lemma 3.1 (Lippman and Stidham (1977))The following hold.

1. If H(i) ≡ µif(i − 1) + (µ̃ − µi)f(i), wheref(i) ∈ DC andµ̃ = maxi{µi}, thenH(i) ∈ DC.

2. Letr ≥ 0 be fixed and letg(i) ≡ max{r + f(i + 1), f(i)}. Then g is concave iff is concave.

We note that it is simple to show thatµ̃ can be replaced with any upper bound ofµ̃. For a functionf define

the first and second differences,∆f(i) ≡ f(i + 1) − f(i) and∆2f(i) ≡ ∆f(i + 1) − ∆f(i), respectively.

Although these mappings will be applied to functions of more than one variable,they will always correspond

to the differences of the first element.

Lemma 3.2 In the discounted finite horizon problem,V P
n,α(i, j, z), (UP

α vP
n,α)(i, z) ∈ DC as a function ofi

for all n ≥ 0, for each fixedj, z andα.

Proof. SincevP
n,α = V P

n,α, it suffices to show the result holds for solutions to the FHOE. By induction.For

n = 0 the results hold trivially. Suppose they hold forn − 1. We first show that(UP
α vP

n−1,α)(i, z) ∈ DC

impliesvP
n,α(i, j, z) ∈ DC. It should be clear that this holds forj = −1, 0 since

vP
n,α(i, 0, z) = (UP

α vP
n−1,α)(i, z) vP

n,α(i,−1, z) = (UP
α vP

n−1,α)(i − 1, z).

Consider the case withj = 1, suppressj andz (since they are fixed) and recalldP
n (i) represents the

optimal price when in state(i, 1, z). Suppose the decision-maker uses the potentially sub-optimal action

dP
n (i + 1) in state(i, 1, z). Then

vP
n,α(i, 1, z) ≥ QdP

n (i+1)(U
P
α vP

n−1,α)(i + 1, z) + (1 − QdP
n (i+1))(U

P
α vP

n−1,α)(i, z), (3.1)
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while

vP
n,α(i + 1, 1, z) = QdP

n (i+1)(U
P
α vP

n−1,α)(i + 2, z) + (1 − QdP
n (i+1))(U

P
α vP

n−1,α)(i + 1, z), (3.2)

Subtracting (3.1) from (3.2) yields

∆vP
n,α(i, 1, z) ≤ QdP

n (i+1)(∆UP
α vP

n−1,α)(i + 1, z) + (1 − QdP
n (i+1))∆(UP

α vP
n−1,α)(i, z) (3.3)

Thus, since∆(UP
α vP

n−1,α)(i, z) ≤ 0 for i andz arbitrary,vP
n,α is non-increasing ini for all n as desired.

On the other hand, to get the concavity supposedP
n (i) is employed in(i + 1, 1, z). The FHOE yields

∆vP
n,α(i, 1, z) ≥ QdP

n (i)∆(UP
α vP

n−1,α)(i + 1, z) + (1 − QdP
n (i))∆(UP

α vP
n−1,α)(i, z). (3.4)

Combining (3.3) (for(i + 1, 1, z)) and (3.4)

∆2vP
n,α(i, 1, z) ≤ QdP

n (i+2)∆
2(UP

α vP
n−1,α)(i + 1, z) + (1 − QdP

n (i))∆
2(UP

α vP
n−1,α)(i, z). (3.5)

Thus,∆2vP
n,α ≤ 0 and we havevP

n,α ∈ DC.

It remains to show thatvP
n,α ∈ DC implies(UP

α vP
n,α)(i − 1, z) ∈ DC. Recall

(UP
α vP

n,α)(i, z) ≡

∫ T

z

[

Λ(t)vP
n,α(i, 1, t) + µi(t)v

P
n,α(i,−1, t)

+ (Ψ − Λ(t) − µi(t))v
P
n,α(i, 0, t)

]

e−(t−z)dt + e−(T−z)vP
n,α(i, 0, 0).

The result now follows from the linearity of the difference operator and part 1 of Lemma 3.1.

The next result asserts the existence of monotone optimal policies in the finite horizon case.

Theorem 3.3 Under the finite horizon optimality criterion, for each fixed timez ∈ [0, T ), the optimal

price at stagen when there arei customers in the system, denoteddP
n (i) (sincej andz are fixed), is non-

decreasing ini.
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Proof. Fix z ∈ [0, T ) andα ≥ 0. ClearlydP
n (m) > dP

n (m − 1) sincedP
n (m) = p0. Thus, we must show

dP
n (i + 1) ≥ dP

n (i), 0 ≤ i ≤ m − 2. Let dP
n (i) be the optimal price when in state(i, 1, z). Suppose the

decision-maker uses the potentially sub-optimal actiondP
n (i + 1) in state(i, 1, z). Then

vP
n,α(i, 1, z) ≥ QdP

n (i+1)(z)(dP
n (i + 1) + (UP

α vP
n−1,α)(i + 1, z))

+ (1 − QdP
n (i+1)(z))(UP

α vP
n−1,α)(i, z),

(3.6)

while

vP
n,α(i + 1, 1, z) = QdP

n (i+1)(z)(dP
n (i + 1) + (UP

α vP
n−1,α)(i + 2, z))

+ (1 − QdP
n (i+1)(z))(UP

α vP
n−1,α)(i + 1, z),

(3.7)

Subtracting (3.6) from (3.7) yields

∆vP
n,α(i, 1, z) ≤ QdP

n (i+1)(z)∆(UP
α vP

n−1,α)(i + 1, z)

+ (1 − QdP
n (i+1)(z))∆(UP

α vP
n−1,α)(i, z)

(3.8)

Similarly, if we use actiondP
n (i) in state(i + 1, 1, z). The FHOE imply

∆vP
n,α(i, 1, z) ≥ QdP

n (i)(z)∆(UP
α vP

n−1,α)(i + 1, z)

+ (1 − QdP
n (i)(z))∆(UP

α vP
n−1,α)(i, z)

(3.9)

(i, 1, z). Combining (3.8) and (3.9) we obtain

(QdP
n (i+1)(z) − QdP

n (i)(z))∆2(UP
α vP

n−1,α)(i, z) ≥ 0.

Lemma 3.2 implies∆2(UP
α vP

n−1,α)(i, z) ≤ 0. There are two possibilities to consider. First, suppose that

∆2(UP
α vP

n−1,α)(i, z) = 0. Note that the FHOE forj = 1 may be rewritten,

vP
n,α(i, 1, z) = (UP

α vP
n−1,α)(i, z) + max

a∈A(x)
{Qa(z)(a + ∆(UP

α vP
n−1,α)(i, z))}
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Our assumption on∆2(UP
α vP

n−1,α)(i, z) = 0 implies

max
a∈A(x)

{Qa(z)(a + ∆(UP
α vP

n−1,α)(i, z))} = max
a∈A(x)

{Qa(z)(a + ∆(UP
α vP

n−1,α)(i + 1, z))}

and there exists an optimal policy such thatdP
n (i) = dP

n (i + 1).

Suppose now that∆2(UP
α vP

n−1,α)(i, z) < 0. Then,QdP
n (i+1)(z) − QdP

n (i)(z) ≤ 0. SinceQa(z) is

(strictly) decreasing ina, this implies thatdP
n (i + 1) ≥ dP

n (i) for each fixed time.

Lemma 3.4 In the discounted finite horizon admission control problem,V C
n,α(i, j, z), (UC

α vC
n,α)(i, z) ∈ DC

as a function ofi for all n, for each fixedj, z andα.

Proof. By induction. The case forn = 0 is trivial. Assume that the results hold forn − 1. The fact

that (UC
α vC

n−1,α)(i, z) ∈ DC implies vC
n,α(i, j, z) ∈ DC follows in the same manner as Lemma 3.2 for

j = −1, 0. Whenj > 0 using the optimal admission control decision for state(i + 1, j, z) in state(i, j, z)

implies

∆vC
n,α(i, j, z) ≤

{

∆(UC
α vC

n−1,α)(i + 1, z) if dC
n (i + 1, j, z) = accept,

∆(UC
α vC

n−1,α)(i, z) if dC
n (i + 1, j, z) = reject.

(3.10)

Thus,vC
n,α(i, j, z) is non-increasing. Part 2 of Lemma 3.1 implies the concavity. To showvC

n,α(i, j, z) ∈ DC

implies(UC
α vC

n,α)(i, z) ∈ DC, apply the same argument as Lemma 3.2.

Theorem 3.5 For each fixed timez ∈ [0, T ), the optimal admission control policy when there arei cus-

tomers in the system at stagen, denoteddC
n (i, j, z), is non-decreasing ini under the finite horizon optimality

criterion. That is, there exists control limitsηn(j, z) such that

dC
n (i, j, z) =

{

accept(0) if i ≤ ηn(j, z);

reject(1) if i > ηn(j, z).
(3.11)

Furthermore,ηn(j, z) is non-increasing inj for each fixed timez.
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Proof. Note that it is optimal to accept (reject) at stagen if pj +∆(UC
α vC

n−1,α)(i, z) ≥ (<) 0. Let i′ be the

smallesti such thatpj + ∆(UC
α vC

n−1,α)(i, z) < 0 (letting i′ = m if none exists). Since Lemma 3.4 implies

∆(UC
α vC

n−1,α)(i′, z) ≥ ∆(UC
α vC

n−1,α)(i′ + 1, z) we havepj + ∆(UC
α vC

n−1,α)(i, z) < 0 for all i ≥ i′ and

reject is optimal for each suchi. Hence, if we setηn(i, z) = i′ the proof is complete.

The last claim follows from the fact that the acceptance (rejection) criterion when in state(i, j, z) for

j > 0 is pj + ∆(UC
α vC

n−1,α)(i, z) ≥ (<) 0 and the assumption thatp1 > p2 > · · · > pℓ.

3.1 Infinite Horizon Monotone Optimal Policies

The main theoretical result of the paper is stated in the following theorem.

Theorem 3.6 For each fixed timez, under both the infinite horizon discounted and average reward opti-

mality criteria the following hold

1. In the pricing control problem there exists an optimal policy such that theadmission price, when there

are i customers in the system, is non-decreasing ini.

2. In the admission control problem there exists an optimal policy such thatfor each classj there are

control limits η(j, z) such that the decision-maker accepts (rejects) classj customers ifi ≤ (>

) η(j, z). Furthermore,η(j, z) is non-increasing inj.

The results of the previous sections suggest that to prove Theorem 3.6 itsuffices to show that the value

functions for each infinite horizon model are concave ini. To this end, we note that the concavity in

the infinite horizon discounted case is achieved virtually immediately by letting the horizon length go to

infinity in Lemmas 3.2 and 3.4. The concavity of the relative value functions in theaverage reward case

requires several technical assertions. We then let the horizon length goto infinity in the undiscounted (and

normalized) finite horizon problem to get the result. This is detailed in the next proposition.

Proposition 3.7 For the pricing and admission control models,gk
n(x) ≡ V k

n,0(x) − V k
n−1,0(x) → gk and

hk
n(x) ≡ V k

n,0(x) − V k
n,0(y) → hk(x), ∀x ∈ X

k, wherey is an arbitrary (fixed) state inX
k, (gk, hk)
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satisfies the AOE, andk = P, C for the pricing and admission control models, respectively. Furthermore,

this convergence is uniform on compact subsets ofX
k.

Proof. See Appendix

The following lemma is an immediate consequence of Lemmas 3.2, 3.4, Proposition 3.7and the obser-

vation that∆V P
n,1(i, z) = ∆hP

n (i, z). It completes the proof of Theorem 3.6.

Lemma 3.8 In the pricing and admission control models, the value functions for the infinitehorizon dis-

counted reward problem and the relative value function for the average reward problem are non-increasing

and concave ini. Similarly for(Uk
αvk

α)(i, z) and(Uk
0 hk)(i, z), wherek = P, C.

4 Pointwise Stationary Approximations

The results of the previous section imply a close relationship between the non-stationary and stationary

versions of congestion control problems. In fact, for each fixed time, wehave shown that the intuition for

the optimal policy is precisely the same; the more congested the network becomes, the more strict should

be the admission structure. This intuition does not carry over in all non-stationary models as an example in

Lewis, Ayhan, and Foley [7] exhibits. Furthermore, this observation does not stand to make the solution of

the non-stationary problems simple since the problems remain uncountable state space MDPs. In fact, even

approximating these problems with a discretization of the time horizon quickly becomes computationally

intensive for problems of reasonable size.

With this in mind, we present a pointwise stationary approximation to the non-stationary problem and

verify that it achieves an average reward that is quite close to optimal. Our numerical study shows that

it can be a considerable improvement over the stationary policy that is often used in practice. Note that

although in this section we only consider the average reward case, a similar analysis could be performed for

the discounted case. A brief description of the PSA follows.

Choose a set ofγ points, sayS ≡ {τ1, τ2, . . . , τγ}, whereτ1 = 0 andτγ = T in the period[0, T ]

and consider a sequence of stationary problems. For the nth problem,n ∈ {1, 2, . . . , γ}, λ(t) = λ(τn),
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µi(t) = µi(τn) for i = 0, 1, . . . , m, andqj(t) = qj(τn) for j ∈ {1, 2, . . . , ℓ} for all t. That is to say, we

solve thestationarypricing (or admission) problem with the parameters for each fixed timeτn and obtain

the optimal (stationary) policy denoted{fk
τn

(i), i = 0, 1, . . . , m} for k = P, C.

Definition 4.1 The pointwise stationary approximation for the setS is defined to be the non-stationary

policy dP (i, t) = fP
τn

(i) for pricing control anddC(i, j, t) = fC
τn

(i, j) for admission control, fort ∈

[τn, τn+1) andn = 1, 2, . . . , γ − 1.

In essence the PSA is the piecewise linear policy that uses the optimal policy for the stationary problem at

several points during the period in hopes that the optimal non-stationary policy can be closely approximated

in this manner. This exploits the fact that the structure of the optimal policy is the same for the stationary and

non-stationary problems and is a quite intuitive way of congestion control in practice. Equally important is

the observation that the stationary problem may be solved via solution of the optimality equations from one

of the well-known solution techniques for MDPs, for example policy iteration or value iteration.

One might notice that we have made no mention of how the setS is chosen. An obvious implementation

would be to choose the number of points one would like to include inS and space them equally on the

interval. This has the drawback that it ignores the observation that congestion (not time) is the driving force

behind changes in the optimal policy. As an alternative, we propose a PSA that attempts to track times of

peak congestion and adjust the policy accordingly. Define theinstantaneous congestion

ρ(t) =
Λ(t)

µm(t)

for t ∈ [0, T ). For the remainder of the section, we assume thatρ(t) is continuous and differentiable

for all t ∈ [0, T ). We contend that this is not much of a restriction since we can replace the derivative

condition contained in the third step of the algorithm below with a similar condition on left-hand derivatives,

while discontinuous functions can be approximated by continuous functions. We next define the “distance”

between two stationary policies atτn1
andτn2

for each problem considered. In the pricing control problem

let

DP (fP
τn1

, fP
τn2

) ≡ max
0≤i≤m−1

|w(fP
τn1

(i)) − w(fP
τn2

(i))|.
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This represents the largest change in the action chosen (in each state) for different policies in the stationary

problem. Similarly, in the admission control problem, assume thatfC
τn1

andfC
τn2

are stationary policies that

are of the form of the optimal policy (i.e. have control limits) and let

DC(fC
τn1

, fC
τn2

) ≡ max
1≤j≤ℓ

|η(j, τn1
)) − η(j, τn2

)|.

Note that this represents the maximum difference in the admission control limits forthe stationary policies

fC
τn1

andfC
τn2

.

The instantaneous congestion based PSA(ICPSA) is described for the pricing control problem by the

following algorithm (the admission control problem would be approximated analogously):

1. Setn = 1.

2. ComputefP
τn

from the stationary problem (recallτ1 = 0).

3. Letτ∗ = inf{t > τn|ρ
′(t) = 0}, where the infimum of the empty set if taken to beT .

4. ComputefP
τ∗ from the stationary problem and setn′ = n + 1 + DP (fP

τn
, fP

τ∗). If τ∗ = T use the left

hand limits ofλa(t) andµi(t) for eacha andi ast approachesT .

5. Choose{τn+1, . . . , τn′−1} equally spaced betweenτn andτ∗ and computefP
τk

for τk ∈ {τn+1, . . . , τn′−1}.

6. Letn = n′. If τn = T . Stop. Otherwise return to step 2.

Steps 3, 4, and 5 make up the crux of the ICPSA algorithm. The construction includes all times that the

derivative of the instantaneous congestion is zero as well as the beginning and end of the period. Between

these times, the number of points used is set equal to the largest change in thepricing action. This policy

has the desirable property that more time points are placed between times when the optimal stationary

approximation makes a significant change in the policy. When the algorithm is complete, the set{fP
τn
} is

defined and thus, so is the corresponding ICPSA policy.
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In order to compare the equally spaced PSA and the ICPSA to what is currently done in practice we

define the nominal arrival and service rates

β̄j ≡

∫ T

0 βj(t)dt

T
and µ̄i ≡

∫ T

0 µi(t)dt

T

for j = 1, 2, ...ℓ andi = 0, 1, ..., m. Define theaverage stationary approximation(ASA) policy to be the

policy that maximizes the reward of the stationary (pricing or admission control)problem when the vectors

β̄ andµ̄ are used as constant arrival and service rate vectors, respectively. Thus, when estimating the arrival

and service rate vectors the decision-maker simply uses the average of each rate over the period.

We discretize the time horizon and approximate the gains of the optimal policy and the heuristics

(equally spaced PSA, ICPSA, and ASA) that have been discussed. Suppose we divide the period inton

equally spaced time segments. Denote the time elapsed between adjacent decision epochs by∆t so that

∆t = T/n. At each decision epoch, the decision-maker chooses the “optimal” action.Since transitions

follow a Poisson process with rateΨ, an event occurs at every∆t with probability1 − Ψe−Ψ∆t whereas

nothing occurs (a dummy transition) during time period∆t with probabilityΨe−Ψ∆t. Recall that the crucial

quantity in defining the AOE, (2.2), was(UP
0 f)(i, z) for a functionf on the state space. Let

(ÛP
0 f)(i, z) ≡ (1 − e−Ψ∆t)

[Λ(z + ∆t)

Ψ
f(i, 1, z + ∆t) +

µi(z + ∆t)

Ψ
f(i,−1, z + ∆t)

+ (1 −
Λ(z + ∆t)

Ψ
−

µi(z + ∆t)

Ψ
)f(i, 0, z + ∆t)

]

+ e−Ψ∆tf(i, 0, z + ∆t),

(4.1)

for z = 0, ∆t, . . . , T − 2∆t. Similarly,

(ÛP
0 f)(i, T − ∆t) ≡ (1 − e−Ψ∆t)

[Λ(T )

Ψ
f(i, 1, 0) +

µi(T )

Ψ
f(i,−1, 0)

+ (1 −
Λ(T )

Ψ
−

µi(T )

Ψ
)f(i, 0, 0)

]

+ e−Ψ∆tf(i, 0, 0),

(4.2)

where the rate functions are replaced with their left hand limits in the case of a discontinuity at timeT . The

“discretized” AOE is the analogue of (2.2) usinĝUP
0 instead ofUP

0 . The result produces an estimate of the
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Figure 1: THE COMPARISON OF OPTIMAL PRICES FORT = π.

relative value function and the optimal gain for the pricing control problem. An analogous system is used in

the admission control problem.

We present an example that captures two important observations; the firstis that the ASA can perform

quite poorly while the second highlights the importance of knowing the reservation price to the decision-

maker in the admission control model.

Example 4.2

Let ℓ = 3, m = 3, and∆t = T
100 , and the set of reservation prices{11, 6, 3}. We consider the cases

in which T = nπ/4, n = 1, 2, 3, and4, so that the nonstationarity is captured by the whole sine wave

(bimodal) in one case and various portions of the sine function in others. The arrival rates and service rates

are

λpj
(t) =

{

1
Ψ(10 sin(2t) + 11(2j−1)) if j = 1, 2, 3;

0 otherwise,

µi(t) =

{

1
Ψ(30 + 10(i − 1)) for i = 1, 2, 3;

0 otherwise,

respectively, whereΨ = 104 andΛ(t) = λp3
(t).

Figure 1 shows how the heuristic policies compare to the (discretized) optimal policy when1 customer

is in the system andT = π (other congestion levels are similar). The PSA with equally spaced time points is
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Figure 2: THE COMPARISON OF OPTIMAL PRICES FORT = π/4.

denoted “PSA”. The number of time points were set equal to the number of points used in ICPSA. The ASA

policy for this example uses the static price6 for all t when there is 1 customer in the system. One might

note that both the ICPSA and the PSA closely track the optimal policy, but that the ICPSA overcompensates.

That is to say that there is a shift to the left in the ICPSA away from the optimal policy. We believe this is

due to the fact that the pointwise stationary approximations do not take into account the decision-maker’s

ability to anticipate an increase in congestion. The shift is particularly apparent in Figure 2 and somewhat

justifies the performance of the ASA whenT = π/4, π/2 (the compensation can have a negative effect).

In Table 2 forT = π, 3π/4 the equally spaced PSA and ICPSA outperform the ASA considerably (over

8% savings in one case). When the non-stationarity is more mild (T = π/2, π/4) the ASA dominates the

PSA however not by a significant mount. Another notable phenomenon is that the percentage difference in

the average reward is shown to vary widely for the ASA (over 10%) while the equally spaced PSA and the

ICPSA are consistently within 4% of optimal.

One should also note that there is quite a large difference in the gain for the pricing and admission control

models (over 28%). Since the arrival and service rates are the same foreach model, this can be attributed to

the fact that the decision-maker has complete knowledge of the class of a customer upon arrival.

5 Conclusions

We have introduced non-stationary congestion control problems with periodic rates for both the arrival and

service processes. By embedding the current time (modulo the period) in thestate space, we are able to
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Cases Opt. Gain % Diff. from gP

T = π Admission Control Opt. Admission (gC) 1.75857 +36.06
Pricing Control Opt. Pricing (gP ) 1.29246 –

ASA (gP
ASA) 1.15075 -10.96

PSA (gP
PSA) 1.26951 -1.78

ICPSA (gP
ICPSA) 1.25754 -2.70

T = 3π
4 Admission Control Opt. Admission (gC) 1.79780 +33.14

Pricing Control Opt. Pricing (gP ) 1.35028 –
ASA (gP

ASA) 1.21622 -9.92
PSA (gP

PSA) 1.30139 -3.62
ICPSA (gP

ICPSA) 1.30935 -3.03

T = π
2 Admission Control Opt. Admission (gC) 1.81467 +29.02

Pricing Control Opt. Pricing (gP ) 1.40647 –
ASA (gP

ASA) 1.40475 -0.12
PSA (gP

PSA) 1.38299 -1.67
ICPSA (gP

ICPSA) 1.38299 -1.67

T = π
4 Admission Control Opt. Admission (gC) 1.26077 +29.23

Pricing Control Opt. Pricing (gP ) 0.97558 –
ASA (gP

ASA) 0.97436 -0.13
PSA (gP

PSA) 0.94429 -3.21
ICPSA (gP

ICPSA) 0.94429 -3.21

Table 2: Comparison of the average optimal rewards for Example 4.2.

model each problem as a discrete-time stationary Markov decision processand compare the average re-

wards of pricing and admission control models. We showed that under the discounted and average reward

optimality criteria, the intuition that the control structure should become more strictas the number of cus-

tomers increases continues to hold under very light regularity conditions. Unfortunately, since the state

space is uncountable, this does not stand to make the problems tractable. On the other hand, it does lead us

to the conclusion that we should be able to adapt some of the results for the stationary problem, to the more

general case. This link is exploited by the use of a the pointwise stationary approximation. The PSA uses

the knowledge of the arrival and service rates, coupled with the results presented in Theorem 3.6, to get an

easily implementable and intuitive approximation to the optimal policies.

There are several avenues for further study. Note that the equally spaced PSA and possibly non-

uniformly spaced ICPSA both performed quite well in Example 4.2. This may be due to the fact that the

arrival rates are assumed to be a sinusoid. We conjecture that when this does not hold, the equally spaced
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PSA will not perform as well since as more elaborate congestion rates arise, the equally spaced PSA will

not adapt.

Furthermore, we have presented only two possibilities for the PSAs. Intuitiontells us that as we increase

the number of time points for the PSA the accuracy of the approximation should increase. This was noticed

in the numerical examples, but not pursued to its fullest extent. For example one might ask the question,

“How many time points is enough?” Since each added time point adds another stationary MDP to be solved,

continuing to add points ad infinitum is not desirable. Furthermore, since it is the congestion that drives

the decision-maker’s policy, placing more points on the time interval cannot alone guarantee improved

performance. We intend to pursue the study of where these points should be optimally placed.

Another consideration is exhibited by Figure 1. As has previously been alluded to, both the equally

spaced PSA and the ICPSA “overestimate” the optimal policy. That is, it appears that a better approximation

could be achieved by shifting the points to the left. We conjecture that this is dueto the fact that the

instantaneous congestion does not “anticipate” future congestion while a decision-maker pricing optimally

would certainly do so. The idea that a PSA has this shift in the optimal policy is consistent with the shift

in the estimation of congestion levels discussed in [4]. We believe that each ofthese observations offer

particularly interesting challenges and hope to explore them further in future research.
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Appendix

This section is dedicated to the proof of Proposition 3.7. After some slight changes to the assumptions

since we are maximizing and not minimizing this is a direct application of Theorem 5.6.3 of Hernandez-

Lerma and Lasserre [5]. In essence the first two results (Lemmas 5.3 and5.4 below) yield the existence of

a solution to the AOE (2.2) and (2.4). The third result (Lemma 5.6) then leads to the convergence of the

normalized value iterates. Denote the state and action spaces of a generic MDP byX andA, respectively.

When speaking of the pricing and admission models we continue to use the superscriptsP andC.

We begin with several definitions. Recall, in the pricing control problem, the functionwP (pj) = j for

j = 0, 1, . . . , ℓ. Similarly in the admission control model, letwC(accept(0)) = 0 andwC(reject(1)) = 1.

Define the graph ofA by Gr(A) ≡ {(x, a)| x ∈ X, a ∈ A(x)}, whereA(x) is the set of available actions

when in statex.

Definition 5.1 For v = ((i, j, z), a), v′ = ((i′, j′, z′), a′) ∈ Gr(A) let theEuclidean distancebetween the
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elementsv andv′ be

‖v − v′‖ ≡
√

(i − i′)2 + (j − j′)2 + (z − z′)2 + (wk(a) − wk(a′))2,

wherek is P or C when considering the pricing or admission control model, respectively.

Definition 5.2 LetQ(B|x, a) represent the probability of entering the set of statesB ⊆ X given that action

a is chosen in statex ∈ X (the transition kernal).

1. Q(·|x, a), is calledstrongly continuousif the functionF (x, a) ≡
∫

y∈X
f(y)Q(dy|x, a) is continuous

and bounded wheneverf is measurable and bounded.

2. A functionf is said to beinf-compact if, for everyx ∈ X andr ∈ R, the set{a ∈ A(x)| f(x, a) ≤

p0 − r} is compact.

Lemma 5.3 The following hold for the non-stationary pricing and admission control models;

1. The one-stage reward functionr(x, a) is nonnegative, upper-semicontinuous ina and inf-compact.

2. The transition kernel Q is strongly continuous.

Proof. Since the set of available actionsAk
i for k = P, C is finite, the first assertion holds trivially. We

show that the second assertion holds for the pricing control model. The admission control scenario is similar.

Fix ǫ > 0 and letx = (i, j, z) andx′ = (i′, j′, z′). Without loss of generality, assume thatz < z′. Since

|Qa(z)| ≤ 1 for all z ∈ [0, T ) it suffices to show the strong continuity of

F (i, z) ≡

∫ T

z

[

Λ(t)f(i, 1, t) + µi(t)f(i,−1, t) + (1 − Λ(t) − µi(t)f(i, 0, t)
]

e−(t−z)dt. (5.1)

To ease the notation, let

f ′(i, t) ≡ Λ(t)f(i, 1, t) + µi(t)f(i,−1, t) + (1 − Λ(t) − µi(t))f(i, 0, t)
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for 0 ≤ i ≤ m. Assume thatδ < 1 so that||x − x′|| < δ impliesi = i′, j = j′, anda = a′. Consider

|F (i, z) − F (i, z′)| =

∣

∣

∣

∣

∫ T

z

f ′(i, t)e−(t−z)dt −

∫ T

z′
f ′(i, t)e−(t−z′)dt

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∫ z′

z

f ′(i, t)e−(t−z)dt + (e−(z′−z) − 1)

∫ T

z′
f ′(i, t)e−(t−z′)dt

∣

∣

∣

∣

∣

.

Let M denote the bound off . Since|p + q|2 ≤ 2p2 + 2q2, we have

|F (i, z) − F (i′, z′)| ≤

√

√

√

√2

(

∫ z′

z

f ′(i, t)e−(t−z)dt

)2

+ 2

(

(e−(z′−z) − 1)

∫ T

z′
f ′(i, t)e−(t−z′)dt

)2

≤ 2M(1 − e−(z′−z)).

Thus, if we choosez′ − z = δ so that2M(1 − e−(z′−z)) ≤ ǫ, the proof is complete.

Recall that the discounted reward problems include a continuous discountfacte−ασt . However, most of

the MDP theory is developed for the discrete-time discounted reward. To thisend, forξ ∈ (0, 1) define

W π
n,ξ(x) = E

π
x

[

n−1
∑

t=0

ξtr(Xt, d(Xt))

]

.

to be then−stage, discrete-time,ξ−discounted reward of policyπ. Moreover,W π
ξ (x) ≡ lim infn→∞ W π

n,ξ(x)

is the infinite horizon, discrete-time discounted reward. The optimal n-stage,discrete-timeξ−discounted

reward and the optimal discrete-time,ξ−discounted reward are respectively defined

Wn,ξ(x) ≡ sup
π∈Π

W π
n,ξ(x)

Wξ(x) ≡ sup
π∈Π

W π
ξ (x),

Lemma 5.4 For the nonstationary pricing and admission control models, the following hold withM = p1Ψ

andN = b(x) = p1[1 + Ψ(T + E
π∗

(m,0,0) τ0)], whereτ0 is the first time the queue length of a process started

in state(m, 0, 0) using the (discounted reward) optimal policyπ∗ reaches zero;
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1. There exist a states ∈ X and numbersω ∈ (0, 1) andM ≥ 0 such that(1 − ξ)Wξ(s) ≤ M for all

ξ ∈ [ω, 1).

2. Suppose we fix a distinguished states ∈ X. There existN ≥ 0 and a nonnegative functionb(·) on X

such that,−N ≤ hξ(x) ≤ b(x) for all x ∈ X andξ ∈ [ω, 1), wherehξ(x) ≡ Wξ(x) − Wξ(s).

3. Furthermore, the functionb(·) is measurable and such that, for everyx ∈ X and a ∈ A(x),

∫

y∈X
b(y)Q(dy|x, a) < ∞.

4. Lets ∈ X be a fixed state. The sequence{hξ(n)} is equicontinuous, wherehξ(n)(x) ≡ Wξ(n)(x) −

Wξ(n)(s), x ∈ X.

Proof. The first assertion holds since the expected reward is bounded byM = p1Ψ. To prove the second

assertion, note that the difference in the expected discrete-time discountedreward between starting in state

x = (i, j, z) and starting in states = (0, 0, 0) is bounded. In doing so, letS0 ≡ {(i, j, z) ∈ X|z = 0}

and letNT−z be a Poisson random variable of rateΨ(T − z) representing the expected number of decision

epochs seen by a process starting in state(i, j, z) before reaching timeT . Thus, a process starting in state

(i, j, z) satisfiesXNT−z+1 ∈ S0. Suppose{It, t ≥ 0} and{Jt, t ≥ 0} represent the number of customers

in the system and the type of event that just occurred at thetth decision epoch. For any stationary policyπ,

W π
ξ (i, j, z) = E

π
(i,j,z)





NT−z
∑

t=0

ξtr(Xt, d(Xt))



 + E
π
(i,j,z) W π

ξ (INT−z+1, JNT−z+1, 0)

≤ p1ΨT + E
π
(i,j,z) W π

ξ (INT−z+1, JNT−z+1, 0). (5.2)

It remains to show that the expected difference in the discounted rewardsfrom two processes starting in

different states inS0 is also bounded. Suppose we start two processes on the same probability space each

using the policyπ. Process 1 starts in state(i, j, 0) and Process 2 in state(i′, j′, 0). Note that, if a decision

must be made (j = 1), the difference in the rewards is at mostp1. Consider the processes immediately

following this decision and without loss of generality assume that process 1 has a higher queue length.
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Since each of the queue length processes isskip-free, the time that Process 1 first has queue length zero, say

τ0, bounds the coupling time of the two processes. Moreover, since the capacity is finite (and the service

rate is strictly positive unless the system is empty), the first passage timeτ0 is finite almost surely with finite

expectation. Thus,

|W π
ξ (i, j, 0) − W π

ξ (i′, j′, 0)| ≤ p1[1 + Ψ E
π
(i,j,0) τ0] < ∞. (5.3)

To complete the proof of the second assertion, combine (5.2) and (5.3) to obtain

|W π
ξ (i, j, z) − W π

ξ (0, 0, 0)| ≤ p1ΨT + |Eπ
(i,j,z) W π

ξ (INT−z+1, JNT−z+1, 0) − W π
ξ (0, 0, 0)|

≤ p1[1 + Ψ(T + E
π
(m,0,0) τ0)] < ∞. (5.4)

Sinceπ was arbitrary, the inequality holds for the optimal policy as well. Thus ifπ∗ is an optimal policy, the

second assertion holds withN = b(x) = p1[1+Ψ(T +E
π∗

(m,0,0) τ0)]. The third assertion clearly holds: since

b(·) is constant. For the last assertion, letx = (i, j, z) andx′ = (i′, j′, z′) in X and assumeǫ > 0. Without

loss of generality, assumez < z′. We want to show that|hξ(n)(x) − hξ(n)(x
′)| ≤ ǫ whenever‖x − x′‖ < δ

for someδ > 0 whereǫ is independent ofξ(n), x, andx′.

Consider two independent Markov chains,X ≡ {Xt, t ≥ 0} starting in(i, j, z) andX ′ ≡ {X ′
t, t ≥ 0}

starting in(i′, j′, z′) on the same probability space. Assume both chains use the discrete-time discounted

reward optimal policyπ∗ and thatδ < 1 so thati = i′ andj = j′, i.e.,‖x − x′‖ = z′ − z. Consider

|W ∗
ξ(n)(i, j, z) − W ∗

ξ(n)(i
′, j′, z′)| = |W ∗

ξ(n)(i, j, z) − W ∗
ξ(n)(i, j, z

′)|

≤ E
π∗

(i,j,z),(i,j,z′)

[

∞
∑

t=0

∣

∣r(Xt, d(Xt)) − r(X′
t, d(X ′

t))
∣

∣

]

. (5.5)

Let Z ≡
∑∞

t=0 |r(Xt, d(Xt)) − r(X′
t, d(X ′

t))| andE be the event that no decision epochs occur between
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timesz andz′. Thus,

E
π∗

(i,j,z),(i,j,z′)[Z] = E
π∗

(i,j,z),(i,j,z′)[Z|E] P{E} + E
π∗

(i,j,z),(i,j,z′)[Z|Ec] P{Ec}

≤ p1[1 + Ψ(T + E
π∗

(m,0,z) τ0)](1 − e−Ψ(z′−z)) (5.6)

where the inequality follows from the proof of the second assertion. Thus, choosingδ such thatδ < 1 and

|z − z′| < δ impliesp1[1 + Ψ(T + E
π∗

(m,0,0) τ0)](1 − e−Ψ(z′−z)) < ǫ yields the result.

Applying Theorem 5.5.4 of Hernandez-Lerma and Lasserre [5] the results of Lemmas 5.3 and 5.4 yield

the existence of a solution to the AOE and an average optimal policy. It remainsto show that the undis-

counted value functions may be normalized such that they approach a solution to the AOE in the limit.

Recall that probability measures{µn, n ≥ 1} on X are said toconverge weaklyto a probability measure

µ, written µn
w
−→ µ, if

∫

fdµn →
∫

fdµ asn → ∞ for every continuous and bounded functionf on

X. Moreover, a Markov chain with transition kernalQ is calledψ−irreducible if for allx ∈ X, whenever

ψ(B) > 0, there exists somen > 0, possibly depending on bothB andx, such thatQn(B | x) > 0. The

following lemma appears as Proposition 10.1.2 part (ii) of Meyn and Tweedie [14].

Lemma 5.5 Suppose that{Xt, t ≥ 0} is ψ-irreducible. Ifµ is any subinvariant measure withµ(B) < ∞

for someB ∈ B+(X), the set of Borel subsets ofX with positiveψ measure, thenµ ≻ ψ, i.e., the measure

ψ is absolutely continuous with respect toµ.

Lemma 5.6 For the nonstationary pricing and admission control models, the following hold;

1. The sequence{Wn,ξ} is equicontinuous.

2. There is a probability measureφ on X
k, independent of the initial statex ∈ X

k, such that for all

x ∈ X
k and each decision ruled, Qn(·|x, d(x))

w
−→ φ asn → ∞ andφ(G) > 0 for every open setG

andk = P, C.



DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT 

Pricing and Admission Control in Non-Stationary Queues 28

3. There is a functionL : X
k → R such that

∫

y∈Xk

b(y)Qn(dy|x, (dn(x), dn−1(x), . . . , d1(x))) ≤ L(x), for all x ∈ X
k, n ≥ 1,

whereb(·) is the function in Lemma 5.4 andk = P, C.

Proof. We prove the result for the pricing control problem. The admission controlproblem is analogous.

The proof of the first assertion follows in precisely the same manner as thatused in part 4 of Lemma 5.4.

To prove that the second assertion holds, let thetotal variation normof the difference of two probability

measuresQ(B | x, a) andQ(B | x′, a′) be defined

‖Q(B | x, a) − Q(B | x′, a′)‖W ≡ 2 sup
B∈B(X)

|Q(B | x, a) − Q(B | x′, a′)|, (5.7)

whereB(X) is the Borelσ-algebra ofX. Remark 5.6.2 of Hernandez-Lerma and Lasserre [5] explains that

Qn(B|x, d)
w
−→ φ asn → ∞ if for some0 < ω < 1

‖Q(B | x, a) − Q(B | x′, a′)‖W ≤ 2ω for all (x, a), (x′, a′) ∈ Gr(A). (5.8)

Note that (5.8) does not hold whensupB∈B(X) |Q(B | x, a) − Q(B | x′, a′)| = 1. Thus, we will show in

both models that0 < Q(B | x, a) < 1 − θ for 0 < θ < 1, independent ofB. Let

Bi,j(z1, z2) = {(i, j, z)|z ∈ (z1, z2), 0 ≤ z1 < z2 ≤ T}

be an arbitrary open set inXP for fixed i ∈ {0, 1, . . . , m} andj ∈ {−1, 0, 1}. For0 ≤ i < m

0 < Q(Bi+1,j(z1, z2) | (i, j, z), a) ≤

∫ z2

z1

Λ(t)Ψe−Ψtdt ≤ 1 − e−ΨT .

Applying similar algebra to the other cases we conclude that0 < Q(B | x, a) ≤ 1 − e−ΨT for all open sets

B and hence for all Borel sets. Since0 < e−ΨT < 1, substitutingθ with e−ΨT leads to

0 < sup
B∈B(X)

|Q(B | x, a) − Q(B | x′, a′)| ≤ 1 − θ < 1, (5.9)
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which satisfies (5.8).

To complete the proof of the second assertion, it remains to show thatφ(G) > 0 for any open setG. Let

γ be the counting measure defined onZ
+ andκ the Lebesgue measure onR

+. For any setG ⊆ X
P , G can

be written as a triplet(G1, G2, G3) whereGi, i = 1, 2, 3 represents a set of elements for each dimension of

the state space. Define the product measureψ onX
P asψ(G) ≡ γ(G1) × γ(G2) × κ(G3).

Since the first two elements of the state space are discrete, open sets underthe measureψ correspond

to open sets in[0, T ). Recall that class 1 customers are always allowed entry into the system as long as it

is not full. Next note that forB ⊂ X
P , such thatψ(B) > 0, Q2(B | x, a) > 0 for all (x, a) ∈ Gr(A)

(we may require two steps since we embed at the end of the horizon). That isto say, the Markov chain

generated by any deterministic, stationary policy isψ-irreducible. Given thatφ is a limiting probability

measure, the following two facts are evident: (i) the probability measureφ on X
P is subinvariant (in fact,

invariant) sinceφn = φ for all n ∈ Z
+ and (ii) φ(B) ≤ 1 sinceφ is a probability measure. Therefore,

we can apply Lemma 5.5 and conclude thatφ ≻ ψ. By the definition of absolute continuity,φ(G) = 0

impliesψ(G) = 0. Thus, the contrapositive of the definition leads to the conclusion that any set of positive

ψ measure has positiveφ measure. In particular, this fact holds for any open setG. The last assertion holds

sinceb(·) = p1[1 + Ψ(T + E
π∗

(m,0,0) τ0)] is constant.

Lemmas 5.3, 5.4 and 5.6 now imply that Theorem 5.6.3 of Hernandez-Lerma andLasserre [5] can be

applied to prove Proposition 3.7 directly.


