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Optimal Product Design by Sequential Experiments
in High Dimensions

Abstract

The identification of optimal product and package designs is challenged when attributes and

their levels interact. Firms recognize this by testing trial products and designs prior to launch

where the effects of interactions are revealed. A difficulty in conducting analysis for product

design is dealing with the high dimensionality of the design space and the selection of promising

product configurations for testing. We propose an experimental criterion for efficiently testing

product profiles with high demand potential in sequential experiments. The criterion is based

on the expected improvement in market share of a design beyond the current best alternative.

We also incorporate a stochastic search variable selection method to selectively estimate relevant

interactions among the attributes. A validation experiment confirms that our proposed method

leads to improved design concepts in a high-dimensional space compared to alternative methods.

Keywords: Design Criterion, Expected Improvement, Interaction Effects, Stochastic Search

Variable Selection
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1 Introduction

An optimal product or package design is one having the most preferred combination of attributes

from a feasible set of candidates (e.g., color and font combinations on product packages, brand

logos, etc.) The presence of interactive effects among attributes and their levels challenges the

identification of optimal configurations because they typically lead to a dramatic increase in the

dimensionality of the design space. Consider, for example, the optimal design for a container of

liquid detergent, where the color of the bottle, color of the cap and color of lettering are being

evaluated. The dimensionality of the design space for just 10 colors for each is at least 300 when

considering the two-way interactions alone. As such, product and package design experiments

quickly become unwieldy for even the simplest settings when interactive effects are thought to

be present.1

Design experiments for product optimization consist of two components: the selection of de-

sign points to learn about consumer preferences, and models for relating preferences to product

features and attributes. Commonly used design criteria for evaluating design points, such as D-

and A-efficiency measures, have focused on learning about preferences for all product features,

including those associated with configurations that consumers don’t want. These design points,

however, are not aligned with the goal of identifying product and package configurations that

maximize demand. The allocation of design points to the overall range of attribute-levels sac-

rifices potential opportunities to learn more about parameters associated with regions of high

preference.

We propose a new design criterion for choice-based conjoint analysis that adaptively selects

design points to improve the aggregate market shares of product and package designs. A lin-

earized aggregate share model is used to identify important product attributes while minimizing

the effects of heterogeneous consumer preferences. The share model directly operationalizes a

firm’s goal function in product design problems and minimizes the impact of respondent-level

errors in detecting interactions. In addition, we also show that Bayesian variable selection meth-

ods (SSVS, George and McCulloch 1993) are effective for managing the high dimensionality of

1A well known example in practice is Google’s testing of 41 shades of blue in their logo design.
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our proposed model that allows for interactive effects.

The proposed design criterion systematically balances between exploitation of high perfor-

mance products and exploration of high potential products by selecting design points, or product

profiles, with high uncertainty in high preference regions of the design space. The selected prod-

uct profiles are most likely to outperform the current best design in the subsequent rounds of

a sequential experiment. In addition, the design criterion is evaluated with full-product pro-

files so that it can capture interactive effects among the attribute-levels. Data from a national

sample of consumers is used to identify an optimal package design for a nationally distributed

product, and we demonstrate that it outperforms other package designs identified by competing

methods. The empirical application confirms that the proposed criterion tends to include more

combinations with important interactive effects than expected.

The organization of the paper is as follows. Section 2 discusses the relationship between the

proposed criteria of expected improvement and the existing methods of adaptive experiments.

Section 3 develops the optimal sequential search criteria, illustrates the SSVS estimation, and

presents a simulation study to compare the performance of the proposed framework to that of

an alternative method. Section 4 presents an empirical application of the proposed framework

to a design project in practice. Section 5 discusses the results using the national sample, and

presents a validation experiment. Concluding comments are provided in Section 6.

2 Relationship to prior literature

We balance the goals of exploration and exploitation in a product design experiment by selecting

design points that are expected to improve the product’s aggregate market share. Our goal is

similar that encountered in the context of optimal search, where an analyst sequentially acquires

information believed to be maximally informative about an outcome of interest. We measure

the value of a design point relative to the best performing design found in earlier rounds of

an experiment. Prioritizing profiles with the highest expected improvement in aggregate share

takes an outcome of importance to the firm (sales) as the design criteria rather than using a

statistical criterion, such as the determinant of the covariance matrix of model coefficients. In
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doing so, the analyst focuses on highly preferred combinations of product features that leads to

more extensive comparisons of promising interactive effects.

Our expected improvement criterion is closely related to Weitzman (1979)’s optimal search

rule by relating the posterior predictive performance of a design to the observed best outcome.

Weitzman (1979) showed that a firm can most efficiently search for the best alternative in an

R&D project by pursuing options one-by-one in descending order of reservation prices, favoring

those with higher reward from a known, invariant performance distribution. We show that

our evaluation of the expected share improvement presents an equivalent rank order to the

Weitzman’s reservation price rule in the absence of costs. In addition, we do not rely on analytical

solutions nor employ option values (i.e., reservation prices) as a means of determining an optimal

stopping rule.

Our model contributes to the literature in question-selection methods in conjoint experi-

ments. Toubia et al. (2003, 2004) develop a method for adaptive conjoint analysis that selects

the next question based on the combination of coefficients currently measured with least cer-

tainty, where the linear inequalities are geometrically presented as an uncertainty polyhedron.

Toubia et al. (2007) generalize the method to the domains with high response errors by adding

a probabilistic structure to the region of combination of coefficients. Sauré and Vielma (2017)

propose an improvement on the polyhedral method by using an uncertainty ellipsoid that rep-

resents a credibility region for the posterior distributions of coefficients. Huang and Luo (2016)

suggest an algorithm of selecting adaptive questionnaire that maximally reduces the feasible

region of coefficients using support vector machine learning. Finally, an algorithm by Dzyabura

and Hauser (2011) selects questions that minimize uncertainty in respondents’ decision heuris-

tics in order to distinguish between non-compensatory screening and preference ordering. These

approaches all aim to reduce overall parameter uncertainty can be viewed as adaptive imple-

mentation of D-efficiency (Toubia et al. 2004, Sauré and Vielma 2017). In contrast, our criterion

aims to learn more about highly preferred attribute combinations with less focus on profiles in

the low utility region.

The statistics literature has examined the efficiency of the expected improvement criterion
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relative to expectation maximization in the optimization of a goal function (Jones et al. 1998).2

The expected improvement criterion can be viewed as a one-step-ahead optimality criterion by

choosing profiles that are expected to outperform the current optimal profile. Although it does

not provide an exact optimization of a goal function, it is sufficient to determine the point of

the next observation (Mockus 1994, Schonlau et al. 1997). The criterion is also statistically

shown to require relatively small number of design points for global optimization by balancing

between global search (exploration) and local search (exploitation) (Schonlau et al. 1997, 1998).

The literature supports the notion that the expected improvement criterion offers data points to

enhance efficiency of the second step of decision making – global optimization of a goal function.

The proposed framework is also related to machine-learning and artificial-intelligence al-

gorithms in decision support systems. A stream of research suggests to select a query that

maximizes expected value of information in statistical measures such as the likelihood of a

model (Cavagnaro et al. 2010) or the expected performance of all alternatives in a query set

(Viappiani and Boutilier 2010). Another stream proposes to select a query that minimizes regret

or cost, when making decisions under strict uncertainty (e.g., Wang and Boutilier 2003). An

independent yet related methodology is the multi-armed bandit (MAB), which simultaneously

considers maximum performance and minimum regret (Schwartz et al. 2016). It is widely used

in online field experiments for digital content optimization (e.g., Brezzi and Lai 2002, Scott 2010,

Schwartz et al. 2016) to balance between profits during the experimental phase and the optimal

outcome. While the criteria in these literatures have not been developed for, and applied to,

the question-selection problems, their goal-directed nature is conceptually similar.

In sum, we propose a goal-directed question-selection method in choice-based conjoint analy-

sis for design optimization problem.3 While the extant methods focus on uncertainty reduction

for precise preference estimation, the proposed selection criterion jointly considers preference

2The literature mainly focuses on the engineering context including automotive and semiconductor industries,
so the explanatory variables are strictly ordinal and continuous with objective performance variation (e.g., engine
size).

3Adaptive choice-based conjoint analysis (ACBC) proposed by Sawtooth software also aims to sequentially
present highly preferred profiles. It first determines an approximate region that a respondent prefers by build-
your-own profile task (BYO), then asks unacceptables and must-haves. The knowledge from these tasks identifies
a consideration set of a respondent, and the criterion offers D-efficient design within this consideration set.
Therefore, it is more of a consideration-set driven criterion, rather than a goal-driven one. For more details, see
https://www.sawtoothsoftware.com.
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elicitation (i.e., exploration) and goal achievement (i.e., exploitation) in high dimensions.

3 Model Development

We develop our model and design criterion in the context of an aggregate choice experiment

in which respondents are asked to identify their favorite design concept from among n product

profiles and an outside option. The outside option can be either a benchmark design that is

common across questions, or a no-choice option given the n product profiles. Each respondent

receives Q questions, so (nQ+ 1) product profiles or design concepts including the outside option

are evaluated per respondent.

We assume that the data generating process follows a multinomial logit choice model for the

(n+ 1) options in each question. Aggregation across respondents yields choice shares of (n+ 1)

alternatives in each question q ∈ Q. The choice share of a design concept j is given by Sjq and

that of the outside option is given by S0q. The choice shares represent standard logit choice

probabilities of respondents at the aggregate level as follows:

Sjq =
exp (u (Xj ;β))

1 +
∑

j′∈Jq exp
(
u
(
Xj′ ;β

)) and S0q =
1

1 +
∑

j′∈Jq exp
(
u
(
Xj′ ;β

)) ,
where the utility of a design concept j, u (Xj ;β), is determined by a linear combination of the

design attributes Xj and a vector of aggregate partworth preference parameters β. Jq is a set

of n alternatives evaluated in question q, and the utility of the outside option is normalized to

be zero. Taking the log-odds ratio of Sjq and S0q in question q linearizes the logit choice model

(Allenby and Rossi 1991, Berry 1994), with the aggregate log shares given by:

Yjq = ln Sjq − ln S0q = u (Xj ;β) = Xjβ + ξjq, ξjq∼N
(
0, σ2

)
(1)

where ξjq is a normal error term specific to a product profile j in question q.

Use of the share model aligns with the objective of product development - to design products

that maximize market share. A benefit of using a share model is that the aggregate data are

measured with greater certainty and have greater likelihood of detecting potential interactions.

One might be concerned that the model does not incorporate respondents’ heterogeneity. How-
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ever, if the goal is to predict aggregate responses, the coefficients of the aggregate model can

be shown to recover well the average of heterogeneous individual-level coefficients because of

the log-linear model structure.4 Thus, the estimates of Equation (1) are sufficient for predicting

market-level responses despite the absence of heterogeneity.

Our goal in the design optimization problem is to identify product profiles j with the greatest

chance of market success with high u (Xj ;β). To achieve this goal, we propose a question-

selection criterion that conditions on the best outcome to date to identify product profiles with

the highest expected improvement in the market share. In contrast to the extant uncertainty

reduction methods (e.g., Toubia et al. 2004), uncertainty is unevenly reduced among parameters

as the sample size increases and learning is concentrated on the highly valued product profiles.

In addition, our measure focuses on exceeding the value of the best outcome to date without

considering the product profiles from whence that outcome originates, which balances between

exploitation and exploration. We couple our goal-directed criterion with an SSVS prior to

efficiently navigate the high dimensional design space.

3.1 Goal-directed criterion for sequential experiments

Suppose that the number of rounds in the sequential design experiment is T and the number

of questions per round is Q. As each respondent chooses the most preferred design concept per

question out of n product profiles and one common benchmark design (outside option), each

round t (∈ T ) evaluates nQ product profiles and one common outside option. The outside option

is predetermined by the researcher using domain knowledge. It can be the current product design

on the market or a basic ‘vanilla’ design concept for the same product. Inclusion of the common

outside option across all questions makes preference measures robust to different combinations

of n choice options.

The first nQ product profiles in round 1 can be selected either randomly or by any subset

of classical experimental criteria.5 The log-odds ratio between the aggregated market shares

of nQ product profiles and the outside option in each question constructs nQ data points for

4See Appendix D for empirical simulation tests for this claim.
5We do not apply the adaptive criteria in selection of the initial set of candidates, because the partworth

parameters are simply priors before the first round.

7



the share model in Equation (1). The partworth preference parameters β are estimated at the

end of every round using the cumulative data collected until the current round. The next nQ

product profiles in the subsequent round 2 are determined by the selection criteria to maximize

the expected improvement relative to the current best outcome of the experiment.

The proposed selection rule evaluates the expected improvement in market share by searching

for a new product profile in the next round. The expected improvement is defined as the upper-

tail expectation of a new product profile’s preference distribution in the range that it outperforms

the current best design. As consumer preferences are unknown before the experiment is run,

it evaluates the predictive distributions of unevaluated design concepts based on the parameter

estimates using the partial cumulative data. A product profile with the highest value of expected

improvement is the most likely to outperform the best observed outcome so far. It prioritizes

such product profiles with high expected improvement for the next round of the experiment, as

it indicates an evaluation of potential or one-step-ahead optimality.

The expected improvement is conceptualized from the expected return to search for a new

product profile in the presence of the current best knowledge. The expected return of testing

an additional design concept j in round (t+ 1) with the best known outcome zt in round t is

given by

V (Xj) =

∫ zt

−∞
ztdF (u;Xj ,β) +

∫ ∞
zt

u (Xj ;β) dF (u;Xj ,β) , j ∈ J \ Jt (2)

where F (u;Xj ,β) is the cumulative density function of the predictive utility distribution of a

design concept j,6 J denotes a set of potential combinations of all attribute levels constructing a

complete list of candidate product profiles, and Jt denotes a set of all product profiles evaluated

up to round t. The current best outcome zt is formally defined as

zt = max uj (Xj ;β) , j ∈ Jt (3)

We note that zt is an observed value obtained by market shares up to round t as in Equation

(1).

6As uj is defined as Xjβ in Equation (1), the probability density function of uj is obtained by the posterior
distribution of Xjβ.
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The first element of the two additive terms in V (Xj) means that the expected outcome is still

zt when the new design concept j turns out to be worse than zt. The second element stands for

the expected outcome when the new design concept j performs better than zt, which represents

the expected improvement by testing j in the next round. This conditional expectation is a

better reflection of the goal to find the best product profile than an evaluation of the expected

value of u (Xj ;β), because the experiment still keeps the known outcome of zt and abandon j

when u (Xj ;β) is lower than zt.
7

It is straightforward to show that the comparison of V (Xj) among different design concepts

j is equivalent to the comparison of the upper tails only (i.e., expected improvement). That is,

if

∫ ∞
zt

u (Xj ;β) dF (u;Xj ,β) >

∫ ∞
zt

u
(
Xj′ ;β

)
dF
(
u;Xj′ ,β

)
then V (Xj) > V

(
Xj′
)

for all j and j′ where j′ 6= j. The proof of this equivalence is presented in

Appendix A. Therefore, the expected improvement V ′ (Xj) represents the rank order of product

profiles that are not yet tested in terms of expected return to search for additional design points:

V ′ (Xj) =

∫ ∞
zt

u (Xj ;β) dF (u;Xj ,β) , j ∈ J \ Jt (4)

As V ′ (Xj) is obtained as an expected value of uj in the range that is higher than zt, it returns

a scalar value, not a distribution, that is easily comparable across different product profiles.

The nQ product profiles with the highest V ′ (Xj) are selected for testing in round (t+ 1)

among the options that are not evaluated so far (i.e., j ∈ J \ Jt). The partworth preference

parameters β are updated after round (t+ 1) using all the cumulative data collected from

rounds 1 to (t+ 1). The same procedure is iterated until round T . The number of rounds

T can be determined based on the required data points for stable parameter estimates given

the dimensionality of attributes and/or a research project’s budget consideration. The proposed

criterion is considered to be as an aggressive one, preferring high variance in the predictive utility

distribution of design concepts. However, it balances with exploitation of high performance

7For further discussion, see Weitzman (1979).
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region by focusing on upper tails, which does not waste resources for random exploration.

The sequential experiment determines explanatory variables in each round based on the ob-

served dependent variables in the previous rounds, leading to a concern of potential endogeneity

biases in the partworth parameter estimates. We note that the endogeneity coming from the

adaptive selection criteria is ignorable under our Bayesian inference according to the likelihood

principle (Liu et al. 2007). The selection of product profiles and corresponding explanatory

variables in round (t+ 1) is deterministic, given all observed dependent variables in rounds 1

to t. Therefore, conditional on all the observed data, the selection criterion does not affect the

likelihood, and parameter estimates are consistent.

The expected improvement criterion V ′ (Xj) is determined by u (Xj ;β) and its cumulative

density function F (u;Xj ,β), not directly by individual partworth parameters β. So, it is

not dependent upon specific modeling choice of u (Xj ;β). Therefore, the criterion can flexibly

accommodate various expansion in the model specification, such as inclusion of interactive effects

where Xj = [Xj1 Xj2] with main effects Xj1 and higher order interactions Xj2. As V ′ (Xj)

returns a scalar value regardless of the dimensionality of Xj , the proposed criterion can be easily

applied to problems with high dimensional Xj .

3.2 Selection of relevant variables

A stochastic search variable selection (SSVS) method is used to selectively estimate relevant

covariates in both main and interaction effects (George and McCulloch 1993; George and Mc-

Culloch 1997; Gilbride et al. 2006). The dimension of covariate space in the design problem is

extremely high especially with interaction effects, and not all interaction terms affect respon-

dents’ preferences leading to a very sparse parameter space. The inclusion of irrelevant covariates

taxes the ability of the model to conduct accurate inferences by leading to a higher dimensional

model than the number of observations. The SSVS method effectively collapses the irrelevant

covariates toward zero and identifies covariates that are used in respondents’ evaluation of the

design concepts.

The relationship between the dependent variable and covariates in the normal linear model
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in Equation (1) is given by:

f
(
Y |X,β, σ2

)
= N

(
Xβ, σ2I

)
where Y is a nQt × 1 vector of all dependent variables at the end of round t, X is nQt ×

p matrix of covariates, and the variance σ2 is a scalar value with a prior distribution of

InvertedGamma (κ, κψ). A latent variable γi represents the selection of a particular individual

parameter βi through its prior distribution as follows:

π (βi|γi) = (1− γi)N
(
0, τ2i

)
+ γiN

(
0, c2i τ

2
i

)
P (γi = 1) = 1− P (γi = 0) = pi

where γi = 1 if βi is selected with probability of pi, and γi = 0 if βi is not selected with

probability of (1− pi). τi are small positive values that shrink βi toward zero when the variable

is not selected, and ci are large positive values to estimate non-zero βi.
8 The effect of the mixture

prior is that βi is drawn from a mass concentrated around zero when it is not selected.

Incorporating the mixture distribution, the multivariate normal prior for β is given by:

π (β|γ) = N (0,DγRDγ)

γ = (γ1, ..., γp)
′ and R is prior correlation matrix. Dγ summarizes variable selection as follows:

Dγ ≡ diag[a1τ1, ..., apτp]

where ai = 1 if γi = 0 and ai = ci if γi = 1. The model selection parameters γ and part-

worth preference parameters β are simultaneously estimated by Gibbs sampler as presented in

Appendix B.9

The SSVS method estimates the partworth preference parameters β(t) at the end of round t

of data collection. The cumulative data points from round 1 up to round t are used for estimation

at the end of the round. The posterior distributions of β(t) from SSVS estimation after round t

8See George and McCulloch (1993) for selection of ci.
9The SSVS estimation code used in the paper is available from the authors upon request. Free software

packages are also available in R.
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construct predictive distributions of unknown product profiles (F
(
u;Xj ,β

(t)
)
, J \Jt) and their

upper-tail expectations (V ′ (Xj)), where V ′ (Xj) determines the set of product profiles to test

in round (t+ 1).

The SSVS method is particularly useful in detecting irrelevant interaction effects to efficiently

manage dimensionality with small number of observations, and improves precision of estimates

with tighter credible intervals relative to competing estimation methods as shown in Appendix

C. We note that the SSVS estimation is purely based on the likelihood and independent of the

selection criteria, so it does not restrict the order of interactions in the model specification. If

needed, researchers may adopt an alternative estimation method that best suits their model

specification along with the proposed question-selection criteria.

3.3 Simulation study

A simulation study is conducted to evaluate how efficiently the proposed modeling framework

identifies the true best design profile. We first evaluate the predictive performance of the pro-

posed selection criteria using SSVS estimation, perform sensitivity tests with various numbers

of respondents and questions per round, and then present a benchmark study of an alternative

preference elicitation method proposed by Toubia et al. (2004).

3.3.1 Experimental setting

We assume that the number of product profiles for testing in each question is 4 (= n) and simulate

choice share data from the true partworth preference parameters. Simulated respondents choose

their favorite design concept out of five profiles including the outside option. Se also assume that

there are 25 (= Q) questions per round, so each round of the experiment evaluates 100 (= nQ)

product profiles in addition to the outside option. The number of rounds is assumed to be

5 (= T ), for a total of 500 (= nQT ) product profile evaluations plus the outside option. The

number of respondents in each round is assumed to be 100 (= H).

Each product profile is a combination of four attributes, and these attributes have design

candidates of (5, 8, 11, 12) levels each.10 The true partworth preference parameters are designed

10The number of attributes and levels is set to be similar to the collaborating firm’s R&D project. The
dimensionality in the current simulation study is higher than typical assumptions in the literature (see e.g.,
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in a way that the true best design concept is not a combination of the most preferred individual

attribute-levels, such that some two-way interactions among attributes are large enough to affect

the most preferred profile. Ranges of true partworth preference parameters (β) are in between

3 and -4.6, and variances for respondent heterogeneity (Σ) are one for main effects and 0.5

for interaction effects.11 Each respondent h’s true partworth preference parameters (βh) are

randomly drawn from the true values with heterogeneity distribution (i.e., βh ∼ N (β,Σ)).

The market share of a product profile j in question q is simulated as

Sjq =
1

H

H∑
h=1

1{(Xjqβh + εhjq) = max
j′∈Jq

(
Xjqβh + εhj′q

)
}, (5)

where the indicator function 1{·} is one if a profile j presents the highest utility among all

profiles j′ and outside option shown in question q, and zero otherwise. εhjq are simulated logit

error terms. Five product profiles in each question (Jq) include an outside option (i.e., j = 0)

for all questions q. The common outside option across questions is defined as a combination

of one of the candidate attribute levels. The true partworth parameter values of the attribute

levels in the outside option is normalized to be zero. Each dependent variable (ln Sjq − ln S0q)

for a design concept j is calculated in each question q across H individuals.

The dummy coding of all design attributes leads to 32 main effects and 369 two-way interac-

tion effects. The product design problem includes 5, 279 candidate product profiles. Therefore,

the simulation tests the performance of the proposed framework when the number of product

profiles tested (500) is similar to the number of covariates (401), and the data used is less than

10% of the entire set. We focus on the two-way interaction effects for the case of a relatively

small number of attributes (four). However, it is straightforward to extend the framework by

simply adding higher-order interaction terms in Equation (1), as we do not impose any specific

assumption to the order of interactions.

Toubia et al. 2004).
11The variance-covariance matrix of the true partworth preference parameters Σ is assumed to be diagonal.
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3.3.2 Predictive performance

Partworth preference parameters are estimated at the end of each round t using cumulative

data with (nQt) observations. Using the parameter estimates, we present three predictive per-

formance measures – utility regret, in-sample prediction, and out-of-sample prediction – at the

end of every round t. The next set of (nQ) observations for round (t + 1) is selected by our

proposed criteria in Equation (4). Utility regret presents how much performance loss would have

happened if the best product profile predicted by the model is launched on the market relative

to the true best product profile. More precisely, we present the following % measure of loss of

potential mis-prediction:

Utility Regret =
(True Utility of True Best Profile) - (True Utility of Predicted Best Profile)

(True Utility of True Best Profile)
,

where the utility regret measure becomes zero, if a model correctly predicts the true best product

profile.

In-sample prediction is measured by the correlation between observed and predicted utilities

of (nQt) observations until round t, and out-of-sample prediction is measured by the correlation

between observed and predicted utilities of all 5, 279 candidate profiles. The observed utilities in

out-of-sample prediction are re-simulated using Equation (1) adding random draws of potential

market-level shocks ξjq. Therefore, observations in the estimation sample are not re-used for

out-of-sample validation, and the validation task conceptually replicates firms’ R&D practice of

testing their knowledge learned from lab studies in actual market.

Figure 1 presents the three performance measures at the end of each round of experiments.

Utility regret is high after the initial round testing only 100 profiles, where our question selection

criteria were not applied. However, it quickly converges to zero at the end of round 5 after testing

additional 400 profiles selected by the proposed criteria. Both in-sample and out-of-sample

correlations monotonically increase up to around .85. The results indicate that the proposed

selection criteria along with SSVS estimation correctly predicts the best product profile and

well predicts overall market share of all 5, 279 candidates after testing a small subset of product

profiles.
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Figure 1: Predictive performance of the proposed framework
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3.3.3 Sensitivity tests

A remaining question may be how efficient the proposed method is, so we performed two addi-

tional sensitivity analyses. First, we varied the number of respondents per round (I) to be 50,

25, and 10 to investigate how the stability of market share calculation would affect the predictive

performance of the proposed framework with a fixed number of questions per round (Q = 25).

Next, we varied the number of questions per round (Q) to be 20, 15, 10 to investigate how

the number of observations tested in each round affect the predictive performance with a fixed

number of respondents per round (H = 100).

Figure 2 presents utility regret, in-sample prediction, and out-of-sample prediction after all

five rounds of experiments with different numbers of respondents answering 25 questions per

round. The proposed framework correctly predicts the best product profile until the number of

respondents are as small as 25, but utility regret is increased to 0.2 when only 10 respondents are

used to simulate market share observations. Both in-sample and out-of-sample utility predictions

decrease with the decreasing number of respondents, but they are still around 0.7 under the worst

case. The results indicate that the proposed framework predicts the true best profile with a small

number of respondents (25 per round, and 100 in total) given dimensionality of the problem.
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Figure 2: Predicted performance by the number of respondents (H, with Q = 25)
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Figure 3 presents the measures of predictive performance after all five rounds with different

numbers of questions and 100 respondents per round. The proposed framework correctly predicts

the best product profile with 20 questions per round, where the number of profiles tested,

400 =(20 questions x 4 profiles per question x 5 rounds), is smaller than the number of parameters

to be estimated (401). Utility regret starts to increase with 15 and 10 questions per round due

to small number of observations with 300 and 200 profiles, respectively. In-sample and out-of-

sample predictions are reasonably stable (over 0.7) until 15 questions per round, but quickly

drop to below 0.5 with 10 questions per round. The results indicate that the predictions are

reliable with about 20 questions per round under the current dimension of product profiles.

In sum, the sensitivity analyses show that the proposed framework reliably predicts the true

best product profile with a small number of respondents (25 per round) or a small number

of questions (20 per round) under the current dimension of the problem, which may guide

practitioners’ trade-offs between budget consideration and performance of R&D projects.

3.3.4 Benchmark study

Recent advances in preference elicitation methods in choice-based conjoint analysis focus on

efficiently learning respondent-level preferences over the entire range of attribute levels, while
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Figure 3: Predicted performance by the number of questions (Q, with H = 100)
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our proposed framework aims to focus on high preference region at the aggregate level for the

best prediction in high dimensions. The benchmark study is to present how our goal-directed

question-selection method works differently from the existing preference elicitation methods,

and to shed some light on conditions where one type of selection criterion is more appropriate

than the other.

As a benchmark, we present the polyhedral method for adaptive choice-based conjoint analy-

sis proposed by Toubia et al. (2004). The polyhedral method is one of the earliest developments

in machine-learning based question-selection methods in conjoint analysis, and shown to be very

efficient in reducing uncertainty in partworth parameter estimation relative to traditional con-

joint analysis methods.12 The polyhedral method iteratively selects a respondent-level choice

set after a respondent completes each choice task. A choice task with n profiles generates

n (n− 1) /2 inequalities that identify an uncertainty polyhedron, where
(
Xj −Xj′

)
·βh ≥ 0, if a

profile j is chosen by a respondent h over all other profiles j′ in the choice task. The polyhedron

represents a feasible region of partworth utility parameters βh based on the previous choice task.

The analytic center of the polyhedron estimates the partworth vector, and the distance from

12We believe that the polyhedral method is an appropriate benchmark, as more recent works in question-
selection methods are theoretically similar in geometrically reducing uncertainty of preference parameter estimates
and present empirical improvements toward the polyhedral method (e.g., Toubia et al. 2007, Sauré and Vielma
2017).
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the analytic center to edge represents the uncertainty.

Several heuristic criteria were developed by Toubia et al. (2004) to select n profiles that

partition the polyhedron into approximately equal parts. The heuristic criteria prioritize profiles,

where corresponding inequalities cut the polyhedron in the direction that is perpendicular to long

axes. Therefore, the subsequent choice updates and quickly reduces the uncertainty polyhedron

with additional n (n− 1) /2 inequalities. We replicate the question selection criteria in Toubia

et al. (2004) and simulate respondents’ choices in the same dimensionality of attribute levels (4

attributes with 5, 8, 11 and 12 levels each), total number of respondents (500), and number of

questions per respondent (25) as in our simulation study in section 3.3.1. Partworth parameters

are estimated by Hierarchical Bayesian multinomial logit (Rossi et al. 2005) consistent with

Toubia et al. (2004).

Table 1 compares predictive performance of the proposed framework with 25 questions per

round, 100 respondents per round, and 5 rounds in total with that of the polyhedral method with

the same number of questions (25) and respondents (500). The performance measures used are

utility regret for top three product profiles predicted, out-of-sample correlation between observed

and predicted utilities of all 5, 279 profiles, and mean squared deviation of estimated values of

parameters from true values. The predicted top three profiles by the proposed framework are

(1st, 5th, 3rd) in true values, while those by the polyhedral method were (6th, 9th, 11th) in true

values, leading to lower utility regret of top three profiles in the proposed method. This indicates

that the proposed framework works more efficiently to navigate highly preferred profiles when

experimental resources are limited relative to the dimensionality.

However, the polyhedral method outperforms the proposed framework in recovering over-

all preferences, presenting more accurate out-of-sample utility prediction of all candidates and

mean deviation between estimated and true parameters. This is mainly because the polyhedral

method aims to increase precision of preference elicitation of overall attribute-levels including

low preference region, while the proposed framework focuses more on high preference region to

efficiently predict the best performing profile at the market level.

Table 2 further compares predictive performances between the proposed framework and

polyhedral method in the highly preferred design profiles. The correlations between true and
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Table 1: Comparison between proposed and polyhedral methods

Utility Regret Out-of-sample Mean Deviation of

of Top 3 Correlation Parameters

Proposed Framework .036 .867 .630

(Q = 25, H = 100, T = 5)

Polyhedral Method with .214 .952 .442

HB Estimation (Q = 25, 500 resp.)

predicted utilities are higher for proposed method up to the top 400 profiles (0.8% of all candidate

profiles) than for the polyhedral method. However, the correlation out of top 500 profiles (1%

of all candidate profiles) is higher for the polyhedral method than for the proposed method.

This result offers further distinction of our method by focusing more on the subregions of highly

preferred combinations of attribute levels.

Table 2: Correlations between true and predicted utilities out of top 1% of profiles

Profiles Proposed Polyhedral

Top 100 (0.2%) 0.638 0.263

Top 200 (0.4%) 0.635 0.460

Top 300 (0.6%) 0.688 0.575

Top 400 (0.8%) 0.697 0.650

Top 500 (1%) 0.668 0.702

The benchmark results suggest that the proposed framework efficiently allocates experimen-

tal resources when the goal is to predict the best performing profile on the market, while the

polyhedral method is more efficient when the goal is to learn consumer preferences of entire

range of attribute levels. In addition, the computation of adaptive criteria in the proposed

framework occurs only at the end of each round (4 times in the simulation), while that in the

polyhedral method occurs after each respondent completes one question (12, 500 times = 25

x 500 in the simulation). Therefore, with a relevant goal to achieve, the proposed framework

can be an efficient and computationally light alternative to the existing adaptive preference

19



elicitation methods for identifying high-performance profiles.

4 Empirical Application

The proposed framework is applied to a package design project for a consumer packaged good of

a leading consumer products manufacturer.13 The manufacturer’s goal is to develop the optimal

design in the presence of high-dimensional and sparse parameter space avoiding a poor combi-

nation of the best levels of main effects. The expected improvement criterion is implemented

to search for the most promising design concepts with highest potential, using the parame-

ter estimates by SSVS method. The study is conducted online with high-resolution images of

hypothetical product packages.

4.1 Experimental setting

The product package consists of four design attributes including visual image of the product,

claim statement of key features, name of materials used in the product, and subbrand name, as

described in Table 3. The design element of the main brand name is fixed, so that is not included

in the design experiment. The manufacturer selects the candidate attribute levels using domain

knowledge including 12 product images, 11 claim statements, 6 materials, and 12 subbrand

names. One level from each attribute is considered to be as baseline with partworth preferences

of zero for identification purpose. The baseline attributes construct the common outside option

in the experiment.

Table 3: Description of attributes

Attribute codes Numbers of levels Description Visibility

Att.1 12 Visual illustration of the product High

Att.2 11 Claim statement of the key strength Low

Att.3 6 Name of material Medium

Att.4 12 Subbrand name Medium

13We note that the empirical application was conducted in collaboration with a nationally-known, market-
leading manufacturer of consumer goods as a part of their large-scale R&D project.
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Figure 4 illustrates the design elements of the product package. Attribute 1 (visual illustra-

tion) is the largest design element of the package in addition to the common main brand, so it

is highly visible to respondents. Attribute 2 (claim statement) is at the bottom of the package

with a small font, but includes important information to respondents. Attribute 3 (material)

is placed right above the claim statement with a larger font. Attribute 4 (subbrand name)

is placed right below the common brand name with a similar sized font as attribute 3. The

design attributes’ visibility may correlate with the size, but it does not necessarily reflect the

importance of information.

Figure 4: Location of design attributes in the package

Common brand name 

Subbrand name (Att.4) 

Material name (Att.3) 

Claim statement (Att.2) 

Visual illustration 
(Att.1) 

The number of rounds in the sequential experiment is predetermined as five, considering the

size of data required for accurate parameter estimation and the manufacturer’s typical budget

limitation for R&D projects. About 450 respondents per round were participated from the

U.S. and the U.K. as in Table 4. All participants confirmed that they are active users of the

focal product category through screening questions. The proposed framework is an aggregate

level sequential testing, so sampling with or without replacement does not affect the outcome.

Simulation studies in Appendix D confirm that the true best profile was predicted and the true

partworth parameters were recovered before or at the fifth round in nearly identical dimensions.
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Table 4: Summary of sample sizes in each round of experiment

Round 1 Round 2 Round 3 Round 4 Round 5

U.S. 228 223 237 217 233

U.K. 224 227 214 233 218

Total 452 450 451 450 451

Respondents receive three hypothetical design concepts and one common outside option in

each question. They are requested to select their favorite design concepts out of four alternatives,

as described in Figure 5. The displaying order of the four design concepts is randomized for

each respondent to avoid any location effect. Respondents can enlarge the pictures of each of

the given package design concepts to the full screen mode for evaluation.

Figure 5: Screen layout for the conjoint experiment

Please select the [brand name] package below that you 
would be Most Likely to purchase. 

Package design 
alternative 1 

Package design 
alternative 2 

Package design 
alternative 3 

Package design 
common outside 

option 

Each respondent answers 23 questions in each round. They are randomly split into five

groups receiving the different product profiles for evaluation.14 The number of alternatives

tested in one round is 345 (= 23× 3× 5). The product profiles to be tested in the first round

14The number of groups is determined based on a sensitivity test to balance between the market-share stability
and the number of product profiles covered as shown in Appendix D. If there are more respondents in each group
with smaller number of groups, it enhances the stability of market share calculation. On the other hand, if there
are more groups with smaller number of respondents, it increases the number of questions, so more product
profiles can be tested with the same number of total respondents.
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are selected by classical criteria. The partworth preference parameters are estimated at the

end of data collection in each round (t) using the SSVS method, and the design profiles to be

tested in the next round (t+ 1) are determined by the proposed expected improvement criterion

conditional on the parameter estimates. The same procedure is iterated until the end of the

fifth round.

4.2 Parameter estimates

Figure 6 presents the summary of posterior estimates for main effect parameters using the data

from all five rounds of experiment. Attribute 1 (visual illustration) is the most important design

attribute in terms of the variation across levels, while attribute 4 (subbrand name) does not

affect preferences. The visual element is the largest part in the package design, so it may attract

the highest level of attention from respondents.

Figure 6: Posterior Estimates for Main-effect Partworth Parameters
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Posterior estimates of each attribute level are interpreted as relative preferences to the base-

line level. The levels 1, 2, and 4 in attribute 1 are preferred to the baseline level, and level 2 is

the most preferred visual illustration among all candidates. The preferences of levels 5, 6, and

10 in attribute 2 are the same level as the baseline. So, the four levels in attribute 2 including

the baseline are equally preferred claim statements. Similarly, the levels 1 and 2 in attribute
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3 are equally preferred materials to the baseline level. Subbrand names (attribute 4) do not

differentiate preferences of package designs, except for level 7 slightly less preferred to all other

levels in terms of posterior means.

Among 474 potential interaction parameters, the number of non-zero interaction effects in

terms of posterior means is 62 and two interaction effects out of them are significantly different

from zero at the 95% credible intervals. The effect of interaction parameters is discussed in the

subsequent sections.

4.3 Optimal design

The optimal package design is determined by the expected utilities of candidate product profiles

using the posterior distributions of the partworth parameter estimates β̂ after the five rounds

of the experiment:

j∗ = argmax
j∈J

E{u
(
Xj ; β̂

)
} (6)

where u (·) is the posterior distribution of respondents’ preference defined in Equation (1). This

final outcome returns the highest expected utility among all candidates, so it is expected to

achieve the highest market share. As it includes both main and interaction effects parameters,

the optimal design is selected considering the synergistic effects among attributes.

Table 5 presents the attribute levels of the optimal design concept comparing to the individ-

ual attribute with the highest preferences. Many attribute levels are indistinguishable in terms

of partworth preferences, except for attribute 1. The best design concept is, therefore, finally de-

termined by the interaction effects. The interaction effects do not only affect the prediction, but

also provide inferences in preferred or less-preferred combinations. The 62 non-zero interaction

parameter estimates are reported in Appendix E.

5 Discussion

The empirical results indicate that the optimal design is affected by the presence of interactive

effects among the attributes. Two natural questions that arise are i) whether the proposed
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Table 5: Attribute levels in the best predicted alternative

Attribute levels Attribute levels

in the best alternative with the highest partworths

Att.1 2 2

Att.2 0 0 and 6

Att.3 1 0, 1, and 2

Att.4 1 Ties except for 7

criterion leads to the evaluation of design concepts with more appropriate interactions, and ii)

whether the optimal design by the proposed framework is actually preferred to designs suggested

by other methods.

The subsequent subsections first discuss the effects of selection criteria on the frequencies

of appropriate interactions evaluated in the experiment. Then, it presents a validation task

to evaluate the performance of the proposed framework relative to other popular methods in

practice. For validation, the collaborating firm implemented three more R&D experiments using

competing methods, and we conducted another separate survey to evaluate three best profiles

suggested by the competing methods against the one by our proposed framework.

5.1 Evaluation frequency of interaction effects

The proposed expected improvement criterion is designed to focus on the combinations of at-

tributes with high potential. The key is to ensure the inclusion of the appropriate interaction

effects, as not all potential interactions can be evaluated. If the proposed criteria worked as

designed, the interaction effects appearing in the optimal design should have been evaluated

more frequently than the expected frequency out of random draws. The relative frequency of

evaluation for an interaction effect between level k of attribute a and level l of attribute b is

given by:

RelFreqt (ak, bl) =
ObsFreqt (ak, bl)

ExpFreq (ak, bl)
× 100
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where ObsFreqt is the number of product profiles including both ak and bl evaluated in round

t, and ExpFreq is the expected number of appearances of the combination if they are randomly

drawn proportionally to the total frequency in all potential candidates.

Figure 7 presents the observed relative frequencies of key interaction effects appearing in

the product profiles that are evaluated in the five rounds of experiment. The interaction effects

listed are those that appeared in the most preferred design concept. The dotted line indicates the

expected frequency of evaluation, if candidates are randomly selected without applying proposed

adaptive selection criteria. If the key interaction effects are more frequently selected to evaluate

in the earlier rounds, it is highly likely to find the best design concept without too many rounds

of iterations.

Figure 7: Relative observed frequency of important interaction effects
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The interaction between level 1 of attribute 3 and level 1 of attribute 4 are evaluated 38%

more frequently than expected in rounds two to five, where the proposed criterion is applied.

The other two interactions (level 2 of attribute 1/ level 1 of attribute 3, and level 2 of attribute
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1/ level 1 of attribute 4) are evaluated 26% and 21% more frequently than expected in rounds

two to five. The three interaction effects are evaluated less frequently than expected in round

one where the proposed criterion is not applied. Once the expected improvement criterion is

applied at the end of round one, they are commonly included with higher frequency in round

two of the experiment. The evaluation frequency is decreased in the later rounds, as product

profiles in the high preference region including those interaction effects are mostly evaluated in

the earlier rounds.

The relative frequency illustrates that the proposed criterion allocates the limited number

of questions in a more efficient way to search for the potentially best combinations of design

concepts. The respondents are directly exposed to the combinations with appropriate interaction

effects. This confirms that the important interactive effects between attributes are less likely to

be omitted in the prediction of optimal design, as respondents make head-to-head comparisons

among highly preferred combinations.

5.2 Validation of the optimal design

The empirical application in section 4 was conducted as part of a large-scale R&D project by

the manufacturer, which consists of four separate product design experiments including our

proposed framework. The manufacturer has relied for a long time on methodologies offered

by commercial vendors, Nielson’s optimizer with evolutionary genetic algorithm and Sawtooth

Software’s choice based conjoint (CBC) experiment.15 They also adopted and developed a

machine-learning based query-selection method, called optimal Bayesian recommendation set

(Viappiani and Boutilier 2010). Therefore, the R&D project produced four different product

profiles recommended by each method - the proposed one, genetic algorithm, standard CBC,

and Bayesian recommendation set.

In addition, an additional validation survey was conducted to directly compare the proposed

optimal profile with the other three profiles created by the competing methods. A new set of

individuals was selected and responded to one choice task of their favorite design among the

15Nielson’s optimizer and Sawtooth CBC are two of the most popular methods for product design in practice.
Their clients include nationally-known manufacturers in various industries, such as Unilever and Johnson &
Johnson.
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four profiles and a no-choice option.

5.2.1 Description of benchmark methods

The three other design experiments were conducted for the exactly same product package de-

scribed in section 4. They were implemented under supervision of the collaborating firm with

software providers, and we have limited information on details of implementation except for

the final outcome. Therefore, we briefly describe the three benchmark methods at a conceptual

level.

Nielson’s genetic algorithm. Nielson’s optimizer adaptively searches for the best product

designs at the individual level using interactive genetic algorithm based on Malek (2001). The

genetic algorithm is a heuristic approach to mimic nature’s evolutionary process, where superior

ones eventually survive (Balakrishnan and Jacob 1996). The questionnaire starts with a random

initial set of product profiles. Subsequent sets of questions present superior offspring of product

profiles in the previous round, i.e., combination of preferred attribute levels. The algorithm

allows mutation in general for exploration purposes. Empirical studies have shown that the

outcome of genetic algorithm is often close to optimal and outperformed other existing heuristic

methods (e.g., Balakrishnan and Jacob 1996), as multiple iterations of evolution improve the

fitment of the outcome.

Sawtooth CBC. The choice-based conjoint (CBC) method is a standard hierarchical Bayes

conjoint model provided by Sawtooth software. They offer 30 different sets of 20 predetermined

choice-tasks each, using several randomized design criteria, such as orthogonal design. Respon-

dents first build their own designs using a graphical configurator, then the algorithm determines

which questionnaire set the respondents receive out of 30 sets. The responses out of 20 ques-

tions per individual are analyzed by hierarchical Bayesian method, so the partworth preference

parameters are estimated at the individual level accounting for heterogeneity.

Bayesian recommendation set. A machine-learning algorithm searching for optimal

recommendation sets (Viappiani and Boutilier 2010) is adopted by the researchers in the man-

ufacturer. Viappiani and Boutilier (2010) show that the myopically optimal choice set in an

adaptive experiment is equivalent to the optimal recommendation set of the same size, i.e., a set
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of product profiles that maximizes the respondent’s expected utility. In the sequential process, it

presents a set of product profiles to test in the next round that maximizes their sum of expected

utilities using partworth preference parameter estimates in the previous round. The part-worth

parameters are estimated by hierarchical Bayesian method accounting for heterogeneity of indi-

vidual respondents.

5.2.2 Validation survey

The four separate experiments including the proposed method and three benchmark methods

described in section 5.2.1 result in four different optimal design profiles for the identical product

package. All four methods predicted four different best profiles with internal validity according

to preference estimates from each model, but separate results are not able to present external

validity. Therefore, we conduct a separate validation survey to compare four different design

profiles out of different experimental methods.

Participants include 523 individuals from the U.S. (= 266) and the U.K. (= 257) and are

active users of the focal product category. All respondents receive one question of choosing their

favorite design concept out of four product profiles including the proposed one and no choice

option. The orders of four design concepts are randomized to avoid location effects.

Table 6: Validation experiment

Choice frequency Proportion Relative share lift

by the proposed design

Proposed method 140 26.8%

Genetic algorithm 130 24.9% 8%

Standard CBC 123 23.5% 14%

Optimal recommendation set 92 17.6% 52%

No-choice 38 7.3%

Total 523 100.0%

Table 6 presents the observed shares of the four design concepts generated by different

methods in the manufacturer’s R&D project. The optimal design created by the proposed

framework is the most preferred design concept out of the four product profiles, each of which
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is predicted as the best design by different methods. The proposed design lifts the observed

share by 8% relative to the design by genetic algorithm, and by 14% and 52% relative to the

standard choice based conjoint and the machine learning method, respectively. We note that

all three benchmark methods fully controlled respondents’ heterogeneity, and especially genetic

algorithm is provided at a very high cost to the manufacturer. Though we are not able to

offer the market share prediction based on this result, the observed improvement is potentially

significant considering that the manufacturer’s revenue per brand is over $1 billion on average.

The validation results show that the proposed framework identifies the optimal product

profile by prioritizing appropriate combinations of attributes in the sequential test. The standard

choice-based conjoint analysis relies on a classical experimental design, which frequently produces

a main-effect design without interactions. Genetic algorithm (Malek 2001) and optimal Bayesian

recommendation set (Viappiani and Boutilier 2010) are designed to overcome such problems, but

they are sensitive to the initial seed with limited exploration and rely on heuristic comparison

in a subset of product profiles. The results confirm that the share model used in our proposed

framework is suitable for identifying market-share maximizing design concepts.

6 Conclusion

This paper proposes a new approach to optimal product design in high dimensions using se-

quential experiments. Product profiles are prioritized for inclusion if they can improve on the

outcome of the current best design. The expected improvement criterion is operationalized by

an integration of upper tail in the posterior distribution of aggregate market share. A stochastic

search variable selection method reduces the dimensionality of the model by selecting relevant

variables. We demonstrate that the proposed framework identifies the best design in a large

scale R&D project conducted by a major packaged goods company.

The proposed criterion of expected improvement integrates preference elicitation and goal

maximization and systematically balances between exploitation of high performance regions and

exploration of high potential regions leading to efficient search for product profiles to test. Its

evaluation in aggregate market shares directly operationalizes a firm’s goal function in prod-
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uct design problems. The empirical result shows that the proposed method using an aggregate

market share model produces a better design concept than those suggested by competing meth-

ods, including a heterogeneous hierarchical Bayes conjoint model and commercialized methods

controlling for heterogeneity. It also presents that the proposed method conceptualizing one-

step-ahead optimality at the whole product level is less likely to omit important interactive

effects.

The prioritization of candidates with thicker or wider upper tails in the proposed criterion

is consistent with the managerial goal of marketing practice. Marketing managers often need to

focus their attention on the extremes of distributions on the market (Allenby and Ginter 1995)

than the average, or expected outcomes. That is, the experimental goal function should favor a

product that is the most likely to improve the current status, and this is often not compatible

with wanting to learn about all the part-worths associated with the decision model as implicitly

assumed with using standard design criteria such as D-optimality. Our proposed framework

provides an experimental criterion that is more consistent with the objective of design projects

in practice.

Our modeling framework can be applied to many high-dimensional design settings, such as

identifying brand logos, optimal advertising campaigns, etc. It can also be applied to other R&D

projects with horizontal variation in the attribute levels. The proposed framework is especially

effective when the design attributes contain a large number of levels, and the evaluation of all

potential candidates is infeasible.
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Appendix A: The proof of the equivalence of rank orders between upper tail

integration and expected return to search

The rank orders of expected return to search is preserved in the values of upper-tail integration.

The proof is shown in two separate cases of different rank orders in lower-tail values.

Case 1:
∫ zt
−∞ ztdF (u;Xj ,β) ≥

∫ zt
−∞ ztdF

(
u;Xj′ ,β

)
(The lower-tail integration value of j is

higher than j′.)

If V ′ (Xj) > V ′
(
Xj′
)
, which is equivalent to

∫ ∞
zt

u (Xj ;β) dF (u;Xj ,β) >

∫ ∞
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u
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Xj′ ;β

)
dF
(
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)
,

then it is straightforward to show
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−∞
ztdF (u;Xj ,β) +
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(
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Therefore, if V ′ (Xj) > V ′
(
Xj′
)
, then V (Xj) > V

(
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)
, when

∫ zt
−∞ ztdF (u;Xj ,β) ≥
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(
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)
.

Case 2:
∫ zt
−∞ ztdF (u;Xj ,β) <

∫ zt
−∞ ztdF

(
u;Xj′ ,β

)
(The lower tail integration value of j′ is

higher than j.)

It is straightforward to show
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)
,

because zt is a constant. The following relationship is obtained by rearranging the previous

inequality:

∫ zt

−∞

{
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}
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=

∫ zt

−∞
zt
{
dF (u;Xj ,β)− dF

(
u;Xj′ ,β

)}
+

∫ ∞
zt

u (Xj ;β)
{
dF (u;Xj ,β)− dF

(
u;Xj′ ,β

)}

=

∫ ∞
zt

−zt
{
dF (u;Xj ,β)− dF

(
u;Xj′ ,β

)}
+

∫ ∞
zt

u (Xj ;β)
{
dF (u;Xj ,β)− dF

(
u;Xj′ ,β

)}

=

∫ ∞
zt

{u (Xj ;β)− zt}
{
dF (u;Xj ,β)− dF

(
u;Xj′ ,β

)}
> 0

This is because

u (Xj ;β)− zt > 0, u ∈ [zt,∞)

and

∫ ∞
zt

{
dF (u;Xj ,β)− dF

(
u;Xj′ ,β

)}
> 0

Therefore, if V ′ (Xj) > V ′
(
Xj′
)
, then V (Xj) > V

(
Xj′
)
, when

∫ zt
−∞ ztdF (u;Xj ,β) <

∫ zt
−∞ ztdF

(
u;Xj′ ,β

)
.

The cases 1 and 2 cover all potential regions of relationships in lower tail integration values.

Combining both cases, it is shown that if V ′ (Xj) > V ′
(
Xj′
)
, then V (Xj) > V

(
Xj′
)
, ∀j 6= j′.
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Appendix B: Stochastic search variable selection method

This appendix provides the estimation procedure for the models in the empirical analysis. We

follow the Gibbs sampling method proposed by George and McCulloch (1993). The details of

derivation of posterior distributions are described in George and McCulloch (1993, 1997). The

following three steps summarize the procedure to draw from the posterior distributions.

First, the partworth parameters are drawn from the multivariate normal distribution con-

ditional on the variable selection γ, variance σ2, and the data. If a variable is irrelevant, it is

drawn from a mass concentrated around zero.

[β|γ, σ2,X,Y ] = N{[σ−2X ′X + (DγRDγ)−1]−1σ−2X ′Y , σ−2X ′X + (DγRDγ)−1]−1}

Second, the variance is drawn from the inverted gamma distribution conditional on β and

the data. The number of observations is nQt in round t as the estimation is on the cumulative

data up to the current round of the experiment.

[σ2|β,X,Y ] = IG

(
nQt+ κ

2
,
|Y −Xβ|2 + κψ

2

)

Third, the variable selection index of an individual variable γi is drawn from Bernoulli

distribution with probability of the fraction of conditional likelihoods. The selection of other

variables are considered to be as given at each draw of γi.

[γi|β, γ−i] = Bernoulli (pi) , pi =
[β|γi = 1,X,Y ]

[β|γi = 1,X,Y ] + [β|γi = 0,X,Y ]

The three steps are iterated until convergence.

Appendix C: Benchmark study of estimation methods

A simulation study is used to evaluate how well the SSVS estimation works along with the

proposed question-selection criterion. We evaluate the accuracy of parameter estimates for both

main and interaction effects using SSVS (George and McCulloch 1997), Lasso (Tibshirani 1996),

and standard Bayesian regression (Rossi et al. 2005).
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We simulate choice share data from the true partworth preference parameters and assume

that the number of product profiles for testing in each question is 4 (= n) and outside option. It

is also assumed that there are 20 questions per round, so each round of the experiment evaluates

80 (= nQ) product profiles in addition to the outside option. The number of rounds is assumed

to be 5 (= T ), for a total of 400 (= nQT ) product profile evaluations plus the outside option.

Each dependent variable (ln Sjq − ln S0q) for a design concept j in question q is simulated from

Equation (1) with true values of β and random draws of product-specific error terms, ξjq, from

a normal distribution with a mean of zero and a standard deviation of one.

The product in the simulated experiment has four attributes with (5, 8, 11, 12) levels each.

The true partworth preference parameters are designed in a way that the true best design concept

is not a combination of the most preferred individual attribute-levels, such that interactions

among attributes are large and affect the most preferred alternative. The partworth utility of

common outside option across questions is normalized to be zero. The dummy coding of all

design attributes leads to 32 main effects and 369 two-way interaction effects, and there are

5, 279 candidate product profiles in total.

Table 7 compares the three different estimation methods using the mean absolute percentage

errors (MAPE) between observed and predicted values of dependent variables.16 The SSVS

estimation presents the lowest MAPE, indicating that mean preference estimates were more

accurately estimated with SSVS than with other methods.

Table 7: Out-of-sample predictive fits in mean absolute percentage errors

MAPE

SSVS 0.156

Lasso 0.169

Bayes Regression 0.218

Posterior estimates also suggest that the SSVS method works well in estimation of the

main and interaction effects and in model selection. Figure 8 presents the main-effect posterior

16For predictive fit measurement, a percentage measure is used to incorporate the potential variation in the
observed values of the dependent variable. It prevents to overweight a small error in predicting a large observed
value.
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estimates for attribute 2 using the three estimation methods. The vertical lines stand for the

95% credible intervals, and the dotted lines are the 45-degree lines, where the true values and

estimates are identical. It shows that the true values of all levels of main effect estimates for the

attribute are accurately recovered by SSVS and Lasso preserving the rank order. SSVS presents

tighter credible intervals than Lasso. The standard Bayesian regression failed to recover the

rank order of levels, as interaction effects are not well identified from the main effects given

small sample size. The credible intervals in Bayesian regression are much wider than SSVS and

Lasso, due to the dimensionality. This tendency is similar in other attributes.

Figure 8: Posterior Estimates for Attribute 2
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Figure 9 presents the interaction effect posterior estimates using the three estimation meth-

ods. Both SSVS and Lasso are reasonably accurate in recovering true values of non-zero in-

teraction parameter estimates. Similar to the main effect estimates, the SSVS presents tighter

credible intervals than Lasso, and the standard Bayesian regression presents very wide credible

intervals.

The SSVS estimation presents higher accuracy in model selection as shown in Table 8. The

SSVS method accurately predicted 99.44% of irrelevant interaction effects successfully reducing

the ‘dimensionality’ of non-zero coefficients, while Lasso and standard Bayesian regression only
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Figure 9: Posterior Estimates for Interaction Effects
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predicted 27.3% and 1.67%, respectively.17 The non-zero interaction effects are detected as rele-

vant variables in all estimation methods. The SSVS method estimated one non-zero interaction

parameter as zero, but this is because the true value is relatively close to zero.

Table 8: Prediction accuracy of interaction effects

SSVS Lasso Bayes.regression

True False True False True False

Non-zero Interactions (10 in total) 90.00% 10.00% 100.00% 0.00% 100.00% 0.00%

Zero Interactions (359 in total) 99.44% 0.56% 27.30% 72.70% 1.67% 98.33%

Note 1: Estimates less than 0.01 are considered to be zero.
Note 2: True value of the interaction parameter that is mispredicted by SSVS is 0.8.

Appendix D: Model sensitivity test to the number of groups, the total number of

rounds, and respondents’ heterogeneity

This appendix presents a simulation study to test how sensitive the proposed framework is

to the variation in the number of respondents per question and the total number of rounds

of a sequential experiment in the presence of heterogeneity. We assume that there are 450

17The threshold to be zero is 0.01 in Table 8. SSVS results were robust using various values of the threshold
(e.g., 0.5, 0.1, 0.05, 0.01, and 0.001), while other methods became worse with smaller values.
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heterogeneous respondents, and test sensitivity in predictive performance when respondents are

split into 1, 2, 3, 5, and 9 groups. For example, if we split respondents into 5 groups, each group

includes 90 respondents receiving the same questions to calculate market shares, and different

groups receive different sets of questions.18

We assume that the true data generating process is

Sjq =

∫
exp (u (Xj ;βh))

1 +
∑

j′∈Jq exp
(
u
(
Xj′ ;βh

))dF (β)

where βh∼N
(
β̄,Σ

)
. The market-share observations in the simulation study are generated

by counting heterogeneous individuals’ choices using their partworth parameters βh randomly

drawn from the normal distribution.19 Each choice outcome of each individual is simulated

by the true values of βh and random draws from a Type I extreme value distribution with a

location parameter of zero and a scale parameter of one. We estimate the aggregate-level model

in Equation (1) to estimate the average preferences and predict the market shares generated

from the individual-level choice model.

Figure 10: Predictive performance sensitivities by respondents grouping
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18At a glance, one might think that splitting into a larger number of groups may be better as it increases the
number of product profiles to be evaluated. However, it comes at a cost of a small number of respondents in each
group, where the market share may not be representative to proceed the adaptive process. Therefore, we conduct
a sensitivity test of this trade-off to determine the number of groups in our empirical application.

19The diagonal elements of Σ are set to be one, and off-diagonal elements are set to be zero.
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Figure 11: Predictive performance sensitivities by the number of rounds
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Figure 12: Parameter recovery in the aggregate-level model with 5 groups

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●●

●

−6 −4 −2 0 2 4

−6
−4

−2
0

2
4

True Values of Mean Preferences

Ag
gr

eg
at

e 
Le

ve
l E

st
im

at
es

Under the five different grouping decisions, the sequential experiment is simulated using

the proposed criteria and SSVS method. Figure 10 presents the correlations between observed

market shares generated by the individual-level preference parameters and predicted market

shares by the aggregate-level model after the five rounds of adaptive experiments. The results

indicate that splitting respondents into 5 groups with 90 respondents each shows the best pre-

dictive performance. Also, the aggregate-level model predicts the market shares generated by

the individual-level preference parameters very accurately with correlation of .969. Figure 11
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presents how the correlation between observed and predicted market shares change every round

under the optimal group structure. The predicted market shares are already very close to the

true values in round 2, and converged at round 4. This confirms that five rounds of experiment

are enough for optimal product design in the given dimensionality.

The aggregate-level model not only predicts the true best design simulated by the individual-

level data generating process with heterogeneity, but also recovers the true values of mean

preferences in the individual-level model with accurate rank orders using only a subset of data

as presented in Figure 12.

Appendix E: Interaction effects in the empirical application

Figure 13 presents a boxplot of 14 selected interaction parameter estimates, where posterior

means are greater than .0001 out of 474 potential interaction effects. There are two notable

negative interaction effects between level 1 of attribute 1 and level 4 of attribute 2 (12), and

between level 1 of attribute 1 and level 5 of attribute 2 (13), which indicate that combinations of

those attribute levels are not perceived as good design concepts as a whole. Table 9 reports all

non-zero interaction parameter estimates in the empirical application, where positive posterior

means served as tie-breakers of main effects.

Figure 13: Posterior Estimates for Selected Interaction Effects
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Table 9: Non-zero interaction parameter posterior estimates

1st 2nd 1st 2nd
Attributes Attributes Mean Std.err. Attributes Attributes Mean Std.err.

Att.1,Lev.1 Att.2,Lev.1 .00000 (.00021) Att.1,Lev.7 Att.2,Lev.2 .00005 (.00481)
Att.1,Lev.1 Att.2,Lev.4 -.80729 (.09983) Att.1,Lev.7 Att.2,Lev.6 .00005 (.00503)
Att.1,Lev.1 Att.2,Lev.5 -.75285 (.09686) Att.1,Lev.7 Att.2,Lev.8 .00782 (.06728)
Att.1,Lev.1 Att.2,Lev.6 .00000 (.00039) Att.1,Lev.7 Att.3,Lev.2 .00035 (.01055)
Att.1,Lev.1 Att.3,Lev.3 -.00010 (.00582) Att.1,Lev.7 Att.3,Lev.3 .00003 (.00264)
Att.1,Lev.1 Att.3,Lev.5 .00012 (.00635) Att.1,Lev.7 Att.3,Lev.5 .00002 (.00228)
Att.1,Lev.1 Att.4,Lev.6 -.00001 (.00128) Att.1,Lev.7 Att.4,Lev.1 .00003 (.00314)
Att.1,Lev.1 Att.4,Lev.8 .00004 (.00381) Att.1,Lev.7 Att.4,Lev.10 .00015 (.01457)
Att.1,Lev.10 Att.3,Lev.3 .00002 (.00143) Att.1,Lev.7 Att.4,Lev.3 .00002 (.00175)
Att.1,Lev.10 Att.4,Lev.1 .00001 (.00096) Att.1,Lev.8 Att.2,Lev.4 .00001 (.00136)
Att.1,Lev.10 Att.4,Lev.2 -.00002 (.00233) Att.1,Lev.8 Att.3,Lev.2 .00000 (.00021)
Att.1,Lev.10 Att.4,Lev.8 -.00003 (.00283) Att.1,Lev.8 Att.3,Lev.5 -.00006 (.00414)
Att.1,Lev.11 Att.2,Lev.10 .00005 (.00461) Att.1,Lev.8 Att.4,Lev.11 -.00008 (.00610)
Att.1,Lev.11 Att.2,Lev.7 .00002 (.00216) Att.1,Lev.8 Att.4,Lev.8 .00002 (.00146)
Att.1,Lev.11 Att.3,Lev.2 .00002 (.00147) Att.1,Lev.9 Att.2,Lev.8 .00003 (.00313)
Att.1,Lev.11 Att.3,Lev.5 .00003 (.00283) Att.2,Lev.1 Att.3,Lev.3 .00004 (.00360)
Att.1,Lev.11 Att.4,Lev.5 .00011 (.00623) Att.2,Lev.1 Att.4,Lev.10 .00002 (.00173)
Att.1,Lev.11 Att.4,Lev.9 .00003 (.00244) Att.2,Lev.1 Att.4,Lev.5 .00003 (.00277)
Att.1,Lev.2 Att.2,Lev.5 -.00002 (.00176) Att.2,Lev.10 Att.4,Lev.8 .00000 (.00030)
Att.1,Lev.2 Att.3,Lev.2 -.00003 (.00292) Att.2,Lev.3 Att.3,Lev.1 .00000 (.00012)
Att.1,Lev.2 Att.4,Lev.1 .00003 (.00310) Att.2,Lev.3 Att.4,Lev.7 .00002 (.00145)
Att.1,Lev.3 Att.2,Lev.2 .00000 (.00026) Att.2,Lev.4 Att.3,Lev.3 -.00043 (.01295)
Att.1,Lev.3 Att.3,Lev.4 .00004 (.00286) Att.2,Lev.4 Att.4,Lev.3 -.00006 (.00561)
Att.1,Lev.4 Att.2,Lev.4 .00004 (.00391) Att.2,Lev.6 Att.3,Lev.1 .00000 (.00047)
Att.1,Lev.4 Att.4,Lev.10 .00002 (.00230) Att.2,Lev.6 Att.4,Lev.2 -.00003 (.00251)
Att.1,Lev.6 Att.2,Lev.2 .00012 (.00674) Att.2,Lev.6 Att.4,Lev.5 .00002 (.00174)
Att.1,Lev.6 Att.2,Lev.3 .00013 (.00750) Att.2,Lev.7 Att.4,Lev.6 -.00003 (.00330)
Att.1,Lev.6 Att.2,Lev.9 .00005 (.00347) Att.2,Lev.9 Att.4,Lev.1 .00002 (.00219)
Att.1,Lev.6 Att.3,Lev.3 .00005 (.00372) Att.2,Lev.9 Att.4,Lev.7 -.00014 (.00704)
Att.1,Lev.6 Att.3,Lev.4 .00033 (.01059) Att.3,Lev.4 Att.4,Lev.2 -.00002 (.00167)
Att.1,Lev.6 Att.3,Lev.5 -.00004 (.00372) Att.3,Lev.4 Att.4,Lev.5 .00011 (.00567)
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