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Abstract

Deblurring images of moving objects captured from a

traditional camera is an ill-posed problem due to the loss

of high spatial frequencies in the captured images. Re-

cent techniques have attempted to engineer the motion point

spread function (PSF) by either making it invertible [16] us-

ing coded exposure, or invariant to motion [13] by moving

the camera in a specific fashion.

We address the problem of optimal single image cap-

ture strategy for best deblurring performance. We formulate

the problem of optimal capture as maximizing the signal to

noise ratio (SNR) of the deconvolved image given a scene

light level. As the exposure time increases, the sensor in-

tegrates more light, thereby increasing the SNR of the cap-

tured signal. However, for moving objects, larger exposure

time also results in more blur and hence more deconvolu-

tion noise. We compare the following three single image

capture strategies: (a) traditional camera, (b) coded expo-

sure camera, and (c) motion invariant photography, as well

as the best exposure time for capture by analyzing the rate of

increase of deconvolution noise with exposure time. We an-

alyze which strategy is optimal for known/unknown motion

direction and speed and investigate how the performance

degrades for other cases. We present real experimental re-

sults by simulating the above capture strategies using a high

speed video camera.

1. Introduction

Consider the problem of capturing a sharp image of a

moving object. If the exposure time can be made suffi-

ciently small, a sharp image can be obtained. However,

small exposure time integrates less amount of light, thereby

increasing the noise in the captured image. As the exposure

time increases, the SNR of the captured signal improves, but

moving objects also result in increased motion blur. Motion

deblurring attempts to obtain a sharp image by deconvo-

lution, thereby resulting in increased deconvolution noise

with exposure.

In this paper, we ask the following question: What is the

best exposure time and capture strategy for capturing a sin-

gle image of a moving object? We formulate the problem

of optimal capture as follows: Maximize the SNR of the de-

convolved image of the moving object, given a certain scene

light level, while not degrading the image corresponding to

the static parts of the scene1.

To obtain the best deblurring performance, one needs to

analyze the rate of increase of capture SNR versus decon-

volution noise with the exposure time. For imaging sensors,

the capture SNR increases proportional to the square root of

the exposure time (sub-linear) due to the signal-dependent

photon noise. It is well-known that deblurring of images

obtained from a traditional camera is highly ill-posed, due

to the loss of high spatial frequencies in the captured im-

age. We first show a simple but rather non-intuitive result:

the deconvolution noise for 1-D motion blur using a (static)

traditional camera increases faster than capture SNR with

the exposure time. Thus, increasing exposure time always

decreases the SNR of the deconvolved moving object. We

then analyze recent advances in engineering the motion PSF

that dramatically improves the deconvolution performance.

Two prominent methods are (a) making the PSF invertible

using a coded exposure camera [16], and (b) making the

PSF invariant by moving the camera with non-zero accel-

eration [13].

A coded exposure camera [16] modulates the integra-

tion pattern of light by opening and closing the shutter

within the exposure time using a carefully chosen pseudo-

random code. The code is chosen so as to minimize the

deconvolution noise assuming a specific amount of motion

blur in the image. However, coded exposure also loses light.

In [16], the chosen code was 50% on/off, thereby losing half

the light compared to a traditional camera with the same

exposure time. While [16] analyzed the improvement in

deconvolution performance, it ignored the loss of light in

the image capture. We incorporate the loss of light in our

analysis, and show that it is not necessary to have a 50%
on/off code with signal-dependent noise; one does have the

flexibility of choosing other codes. Note that the PSF is

made invertible for any object motion direction, while mo-

1Otherwise a trivial capture strategy would be to move the camera with

the same speed as the object if the motion direction is known.
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Single Image Capture Traditional MIP [13] Coded Exposure [16]

Camera Motion Required? No Yes No

Loss of Light No No Yes

Invariant PSF No Yes§ No

PSF Invertibility Very Bad Good§ Good‡

Noise on Static Scene Parts No Deconvolution Noise No

(for same light level)
§ Only for object motion direction same as camera motion direction & object motion magnitude in a range
‡ For any object motion direction

Figure 1. Overview of single image capture techniques for motion deblurring. Coded exposure is optimal for deblurring for any motion

direction, if the motion magnitude is known; but motion PSF needs to be estimated for deblurring. MIP is optimal if the motion direction is

known and magnitude is within a range (could be unknown), with additional advantage that motion PSF need not be estimated (invariant).

However, performance of coded exposure degrades gradually as motion magnitude differs from the desired one, while MIP performance

degrades sharply as motion direction differs from camera motion direction and motion magnitude goes beyond the assumed range.

tion magnitude is required for optimal choice of code.

Motion invariant photography (MIP) [13] moves the

camera with a constant acceleration while capturing the im-

age. The key idea is to make the motion PSF invariant to

object speed within a certain range. Thus, objects moving

with different speeds within that range would result in same

motion PSF. Note that MIP needs to know the direction of

the object motion, since the camera should be moved ac-

cordingly, but knowledge of motion magnitude is not re-

quired. Another disadvantage is that the static parts of the

scene are also blurred during capture, leading to deconvo-

lution noise on those scene parts. We compare the three

techniques in terms of SNR of the deconvolved image and

obtain optimal parameters given a scene light level and ob-

ject velocity (or range of velocities). Given capture parame-

ters for a scenario, we investigate how the performance de-

grades for different motion magnitudes and directions. An

overview is shown in Figure 1.

1.1. Contributions

• We formulate the problem of optimal single image

capture of a moving object as maximizing the SNR of

the deconvolved image of the moving object.

• We show that for a traditional image capture using a

static camera, SNR of the deblurred moving object de-

creases with the increase in exposure time.

• We investigate which capture strategy to choose,

choice of exposure time and associated parameters and

analyze its performance for different operating condi-

tions such as known/unknown motion magnitude and

direction.

1.2. Related work

Motion deblurring has been an active area of research

over last few decades. Blind deconvolution [9, 5] attempts

to estimate the PSF from the given image itself. Since

deblurring is typically ill-posed, regularization algorithms

such as Richardson-Lucy [14, 18] are used to reduce noise.

Recent papers [22, 20, 11, 10, 2] have shown promising re-

sults for PSF estimation and deblurring.

Manipulating PSF: By coding the exposure, [16] made

PSF invertible and easy to solve. Wavefront coding [3]

modifies the defocus blur to become depth-independent us-

ing a cubic phase plate with lens, while Nagahara et al.

[15] move the sensor in the lateral direction during im-

age capture to achieve the same. MIP [13] makes motion

PSF invariant for a range of speeds by moving the cam-

era. Coded apertures [4] has been used in astronomy using

MURA codes for low deconvolution noise, using broadband

codes for digital refocusing [21] and for depth estimation

in [8, 12].

Improved capture strategies: In [6], optimal expo-

sures were obtained to combine images for high dynamic

range imaging. Hadamard multiplexing was used in [19]

to increase the capture SNR in presence of multiple light

sources. The effect of photon noise and saturation was fur-

ther included in [17] to obtain better codes.

2. Optimal single image capture

Consider an object moving with a velocity v m/sec. For

simplicity, we assume that the object is moving horizontally

in a single plane parallel to the image plane and the object

motion results in an image blur of vi pixels/ms. Let i de-

note the captured blurred image at exposure time of 1 ms

and īo and īb be the average image intensity of the mov-

ing object and the static background in the captured image

respectively. Define a baseline exposure time t0 = 1
vi

for

which the blur is 1 pixel in the capture image. Let m be the

size of the object in the image along the motion direction if

it was static and let SNR0 be the minimum acceptable SNR

for the object.

Image noise model: We use the affine noise model [17,

1, 7], where the noise η is described as the sum of a signal

independent term and a signal dependent term. The signal-

independent term is due to dark current, amplifier noise and

the A/D quantizer. Let the gray level variance of this term

be σ2
gray . Signal-dependent noise is related to photon flux

and the uncertainty of the electron-photon conversion pro-

cess. The variance of the photon generated electrons lin-

early increases with the measured signal, and hence with
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Figure 2. Comparison of capture strategies. (Left) A 1D object (blue) of length m blurs by k in x-t space with integration lines corre-

sponding to traditional camera (solid brown), coded exposure (dotted) and MIP (yellow) and the resulting PSF’s. Objects moving with

speed v have energy along a single line in frequency domain fx-ft space. For traditional & coded exposure (static cameras), the captured

image corresponds to the ft = 0 slice after modulation by sinc (red) and broadband (blue) filter respectively. Thus, for coded exposure,

any velocity v results in non-zero energy on ft = 0 slice for all spatial frequencies. MIP optimally captures energy within the wedge given

by [−vr, vr] [13] but performs poorly for v outside this range. (Right) Motion PSF for MIP becomes similar to box function as speed

increases beyond the desired range (vr = 3).

the exposure time t. Thus, the photon noise variance can

be written as Ct, where C is a camera dependent constant.

Thus, σ2
η = σ2

gray + Ct. Given this noise model, the SNR

of the captured image is given by

SNRcapture =
īot√

σ2
gray + Ct

. (1)

For long exposures, Ct ≫ σ2
gray, the photon noise domi-

nates and SNRcapture ≈ īo

√
t√

C
increases as the square root

of the exposure time. When Ct ≪ σ2
gray, SNRcapture in-

creases linearly with t.
Deconvolution noise: At exposure time t, the amount

of blur k = tvi. The captured image i(x, y) is modeled as

a convolution of the sharp image of the object s(x, y) with

the motion PSF h(x), along with added noise

i(x, y) = s(x, y) ∗ h(x) + η(x, y), (2)

where ∗ denotes convolution. For 1D motion, the discrete

equation for each motion line is given by i = As+n, where

A(m+k−1)×m denotes the 1D circulant motion smear ma-

trix, and s, i and n denote the vector of sharp object, blurred

object and noise intensities along each motion line. The es-

timated deblurred image is then given by

ŝ = (AT A)−1AT i = s + (AT A)−1AT n. (3)

The covariance matrix of the noise in the estimate ŝ − s is

equal to

Σ = (AT A)−1AT σ2
ηA(AT A)−T = σ2

η(AT A)−1. (4)

The root mean square error (RMSE) increases by a factor

f =
√
trace(AT A)−1/m. Thus, the SNR2 of the decon-

volved object at exposure time t is given by

SNRd =
īot

f
√

σ2
gray + Ct

, (5)

where f denotes the deconvolution noise factor (DNF).

2We use 20 log
10

(.) for decibels.

2.1. Traditional camera

For a traditional capture, motion PSF is a box function

whose width is equal to the blur size k

h(x) = 1/k if 0 < x < k, 0 o.w. (6)

Figure 3 (left) show the plots of
√

t
f which is proportional

to SNRd at high signal dependent noise (Ct ≫ σ2
gray).

Plots are shown for different object velocities assuming

m = 300. Note that the SNR decreases as exposure time

is increased. Thus, for traditional capture, increasing the

exposure time decreases the SNR of the deconvolved ob-

ject. For a specific camera, the minimum exposure time that

satisfies SNRd > SNR0 would be optimal, if this condition

could be satisfied.

Trivial capture: If the SNR at baseline exposure t0 is

greater than SNR0, then the optimal exposure time is t0.

For example, if there is enough light in the scene (bright

daylight), a short exposure image will capture a sharp image

of a moving object with good SNR.

3. Reducing deconvolution noise

Now we consider the following two approaches: (a)

coded exposure camera, and (b) MIP for reducing the de-

convolution noise and analyze the optimal capture strategy

for known/unknown motion magnitudes and directions.

3.1. Coded exposure camera

In coded exposure, the PSF h is modified by modulating

the integration pattern of the light without camera motion.

Instead of keeping the shutter open for the entire exposure

time, a coded exposure camera ‘flutters’ the shutter open

and close using a carefully chosen binary code. Let n be the

code length and s be the number of ones in the code. Light

is integrated when the code is 1 and is blocked when it is

0. This preserves high spatial frequencies in the captured

blurred image at the expense of losing light. Note that s =
1 is equivalent to the short exposure image and s = n is
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Figure 3. Key idea: At large signal-dependent noise (Ct ≫ σ2

gray), SNRd decreases as the exposure time is increased for traditional camera

but not for coded exposure and MIP. Plots show the decrease in SNR for different object speeds. For these plots, parameters depending on

exposure time and object speed were used for both coded exposure and MIP.

equivalent to the traditional camera. Thus, coded exposure

provides tradeoff between the amount of light and amount

of deconvolution noise. The SNR of the deconvolved image

for the coded exposure camera is given by

SNRCE
d =

īots/n

fCE

√
σ2

gray + Cts/n
, (7)

since both the signal and signal dependent noise will be re-

duced by a factor of s/n.

In [16], the light loss was kept equal to 50% (s = n/2).

Note that [16] ignores the loss of light in their analysis of

deconvolution noise and thus only minimizes fCE for find-

ing the best code, while one should maximize SNRCE
d . We

first evaluate the relationship between n and s for optimal

code design incorporating the loss of light.

Code selection incorporating light loss: First, we an-

alyze choice of n for fix amount of light (same s). The

same amount of light ensures that capture noise is similar

and one can directly compare DNF’s for different n. Fig-

ure 4 (left) show plots of DNF versus n, for several values

of s. For each plot, n is in the range [s, 3s]. Note that DNF

decreases sharply as n is increased, as expected. However,

the ‘knee’ in the curves shows that increasing n beyond a

certain point leads to similar performance. Since the knee

occurs before 2s, this implies that a smaller code length can

be used. Small codes are easier to search for and also lead to

larger on/off switching time in a practical implementation.

Next, we plot the SNR as s is increased from 1 to n for a

fixed n. At low light levels, SNR ∝ s/n
fCE

. At low s, the in-

crease in noise due to low light overwhelms the reduction in

deconvolution noise. At high s, deconvolution noise dom-

inates. Thus, there is a distinct valley for each curve and

s = n/2 is a good choice as shown in Figure 4 (middle).

However, now consider the effect of signal-dependent

noise at high light levels. In this case, SNR ∝
√

s/n

fCE
and

the plots are shown in Figure 4 (right). Notice that for a

given n, the performance is good for a range of s and not

just for s = n/2. Thus, it means that a code with smaller s
can be used. Since the size of search space is of the order of(
n
s

)
, it leads to a faster search for small s. For example, for

n = 40,
(

n
20

)
= 1.37 × 1011, while

(
n
8

)
= 76.9 × 106.

Choice of t: Now we analyze the performance of coded

exposure for different exposure time t by considering a code

depending on the blur size. However, in practice, the ob-

ject speed (blur size) is not known a-priori. The analysis

of how a code generalizes for different object velocities is

done in Section 4. Figure 3 (middle) plots SNR (∝
√

ts/n

fCE
)

for coded exposure versus t for different velocities vi, where

for every blur size k = tvi, the best code was used. Note

that with signal dependent noise, SNR does not decrease

with exposure time. Thus, the exposure time could be in-

creased and is useful as static parts of the scene could then

be captured with higher SNR.

3.2. Motion invariant photography

In MIP, the camera is moved with a constant accelera-

tion so that objects moving with speed within [−vr, vr] and

in the same camera motion direction result is same motion

PSF. Intuitively, for every object velocity v ∈ [−vr, vr],
the moving camera spends an equal amount of time mov-

ing with v, thus capturing it sharply for that time period.

The PSF is thus peaked at zero and has low deconvolu-

tion noise compared to a box (flat) PSF for the traditional

capture. Let the acceleration of the camera be a and let

T = t/2. For velocity range [−vr, vr] and exposure time t,
a ≥ vr/2T = vr/t [13] for good performance. SNR of the

deconvolved image for MIP is given by

SNRMIP
d =

īot

fMIP

√
σ2

gray + Ct
, (8)

where fMIP depends on the modified PSF due to camera

motion.

Choice of t: We first analyze the performance of MIP

for a given velocity v and exposure time t using a = v/t.
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Figure 4. Choice of optimal n and s for coded exposure. (Left) For a given s, DNF decreases as n is increased and the ‘knee’ in each curve

happens before n = 2s (marked with square). This indicates that s < n/2 could be used. (Middle) For signal-independent noise, SNR

maximizes around s = n/2. (Right) However, for signal-dependent noise, smaller s can be used.

Note that in practice, the speed and direction of the object

is not known a-priori and how the performance generalizes

is described in Section 4. Figure 3 (right) plots SNR at high

signal dependent noise (∝
√

t
fMIP

) with respect to t for var-

ious speeds, assuming known motion direction. Note that

the SNR does not decrease with increase in exposure time.

Thus, exposure time for MIP can be increased similar to

coded exposure camera for capture.

4. Comparisons and performance analysis

First we compare different capture strategies for the

same amount of captured light. This ensures that the cap-

ture noise is similar for all three capture strategies, allowing

directly comparisons of the DNF’s. Note that to keep the

same light level, t is decreased by a factor of n/s for MIP

and traditional camera. This will lead to more blur in coded

exposure image by the same factor. In [13], coded exposure

deblurring was visually compared with MIP using synthetic

data, but [13] does not cite the code and blur size used for

comparisons. Thus, it is difficult to fairly evaluate the per-

formance in [13]. In addition, the captured light level is not

same for comparisons in [13].

DNF comparison: Figure 5 compares DNF’s with t for

different velocities. For coded exposure, the motion direc-

tion is not known but speed was assumed to be known for

computing the optimal code. In contrast, for MIP, motion

direction was assumed to be known and maximum speed

was set to vr = 3. In addition, a = vr/t was used sep-

arately for each t for best performance. While at lower

speeds (v < vr), MIP gives low deconvolution noise, as

the speed approaches vr, coded exposure performs better

than MIP.

Performance generalization for motion magnitude:

The acceleration parameter a for MIP is set based on the

desired velocity range [−vr, vr]. We first analyze how a

particular choice of a performs when the object velocity is

outside this range. Note that we assume that the camera

can still choose a different a based on the exposure time.
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Figure 5. Comparison of DNF for various capture strategies for the

same light level. t represents the exposure used for coded exposure

camera. At lower speeds (v < vr), MIP gives low deconvolution

noise than compared to coded exposure. But coded exposure be-

comes better as v approaches vr .

Figure 6 (middle) shows DNF for velocity range [0, 2vr]
with t, using vr = 3. Within the velocity range [0, vr],
the deconvolution noise is low, but it increases as the ob-

ject speed increases. Intuitively, the reason for good per-

formance of MIP is that for some amount of time within

the exposure, the camera moves with the same speed as the

object. Thus, PSF for all object speeds between [−vr, vr]
is highly peaked. However, when the speed of object lies

outside [−vr, vr], this does not happen, and PSF becomes

more like a box function as shown in Figure 2. Using the

frequency domain analysis in [13], the image due to MIP

correspond to a parabola shaped slice in the fx-ft space.

The parabola lies within the wedge given by the velocity

range [−vr, vr] and is optimal for [−vr, vr]. However, ob-

ject speed v outside [−vr, vr] corresponds to a line outside

the wedge and the parabolic slice does not capture high fre-

quency information for those speeds (Figure 2). Thus, the

performance degrades rapidly.

In contrast, coded exposure camera is optimized for a
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Figure 6. Performance generalization: (Left) As the object speed increases beyond assumed, the deconvolution noise does not increase for

coded exposure, but the minimum resolvable feature size increases. For MIP, performance degrades rapidly as the motion magnitude v
increases beyond vr = 3 (middle) and as motion direction differs from camera motion direction (right).

particular velocity vp instead of a velocity range. Similar

to above, we assume that the camera can still choose a dif-

ferent code based on the exposure time t. Thus, for each

t, a code with length k = vpt is chosen, while the actual

object velocity v could lead to a different amount of blur

k = vt. Figure 6 (left) plots DNF versus t for different ob-

ject speeds assuming vp = 3. Note that the deconvolution

noise does not increase as v increases beyond vp. However,

since the blur could only be resolved within one ‘chop’ (sin-

gle 1) of the code, the minimum resolvable feature size in-

creases with v. In frequency domain, coded exposure mod-

ulates along the ft direction using the frequency transform

of the chosen code and the image corresponds to the hori-

zontal slice (ft = 0). Even if the object velocity v differs

from vp, broadband modulation along ft allows high fre-

quency information to be captured in the horizontal slice,

leading to good performance.

Another interesting observation is that MIP optimizes

the capture bandwidth for all speeds with [−vr, vr]. In a

practical situation, however, the speed of the object may

not vary from 0 to vr, but rather in a small range, centered

around a speed greater than zero. In such cases, the MIP

capture process does not remain optimal.

Performance generalization for motion direction:

Coded exposure makes PSF invertible for any motion di-

rection, but the direction needs to be known for deblurring

as shown in [16]. For MIP, the camera needs to be moved

along the object motion direction, while the magnitude of

motion is not required for deblurring as PSF becomes in-

variant. However, as the object motion direction differs

from the camera motion direction, performance degrades

sharply for MIP, as the PSF does not remain invertible or

invariant. Let θ denote the difference in camera and object

motion directions. Figure 6 (right) plots DNF for θ ranging

from 0 to 90◦. Note that noise increase sharply with θ and

all curves meet at v = 0 (static scene).

Static scene parts: For coded exposure and traditional

camera, the static parts of the scene are captured without

any degradation (for the same light level). For MIP, PSF

estimation is not required for static scene parts, but they are

also blurred due to camera motion, leading to SNR degra-

dation.

In conclusions, if the motion direction is known exactly

and the motion magnitude is (unknown) within a range,

MIP solution should be used for capture. However, if mo-

tion direction is unknown, coded exposure is the optimal

choice. Moreover, the performance degrades slowly for

coded exposure as the object speed/direction differs from

assumed, but degrades sharply for MIP.

5. Implementation and results

We capture a high speed video and simulate the various

capture strategies for comparisons. A traditional camera

image can be obtained by simply averaging the frames in

the high speed video and that corresponding to a coded ex-

posure camera can be obtained by averaging frames corre-

sponding to the 1 of the code. MIP can be simulated by

shifting the images according to the camera motion before

averaging. For these experiments, individual high speed

camera images are sufficiently above the noise bed of the

camera (high signal-dependent noise). Thus, averaging N
high speed camera images has similar noise characteristics

as a single N times longer exposure image, since both in-

creases capture SNR by
√

N .

Using a high speed video enables us to evaluate the per-

formance of all three cameras on the same data, which oth-

erwise would require complicated hardware setup. In ad-

dition, images corresponding to different exposure times

and camera motions can be easily obtained for the same

data. In general, there could be an integration gap between

the frames of a high speed camera. We use the Photron

FASTCAM-X high speed camera, with a mode that allows

frame integration time to be equal to the inverse of frame

rate. Thus, this gap will not have any significant effect.

Moreover, any such effect will be identical for all three tech-

niques. For all techniques, we deblur simply by solving the

linear system (without any regularization) to analyze the ef-

fects of deconvolution noise clearly.



Setup: A high speed video of a moving resolution chart

is captured at 1000 fps. The speed is determined manually

to be v = 0.28 pixels/frame and is fairly low for accurate

simulation of various strategies.

t=27

Traditional Coded Exposure MIP

t=39 t=27

Figure 7. Comparison of three approaches for the same light level.

(Top row) Blurred images. (Bottom Row) Corresponding de-

blurred images. DNF were empirically estimated to be 19.8, 2.41
and 1.5 dB for traditional, coded exposure and MIP respectively.

Visually, the coded exposure deblurring is sharper than MIP de-

blurring.

Comparisons: Figure 7 show comparisons of the three

techniques. The blurred image for coded exposure camera

was generated using the code 1010110011111 (n = 13, s =
9) and exposure time of 39 ms (chop time of 3 ms). For

traditional camera (box) and MIP, the exposure time t was

reduced to 39 ∗ 9/13 = 27 ms to have the same amount of

light level. For MIP, a = 2v/t was used to get good PSF

(vr = 2v). As expected, both MIP and coded exposure re-

sults in good deblurring. DNF was calculated empirically

using a 100 × 100 homogeneous region (shown in yellow

box) as the ratio of the variance in the deblurred and blurred

images. DNF values were 19.8, 2.41 and 1.5 dB for tradi-

tional, coded exposure and MIP respectively. Visually, the

coded exposure deblurring result is sharper than MIP de-

blurring.

Coded exposure performance: An easy way to sim-

ulate faster moving object for coded exposure is to in-

crease the object displacement within each ’1’ of the code

by adding consecutive frames. We simulate the resolution

chart motion with speeds of 1.07, 1.61 and 2.1 pixels/ms by

adding 4, 6 and 8 consecutive images for each chop respec-

tively using the same n = 13 code (optimal for vp = 1).

Figure 8 shows that as the speed of object increases, deblur-

ring results do not show deconvolution artifacts, but the size

of minimum resolvable feature increases (the vertical lines

at the bottom are not resolved clearly). However, the decon-

volution noise remains almost constant: values were 2.61,

2.65 and 2.69 dB respectively. This is a very useful property

since only the ‘effective resolution’ on the deblurred object

v=1.07 v=1.61 v=2.15

Figure 8. As object speed v increases beyond desired speed vp,

performance of coded exposure does not degrade in terms of de-

convolution noise. But the size of minimum resolvable feature

increases. Deconvolution noise increase is 2.61, 2.65 and 2.69 dB

respectively.

vr=v vr=v/2 vr=v/3

Figure 9. Performance of MIP degrades sharply as the object ve-

locity increases beyond assumed limit. Results are shown for

v = 0.28 and vr = 0.28, 0.14 and 0.09 pixels/ms respectively.

Note that the deblurring shows increased noise when v is greater

than vr . Corresponding DNF’s are 2.99, 10.7 and 13.1 dB respec-

tively.

is decreased without any deconvolution artifacts, leading to

a gradual performance decay.

MIP performance: Figure 9 shows that MIP deblur-

ring performance degrades rapidly as the object velocity in-

creases beyond vr. For these results, blurred images were

generated using a = v/t, a = v/2t and a = v/3t, effec-

tively setting vr to v, v/2 and v/3 respectively. For vr = v,

DNF was low (2.99 dB) as expected, but increases to 10.7
and 13.1 dB for vr = 2v and vr = 3v respectively.

Figure 10 shows that as object motion direction dif-

fers from camera motion, deblurring performance degrades

sharply for MIP due to the vertical component of motion

blur. Even though the vertical blur is smaller than 4 pixels

for all three cases, deblurring results shows artifacts.



θ=10 θ=20 θ=30

Figure 10. MIP performance degrades as the camera motion direc-

tion differs from object motion direction by angle θ. Although the

vertical blur is small (4 pixels), deblurring shows artifacts since

the resulting PSF does not remain invertible.

6. Conclusions

We posed the problem of optimal single image capture

for motion deblurring as maximizing the SNR of the de-

convolved object, taking into account capture noise, light

level and deconvolution noise. We showed that increasing

exposure time to gain more light is not beneficial for a tra-

ditional camera in presence of motion blur and signal de-

pendent noise. For both coded exposure and MIP, exposure

time could be increased without SNR degradation on mov-

ing objects. Coded exposure is optimal for any unknown

motion direction with known motion magnitude, and its

performance degrades gradually as motion magnitude dif-

fers from desired. MIP is optimal if the motion direction is

known and the motion magnitude is within a known range,

but its performance degrades rapidly as the motion mag-

nitude and direction differs, along with increased noise on

the static scene parts. We showed that optimal codes for

coded exposure need not be 50% on-off if signal-dependent

noise is taken into account. We presented evaluation on

real datasets, allowing the design of optimal capture strat-

egy for single image motion deblurring. Our analysis could

also be extended for comparing other capture strategies for

motion/defocus blur using single/multiple images and more

complicated blur functions.
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