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Abstract

This paper characterizes tax and debt dynamics in Ramsey plans for incomplete

markets economies that generalize an Aiyagari et al. (2002) economy by allowing a

single asset traded by the government to be risky. Long run debt and tax dynamics

can be attracted not only to the first-best continuation allocations discovered by

Aiyagari et al. for quasi-linear preferences, but instead to a continuation allocation

associated with a level of (marginal-utility-scaled) government debt that would prevail

in a Lucas-Stokey economy that starts from a particular initial level of government

debt. The paper formulates, analyzes, and numerically solves Bellman equations for

two value functions for a Ramsey planner, one for t ≥ 1, the other for t = 0.

Keywords: Complete markets, incomplete markets, Ramsey plan, taxes, debt, competi-

tive equilibrium, implementability constraints, dynamic programming squared
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1 Introduction

“. . . the option to issue state-contingent debt is important: tax policies that

are optimal under uncertainty have an essential ‘insurance’ aspect to them.”

Lucas and Stokey (1983, p. 88)

Controversies sparked by Reinhart and Rogoff (2010) motivate us to reassess what

we know and don’t know about two elementary questions. How much government debt is

optimal? And is government debt even a pertinent state variable? Lucas and Stokey (1983)

and Aiyagari et al. (2002) offer different answers to these two questions in the context of

economic environments that are identical in all respects but one: Lucas and Stokey (1983)

let the government to issue a complete set of Arrow securities, while Aiyagari et al. (2002)

restrict the government to issue only a one-period risk-free government bond. For Lucas and

Stokey, under an optimal tax and debt policy, government debt is not an independent state

variable but instead is an exact function of the Markov state variable that drives government

expenditures. In Lucas and Stokey’s model, the optimal state-by-state levels of government

debt depend on the initial level of government debt. By way of contrast, for Aiyagari et al.

(2002) government debt is an independent state variable with a limiting distribution that

does not depend on the initial government debt. The quote by Lucas and Stokey pinpoints

the source of these differences: the government’s purchase of insurance from the private

sector through explicit state-contingent securities underlies Lucas and Stokey’s answers to

our two questions; while a government’s self-insurance achieved through its accumulation

of a risk-free asset underlies Aiyagari et al.’s answers.

This paper revisits our two questions in the context of a generalization of the Aiyagari

et al. (2002) environment. We continue to restrict the government to issue only a single

security, but allow that security to be risky. The government manages purchases and sales

of that single security as best it can. We study how the design of that single security affects

optimal government debt dynamics. We use this generalization of Aiyagari et al.’s setup to

attack questions left unanswered by Aiyagari et al. and also to say some new things about

alternative ways that the government purchases insurance in an equilibrium of the original

Lucas and Stokey (1983) model. Our analysis exploits new, or at least previously unstated,

connections between the Lucas and Stokey (1983) and Aiyagari et al. economies.

Aiyagari et al. obtained their sharpest results for an economy with a quasi-linear one-

period household utility function. Linearity of utility in consumption tied down the risk-free

one-period interest rate and enabled them to show that in the long run the government
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accumulates a big enough stock of the risk-free asset to finance its expenditures entirely

from interest earnings; so the tail of that Aiyagari et al. Ramsey plan features a zero

distorting tax on labor and a first-best allocation. Aiyagari et al. are able to say much less

about outcomes for preferences that exhibit risk-aversion in consumption because then the

Lagrange multiplier on the key incomplete markets implementability constraint becomes a

risk-adjusted martingale rather than the pure martingale that it is under quasi-linearity.

Here we are able to say much more than Aiyagari et al.. We accomplish this by recognizing

connections to limits of (our generalization of) their economy and the allocation associ-

ated with a Lucas and Stokey economy for a particular initial level of government debt.

With preferences that exhibit risk aversion in consumption, an attractor for the limiting

debt dynamics of our economy is not associated with the first-best continuation allocation

found in the quasi-linear economy of Aiyagari et al., but rather a continuation allocation

associated with a Lucas-Stokey economy, or one close to it.

Our analysis sheds light on the risk-sharing described in the quotation with which we

begin this paper. We exploit insights about exactly how the Ramsey planner in a Lucas-

Stokey economy delivers the insurance through state-contingent debt that Lucas and Stokey

stress is part and parcel of an optimal tax plan: fluctuations in equilibrium interest rates

do part of the job. We can construct examples in which the Lucas-Stokey Ramsey plan-

ner chooses to issue risk-free debt and to achieve the required state-contingencies entirely

through equilibrium fluctuations in the risk-free interest rate.

It is enlightening to compare our work with related but conceptually distinct inquiries

of Angeletos (2002), Buera and Nicolini (2004), and Shin (2007), who, like us, want to

understand links among the design of government securities, interest rate fluctuations,

and an optimal tax and debt management plan. Our basic strategy is first to find the

tail of an incomplete markets Ramsey allocation, then to ask whether that continuation

allocation coincides with a Lucas-Stokey complete markets Ramsey allocation for some

initial government debt. We describe conditions under which the answer is ‘yes’ or ‘almost

yes’.

Unlike us, Angeletos (2002), Buera and Nicolini (2004), and Shin (2007) all start with

a Lucas-Stokey complete market Ramsey allocation and then construct conditions under

which it can be supported by a limited collection of non-contingent debts of different

maturities.1 Equilibrium interest rate fluctuations play a big role in their settings, as they

do in some of ours.

1In contrast, we start with an incomplete markets Ramsey allocation.
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In addition to the intrinsic interest adhering to the two questions with which we began,

this paper can be viewed as a prolegomenon to an analysis of debt dynamics in the richer

economic environment featured in Bhandari et al. (2013). There, a Ramsey planner levies

a distorting tax on labor partly to finance exogenous government and partly to redistribute

goods among heterogeneously skilled households. Forces similar to those present in the

simpler environment of this paper drive debt dynamics there, but those forces are obscured

by the presence of additional ones. We find it enlightening to isolate underlying forces by

studying them in the simpler setting of this paper.

2 Environment

We analyze economies that share the following features. Government expenditures at time

t, gt = g(st), and a productivity shock θt = θ(st) are both functions of a Markov shock

st ∈ S having S × S transition matrix Π and initial condition s−1. We will denote time

t histories with st and zt will refer to a generic random variable measurable with respect

to st. Sometimes we will denote zt(s
t) indicate a particular realization of zt. An infinitely

lived representative consumer has preferences over allocations {ct, lt}∞t=0 of consumption

and labor supply that are ordered by

E−1
∞∑
t=0

βtU (ct, lt) , (1)

where U is the period utility function for consumption and labor. For most of the pa-

per, we shall assume that U separable in consumption and labor. We describe additional

assumptions later. Labor produces output via the linear technology

yt = θtlt

The representative consumer’s tax bill at time t ≥ 0 is

−Tt + τtθtlt, Tt ≥ 0,

where τt(s
t, ) is a flat rate tax on labor income and Tt is a nonnegative transfer. Often,

we’ll set Tt = 0. The government and consumer trade a single possibly risky asset whose
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time t payoff pt is described by an S × S matrix P:

pt = P(st, st−1)

Let Bt denote the government’s holdings of the asset and bt be the consumer’s holdings.

Let qt = qt(s
t) be the price of the single asset at time t. At t ≥ 0, the household’s time

budget constraint is

ct + bt = (1− τt) θtlt +
pt
qt−1

bt−1 + Tt (2)

and the government’s is

gt +Bt + Tt = τtθtlt +
pt
qt−1

Bt−1. (3)

Feasible allocations satisfy

ct + gt = θtlt, ∀t ≥ 0 (4)

Clearing in the time t ≥ 0 market for the single asset requires

bt +Bt = 0. (5)

Initial assets satisfy b−1 = −B−12 An initial value of the exogenous state s−1 is given.

Equilibrium objects including {ct, lt, τt}∞t=0 will come in the form of sequences of functions

of initial government debt b−1 and st = [st, st−1, . . . , s0, s−1].

Borrowing from a standard boilerplate, we use the following:

Definition 2.1. An allocation is a sequence {ct, lt}∞t=0 for consumption and labor.An

asset profile is a sequence {bt, Bt}∞t=0. A price system is a sequence of asset prices

{qt}∞t=0. A budget-feasible government policy is a sequence of taxes and transfers

{τt, Tt}∞t=0

Definition 2.2. Given (b−1 = −B−1, s−1) and a government policy, a competitive equi-

librium with distorting taxes is a price system, an asset profile, a government policy,

and an allocation such that (a) the allocation maximizes (1) subject to (2), (b) given prices,

{bt}∞t=0 is bounded; and (c) equations (3), (4) and (5) are satisfied.

2We assume that b−1 are obligations with accrued interest. This is equivalent to setting q−1 = 1.
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Definition 2.3. Given (b−1, B−1, s−1), a Ramsey plan is a welfare-maximizing competi-

tive equilibrium with distorting taxes.

3 Two Ramsey problems

Following Lucas and Stokey (1983) and Aiyagari et al. (2002), we use a “primal approach.”

To encode a government policy and price system as a restriction on an allocation, we first

obtain the representative household’s first order conditions3

Uc,tqt = βEtpt+1Uc,t+1 (6a)

(1− τt)θtUc,t = −Ul,t (6b)

We substitute these into the household’s budget constraint to get a difference equa-

tion that we solve forward at every history for every t ≥ 0. That yields implementability

constraints on a Ramsey allocation that fall into two categories: (1) the time t = 0 ver-

sion is identical with the single implementability constraint imposed by Lucas and Stokey

(1983); (2) the time t ≥ 1 implementability constraints are counterparts of the additional

measurability restrictions that Aiyagari et al. (2002) impose on a Ramsey allocation.

We first state our Ramsey problem, then Lucas and Stokey’s.

Problem 3.1. The Ramsey problem is to choose an allocation and an bounded government

debt sequence {bt}∞t=0 that attain:

max
{ct,lt,bt}

E0

∞∑
t=0

βtU(ct, lt) (7)

subject to

ct + gt = θtlt, t ≥ 0 (8a)

b−1 =
1

Uc,0
E0

∞∑
t=0

βt (Uc,tct + Ul,tlt) (8b)

3We thus focus on interior equilibria. Arguments by Magill and Quinzii (1994) and Constantinides and
Duffie (1996) can be used to show that {ct, lt, bt}∞t=0 with bounded {bt} that also satisfy equations (2) and
(6) solve the consumers problem.
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bt−1Uc,t−1
β

=
Et−1ptUc,t
ptUc,t

Et
∞∑
j=0

βj (Uc,t+jct+j + Ul,t+jlt+j) for t ≥ 1 (8c)

Problem 3.2. Lucas and Stokey’s Ramsey problem is to choose an allocation that attains

max
{ct,lt}

E0

∞∑
t=0

βtU(ct, lt) (9)

subject to the single implementability constraint (8b) and feasibility (8a) for all t, st.

Remark 3.3. Equation (8a) imposes feasibility, while equation (8b) is the single imple-

mentability constraint present in Lucas and Stokey (1983). Equations (8c) express addi-

tional implementability constraints at every node from time t ≥ 1. These generalize the

Aiyagari et al. (2002) measurability constraints on a Ramsey allocation to our more gen-

eral payoff structure P for the single asset. The measurability constraints (8c) are cast in

terms of the date, history (t−1, st−1) measurable state variable bt−1 that for t ≥ 1 is absent

from Lucas and Stokey’s complete markets Ramsey problem. Evidently, Ramsey alloca-

tion for our incomplete markets economy automatically satisfies the single implementability

constraint imposed by Lucas and Stokey.

Remark 3.4. State-contingent, but not history-dependent, values of consumption, labor

supply, and continuation government debt b̌(s) solve the Lucas and Stokey (1983) Ramsey

problem 3.2. As intermediated by the Lagrange multiplier on the implementability constraint

(8b), consumption, labor supply, and b̌(s) are functions of initial government debt b−1 and

the current state st, but not past history st−1.

3.1 Motivation for quasi-linear U

Asymptotic properties of a Ramsey plan for our incomplete markets economy vary with

asset returns Rt−1,t ≡ P(st|st−1)
qt−1

. We see that P affects these returns directly through the

ex-post exogenous payoffs and indirectly through prices qt−1. To focus exclusively on the

exogenous P part of returns, we begin by studying an economy with quasi-linear utility

function:

U(c, l) = c− l1+γ

1 + γ
, (10)

which sets Uc,t = 1. Asymptotic properties of a Ramsey plan for our incomplete markets

economy vary with asset returns that reflect properties of equilibrium prices {qt(st|B−1, s−1)}t
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and the exogenous asset payoff matrix P. At an interior solution, quasi-linear preferences

and the Euler equation (6a) pins down qt = βEtP(st+1|st). After studying the consequences

of quasi-linear utility, we shall solve for Ramsey plans for utility functions that express risk

aversion with respect to consumption and so activate endogenous fluctuations in qt.

4 Quasi-linear preferences

Throughout this section, we assume that U is quasi-linear and use an indirect three step

approach to characterize the asymptotic behavior of government debt and the tax rate.

(1) Construct an optimal payoff matrix:

We pose the following problem:

Problem 4.1. Given arbitrary initial government debt b−1, what is an optimal asset payoff

matrix?

Let P be the set of all S × S real matrices. Define the indirect utility function W(P; b−1)

as the solution to problem 3.1 for P ∈ P and initial debt b−1. This induces an operator P∗

that maps initial government debt into an optimal payoff matrix 4

P∗(b−1) ∈ arg max
P∈P

W (P; b−1)

(2) Apply the inverse of the operator P∗.
For an arbitrary payoff matrix P, let

P∗−1(P) = min
b
‖P− P∗(b∗)‖, (11)

where ‖ · ‖ is the Frobenius matrix norm. For initial government debt b−1 such that

P∗(b−1) = P, we shall show that a Ramsey plan for the incomplete markets economy has

bt = b∗ for all t ≥ 0.

(3) Long run assets

Starting from an arbitrary initial government b−1 and an arbitrary payoff matrix P,

establish conditions under which bt → b∗ under a Ramsey plan.

In particular, where S = 2 and shocks st are IID, we describe a large set of P’s for

which government debt bt under a Ramsey plan converges to b∗. For more general shock

4We will demonstrate existence of a maximizer that is unique up to a constant factor along each row of
the matrix.
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processes, we numerically find an ergodic set of bt’s hovering around the debt level b∗. We

execute steps (1), (2) and (3) in sections 4.1, 4.2, and 4.3.

4.1 The Optimal Payoff Matrix

We construct an optimal payoff matrix by first solving problem 3.2 for a Lucas-Stokey

Ramsey allocation associated with a given b−1. Next we construct a sequence {pt}t that

satisfies the implementability constraints imposed in (8c). Note that these implementability

constraints are invariant to scaling of pt by a constant kt−1 that can depend on st−1. From

this equivalence class of {pt}t’s we select a {pt}t that satisfies a normalization Et−1pt = 1

and also satisfies

pt =
β

bt−1
Et

∞∑
j=0

βj (ct+j + Ul,t+jlt+j) , (12)

where

bt−1 = βEt−1
∞∑
j=0

βj(ct+j + Ul,t+jlt+j). (13)

The term ct+j + Ul,t+jlt+j = (1 − τt+j)lt+j − gt+j is the net-of-interest government surplus

at time t+ j. From equations (12) and (13), note that 1
pt
− 1 is the percentage innovation

in the present value government surplus at time t.

Note that by construction, pt disarms the time t ≥ 1 measurability constraints5. Using

the remark 3.4 fact that the Lucas-Stokey Ramsey allocation is not history-dependent,

construct the optimal payoff matrix as

P∗(st, st−1|b−1) = pt.

Thus, given initial government debt b−1, let µ(b−1) be the Lagrange multiplier on the

Lucas-Stokey implementability constraint (8b) at the Lucas-Stokey Ramsey allocation. The

tax rate in the Ramsey allocation is τ(µ) = γµ
(1+γ)µ−1 , which implies a net-of-interest gov-

5Although we assume quasi-linear preferences throughout this particular construction, please note that
equation (12) can be generalized to preferences with curvature via

pt =
β

Uc,t−1bt−1Uc,t
Et

∞∑
j=0

βj (Uc,t+jct+j + Ul,t+j lt+j)

with the normalization Et−1Uc,tpt = 1
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ernment surplus S(s, τ) that satisfies

S(s, τ) = θ(s)
γ

1+γ (1− τ)
1
γ τ − g(s)

If the aggregate state process st is i.i.d. then the ‘disarm-the-measurability-constraints’

equation (12) implies that the optimal payoff matrix is

P∗(s, s |b−1) = β
S(s, τ)

b−1
+ β = (1− β)

S(s, τ)

ES(s, τ)
+ β, (14)

which is independent of s .

Equation (14) lets us depict an optimal payoff matrix as a function of initial government

debt. Figure 1 plots the optimal payoff in both states of the world when either government

expenditures or TFP follows a 2 state i.i.d. process. In both cases, we see that the ordering

of the payoff flips on either side of zero government debt.

−3 −2 −1 0 1 2 3 4
Initial Government Debt
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0.995

1.000

1.005

1.010
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y
o
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Payoff High TFP
Payoff Low TFP
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1.00

1.02
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y
o
ff
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Payoff High g

Figure 1: Optimal asset payoff structure as a function of initial government debt when
TFP follows a 2 shock i.i.d. process (left) and when government expenditures follow a 2
shock i.i.d process (right).

To appreciate how the initial government debt level influences the optimal asset payoff

structure via formula (14), call a state s “adverse” if it implies either “high” government

expenditures or “low ” TFP; formally, say that s is “adverse” if

g(s)Eθ
γ

1+γ − θ(s)
γ

1+γEg > 0

A “good” state is the opposite of an “adverse” state. “Adverse” states have the property

that for wide range of initial government debts, the net-of-interest government surplus is
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lower than in “good” states. When initial government assets are positive, (14) implies that

P∗ pays more in “adverse” states, while when initial government assets are negative, P∗

pays less in “adverse” states.

4.2 The Inverse of P∗ Again

Temporarily assume that st is i.i.d and S = 2. In this case, note that (14) implies that the

optimal payoff matrix P∗ has identical rows. This lets us restrict our attention to P(s, s )

that have payoffs that are independent of s . This in turn lets us summarize P with a

vector. Under the normalization EP(s) = 1, payoffs on the single asset are determined

by a scalar p, the payoff in state 1. A risk-free bond is then a security for which p = 1.

Without loss of generality, we shall assume that g(1)Eθ
γ

1+γ − θ(1)
γ

1+γEg < 0, and thus, p

is the payoff in the “good” state of the world. Because the optimal payoff matrix can be

summarized by a single scalar variable, we can recast the optimal matrix map P∗(b) as a

single scalar function p∗(b). The steady state level of debt associated with an exogenous

payoff p is then

b∗ = p∗−1(p). (15)

Proposition 4.2. There exists 0 ≥ α2 ≥ α1 ≥ 1 such that

a. If p ≤ α1, then b∗ < 0

b. If p ≥ α2, then b∗ > 0

c. If α1 > p > α2, then b∗ solving (15) does not exist

Proof. Let g1 and θ1 denote government expenditures and TFP, respectively in the “good”

state of the world. In state s, the government surplus is

S(s, τ) = θ(s)
γ

1+γ (1− τ)
1
γ τ − g(s),

which is maximized at τ = γ
1+γ

when (1 − τ)
1
γ τ is also maximized. Furthermore, in the

region (−∞, γ
1+γ

], S(·, τ) is an increasing function of τ . In an i.i.d. world with complete

markets, government debt at a constant tax rate τ would be

β

1− β
∑
s

Π(s)S(s, τ), (16)

11



which is an increasing function of τ . The maximal initial government debt sustainable with

incomplete markets is then

b =
1

1− β
∑
s

Π(s)θ(s)
γ

1+γ

(
1

1 + γ

) 1
γ γ

1 + γ
− g(s).

Inverting the equation (16) mapping from the tax rate into government debt gives us a

function τ(b) that maps initial government debt into an optimal tax rate. The function

τ(b) is an increasing function of b on the domain of possible complete markets initial debts

(−∞, b], with τ((−∞, b]) =
(
−∞, γ

1+γ

]
.

Substituting the formula for S(s, τ) into equation (14), we obtain

p∗(τ) = (1− β)
θ

γ
1+γ

1 (1− τ)
1
γ τ − g1

Eθ
γ

1+γ (1− τ)
1
γ τ − Eg

+ β.

Solving for (1− τ)
1
γ τ gives

(1− τ)
1
γ τ =

(p∗ − β)Eg − (1− β)g1

(p∗ − β)Eθ
γ

1+γ − (1− β)θ
γ

1+γ

1

.

The set of complete market optimal tax rates is (−∞, γ
1+γ

]. Since the mapping (1− τ)
1
γ τ

is one to one and b(τ) is increasing on this domain, we conclude that p∗(b) is one to one.

Differentiating p∗(τ) with respect to τ yields

d

dτ
p∗(τ) = (1− β)(1− τ)

1
γ
−1 [γ − (1 + γ)τ ]

g1Eθ
γ

1+γ − θ
γ

1+γ

1 Eg
(Eθ

γ
1+γ (1− τ)

1
γ τ − Eg)2

< 0,

implying that p∗(b) is decreasing in b. Since b = 0 implies that ES(τ(b)) = 0, the function

function p∗(b) has a pole at b = 0. That p∗(b) decreasing in b must therefore imply that

limb→0− p
∗(b) = −∞ and limb→0+ p∗(b) =∞. We conclude that

p∗((−∞, b]) = p∗((−∞, 0)) ∪ p∗((0, b]) = (−∞, α1) ∪ [α2,∞).

We compute the bounds α1 and α2 by taking the limits of p∗ as b approaches −∞ and

the upper bound for government debt under complete markets b, or equivalently as τ

approaches −∞ and γ
1+γ

, respectively.
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With only government expenditure shocks, we compute

α1 = 1 and α2 = (1− β)
θ

γ
1+γ

(
1

1+γ

) 1
γ γ

1+γ
− g(s1)

θ
γ

1+γ

(
1

1+γ

) 1
γ γ

1+γ
− Eg

+ β > 1

With only TFP shocks, we compute

α1 = (1− β)
θ(s1)

γ
1+γ

Eθ
γ

1+γ

+ β > 1

and

α2 = (1− β)
θ(s1)

γ
1+γ

(
1

1+γ

) 1
γ γ

1+γ
− g

Eθ
γ

1+γ

(
1

1+γ

) 1
γ γ

1+γ
− g

+ β > α1

Remark 4.3. With only TFP shocks, the bond payoff has the special property that it is

associated with a steady state asset level that supports the first-best allocation, p∗−1(1) = bfb.

At the first-best taxes are zero, so the net-of-interest government surplus is constant across

states.

We illustrate Proposition 4.2 in figure 2. The blue curve is the inverse map p∗−1. Two

constants α1 and α2 divide possible payoff structures into three regions: one in which a

steady state exists with the government holding assets, another in which a steady state

exists with the government owing debt, and yet another in which where a steady state does

not exist.

4.3 Long Run Assets

In subsection 4.2, we provided conditions under which there exists b∗ such p∗(b∗) = p. By

construction, if b−1 = b∗ then the allocation that solves complete markets Ramsey problem

3.2 for initial condition b∗ automatically satisfies the measurability constraints (8c). That

allocation therefore solves the incomplete markets Ramsey problem 3.1. This implies that

if b−1 = b∗, then bt = b∗ for all t. Thus, p∗−1(p) corresponds to a “steady state”. It remains

to be determined whether the incomplete markets Ramsey bt converges to b∗ for arbitrary

b−1. Theorem 4.4 provides sufficient conditions for convergence.

Theorem 4.4. Let bfb denote the level of government debt associated with the first-best

allocation with complete markets. Then
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Figure 2: Three regions in p space.

a. If p ≤ min(α1, 1), then bfb < b∗ < 0 and bt → b∗ with probability 1.

b. If p ≥ α2, then 0 < b∗ and bt → b∗ with probability 1.

c. If min(α1, 1) < p < α2, b∗ either does not exist or is unstable.

For p in region (c), the government run up debt over time.

Proof. The optimal allocation can be represented recursively in terms of functions ct(µt), lt(µt), bt(µt)

together with a law of motion for µ′ = µ′(µ, s) for µ. We shall establish show global stabil-

ity under the assumption that µ′(µ, s) an increasing function of µ The heart of the proof

revolves around the twisted-martingale equation for µ:

µt =
∑
s

Π(s)psµ
′(µt, s) = Etpt+1µt+1.

We have shown that there is at most one µ∗ such that µ′(µ∗, s) = µ∗ for all s. Here we

focus on showing global stability for µ < µ∗. The twisted-martingale equation can be
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decomposed as follows

µt = Etµt+1 + Covt(pt+1, µt+1).

By signing Covt(pt+1, µt+1), we can determine whether µt follows a sub or super-martingale.

Given that µt is bounded from above,6 we can verify global convergence to the steady state

if µt is a supermartingale. As in the statement of the theorem, we will split the proof up

into three cases. Recall that p is the payoff in the “good” state 1.

1. p < min{1, α1}: Let bs be maximal debt with which the government could enter a period

and be able to pay off, assuming that it receives shock s from this period onward.

Then

bs =

(
ps
β
− 1

)−1(
θ

γ
1+γ
s

(
1

1 + γ

) 1
γ γ

1 + γ
− gs

)
because the government maximizes tax revenue by setting τ to γ

1+γ
. For p < α2,

it is possible to show that b1 > b2, and thus the natural debt limit is attained un-

der repetition of the “adverse” state. This implies that limµ→−∞ b(µ) = b2 and

limµ→−∞ µ
′(µ, 2) = −∞. In order for the period-by-period budget constraint

ps
β
b(µ) = S(µ′(µ, s)) + b(µ′(µ, s))

to be satisfied for all s, it must be true that limµ→−∞ µ
′(µ, 1) > −∞ (as b1 > b2).

Continuity of µ together with the uniqueness of the steady state µ∗ then implies that

µ′(µ, 1) > µ′(µ, 2) for all µ < µ∗. p < 1 implies that p1 < p2, allowing us to conclude

that Covt(pt+1, µt+1) < 0. We then have that

µt < Etµt+1

for µt < µ∗. Since µ′(µ, s) is increasing and continuous, and since µ′(µ∗, s) = µ∗, we

can iterate on the policy functions to show that if µt < µ∗, then for all j > 0, we

must have µt+j < µ∗. Thus, if µt < µ∗, then µt is a supermartingale bounded from

below. That implies that µt → µ̃ for some constant µ̃ with probability 1. Then we

can use the continuity of µ′(µ, s) to show that

µ′(ũ, s) = µ̃,

6Since µ′(µ∗, s) = µ∗ and µ′(µ, s) is increasing in µ, we know that if µt < µ∗, then µt+j < µ∗ for all
histories st+j .
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implying that µ̃ = µ∗, as µ∗ is the unique steady state. The steady state is then

globally stable since µt → µ∗ with probability 1.

2. p ≥ α2: Following the same approach used in for case 1, we know for p > α2 that

b1 < b2, implying that the natural debt limit is attained under repetition of the

“good” state. As in case 1, by taking limits we obtain limµ→−∞ µ
′(µ, 1) = −∞ and

limµ→−∞ µ
′(µ, 2) > −∞. This implies that µ′(µ, 1) < µ′(µ, 2), which along with

p1 > p2 implies Covt(pt+1, µt+1) < 0. As in case 1, we then have global stability of

the steady state for µt < µ∗.

3. min(α1, 1) < p < α2: In this case, either there exists a steady state if 1 < p ≤ α1 or

there does not exist a steady state. In either case the analysis for case 1 implies that

µ′(µ, 1) > µ′(µ, 2) for µ < µ∗.7 Since p > 1 implies that p1 > p2, we can conclude

that Covt(pt+1, µt+1) > 0, implying that

µt > Etµt+1.

We thus cannot apply the martingale convergence theorem, leaving open the possi-

bility that the steady state is not stable.

Remark 4.5. Figure 3 illustrates Theorem 4.4. In addition to depicting values of p for

which a steady state exists, it also highlights regions where a steady state is stable. The

theorem asserts that there exist p for which a steady state exists but is unstable.

An important aspect of this model is that small changes in primitives (specifically p)

can lead to major differences in long run allocations. To illustrate this, in Figure 4 we plot

two sample paths where the only difference is the asset restriction p.

4.4 Economic forces driving convergence

In summary, when the aggregate state follows a 2-state i.i.d. process, government debt

bt often converges to b∗, while the tail of the allocation equals Ramsey allocation for an

economy with complete markets and initial government debt b∗. The level and sign of

b∗ depend on the asset payoff structure, which we have expressed in terms of a scalar p

7When a steady state does not exist, take µ∗ to be ∞.
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that concisely captures what in more general settings we represented with the asset payoff

matrix P.

Facing incomplete markets, the Ramsey planner recognizes that the government’s debt

level combines with the payoff structure on its debt instrument to affect the welfare costs

associated with varying the distorting labor tax rate across states. When the instrument is

a risk-free bond, the government’s marginal cost of raising funds µt is a martingale. In this

situation, changes in debt levels help smooth tax distortions across time. However, if the

payoff on the debt instrument varies across states, then by affecting its state-contingent

revenues, the level of government debt can help smooth tax distortions across states. For

our two state, iid shock process, the steady state debt level b∗, when it exists, is the unique

amount of government debt that provides just enough “state contingency” completely to

fill the void left by missing assets markets. The Ramsey planner takes into account the

additional benefits from tax smoothing as the government debt approaches b∗; that puts

a risk-adjustment into the martingale governing µ and leads the government either to ac-

cumulate or decumulate debt. Although accumulating government assets requires raising

distorting taxes, locally the welfare costs of higher taxes are second-order and so are dom-
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Figure 4: A sample path with p > 1 (left) p < 1 (right).

inated by the welfare gains from approaching b∗, which are first-order.

5 Turning on risk-aversion

We now depart from quasi-linearity of U(c, l) and thus activate an additional source of

return fluctuations coming from endogenous fluctuations in prices of the asset qt. To obtain

a recursive representation of a Ramsey plan, we employ the endogenous state variable

xt = uc,tbt,

and study how long-run properties of xt depend on equilibrium returns Rt,t+1 = P(st,st+1)
qt(st)

.

Activating risk aversion in consumption makes qt vary in interesting ways.

Commitment to a Ramsey plan implies that government actions at t ≥ 1 are constrained

by the household’s anticipations about them at s < t Following Kydland and Prescott

(1980), we use the marginal utility of consumption that the Ramsey planner promises to

the household to account for that ‘forward looking’ restriction on the Ramsey planner.

That comes from the fact that the Euler equation restricts allocations such that expected

marginal utility in time t is constrained by consumption choices in time t−1. It is convenient

for us that scaling the household’s budget constraint by the marginal utility of consumption

makes Ramsey problem recursive in x = Ucb. In particular, implementability constraints
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(8c) can be represented as

xt−1P(st, st−1)Uc,t
βEt−1PUc,t

= Uc,tct + Ul,tlt + xt, t ≥ 1 (17)

Problem 5.1. Let V (x, s−1) be the expected continuation value of the Ramsey plan at

t ≥ 1 given promised marginal utility government debt inherited from the past x = Uc,tbt

and time t − 1 Markov state s−1. After the realization of time 0 Markov shock s0, let

W (b−1, s0) be the value of the Ramsey plan when initial government debt is b−1. The (ex

ante) Bellman equation for t ≥ 1 is

V (x, s ) = max
c(s),l(s),x′(s)

∑
s

Π(s, s )
(
U(c(s), l(s)) + βV (x′(s), s)

)
(18)

subject to x′(s) ∈ [x, x] and

xP(s, s )Uc(s)

βEs PUc
= Uc(s)c(s) + Ul(s)l(s) + x′(s) (19)

c(s) + g(s) = θ(s)l(s) (20)

Equation (19) is the implementability constraint and (20) is feasibility. Given an initial

debt b−1,time 0 Markov state s0, and continuation value function V (x, s ), the (ex post)

time 0 Bellman equation is

W (b−1, s0) = max
c0,l0,x0

U(c, l) + βV (x0, s0) (21)

subject to time zero implementability constraint

Uc(c0, l0)c+ Ul(c0, l0)l0 + x0 = Uc(c0, l0)b−1

and the resource constraint

c0 + g(s0) = θ(s0)l0

and

x0 ∈ [x, x]

Lemma 5.2. Let V,W be the optimal value functions for problem 5.1. The allocation given

by the corresponding optimal policy function solves problem 3.1.
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5.1 Computational and analytic strategy

The analysis in this section is based on two pillars: (1) a suite of python computer programs

that solves Bellman equations (18) and (21); and (2) some mathematical analysis of first-

order conditions satisfied by the optimal policy function that attain the right sides of these

Bellman equations.

We attacked Ramsey Problem 5.1 with two weapons: (1) a suite of python computer

programs that solve Bellman equations (18) and (21); and (2) mathematical analysis of

the first-order conditions satisfied by the optimal policy functions that attain U and V .

In our computational approach, we solved the Bellman equations via policy iteration on

first-order conditions. Appendix A tells how we take Vx(x, s ) = µ̃ as a state variable and

approximate the optimal policy x(µ̃, s ) with quadratic splines.8 As with the quasilinear

section, our analytical approach is confined to environments with a two state i.i.d. process

for the aggregate state st. We use our numerically computed optimal policy functions to

confirm that much of the intuition acquired from our formal mathematical analysis of the

two-state, i.i.d. process extends to general stochastic processes for st.

5.2 Motivation to focus on risk-free bond economy

As mentioned in section 3.1, properties of a Ramsey plan for our incomplete markets

economy vary sensitively with asset returns that reflect properties of equilibrium prices

{qt(st|B−1, s−1)}t and the exogenous asset payoff matrix P. By studying quasi-linear pref-

erences, we eliminated fluctuations in returns coming from prices. Here we turn the table

and by studying an economy with a risk-free bond, we eliminate fluctuations in returns

coming from the exogenous asset payoff matrix P. Thus, we set P(s|s ) = 1 ∀ (s, s ).

Let x′ (s;x, s ) be the decision rule for x′ that attains the right side of the t ≥ 1 Bellman

equation (18). A steady state x∗ satisfies x∗ = x′ (s;x∗, s−) for all s, s . A steady state is a

node at which the continuation allocation and tax rate have no further history dependence.

Proposition 5.3. Assume that U is separable and iso-elastic, U(c, l) = c1−σ

1−σ −
l1+γ

1+γ
. Assume

that

the Markov state s take two values is i.i.d with sb being the “adverse” state (either low

TFP or high govt. expenditures) and sg begin the good state. Let xfb be the discounted

present value of marginal utility weighted government surpluses associated with the first

8We also solved the problem numerically using value function iteration. Numerical expriments showed
that policy function iteration provided more accurate and stable solutions.
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best allocation. Let qfb(s) be the shadow price of government debt in state s at the first best

allocation. If
1− qfb(sb)
1− qfb(sg)

>
g(sb)

g(sg)
≥ 1, (22)

then there exists a steady state with xfb > x∗ > 0

Proof. As in the quasi-linear case, a steady state is associated with a continuation allocation

of a complete markets allocation starting from some initial debt level. We can index such

continuation allocations by their associated multiplier µ on the implementability constraint.

Letting S(µ, s) be the government surplus at state s and multiplier µ, a steady state has a

multiplier µ∗ at which the budget constraint in both states of the world is satisfied:

S(µ∗, sg)
c(µ∗,sg)−σ

βEc(µ∗)−σ − 1
=

S(µ∗, sb)
c(µ∗,sb)−σ

βEc(µ∗)−σ − 1
.

By choosing µ1 so that S(µ1, sg) = 0, we conclude that

0 =
S(µ1, sg)

c(µ1,sg)−σ

βEc(µ1)−σ − 1
>

S(µ1, sb)
c(µ1,sb)−σ

βEc(µ1)−σ − 1
.

We derived this equation directly from S(µ, sg) < S(µ, sb) for all µ and c(µ, sg) > c(µ, sb)

for all µ.

Eliminating qfb, equation (22) can expressed as

g(sg)

1− βEc−σfb
cfb(sg)−σ

>
g(sb)

1− βEc−σfb
cfb(sb)−σ

.

Multiplying both sides by −1 and factoring out βEc−σfb , this equation simplifies to

−cfb(sg)−σg(sg)
cfb(sg)−σ

βEc−σfb
− 1

<
−cfb(sb)−σg(sb)
cfb(sb)−σ

βEc−σfb
− 1

or
S(0, sg)

c(0,sg)−σ

βEc(0)−σ − 1
<

S(0, sb)
c(0,sb)−σ

βEc(0)−σ − 1
.

Existence of µ∗ follows directly from the Intermediate Value Theorem.

Proposition 5.4. There exist x < x∗ and x > 0 such that if {ct(st), lt(st), xt(st−1)} solves
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the incomplete markets Ramsey problem 5.1 with bounds x and x, then xt(s
t) → x∗ as

t→∞ with probability 1.

Proof. The proof relies on the concavity of the value function V and two lemmas that

describe the structure of the policy functions. Proofs of the lemmas appear in the appendix.

Lemma 5.5. Consumption is ordered by the state of the world. In particular, there exist

x and x such that for all x ∈ [x, x], the policy function for consumption satisfies c(x, sg) >

c(x, sb).

This lemma assures that for the same level of marginal utility weighted government

debt, consumption is larger in “good” states of the world than in “adverse” states of the

world.

Lemma 5.6. There exist x and x such that the optimal government savings policy x′(x, s)

satisfies

1. For x ∈ (x∗, x], x′(x, sg) < x′(x, sb)

2. For x ∈ [x, x∗), x′(x, sg) > x′(x, sb)

Furthermore, x′(x, ·) is increasing in x.

Property 1 states that if government debt exceeds its steady state value, then the

government issues more debt in bad states of the world than in good states of the world.

Property 2 states that if government debt is smaller than its steady state amount, then the

government has accumulated enough assets that the lower interest rate in the “adverse”

state of the world allow it to purchase more assets (issue less debt) than in the “good”

states of the world.9 The last part of the lemma guarantees that if the government enters

with more debt, it will pass on more debt to future periods. We can now prove global

convergence. We will focus on the case where xt ≥ x∗, since the analysis of the other case

is symmetric. Since x′(x, ·) is increasing in x, we can iterate the policy functions forward to

conclude that xt+j > x∗ for all j as long as xt > x∗. Letting µt = V ′(xt) be the multiplier

on the implementability constraint and λt be the multiplier on the constraint xt ≤ x, we

have

µt =
1

Et[c−σt+1]
Et[µt+1c

−σ
t+1]− λt

9Remember that in the steady state, the government owns a positive amount of the risk-free asset.
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Lemma 5.6. along with concavity of V allows us to conclude that µt+1(sg) > µt+1(sb). From

Lemma 5.5, we know that ct+1(sg) > ct+1(sb), which implies that Covt(µt+1, c
−σ
t+1) < 0, so

1

Et[c−σt+1]
Et[µt+1c

−σ
t+1] < Et[µt+1].

Since λt ≥ 0, we conclude that

µt < Et[µt+1].

Moreover µt < V ′(x∗) = µ∗, so µt is a submartingale that is bounded from above. Ap-

plying the martingale convergence theorem, we conclude that µt → µ∗ with probability 1.

Continuity of the policy functions and uniqueness of the steady state in the region [x∗, x]

implies that xt → x∗ with probability 1.

Remark 5.7. In this economy, fluctuations in the risk-free interest rate come from fluc-

tuations in marginal utility of consumption. The interest rate is low in “good” states (i.e.,

when TFP is high or government expenditures are low). In a steady state, the govern-

ment holds claims against the private sector, an outcome that resembles those in economies

with quasi-linear utility and low p. For all admissible initial levels of government debt,

an incomplete markets Ramsey allocation converges to a particular Lucas-Stokey Ramsey

allocation.

Remark 5.8. Propositions 5.3 and 5.4 should be interpreted approximately as supplying a

converse to Lemma 3 from section 5 of Aiyagari et al. (2002), which provided sufficient con-

ditions for their incomplete markets Ramsey plan economy to fail to converge to a complete

markets continuation allocation. Our propositions 5.3 and 5.4 provide sufficient conditions

for a complete markets steady state continuation allocation to exist, and for the incomplete

market Ramsey allocation to converge to that steady state continuation allocation. Note

that propositions 5.3 and 5.4 assume a very special stochastic process for s. For more gen-

eral stochastic processes, a steady state does not exist. But in simulations, we have found

that the outcomes described in Propositions 5.3 and 5.4 do a good job of approximating long

run dynamics of incomplete markets Ramsey plans for richer shock stochastic processes, in

the sense that they converge to regions of low volatility.

Figure 5 plots a simulation of the Ramsey plan. The path of marginal utility weighted

government debt resembles the path of government debt for the quasilinear economy with

low p plotted earlier in Figure 4.
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Figure 5: Sample path of xt for an economy with risk aversion and a 2 state i.i.d. process
for TFP.

5.3 Allowing nonnegative transfers

Figure 6 compares simulatons of Ramsey plans for two economies identical in all respects

except that one allows the government to award nonnegative lump-sum transfers, while the

other doesn’t. In both economies, a 2 state i.i.d. shock impinges on government expendi-

tures, but not on TFP and the one-period utility function is quasilinear. With government

access to nonnegative lump-sum transfers, it is easy to very that there exists a fixed level

level of positive government assets constituting a “steady state” that is associated with a

first-best continuation allocation. With nonnegative lump sum transfers, in cases where a

steady state exists and is stable, if the initial debt of the government exceeds its steady

state level, outcomes converge with probability 1 to the steady state. Thus, counterparts

to our earlier results prevail when initial government debt exceeds its steady state value.

When initial government debt is less than a steady-state value, then we know somewhat

less, but still something useful In this case, the multiplier on the measureability constraint

is a bounded sub martingale that therefore converges with probability one. A limit point

is associated with a continuation allocation that is either (1) a first-best allocation, or (2)

a continuation allocation associated with Lucas-Stokey Ramsey allocations for some initial

government debt level. We have constructed simulations of Ramsey plans, all of which dis-
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Figure 6: Government debt for two otherwise identical economies with quasilinear prefer-
ences and a risk-free bond, one economy with nonnegative transfers, the other with zero
transfers.

play one or the other of these types of limiting behavior. We hope eventually to figure out

more about the features of an economy that determine how much of an erogdic distribution

is concentrated on those two types of continuation allocations.

6 Concluding remarks

The Lucas and Stokey (1983) quotation with which we began this paper emphasizes that a

Ramsey planner’s optimal administration of a flat rate tax on labor depends on its ability

to trade a complete set of securities securities with the public whose payoffs are contingent

on possible realizations of random variables that drive government expenditures. The debt

dynamics associated with a Ramsey are central to Lucas and Stokey’s message.10 That he

implicitly prohibited the government from trading such securities helps account for quite

different assertions about optimal debt dynamics made by Barro (1979): government debt

is a key state variable for Barro, one that that should be governed by a random walk;

while government debt is not even an independent state variable for Lucas and Stokey,

10Lucas and Stokey focus on a deriving an optimal debt management strategy that can render an optimal
tax policy time consistent.
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instead being an exact function of the Markov state driving government expenditures that

is influenced by the initial level of government debt. By showing that government debt has a

unit-root-like component in a version of Lucas and Stokey’s economy restricted to allow the

government to issue only risk-free debt, Aiyagari et al. (2002) went part way, but only part

way, toward explaining the striking differences between the debt dynamics in Lucas and

Stokey and Barro. Aiyagari et al. obtain analytical results that are both most complete and

most consistent with Barro’s assertions the special assumption of quasi-linear preferences

that lets a fixed discount factor pin down a time-invariant risk-free interest rate. But even

in that case, outcomes diverge from what Barro had asserted: Aiyagari et al. showed

that if the government has access to nonnegative transfers, then eventually the government

acquires large enough claims on the private sector to set the flat rate tax on labor to zero

and to finance all expenditures from earnings on its assets. Aiyagari et al. were able to say

much less about debt dynamics when preferences were not quasi-linear.

In this paper, we have gotten much further and have discovered that the limiting as-

pects of optimal debt dynamics in an incomplete markets markets economy approximate

outcomes prevailing in a Lucas-Stokey complete markets economy. There exist levels of gov-

ernment debt that let fluctuating returns on government debt – delivered partly through

fluctuating interest rates (when preferences show risk-aversion in consumption) and also

partly through fluctuations generated by random payoffs in the single risky security that we

allow the government to trade – that give the government sufficient access to most of the

risk-sharing that Lucas and Stokey stress as an important aspect of optimal taxation. For

a wide range of economies, equilibrium dynamics draw government debt (or assets) toward

that level, albeit at a rate that can be very slow. That slow rate of convergence that is

possibly a descendant of Barro’s unit-root intuition. In appendix B, we present an analysis

of the rate of convergence that reveals how it depends on the variability of equilibrium

returns on government bonds.11

The finding that interest rate fluctuations are a mechanism allowing a fiscal authority

to hedge risks is a theme that plays an important role in contributions by Faraglia et al.

(2012), Berndt et al. (2012). A related avenue is also active in Bhandari et al. (2013),

though what matters there are not government debt dynamics themselves but rather the

dynamics of the debt positions of private agents relative one to another.

11Given were the paper is now I believe this is the best choice.
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