Optimal Use of Forestland Under Future Bio-Energy Demand Scenarios

Alice Favero, PhD, School of Public Policy, Georgia Tech

The Future of Forest Products in a Changing Climate: Bioenergy from Forests, Yale Forest Forum

February 1, 2022

Outline

- Why are we talking about bio-energy?
 - Overview of IAMs results
- What is the bio-energy debate about?
 - Potential issues
- Assessment of the effects of woody biomass demand on the timber market, land use and forest carbon stock
- Discuss policy instruments to address potential externalities
- Open questions

Why are we talking about bio-energy?

- Its consumption is likely to increase as the stringency of the temperature targets increases
- Increasing role of bio-energy in the energy mix (e.g. 27% energy in 2050 under 1.5C target)

Source: IIASA IAMC 1.5°C Scenario Explorer

The debate

Risks of using bio-energy from forests:

- 1. Decrease forest carbon sequestration (e.g. carbon debt) (Buchholz, et al. 2016; Birdsey, et al. 2018)
- 2. Reduce ecosystem services provided by primary forests (Searchinger et al. 2018; DeCicco et al. 2018)

The debate

Risks of using bio-energy from forests:

- 1. Decrease forest carbon sequestration (e.g. carbon debt) (Buchholz, et al. 2016; Birdsey, et al. 2018)
- 2. Reduce ecosystem services provided by primary forests (Searchinger et al. 2018; DeCicco et al. 2018)
- Use the Global Timber Model (GTM) under different biomass demand pathways to assess these risks

Results based on:

- Alice Favero, Adam Daigneault and Brent Sohngen (2020) "Forests: Carbon Sequestration, Biomass Energy, or Both?", Science Advances, 25 Mar 2020
- Alice Favero, Adam Daigneault, Brent Sohngen and Justin Baker (2022) "A system-wide assessment of forest biomass sustainability" Working Paper

Why GTM?

GTM is a forward-looking model:

- It maximizes the net present value of consumers' and producers' surplus in the forestry sector by selecting the age of harvesting timber and land conversion and management decisions
- System-wide approach: multiple ecosystem services / goods are considered simultaneously
- Intertemporal and spatial assessment: forests within and across regions are linked through markets
 - Today's demand for woody biomass will affect future investments decisions
 - Today's supply of woody biomass in one region will affect investment and land use decision in all the other regions

Baseline scenario

Input: bio-energy demand pathways

Market effects

Land use effects

Level of forest management

Zero: Natural/Unmanaged Forests

Medium: Naturally regenerated forests (managed with a wide range of harvesting techniques, but regenerated naturally)

High: Intensively managed plantations

Forest carbon stock effects

Forest carbon stock effects

Effects of woody-biomass demand (value of wood increases)

- 1. more land will be converted to managed forests
- 2. more investments will be devoted to increasing growth and yield of managed forests
- 3. some traditional timber products will be replaced by woody biomass production

Effects of woody-biomass demand (value of wood increases)

- 1. more land will be converted to managed forests
- 2. some traditional timber products will be replaced by woody biomass production
- 3. more investments will be devoted to increasing growth and yield of managed forests

Corresponding effects on forest carbon?

• Carbon debt under low bio-energy demands because higher timber prices encourage more harvesting of natural forests but not enough to drive an increase in investments in forest regeneration

Effects of woody-biomass demand (value of wood increases)

- 1. more land will be converted to managed forests
- 2. some traditional timber products will be replaced by woody biomass production
- 3. more investments will be devoted to increasing growth and yield of managed forests

Corresponding effects on forest carbon?

• Increase forest carbon stock (after initial reduction*) under high demand pathways because they will encourage investments in forest management increasing the global carbon balance

^{*}this study does not include avoided emissions because of fossil fuel substitution

Effects of woody-biomass demand (value of wood increases)

- 1. more land will be converted to managed forests
- 2. some traditional timber products will be replaced by woody biomass production
- 3. more investments will be devoted to increasing growth and yield of managed forests

Corresponding effects on natural/unmanaged forest?

All demand scenarios project a loss of unmanaged forests, higher under high demands

Policy solutions

Policy options proposed to regulate bio-energy demand and avoid <u>carbon debt</u>:

- Tax on bio-energy consumption (Schlesinger et al. 2018)
 - Tax on bio-energy demand is not efficient because it does not recognize that forests also sequester carbon through growth
 - An efficient approach needs either a carbon tax and subsidy (Van Kooten, et al. 1995, AJAE) or carbon rental (Sohngen & Mendelsohn, 2003, AJAE)
- Carbon rental approach (Favero et al. 2020)

Policy solutions

Policy options proposed to regulate bio-energy demand and avoid carbon debt:

- Tax on bio-energy consumption (Schlesinger et al. 2018)
 - Tax on bio-energy demand is not efficient because it does not recognize that forests also sequester carbon through growth
 - An efficient approach needs either a carbon tax and subsidy (Van Kooten, et al. 1995, AJAE) or carbon rental (Sohngen & Mendelsohn, 2003, AJAE)
- Carbon rental approach (Favero et al. 2020)

Test both policies with GTM

- Rental scenario: forest owners receive rents for the stock of carbon in forests
- Tax scenario: tax on carbon emissions upon harvests for energy

Measure policy efficiency as the policy that delivers the highest level carbon benefit (=increase in forest carbon) per quantity of bio-energy produced

Effects of the policies on forests carbon stock

Effects of the policies on forests carbon stock

Effects of the policies on natural forests

Conclusions

Regulation

- Policy instruments available to reduce negative effects of bio-energy demand
- Other policy options: direct constraints on supply
 - No bio-energy sourced from residues, natural forests etc. (see EU REDII)

Conclusions

Regulation

- Policy instruments available to reduce negative effects of bio-energy demand
- Other policy options: direct constraints on supply
 - No bio-energy sourced from residues, natural forests etc. (see EU REDII)
- Other important aspects:
 - Climate change effects of forests availability and productivity
 - New wood-based products & their mitigation potential
 - Valuing ecosystem services of forest
 - Assess role played by the forestry sector in the mitigation portfolio: Link forestry model with an IAM

Thank you!

alice.favero@gatech.edu