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Unconstrained Optimisation

An unconstrained optimisation problem is a problem of the form
minimise f(x), 1)

without any constraint on the vector x.

Definition (Local and Global Minima)

Consider the problem of minimising f(x) over R" and let x € R".
@ Iff(x) < f(x) for all x € R", then x is called a global minimum.
@ If there exists an e-neighbourhood Ng(x) around x such that
f(x) < f(x) for all x € No(x), then x is called a local minimum.
@ Iff(x) < f(x) for all x € Ny(x), x # x, for some & > 0, then x is
called a strict local minimum.
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Local and Global Minima

S~

The figure illustrates local and global minima of a function f over
the reals.

Strict local minimum Local minima

Global minima

Figure: Local and global minima

Clearly, a global minimum is also a local minimum.
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Descent Direction

Given a point x € R", we wish to determine, if possible, whether or
not the point is a local or global minimum of a function f.

For differentiable functions, there exist conditions that provide this
characterisation, as we will see below.

We start by characterising descent directions.

Theorem (Descent Direction)

Letf: R" — R be differentiable at x. If there exists a vector d such
that

Vf(x)d <0,

then there exists a 6 > 0 such that

f(x + Ad) < f(x) foreach A€ (0,0),

so that d is a descent direction of f at x. )
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Descent Direction

By the differentiability of f at x, we have

f(x + Ad) = f(x) + AVE(X)d + Aldlla(X, Ad),
where a(x,Ad) - 0as A — 0.
Rearranging and dividing by 4 # O:

f(x + Ad) — f(X)

= = Vi(X)d + [ldlla(X, Ad).

Since Vf(x)d < 0 and a(x, Ad) — 0 as 1 — 0, there exists a § > 0
such that the right hand side above is negative for all 1 € (0,6). O )
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Necessary Conditions for a Minimum

We then have a fi rst-order necessary condition for a minimum.

Corollary (First Order Necessary Condition for a Minimum)

Suppose that f : R" — R is differentiable at x. If x is a local
minimum, then
VA(X) = 0.

A\

Suppose that Vf(x) # 0. Then, letting d = —Vf(x)", we get
Vi(x)d = —-|[Vf(x)II*> < O,

and by Theorem 2.1 (Descent Direction) there is a 6 > 0 such that
f(x + Ad) < f(x) for each A € (0, 6), contradicting the assumption

that x is a local minimum. Hence, Vf(x) = 0. i )
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Necessary Conditions for a Minimum

A second-order necessary condition for a minimum can be given in
terms of the Hessian matrix.

Theorem (Second Order Necessary Condition for a Minimum)

Suppose that f : R" — R is twice-differentiable at x. If x is a local
minimum, then

Vi(x) =0
and
H(x) is positive semidefi nite.
v
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Necessary Conditions for a Minimum

Consider an arbitrary direction d. Then, since by assumption f is
twice-differentiable at x, we have

F(X + Ad) = f(X) + AVAR)d + %AZdTH(X)d + 2ldiRa(x, Ad), (2)

where a(x, Ad) — 0 as 1 — 0. Since x is a local minimum, from
Corollary 2.2 we have Vf(x) = 0. Rearranging the terms in (2) and
dividing by 122 > 0, we obtain

W _ %dTH()_()d +lld|Pa(x, Ad). 3)

Since x is a local minimum, f(x + Ad) > f(x) for sufficiently small A .
From (3), 3d"H(x)d + [|d|I?a(x, Ad) > 0 for sufficiently small 1. By
taking the limit as A — 0, it follows that d"H(x)d > 0; and, hence,

H(x) is positive semidefinite. i
V.
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Necessary and Suffi cient Conditions for a Minimum

We now give, without proof, a sufficient condition for a local
minimum.

Theorem (Sufficient Condition for a Local Minimum)

Suppose that f : R" — R is twice-differentiable at x. If Vf(x) = 0
and H(x) is positive defi nite, thenx is a strict local minimum.

As is generally the case with optimisation problems, more powerful
results exist under (generalised) convexity conditions.

The next result shows that the necessary condition Vf(x) = 0 is
also sufficient for x to be a global minimum if f is
pseudoconvex at x.

Theorem (Nec. and Suff. Condition for Pseudoconvex Functions)

Letf: R" — R be pseudoconvex at x. Then x is a global minimum
if and only if Vf(x) = 0.
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Constrained Optimisation

We first derive optimality conditions for a problem of the following
form:

minimise f(x), 4
subject to:
X € S.

We will first consider a general constraint set S.

Later, the set S will be more explicitly defined by a set of equality
and inequality constraints.

For constrained optimisation problems we have the following

definitions.
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Feasible and Optimal Solutions

Definition (Feasible and Optimal Solutions)

Letf: R" — R and consider the constrained optimisation
problem (4), where S is a nonempty set in R".

@ Apoint x € S is called a feasible solution to problem (4).

@ Ifx € S and f(x) > f(x) for each x € S, then x is called an
optimal solution, a global optimal solution, or simply a
solution to the problem.

@ The collection of optimal solutions is called the set of
alternative optimal solutions.

@ Ifx € S and if there exists an e-neighbourhood N(x) around x
such that f(x) > f(x) for each x € S N N,(x), then x is called a
local optimal solution.

@ Ifx € S and if f(x) > f(x) for each x € S N Ng(x), x # X, for
some & > 0, then x is called a strict local optimal solution.
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Local and global minima

The figure illustrates examples of local and global minima.

1
1
1
1
1
1
1
1
|
I
I
I
I
I
|
L
L

S

Figure: Local and global minima

The points in S corresponding to A, B and E are also strict local
minima, whereas those corresponding to the flat segment of the
graph between C and D are local minima that are not strict.
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Convex Programs

A convex program is a problem of the form

minimise f(x), (5)
subject to:
X€ES.

in which the function f and set S are, respectively, a convex
function and a convex set.

The following is important property of convex programs.

Theorem (Local Minima of Convex Programs are Global Minima)

Consider problem (5), where S is a nonempty convex set inR",
andf:S — RisconvexonS. If x € S is a local optimal solution to
the problem, then x is a global optimal solution. Furthermore, if
either x is a strict local minimum, or if f is strictly convex, then x is
the unique global optimal solution.

V.
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Geometric Necessary Optimality Conditions

In this section we give a necessary optimality condition for problem

minimise f(x), (6)
subject to:
XeS

using the cone of feasible directions defined below.
We do not assume problem (6) to be a convex program.

As a consequence of this generality, only necessary conditions for
optimality will be derived.

In a later section we will impose suitable convexity conditions to
the problem in order to obtain sufficiency conditions for optimality.
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Cones of Feasible Directions and of Improving Directions

Definition (Cones of Feasible and Improving Directions)

@ Let S be a nonempty setinR" and let x € cl S. The cone of
feasible directions of S at x, denoted by D, is given by

D={d:d=+0, and x+Ad € S forall A € (0,6) for some § > 0}.

Each nonzero vector d € D is called a feasible direction.

@ Given a function f : R" — R, the cone of improving
directions at x, denoted by F, is given by

F ={d: f(x + Ad) < f(x) forall A € (0,6) for some 6 > 0}.

Each direction d € F is called an improving direction, or a
descent direction of f at x.
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lllustration: Cone of Feasible Directions

Q Q.4
aala

T’;} %]gng\ss}r?é Centre for Complex Dynamic fo'
- AUSTRALIA Systems and Control cpsc



lllustration: Cone of Improving Directions
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Algebraic Description of the Cone of Improving Directions

We will now consider the function f to be differentiable at the point
x. We can then define the sets
Fo £ {d : Vf(x)d < 0}, @)
Fi £ {d+0:Vf(x)d < 0}. (8)

From Theorem 2.1 (Descent Direction), if Vf(x)d < 0, then d is an
improving direction. It then follows that Fp C F.

Also, if d € F, we must have Vf(x)d < 0, or else, analogous to
Theorem 2.1, Vf(x)d > 0 would imply that d is an ascent direction.

Hence, we have
FoCFCF,. 9)
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Algebraic Description of the Cone of Improving Directions

FoCFCF;
where
Fo2{d:Vf(x)d<0}  F,={d#0:Vf(x)d <0}

) )
& &
ol o
& &
O O
& &
K K

7 7 7
FocF=F, Fo=FCF, FocFCF,
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Geometric Necessary Optimality Conditions

The following theorem states that a necessary condition for local
optimality is that every improving direction in F is not a feasible
direction.

Theorem (Geometric Necessary Condition for Local Optimality)

Consider the problem to minimise f(x) subject to x € S, where
f:R" > R and S is a nonempty set inR". Suppose that f is
differentiable at a point x € S. If x is a local optimal solution then

FonD =0, (10)

where Fo = {d : Vf(x)d < 0} and D is the cone of feasible
directions of S at x, that is

D={d:d+#0,andx+Ad € S forall A € (0,5) for some § > 0}. )
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Geometric Necessary Optimality Conditions

Suppose, by contradiction, that there exists a vector d € Fo N D.
Since d € Fg, then, by Theorem 2.1 (Descent Direction), there
exists a 01 > 0 such that

f(x + Ad) < f(x) for each A € (0,04). (11)
Also, since d € D, by Definition 3.2, there exists a 6, > 0 such that
x+Ade S foreacha e (0,6,). (12)

The assumption that x is a local optimal solution is not compatible
with (11) and (12). Thus, Fo N D = 0. O

.
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Geometric Necessary Optimality Conditions

Figure: lllustration of the necessary condition Fo N D = (.
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Problems with Inequality and Equality Constraints

We next consider a specific description for the feasible region S as
follows:

S={xeX:gi(x)<0,i=1,....m, hi(x)=0,i=1,...,1},

where gj : R" > Rfori=1,...,m, hj:R" > Rfori=1,...,¢ and
X is a nonempty open set in R".

This gives the following nonlinear programming problem with
inequality and equality constraints:

minimise f(x),

subject to:
gi(x)<0 fori=1,...,m, (13)
hi(x)=0 fori=1,...,¢,
X e X.
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Algebraic Description of the Cone of Feasible Directions

Suppose that x is a feasible solution of problem (13), and let
I = {i : gi(x) = 0} be the index set for the binding or active
constraints. Suppose that there are no equality constraints.

Furthermore, suppose that each g; for i ¢ I is continuous at x, that
f and g; for i € I are differentiable at x.

Let

Go={d:Vgi(x)d<0 foriel,
Gy2{d+#0:Vgix)d<0 foriel.

Recall the cone of feasible directions of S at x:

D={d:d#0,and x+1d € S forall A € (0,6) for some ¢ > 0}.

Then
GoCDC G (14)
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Algebraic Description of the Cone of Feasible Directions

To see the first inclusion, let d € Gg. Since x € X, and X is open,
there exists §; > 0 such that

x+Ade X forae(0,6).
Also, since gj, i ¢ | is continuous at x, there exists §» > 0 such that
gi(x + Ad) <0 for A € (0,6,) and for i ¢ I.

Furthermore, since d € Gy, then Vg;(x)d < 0 for each i € I. By
Theorem 2.1 (Descent Direction) there exists 63 > 0 such that

gi(x + Ad) < gi(x) =0 for A € (0,83) and for i € I.

It is then clear that points of the form x + Ad are feasible to S for
each A € (0,6), where 6 = min{1,d2,03}. Thus d € D and hence
Go C D.
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Algebraic Description of the Cone of Feasible Directions

Go < DC G
where
Go={d:Vgi(x)d<0 foriel,
Gy 2{d+#0:Vgix)d<0 foriel.

Go =D cC G, GoCc D =G, GoCc D CG,
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Problems with Inequality and Equality Constraints

Theorem (Geometric Necessary Condition for Problems with In-
equality and Equality Constraints)

Let X be a nonempty open setinR", and letf: R" — R,
g:R">Rfori=1,...,m hi:R" > Rfori=1,...,¢. Consider
the problem defi ned in (L3). Suppose that x is a Iocal optimal
solution, and let | = {i : gi(x) = 0} be the index set for the binding or
active constraints. Furthermore, suppose that each g; fori ¢ | is
continuous at X, that f and g; for i € | are differentiable at x, and
that each h; forl = ., L is continuously differentiable at x. If
Vhi(x)" fori = {’ are linearly independent, then
Fon Go N Hy = (D, where

Fo = {d: VA(X)d < O},
Go ={d:Vgi(x)d <0 foriel} (15)
Ho =1{d:Vhi(x)d=0 fori=1,...,0).

4
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Problems with Inequality and Equality Constraints

(Only for inequality constraints.)
Let x be a local minimum. We
then have the following
implications from (10) and (14):

X is a local minimum
= FoND=0
= FoN Gy =0.

O
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The Fritz John Necessary Conditions

We will now express the geometric condition Fo N Gg N Hg = 0 in
an algebraic form known as the Fritz John conditions.

Theorem (The Fritz John Necessary Conditions)

Let X be a nonempty open setinR", and let f : R" — R,

gi:R" > Rfori=1,...,m hi:R" > Rfori=1,...,(. Letx be a
feasible solution of (13), and let | = {i : gi(x) = 0}. Suppose that g;
fori ¢ lis continuous at x, that f and g; for i € | are differentiable at

X, and that h; for i = ., is continuously differentiable at x. If x
locally solves problem (13) then there exist scalars up and u; for
i€l andv;fori= ., €, such that

ugVF(x)" + Z uivVgi(x)" + Z viVhi(x)" =

i€l (16)
U, Ui >0 foriel,

{ug, Uj,i € I, vq,...,Vve} not all zero .
V.
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The Fritz John Necessary Conditions

Theorem (The FJ Necessary Conditions, continued)

Furthermore, if g;, i ¢ | are also differentiable at x, then the above
conditions can be written as

m 4
UV + ) uVgi(x) + ) vivhi(x)" = 0,
i=1 i=1

uigi(x)=0 fori=1,...,m, (17)
Ug,ui>0 fori=1,...,m,
(uo, u,v) # (0,0,0),

where u and v are vectors whose components are uj, i =1,...,m,
andv;, i =1,...,¢, respectively.
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The Fritz John Necessary Conditions

If the vectors Vh;(x)" for i = 1, ..., ¢ are linearly dependent, then one
can find scalars vy, . . ., v, not all zero, such that Zle v;iVhi(x)" = 0.
Letting up and u; for i € I equal to zero, conditions (16) hold trivially.

Now suppose that Vh;(x)" for i = 1,..., ¢ are linearly independent.
Then, from Theorem 3.3 (Geometric Necessary Condition), local
optimality of x implies that the sets defined in (15) satisfy:

Fon Go N Hy =0. (18)

Let A; be the matrix whose rows are Vf(x) and Vg;(x) for i € I, and
let A, be the matrix whose rows are Vh;(x) for i = 1,...,¢. Then,
(18) is satisfied if and only if the following system is inconsistent:

Ald <0,

Axd = 0.

v
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The Fritz John Necessary Conditions

Proof (continued):

Now consider the following two sets:

S1={(z1,22) : z1 = A1d, 2o = Aod, d €R"},
S, = {(21,22) 21<0, 2o = 0}

Note that S; and S, are nonempty convex sets and, since the sys-
tem A;d < 0, Aod = 0 has no solution, then S; N S, = 0.

Then, by the theorem of separation of two disjoint convex sets, there
exists a nonzero vector p” = (pj, p3) such that

p1Ard + pyAxd > prz1 + py2o,

for each d € R" and (z1, 25) € cl S».

.
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The Fritz John Necessary Conditions

Proof (continued)

Hence
piA1d + piAxd > pizy + py2Zo,

foreach d e R" and (z1,2) € ¢l S;, = {(z1,22) : z1 < 0, z, = O}.

Noting that z, = 0 and since each component of z; can be made
an arbitrarily large negative number, it follows that p; > 0.

Also, letting (21, 22) = (0,0) € cl Sp, we must have (pjA; + p;Az)d >
0 for each d € R".

Letting d = —(A]p1 +A p2) it follows that —[|A7py + Alp,||? > 0, and
thus Afp1 + AJp2 =

V.
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The Fritz John Necessary Conditions

Proof (continued):

Summarising, we have found a nonzero vector p' = (pj, p;) with
p1 > 0 such that AIpl + A;pz = 0, where A; is the matrix whose
rows are Vf(x) and Vg;(x) for i € I, and A, is the matrix whose
rows are Vhi(x) fori=1,...,¢.

Denoting the components of p; by ug and u;, i € I, and letting
p2 = v, conditions (16) follow.

The equivalent form (17) is readily obtained by letting u; = O for

i ¢ I, and the proof is complete. O
v
iy RENERSLY eclisiesne el €)



The Fritz John Necessary Conditions

The scalars ug, ujfori=1,...,m,and vijfori=1,...,¢, are called
the Lagrange multipliers associated, respectively, with the objective
function, the inequality constraints gij(x) <0, i=1,...,m, and the
equality constraints hj(x) =0, i=1,...,¢.

The condition that x be feasible for the optimisation problem (13) is
called the primal feasibility [PF] condition.

m &
The requirements ugVf(x)" + Z uiVgi(x)" + Z v;iVhi(x)" = 0, with

i=1 =1
Ug,Uj = 0fori=1,...,m, and (uo, u,v) # (0,0,0) are called the
dual feasibility [DF] conditions.

The condition u;gij(x) =0 fori=1,...,mis called the
complementary slackness [CS] condition; it requires that u; = O if
the corresponding inequality is nonbinding (that is, gi(x) < 0), and
allows for u; > 0 only for those constraints that are binding.
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The Fritz John Necessary Conditions

The FJ conditions can also be written in vector form as follows:
VI(x) up + Vg(x)'u+ Vh(x)'v = 0,
u'g(x) =0,
(up, u) = (0,0),
(uo, u, v) # (0,0,0),

(19)

where
@ Vg(x) is the m x n Jacobian matrix whose ith row is Vg;(x),
@ Vh(x) is the £ x n Jacobian matrix whose ith row is Vh;j(x),
@ g(x) is the m vector function whose ith component is g;(x).

Any point x for which there exist Lagrange multipliers such that the
FJ conditions are satisfied is called an FJ point.
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lllustration: FJ conditions

S~

Feasible point

N
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The constraint set S is:

S={xeR?:
01(x) <0,
g2(x) <0,
gs(x) < 0}

Consider the feasible
point Xx.
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lllustration: FJ conditions

S~
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Vau

Vg

g2(x) =0

Consider the gradients
of the active
constraints at x, Vg (x)
and Vgo(x).
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lllustration: FJ conditions

For the given contours
- of the objective
function f, we have that
uo(=Vf(x)) is in the
cone spanned by
Vg:1(x) and Vgo(x) with

up > 0.
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lllustration: FJ conditions
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The FJ conditions are

Vi(x)'up + Vg(x)'u =0,
u'g(x) =0,

(uo, u) > (0,0),

(uo, u, v) # (0,0,0),

x is an FJ point with
up > 0.

It is also a local
minimum.
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lllustration: FJ conditions

The UNIVERSITY
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For the given contours
of f, we have that
Up(=Vf(x)) is in the
cone spanned by
Vg1(x) and Vgo(x) only
if Upg = 0.

X is an FJ point
with ug = 0.

It is also a local
minimum.
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lllustration: FJ conditions

x is an FJ point with
up = 0.

It is also a local

maximum.
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The Fritz John Necessary Conditions

Given an optimisation problem, there might be points that satisfy
the FJ conditions trivially. For example:

o if a feasible point x (not necessarily an optimum) satisfies
Vf(x) = 0, or Vgj(x) = 0 for some i € I, or Vh;j(x) = O for some
i=1,...,¢ then we can let the corresponding Lagrange
multiplier be any positive number, set all the other multipliers
equal to zero, and satisfy conditions (16).

@ In fact, given any feasible solution x we can always add a
redundant constraint to the problem to make x an FJ point.
For example, we can add the constraint ||x — x|I2 > 0, which
holds true for all x € R", is a binding constraint at x and
whose gradient is zero at x.
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The Fritz John Necessary Conditions

@ Moreover, it is also possible that, at some feasible point x, the
FJ conditions (16) are satisfied with Lagrange multiplier
associated with the objective function ug = 0.

In those cases, the objective function gradient does not play a
role in the optimality conditions (16) and the conditions merely
state that the gradients of the binding inequality constraints
and of the equality constraints are linearly dependent.

Thus, if ug = 0, the FJ conditions are of no practical value in
locating an optimal point.
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Constraint Qualifi cation

Under suitable assumptions, referred to as constraint

qualifi cations, l is guaranteed to be positive and the FJ conditions
become the Karush—Kuhn-Tucker [KKT] conditions, which will be
presented next.

There exist various constraint qualifications for problems with
inequality and equality constraints.

Here, we use a typical constraint qualification that requires that the
gradients of the inequality constraints for i/ € | and the gradients of
the equality constraints at x be linearly independent.
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Karush—Kuhn—Tucker Necessary Conditions

S~

Theorem (Karush—Kuhn—Tucker Necessary Conditions)

Let X be a nonempty open setinR", and letf : R" — R,
g:R">Rfori=1,...,m, hj:R" > Rfori=1,...,¢. Consider
the problem defi ned in (L3). Let x be a feasible solutron, and let
I = {i: gi(x) = 0}. Suppose that f and g; for i € | are differentiable
at>_< that each g; for i ¢ | is continuous at x, and that each h; for
I = ., L s continuously differentiable at x. Furthermore
suppose that Vg(x)" for i € I and Vhi(x)" for i = ., C are linearly
independent. If x is a local optimal solution, then there exist unique
scalars ujforie l,and vjfori=1,...,¢, such that

Vi) + > uiVgi(x)" + Z ViVhi(x)" = 0,

i€l ( )
ui>0 foriel.
y
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Karush—Kuhn—Tucker Necessary Conditions

Theorem (KKT Necessary Conditions, continued)

Furthermore, if g;, i ¢ | are also differentiable at x, then the above
conditions can be written as

m 4
VF(x)" + Z uivVgi(x)" + Z viVhi(x)" = 0,
i=1 i=1

_ (21)
uigix)=0 fori=1,....,m,
u>0 fori=1,...,m.
v
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Karush—Kuhn—Tucker Necessary Conditions

S~

We have, from the FJ conditions, that there exist scalars Uy and 0;,
jel,and v, i = ., £, not all zero, such that

U VF(x)" + Z uivVgi(x)" + Z ViVhi(x)" = 0,

i€l

(22)

U, U; >0 foriel.

Note that the assumption of linear independence of Vg;(x)" for i € |
and Vhj(x)" for i = ., ¢, together with (22) and the fact that at
least one of the muItlpllers is nonzero, implies that 0y > 0.

Then, letting u; = Uj/Up fori € I, and v; = Vj/lg fori=1,...,¢ we
obtain conditions (20).

Furthermore, the linear independence assumption implies the

uniqueness of these Lagrange multipliers. O
v
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Karush—Kuhn—Tucker Necessary Conditions

As in the FJ conditions, the scalars u; and v; are called the
Lagrange multipliers.

The condition that x be feasible for the optimisation problem (13) is
called the primal feasibility [PF] condition.
m “
The requirement that V£(x)" + Z uiVgi(x)" + Z viVhi(x)" = 0, with
i=1 i=1
up>0fori=1,...,mis called the dual feasibility [DF] condition.

The condition u;gi(x) = 0 for i = 1,..., mis called the
complementary slackness [CS] condition
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Karush—Kuhn—Tucker Necessary Conditions

The KKT conditions can also be written in vector form as follows:

Vi(x)" + Vg(x)'u+ Vh(x)'v = 0,
u'g(x) = 0, (23)
u=>0,

where
@ Vg(x) is the m x n Jacobian matrix whose ith row is Vg;(x),
@ Vh(x) is the ¢ x n Jacobian matrix whose ith row is Vh;(x),
@ g(x) is the m vector function whose ith component is g;(x).

Any point x for which there exist Lagrange multipliers that satisfy
the KKT conditions (23) is called a KKT point.
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lllustration: KKT conditions

V03 el

X is a KKT point X is not a KKT point X is a KKT point
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Constraint Qualifi cations

The linear independence constraint qualification is a suffi cient
condition placed on the behaviour of the constraints to ensure that
an FJ point (and hence any local optimum) be a KKT point.

Thus, the importance of the constraint qualifications is to
guarantee that, by examining only KKT points, we do not lose
out on optimal solutions.

There is an important special case:

When the constraints are linear the KKT conditions are al-
ways necessary optimality conditions irrespective of the ob-
jective function.

This is because Abadie’s constraint qualification is automatically
satisfied for linear constraints.

”;? %ﬁ@’é‘/}\{f-{-ié Centre for Complex Dynamic 6)
L etRALIA Systems and Control cpse



Karush—Kuhn—Tucker Suffi cient Conditions

However, we are still left with the problem of determining, among
all the points that satisfy the KKT conditions, which ones constitute
local optimal solutions.

The following result shows that, under moderate convexity
assumptions, the KKT conditions are also sufficient for local
optimality.
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Karush—Kuhn—Tucker Suffi cient Conditions

S~

Theorem (Karush—Kuhn—Tucker Sufficient Conditions)

Let X be a nonempty open setinR", and letf : R" —» R,
g:R">Rfori=1,...,m, hj:R" >R fori=1,...,¢. Consider
the problem defi ned in (L3). Let x be a feasible solutlon, and let
I = {i: gi(x) = 0}. Suppose that the KKT conditions hold at x; that
is, there exist scalars u; > 0 forie I, and v; fori=1,...,¢, such
that

VX)) + Z uivgi(x)" + Z viVhi(x)" = (24)
i€l
LetJ ={i:v;>0}andK = {i: v; < 0}. Further, suppose that f is
pseudoconvex at X, g; is quasiconvex at x for i € I, h; is
quasiconvex at x for i € J, and h; is quasiconcave at x (that is, —h;
is quasiconvex at x) for i € K. Then x is a global optimal solution to
problem (13).

V.
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Quadratic Programs

Quadratic programs are a special class of nonlinear programs in
which the objective function is quadratic and the constraints are
linear.

Thus, a quadratic programming [QP] problem can be written as

1
minimise EXTHX +x'c, (25)
subject to:
A,TX < by,
A;X = bE,

where H is an n X n matrix, ¢ is an n vector, A; iS an n X m; matrix,
b, is an m; vector, Ag is an n X mg matrix and bg is an mg vector.
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Quadratic Programs

The constraints are linear, hence
@ xis alocal minimum =  xis a KKT point.
@ the constraint set S = {x : A,Tx < b, A,sz = bg} is convex.

Thus,

the QP isconvex = the objective function is convex
<  His symmetric and positive semidefinite

In this case:

x is alocal min <= xis a global min <= x is a KKT point

Furthermore, if H > 0, then X is the unique global minimum.
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KKT Conditions for QP

The KKT conditions (23) for the QP problem defined in (25) are:

PF: Alx < by,
A[TEX = bE,
DF: Hx+c+Au+Agv = O, (26)
u > 0,
CS: U(Alx-b) = 0,

where u is an m; vector of Lagrange multipliers corresponding to
the inequality constraints and v is an mg vector of Lagrange
multipliers corresponding to the equality constraints.
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