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Introduction

This pamphlet on calculus of variations and optimal control theory contains the most important
results in the subject, treated largely in order of urgency.

The notes are elementary assuming no prerequisites beyond knowledge of linear algebra and
ordinary calculus (with ǫ-δ arguments). The notes should hence be accessible to a wide spectrum
of students.

In ordinary calculus, one dealt with limiting processes in finite-dimensional vector spaces (R
or Rn), but optimisation problems arising in applications require a calculus in spaces of functions
(which are infinite-dimensional vector spaces). For instance, we mention the following problem.

Problem. A copper mining company intends to remove all of the copper ore from a region that
contains an estimated Q tons, over a time period of T years. As it is extracted, they will sell it
for processing at a net price per ton (at time t) of

p(t) = P − ax(t) − bx′(t)

where positive constants P , a, and b are known, and where x(t) denotes the total tonnage sold by
time t (something that the company decides). If the company wishes to maximize its total profit
given by

I(x) =

∫ T

0

[P − ax(t) − bx′(t)]x′(t)dt,

where x(0) = 0 and x(T ) = Q, how might it proceed?

?

0 T

Q

The optimal mining operation problem: what shape of the curve x gives the maximum profit?

We observe that this is an optimization problem: to each curve between the points (0, 0) and
(T, Q), there is a number (the associated profit), and the problem is to find the shape of the curve
that minimizes this function

I : {curves between (0, 0) and (T, Q)} → R.

This problem does not fit into the usual framework of calculus, where typically one has a function
from some subset of the finite dimensional vector space R

n to R, and one wishes to find a vector
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in Rn that minimizes/maximizes the function, while in the above problem one has a subset of an
infinite dimensional function space.

In ordinary calculus, given a function f : R → R, we solve the optimization problem of finding
that x0 ∈ R that has the property that for all x ∈ R, f(x) ≥ f(x0) based on the following basic
fact:

At the point x where f(x) is minimum, the derivative f(x) is zero.

This gives us an alogrithm to solve optimization problems: differentiate the given function,
and find all x such that f ′(x) = 0. These special x’s are then candidates which maximize or
minimize f . We would like to have a similar algorithm to solve optimization problems when the
given function has its domain as a subset of some function space1.

Thus the need arises for developing calculus in more general spaces than Rn. Although we
have only considered one example, optimisation problems requiring calculus in infinite-dimensional
vector spaces arise from many applications and from various disciplines such as economics, engi-
neering, physics, and so on. Mathematicians observed that different problems from varied fields
often have related features and properties. This fact was used for an effective unifying approach to-
wards such problems, the unification being obtained by the omission of unessential details. Hence
the advantage of an abstract approach is that it concentrates on the essential facts, so that these
facts become clearly visible and one’s attention is not disturbed by unimportant details. Moreover,
by developing a box of tools in the abstract framework, one is equipped to solve many different
problems (that are really the same problem in disguise!). For example, while fishing for various
different species of fish (bass, sardines, perch, and so on), one notices that in each of these different
algorithms, the basic steps are the same: all one needs is a fishing rod and some bait. Of course,
what bait one uses, where and when one fishes, depends on the particular species one wants to
catch, but underlying these minor details, the basic technique is the same. So one can come up
with an abstract algorithm for fishing, and applying this general algorithm to the particular species
at hand, one gets an algorithm for catching that particular species. Such an abstract approach
also has the advantage that it helps us to tackle unseen problems. For instance, if we are faced
with a hitherto unknown species of fish, all that one has to do in order to catch it is to find out
what it eats, and then by applying the general fishing algorithm, one would also be able to catch
this new species.

In the abstract approach, one usually starts from a set of elements satisfying certain axioms.
The theory then consists of logical consequences which result from the axioms and are derived as
theorems once and for all. These general theorems can then later be applied to various concrete
special sets satisfying the axioms.

We will develop such an abstract scheme for doing calculus in function spaces and other
infinite-dimensional spaces. Having done this, we will be equipped with a box of tools for solving
many problems, and in particular, we will return to the optimal mining operation problem again
and solve it.

These notes contain many exercises, which form an integral part of the text, as some results
relegated to the exercises are used in proving theorems. Some of the exercises are routine, and the
harder ones are marked by an asterisk (∗).

Most applications of optimisation theory are drawn from the rudiments of the theory, but not
all are, and no one can tell what topics will become important. In these notes we have described a
few topics from optimisation and control theory which are basic and find widespread use, but by
no means is the choice of topics ‘complete’. However, equipped with this basic knowledge of the
elementary facts, the student can undertake a serious study of a more advanced treatise on the

1By a function space, we mean an infinite-dimensional vector space comprising functions on an interval [a, b].
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subject, and the bibliography gives a few textbooks which might be suitable for further reading.

I am thankful to Dr. Sara Maad from the University of Surrey, U.K., for several useful
discussions.

Amol Sasane
12 August, 2005.
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Chapter 1

Calculus in normed spaces

1.1 Introduction

The derivative is used in solving maximization/minimization problems in the familiar calculus of
functions from R to R. Consider the quadratic function f(x) = ax2 + bx + c. Suppose that one
wants to know the points x0 at which f assumes a maximum or a minimum. We know that if f
has a maximum or a minimum at the point x0, then the derivative of the function must be zero
at that point: f ′(x0) = 0. See Figure 1.1.

x xx0x0

ff

Figure 1.1: Necessary condition for x0 to be an extremal point for f is that f ′(x0) = 0.

So one can then one can proceed as follows. First find the expression for the derivative:
f ′(x) = 2ax + b. Next solve for the unknown x0 in the equation f ′(x0) = 0, that is,

2ax0 + b = 0 (1.1)

and so we find that a candidate for the point x0 which minimizes or maximizes f is x0 = − b
2a ,

which is obtained by solving the algebraic equation (1.1) above.

We wish to do the above with maps living on function spaces, such as C[a, b], and taking values
in R. In order to do this we need a notion of derivative of a map from a function space to R,
and an analogue of the fact above concerning the necessity of the vanishing derivative at extremal
points. In order to talk about the derivative, we need a notion of limits (so that the derivative
can be defined), and in order to have a notion of a limit, we need a notion of ‘distance’ in the
function space. It turns out that vector spaces such as C[a, b] can be equipped with a ‘norm’, and
this provides a ‘distance’ between two vectors. Having done this, we have the familiar setting of
calculus, and we have notions of convergence, continuity and differentiability. This chapter has
three sections:

1. In the first section, we will introduce the notion of a normed space. Roughly speaking, a

1



2 Chapter 1. Calculus in normed spaces

normed space is simply a vector space in which, using a function (called a norm), we can
measure distances between vectors.

2. In the second section, we will discuss continuity of maps between two normed spaces. Conti-
nuity is important, since in the context of optimization problems, we would want the function
being optimized to be a continuous function, and one which does not have sudden jumps.
In this section we will also study those linear transformations that are also continuous, and
give a characterization of such maps.

3. In this last section, we will study differentiability of maps between normed spaces. We will
define the derivative of a map, and we will also prove a necessary condition for an extremum
(derivative vanishes) and a sufficient condition for an extremum.

1.2 Normed spaces

1.2.1 Vector spaces

In this subsection, we recall the definition of a vector space. Roughly speaking it is a set of
elements, called “vectors”. Any two vectors can be “added”, resulting in a new vector, and any
vector can be multiplied by an element from R, so as to give a new vector. The precise definition
is given below.

Definition. A vector space over R, is a set X together with two functions, + : X × X → X ,
called vector addition, and · : R × X → X , called scalar multiplication that satisfy the following:

V1. For all x1, x2, x3 ∈ X , x1 + (x2 + x3) = (x1 + x2) + x3.

V2. There exists an element, denoted by 0 (called the zero vector) such that for all x ∈ X ,
x + 0 = 0 + x = x.

V3. For every x ∈ X , there exists an element, denoted by −x, such that x+(−x) = (−x)+x = 0.

V4. For all x1, x2 in X , x1 + x2 = x2 + x1.

V5. For all x ∈ X , 1 · x = x.

V6. For all x ∈ X and all α, β ∈ R, α · (β · x) = (αβ) · x.

V7. For all x ∈ X and all α, β ∈ R, (α + β) · x = α · x + β · x.

V8. For all x1, x2 ∈ X and all α ∈ R, α · (x1 + x2) = α · x1 + α · x2.

Examples.

1. R is a vector space over R, with vector addition being the usual addition of real numbers,
and scalar multiplication being the usual multiplication of real numbers.
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2. Rn is a vector space over R, with addition and scalar multiplication defined as follows:

if






x1

...
xn




 ,






y1

...
yn




 ∈ Rn, then






x1

...
xn




+






y1

...
yn




 =






x1 + y1

...
xn + yn




 ;

if α ∈ R and






x1

...
xn




 ∈ R

n, then α ·






x1

...
xn




 =






αx1

...
αxn




 .

3. The sequence space ℓ∞. This example and the next one give a first impression of how
surprisingly general the concept of a vector space is.

Let ℓ∞ denote the vector space of all bounded sequences with values in R, and with addition
and scalar multiplication defined as follows:

(xn)n∈N + (yn)n∈N = (xn + yn)n∈N, (xn)n∈N, (yn)n∈N ∈ ℓ∞; (1.2)

α(xn)n∈N = (αxn)n∈N, α ∈ R, (xn)n∈N ∈ ℓ∞. (1.3)

4. The function space C[a, b]. Let a, b ∈ R and a < b. Consider the vector space comprising
functions f : [a, b] → R that are continuous on [a, b], with addition and scalar multiplication
defined as follows. If f, g ∈ C[a, b], then f + g ∈ C[a, b] is the function given by

(f + g)(x) = f(x) + g(x), x ∈ [a, b]. (1.4)

If α ∈ R and f ∈ C[a, b], then αf ∈ C[a, b] is the function given by

(αf)(x) = αf(x), x ∈ [a, b]. (1.5)

C[a, b] is referred to as a ‘function space’, since each vector in C[a, b] is a function (from
[a, b] to R).

5. Let C1[a, b] denote the space of continuously differentiable functions on [a, b]:

C1[a, b] = {f : [a, b] → R | f is continuously differentiable},

(Recall that a function f : [a, b] → R is continuously differentiable if for every c ∈ [a, b], the
derivative of f at c, namely f ′(c), exists, and the map c 7→ f ′(c) : [a, b] → R is a continuous
function.) Then C1[a, b] is a vector space with the operations defined by (1.4) and (1.5). ♦

Exercises.

1. Let ya, yb ∈ R, and let

S(ya, yb) = {x ∈ C1[a, b] | x(a) = ya and x(b) = yb}.

For what values of ya, yb is S(ya, yb) a vector space?

2. Show that C[0, 1] is not a finite dimensional vector space.

Hint: One can prove this by contradiction. Let C[0, 1] be a finite dimensional vector space
with dimension d, say. First show that the set B = {x, x2, . . . , xd} is linearly independent.
Then B is a basis for C[0, 1], and so the constant function 1 should be a linear combination
of the functions from B. Derive a contradiction.
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1.2.2 Normed spaces

In order to do ‘calculus’ (that is, speak about limiting processes, convergence, approximation,
continuity) in vector spaces, we need a notion of ‘distance’ or ‘closeness’ between the vectors of
the vector space. This is provided by the notion of a norm.

Definitions. Let X be a vector space over R or C. A norm on X is a function ‖ ·‖ : X → [0, +∞)
such that:

N1. (Positive definiteness) For all x ∈ X , ‖x‖ ≥ 0. If x ∈ X , then ‖x‖ = 0 iff x = 0.

N2. For all α ∈ R (respectively C) and for all x ∈ X , ‖αx‖ = |α|‖x‖.

N3. (Triangle inequality) For all x, y ∈ X , ‖x + y‖ ≤ ‖x‖ + ‖y‖.

A normed space is a vector space X equipped with a norm.

If x, y ∈ X , then the number ‖x − y‖ provides a notion of closeness of points x and y in X ,
that is, a ‘distance’ between them. Thus ‖x‖ = ‖x − 0‖ is the distance of x from the zero vector
in X .

We now give a few examples of normed spaces.

Examples.

1. R is a vector space over R, and if we define ‖ · ‖ : R → [0, +∞) by

‖x‖ = |x|, x ∈ R,

then it becomes a normed space.

2. Rn is a vector space over R, and let

‖x‖2 =

(
n∑

i=1

|xi|2
) 1

2

, x =






x1

...
xn




 ∈ R

n.

Then Rn is a normed space (see Exercise 5a on page 6).

This is not the only norm that can be defined on Rn. For example,

‖x‖1 =
n∑

i=1

|xi|, and ‖x‖∞ = max{|x1|, . . . , |xn|}, x =






x1

...
xn




 ∈ R

n,

are also examples of norms (see Exercise 5a on page 6).

Note that (Rn, ‖ · ‖2), (Rn, ‖ · ‖1) and (Rn, ‖ · ‖∞) are all different normed spaces. This
illustrates the important fact that from a given vector space, we can obtain various normed
spaces by choosing different norms. What norm is considered depends on the particular
application at hand. We illustrate this in the next paragraph.

Suppose that we are interested in comparing the economic performance of a country from
year to year, using certain economic indicators. For example, let the ordered 365-tuple



1.2. Normed spaces 5

x = (x1, . . . , x365) be the record of the daily industrial averages. A measure of differences in
yearly performance is given by

‖x − y‖ =

365∑

i=1

|xi − yi|.

Thus the space (R365, ‖·‖1) arises naturally. We might also be interested in the monthly cost
of living index. Let the record of this index for a year be given by 12-tuples x = (x1, . . . , x12).
A measure of differences in yearly performance of the cost of living index is given by

‖x − y‖ = max{|x1 − y1|, . . . , |x12 − y12|},

which is the distance between x and y in the normed space (R12, ‖ · ‖∞).

3. The sequence space ℓ∞. This example and the next one give a first impression of how
surprisingly general the concept of a normed space is.

Let ℓ∞ denote the vector space of all bounded sequences, with the addition and scalar
multiplication defined earlier in (1.2)-(1.3).

Define

‖(xn)n∈N‖∞ = sup
n∈N

|xn|, (xn)n∈N ∈ ℓ∞.

Then it is easy to check that ‖ · ‖∞ is a norm, and so (ℓ∞, ‖ · ‖∞) is a normed space.

4. The function space C[a, b]. Let a, b ∈ R and a < b. Consider the vector space comprising
functions that are continuous on [a, b], with addition and scalar multiplication defined earlier
by (1.4)-(1.5).

ǫ

ǫ

x0

x

a b

Figure 1.2: The set of all continuous functions x whose graph lies between the two dotted lines is
the ‘ball’ B(f, ǫ) = {x ∈ C[a, b] | ‖x − x0‖∞ < ǫ}.

Define

‖x‖∞ = sup
t∈[a,b]

|x(t)|, x ∈ C[a, b]. (1.6)

Then ‖ · ‖∞ is a norm on C[a, b]. Another norm is given by

‖x‖1 =

∫ b

a

|x(t)|dt, x ∈ C[a, b]. (1.7)

5. The function space C1[a, b]. The space C1[a, b] consists of all functions x defined on [a, b]
which are continuous and have a continuous first derivative. The operations of addition and
multiplication by scalars are the same as in C[a, b], but we shall use the following norm:

‖x‖1,∞ = sup
t∈[a,b]

|x(t)| + sup
t∈[a,b]

∣
∣
∣
∣

dx

dt
(t)

∣
∣
∣
∣
. (1.8)
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Thus two functions in C1[a, b] are regarded as close together if both the functions themselves
as well as their first derivatives are close together. Indeed, ‖x1 − x2‖ < ǫ implies that

|x1(t) − x2(t)| < ǫ and

∣
∣
∣
∣

dx1

dt
(t) − dx2

dt
(t)

∣
∣
∣
∣
< ǫ for all t ∈ [a, b], (1.9)

and conversely, (1.9) implies that ‖x1 − x2‖ < 2ǫ. ♦

Exercises.

1. Let (X, ‖ · ‖) be a normed space. Prove that for all x, y ∈ X , |‖x‖ − ‖y‖| ≤ ‖x − y‖.

2. If x ∈ R, then let ‖x‖ = |x|2. Is ‖ · ‖ a norm on R?

3. Let (X, ‖ ·‖) be a normed space and r > 0. Show that the function x 7→ r‖x‖ defines a norm
on X .

Thus there are infinitely many other norms on any normed space.

4. Let X be a normed space ‖ · ‖X and Y be a subspace of X . Prove that Y is also a normed
space with the norm ‖ · ‖Y defined simply as the restriction of the norm ‖ · ‖X to Y . This
norm on Y is called the induced norm.

5. The Cauchy-Schwarz inequality says that if x1, . . . , xn and y1, . . . , yn are any real numbers,
then

(
n∑

i=1

xiyi

)2

≤
(

n∑

i=1

x2
i

)(
n∑

i=1

y2
i

)

.

If n ∈ N, then for

x =






x1

...
xn




 ∈ R

n,

define

‖x‖p =

(
n∑

i=1

|xi|p
) 1

p

if p = 1 or 2, and ‖x‖∞ = max{|x1|, . . . , |xn|}. (1.10)

(a) Show that the function x 7→ ‖x‖p is a norm on Rn.

Hint: Use Cauchy-Schwarz inequality for the p = 2 case.

(b) Let n = 2. Depict the following sets pictorially:

B2(0, 1) = {x ∈ R
2 | ‖x‖2 < 1},

B1(0, 1) = {x ∈ R
2 | ‖x‖1 < 1},

B∞(0, 1) = {x ∈ R
2 | ‖x‖∞ < 1}.

6. A subset C of a vector space X is said to be convex if for all x, y ∈ C, and all α ∈ [0, 1],
αx + (1 − α)y ∈ C; see Figure 1.3.

(a) Show that the unit ball B(0, 1) = {x ∈ X | ‖x‖ < 1} is convex in any normed space
(X, ‖ · ‖).

(b) Sketch the curve {(x1, x2) ∈ R
2 |
√

|x1| +
√

|x2| = 1}.
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convex not convex

Figure 1.3: Examples of convex and nonconvex sets in R2.

(c) Prove that

‖x‖ 1
2

:=
(√

|x1| +
√

|x2|
)2

, x =

[
x1

x2

]

∈ R
2,

does not define a norm on R
2.

7. (a) Show that the polyhedron

Pn =












x1

...
xn




 ∈ R

n

∣
∣
∣
∣
∣
∣
∣

∀i ∈ {1, . . . , n}, xi > 0 and
n∑

i=1

xi = 1







is convex in Rn. Sketch P2.

(b) Prove that

if






x1

...
xn




 ∈ Pn, then

n∑

i=1

1

xi
≥ n2. (1.11)

Hint: Use the Cauchy-Schwarz inequality.

(c) In the financial world, there is a method of investment called dollar cost averaging.
Roughly speaking, this means that one invests a fixed amount of money regularly
instead of a lumpsum. It is claimed that a person using dollar cost averaging should
be better off than one who invests all the amount at one time. Suppose a fixed amount
A is used to buy shares at prices p1, . . . , pn. Then the total number of shares is then
A
p1

+ · · · + A
pn

. If one invests the amount nA at a time when the share price is the

average of p1, . . . , pn, then the number of shares which one can purchase is n2A
p1+···+pn

.

Using the inequality (1.11), conclude that dollar cost averaging is at least as good as
purchasing at the average share price.

8. (∗) Show that (1.7) defines a norm on C[a, b].

9. (∗) Let Cn[a, b] denote the space of n times continuously differentiable functions on [a, b]:

Cn[a, b] = {f : [a, b] → R | f is n times continuously differentiable},

equipped with the norm

‖f‖n,∞ = ‖f‖∞ + ‖f ′‖∞ + · · · + ‖f (n)‖∞, f ∈ Cn[a, b]. (1.12)

Show that (1.12) defines a norm on C[a, b].
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1.3 Continuity

In this section, we consider continuous maps from a normed space X to a normed space Y . The
spaces X and Y have a notion of distance between vectors (namely the norm of the difference
between the two vectors). Hence we can talk about continuity of maps between these normed
spaces, just as in the case of ordinary calculus.

Since the normed spaces are also vector spaces, linear maps play an important role. Recall
that linear maps are those maps that preserve the vector space operations of addition and scalar
multiplication. These are already familiar to the reader from elementary linear algebra, and they
are called linear transformations.

In the context of normed spaces, it is then natural to focus attention on those linear transfor-
mations that are also continuous. These are called bounded linear operators. The reason for this
terminology will become clear in Theorem 1.3.1.

The set of all bounded linear operators is itself a vector space, with obvious operations of
addition and scalar multiplication, and as we shall see, it also has a natural notion of a norm,
called the operator norm.

1.3.1 Linear transformations

We recall the definition of linear transformations below. Roughly speaking, linear transformations
are maps that respect vector space operations.

Definition. Let X and Y be vector spaces over R. A map T : X → Y is called a linear
transformation if it satisfies the following:

L1. For all x1, x2 ∈ X , T (x1 + x2) = T (x1) + T (x2).

L2. For all x ∈ X and all α ∈ R, T (α · x) = α · T (x).

Examples.

1. Let m, n ∈ N and X = R
n and Y = R

m. If

A =






a11 . . . a1n

...
...

am1 . . . amn




 ∈ R

m×n,

then the function TA : Rn → Rm defined by

TA






x1

...
xn




 =






a11x1 + · · · + a1nxn

...
am1x1 + · · · + amnxn




 =












n∑

k=1

a1kxk

...
n∑

k=1

amkxk












for all






x1

...
xn




 ∈ R

n, (1.13)
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is a linear transformation from the vector space Rn to the vector space Rm. Indeed,

TA











x1

...
xn




+






y1

...
yn









 = TA






x1

...
xn




+ TA






y1

...
yn




 for all






x1

...
xn




 ,






y1

...
yn




 ∈ R

n,

and so L1 holds. Moreover,

TA




α ·






x1

...
xn









 = α · TA






x1

...
xn




 for all α ∈ R and all






x1

...
xn




 ∈ R

n,

and so L2 holds as well. Hence TA is a linear transformation.

2. Let X = Y = ℓ∞. Consider the maps R, L from ℓ2 to ℓ2, defined as follows: if (xn)n∈N ∈ ℓ∞,
then

R((x1, x2, x3, . . . )) = (x2, x3, a4, . . . ) and L((x1, x2, x3, . . . )) = (0, x1, x2, x3, . . . ).

It is easy to see that R and L are linear transformations.

3. The map T : C[a, b] → R given by

Tf = f

(
a + b

2

)

for all f ∈ C[a, b],

is a linear transformation from the vector space C[a, b] to the vector space R. Indeed, we
have

T (f + g) = (f + g)

(
a + b

2

)

= f

(
a + b

2

)

+ g

(
a + b

2

)

= T (f) + T (g), for all f, g ∈ C[a, b],

and so L1 holds. Furthermore

T (α · f) = (α · f)

(
a + b

2

)

= αf

(
a + b

2

)

= αT (f), for all α ∈ R and all f ∈ C[a, b],

and so L2 holds too. Thus T is a linear transformation.

Similarly, the map I : C[a, b] → R given by

I(f) =

∫ b

a

f(x)dx for all f ∈ C[a, b],

is a linear transformation.

Another example of a linear transformation is the operation of differentiation: let X =
C1[a, b] and Y = C[a, b]. Define D : C1[a, b] → C[a, b] as follows: if f ∈ C1[a, b], then

(D(f))(x) =
df

dx
(x), x ∈ [a, b].

It is easy to check that D is a linear transformation from the space of continuously differen-
tiable functions to the space of continuous functions. ♦

Exercises. Let a, b ∈ R, not both zeros, and consider the two real-valued functions f1, f2 defined
on R by

f1(x) = eax cos(bx) and f2(x) = eax sin(bx), x ∈ R.

f1 and f2 are vectors belonging to the infinite-dimensional vector space over R (denoted by
C1(R, R)), comprising all continuously differentiable functions from R to R. Denote by V the
span of the two functions f1 and f2.
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1. Prove that f1 and f2 are linearly independent in C1(R, R).

2. Show that the differentiation map D, f 7→ df
dx , is a linear transformation from V to V .

3. What is the matrix of D with respect to the basis B = {f1, f2}?

4. Prove that D is invertible, and compute the matrix corresponding to this inverse.

5. Using the result above, compute the indefinite integrals
∫

eax cos(bx)dx and

∫

eax sin(bx)dx.

Let X and Y be normed spaces. As there is a notion of distance between pairs of vectors
in either space (provided by the norm of the difference of the pair of vectors in each respective
space), one can talk about continuity of maps. Within the huge collection of all maps, the class
of continuous maps form important subset. Continuous maps play a prominent role in functional
analysis since they possess some useful properties.

Before discussing the case of a function between normed spaces, let us first of all recall the
notion of continuity of a function f : R → R.

1.3.2 Continuity of functions from R to R

In everyday speech, a ‘continuous’ process is one that proceeds without gaps of interruptions or
sudden changes. What does it mean for a function f : R → R to be continuous? The common
informal definition of this concept states that a function f is continuous if one can sketch its graph
without lifting the pencil. In other words, the graph of f has no breaks in it. If a break does
occur in the graph, then this break will occur at some point. Thus (based on this visual view of
continuity), we first give the formal definition of the continuity of a function at a point below.
Next, if a function is continuous at each point, then it will be called continuous.

If a function has a break at a point, say x0, then even if points x are close to x0, the points
f(x) do not get close to f(x0). See Figure 1.4.

x0

f(x0)

Figure 1.4: A function with a break at x0. If x lies to the left of x0, then f(x) is not close to
f(x0), no matter how close x comes to x0.

This motivates the definition of continuity in calculus, which guarantees that if a function
is continuous at a point x0, then we can make f(x) as close as we like to f(x0), by choosing x
sufficiently close to x0. See Figure 1.5.

Definitions. A function f : R → R is continuous at x0 if for every ǫ > 0, there exists a δ > 0
such that for all x ∈ R satisfying |x − x0| < δ, |f(x) − f(x0)| < ǫ.

A function f : R → R is continuous if for every x0 ∈ R, f is continuous at x0.
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-

f(x0) + ǫ

f(x0)

f(x0) + ǫ

f(x)

x0 − δ x0 x0 + δx

Figure 1.5: The definition of the continuity of a function at point x0. If the function is continuous
at x0, then given any ǫ > 0 (which determines a strip around the line y = f(x0) of width 2ǫ), there
exists a δ > 0 (which determines an interval of width 2δ around the point x0) such that whenever
x lies in this width (so that x satisfies |x − x0| < δ) and then f(x) satisfies |f(x) − f(x0)| < ǫ.

For instance, if α ∈ R, then the linear map x 7→ x is continuous. It can be seen that sums
and products of continuous functions are also continuous, and so it follows that all polynomial
functions belong to the class of continuous functions from R to R.

1.3.3 Continuity of functions between normed spaces

We now define the set of continuous maps from a normed space X to a normed space Y .

We observe that in the definition of continuity in ordinary calculus, if x, y are real numbers,
then |x− y| is a measure of the distance between them, and that the absolute value | · | is a norm
in the finite (1) dimensional normed space R.

So it is natural to define continuity in arbitrary normed spaces by simply replacing the absolute
values by the corresponding norms, since the norm provides the notion of distance between vectors.

Definitions. Let X and Y be normed spaces over R, and x0 ∈ X . A map f : X → Y is said to
be continuous at x0 if

∀ǫ > 0, ∃δ > 0 such that ∀x ∈ X satisfying ‖x − x0‖ < δ, ‖f(x) − f(x0)‖ < ǫ. (1.14)

The map f : X → Y is called continuous if for all x0 ∈ X , f is continuous at x0.

We will see in the next section that the examples of the linear transformations given in the
previous section are all continuous maps, if the vector spaces are equipped with their usual norms.
Here we give an example of a nonlinear map which is continuous.

Example. Consider the squaring map S : C[a, b] → C[a, b] defined as follows:

(S(u))(t) = (u(t))2, t ∈ [a, b], u ∈ C[a, b]. (1.15)

The map is not linear (why?), but it is continuous. Indeed, let u0 ∈ C[a, b]. Let

M = max{|u(t)| | t ∈ [a, b]}

(extreme value theorem). Given any ǫ > 0, let

δ = min

{

1,
ǫ

2M + 1

}

.
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Then for any u ∈ C[a, b], such that ‖u − u0‖ < δ, we have for all t ∈ [a, b]

|(u(t))2 − (u0(t))
2| = |u(t) − u0(t)||u(t) + u0(t)|

< δ(|u(t) − u0(t) + 2u0(t)|)
≤ δ(|u(t) − u0(t)| + 2|u0(t)|)
≤ δ(‖u − u0‖ + 2M)

< δ(δ + 2M)

≤ δ(1 + 2M)

≤ ǫ.

Hence for all u ∈ C[a, b] satisfying ‖u − u0‖ < δ, we have

‖S(u) − S(u0)‖ = sup
t∈[a,b]

|(u(t))2 − (u0(t))
2| ≤ ǫ.

So S is continuous at u0. As the choice of u0 ∈ C[a, b] was arbitrary, it follows that S is continuous
on C[a, b]. ♦

Exercises.

1. Show that the map S : C[a, b] → C[a, b] given by (1.15) is not a linear transformation.

2. Let (X, ‖ · ‖) be a normed space. Show that the norm ‖ · ‖ : X → R is a continuous map.

3. (∗) Let (zn)n∈N be a sequence in a normed space Z and let z ∈ Z. The sequence (zn)n∈N

converges to z if for all ǫ > 0, there exists an N ∈ N such that for all n ∈ N satisfying n ≥ N ,
‖zn − z‖ < ǫ.

Let X, Y be normed spaces and suppose that f : X → Y is a map. Prove that f is continuous
at x0 ∈ X iff

for every convergent sequence (xn)n∈N contained in X with limit x0,
(f(xn))n∈N is convergent and lim

n→∞
f(xn) = f(x0).

(1.16)

4. (∗) This exercise concerns the norm on C1[a, b] we have chosen to use. Since we want to be
able to use ordinary analytic operations such as passage to the limit, then, given a function
I : C1[a, b] → R, it is reasonable to choose a norm such that I is continuous.

(a) It might seem that induced norm from the space C[a, b] (of which C1[a, b] as a subspace)
would be adequate for the study of variational problems. However, this is not true. In
fact the function

I(x) =

∫ b

a

F

(

x(t),
dx

dt
(t), t

)

dt

may not be continuous if we use the norm induced by C[a, b]. For example, show that
the arc length function L : C1[0, 1] → R given by

L(x) =

∫ 1

0

√

1 + (x′(t))2dt

is not continuous if we equip C1[0, 1] with the norm

‖x‖ = sup
t∈[0,1]

|x(t)|.

Hint: For every curve, we can find another curve arbitrarily close to the first in the
sense of the norm of C[a, b], whose length differs from that of the first curve by a factor
of 10, say.
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(b) Show that the arc length function L is continuous if we equip C1[a, b] with the norm
given by (1.12).

5. Consider the function I : C1[a, b] → R defined by

I(x) =

∫ b

a

(

x(t) + t
dx

dt
(t)

)

dt, x ∈ C1[a, b].

Is I linear? Is it continuous? Let S(ya, yb) = {x ∈ C1[a, b] | x(a) = ya and x(b) = yb}.
Prove that I is constant on S(ya, yb). What is the value of I on S(ya, yb)?

1.3.4 The normed space L (X, Y )

In this section we study those linear transformations from a normed space X to a normed space
Y that are also continuous. We begin by giving a characterization of continuous linear transfor-
mations.

Theorem 1.3.1 Let X and Y be normed spaces over R. Let T : X → Y be a linear transforma-
tion. Then the following properties of T are equivalent:

1. T is continuous.

2. T is continuous at 0.

3. There exists a number M such that for all x ∈ X, ‖Tx‖ ≤ M‖x‖.

Proof

1 ⇒ 2. Evident.

2 ⇒ 3. For every ǫ > 0, for example ǫ = 1, there exists a δ > 0 such that ‖x‖ ≤ δ implies
‖Tx‖ ≤ 1. This yields:

‖Tx‖ ≤ 1

δ
‖x‖ for all x ∈ X. (1.17)

This is true if ‖x‖ = δ. But if (1.17) holds for some x, then owing to the homogeneity of T and of
the norm, it also holds for αx, for any arbitrary α ∈ R. Since every x can be written in the form

x = αy with ‖y‖ = δ (take α = ‖x‖
δ ), (1.17) is valid for all x. Thus we have that for all x ∈ X ,

‖Tx‖ ≤ M‖x‖

with M = 1
δ .

3 ⇒ 1. From linearity, we have:

‖Tx − Ty‖ = ‖T (x− y)‖ ≤ M‖x − y‖

for all x, y ∈ X . The continuity follows immediately.

Owing to the characterization of continuous linear transformations by the existence of a bound
as in item 3 above, they are called bounded linear operators.

Theorem 1.3.2 Let X and Y be normed spaces over R.
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1. Let T : X → Y be a linear operator. Of all the constants M possible in 3 of Theorem 1.3.1,
there is a smallest one, and this is given by:

‖T ‖ = sup
‖x‖≤1

‖Tx‖. (1.18)

2. The set L (X, Y ) of bounded linear operators from X to Y with addition and scalar multi-
plication defined by:

(T + S)x = Tx + Sx, x ∈ X, (1.19)

(αT )x = αTx, x ∈ X, α ∈ R, (1.20)

is a vector space. The map T 7→ ‖T ‖ is a norm on this space.

Proof 1. From item 3 of Theorem 1.3.1, it follows immediately that ‖T ‖ ≤ M . Conversely we
have, by the definition of ‖T ‖, that ‖x‖ ≤ 1 ⇒ ‖Tx‖ ≤ ‖T ‖. Owing to the homogeneity of T
and of the norm, it again follows from this that:

‖Tx‖ ≤ ‖T ‖‖x‖ for all x ∈ X (1.21)

which means that ‖T ‖ is the smallest constant M that can occur in item 3 of Theorem 1.3.1.

2. We already know from linear algebra that the space of all linear transformations from a vector
space X to a vector space Y , equipped with the operations of addition and scalar multiplication
given by (1.19) and (1.20), forms a vector space. We now prove that the subset L (X, Y ) comprising
bounded linear transformations is a subspace of this vector space, and consequently it is itself a
vector space.

We first prove that if T, S are in bounded linear transformations, then so are T + S and αT .
It is clear that T + S and αT are linear transformations. Moreover, there holds that

‖(T + S)x‖ ≤ ‖Tx‖ + ‖Sx‖ ≤ (‖T ‖ + ‖S‖)‖x‖, x ∈ X, (1.22)

from which it follows that T + S is bounded. Also there holds:

‖αT ‖ = sup
‖x‖≤1

‖αTx‖ = sup
‖x‖≤1

|α|‖Tx‖ = |α| sup
‖x‖≤1

‖Tx‖ = |α|‖T ‖. (1.23)

Finally, the 0 operator, is bounded and so it belongs to L (X, Y ).

Furthermore, L (X, Y ) is a normed space. Indeed, from (1.22), it follows that

‖T + S‖ ≤ ‖T ‖+ ‖S‖,

and so N3 holds. Also, from (1.23) we see that N2 holds. We have ‖T ‖ ≥ 0; from (1.21) it follows
that if ‖T ‖ = 0, then Tx = 0 for all x ∈ X , that is, T = 0, the operator 0, which is the zero vector
of the space L (X, Y ). This shows that N1 holds.

So we have shown that the space of all continuous linear transformations (which we also call
the space of bounded linear operators), L (X, Y ), can be equipped with the operator norm given
by (1.18), so that L (X, Y ) becomes a normed space.

Remark. The space L (X, R) is denoted by X ′ (sometimes X∗) and is called the dual space.
Elements of the dual space are called functionals.

We give a few examples of bounded linear operators below:

Examples.
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1. Let X = Rn, Y = Rm, and let

A =






a11 . . . a1n

...
...

am1 . . . amn




 ∈ R

m×n.

We equip X and Y with the Euclidean norm. From the Cauchy-Schwarz inequality, it follows
that





n∑

j=1

aijxj





2

≤





n∑

j=1

a2
ij



 ‖x‖2,

for each i ∈ {1, . . .m}. This yields ‖TAx‖ ≤ ‖A‖2‖x‖ where

‖A‖2 =





m∑

i=1

n∑

j=1

a2
ij





1
2

. (1.24)

Thus we see that all linear transformations in finite dimensional spaces are continuous, and
that if X and Y are equipped with the Euclidean norm, then the operator norm is majorized
by the Euclidean norm of the matrix:

‖A‖ ≤ ‖A‖2.

2. We take X = C[a, b], and Y = R. Consider the operator I : C[a, b] → R given by

I(f) =

∫ b

a

f(x)dx. (1.25)

The map f 7→ I(f) is clearly linear. Moreover,

|I(f)| ≤
∫ b

a

|f(x)|dx ≤
∫ b

a

‖f‖∞dx = (b − a)‖f‖∞.

Thus it follows that I is bounded, and that ‖I‖ ≤ b − a. ♦

Exercises.

1. Let X, Y be normed spaces, and T ∈ L (X, Y ). Show that

‖T ‖ = sup{‖Tx‖ | x ∈ X and ‖x‖ = 1}.

2. Let (λn)n∈N be a bounded sequence of scalars, and consider the diagonal operator D : ℓ∞ →
ℓ∞ defined as follows:

D(x1, x2, x3, . . . ) = (λ1x1, λ2x2, λ3x3, . . . ), (xn)n∈N ∈ ℓ∞. (1.26)

Prove that D ∈ L (ℓ∞) and that
‖D‖ = sup

n∈N

|λn|.

3. An analogue of the diagonal operator in the context of function spaces is the multiplication
operator. Let l be a continuous function on [0, 1]. Define the multiplication operator M :
C[0, 1] → C[0, 1] as follows:

(Mf)(x) = l(x)f(x), x ∈ [0, 1], f ∈ C[0, 1].

Is M a bounded linear operator?
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4. Prove that the averaging operator A : ℓ∞ → ℓ∞, defined by

A(x1, x2, x3, . . . ) =

(

x1,
x1 + x2

2
,
x1 + x2 + x3

3
, . . .

)

, (1.27)

is a bounded linear operator.

5. Consider the subspace c of ℓ∞ comprising convergent sequences. Prove that the limit map
l : c → R given by

l(xn)n∈N = lim
n→∞

xn, (xn)n∈N ∈ c, (1.28)

is an element in the dual space L (c, R) of c, when c is equipped with the induced norm from
ℓ∞.

1.4 Differentiation

In the last section we studied continuity of operators from a normed space X to a normed space
Y . In this section, we will study differentiation: we will define the (Frechet) derivative of a map
F : X → Y at a point x0 ∈ X . Roughly speaking, the derivative of a nonlinear map at a point is
a local approximation by means of a continuous linear transformation. Thus the derivative at a
point will be a bounded linear operator.

Next, we will use the derivative in solving optimization problems in normed spaces. If I is a
differentiable map from the normed space X to R, we prove Theorem 1.4.2, which says that this
derivative must vanish at local maximum/minimum of the map I.

Finally, we apply Theorem 1.4.2 to the problem mentioned in the introduction. This is the
concrete case when X comprises continuously differentiable functions on the interval [0, T ], and I
is the map

I(x) =

∫ T

0

(P − ax(t) − bx′(t))dt. (1.29)

Setting the derivative of such a functional to zero, a necessary condition (in the form of a differential
equation) for an extremal curve x0 is obtained. The solution x0 of this differential equation is the
candidate which maximizes/minimizes the function I.

1.4.1 The derivative

Recall that for a function f : R → R, the derivative at a point x0 is the approximation of f around
x0 by a straight line. See Figure 1.6.

f(x0)

x0
x

Figure 1.6: The derivative of f at x0.
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The derivative f ′(x0) gives the slope of the line which is tangent to the function f at the point x0:

f ′(x0) = lim
x→x0

f(x) − f(x0)

x − x0
.

In other words,

lim
x→x0

∣
∣
∣
∣

f(x) − f(x0) − f ′(x0)(x − x0)

x − x0

∣
∣
∣
∣
= 0,

that is,

∀ǫ > 0, ∃δ > 0 such that ∀x ∈ R\{x0} satisfying |x−x0| < δ,
|f(x) − f(x0) − f ′(x0)(x − x0)|

|x − x0|
< ǫ.

Observe that every real number α gives rise to a linear transformation from R to R: the operator
in question is simply multiplication by α, that is the map x 7→ αx. We can therefore think of
(f ′(x0))(x − x0) as the action of the linear transformation L : R → R on the vector x− x0, where
L is given by

L(h) = f ′(x0)h, h ∈ R.

Hence the derivative f ′(x0) is simply a linear map from R to R. In the same manner, in the
definition of a derivative of a map F : X → Y between normed spaces X and Y , the derivative of
F at a point x0 will be defined to be a linear transformation from X to Y .

A linear map L : R → R is automatically continuous1. But this is not true in general if
R is replaced by infinite dimensional normed spaces! And we would expect that the derivative
(being the approximation of the map at a point) to have the same property as the function itself
at that point. Of course, a differentiable function should first of all be continuous (so that this
situation matches with the case of functions from R to R from ordinary calculus), and so we
expect the derivative to be a continuous linear transformation, that is, it should be a bounded
linear operator. So while generalizing the notion of the derivative from ordinary calculus to the
case of a map F : X → Y between normed spaces X and Y , we now specify continuity of the
derivative as well. Thus, in the definition of a derivative of a map F , the derivative of F at a
point x0 will be defined to be a bounded linear transformation from X to Y , that is, an element
of L (X, Y ).

This motivates the following definition.

Definition. Let X, Y be normed spaces. If F : X → Y be a map and x0 ∈ X , then F is said to
be differentiable at x0 if there exists a bounded linear operator L ∈ L (X, Y ) such that

∀ǫ > 0, ∃δ > 0 such that ∀x ∈ X\{x0} satisfying ‖x−x0‖ < δ,
‖F (x) − F (x0) − L(x − x0)‖

‖x − x0‖
< ǫ.

(1.30)
The operator L is called a derivative of F at x0. If F is differentiable at every point x ∈ X , then
it is simply said to be differentiable.

We now prove that if F is differentiable at x0, then its derivative is unique.

Theorem 1.4.1 Let X, Y be normed spaces. If F : X → Y is differentiable at x0 ∈ X, then the
derivative of F at x0 is unique.

1Indeed, every linear map L : R → R is simply given by multiplication, since L(x) = L(x · 1) = xL(1).
Consequently |L(x) − L(y)| = |L(1)||x − y|, and so L is continuous!
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Proof Suppose that L1, L2 ∈ L (X, Y ) are derivatives of F at x0. Given ǫ > 0, choose a δ such
that (1.30) holds with L1 and L2 instead of L. Consequently

∀x ∈ X \ {x0} satisfying ‖x − x0‖ < δ,
‖L2(x − x0) − L1(x − x0)‖

‖x − x0‖
< 2ǫ. (1.31)

Given any h ∈ X such that h 6= 0, define x = x0 + δ
2‖h‖h. Then ‖x − x0‖ = δ

2 < δ and so (1.31)

yields
‖(L2 − L1)h‖ ≤ 2ǫ‖h‖. (1.32)

Hence ‖L2 − L1‖ ≤ 2ǫ, and since the choice of ǫ > 0 was arbitrary, we obtain ‖L2 − L1‖ = 0. So
L2 = L1, and this completes the proof.

Notation. We denote the derivative of F at x0 by DF (x0).

We now calculate the derivative in the case of a few simple examples.

Examples.

1. Consider the nonlinear squaring map S from the example on page 11. We had seen that S
is continuous. We now see that S : C[a, b] → C[a, b] is in fact differentiable. We note that

(Su − Su0)(t) = u(t)2 − u0(t)
2 = (u(t) + u0(t))

︸ ︷︷ ︸
(u(t) − u0(t)). (1.33)

As u approaches u0 in C[a, b], the term u(t)+u0(t) above approaches 2u0(t). So from (1.33),
we suspect that (DS)(u0) would be the multiplication map M by 2u0:

(Mu)(t) = 2u0(t)u(t), t ∈ [a, b].

Let us prove this. Let ǫ > 0. We have

|(Su − Su0 − M(u − u0))(t)| = |u(t)2 − u0(t)
2 − 2u0(t)(u(t) − u0(t))|

= |u(t)2 + u0(t)
2 − 2u0(t)u(t)|

= |u(t) − u0(t)|2

≤ ‖u − u0‖2.

Hence if δ := ǫ > 0, then for all u ∈ C[a, b] \ {u0} satisfying ‖u − u0‖ < δ, we have

‖Su − Su0 − M(u − u0)‖
‖u − u0‖

≤ ‖u − u0‖ < δ = ǫ.

Thus DS(u0) = M .

2. Let X, Y be normed spaces and let T ∈ L (X, Y ). Is T differentiable, and if so, what is its
derivative?

Recall that the derivative at a point is the linear transformation that approximates the map
at that point. If the map is itself linear, then we expect the derivative to equal the given
linear map! We claim that (DT )(x0) = T , and we prove this below.

Given ǫ > 0, choose any δ > 0. Then for all x ∈ X satisfying ‖x − x0‖ < δ, we have

‖Tx− Tx0 − T (x − x0)‖ = ‖Tx − Tx0 − Tx + Tx0‖ = 0 < ǫ.

Consequently (DT )(x0) = T .

In particular, if X = R
n, Y = R

m, and T = TA, where A ∈ R
m×n, then (DTA)(x0) = TA. ♦
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Exercises.

1. Let X, Y be normed spaces. Prove that if F : X → Y is differentiable at x0, then it F
continuous at x0.

2. Consider the functional I : C[a, b] → R given by

I(x) =

∫ b

a

x(t)dt.

Prove that I is differentiable, and find its derivative at x0 ∈ C[a, b].

3. (∗) Prove that the square of a differentiable functional I : X → R is differentiable, and find
an expression for its derivative at x ∈ X .

Hint: (I(x))2 − (I(x0))
2 = (I(x) + I(x0))(I(x) − I(x0)) ≈ 2I(x0)DI(x0)(x − x0) if x ≈ x0.

4. (a) Given x1, x2 in a normed space X , define

ϕ(t) = tx1 + (1 − t)x2.

Prove that if I : X → R is differentiable, then I ◦ ϕ : [0, 1] → R is differentiable and

d

dt
(I ◦ ϕ)(t) = [DI(ϕ(t))](x1 − x2).

(b) Prove that if I1, I2 : X → R are differentiable and their derivatives are equal at every
x ∈ X , then I1 and I2 differ by a constant.

1.4.2 Optimization: necessity of vanishing derivative

In this section we take the normed space Y = R, and consider maps I : X → R. We wish to find
points x0 ∈ X that maximize/minimize I.

In elementary analysis, a necessary condition for a differentiable function f : R → R to have
a local extremum (local maximum or local minimum) at x0 ∈ R is that f ′(x0) = 0. We will prove
a similar necessary condition for a differentiable function I : X → R.

First we specify what exactly we mean by a ‘local maximum/minimum’ (collectively termed
‘local extremum’). Roughly speaking, a point x0 ∈ X is a local maximum/minimum for I if for
all points x in some neighbourhood of that point, the values I(x) are all less (respectively greater)
than I(x0). Since in general the functions I might be defined only on some subset S of a normed
space X , we give the following general definition.

Definition. Let X be a normed space and S ⊂ X . A function I : S → R is said to have a local
extremum at x0 (∈ S) if there exists a δ > 0 such that

∀x ∈ S satisfying ‖x − x0‖ < δ, I(x) ≥ I(x0) (local minimum)

or

∀x ∈ S satisfying ‖x − x0‖ < δ, I(x) ≤ I(x0) (local maximum).

Theorem 1.4.2 Let X be a normed space, and let I : X → R be a function that is differentiable
at x0 ∈ X. If I has a local extremum at x0, then (DI)(x0) = 0.
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Proof We prove the statement in the case that I has a local minimum at x0. (If instead I has
a local maximum at x0, then the function −I has a local minimum at x0, and so (DI)(x0) =
−(D(−I))(x0) = 0.)

For notational simplicity, we denote (DI)(x0) by L. Suppose that Lh 6= 0 for some h ∈ X .
Let ǫ > 0 be given. Choose a δ such that for all x ∈ X satisfying ‖x− x0‖ < δ, I(x) ≥ I(x0), and
moreover if x 6= x0, then

|I(x) − I(x0) − L(x − x0)|
‖x − x0‖

< ǫ.

Define the sequence

xn = x0 −
1

n

Lh

|Lh|h, n ∈ N.

We note that ‖xn − x0‖ = ‖h‖
n , and so with N chosen large enough, we have ‖xn − x0‖ < δ for all

n > N . It follows that for all n > N ,

0 ≤ I(xn) − I(x0)

‖xn − x0‖
<

L(xn − x0)

‖xn − x0‖
+ ǫ = −|Lh|

‖h‖ + ǫ.

Since the choice of ǫ > 0 was arbitrary, we obtain |Lh| ≤ 0, and so Lh = 0, a contradiction.

Remark. Note that this is a necessary condition for the existence of a local extremum. Thus the
vanishing of a derivative at some point x0 doesn’t imply local extremality at x0! This is analogous
to the case of f : R → R given by f(x) = x3, for which f ′(0) = 0, although f clearly does not have
a local minimum or maximum at 0. In the next section we study an important class of functions
I : X → R, called convex functions, for which a vanishing derivative implies the function has a
global minimum at that point!

1.4.3 Optimization: sufficiency in the convex case

In this section, we will show that if I : X → R is a convex function, then a vanishing derivative
is enough to conclude that the function has a global minimum at that point. We begin by giving
the definition of a convex function.

Definition. Let X be a normed space. A function I : X → R is convex if for all x1, x2 ∈ X and
all α ∈ [0, 1],

I(αx1 + (1 − α)x2) ≤ αI(x1) + (1 − α)I(x2). (1.34)

We now consider a few examples of convex functions.

Examples.

1. If X = R, then the function f(x) = x2, x ∈ R, is convex. This is visually obvious from
Figure 1.8, since we see that the point B lies above the point A:
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X

x1

αx1 + (1 − α)x2

x2

Figure 1.7: Convex function.

B

A

x1 x2

f(x1)

f(x2)

︷ ︸︸ ︷

αx1 + (1 − α)x2

f(αx1 + (1 − α)x2)

αf(x1) + (1 − α)f(x2)

0

Figure 1.8: The convex function x 7→ x2.

But one can prove this as follows: for all x1, x2 ∈ R and all α ∈ [0, 1], we have

f(αx1 + (1 − α)x2) = (αx1 + (1 − α)x2)
2 = α2x2

1 + 2α(1 − α)x1x2 + (1 − α)2x2
2

= αx2
1 + (1 − α)x2

2 + (α2 − α)x2
1 + (α2 − α)x2

2 + 2α(1 − α)x1x2

= αx2
1 + (1 − α)x2

2 − α(1 − α)(x2
1 + x2

2 − 2x1x2)

= αx2
1 + (1 − α)x2

2 − α(1 − α)(x1 − x2)
2

≤ αx2
1 + (1 − α)x2

2 = αf(x1) + (1 − α)f(x2).

A slick way of proving convexity of smooth functions from R to R is to check if f ′′ is
nonnegative; see Exercise 1 below.

2. Consider I : C[0, 1] → R given by

I(f) =

∫ 1

0

(f(x))2dx, f ∈ C[0, 1].

Then I is convex, since for all f1, f2 ∈ C[0, 1] and all α ∈ [0, 1], we see that

I(αf1 + (1 − α)f2) =

∫ 1

0

(αf1(x) + (1 − α)f2(x))2dx

≤
∫ 1

0

α(f1(x))2 + (1 − α)(f2(x))2dx (using the convexity of y 7→ y2)

= α

∫ 1

0

(f1(x))2dx + (1 − α)

∫ 1

0

(f2(x))2dx

= αI(f1) + (1 − α)I(f2).

Thus I is convex. ♦
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In order to prove the theorem on the sufficiency of the vanishing derivative in the case of a
convex function, we will need the following result, which says that if a differentiable function f is
convex, then its derivative f ′ is an increasing function, that is, if x ≤ y, then f ′(x) ≤ f ′(y). (In
Exercise 1 below, we will also prove a converse.)

Lemma 1.4.3 If f : R → R is convex and differentiable, then f ′ is an increasing function.

Proof Let x < u < y. If α = u−x
y−1 , then α ∈ (0, 1), and 1 − α = y−u

y−x . From the convexity of f ,
we obtain

u − x

y − x
f(y) +

y − u

y − x
f(x) ≥ f

(
u − x

y − x
y +

y − u

y − x
x

)

= f(u)

that is,

(y − x)f(u) ≤ (u − x)f(y) + (y − u)f(x). (1.35)

From (1.35), we obtain (y − x)f(u) ≤ (u − x)f(y) + (y − x + x − u)f(x), that is,

(y − x)f(u) − (y − x)f(x) ≤ (u − x)f(y) − (u − x)f(x),

and so
f(u) − f(x)

u − x
≤ f(y) − f(x)

y − x
. (1.36)

From (1.35), we also have (y − x)f(u) ≤ (u − y + y − x)f(y) + (y − u)f(x), that is,

(y − x)f(u) − (y − x)f(y) ≤ (u − y)f(y) − (u − y)f(x),

and so
f(y) − f(x)

y − x
≤ f(y) − f(u)

y − u
. (1.37)

Combining (1.36) and (1.37),

f(u) − f(x)

u − x
≤ f(y) − f(x)

y − x
≤ f(y) − f(u)

y − u
.

Passing the limit as u ց x and u ր y, we obtain f ′(x) ≤ f(y) − f(x)

y − x
≤ f ′(y), and so f ′ is

increasing.

We are now ready to prove the result on the existence of global minima. First of all, we mention
that if I is a function from a normed space X to R, then I is said to have a global minimum at
the point x0 ∈ X if for all x ∈ X , I(x) ≥ I(x0). Similarly if I(x) ≤ I(x0) for all x, then I is said
to have a global maximum at x0. We also note that the problem of finding a maximizer for a map
I can always be converted to a minimization problem by considering −I instead of I. We now
prove the following.

Theorem 1.4.4 Let X be a normed space and I : X → R be differentiable. Suppose that I is
convex. If x0 ∈ X is such that (DI)(x0) = 0, then I has a global minimum at x0.

Proof Suppose that x1 ∈ X and I(x1) < I(x0). Define f : R → R by

f(α) = I(αx1 + (1 − α)x0), α ∈ R.
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The function f is convex, since if r ∈ [0, 1] and α, β ∈ R, then we have

f(rα + (1 − r)β) = I((rα + (1 − r)β)x1 + (1 − rα − (1 − r)β)x0)

= I(r(αx1 + (1 − α)x0) + (1 − r)(βx1 + (1 − β)x0))

≤ rI(αx1 + (1 − α)x0) + (1 − r)I(βx1 + (1 − β)x0)

= rf(α) + (1 − r)f(β).

From Exercise 4a on page 19, it follows that f is differentiable on [0, 1], and

f ′(0) = ((DI)(x0))(x1 − x0) = 0.

Since f(1) = I(x1) < I(x0) = f(0), by the mean value theorem2, there exists a c ∈ (0, 1) such
that

f ′(c) =
f(1) − f(0)

1 − 0
< 0 = f ′(0).

This contradicts the convexity of f (see Lemma 1.4.3 above), and so I(x1) ≥ I(x0). Hence I has
a global minimum at x0.

Exercises.

1. Prove that if f : R → R is twice continuously differentiable and f ′′(x) > 0 for all x ∈ R,
then f is convex.

2. Let X be a normed space, and f ∈ L (X, R). Show that f is convex.

3. If X is a normed space, then prove that the norm function, x 7→ ‖x‖ : X → R, is a convex.

4. Let X be a normed space, and let f : X → R be a function. Define the epigraph of f by

U(f) =
⋃

x∈X

{x} × (f(x), +∞) ⊂ X × R.

This is the ‘region above the graph of f ’. Show that if f is convex, then U(f) is a convex
subset of X × R. (See Exercise 6 on page 6 for the definition of a convex set).

5. (∗) Show that if f : R → R is convex, then for all n ∈ N and all x1, . . . , xn ∈ R, there holds
that

f

(
x1 + · · · + xn

n

)

≤ f(x1) + · · · + f(xn)

n
.

1.4.4 An example of optimization in a function space

Example. A copper mining company intends to remove all of the copper ore from a region that
contains an estimated Q tons, over a time period of T years. As it is extracted, they will sell it
for processing at a net price per ton of

p(x(t), x′(t)) = P − ax(t) − bx′(t)

for positive constants P , a, and b, where x(t) denotes the total tonnage sold by time t. (This
pricing model allows the cost of mining to increase with the extent of the mined region and speed
of production.)

2The mean value theorem says that if f : [a, b] → R is a continuous function that is differentiable in (a, b), then

there exists a c ∈ (a, b) such that
f(b)−f(a)

b−a
= f ′(c).
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If the company wishes to maximize its total profit given by

I(x) =

∫ T

0

p(x(t), x′(t))x′(t)dt, (1.38)

where x(0) = 0 and x(T ) = Q, how might it proceed?

Step 1. First of all we note that the set of curves in C1[0, T ] satisfying x(a) = 0 and x(T ) = Q
do not form a linear space! So Theorem 1.4.2 is not applicable directly. Hence we introduce a
new linear space X , and consider a new function Ĩ : X → R which is defined in terms of the old
function I.

Introduce the linear space X = {x ∈ C1[0, T ] | x(0) = x(T ) = 0}, with the C1[0, T ]-norm:

‖x‖ = sup
t∈[0,T ]

|x(t)| + sup
t∈[0,T ]

|x′(t)|.

Then for all h ∈ X , x0+h satisfies (x0+h)(0) = 0 and (x0+h)(T ) = Q. Defining Ĩ(h) = I(x0+h),
we note that Ĩ : X → R has an extremum at 0. It follows from Theorem 1.4.2 that (DĨ)(0) = 0.
Note that by the 0 in the right hand side of the equality, we mean the zero functional, namely the
continuous linear map from X to R, which is defined by h 7→ 0 for all h ∈ X .

Step 2. We now calculate Ĩ ′(0). We have

Ĩ(h) − Ĩ(0) =

∫ T

0

P − a(x0(t) + h(t)) − b(x′
0(t) + h′(t))dt −

∫ T

0

P − ax0(t) − bx0(t)dt

=

∫ T

0

P − ax0(t) − 2bx′
0(t))h

′(t) − ax′
0(t)h(t)dt +

∫ T

0

−ah(t)h′(t) − bh′(t)h′(t)dt.

Since the map

h 7→
∫ T

0

(P − ax0(t) − 2bx′
0(t))h

′(t) − ax′
0(t)h(t)dt

is a functional from X to R and since
∣
∣
∣
∣
∣

∫ T

0

−ah(t)h′(t) − bh′(t)h′(t)dt

∣
∣
∣
∣
∣
≤ T (a + b)‖h‖2,

it follows that

[(DĨ)(0)](h) =

∫ T

0

(P − ax0(t) − 2bx′
0(t))h

′(t) − ax′
0(t)h(t)dt =

∫ T

0

(P − 2bx′
0(t))h

′(t)dt,

where the last equality follows using partial integration:

∫ T

0

ax′
0(t)h(t)dt = −

∫ T

0

ax0(t)h
′(t)dt + ax0(t)h(t)|Tt=0 = −

∫ T

0

ax0(t)h
′(t)dt.

Step 3. Since (DĨ)(0) = 0, it follows that

∫ T

0

(

P − ax0(t) − 2bx′
0(t) − a

∫ t

0

x′
0(τ)dτ

)

h′(t)dt = 0

for all h ∈ C1[0, T ] with h(0) = h(T ) = 0. We now prove the following.
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Lemma 1.4.5 If k ∈ C[a, b] and

∫ b

a

k(t)h′(t)dt = 0

for all h ∈ C1[a, b] with h(a) = h(b) = 0, then there exists a constant c such that k(t) = c for all
t ∈ [a, b].

Proof Define the constant c and the function h via

∫ b

a

(k(t) − c)dt = 0 and h(t) =

∫ t

a

(k(τ) − c)dτ.

Then h ∈ C1[a, b] and it satisfies h(a) = h(b) = 0. Furthermore,

∫ b

a

(k(t) − c)2dt =

∫ b

a

(k(t) − c)h′(t)dt =

∫ b

a

k(t)h′(t)dt − c(h(b) − h(a)) = 0.

Thus k(t) − c = 0 for all t ∈ [a, b].

Step 4. The above result implies in our case that

∀t ∈ [0, T ], P − 2bx′
0(t) = c. (1.39)

Integrating, we obtain x0(t) = At + B, t ∈ [0, T ], for some constants A and B. Using x0(0) = 0
and x0(T ) = Q, we obtain x0(t) = t

T Q, t ∈ [0, T ]. This is the optimal mining operation.

Step 5. Finally we show that this is the optimal mining operation, that is I(x0) ≥ I(x) for all x
such that x(0) = 0 and x(T ) = Q. We prove this by showing −Ĩ is convex, and so by Theorem
1.4.4, −Ĩ in fact has a global minimum at 0.

Let h1, h2 ∈ X , and α ∈ [0, 1], and define x1 = x0 + h1, x2 = x0 + h2. Then we have

∫ T

0

(αx′
1(t) + (1 − α)x′

2(t))
2dt ≤

∫ T

0

α(x′
1(t))

2 + (1 − α)(x′
2(t))

2dt, (1.40)

using the convexity of y 7→ y2. Furthermore, x1(0) = 0 = x2(0) and x1(T ) = Q = x2(T ), and so

∫ T

0

(αx′
1(t) + (1 − α)x′

2(t))(αx1(t) + (1 − α)x2(t))dt

=
1

2

∫ T

0

d

dt
(αx1(t) + (1 − α)x2(t))

2dt

=
1

2
Q2 = α

1

2
Q2 + (1 − α)

1

2
Q2

= α

∫ T

0

x′
1(t)x1(t)dt + (1 − α)

∫ T

0

x′
2(t)x2(t)dt.
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Hence

−Ĩ(αh1 + (1 − α)h2) = −I(x0 + αh1 + (1 − α)h2)

= −I(αx0 + (1 − α)x0 + αh1 + (1 − α)h2)

= −I(αx1 + (1 − α)x2)

= b

∫ T

0

(αx′
1(t) + (1 − α)x′

2(t))
2dt

+a

∫ T

0

(αx′
1(t) + (1 − α)x′

2(t))(αx1(t) + (1 − α)x2(t))dt

−P

∫ T

0

(αx′
1(t) + (1 − α)x′

2(t))dt

≤ α

∫ T

0

(x′
1(t))

2dt + (1 − α)

∫ T

0

(x′
2(t))

2dt

+α

∫ T

0

x′
1(t)x1(t)dt + (1 − α)

∫ T

0

x′
2(t)x2(t)dt

−αP

∫ T

0

x′
1(t)dt − (1 − α)P

∫ T

0

x′
2(t)dt

= α

(
∫ T

0

x′
1(t)(bx

′
1(t) + ax1(t) − P )dt

)

+(1 − α)

(
∫ T

0

x′
2(t)(bx

′
2(t) + ax2(t) − P )dt

)

= α(−I(x1)) + (1 − α)(−I(x2)) = α(−Ĩ(h1)) + (1 − α)(−Ĩ(h2)).

Hence −Ĩ is convex. ♦

The above optimization problem is a special case of the following general problem, which we
will consider in the next chapter.

Let I be a function of the form

I(x) =

∫ b

a

F

(

x(t),
dx

dt
(t), t

)

dt,

where F (α, β, γ) is a ‘nice’ function and x ∈ C1[a, b] is such that x(a) = ya and x(b) = yb. Then
proceeding in a similar manner as above, it can be shown that if I has an extremum at x0, then
x0 satisfies the Euler-Lagrange equation:

∂F

∂α

(

x0(t),
dx0

dt
(t), t

)

− d

dt

(
∂F

∂β

(

x0(t),
dx0

dt
(t), t

))

= 0, t ∈ [a, b]. (1.41)

(This equation is abbreviated by Fx − d
dtFx′ = 0.)



Chapter 2

The Euler-Lagrange equation

In this chapter, we will give necessary conditions for an extremum of a function of the type

I(x) =

∫ b

a

F (x(t), x′(t), t) dt,

with various types of boundary conditions. The necessary condition is in the form of a differential
equation that the extremal curve should satisfy, and this differential equation is called the Euler-
Lagrange equation.

We begin with the simplest type of boundary conditions, where the curves are allowed to vary
between two fixed points.

2.1 The simplest optimisation problem

The simplest optimisation problem can be formulated as follows:

Let F (α, β, γ) be a function with continuous first and second partial derivatives with respect to
(α, β, γ). Then find x ∈ C1[a, b] such that x(a) = ya and x(b) = yb, and which is an extremum for
the function

I(x) =

∫ b

a

F (x(t), x′(t), t) dt. (2.1)

In other words, the simplest optimisation problem consists of finding an extremum of a function
of the form (2.5), where the class of admissible curves comprises all smooth curves joining two
fixed points; see Figure 2.1. We will apply the necessary condition for an extremum (established
in Theorem 1.4.2) to the solve the simplest optimisation problem described above.

Theorem 2.1.1 Let S = {x ∈ C1[a, b] | x(a) = ya and x(b) = yb}, and let I : S → R be a
function of the form

I(x) =

∫ b

a

F (x(t), x′(t), t) dt.

If I has an extremum at x0 ∈ S, then x0 satisfies the Euler-Lagrange equation:

∂F

∂α
(x0(t), x

′
0(t), t) −

d

dt

(
∂F

∂β
(x0(t), x

′
0(t), t)

)

= 0, t ∈ [a, b]. (2.2)

27
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a b
t

ya

yb

Figure 2.1: Possible paths joining the two fixed points (a, ya) and (b, yb).

Proof The proof is long and so we divide it into several steps.

Step 1. First of all we note that the set S is not a vector space (unless ya = 0 = yb)! So Theorem
1.4.2 is not applicable directly. Hence we introduce a new linear space X , and consider a new
function Ĩ : X → R which is defined in terms of the old function I.

Introduce the linear space

X = {x ∈ C1[a, b] | x(a) = x(b) = 0},
with the induced norm from C1[a, b]. Then for all h ∈ X , x0 + h satisfies (x0 + h)(a) = ya and
(x0 + h)(b) = yb. Defining Ĩ(h) = I(x0 + h), for h ∈ X , we note that Ĩ : X → R has a local
extremum at 0. It follows from Theorem 1.4.2 that1 DĨ(0) = 0.

Step 2. We now calculate DĨ(0). We have

Ĩ(h) − Ĩ(0) =

∫ b

a

F ((x0 + h)(t), (x0 + h)′(t), t) dt −
∫ b

a

F (x0(t), x
′
0(t), t) dt

=

∫ b

a

[F (x0(t) + h(t), x′
0(t) + h′(t), t) dt − F (x0(t), x

′
0(t), t)] dt.

Recall that from Taylor’s theorem, if F possesses partial derivatives of order 2 in a ball B of radius
r around the point (α0, β0, γ0) in R

3, then for all (α, β, γ) ∈ B, there exists a Θ ∈ [0, 1] such that

F (α, β, γ) = F (α0, β0, γ0) +

(

(α − α0)
∂

∂α
+ (β − β0)

∂

∂β
+ (γ − γ0)

∂

∂γ

)

F

∣
∣
∣
∣
(α0,β0,γ0)

+

1

2!

(

(α − α0)
∂

∂α
+ (β − β0)

∂

∂β
+ (γ − γ0)

∂

∂γ

)2

F

∣
∣
∣
∣
∣
(α0,β0,γ0)+Θ((α,β,γ)−(α0,β0,γ0))

.

Hence for h ∈ X such that ‖h‖ is small enough,

Ĩ(h) − Ĩ(0) =

∫ b

a

[
∂F

∂α
(x0(t), x

′
0(t), t)h(t) +

∂F

∂β
(x0(t), x

′
0(t), t)h′(t)

]

dt +

1

2!

∫ b

a

(

h(t)
∂

∂α
+ h′(t)

∂

∂β

)2

F
∣
∣
∣
(x0(t)+Θ(t)h(t),x′

0
(t)+Θ(t)h′(t),t)

dt.

It can be checked that there exists a M > 0 such that
∣
∣
∣
∣
∣

1

2!

∫ b

a

(

h(t)
∂

∂α
+ h′(t)

∂

∂β

)2

F
∣
∣
∣
(x0(t)+Θ(t)h(t),x′

0
(t)+Θ(t)h′(t),t)

dt

∣
∣
∣
∣
∣
≤ M‖h‖2,

1Note that by the 0 in the right hand side of the equality, we mean the zero map, namely the continuous linear
map from X to R, which is defined by h 7→ 0 for all h ∈ X.
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and so DĨ(0) is the map

h 7→
∫ b

a

[
∂F

∂α
(x0(t), x

′
0(t), t)h(t) +

∂F

∂β
(x0(t), x

′
0(t), t)h′(t)

]

dt. (2.3)

Step 3. Next we show that if the map in (2.3) is the zero map, then this implies that (2.2) holds.
Define

A(t) =

∫ t

a

∂F

∂α
(x0(τ), x′

0(τ), τ) dτ.

Integrating by parts, we find that

∫ b

a

∂F

∂α
(x0(t), x

′
0(t), t) h(t)dt = −

∫ b

a

A(t)h′(t)dt,

and so from (2.3), it follows that DĨ(0) = 0 implies that

∫ b

a

[

−A(t) +
∂F

∂β
(x0(t), x

′
0(t), t)

]

h′(t)dt = 0 for all h ∈ X.

Step 4. Finally, using Lemma 1.4.5, we obtain

−A(t) +
∂F

∂β
(x0(t), x

′
0(t), t) = k for all t ∈ [a, b].

Differentiating with respect to t, we obtain (2.3). This completes the proof of Theorem 2.1.1.

Note that the Euler-Lagrange equation is only a necessary condition for the existence of an
extremum (see the remark following Theorem 1.4.2). However, in many cases, the Euler-Lagrange
equation by itself is enough to give a complete solution of the problem. In fact, the existence of
an extremum is sometimes clear from the context of the problem. If in such scenarios, there exists
only one solution to the Euler-Lagrange equation, then this solution must a fortiori be the point
for which the extremum is achieved.

Example. Let S = {x ∈ C1[0, 1] | x(0) = 0 and x(1) = 1}. Consider the function I : S → R

given by

I(x) =

∫ 1

0

(
d

dt
x(t) − 1

)2

dt.

We wish to find x0 ∈ S that minimizes I. We proceed as follows:

Step 1. We have F (α, β, γ) = (β − 1)2, and so
∂F

∂α
= 0 and

∂F

∂β
= 2(β − 1).

Step 2. The Euler-Lagrange equation (2.2) is now given by

0 − d

dt
(2(x′

0(t) − 1)) = 0 for all t ∈ [0, 1].

Step 3. Integrating , we obtain 2(x′
0(t) − 1) = C, for some constant C, and so x′

0 = C
2 + 1 =: A.

Integrating again, we have x0(t) = At + B, where A and B are suitable constants.
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Step 4. The constants A and B can be determined by using that fact that x0 ∈ S, and so
x0(0) = 0 and x0(a) = 1. Thus we have

A0 + B = 0,

A1 + B = 1,

which yield A = 1 and B = 0.

So the unique solution x0 of the Euler-Lagrange equation in S is x0(t) = t, t ∈ [0, 1]; see
Figure 2.2.

0

1

1

x0

t

Figure 2.2: Minimizer for I.

Now we argue that the solution x0 indeed minimizes I. Since (x′(t)− 1)2 ≥ 0 for all t ∈ [0, 1],
it follows that I(x) ≥ 0 for all x ∈ C1[0, 1]. But

I(x0) =

∫ 1

0

(x′
0(t) − 1)2dt =

∫ 1

0

(1 − 1)2dt =

∫ 1

0

0dt = 0.

As I(x) ≥ 0 = I(x0) for all x ∈ S, it follows that x0 minimizes I. ♦

Definition. The solutions of the Euler-Lagrange equation (2.3) are called critical curves.

The Euler-Lagrange equation is in general a second order differential equation, but in some
special cases, it can be reduced to a first order differential equation or where its solution can be
obtained entirely by evaluating integrals. We indicate some special cases in Exercise 3 on page 31,
where in each instance, F is independent of one of its arguments.

Exercises.

1. Let S = {x ∈ C1[0, 1] | x(0) = 0 = x(1)}. Consider the map I : S → R given by

I(x) =

∫ 1

0

(x(t))3dt, x ∈ S.

Using Theorem 2.1.1, find the critical curve x0 ∈ S for I. Does I have a local extremum at
x0?

2. Write the Euler-Lagrange equation when F is given by

(a) F (α, β, γ) = sinβ,

(b) F (α, β, γ) = α3β3,

(c) F (α, β, γ) = α2 − β2,

(d) F (α, β, γ) = 2γβ − β2 + 3βα2.
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3. Prove that:

(a) If F (α, β, γ) does not depend on α, then the Euler-Lagrange equation becomes

∂F

∂β
(x0(t), x

′
0(t), t) = C,

where C is a constant.

(b) If F does not depend on β, then the Euler-Lagrange equation becomes

∂F

∂α
(x0(t), x

′
0(t), t) = 0.

(c) If F does not depend on γ and if x0 is twice-differentiable in [a, b], then the Euler-
Lagrange equation becomes

F (x0(t), x
′
0(t), t) − x′

0(t)
∂F

∂β
(x0(t), x

′
0(t), t) = C,

where C is a constant.

Hint: What is d
dt

(

F (x0(t), x
′
0(t), t) − x′

0(t)
∂F
∂β (x0(t), x

′
0(t), t)

)

?

4. Find the curve which has minimum length between (0, 0) and (1, 1).

5. Let S = {x ∈ C1[0, 1] | x(0) = 0 and x(1) = 1}. Find critical curves in S for the functions
I : S → R, where I is given by:

(a) I(x) =

∫ 1

0

x′(t)dt

(b) I(x) =

∫ 1

0

x(t)x′(t)dt

(c) I(x) =

∫ 1

0

(x(t) + tx′(t))dt

for x ∈ S.

6. Find critical curves for the function

I(x) =

∫ 2

1

t3(x′(t))2dt

where x ∈ C1[1, 2] with x(1) = 5 and x(2) = 2.

7. Find critical curves for the function

I(x) =

∫ 2

1

(x′(t))3

t2
dt

where x ∈ C1[1, 2] with x(1) = 1 and x(2) = 7.

8. Find critical curves for the function

I(x) =

∫ 1

0

[
2tx(t) − (x′(t))2 + 3x′(t)(x(t))2

]
dt

where x ∈ C1[0, 1] with x(0) = 0 and x(1) = −1.



32 Chapter 2. The Euler-Lagrange equation

9. Find critical curves for the function

I(x) =

∫ 1

0

[
2(x(t))3 + 3t2x′(t)

]
dt

where x ∈ C1[0, 1] with x(0) = 0 and x(1) = 1. What if x(0) = 0 and x(1) = 2?

10. Consider the copper mining company mentioned in the introduction. If future money is
discounted continuously at a constant rate δ, then we can assess the present value of profits
from this mining operation by introducing a factor of e−δt in the integrand of (1.38). Suppose
that a = 4, b = 1, δ = 1 and P = 2. Find a critical mining operation x0 such that x0(0) = 0
and x0(T ) = Q.

11. Consider the quadratic function q : R → R given by q(r) = ar2 + br + c (r ∈ R) with a > 0.

It is easy to see that the minimum value of q is
4ac− b2

4a
.

Let x1, x2 be fixed functions in C[0, 1]. Regarding the left hand side of the obvious inequality

∫ 1

0

(x1(t) + rx2(t))
2dt ≥ 0

as a quadratic function q of r, with

a =

∫ 1

0

(x2(t))
2dt, b = 2

∫ 1

0

x1(t)x2(t)dt, c =

∫ 1

0

(x1(t))
2dt,

it follows that
4ac − b2

4a
≥ 0, that is, the Cauchy-Schwarz inequality holds:

(∫ 1

0

(x1(t))
2dt

)(∫ 1

0

(x2(t))
2dt

)

≥
(∫ 1

0

x1(t)x2(t)dt

)2

.

(a) Let S = {x ∈ C1[0, 1] | x(0) = 0 and x(1) = 1}. Consider the function I : S → R

defined by

I(x) =

∫ 1

0

e−2t (x′(t))
2
dt, x ∈ S.

Using the Cauchy-Schwarz inequality, show that

I(x) ≥ 2

e2 − 1
.

Hint: Take x1(t) = et and x2(t) = e−tx′(t) for t ∈ [0, 1].

(b) Using the Euler-Lagrange equation, find a critical curve x0 for I.

(c) Find I(x0), where x0 denotes the critical curve found in part 11b. Using part 11a show
that x0 indeed minimizes the function I.

2.2 Calculus of variations: some classical problems

Optimisation problems of the type considered in the previous section were studied in various
special cases by many leading mathematicians in the past. These were often solved by various
techniques, and these gave rise to the branch of mathematics known as the ‘calculus of variations’.
The name comes from the fact that often the procedure involved the calculation of the ‘variation’
in the function I when its argument (which was typically a curve) was changed, and then passing
limits. In this section, we mention two classical problems, and indicate how these can be solved
using the Euler-Lagrange equation.
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2.2.1 The brachistochrone problem

The calculus of variations originated from a problem posed by the Swiss mathematician Johann
Bernoulli (1667-1748). He required the form of the curve joining two fixed points A and B in a
vertical plane such that a body sliding down the curve (under gravity and no friction) travels from
A to B in minimum time. This problem does not have a trivial solution; the straight line from A
to B is not the solution (this is also intuitively clear, since if the slope is high at the beginning,
the body picks up a high velocity and so its plausible that the travel time could be reduced) and
it can be verified experimentally by sliding beads down wires in various shapes.

�
�
�
�

����

A (0, 0)

B (x0, y0)

gravity

y0

x0
x

y

Figure 2.3: The brachistochrone problem.

To pose the problem in mathematical terms, we introduce coordinates as shown in Figure 2.3,
so that A is the point (0, 0), and B corresponds to (x0, y0). Assuming that the particle is released
from rest at A, conservation of energy gives 1

2mv2 − mgy = 0, where we have taken the zero
potential energy level at y = 0, and where v denotes the speed of the particle. Thus the speed is
given by v = ds

dt =
√

2gy, where s denotes arc length along the curve. From Figure 2.4, we see

that an element of arc length, δs is given approximately by ((δx)2 + (δy)2)
1
2 .

δy

δx

δs

Figure 2.4: Element of arc length.

Hence the time of descent is given by

T =

∫

curve

ds√
2gy

=
1√
2g

∫ y0

0

√
√
√
√1 +

(
dx
dy

)2

y
dy.

Our problem is to find the path {x(y), y ∈ [0, y0]}, satisfying x(0) = 0 and x(y0) = x0, which
minimizes T , that is, to determine the minimizer for the function I : S → R, where

I(x) =
1√
2g

∫ y0

0

(
1 + (x′(y))2

y

) 1
2

dy, x ∈ S,

and S = {x ∈ C1[0, y0] | x(0) = 0 and x(y0) = x0}. Here2 F (α, β, γ) =
√

1+β2

γ is independent of

α, and so the Euler-Lagrange equation becomes

d

dy

(

x′(y)
√

1 + (x′(y))2
1√
y

)

= 0.

2Strictly speaking, the F here does not satisfy the demands made in Theorem 2.1.1. Notwithstanding this fact,
with some additional argument, the solution given here can be fully justified.



34 Chapter 2. The Euler-Lagrange equation

Integrating with respect to y, we obtain

x′(y)
√

1 + (x′(y))2
1√
y

= C,

where C is a constant. It can be shown that the general solution of this differential equation is
given by

x(Θ) =
1

2C2
(Θ − sin Θ) + C̃, y(Θ) =

1

2C2
(1 − cosΘ),

where C̃ is another constant. The constants are chosen so that the curve passes through the points
(0, 0) and (x0, y0).

(0, 0)

(x0, y0)

x

y

Figure 2.5: The cycloid through (0, 0) and (x0, y0).

This curve is known as a cycloid, and in fact it is the curve described by a point P in a circle
that rolls without slipping on the x axis, in such a way that P passes through (x0, y0); see Figure
2.5.

Exercise. The new London mayor, devoted to schemes for energy saving, wishes to design a fuel-
less transport system driven by gravity. The proposal is that carriages should travel in frictionless
underground tunnels being released from rest at their point of departure A (Waterloo) and then
allowed to run freely until arriving at destination B (Paddington). Assuming gravity is uniform,
show that the minimum travel time between two points (which are at the same level) and distance

l apart is
√

2πl
g .

2.2.2 Minimum surface area of revolution

The problem of minimum surface area of revolution is to find among all the curves joining two
given points (x0, y0) and (x1, y1), the one which generates the surface of minimum area when
rotated about the x axis.

The area of the surface of revolution generated by rotating the curve y about the x axis is

S(y) = 2π

∫ x1

x0

y(x)
√

1 + (y′(x))2dx.

Since the integrand does not depend explicitly on x, the Euler-Lagrange equation is

F (y(x), y′(x), x) − y′(x)
∂F

∂β
(y(x), y′(x), x) = C,
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where C is a constant, that is,

y
√

1 + (y′)2 − y
(y′)2

√

1 + (y′)2
= C.

Thus y = C
√

1 + (y′)2, and it can be shown that this differential equation has the general solution

y(x) = C cosh

(
x + C1

C

)

. (2.4)

This curve is called a catenary. The values of the arbitrary constants C and C1 are determined
by the conditions y(x0) = y0 and y(x1) = y1. It can be shown that the following three cases are
possible, depending on the positions of the points (x0, y0) and (x1, y1):

1. If a single curve of the form (2.4) passes through the points (x0, y0) and (x1, y1), then this
curve is the solution of the problem; see Figure 2.6.

x0 x1

y0

y1

Figure 2.6: The catenary through (x0, y0) and (x1, y1).

2. If two critical curves can be drawn through the points (x0, y0) and (x1, y1), then one of the
curves actually corresponds to the surface of revolution if minimum area, and the other does
not.

3. If there does not exist a curve of the form (2.4) passing through the points (x0, y0) and
(x1, y1), then there is no surface in the class of smooth surfaces of revolution which achieves
the minimum area. In fact, if the location of the two points is such that the distance between
them is sufficiently large compared to their distances from the x axis, then the area of the
surface consisting of two circles of radius y0 and y1 will be less than the area of any surface
of revolution generated by a smooth curve passing through the points; see Figure 2.7.

x0 x1

y0

y1

Figure 2.7: The polygonal curve (x0, y0) − (x0, 0) − (x1, 0) − (x1, y1).

This is intuitively expected: imagine a soap bubble between concentric rings which are
being pulled apart. Initially we get a soap bubble between these rings, but if the distance
separating the rings becomes too large, then the soap bubble breaks, leaving soap films on
each of the two rings. This example shows that a critical curve need not always exist in the
class of curves under consideration.
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2.3 Free boundary conditions

Besides the simplest optimisation problem considered in the previous section, we now consider the
optimisation problem with free boundary conditions (see Figure 2.8).

a b
t

Figure 2.8: Free boundary conditions.

Let F (α, β, γ) be a function with continuous first and second partial derivatives with respect
to (α, β, γ). Then find x ∈ C1[a, b] which is an extremum for the function

I(x) =

∫ b

a

F

(

x(t),
dx

dt
(t), t

)

dt. (2.5)

Theorem 2.3.1 Let I : C1[a, b] → R be a function of the form

I(x) =

∫ b

a

F

(

x(t),
dx

dt
(t), t

)

dt, x ∈ C1[a, b],

where F (α, β, γ) is a function with continuous first and second partial derivatives with respect to
(α, β, γ). If I has a local extremum at x0, then x0 satisfies the Euler-Lagrange equation:

∂F

∂α

(

x0(t),
dx0

dt
(t), t

)

− d

dt

(
∂F

∂β

(

x0(t),
dx0

dt
(t), t

))

= 0, t ∈ [a, b], (2.6)

together with the transversality conditions

∂F

∂β

(

x0(t),
dx0

dt
(t), t

)∣
∣
∣
∣
t=a

= 0 and
∂F

∂β

(

x0(t),
dx0

dt
(t), t

)∣
∣
∣
∣
t=b

= 0. (2.7)

Proof

Step 1. We take X = C1[a, b] and compute DI(x0). Proceeding as in the proof of Theorem 2.1.1,
it is easy to see that

DI(x0)(h) =

∫ b

a

[
∂F

∂α
(x0(t), x

′
0(t), t) h(t) +

∂F

∂β
(x0(t), x

′
0(t), t) h′(t)

]

dt,

h ∈ C1[a, b]. Theorem 1.4.2 implies that this linear functional must be the zero map, that is,
(DI(x0))(h) = 0 for all h ∈ C1[a, b]. In particular, it is also zero for all h in C1[a, b] such that
h(a) = h(b) = 0. But recall that in Step 3 and Step 4 of the proof of Theorem 2.1.1, we proved
that if

∫ b

a

[
∂F

∂α
(x0(t), x

′
0(t), t)h(t) +

∂F

∂β
(x0(t), x

′
0(t), t)h′(t)

]

dt = 0 (2.8)
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for all h in C1[a, b] such that h(a) = h(b) = 0, then this implies that he Euler-Lagrange equation
(2.6) holds.

Step 2. Integration by parts in (2.8) now gives

DI(x0)(h) =

∫ b

a

[
∂F

∂α
(x0(t), x

′
0(t), t) −

d

dt

(
∂F

∂β
(x0(t), x

′
0(t), t)

)]

h(t)dt + (2.9)

∂F

∂β
(x0(t), x

′
0(t), t)h(t)

∣
∣
∣
∣

t=b

t=a

(2.10)

= 0 +
∂F

∂β
(x0(t), x

′
0(t), t)

∣
∣
∣
∣
t=b

h(b) − ∂F

∂β
(x0(t), x

′
0(t), t)

∣
∣
∣
∣
t=a

h(a).

The integral in (2.9) vanishes since we have shown in Step 1 above that (2.6) holds. Thus the
condition DI(x0) = 0 now takes the form

∂F

∂β
(x0(t), x

′
0(t), t)

∣
∣
∣
∣
t=b

h(b) − ∂F

∂β
(x0(t), x

′
0(t), t)

∣
∣
∣
∣
t=a

h(a) = 0,

from which (2.7) follows, since h is arbitrary. This completes the proof.

Exercises.

1. Find all curves y = y(x) which have minimum length between the lines x = 0 and the line
x = 1.

2. Find critical curves for the following function, when the values of x are free at the endpoints:

I(x) =

∫ 1

0

1

2

[
(x′(t))2 + x(t)x′(t) + x′(t) + x(t)

]
dt.

Similarly, we can also consider the mixed case (see Figure 2.9), when one end of the curve is
fixed, say x(a) = ya, and the other end is free. Then it can be shown that the curve x satisfies
the Euler-Lagrange equation, the transversality condition

∂F

∂β
(x0(t), x

′
0(t), t)

∣
∣
∣
∣
t=a

h(a) = 0

at the free end point, and x(a) = ya serves as the other boundary condition.

We can summarize the results by the following: critical curves for (2.5) satisfy the Euler-
Lagrange equation (2.6) and moreover there holds

∂F

∂β
(x0(t), x

′
0(t), t) = 0 at the free end point.

Exercises.

1. Find the curve y = y(x) which has minimum length between (0, 0) and the line x = 1.

2. The cost of a manufacturing process in an industry is described by the function I given by

I(x) =

∫ 1

0

[
1

2
(x′(t))2 + x(t)

]

dt,

for x ∈ C1[0, 1] with x(0) = 1.
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Figure 2.9: Mixed cases.

(a) If also x(1) = 0, find a critical curve x∗ for I, and find I(x∗).

(b) If x(1) is not specified, find a critical curve x∗∗ for I, and find I(x∗∗).

(c) Which of the values I(x∗) and I(x∗∗) found in parts above is larger? Explain why
you would expect this, assuming that x∗ and x∗∗ in fact minimize I on the respective
domains specified above.

3. Find critical curves for the following functions:

(a) I(x) =

∫ π
2

0

[
(x(t))2 − (x′(t))2

]
dt, x(0) = 0 and x

(
π
2

)
is free.

(b) I(x) =

∫ π
2

0

[
(x(t))2 − (x′(t))2

]
dt, x(0) = 1 and x

(
π
2

)
is free.

4. Determine the curves that maximize the function I : S → R, where I(x) =

∫ 1

0

cos(x′(t))dt,

x ∈ S and S = {x ∈ C1[0, 1] | x(0) = 0}. What are the curves that minimize I?

2.4 Generalization

The results in this chapter can be generalized to the case when the integrand F is a function of
more than one independent variable: if we wish to find extremum values of the function

I(x1, . . . , xn) =

∫ b

a

F

(

x1(t), . . . , xn(t),
dx1

dt
(t), . . . ,

dxn

dt
(t), t

)

dt,

where F (α1, . . . , αn, β1, . . . , βn, γ) is a function with continuous partial derivatives of order ≤ 2,
and x1, . . . , xn are continuously differentiable functions of the variable t, then following a similar
analysis as before, we obtain n Euler-Lagrange equations to be satisfied by the optimal curve, that
is,

∂F

∂αk
(x1∗(t), . . . , xn∗(t), x

′
1∗(t), . . . , x

′
n∗(t), t)−

d

dt

(
∂F

∂βk
(x1∗(t), . . . , xn∗(t), x

′
1∗(t), . . . , x

′
n∗(t), t)

)

=0,

for t ∈ [a, b], k ∈ {1, . . . , n}. Also at any end point where xk is free,

∂F

∂βk

(

x1∗(t), . . . , xn∗(t),
dx1∗

dt
(t), . . . ,

dxn∗

dt
(t), t

)

= 0.
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Exercise. Find critical curves of the function

I(x1, x2) =

∫ π
2

0

[
(x′

1(t))
2 + (x′

2(t))
2 + 2x1(t)x2(t)

]
dt

such that x1(0) = 0, x1

(
π
2

)
= 1, x2(0) = 0, x2

(
π
2

)
= 1.

Remark. Note that with the above result, we can also solve the problem of finding extremal
curves for a function of the type

I(x) :

∫ b

a

F

(

x(t),
dx

dt
(t), . . . ,

dnx

dtn
(t), t

)

dt,

for over all (sufficiently differentiable) curves x defined on an interval [a, b], taking values in R.
Indeed, we may introduce the auxiliary functions

x1(t) = x(t), x2(t) =
dx

dt
(t), . . . , xn(t) =

dnx

dtn
(t), t ∈ [a, b],

and consider the problem of finding extremal curves for the new function Ĩ defined by

Ĩ(x1, . . . , xn) =

∫ b

a

F (x1(t), x2(t), . . . , xn(t), t)dt.

Using the result mentioned in this section, we can then solve this problem. Note that we eliminated
high order derivatives at the price of converting the scalar function into a vector-valued function.
Since we can always do this, this is one of the reasons in fact for considering functions of the type
(1.29) where no high order derivatives occur.

2.5 Optimisation subject to a scalar-valued constraint

In ordinary calculus, one can solve optimisation problems subject to constraints using Lagrange
multipliers. We recall this algorithm by considering the following example.

Example. Suppose we want to find the shape of a triangle with a given fixed perimeter P and
base a such that the area A is maximized. If the other two side lengths are b, c and s := a+b+c

2 ,
then the problem is that of maximizing

A(b, c) =
√

s(s − a)(s − b)(s − c)

subject to
b + c = P − a.

Following the method of Lagrange multipliers, we consider the auxiliary function

g(b, c, λ) =
√

s(s − a)(s − b)(s − c) + λ[a + b + c − P ],

where λ is called a Lagrange multiplier, and we find extremal points of g. Thus we seek (b0, c0, λ0)
such that

∂g

∂b
(b0, c0, λ0) = 0,

∂g

∂c
(b0, c0, λ0) = 0,

∂g

∂λ
(b0, c0, λ0) = 0.

So we obtain the system

λ0 =
A0

2(s − b0)
=

A0

2(s − c0)
and a + b0 + c0 = P,
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where A0 := A(a, b0, c0), and this has the unique solution

b0 = c0 =
P − a

2
.

Hence the area is maximized by an isosceles triangle. ♦

Analogous to this method of Lagrange multipliers in finite dimensions, we state the following
result for constrained optimization in a normed space, but we do not study the proof.

Theorem 2.5.1 Suppose that F and G are functions having continuous first and second partial
derivatives. Let L : C1[a, b] → R be given by

L(x) =

∫ b

a

G(x(t), x′(t), t)dt, x ∈ C1[a, b].

Let S(ya, yb, c) = {x ∈ C1[a, b] | x(a) = ya, x(b) = yb, L(x) = c}, and I : S(ya, yb, c) → R be given
by

I(x) =

∫ b

a

F (x(t), x′(t), t)dt, x ∈ S(ya, yb, c).

If x0 ∈ S(ya, yb, c) is a local extremum for I and DL(x0) 6= 0, then there exists a λ ∈ R such that

∂(F + λG)

∂α
(x0(t), x

′
0(t), t) −

d

dt

(
∂(F + λG)

∂β
(x0(t), x

′
0(t), t)

)

= 0, t ∈ [a, b].

As an illustration of the above theorem, we solve the following isoperimetric problem, this
time not restricting ourselves to triangles.

Example. Among all curves of length l in the in the upper half plane passing through the points
(−r, 0) and (r, 0), find one, which together with the interval [−r, r] encloses the largest area.

We seek a function x for which the integral

I(x) =

∫ r

−r

x(t)dt

takes the largest value, subject to the conditions

x(−r) = 0 = x(r),

∫ r

−r

√

1 + (x′(t))2dt = l.

In light of the theorem above, we seek x0 and λ such that

1 − λ
d

dt

(

x′
0(t)

√

1 + (x′
0(t))

2

)

= 0,

which implies

λ
x′

0
√

1 + (x′
0)

2
= t + C,

which yields
(x0(t) + D)2 + (t + C)2 = λ2,

representing a family of circles. The values of C1, C2 and λ satisfy the conditions

x0(−r) = 0 = x(r),

∫ r

−r

√

1 + (x′
0(t))

2dt = l.
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Then it can be seen that the curve x0 is a part of a circular arc, with center (0,−D) and radius√
D2 + r2, and the constant D is a solution of the transcendental equation

2 arctan
( r

D

)

=
l√

D2 + r2
.

We note that if l = πr, then D = 0, and so the curve becomes a semicircle. ♦

Exercise. Find the extremals of the function

I(x) =

∫ 1

0

[(x′(t))2 + t2]dt.

where x ∈ C1[0, 1] with x(0) = 0, x(1) = 0, and

∫ 1

0

(x(t))2dt = 2.

2.6 Optimisation in function spaces versus that in Rn

To understand the basic ‘infinite-dimensionality’ in the problems of optimisation in function spaces,
it is interesting to see how they are related to the problems of the study of functions of n real
variables. Thus, consider a function of the form

I(x) =

∫ b

a

F

(

x(t),
dx

dt
(t), t

)

dt, x(a) = ya, x(b) = yb.

Here each curve x is assigned a certain number. To find a related function of the sort considered
in classical analysis, we may proceed as follows. Using the points

a = t0, t1, . . . , tn, tn+1 = b,

we divide the interval [a, b] into n + 1 equal parts. Then we replace the curve {x(t), t ∈ [a, b]} by
the polygonal line joining the points

(t0, ya), (t1, x(t1)), . . . , (tn, x(tn)), (tn+1, yb),

and we approximate the function I at x by the sum

In(y1, . . . , yn) =

n∑

k=1

F

(

yk,
yk − yk−1

hk
, tk

)

hk, (2.11)

where yk = x(tk) and hk = tk − tk−1. Each polygonal line is uniquely determined by the ordinates
y1, . . . , yn of its vertices (recall that y0 = ya and yn+1 = yb are fixed), and the sum (2.11) is
therefore a function of the n variables y1, . . . , yn. Thus as an approximation, we can regard the
optimisation problem as the problem of finding the extrema of the function In(y1, . . . , yn).

In solving optimisation problems in function spaces, Euler made extensive use of this ‘method
of finite differences’. By replacing smooth curves by polygonal lines, he reduced the problem of
finding extrema of a function to the problem of finding extrema of a function of n variables, and
then he obtained exact solutions by passing to the limit as n → ∞. In this sense, functions can
be regarded as ‘functions of infinitely many variables’ (that is, the infinitely many values of x(t)
at different points), and the calculus of variations can be regarded as the corresponding analog of
differential calculus of functions of n real variables.
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Example. Consider the problem of finding the curve x ∈ C1[0, 1] such that x(0) = 0 and x(1) = 1
that minimizes

I(x) =

∫ 1

0

√

1 + (x′(t))2dt.

Discretization yields the auxiliary finite dimensional problem of determining the points y1, . . . , yn−1

that minimizes

In(y1, . . . , yn−1) =
1

n

n−1∑

k=0

√

1 +

(
yk+1 − yk

1/n

)2

,

where y0 := 0 and yn := 1.

It is easy to see that the function x 7→
√

1 + x2 is convex (What is its second derivative?).
Using Exercise 5 on page 23, we obtain that

√

1 + a2
1 + · · · +

√

1 + a2
n

n
≥

√

1 +

(
a1 + · · · + an

n

)2

and equality holds if a1 = · · · = an.

With ak := yk+1−yk

1/n , we obtain that

In(y1, . . . , yn−1) ≥

√
√
√
√1 +

(

1

n

n−1∑

k=0

yk+1 − yk

1/n

)2

=
√

2,

and there is equality if

yk =
k

n
, k ∈ {1, . . . , n − 1}.

The corresponding points clearly lie on the straight line x(t) = t, t ∈ [0, 1], which we have already
seen is the curve that minimizes I. ♦



Chapter 3

Control theory

In the following two chapters, we will study optimisation problems in a function space with a ‘dif-
ferential equation constraint’. The simplest example of such a problem is the following. Consider
the map I : C[0, T ] → R, defined as follows: if u ∈ C[0, T ], then

I(u) =

∫ T

0

F (x(t), u(t), t)dt,

where x is denotes the unique solution to the differential equation

x′(t) = f(x(t), u(t)), t ∈ [0, T ], x(0) = x0. (3.1)

This can be roughly viewed as the optimisation problem for I over all (x, u) ∈ C1[0, T ]× C[0, T ]
satisfying the ‘constraint’ (3.1). Such problems arise quite naturally in optimal control theory,
and we begin with a discussion of control theory.

3.1 Control theory

Control theory is application-oriented mathematics that deals with the basic principles un-
derlying the analysis and design of (control) systems. Systems can be engineering systems (air
conditioner, aircraft, CD player etcetera), economic systems, biological systems and so on. To
control means that one has to influence the behaviour of the system in a desirable way: for exam-
ple, in the case of an air conditioner, the aim is to control the temperature of a room and maintain
it at a desired level, while in the case of an aircraft, we wish to control its altitude at each point
of time so that it follows a desired trajectory.

43
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3.2 Objects of study in control theory

The basic objects of study in control theory are underdetermined differential equations. This
means that there is some freeness in the variables satisfying the differential equation. An example
of an underdetermined algebraic equation is x + u = 10, where x, u are positive integers. There
is freedom in choosing, say u, and once u is chosen, then x is uniquely determined. In the same
manner, consider the differential equation

dx

dt
(t) = f(x(t), u(t)), x(0) = x0, t ≥ 0, (3.2)

x(t) ∈ Rn, u(t) ∈ Rm. So if written out, equation (3.2) is the set of equations

dx1

dt
(t) = f1(x1(t), . . . , xn(t), u1(t), . . . , um(t)), x1(0) = x0,1

...
dxn

dt
(t) = fn(x1(t), . . . , xn(t), u1(t), . . . , um(t)), xn(0) = x0,n,

where f1, . . . , fn denote the components of f . In (3.2), u is the free variable, called the input,
which is assumed to be continuous.

Under some ‘smoothness’ conditions on the function f : Rn ×Rm → Rn, there exists a unique
solution to the differential equation (3.2) for every initial condition x0 ∈ Rn and every continuous
input u:

Theorem 3.2.1 Suppose that f is continuous in both variables. If there exist K > 0, r > 0 such
that

‖f(x2, u(t)) − f(x1, u(t))‖ ≤ K‖x2 − x1‖ (3.3)

for all x1, x2 ∈ B(x0, r) = {x ∈ Rn | ‖x − x0‖ ≤ r} and for all t > 0, then (3.2) has a unique
solution x in the interval [0, T ], for some T > 0. Furthermore, this solution depends continuously
on x0 for fixed t and u.

Remarks.

1. Continuous dependence on the initial condition is very important, since some inaccuracy
is always present in practical situations. We need to know that if the initial conditions
are slightly changed, then the solution of the differential equation will change only slightly.
Otherwise, small inaccuracies could yield very different solutions.

2. x is called the state and (3.2) is called the state equation.

3. Condition (3.3) is called the Lipschitz condition.

The above theorem guarantees that a solution exists and that it is unique, but it does not give
any insight into the size of the time interval on which the solutions exist. The following theorem
sheds some light on this.

Theorem 3.2.2 Let r > 0 and define Br = {u ∈ C[0, T ]m | ‖u(t)‖ ≤ r for all t}. Suppose
that f is continuously differentiable in both variables. For every x0 ∈ Rn, there exists a unique
t∗(x0) ∈ (0, +∞] such that for every u ∈ Br, (3.2) has a unique solution x(·) in [0, t∗(x0)).
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plant

x′(t) = f(x(t), u(t))
x(0) = x0

u x

Figure 3.1: A control system.

For our purposes, a control system is an equation of the type (3.2), with input u and state
x. Once the input u and the initial state x(0) = x0 are specified, the state x is determined. So
one can think of a control system as a box, which given the input u and initial state x(0) = x0,
manufactures the state according to the law (3.2); see Figure 3.1.

Example. Suppose the population x(t) at time t of fish in a lake evolves according to the
differential equation:

x′(t) = f(x(t)),

where f is some complicated function which is known to model the situation reasonable accurately.
A typical example is the Verhulst model, where

f(x) = rx
(

1 − x

M

)

.

(This model makes sense, since first of all the rate of increase in the population should increase
with more numbers of fish–the more there are fis, the more they reproduce, and larger is the
poulation. However, if there are too many fish, there is competition for the limited food resourse,
and then the population starts declining, which is captured by the term 1 − x

M .)

Now suppose that we harvest the fish at a harvesting rate h. Then the population evolution
is described by

x′(t) = f(x(t)) − h(t).

But the harvesting rate depends on the harvesting effort u:

h(t) = x(t)u(t).

(The harvesting effort can be thought in terms of the amount of time used for fishing, or the
number of fishing nets used, and so on. Then the above equation makes sense, as the harvesting
rate is clearly proportional to the number of fish–the more the fish in the lake, the better the
catch.)

Hence we arrive at the underdetermined differential equation

x′(t) = f(x(t)) − x(t)u(t).

This equation is underdetermined, since the u can be decided by the fisherman. This is the input,
and once this has been chosen, then the population evolution is determined by the above equation,
given some initial population level x0 of the fish. ♦

If the function f is linear, that is, if f(ξ, υ) = Aξ + Bυ for some A ∈ Rn×n and B ∈ Rn×m,
then the control system is said to be linear. We will study this important class of systems in
the rest of this chapter. But we begin with a discussion of the exponential of a matrix, since
the solution to a linear control system x′(t) = Ax(t) + Bu(t) can be described in terms of the
exponential of A.
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3.3 The exponential of a matrix

In this section we introduce the exponential of a matrix, which is useful for obtaining explicit
solutions to the linear control system (3.10). We begin with a few preliminaries concerning vector-
valued functions.

With a slight abuse of notation, a vector-valued function x(t) is a vector whose entries are
functions of t. Similarly, a matrix-valued function A(t) is a matrix whose entries are functions:






x1(t)
...

xn(t)




 , A(t) =






a11(t) . . . a1n(t)
...

...
am1(t) . . . amn(t)




 .

The calculus operations of taking limits, differentiating, and so on are extended to vector-valued
and matrix-valued functions by performing the operations on each entry separately. Thus by
definition,

lim
t→t0

x(t) =







lim
t→t0

x1(t)

...
lim
t→t0

xn(t)







.

So this limit exists iff lim
t→t0

xi(t) exists for all i ∈ {1, . . . , n}. Similarly, the derivative of a vector-

valued or matrix-valued function is the function obtained by differentiating each entry separately:

dx

dt
(t) =






x′
1(t)
...

x′
n(t)




 ,

dA

dt
(t) =






a′
11(t) . . . a′

1n(t)
...

...
a′

m1(t) . . . a′
mn(t)




 ,

where x′
i(t) is the derivative of xi(t), and so on. So dx

dt is defined iff each of the functions xi(t) is
differentiable. The derivative can also be described in vector notation, as

dx

dt
(t) = lim

h→0

x(t + h) − x(t)

h
. (3.4)

Here x(t+h)−x(t) is computed by vector addition and the h in the denominator stands for scalar
multiplication by h−1. The limit is obtained by evaluating the limit of each entry separately,
as above. So the entries of (3.4) are the derivatives xi(t). The same is true for matrix-valued
functions.

A system of homogeneous, first-order, linear constant-coefficient differential equations is a
matrix equation of the form

dx

dt
(t) = Ax(t), (3.5)

where A is a n × n real matrix and x(t) is an n dimensional vector-valued function. Writing out
such a system, we obtain a system of n differential equations, of the form

dx1

dt
(t) = a11x1(t) + · · · + a1nxn(t)

...
dxn

dt
(t) = an1x1(t) + · · · + annxn(t).

The xi(t) are unknown functions, and the aij are scalars. For example, if we substitute the matrix
[

3 −2
1 4

]
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for A, (3.5) becomes a system of two equations in two unknowns:

dx1

dt
(t) = 3x1(t) − 2x2(t)

dx2

dt
(t) = x1(t) + 4x2(t).

Now consider the case when the matrix A is simply a scalar. We learn in calculus that the
solutions to the first-order scalar linear differential equation

dx

dt
(t) = ax(t)

are x(t) = ceta, c being an arbitrary constant. Indeed, ceta obviously solves this equation. To
show that every solution has this form, let x(t) be an arbitrary differentiable function which is a
solution. We differentiate e−tax(t) using the product rule:

d

dt
(e−tax(t)) = −ae−tax(t) + e−taax(t) = 0.

Thus e−tax(t) is a constant, say c, and x(t) = ceta. Now suppose that analogous to

ea = 1 + a +
a2

2!
+

a3

3!
+ . . . , a ∈ R,

we define

eA = I + A +
1

2!
A2 +

1

3!
A3 + . . . , A ∈ R

n×n. (3.6)

Later in this section, we study this matrix exponential, and use the matrix-valued function

etA = I + tA +
t2

2!
A2 +

t3

3!
A2 + . . .

(where t is a variable scalar) to solve (3.5). We begin by stating the following result, which shows
that the series in (3.6) converges for any given square matrix A.

Theorem 3.3.1 The series (3.6) converges for any given square matrix A.

We have collected the proofs together at the end of this section in order to not break up the
discussion.

Since matrix multiplication is relatively complicated, it isn’t easy to write down the matrix
entries of eA directly. In particular, the entries of eA are usually not obtained by exponentiating
the entries of A. However, one case in which the exponential is easily computed, is when A is
a diagonal matrix, say with diagonal entries λi. Inspection of the series shows that eA is also
diagonal in this case and that its diagonal entries are eλi .

The exponential of a matrix A can also be determined when A is diagonalizable , that is,
whenever we know a matrix P such that P−1AP is a diagonal matrix D. Then A = PDP−1, and
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using (PDP−1)k = PDkP−1, we obtain

eA = I + A +
1

2!
A2 +

1

3!
A3 + . . .

= I + PDP−1 +
1

2!

2

PD2P−1 +
1

3!
PD3P−1 + . . .

= PIP−1 + PDP−1 +
1

2!

2

PD2P−1 +
1

3!
PD3P−1 + . . .

= P

(

I + D +
1

2!
D2 +

1

3!
D3 + . . .

)

P−1

= PeDP−1 = P






eλ1

0
. . .

eλn




P−1,

where λ1, . . . , λn denote the eigenvalues of A.

Exercise. (∗∗) The set of diagonalizable n × n complex matrices is dense in the set of all n × n
complex matrices, that is, given any A ∈ Cn×n, there exists a B ∈ Cn×n arbitrarily close to A
(meaning that |bij − aij | can be made arbitrarily small for all i, j ∈ {1, . . . , n}) such that B has n
distinct eigenvalues.

Hint: Use the fact that every complex n × n matrix A can be ‘upper-triangularized’: that is,
there exists an invertible complex matrix P such that PAP−1 is upper triangular. Clearly the
diagonal entries of this new upper triangular matrix are the eigenvalues of A.

In order to use the matrix exponential to solve systems of differential equations, we need to
extend some of the properties of the ordinary exponential to it. The most fundamental property
is ea+b = eaeb. This property can be expressed as a formal identity between the two infinite series
which are obtained by expanding

ea+b = 1 + (a+b)
1! + (a+b)2

2! + . . . and

eaeb =
(

1 + a
1! + a2

2! + . . .
)(

1 + b
1! + b2

2! + . . .
)

.
(3.7)

We cannot substitute matrices into this identity because the commutative law is needed to obtain
equality of the two series. For instance, the quadratic terms of (3.7), computed without the
commutative law, are 1

2 (a2 + ab + ba + b2) and 1
2a2 + ab+ 1

2b2. They are not equal unless ab = ba.
So there is no reason to expect eA+B to equal eAeB in general. However, if two matrices A and
B happen to commute, the formal identity can be applied.

Theorem 3.3.2 If A, B ∈ Rn×n commute (that is AB = BA), then eA+B = eAeB.

The proof is at the end of this section. Note that the above implies that eA is always invertible
and in fact its inverse is e−A: Indeed I = eA−A = eAe−A.

Exercises.

1. Give an example of 2 × 2 matrices A and B such that eA+B 6= eAeB.

2. Compute eA, where A =

[
2 3
0 2

]

.

Hint: A = 2I +

[
0 3
0 0

]

.
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We now come to the main result relating the matrix exponential to differential equations.
Given an n × n matrix, we consider the exponential etA, t being a variable scalar, as a matrix-
valued function:

etA = I + tA +
t2

2!
A2 +

t3

3!
A3 + . . . .

Theorem 3.3.3 etA is a differentiable matrix-valued function of t, and its derivative is AetA.

The proof is at the end of the section.

Theorem 3.3.4 (Product rule.) Let A(t) and B(t) be differentiable matrix-valued functions of t,
of suitable sizes so that their product is defined. Then the matrix product A(t)B(t) is differentiable,
and its derivative is

d

dt
(A(t)B(t)) =

dA(t)

dt
B(t) + A(t)

dB(t)

dt
.

The proof is left as an exercise.

Theorem 3.3.5 The first-order linear differential equation

dx

dt
(t) = Ax(t), t ≥ a, x(0) = x0 (3.8)

has the unique solution x(t) = etAx0.

Proof We have
d

dt
(etAx0) = AetAx0,

and so t 7→ etAx0 solves dx
dt (t) = Ax(t). Furthermore, x(0) = e0Ax0 = Ix0 = x0.

Finally we show that the solution is unique. Let x be a solution to (3.8). Using the product
rule, we differentiate the matrix product e−tAx(t):

d

dt
(e−tAx(t)) = −Ae−tAx(t) + e−tAAx(t).

From the definition of the exponential, it can be seen that A and etA commute, and so the derivative
of etAx(t) is zero. Therefore, etAx(t) is a constant column vector, say C, and x(t) = etAC. As
x(0) = x0, we obtain that x0 = e0AC, that is, C = x0. Consequently, x(t) = etAx0.

Thus the matrix exponential enables us to solve the differential equation (3.8). Since direct
computation of the exponential can be quite difficult, the above theorem may not be easy to apply
in a concrete situation. But if A is a diagonalizable matrix, then the exponential can be computed:
eA = PeDP−1. To compute the exponential explicitly in all cases requires putting the matrix into
Jordan form.

We now go back to prove Theorems 3.3.1, 3.3.2, and 3.3.3.

For want of a more compact notation, we will denote the i, j-entry of a matrix A by Aij here.
So (AB)ij will stand for the entry of the matrix product matrix AB, and (Ak)ij for the entry of
Ak. With this notation, the i, j-entry of eA is the sum of the series

(eA)ij = Iij + Aij +
1

2!
(A2)ij +

1

3!
(A3)ij + . . . .
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In order to prove that the series for the exponential converges, we need to show that the entries of
the powers Ak of a given matrix do not grow too fast, so that the absolute values of the i, j-entries
form a bounded (and hence convergent) series. Consider the following norm on Rn×n:

‖A‖ = max{|Aij | | 1 ≤ i, j ≤ n}.

Thus |Aij | ≤ ‖A‖ for all i, j. This is one of several possible norms on R
n×n, and it has the

following property.

Lemma 3.3.6 If A, B ∈ Rn×n, then ‖AB‖ ≤ n‖A‖‖B‖, and for all k ∈ N, ‖Ak‖ ≤ nk−1‖A‖k.

Proof We estimate the size of the i, j-entry of AB:

|(AB)ij | =

∣
∣
∣
∣
∣

n∑

k=1

AikBkj

∣
∣
∣
∣
∣
≤

n∑

k=1

|Aik||Bkj | ≤ n‖A‖‖B‖.

Thus ‖AB‖ ≤ n‖A‖‖B‖. The second inequality follows from the first inequality by induction.

Proof (of Theorem 3.3.1:) To prove that the matrix exponential converges, we show that the
series

Iij + Aij +
1

2!
(A2)ij +

1

3!
(A3)ij + . . .

is absolutely convergent, and hence convergent. Let a = n‖A‖. Then

|Iij | + |Aij | +
1

2!
|(A2)ij | +

1

3!
|(A3)ij | + . . . ≤ 1 + ‖A‖ +

1

2!
n‖A‖2 +

1

3!
n2‖A‖3 + . . .

= 1 +
1

n

(

a +
1

2!
a2 +

1

3!
a3 + . . .

)

= 1 +
ea − 1

n
.

Proof (of Theorem 3.3.2:) The terms of degree k in the expansions of (3.7) are

1

k!
(A + B)k =

1

k!

∑

r+s=k

(
k

r

)

ArBs and
∑

r+s=k

1

r!
Ar 1

s!
Bs.

These terms are equal since for all k, and all r, s such that r + s = k,

1

k!

(
k

r

)

=
1

r!s!
.

Define

Sn(A) = 1 +
1

1!
A +

1

2!
A2 + · · · + 1

n!
An.

Then

Sn(A)Sn(B) =

(

1 +
1

1!
A +

1

2!
A2 + · · · + 1

n!
An

)(

1 +
1

1!
B +

1

2!
B2 + · · · + 1

n!
Bn

)

=

n∑

r,s=0

1

r!
Ar 1

s!
Bs,

while

Sn(A + B) = 1 +
1

1!
(A + B) +

1

2!
(A + B)2 + · · · + 1

n!
(A + B)n

=

n∑

k=0

∑

r+s=k

1

k!

(
k

r

)

ArBs =

n∑

k=0

∑

r+s=k

1

r!
Ar 1

s!
Bs.
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Comparing terms, we find that the expansion of the partial sum Sn(A + B) consists of the terms
in Sn(A)Sn(B) such that r + s ≤ n. We must show that the sum of the remaining terms tends to
zero as k tends to ∞.

Lemma 3.3.7 The series
∑

k

∑

r+s=k

∣
∣
∣
∣
∣

(
1

r!
Ar 1

s!
Bs

)

ij

∣
∣
∣
∣
∣

converges for all i, j.

Proof Let a = n‖A‖ and b = n‖B‖. We estimate the terms in the sum:

|(ArBs)ij | ≤ n(nr−1‖A‖r)(ns−1‖B‖s) ≤ arbs.

Therefore
∑

k

∑

r+s=k

∣
∣
∣
∣
∣

(
1

r!
Ar 1

s!
Bs

)

ij

∣
∣
∣
∣
∣
≤
∑

k

∑

r+s=k

ar

r!

bs

s!
= ea+b.

The theorem follows from this lemma because, on the one hand, the i, j-entry of (Sk(A)Sk(B) −
Sk(A + B))ij is bounded by

∑

r+s>k

∣
∣
∣
∣
∣

(
1

r!
Ar 1

s!
Bs

)

ij

∣
∣
∣
∣
∣
.

According to the lemma, this sum tends to 0 as k tends to ∞. And on the other hand, Sk(A)Sk(B)−
Sk(A + B) tends to eAeB − eA+B.

This completes the proof of Theorem 3.3.2.

Proof (of Theorem 3.3.3:) By definition,

d

dt
etA = lim

h→0

1

h
(e(t+h)A − etA).

Since the matrices tA and hA commute, we have

1

h
(e(t+h)A − etA) =

(
1

h
(ehA − I)

)

etA.

So our theorem follows from this lemma:

Lemma 3.3.8 lim
h→0

1

h
(ehA − I) = A.

Proof The series expansion for the exponential shows that

1

h
(ehA − I) − A =

h

2!
A2 +

h2

3!
A3 + . . . . (3.9)

We estimate this series. Let a = |h|n‖A‖. Then
∣
∣
∣
∣
∣

(
h

2!
A2 +

h2

3!
A3 + . . .

)

ij

∣
∣
∣
∣
∣

≤
∣
∣
∣
∣

h

2!
(A2)ij

∣
∣
∣
∣
+

∣
∣
∣
∣

h2

3!
(A3)ij

∣
∣
∣
∣
+ . . .

≤ 1

2!
|h|n‖A‖2 +

1

3!
|h|2n2‖A‖3 + . . .

= ‖A‖
(

1

2!
a +

1

3!
a2 + . . .

)

=
‖A‖
a

(ea − 1 − a) = ‖A‖
(

ea − 1

a
− 1

)

.
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Note that a → 0 as h → 0. Since the derivative of ex is ex,

lim
a→0

ea − 1

a
=

d

dx
ex

∣
∣
∣
∣
x=0

= e0 = 1.

So (3.9) tends to 0 with h.

This completes the proof of Theorem 3.3.3.

3.4 Solutions to the linear control system

Using the results from the previous section, we give a formula for the solution of a linear control
system.

Theorem 3.4.1 Let A ∈ Rn×n and B ∈ Rn×1. If u is a continuous function, then the differential
equation

dx

dt
(t) = Ax(t) + Bu(t), x(0) = x0, t ≥ 0 (3.10)

has the unique solution x(·) in [0, +∞) given by

x(t) = etAx0 +

∫ t

0

e(t−τ)ABu(τ)dτ. (3.11)

Proof We have

d

dt

(

etAx0 +

∫ t

0

e(t−τ)ABu(τ)dτ

)

=
d

dt

(

etAx0 + etA

∫ t

0

e−τABu(τ)dτ

)

= AetAx0 + AetA

∫ t

0

e−τABu(τ)dτ + etAe−tABu(t)

= A

(

etAx0 + etA

∫ t

0

e−τABu(τ)dτ

)

+ etA−tABu(t)

= A

(

etAx0 + etA

∫ t

0

e−τABu(τ)dτ

)

+ Bu(t),

and so it follows that x(·) given by (3.11) satisfies x′(t) = Ax(t) + Bu(t). Furthermore,

e0Ax0 +

∫ 0

0

e(0−τ)ABu(τ)dτ = Ix0 + 0 = x0.

Finally we show uniqueness. If x1, x2 are both solutions to (3.10), then it follows that x :=
x1 − x2 satisfies x′(t) = Ax(t), x(0) = 0, and so from Theorem 3.3.5 it follows that x(t) = 0 for
all t ≥ 0, that is x1 = x2.

We end this section with the following result concerning nonlinear differential equations, which
we will use in the next chapter. This result says, roughly speaking, that if we perturb the input
function u a little, then the new state differs from the old state by a function which is the solution
of a linear control system, with the input to this linear system being the perturbation (in the
original input). In other words, ‘around’ some solution (x0, u0) of the original nonlinear system,
the system behaves as if it is a linear system. This result in Theorem 3.4.2 shows the importance
of linear systems: not only are they simple (in the sense that we have an explicit description of
the solution in terms of the input and the initial condition), but in fact nonlinear systems behave
like linear systems ‘locally’.
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Theorem 3.4.2 Consider the equation

dx

dt
(t) = f(x(t), u(t)), t ∈ [0, T ], x(0) = x0. (3.12)

Let
∂f

∂υ
be continuous, and let v ∈ C[0, T ]. For ǫ ∈ [0, η], let xǫ be the solution to (3.12) corre-

sponding to the input

uǫ(t) = u(t) + ǫv(t), t ∈ [0, T ],

with the same initial condition xǫ(0) = x0. Then

xǫ(t) = x(t) + ǫy(t) + o(t, ǫ), (3.13)

where y is the solution to

y′(t) =
∂f

∂ξ
(x(t), u(t))y(t) +

∂f

∂υ
(x(t), u(t))v(t), t ∈ [0, T ], y(0) = 0.

In the following exercises, we learn to solve a certain type of nonlinear differential equation,
called a Riccati equation, which will play an important role in the sequel. We solve the Riccati
equation by making a transformation that results in a linear control system.

Exercises.

1. Suppose that p ∈ C1[0, T ] is such that for all t ∈ [0, T ], p(t) + α 6= 0, and it satisfies the
scalar Riccati equation p′(t) = γ(p(t) + α)(p(t) + β). Prove that q given by

q(t) :=
1

p(t) + α
, t ∈ [0, T ],

satisfies q′(t) = γ(α − β)q(t) − γ, t ∈ [0, T ].

2. Find p ∈ C1[0, 1] such that p′(t) = (p(t))2 − 1, t ∈ [0, 1], p(1) = 0.

3.5 Controllability of linear control systems

A characteristic of underdetermined equations is that one can choose the free variable in a way
that some desirable effect is produced on the other dependent variable.

For example, if with our algebraic equation x + u = 10 we wish to make x < 5, then we can
achieve this by choosing the free variable u to be strictly larger than 5.

Control theory is all about doing similar things with differential equations of the type (3.2).
The state variables x comprise the ‘to-be-controlled’ variables, which depend on the free variables
u, the inputs. For example, in the case of an aircraft, the speed, altitude and so on are the to-be-
controlled variables, while the angle of the wing flaps, the speed of the propeller and so on, which
the pilot can specify, are the inputs. So one of the basic questions in control theory is then the
following:

How do we choose the control inputs to achieve regulation of the state variables?
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For instance, one may wish to drive the state to zero or some other desired value of the state
at some time instant T . This brings us naturally to the notion of controllability which, roughly
speaking, means that any state can be driven to any other state using an appropriate control.

For the sake of simplicity, we restrict ourselves to linear systems: x′(t) = Ax(t)+Bu(t), t ≥ 0,
where A ∈ Rn×n and B ∈ Rn×1. We first give the definition of controllability for such a linear
control system.

Example. Suppose a lake contains two species of fish, which we simply call ‘big fish’ and ‘small
fish’, which form a predator-prey pair. Suppose that the evolution of their populations xb and xs

are reasonably accurately modelled by
[

x′
b(t)

x′
s(t)

]

=

[
a11 a12

a21 a22

] [
xb(t)
xs(t)

]

.

Figure 3.2: Big fish and small fish.

Now suppose that one is harvesting these fish at harvesting rates hb and hs (which are inputs,
since they can be decided by the fisherman). The model describing the evolution of the populations
then becomes: [

x′
b(t)

x′
s(t)

]

=

[
a11 a12

a21 a22

] [
xb(t)
xs(t)

]

−
[

hb(t)
hs(t)

]

.

The goal is to harvest the species of fish over some time period [0, T ] in such a manner starting
from the initial population levels

[
xb(0)
xs(0)

]

=

[
xb,i

xs,i

]

,

we are left with the desired population levels
[

xb(T )
xs(T )

]

=

[
xb,f

xs,f

]

.

For xemaple, if one of the species of fish is nearing extinction, it might be important to main-
tain some crtical levels of the populations of the predator versus the prey. Thus we see that
controllability problems arise quite naturally from applications. ♦

Definition. The system
dx

dt
(t) = Ax(t) + Bu(t), t ∈ [0, T ] (3.14)

is said to be controllable at time T if for every pair of vectors x0, x1 in R
n, there exists a control

u ∈ C[0, T ] such that the solution x of (3.14) with x(0) = x0 satisfies x(T ) = x1.

Examples.

1. (A controllable system) Consider the system x′(t) = u(t), t ∈ [0, T ], so that A = 0, B = 1.
Given x0, x1 ∈ R, define u ∈ C[0, T ] to be the constant function

u(t) =
x1 − x0

T
, t ∈ [0, T ].
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By the fundamental theorem of calculus,

x(T ) = x(0) +

∫ T

0

x′(τ)dτ = x0 +

∫ T

0

u(τ)dτ = x0 +
x1 − x0

T
(T − 0) = x1.

2. (An uncontrollable system) Consider the system

x′
1(t) = x1(t) + u(t), (3.15)

x′
2(t) = x2(t), (3.16)

so that

A =

[
1 0
0 1

]

, B =

[
1
0

]

.

The equation (3.16) implies that x2(t) = etx2(0), and so if x2(0) > 0, then x2(t) > 0 for all
t ≥ 0. So a final state with the x2-component negative is never reachable by any control. ♦

We would like to characterize the property of controllability in terms of the matrices A and
B. For this purpose, we introduce the notion of reachable space at time T :

Definition. The reachable space of (3.14) at time T , denoted by RT , is defined as the set of all
x ∈ Rn for which there exists a control u ∈ C[0, T ] such that

x =

∫ T

0

e(T−τ)ABu(τ)dτ. (3.17)

Note that the above simply says that if we run the differential equation (3.14) with the input
u, and with initial condition x(0) = 0, then x is the set of all points in the state-space that are
‘reachable’ at time T starting from 0 by means of some input u ∈ C[0, T ].

We now prove that RT is a subspace of Rn.

Lemma 3.5.1 RT is a subspace of Rn.

Proof We verify that RT is nonempty, and closed under addition and scalar multiplication.

S1 If we take u = 0, then
∫ T

0

e(T−τ)ABu(τ)dτ = 0,

and so 0 ∈ RT .

S2 If x1, x2 ∈ RT , then there exist u1, u2 in C[0, T ] such that

x1 =

∫ T

0

e(T−τ)ABu1(τ)dτ and x2 =

∫ T

0

e(T−τ)ABu2(τ)dτ.

Thus u := u1 + u2 ∈ C[0, T ] and

∫ T

0

e(T−τ)ABu(τ)dτ =

∫ T

0

e(T−τ)ABu1(τ)dτ + x2 =

∫ T

0

e(T−τ)ABu2(τ)dτ = x1 + x2.

Consequently x1 + x2 ∈ RT .
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S3 If x ∈ RT , then there exists a u ∈ C[0, T ] such that

x =

∫ T

0

e(T−τ)ABu(τ)dτ.

If α ∈ R, then αu ∈ C[0, T ] and

∫ T

0

e(T−τ)AB(αu)(τ)dτ = α

∫ T

0

e(T−τ)ABu(τ)dτ = αx.

Consequently αx ∈ RT .

Thus RT is a subspace of Rn.

We now prove Theorem 3.5.3, which will yield Corollary 3.5.4 below on the characterization of
the property of controllability. In order to prove Theorem 3.5.3, we will use the Cayley-Hamilton
theorem, and for the sake of completeness, we have included a sketch of proof of this result here.

Theorem 3.5.2 (Cayley-Hamilton) If A ∈ C
n×n and p(t) = tn + cn−1t

n−1 + · · · + c1t + c0 is its
characteristic polynomial, then p(A) = An + cn−1A

n−1 + · · · + c1A + c0I = 0.

Proof (Sketch) This is easy to see if A is diagonal, since

p











λ1

. . .

λn









 =






p(λ1)
. . .

p(λn)




 = 0.

It is also easy to see if A is diagonalizable, since if A = PDP−1, then

p(A) = p(PDP−1) = Pp(D)P−1 = P0P−1 = 0.

As det : Cn×n → C is a continuous function, it follows that the coefficients of the characteristic
polynomial are continuous functions of the matrix entries. Using the fact that the set of diag-
onalizable matrices is dense in Cn×n, we see that the result extends to all complex matrices by
continuity.

Theorem 3.5.3 RT = R
n iff rank

[
B AB . . . An−1B

]
= n.

Proof If: If RT 6= Rn, then there exists a x0 6= 0 in Rn such that for all x ∈ RT , x⊤
0 x = 0.

Consequently,

x⊤
0

∫ T

0

e(T−τ)ABu(τ)dτ = 0 ∀u ∈ C[0, T ].

In particular, u0 defined by u0(t) = x⊤
0 e(T−τ)AB, t ∈ [0, T ], belongs to C[0, T ], and so

∫ T

0

(

x⊤
0 e(T−τ)AB

)2

dτ = 0,

and so

x⊤
0 e(T−τ)AB = 0, t ∈ [0, T ]. (3.18)
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With t = T , we obtain x⊤
0 B = 0. Differentiating (3.18), we obtain x⊤

0 e(T−t)AAB = 0, t ∈
[0, T ], and so with t = T , we have x⊤

0 AB = 0. Proceeding in this manner (that is, successively
differentiating (3.18) and setting t = T ), we see that x⊤

0 AkB = 0 for all k ∈ N, and so in particular,

x⊤
0

[
B AB . . . An−1B

]
= 0.

As x0 6= 0, we obtain rank
[

B AB . . . An−1B
]

< n.

Only if: Let C := rank
[

B AB . . . An−1B
]

< n. Then there exists a nonzero x0 ∈ Rn

such that
x⊤

0

[
B AB . . . An−1B

]
= 0. (3.19)

By the Cayley-Hamilton theorem, it follows that

x⊤
0 AnB = x⊤

0

[
α0I + α1A + · · · + αnAn−1

]
B = 0.

By induction,
x⊤

0 AkB = 0 ∀k ≥ n. (3.20)

From (3.19) and (3.20), we obtain x⊤
0 AkB = 0 for all k ≥ 0, and so x⊤

0 etAB = 0 for all t ∈ [0, T ].
But this implies that x0 6∈ RT , since otherwise if some u ∈ C[0, T ],

x0 =

∫ T

0

e(T−τ)ABu(τ)dτ,

then

x⊤
0 x0 =

∫ T

0

x0e
(T−τ)ABu(τ)dτ =

∫ T

0

0u(τ)dτ = 0,

which yields x0 = 0, a contradiction.

The following result gives an important characterization of controllability.

Corollary 3.5.4 Let T > 0. The system (3.14) is controllable at T iff

rank
[

B AB . . . An−1B
]

= n,

where n denotes the dimension of the state space.

Proof Only if: Let x′(t) = Ax(t) + Bu(t) be controllable at time T . Then with x0 = 0,
all the states x1 ∈ R

n can be reached at time T . So RT = R
n. Hence by Theorem 3.5.3,

rank
[

B AB . . . An−1B
]

= n.

If: Let rank
[

B AB . . . An−1B
]

= n. Then by Theorem 3.5.3, RT = Rn. Given x0, x1 ∈
R

n, we have x1 − eTAx0 ∈ R
n = RT , and so there exists a u ∈ C[0, T ] such that

x1 − eTAx0 =

∫ T

0

e(T−τ)ABu(τ)dτ, that is, x1 = eTAx0 +

∫ T

0

e(T−τ)ABu(τ)dτ.

In other words x(T ) = x1, where x(·) denotes the unique solution to x′(t) = Ax(t) + Bu(t),
t ∈ [0, T ], x(0) = x0.

We remark that the test:

rank
[

B AB . . . An−1B
]

= n
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is independent of T , and so it follows that if T1, T2 > 0, then the system x′(t) = Ax(t) + Bu(t) is
controllable at T1 iff it is controllable at T2. So for the system x′(t) = Ax(t) + Bu(t), we usually
talk about ‘controllability’ instead of ‘controllability at T > 0’.

Examples. Consider the two examples on page 54.

1. (Controllable system) In the first example,

rank
[

B AB . . . An−1B
] (n=1)

= rank
[

B
]

= rank
[

1
]

= 1 = n,

the dimension of the state space (R).

2. (Uncontrollable system) In the second example, note that

rank
[

B AB . . . An−1B
] (n=2)

= rank
[

B AB
]

= rank

[
1 1
0 0

]

= 1 6= 2 = n,

the dimension of the state space (R2). ♦

Exercises.

1. For what values of α is the system (3.14) controllable, if

A =

[
2 1
0 1

]

, B =

[
1
α

]

?

2. (∗) Let A ∈ R
n×n and B ∈ R

n×1. Prove that if the system (3.14) is controllable, then every
matrix commuting with A is a polynomial in A.

3. Let

A =

[
1 0
0 1

]

and B =

[
1
0

]

.

Show that the reachable subspace RT at time T of x′(t) = Ax(t) + Bu(t), t ≥ 0, is equal to

span

[
1
0

]

, that is, the set

{[
α
0

] ∣
∣
∣
∣

α ∈ R

}

.

4. A nonzero vector v ∈ R1×n is called a left eigenvector of A ∈ Rn×n if there exists a λ ∈ R

such that vA = λv.

Show that if the system described by x′(t) = Ax(t) + Bu(t), t ≥ 0, is controllable, then for
every left eigenvector v of A, there holds that vB 6= 0.

Hint: Observe that if vA = λv, then vAk = λkv for all k ∈ N.

3.6 How do we control optimally?

The questions of controlling a system optimally arise naturally. For example, in the case of an
aircraft, we are not just interested in flying from one place to another, but we would also like to
do so in a way so that the total travel time is minimized or the fuel consumption is minimized.
With our algebraic equation x + u = 10, in which we want x < 5, suppose that furthermore we
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wish to do so in manner such that u is the least possible integer. Then the only possible choice
of the (input) u is 6. Optimal control addresses similar questions with differential equations of
the type (3.2), together with a ‘performance index functional’, which is a function that measures
optimality.

Example. Consider the model discussed in the Example on page 45:

x′(t) = f(x(t)) − x(t)u(t),

where x denotes the population of the fish, and u is the control input (the harvesting effort).
Suppose that the profit associated with the fishing harvest over a time interval [0, T ] is given by

I(u) =

∫ T

0

e−rt (px(t)u(t) − cu(t)) dt.

(Here p is the profit per unit harvest, so that p multiplied by the actual harvest x(t)u(t) gives the
profit at time t, and c is the cost per unit effort, so that c times the harvesting effort u(t) gives
the cost incurred at time t. The factor e−rt is the discounting factor.)

The problem of deciding how to harvest so that the above profit is maximized now arises:
that is, what is the u ∈ C[0, T ] that maximizes I? So we see that optimal control problems arise
naturally in applications. ♦

In the next two chapters, we will learn about the basic principles behind optimal control
theory.
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Chapter 4

Optimal control

4.1 The simplest optimal control problem

In this section, we wish to find the functions u0 such that the function I defined below has a local
extremum at u0:

I(u) =

∫ T

0

F (x(t), u(t), t)dt,

where x is the unique solution of the differential equation

x′(t) = f(x(t), u(t)), t ∈ [0, T ], x(0) = xi.

Such a local extremum u0 is henceforth referred to as an optimal control.

We prove the following result.

Theorem 4.1.1 Let F (ξ, υ, τ) and f(ξ, υ) be continuously differentiable functions of each of their
arguments. Suppose that u0 ∈ C[0, T ] is an optimal control for the function I : C[0, T ] → R

defined as follows: If u ∈ C[0, T ], then

I(u) =

∫ T

0

F (x(t), u(t), t)dt,

where x denotes the unique solution to the differential equation

x′(t) = f(x(t), u(t)), t ∈ [0, T ], x(0) = xi. (4.1)

If x0 denotes the state corresponding to the input u0, then there exists a p0 ∈ C1[0, T ] such that

∂F

∂ξ
(x0(t), u0(t), t) + p0(t)

∂f

∂ξ
(x0(t), u0(t)) = −p′0(t), t ∈ [0, T ], p0(T ) = 0, (4.2)

∂F

∂υ
(x0(t), u0(t), t) + p0(t)

∂f

∂υ
(x0(t), u0(t)) = 0, t ∈ [0, T ]. (4.3)

Proof The proof can be divided into three main steps.

Step 1. In this step we consider an associated function Iv : R → R (that is defined below in
terms of the functional I). Using the optimality of u0 for I, we then conclude that the function

61
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Iv must have a local extremum at 0 (∈ R). Thus applying the necessity of the condition that the
derivative must vanish at extremal points (now simply for a function from R to R!), we obtain a
certain condition, given by equation (4.6).

Let v ∈ C[0, T ] be such that v(0) = v(T ) = 0. Define uǫ(t) = u0(t) + ǫv(t), ǫ ∈ R. Then from
Theorem 3.2.2, for all ǫ such that |ǫ| < δ, with δ small enough, there exists a unique xǫ satisfying

x′
ǫ(t) = f(xǫ(t), uǫ(t)), t ∈ [0, T ], xǫ(0) = xi. (4.4)

Let Iv : (−δ, δ) → R be defined by

Iv(ǫ) =

∫ T

0

F (xǫ(t), uǫ(t), t)dt.

Since I has a local has a local extremum at u0, it follows that Iv has a local extremum at 0, and
so dIv

dǫ (0) = 0.

We have

dIv

dǫ
(0) =

∫ T

0

[
∂F

∂ξ
(x0(t), u0(t), t)

d

dǫ
(xǫ(t))(0) +

∂F

∂υ
(x0(t), u0(t), t)

d

dǫ
(uǫ(t))(0)

]

dt.

(Differentiation under the integral sign can be justified!) Clearly d
dǫ(uǫ(t))(0) = v(t), and from

Theorem 3.4.2, we also have that

xǫ(t) = x0(t) + ǫy(t) + o(t, ǫ), (4.5)

where y is the solution to

y′(t) =
∂f

∂ξ
(x0(t), u0(t))y(t) +

∂f

∂υ
(x0(t), u0(t))v(t), t ∈ [0, T ], y(0) = 0, (4.6)

so that
d

dǫ
(xǫ(t))(0) = lim

ǫ→0

xǫ(t) − x0(t)

ǫ
= lim

ǫ→0

ǫy(t) + o(t, ǫ)

ǫ
= y(t).

Hence
dIv

dǫ
(0) =

∫ T

0

[
∂F

∂ξ
(x0(t), u0(t), t)y(t) +

∂F

∂υ
(x0(t), u0(t), t)v(t)

]

dt,

and so we obtain
∫ T

0

[
∂F

∂ξ
(x0(t), u0(t), t)y(t) +

∂F

∂υ
(x0(t), u0(t), t)v(t)

]

dt = 0. (4.7)

Step 2. We now introduce an function p in order to rewrite (4.7) in a different manner, which
will eventually help us to obtain (4.2) and (4.3).

Let p ∈ C1[0, T ] be an unspecified function right now. Multiplying (4.6) by p, we have that

p(t)

[
∂f

∂ξ
(x0(t), u0(t))y(t) +

∂f

∂υ
(x0(t), u0(t))v(t) − y′(t)

]

= 0, t ∈ [0, T ]. (4.8)

Thus adding the left hand side of (4.8) to the integrand in (4.7) does not change the integral.
Consequently,

∫ T

0

[(
∂F

∂ξ
(x0(t), u0(t), t) + p(t)

∂f

∂ξ
(x0(t), u0(t))

)

y(t)+

(
∂F

∂υ
(x0(t), u0(t), t) + p(t)

∂f

∂υ
(x0(t), u0(t))

)

v(t) − p(t)y′(t)

]

dt = 0.
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Hence

∫ T

0

[(
∂F

∂ξ
(x0(t), u0(t), t) + p(t)

∂f

∂ξ
(x0(t), u0(t)) + ṗ(t)

)

y(t)+

(
∂F

∂υ
(x0(t), u0(t), t) + p(t)

∂f

∂υ
(x0(t), u0(t))

)

v(t)

]

dt + p(t)y(t)
∣
∣
∣

t=T

t=0
= 0. (4.9)

Step 3. In this final step, we choose the ‘right p’: one which makes the first summand in the
integrand appearing in (4.9) vanish (in other other words a solution of the differential equation
in (4.7)) and impose a boundary condition for this special (denoted by p0) in such a manner that
the boundary term in (4.9) also disappears. With this choice of p, (4.9) allows one to conclude
that (4.3) holds too!

Now choose p = p0, where p0 is such that

∂F

∂ξ
(x0(t), u0(t), t) + p0(t)

∂f

∂ξ
(x0(t), u0(t)) + p′0(t) = 0, t ∈ [0, T ], p0(T ) = 0. (4.10)

(It is easy to verify that

p0(t) =

∫ T

t

∂F

∂ξ
(x0(s), u0(s), s)e

∫ s

t

∂f

∂ξ
(x0(τ), u0(τ))dτ

ds

satisfies (4.10).) Thus (4.9) becomes

∫ T

0

(
∂F

∂υ
(x0(t), u0(t), t) + p(t)

∂f

∂υ
(x0(t), u0(t))

)

v(t)dt = 0.

Since the choice of v ∈ C[0, T ] satisfying v(0) = v(T ) = 0 was arbitrary, it follows that (4.3) holds:
Indeed, if not, then the left hand side of (4.3) is nonzero (say positive) at some point in [0, T ], and
by continuity, it is also positive in some interval [t1, t2] contained in [0, T ]. Set

v(t) =

{
(t − t1)(t2 − t) if t ∈ [t1, t2],
0 if t 6∈ [t1, t2].

Then v ∈ C[0, T ] and v(0) = v(T ) = 0. However,

∫ T

0

(
∂F

∂υ
(x0(t), u0(t), t) + p(t)

∂f

∂υ
(x0(t), u0(t))

)

v(t)dt

=

∫ t2

t1

(
∂F

∂υ
(x0(t), u0(t), t) + p(t)

∂f

∂υ
(x0(t), u0(t))

)

(t − t1)(t2 − t)dt

> 0,

a contradiction. This completes the proof of the theorem.

Remarks.

1. The p0 is analogous to the Lagrange multiplier encountered in constrained optimization
problems in finite dimensions: a necessary condition for x0 ∈ Rn to be an extremum of
F : Rn → R subject to G : Rn → Rk is that DF̃ (x0) = 0, where F̃ = F + p⊤0 G for
some p0 ∈ Rk. The role of the Lagrange multiplier p0 ∈ Rk, which is vector in the finite-
dimensional vector space Rk, is now played by the function p0, which is a vector in an
infinite-dimensional vector space.
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2. It should be emphasized that Theorem 4.1.1 provides a necessary condition for optimality.
Thus not every u0 that satisfies (4.2) and (4.3) (for some p0, and with x0 denoting the
unique solution to (4.1)), needs to be optimal. Such a u0 satisfying is called a critical
control. However, if we already know that an optimal solution exists and that there is a
unique critical control, then this critical control is obviously optimal.

4.2 The Hamiltonian and Pontryagin minimum principle

With the notation from Theorem 4.1.1, define

H(π, ξ, υ, τ) = F (ξ, υ, τ) + πf(ξ, υ). (4.11)

H is called the Hamiltonian and Theorem 4.1.1 can be equivalently be expressed in the following
form.

Theorem 4.2.1 Let F (ξ, υ, τ) and f(ξ, υ) be continuously differentiable functions of each of their
arguments. If u0 ∈ C[0, T ] is an optimal control for the function I given by

I(u) =

∫ T

0

F (x(t), u(t), t)dt, u ∈ C[0, T ],

where x is the solution to

x′(t) = f(x(t), u(t)), t ∈ [0, T ], x(0) = xi,

and if x0 denotes the state corresponding to u0, then there exists a p0 ∈ C1[0, T ] such that

∂H

∂ξ
(p0(t), x0(t), u0(t), t) = −p′0(t), t ∈ [0, T ], p0(T ) = 0, and (4.12)

∂H

∂υ
(p0(t), x0(t), u0(t), t) = 0, t ∈ [0, T ]. (4.13)

Remarks.

1. Note that the differential equation x′
0 = f(x0, u0) with x0(0) = xi can be expressed in terms

of the Hamiltonian as follows:

∂H

∂π
(p0(t), x0(t), u0(t), t) = x′

0(t), t ∈ [0, T ], x0(0) = xi. (4.14)

The equations (4.12) and (4.14) resemble the equations arising in Hamiltonian mechanics,
and these equations together are said to comprise a Hamiltonian differential system.

The function p0 is called the co-state, and (4.12) is called the adjoint differential equation.
This analogy with Hamiltonian mechanics was responsible for the original terminology of
calling H the Hamiltonian.

2. In Theorem 4.2.1, it can in fact be shown that for all t ∈ [0, T ],

H(p0(t), x0(t), u(t), t) ≥ H(p0(t), x0(t), u0(t), t) (4.15)

holds for all u ∈ C[0, T ], that is the optimal input u0 minimizes the Hamiltonian (inequality
(4.15)). This is known as Pontryagin minimum principle. Equation (4.13) is then a corollary
of this result.
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Exercises.

1. Find a critical control of the function

I(u) =

∫ 1

0

[
(x(t))2 + (u(t))2

]
dt

where x is the solution to x′(t) = u(t), t ∈ [0, 1], x(0) = x0.

2. Find a critical control uT and the corresponding state xT of the function

I(u) =

∫ T

0

1

2

(
3(x(t))2 + (u(t))2

)
dt

where x is the solution to x′(t) = x(t) + u(t), t ∈ [0, T ], x(0) = x0. Show that there exists a
constant k such that1

lim
T→∞

uT (t) = F lim
T→∞

xT (t)

for all t. What is the value of F?

4.3 Generalization to vector inputs and states

In the general case when x(t) ∈ Rn and u(t) ∈ Rm, Theorem 4.2.1 holds with p0 now being a
function taking its values in Rn:

Theorem 4.3.1 Let F (ξ, υ, τ) and f(ξ, υ) be continuously differentiable functions of each of their
arguments. If u0 ∈ (C[0, T ])m is an optimal control for the function

I(u) =

∫ T

0

F (x(t), u(t), t)dt,

where x is the solution to x′(t) = f(x(t), u(t)), t ∈ [0, T ], x(0) = xi, and if x0 denotes the state
corresponding to u0, then there exists a p0 ∈ (C1[0, T ])n such that

[
∂H

∂ξ
(p0(t), x0(t), u0(t), t)

]⊤

= −p′0(t), t ∈ [0, T ], p0(T ) = 0, and

∂H

∂υ
(p0(t), x0(t), u0(t), t) = 0, t ∈ [0, T ],

where H(π, ξ, υ, τ) = F (ξ, υ, τ) + π⊤f(ξ, υ).

Example. (Linear systems and the Riccati equation) Let A ∈ R
n×n, B ∈ R

n×1, Q ∈ R
n×n such

that Q = Q⊤ ≥ 0 and R ∈ R such that R > 0. We wish to find2 optimal controls for the functional

I(u) =

∫ T

0

1

2

[
x(t)⊤Qx(t) + R(u(t))2

]
dt

subject to the differential equation

x′(t) = Ax(t) + Bu(t), t ∈ [0, T ], x(0) = xi.

1A control of the type u(t) = Fx(t) is said to be a static state-feedback.
2This is called the linear quadratic control problem or LQ problem.
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The Hamiltonian is given by

H(π, ξ, υ, τ) =
1

2

[
ξ⊤Qξ + R(υ)2

]
+ π⊤ [Aξ + Bυ] .

From Theorem 4.3.1, it follows that any optimal input u0 and the corresponding state x0 satisfies

∂H

∂υ
(p0(t), x0(t), u0(t), t) = 0,

that is, Ru0(t) + p0(t)
⊤B = 0. Thus u0(t) = −R−1B⊤p0(t). The adjoint equation is

[
∂H

∂ξ
(p0(t), x0(t), u0(t), t)

]⊤

= −p′0(t), t ∈ [0, T ], p0(T ) = 0,

that is, (x0(t)
⊤Q + p0(t)

⊤A)⊤ = −p′0(t), t ∈ [0, T ], p0(T ) = 0. So we have

p′0(t) = −A⊤p0(t) − Qx0(t), t ∈ [0, T ], p0(T ) = 0.

Consequently,

d

dt

[
x0(t)
p0(t)

]

=

[
A −BR−1B⊤

−Q −A⊤

] [
x0(t)
p0(t)

]

, t ∈ [0, T ], x0(0) = xi, p0(T ) = 0. (4.16)

This is a linear, time-invariant differential equation in (x0, p0). If we would only have to deal with
initial boundary conditions exclusively or final boundary conditions exclusively, then we could
easily solve (4.16). However, here we have combined initial and final conditions, and so it is not
clear how we could solve (4.16). It is unclear if (4.16) has a solution at all! We now prove the
following.

Theorem 4.3.2 Let P be a solution of the following Riccati equation

P ′(t) = −P (t)A − A⊤P (t) + P (t)BR−1B⊤P (t) − Q, t ∈ [0, T ], P (T ) = 0.

Let x0 be the solution of

x′
0(t) =

[
A − BR−1B⊤P (t)

]
x0(t), t ∈ [0, T ], x0(0) = xi,

and let p0(t) = P (t)x0(t). Then (x0, p0) above is the unique solution of (4.16).

Proof We have

d

dt

[
x0(t)
p0(t)

]

=

[
(A − BR−1B⊤P (t))x0(t)
P ′(t)x0(t) + P (t)x′

0(t)

]

=





Ax0(t) − BR−1B⊤p0(t)(
−P (t)Ax0(t) − A⊤P (t)x0(t) + P (t)BR−1B⊤P (t)x0(t) − Qx0(t)+

P (t)Ax0(t) − P (t)BR−1B⊤P (t)x0(t)
)





=

[
Ax0(t) − BR−1B⊤p0(t)
−Qx0(t) − A⊤p0(t)

]

=

[
A −BR−1B⊤

−Q −A⊤

] [
x0(t)
p0(t)

]

.

Furthermore, x0 and p0 satisfy x(0) = xi and p0(T ) = P (T )x0(T ) = 0x0(T ) = 0. So the pair
(x0, p0) satisfies (4.16).
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The uniqueness can be shown as follows. If (x1, p1) and (x2, p2) satisfy (4.16), then x̃ = x1−x2,
p̃ = p1 − p2 satisfy

d

dt

[
x̃(t)
p̃(t)

]

=

[
A −BR−1B⊤

−Q −A⊤

] [
x̃(t)
p̃(t)

]

, t ∈ [0, T ], x̃(0) = 0, p̃(T ) = 0. (4.17)

This implies that

0 = p̃(T )⊤x̃(T ) − p̃(0)⊤x̃(0)

=

∫ T

0

d

dt

(
p̃(t)⊤x̃(t)

)
dt

=

∫ T

0

[
p̃′(t)⊤x̃(t) + p̃(t)⊤x̃′(t)

]
dt

=

∫ T

0

[
(−Qx̃(t) − A⊤p̃(t))x̃(t) + p̃(t)⊤(Ax̃(t) − BR−1B⊤p̃(t))

]
dt

=

∫ T

0

[
x̃(t)⊤Qx̃(t) + p̃(t)⊤BR−1B⊤p̃(t)

]
dt.

Consequently Qx̃(t) = 0 and R−1B⊤p̃(t) = 0 for all t ∈ [0, T ]. From (4.17), we obtain

x̃′(t) = Ax̃(t), t ∈ [0, R], x̃(0) = 0, and

p̃′(t) = −A⊤p̃(t), t ∈ [0, T ], p̃(T ) = 0.

Thus x̃(t) = 0 and p̃(t) = 0 for all t ∈ [0, T ].

So we see that the optimal trajectories (x0, u0) are governed by

x′
0(t) =

[
A − BR−1B⊤P (t)

]
x0(t), t ∈ [0, T ], x0(0) = xi,

u0(t) = −R−1B⊤P (t)x0(t), t ∈ [0, T ],

where P is the solution of the Riccati equation

P ′(t) = −P (t)A − A⊤P (t) + P (t)BR−1B⊤P (t) − Q, t ∈ [0, T ], P (T ) = 0.

Note that the optimal control has the form of a (time-varying) state-feedback law; see Figure 4.1.
♦

plant

controller

x′ = Ax + Bu

u(t) = −R−1B⊤P (t)x(t)

u0 x0

Figure 4.1: The closed loop system.

Exercise. Let Q ∈ Rn×n be such that Q = Q⊤ ≥ 0. Show that if x ∈ Rn is such that x⊤Qx = 0,
then Qx = 0.
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4.4 Constraint on the state at final time.

In many optimization problems, in addition to minimizing the cost, one may also have to satisfy
a condition for the final state x(T ); for instance, one may wish to drive the state to zero. This
brings us naturally to the notion of controllability. For the sake of simplicity, we restrict ourselves
to linear systems:

x′(t) = Ax(t) + Bu(t), t ≥ 0. (4.18)

The following theorem tells us how we can calculate the optimal control when x(T ) is specified,
in the case of controllable linear systems.

Theorem 4.4.1 Suppose that the system

x′(t) = Ax(t) + Bu(t), t ≥ 0

is controllable. Let F (ξ, υ, τ) be a continuously differentiable function of each of their arguments.
If u0 ∈ C[0, T ] is an optimal control for the function I given by

I(u) =

∫ T

0

F (x(t), u(t), t)dt,

where x is the solution to

x′(t) = Ax(t) + Bu(t), t ∈ [0, T ], x(0) = xi, x(T )k = xf,k, k ∈ {1, . . . , r},

and if x0 denotes the state corresponding to u0, then there exists a p0 ∈ (C1[0, T ])n such that

[
∂H

∂ξ
(p0(t), x0(t), u0(t), t)

]⊤

= −p′0(t), t ∈ [0, T ], p0(T )k = 0, k ∈ {r + 1, . . . , n}, and

∂H

∂υ
(p0(t), x0(t), u0(t), t) = 0, t ∈ [0, T ],

where H(π, ξ, υ, τ) = F (ξ, υ, τ) + π⊤(Aξ + Bυ).

We will not prove this theorem. Note that for a differential equation to have a unique solution,
there should not be too few or too many initial and final conditions to be satisfied by that solution.
Intuitively, one expects as many conditions as there are differential equations. In Theorem 4.4.1,
we have, in total, 2n differential equations (for x0 and p0). We also have the right number of
conditions: n + r for x0, and n − r for p0.

Exercises.

1. Find a critical control for the function

I(u) =

∫ 1

0

(u(t))2dt

subject to x′(t) = −2x(t) + u(t), t ∈ [0, 1], x(0) = 1 and x(1) = 0. Is this control unique?

2. Find a critical control for the function

I(u) =

∫ T

0

(u(t))2dt

subject to x′(t) = −ax(t) + u(t), t ∈ [0, T ], x(0) = x0 and x(T ) = 0. Find an expression for
the corresponding state. Prove that the critical control can be expressed as a state-feedback
law: u(t) = F (t, T, a)x(t). Find an expression for F (t, T, a).
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3. Find a critical control for the function

I(u) =

∫ T

0

[
(xT − x(t))2 + (u(t))2

]
dt

subject to x′(t) = −ax(t) + u(t), t ∈ [0, T ], x(0) = x0 and x(T ) = xT .

4. Find a critical control for the function

I(u) =

∫ 1

0

1

2
[(x1(t))

2 + (x2(t))
2 + (u(t))2]dt

where x1 and x2 are solutions to the system

x′
1(t) = x2(t),

x′
2(t) = −x2(t) + u(t)

t ∈ [0, 1] and

x1(0) = 1, x2(0) = 1,

x1(1) = 0, x2(1) = 0.

5. (Higher order differential equation constraint.) Find a critical control for the function

I(u) =

∫ T

0

1

2

[
(y(t))2 + (u(t))2

]
dt

where y is the solution to the second order differential equation

y′′(t) + y(t) = u(t), t ∈ [0, T ], y(0) = y0, y′(0) = v0, y(T ) = y′(T ) = 0.

Hint: Introduce the state variables x1(t) = y(t), x2(t) = y′(t).
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Chapter 5

Optimal control II

Bellman and his co-workers pioneered a different approach for solving optimal control problems.
So far we have considered necessary conditions for the existence of an optimal control. In Theorem
5.2.1 we give sufficient conditions for the existence of an optimal control.

5.1 The optimality principle

The underlying idea of the optimality principle is extremely simple. Roughly speaking, the opti-
mality principle simply says that any part of an optimal trajectory is optimal.

Theorem 5.1.1 (Optimality principle.) Let F (ξ, υ, τ) and f(ξ, υ) be continuously differentiable
functions of each of their arguments. Let u0 ∈ C[0, T ] be an optimal control for the function I
given by

I(u) =

∫ T

0

F (x(t), u(t), t)dt, u ∈ C[0, T ],

where x is the solution to

x′(t) = f(x(t), u(t)), t ∈ [0, T ], x(0) = xi. (5.1)

Let x0 be the state corresponding to u0. If t∗ ∈ [0, T ), then the restriction of u0 to [t∗, T ] is an
optimal control for the function Ĩ given by

Ĩ(u) =

∫ T

t0

F (x(t), u(t), t)dt, u ∈ C[t∗, T ]

where x is the solution to

x′(t) = f(x(t), u(t)), t ∈ [t∗, T ], x(t∗) = x0(t∗). (5.2)

Furthermore,

min
u∈C[0,T ]

I(u) =

∫ t∗

0

F (x0(t), u0(t), t)dt + min
u∈C[t∗,T ]

Ĩ(u). (5.3)

71
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Proof We have

I(u0) =

∫ T

0

F (x0(t), u0(t), t)dt

=

∫ t∗

0

F (x0(t), u0(t), t)dt +

∫ T

t∗

F (x0(t), u0(t), t)dt. (5.4)

From Theorem 3.2.1, it follows that the solution to

x′(t) = f
(
x(t), u0|[t∗,T ](t)

)
, t ∈ [t∗, T ], x(t∗) = x0(t∗),

is simply the restriction of x0 to [t∗, T ]. Thus the second term in (5.4) is the cost Ĩ
(
u0|[t∗,T ]

)

corresponding to input u0|[t∗,T ] ∈ C[t∗, T ].

Suppose that there exists a ũ ∈ C[t∗, T ] such that

∫ T

t∗

F (x̃(t), ũ(t), t)dt = Ĩ(ũ) < Ĩ
(
u0|[t∗,T ]

)
=

∫ T

t∗

F (x0(t), u0(t), t)dt, (5.5)

where x̃ is the solution to (5.2) corresponding to ũ.

By Theorem 3.4.2, it follows that 1 we can then choose a u∗ ∈ C[t∗, T ] such that u∗(t∗) = u0(t∗)
and such that the inequality in (5.5) is still holds with u∗, that is, Ĩ(u∗) < Ĩ

(
u0|[t∗,T ]

)
.

Define u ∈ C[0, T ] by

u(t) =

{
u0(t) for t ∈ [0, t∗),
u∗(t) for t ∈ [t∗, T ],

and let x be the corresponding solution to (5.1). From Theorem 3.2.1, it follows that

x|[0,t∗] = x0|[0,t∗].

Hence we have

I(u) =

∫ T

0

F (x(t), u(t), t)dt

=

∫ t∗

0

F (x(t), u(t), t)dt +

∫ T

t∗

F (x(t), u(t), t)dt

=

∫ t∗

0

F (x0(t), u0(t), t)dt +

∫ T

t∗

F (x(t), u∗(t), t)dt

=

∫ t∗

0

F (x0(t), u0(t), t)dt + Ĩ(u∗)

<

∫ t∗

0

F (x0(t), u0(t), t)dt + Ĩ
(
u0|[t∗,T ](t)

)

=

∫ t∗

0

F (x0(t), u0(t), t)dt +

∫ T

t∗

F (x0(t), u0(t), t)dt

= I(u0),

which contradicts the optimality of u0. This proves that an optimal control for Ĩ exists and it is
given by the restriction of u0 to [t∗, T ]. From (5.4), it follows that (5.3) holds.

1For instance, let u∗(t) := ũ(t) + (u0(t∗)− ũ(t∗))Θ(t), t ∈ [t∗, T ], where Θ(t) = 1 − 1
ǫ
(t − t∗) if t < t∗ + ǫ and 0

otherwise, with ǫ small enough.
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0 t∗ T

xi

x0(t∗)

u0|[0,t∗]

u∗

u0|[t∗,T ]

Figure 5.1: Optimality principle.

Note that we have shown that

min
u∈C[t∗,T ]

Ĩ(u) = Ĩ
(
u0|[t∗,T ]

)
.

So the theorem above says that if you are on an optimal trajectory, then the best thing you can
do is to stay on that trajectory. See Figure 5.1.

Example. Consider the function I : C[0, T ] → R defined by

I(u) =

∫ T

0

1

2
[(x(t))2 + (u(t))2]dt,

where x is the solution to x′(t) = u(t), t ∈ [0, T ], x(0) = xi. The Hamiltonian is given by

H(π, ξ, υ, τ) =
1

2
(ξ2 + υ2) + πυ,

and so
∂H

∂ξ
= ξ,

∂H

∂υ
= υ.

Consequently, the equations governing an optimal control u0 (with corresponding state denoted
by x0) are given by

x′
0(t) = −p0(t), and

p′0(t) = −x0(t),

for some p0 ∈ C[0, T ] such that p(T ) = 0. Thus we obtain that

[
x0(t)
p0(t)

]

= e
t

2

4

0 −1
−1 0

3

5
[

x0(0)
p0(0)

]

.

Hence [
x0(t)
p0(t)

]

=

[
αet + βe−t

−αet + βe−t

]

,

for some constants α and β. Using x0(0) = xi and p0(T ) = 0, we find that

α =
xie

−2T

e−2T + 1
and β =

xi

e−2T + 1
.

Consequently

u0(t) = −p0(t) = xi
e−2T et − e−t

e−2T + 1
, t ∈ [0, T ].
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Now suppose we evolve along this optimal control starting from xi till the time is t∗ ∈ (0, T ).
Then the state x0(t∗) can be found out as follows:

x0(t∗) − xi = x0(t∗) − x0(0) =

∫ t∗

0

x′
0(t)dt =

∫ t∗

0

u0(t)dt

=
xi

e−2T + 1
[e−2T (et∗ − 1) + e−t∗ − 1] =

xi

e−2T + 1
[e−2T+t∗ + e−t∗ ] − xi.

Hence
x0(t∗) =

xi

e−2T + 1
[e−2T+t∗ + e−t∗ ].

Now suppose we consider the optimization problem for the function Ĩ : C[t∗, T ] → R, given by

Ĩ(u) =

∫ T

t∗

1

2
[(x(t))2 + (u(t))2]dt,

where x is the solution to x′(t) = u(t), t ∈ [t∗, T ], x(t∗) = x0(t∗). If we define I∗ : C[0, T − t∗] → R

by I∗(u) = Ĩ(u(· − t∗)), u ∈ C[0, T − t∗], then it is easy to see that I∗ has an optimal control u∗

iff Ĩ has the optimal control ũ(·) = u∗(· − t∗), and moreover

I∗(u) =

∫ T−t∗

0

1

2
[(x(t))2 + (u(t))2]dt,

where x is the solution to x′(t) = u(t), t ∈ [0, T − t∗], x(0) = x0(t∗). But from the calculation
above, we see that if u∗ is an optimal control for I∗, then

u∗(t) = x0(t∗)
e−2(T−t∗)et − e−t

e−2(T−t∗) + 1
, t ∈ [0, T − t∗].

Hence the optimal control for Ĩ is given by

ũ(t) = u∗(t − t∗) = x0(t∗)
e−2(T−t∗)et−t∗ − e−t+t∗

e−2(T−t∗) + 1

=
xi

e−2T + 1
[e−2T+t∗ + e−t∗ ]

e−2T et+t∗ − et∗−t

e−2(T−t∗) + 1

= xi
e−2T et − e−t

e−2T + 1
,

for t ∈ [t∗, T ]. Hence we see that ũ = u0|[t∗,T ]. ♦

5.2 Bellman’s equation

In this section we will prove Theorem 5.2.1 below, which gives a sufficient condition for the ex-
istence of an optimal control in terms of the existence of an appropriate solution to Bellman’s
equation (5.7). However, we first provide a heuristic argument that leads one to Bellman’s equa-
tion: we do not start by asking when the optimal control problem has a solution, but rather
we begin by assuming that the optimal control problem is solvable and study the so-called value
function, which will lead us to Bellman’s equation.

Define the value function V : Rn × [0, T ] → R by

V (x∗, t∗) = min
u∈C[t∗,T ]

∫ T

t∗

F (x(t), u(t), t)dt, (5.6)
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where x is the unique solution to

x′(t) = f(x(t), u(t)), t ∈ [t∗, T ], x(t∗) = x∗.

With this notation, in Theorem 5.1.1, we have shown that

V (x0(t∗), t∗) = min
u∈C[t∗,T ]

∫ T

t∗

F (x(t), u(t), t)dt =

∫ T

t∗

F (x0(t), u0(t), t)dt.

Consequently

V (x0(t∗ + ǫ), t∗ + ǫ) − V (x0(t∗), t∗) = −
∫ t∗+ǫ

t∗

F (x0(t), u0(t), t)dt.

It is tempting to divide by ǫ on both sides and let ǫ tend to 0. Formally, the left hand side would
become

∂V

∂τ
(x0(t∗), t∗) +

∂V

∂ξ
(x0(t∗), t∗)f(x0(t∗), u0(t∗)),

while the right hand side would become

−F (x0(t∗), u0(t∗), t∗).

Thus we would obtain the equation

∂V

∂τ
(x0(t∗), t∗) +

∂V

∂ξ
(x0(t∗), t∗)f(x0(t∗), u0(t∗)) + F (x0(t∗), u0(t∗), t∗) = 0.

This motivates the following result.

Theorem 5.2.1 Let F (ξ, υ, τ) and f(ξ, υ) be continuously differentiable functions of each of their
arguments. Suppose that there exists a function W : Rn × [0, T ] → R such that:

1. W is continuous on Rn × [0, T ].

2. W is continuously differentiable in Rn × (0, T ).

3. W satisfies Bellman’s equation

∂W

∂τ
(x, t) + min

u∈R

[
∂W

∂ξ
(x, t)f(x, u) + F (x, u, t)

]

= 0, (x, t) ∈ R
n × (0, T ). (5.7)

4. W (x, T ) = 0 for all x ∈ Rn.

Then the following implications hold:

1. If t∗ ∈ [0, T ) and u ∈ C[t∗, T ], then

∫ T

t∗

F (x(t), u(t), t)dt ≥ W (x∗, t∗),

where x is the unique solution to x′(t) = f(x(t), u(t)), x(t∗) = x∗, t ∈ [t∗, T ].

2. If there exists a function ϕ : R
n × [0, T ] → R such that:
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(a) For all (x, t) ∈ Rn × (0, T ),

∂W

∂ξ
(x, t)f(x, ϕ(x, t)) + F (x, ϕ(x, t), t) = min

u∈R

[
∂W

∂ξ
(x, t)f(x, u) + F (x, u, t)

]

.

(b) The equation

x′(t) = f(x(t), ϕ(x(t), t)), t ∈ [0, T ], x(0) = xi,

has a solution x0.

(c) u0 defined by u0(t) = ϕ(x0(t), t), t ∈ [0, T ] is an element in C[0, T ].

Then u0 is an optimal control for the function I defined by

I(u) =

∫ T

0

F (x(t), u(t), t)dt,

where x is the solution to x′(t) = f(x(t), u(t)), t ∈ [0, T ], x(0) = xi, and furthermore,

I(u0) =

∫ T

0

F (x0(t), u0(t), t)dt = W (xi, 0). (5.8)

3. Let ϕ be the function from part 2. If for every t∗ ∈ [0, T ) and every x∗ ∈ Rn, the equation

x′(t) = f(x(t), ϕ(x(t), t)), t ∈ [t∗, T ], x(t∗) = x∗,

has a solution, then W is the value function V defined in (5.6).

Proof 1. We have

∫ T

t∗

F (x(t), u(t), t)dt =

∫ T

t∗

[
∂W

∂ξ
(x(t), t)f(x(t), u(t)) + F (x(t), u(t), t)

]

dt −
∫ T

t∗

∂W

∂ξ
(x(t), t)f(x(t), u(t))dt

≥
∫ T

t∗

min
u∈R

[
∂W

∂ξ
(x(t), t)f(x(t), u) + F (x(t), u, t)

]

dt −
∫ T

t∗

∂W

∂ξ
(x(t), t)f(x(t), u(t))dt

=

∫ T

t∗

[

−∂W

∂τ
(x(t), t) − ∂W

∂ξ
(x(t), t)f(x(t), u(t))

]

dt

= −
∫ T

t∗

(
d

dt
W (x(·), ·)

)

(t)dt

= −W (x(T ), T ) + W (x(t∗), t∗)

= W (x∗, t∗).

2. Let x0 be a solution of x′(t) = f(x(t), ϕ(x(t), t)), t ∈ [0, T ], x(0) = xi. Then we proceed as in
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part 1:

∫ T

0

F (x0(t), u0(t), t)dt =

∫ T

0

[
∂W

∂ξ
(x0(t), t)f(x0(t), ϕ(x0(t), t)) + F (x0(t), ϕ(x0(t), t), t)

]

dt −
∫ T

0

∂W

∂ξ
(x0(t), t)f(x0(t), ϕ(x0(t), t))dt

=

∫ T

0

min
u∈R

[
∂W

∂ξ
(x0(t), t)f(x0(t), u) + F (x0(t), u, t)

]

dt −
∫ T

0

∂W

∂ξ
(x0(t), t)f(x0(t), ϕ(x0(t), t))dt

=

∫ T

0

[

−∂W

∂τ
(x0(t), t) −

∂W

∂ξ
(x0(t), t)f(x0(t), ϕ(x0(t), t))

]

dt

= −
∫ T

0

(
d

dt
W (x0(·), ·)

)

(t)dt

= W (xi, 0).

But from part 1 (with t∗ = 0), we know that if u ∈ C[0, T ], then

I(u) =

∫ T

0

F (x(t), u(t), t)dt ≥ W (xi, 0).

This shows that u0(·) = ϕ(x0(·), ·) is an optimal control and (5.8) holds.

3. We simply repeat the argument from part 2 for the time interval [t∗, T ]. This yields

V (x, t∗) = min
u∈C[t∗,T ]

∫ T

t∗

F (x(t), u(t), t)dt = W (x, t∗).

In the following example, we show how Theorem 5.2.1 can be used to calculate an optimal
control.

Example. Consider the function I given by

I(u) =

∫ 1

0

[
(x(t))2 + (u(t))2

]
dt,

where x is the solution to
x′(t) = u(t), t ∈ [0, 1], x(0) = xi.

Bellman’s equation is given by

∂W

∂τ
(x, t) + min

u∈R

[
∂W

∂ξ
(x, t)u + x2 + u2

]

= 0, (x, t) ∈ R × (0, 1), W (x, 1) = 0.

It is easy to see that the minimum in the above is assumed for

u = ϕ(x, t) = −1

2

∂W

∂ξ
(x, t).

Thus we obtain

∂W

∂τ
(x, t) + x2 − 1

4

(
∂W

∂ξ
(x, t)

)2

= 0, (x, t) ∈ R × (0, 1), W (x, 1) = 0.
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This is a nonlinear partial differential equation. It is easy to see that if (x0, u0) is an optimal
trajectory with initial state xi, then for every λ ∈ R, (λx0, λu0) is an optimal trajectory with
respect to the initial state λxi. Therefore the value function is quadratic in x: W (λx, t) =
λ2W (x, t). In particular,

W (x, t) = x2W (1, t) = x2P (t),

where P (t) := W (1, t). Consequently,

x2P ′(t) + x2 − 1

4
(2x)2(P (t))2 = 0, (x, t) ∈ R × (0, 1), P (1) = 0.

Dividing by x2, we obtain the Riccati equation

P ′(t) = (P (t))2 − 1, t ∈ (0, 1), P (1) = 0.

This has the solution

P (t) =
e−t+1 − et−1

e−t+1 + et−1
.

(See the exercise on page 53.) Thus

W (x, t) = x2 e−t+1 − et−1

e−t+1 + et−1
.

Also the linear time varying differential equation

x′(t) = ϕ(x(t), t) = −x(t)P (t), t ∈ [0, 1], x(0) = xi

has the solution
x0(t) = xie

−
R

t

0
P (τ)dτ . (5.9)

We note that all the conditions from Theorem 5.2.1 are satisfied, so the optimization problem is
solvable. The optimal input is given by

u0(t) = ϕ(x0(t), t) = −x0(t)P (t),

where x0 is the optimal state given by (5.9). Note that the optimal control is given in the form of
a (time-varying) state feedback. The value function is given by V (x, t) = x2P (t). ♦

Exercises.

1. Consider the problem of minimizing the function I : C[0, 1] → R defined by

I(u) =

∫ 1

0

[(x(t))4 + (x(t))2(u(t))2]dt, (5.10)

where x denotes the unique solution to

x′(t) = u(t), t ∈ [0, 1], x(0) = 1. (5.11)

(a) Write Bellman’s equation associated with the minimization of the function (5.10).

(b) Let P denote the unique solution to the Riccati equation

P ′(t) = 4(P (t))2 − 1, t ∈ [0, 1], P (1) = 0. (5.12)

Verify that W : R × [0, 1] given by W (x, t) = x4P (t) for (x, t) ∈ R × (0, 1) satisfies
Bellman’s equation found in part 1a.
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(c) Using Bellman’s theorem, conclude that the optimal control u0 that minimizes I is
given by

u0(t) = −2x0(t)P (t), t ∈ [0, 1],

where P is the unique solution to (5.12), and x0 is the unique solution to

x′
0(t) = −2P (t)x0(t), t ∈ [0, 1].

(d) It can be shown that the Riccati equation (5.12) has the solution given by

P (t) =
e−4t − e−4

2(e−4t + e−4)
, t ∈ [0, 1].

Without calculating the optimal control u0, determine the value of the corresponding
cost I(u0).

Hint: What is W (x0(0), 0)?

2. Its good to keep in mind that not every optimal control problem is solvable. Prove that for
the following problem, there is no minimizing input u ∈ C[0, T ] for the function I given by

I(u) =

∫ 1

0

(x(t))2dt,

where x is the solution to

x′(t) = u(t), t ∈ [0, 1], x(0) = 1.

Hint: First show that there exists a sequence of inputs un ∈ C[0, 1] such that I(un) → 0
as n → ∞. Conclude that if there exists a minimizing control u0, then I(u0) = 0. But then
x(0) cannot be 1.
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