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Abstract 
Many non-linear, inherently unstable systems exist whose control using conventional 
methods is both difficult to design and unsatisfactory in implementation. Fuzzy Logic 
Controllers are a class of non-linear controllers that make use of human expert 
knowledge and an implicit imprecision to apply control to such systems. The 
construction of these controllers can be quick and effective in the presence of expert 
knowledge; conversely, in the absence of such knowledge, their design can be slow 
and based on trial-and-error rather than a guided approach. 
 

Genetic Algorithms provide a way of surmounting this shortcoming. These algorithms 
use some of the concepts of evolutionary theory, and provide an effective way of 
searching a large and complex solution space to give close to optimal solutions in 
much faster times than random trial-and-error. They are also generally more effective 
at avoiding local minima than differentiation-based approaches. 
 
In this report the application of Genetic Algorithms to the design and optimisation of 
Fuzzy Logic Controllers is demonstrated. These controllers are characterised by a set 
of parameters. The inverted pendulum system, being a commonly used example of a 
non-linear, unstable system is used as a test system for this approach. Control was 
successfully achieved in various simulations using the outlined methods and the 
results from these simulations are presented.  
 
Details are also presented of efforts to use an online GA to continually improve the 
performance of a Fuzzy Logic Controller. Although these efforts were not fully 
successful, significant progress was made. 
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1 Introduction 
This report presents details of the work carried out to optimise a Fuzzy Logic 

Controller using Genetic Algorithms. Detailed explanations of both these concepts are 

presented as well as a demonstration of how they can be applied to control a non-

linear, unstable system. The inverted pendulum is both unstable and non-linear and is 

used to test out the methods tried for this project. 

 

1.1 Fuzzy Logic 

Fuzzy Logic is a logic system that uses imprecision. Just as human beings would 

never say that a table is 1.456 metres long, but rather that it is about one and a half 

metres long, fuzzy logic categorises objects into sets which are described by linguistic 

variables such as “ long” , ‘ fast” , “cool” , “heavy” , “middle-aged”  and so on. Objects 

can have varying degrees of membership of such fuzzy sets, ranging from a crisp 

“definitely not a member”  (denoted by 0) to a crisp “definitely a member”  (denoted 

by 1). The crucial distinction is that between these crisp extremes, objects can have 

less certain degrees of membership such as “not really a member”  (perhaps denoted 

by a 0.1) and “pretty much a member”  (0.9 possibly). 

 

Fuzzy Logic can be applied to control, and when it is, is known as Fuzzy Control. 

Fuzzy Control is made up of control rules which mimic those used by humans when 

they control or operate machinery: “If you need to go a little bit faster, push the 

accelerator pedal slightly” . Fuzzy Control can be an especially effective way of 

controlling non-linear systems when expert human knowledge of the system is 

available. 

 

The details of how Fuzzy Logic and Fuzzy Control are applied are given in Chapter 3. 

Much more detailed information is available from Passino et al. [2]. 
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1.2 Genetic Algor ithms 

Genetic Algorithms (GAs) are useful algorithms for optimising solutions to problems; 

especially those that are analytically intractable. They are inspired, as the name 

suggests, by the biological concepts of genetics and evolution. 

 

Considering that the most accomplished controller known to man, the human brain, 

and other numerous marvels found in nature, all arose through the process of 

evolution through natural selection, the principles behind this highly successful 

“design”  procedure should be able to provide some inspiration to improve the 

engineering design process. Genetic Algorithms use these principles to refine and 

optimise designs whose parameters interact in a complex manner. Individuals 

representing different potential solutions are preferentially selected according to their 

fitness and pass on their “genes” , i.e. characteristics, to future generations. Mating 

takes place between these individuals with the hope that by sharing the characteristics 

of successful individuals, even fitter individuals can be created. Mutation also occurs 

to inject new genes into a population. As in nature, most mutations are harmful but 

the occasional beneficial one can help improve the fitness of the individuals it affects, 

i.e. find better solutions. 

 

1.3 Overview of Work of Other  Researchers 

A significant number of researchers in the field have applied Genetic Algorithms to 

the task of optimising Fuzzy Logic Controllers (FLCs). Many different approaches to 

this task have been taken. For example, Herrera et al. [11] apply GAs to optimise a 

rule-base of a FLC for which the membership functions have already been created, 

whereas Lee at al. [12] use a GA that determines the number of membership 

functions, the number of fuzzy rules and the rule-base. In both of these cases, the  

GA is implemented using real-valued encodings, whereas Belarbi et al. [13] use 

binary encoding for their approach, where they implement the FLC as a neural 

network and use the GA to train the weights.  

 

Park et. al  [8] implement a GA by using characteristic parameters to automate FLC 

design and this method is used for this project also. Using this technique, a FLC can 
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be designed very flexibly, with the numbers and positions of membership functions 

determined by the GA as well as the rule-base. Rule-bases that are well-formed, as the 

term is used by Cheong et al.[9], emerge, which is another benefit. 

 

In this report the basic principles of Fuzzy Logic and Genetic Algorithms are 

explained after which the main body of work performed is presented along with the 

results obtained. But before all that, the inverted pendulum system is analysed and an 

effort is made to build a controller based on a linear model of this system. 
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2 Inver ted Pendulum System 
In this chapter the Inverted Pendulum System is examined. It is analysed with a view 

to obtaining its equations of motion and then to linearise these equations in order to 

find a state-space-based model of the system. This model is used to design a 

controller, which is applied to a non-linear model of the system. Following this, the 

inadequacies of this controller, especially in dealing with the non-linearities are 

highlighted. 

 

2.1 Equations of Motion 

The inverted pendulum system is made up of a cart on top of which a pole is pivoted 

as shown in Figure 2-1. The cart is constrained to move only in the horizontal x-

direction, while the pole can only rotate in the x-y plane. 

 

 

M 

mg 

x

 

θ 

u 

l 

y 

 

Figure 2-1 Inver ted Pendulum System 

 

The equations of motion for the system are derived using the following parameters 

• M is the mass of the cart, 

• m the mass of the pole, 

• l the distance from the pivot to the centre of mass of the pole  

• I the moment of inertia of the pole about the pivot, 

• x the cart’s position  
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• θ the angle the pole makes with the vertical and 

• u the horizontal control force imparted to the cart. 

 

The position of the centre of gravity of the pole is given by 

θsin
�

−= xxG          (1) 

 

Taking the second derivative of this with respect to time we get 

θθθθ sincos 2
�������

llxxG +−=        (2) 

 

The sum of the external forces on the system equals the mass multiplied by 

acceleration of each component, i.e. 

GxmxMu ���� +=   

)sincos( 2 θθθθ
�������

llxmxMu +−+=�  

umlmlmMx =−++� θθθθ cossin)( 2 �����      (3) 
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θcosl
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mx

mg 

 

Figure 2-2 Pole in Isolation 

Taking the pendulum in isolation (see Figure 2-2 above) and using  

damIM PP

�
+= α  

which states that for a rigid body the sum of the moments about a fixed point, P, is 

equal to the moment of inertia of the body about P multiplied by the angular 

acceleration plus the product of the mass of the body, its linear acceleration and the 

perpendicular distance between the point P and the vector representing the 

acceleration [4]. Taking anticlockwise moments as positive this means that  
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θθθ cossin lxmImgl ���� −=        (4) 

 

Rearranging (4) gives 

I

xmlmgl
��

�� θθθ cossin +=  

Substituting this into (3) and rearranging gives 

θ
θθθθ

222

222

cos)(

sinImsincos

lmImM

lglmIu
x

−+
−+=

�
��

     (5) 

Substituting this back into (4) and rearranging gives 

θ
θθθθθθ

222

222

cos)(

sincoscossin)(

lmImM

lmumlmglmM

−+
−++=

�
��

   (6) 

For a uniform rod of mass m and length L=2l the moment of inertia about one end is 

2

3

4
ml [4] 

Equations (5) and (6) thus become 

θ

θθθθ

2

2

cos)(
3

4

sin
3

4
sincos

3

4

mmM

lmgu
x

−+

−+
=

�

��
      (7) 

and  

θ

θθθθθθ
2

2

cos)(
3

4
sincoscossin)(

mllmM

mlugmM

−+

−++=
�

��
     (8) 

 

2.2 L inear ised Equations of Motion 

These equations can be linearised by noting that for small θ, sinθ ≈ θ, cosθ ≈ 1 and  

θ
�
≈ 0. The equations then become 

mmM

mgu
x

−+

+
=

)(
3

4
3

4 θ
��

        (9) 

and 
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mllmM

ugmM

−+

++=
)(

3

4
)( θθ

��
                  (10) 

 

These linearised equations can be represented in state-space form as follows: 
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              (11) 

This is in the usual form uBAxx +=
�

used for state-space expressions. 

2.3 SIMULINK model 

Using SIMULINK1, a model of the system, (see Figure 2-3 below) was created. In 

this model, the control action is an input. In combination with the angle and angular 

velocity from the previous time step, it is used to calculate the cart’s acceleration and 

the pole’s angular acceleration using equations (7) and (8) respectively. Integration is 

then performed to get the speeds and positions for both components. It should also be 

noted that the value of the pole’s angle is limited to remain between ±90°. The pole 

angle and angular velocity and the cart position and velocity are the outputs of this 

model.  

 

 

Figure 2-3 SIMULINK model of inver ted pendulum system 

                                                
1 For the SIMULINK solver, the ode4 (Runge-Kutta) algorithm was used with a fixed time step of 
0.01s and Single-Tasking. Except where otherwise noted, these parameters were used for all models 
mentioned in this report. 
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2.4 Open Loop Response 

The open loop response of this system was obtained using the SIMULINK model 

shown in Figure 2-4 below.  
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Figure 2-4 Model used to obtain Open Loop Response 

The simulation was run for ten seconds and the parameters1 used were: 

• M, the mass of the cart:      1kg 

• m, the mass of the pendulum:      0.1kg 

• l, the distance from the pivot to the pendulum centre of mass:  0.5m 

 

The open loop response is plotted in Figure 2-5. The system can be seen to be 

unstable, with the pole becoming horizontal very quickly. To keep the pole vertical, a 

controller will be needed. 
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Figure 2-5 Open Loop Response 

                                                
1 These parameters were also used for all models detailed in this report 
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2.5 Closed-Loop Control 

An attempt is now made to design a controller for the system. The state-space method 

is used to do this as this allows the design of a controller of both the pendulum angle 

and cart position. Much of the work in this section is based on a tutorial on the 

University of Michigan website [6].  

 

As the main objective for controlling this system is to keep the pendulum upright as 

much as possible, the reference value for the angle to which the output is compared 

will be zero throughout all simulations. When analysing the system’s response, it is 

the response to a disturbance force applied to the cart, rather than to a change in the 

reference that will be examined. This is shown schematically in Figure 2-6 below.  

 
 

 
Plant 
G(s) 

 

 

Σ 
 

 

Σ 
 

 
Controller 

K C(s) 
 

Reference 
r(s)=0 

+ 

- 

Disturbance Force 
f(s) 

+ 

+ 

Output 
y(s) 

 

Figure 2-6 System Schematic 

 

The schematic can be rearranged as in Figure 2-7. 

 
 

 
Plant 
G(s) 

 

 

Σ 
 

 
Controller  

K C(s) 
 

- 

Disturbance Force 
f(s) 

+ 

Output 
y(s) 

 

Figure 2-7 Rear ranged Schematic 

 

As it is a response to a disturbance force that is being analysed, the reference position 

for the cart will also be zero. To control both angle and position, a state-space 

controller will be designed. The schematic for this is shown in Figure 2-8.  
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Figure 2-8 State-Space Schematic 

 
To design a controller the Linear-Quadratic Regulator (LQR) method described by 

Friedland [3] is used. Using the state-space equation (11), this method finds the 

optimal K based on the state feedback law 

 K x−=u                               (12) 

such that the cost function 

 ( )
�

+= τdJ Ruu'Qxx'                  (13) 

is minimised. Q is a weighting matrix specifying the relative importance of each of 

the system states and similarly, R is a weighting matrix that specifies the relative 

importance of the inputs. As there is only one input into the system, R is set to one in 

this specific case. The function lqr provided with the Control Systems Toolbox for 

Matlab is used to calculate the matrix K.  

 

Code obtained from the University of Michigan Control Tutorials website [6] was 

modified to obtain the controller gain K (See Appendix A.1). The weighting is set so 

that the position and angle each had a relative importance of 5000 compared to the 

control action. The modified code was run and the vector K obtained was  

 

[ ]97.4905.205919.52711.70 −−=K                 (14) 
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Figure 2-9 State-Space Controller  Impulse Response Model 

 

This controller was modelled in SIMULINK (Figure 2-9). The response to an impulse 

disturbance of 10N applied for 100ms was obtained and the plot of this response 

appears in Figure 2-10 below. As can be seen, the controller succeeds in restoring 

both the angle and pendulum to zero after a settling time of approximately 2s.  
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Figure 2-10 State-Space Controller  Impulse Response (Impulse: 10N for  100ms) 

 

This controller is based upon a linearised model and hence is expected to work when 

the assumptions taken to linearise the model are valid, i.e. when the angle, θ, is small. 
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To see how the controller works when the angle is quite large, the disturbance force 

needs to be bigger. Hence, the above system was modelled again with an impulse 

force of 150N again applied for 100ms. The response obtained is plotted in Figure 

2-11. 
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Figure 2-11 State-Space Controller  Impulse Response (Impulse: 150N for  100ms) 

 

Here, the perturbation to the system is too large for the controller to handle. The non-

linearities, assumed to be negligible when the controller was designed, begin to 

dominate when the angle gets too large and hence, the pole collapses and falls to 90°. 

 

Following this, the ability of the controller to bring the pendulum to its equilibrium 

position from an initial non-equilibrium position was investigated. As can be seen 

from Figure 2-12, when the initial angle is 30°, the controller successfully balances 

the pole. However, when the initial angle is increased to 35°, the pole collapses. This 

gives an indication of the region in which the controller can operate. 
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Figure 2-12 State-Space Controller  Balances Pole From Initial Angle of 30°°°° 
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Figure 2-13 State-Space Controller  fails to Balance Pole From Initial Angle of 35°°°° 

 

This controller successfully controls the system as long as the pole is not allowed to 

stray too much from the equilibrium position. When the pole angle gets too large it is 

unable to restore it to the upright position. A controller that can successfully achieve 
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this needs to be able to handle the non-linearities. For this reason, Fuzzy Logic 

Controllers are investigated to see if they can help solve the problem. 
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3 Fuzzy Logic And Fuzzy Control 
 

Fuzzy Control is based on the principles of Fuzzy Logic developed by Zadeh [14] in 

1965. It is a non-linear control method, which attempts to apply the expert knowledge 

of an experienced user to the design of a controller. In this chapter, the basic 

principles of fuzzy logic are presented as well as a demonstration of how these 

principles are applied to the control of engineering systems. 

 

3.1 Fuzzy Logic 

Fuzzy logic is based on the theory of fuzzy sets where variables can have differing 

degrees of membership of sets. This is unlike the more familiar crisp set theory where 

a variable is either a full member of a set or it is not a member of that set at all. The 

degree to which a variable belongs to a set can vary between 0 and 1. This can allow 

for the handling of borderline cases and other hard-to-categorise situations in a more 

intuitively satisfying way.  

 

A universe of discourse is defined as the whole range of fuzzy sets to which a variable 

can belong. Each set on this universe of discourse is referred to as a membership 

function and is often described using a ‘ linguistic variable’ . On a universe of 

discourse, a variable has a degree of membership of each membership function that 

varies between 0 and 1. 

 

Fuzzy Logic uses rules with antecedents and consequents to produce outputs from 

inputs. The antecedents are the inputs that are used in the decision-making process or 

the “IF”  parts of the rules. The consequents are the implications of the rules or the 

“THEN” parts. 

 

3.1.1 Fuzzy Logic Example 

An example of a fuzzy set is the set of humans who could be described as young. 

Most people would agree that anyone aged between zero and twenty could be 

described as being definitely young, whereas anyone over forty would be described as 
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not at all young. The ages between twenty and forty are more of a grey area, however. 

The closer a person’s age is to twenty the more readily they could be described as 

young.  This fuzzy set is displayed in Figure 3-1 below. According to this fuzzy set a 

person aged fifteen is definitely young, i.e. their degree of membership of the fuzzy 

set Young is one. However, it is less clear-cut whether a person aged thirty could be 

described as young, i.e. their degree of membership is less than one, in this example, 

0.5. 
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Figure 3-1 The Fuzzy Set “ Young”  

 

The Universe of Discourse of a variable is the range of values that that variable can 

take. Many fuzzy sets can be defined on one Universe of Discourse and a single 

variable can have membership of more than one fuzzy set. For example, in Figure 3-2 

below we return to our “Age”  example and examine the Universe of Discourse on 

which, in addition to Young, the fuzzy sets Middle Aged and Old are added. Here we 

can see that a person aged 35 has membership of two sets, Young and Middle Aged 

with degrees of membership of 0.25 and 0.33 respectively. 
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Figure 3-2 “ Age”  Universe of Discourse 

 

3.2 Fuzzy Control 

Fuzzy Control applies fuzzy logic to the control of processes by utilising different 

categories, usually ‘error’  and ‘change in error’ , for the process state and applying 

rules to decide a level of output, i.e. a suitable control action. The linguistic variables 

used for both input and output variables are often of the form ‘negative large’ , 

‘positive small’ , ‘zero’  etc. A typical rule base for a two-input, single-output system 

with three membership functions per variable is shown in Table 3-1 

 

 

DE 

E N Z P 

 

N N N Z 

Z N Z P 

P Z P P 

Table 3-1 Simple Rule Base 

 

For example, using this rule base, if the error, E, was negative, N, and the change in 

error, DE, was positive, P, then the output would be zero, Z. This particular rule 

recognises the fact that although there is an error in the system, it is approaching zero 

so no control action needs to be applied. 
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3.2.1 Defuzzification 

Often input variables are members of more than one fuzzy set defined on their 

universe of discourse. This means that for each combination of inputs, there will, in 

general, be more than one rule fired. Also, the output needs to have a precise numeric 

value. Defuzzification is the process by which the sets of the various fired rules are 

combined to produce an output. 

 

To illustrate this, take the following example. The FLC has two inputs, Error and 

Change in Error and one output, Action. The universe of discourse for each of these 

variables is normalised so that their values always lie between –1 and 1. (Scaling 

gains are applied to each variable to give the appropriate range). There are five 

membership functions for each variable spaced as in Figure 3-3. The rule-base is as 

given in Table 3-2. 
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Figure 3-3 Membership Functions 
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 e 

de  
N B N S Z PS P B 

 N B   N B N B N S NS Z 

 N S   N B N S N S Z PS 

Z N S N S Z PS PS 

 P S   N S Z P S PS PB 

 P B   Z P S P S PB PB
 

Table 3-2 Typical Rule Base 

 
If the input error is 0.4, this means that it is a member of two sets, Z to a degree of 0.2, 

and PS, to a degree of 0.8 (see Figure 3-4). If the input change in error is –0.2, this is 

a member of Z to a degree of 0.6 and of NS to a degree of 0.4. Four rules altogether 

are fired in this situation and the degree to which each is fired is given by the 

minimum degree of the two inputs firing it. (This is how the boolean AND operation 

is performed in Fuzzy Logic). The rules fired and the degrees to which they are fired 

are: 

• If error is Z and change in error is Z then the control action is Z (degree 0.2) 

• If error is Z and change in error is NS, then the control action is NS (degree 0.2) 

• If error is PS and change of error is Z then the control action is PS (degree 0.6) 

• If error is PS and change of error is NS then the control action is Z (degree 0.4) 

 

−1 −0.75 −0.5 −0.25 0 0.25 0.5 0.75 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Membership Functions for Error, Change of Error and Action Variables

Variable Value

D
eg

re
e 

O
f M

em
be

rs
hi

p

NB NS Z PS PB 

 

Figure 3-4 Degree of Fir ing of Mfs 
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Combining these control actions, with each output fuzzy set cut off at the level 

corresponding to the degree to which they are fired, gives a shape as shown in Figure 

3-5.  This needs to be converted into a numerical value for the control action to be 

applied. The process of conversion is known as defuzzification and there are many 

methods of performing it. A very popular method is to take the centre of gravity of the 

resultant shape and apply a control action corresponding to the x-axis value of this 

point. In our example, the centre of gravity lies at (0.1528,0.2213) which means that 

the control action has a value of 0.1528. This is then scaled by the appropriate scaling 

factor to give a suitable output. 
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Figure 3-5 Area to be defuzzufied 

3.3 FLC Design 

When designing a Fuzzy Logic Controller (FLC) expert knowledge of the process to 

be controlled can be used to design the membership functions and rule base. 

Unfortunately there is no general procedure for designing a FLC from first principles, 

and heuristics are usually required as well as much trial and error to achieve a FLC 

that meets the design objectives and constraints. In this traditional approach, 

designing an FLC can be a laborious, time-consuming process [16]. These FLCs also 

tend to be non-portable to other applications. 
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However, another technique exists for optimising a FLC. Genetic Algorithms (GAs) 

are a class of algorithms that can be used to search large solution spaces for solutions 

that are close to optimal. How they work is explained in the next chapter. 
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4 Genetic Algor ithms 
 

Genetic Algorithms are reliable and robust methods for searching solution spaces [1], 

[5]. They are inspired by the biological theory of evolution through natural selection 

and much of the terminology is similar. 

 

4.1 Genetic Algor ithm Basics 

A chromosome is an encoded string of possible values for the parameters to be 

optimised. These chromosomes can be made up of real-valued or binary strings. Often 

one of the main challenges in designing a genetic algorithm to find a solution to a 

problem is finding a suitable way to encode the parameters. 

 

A set of potential solutions, called a population, is created. Each member of this set is 

referred to as an individual and they are evaluated by decoding the parameter values 

from the chromosomes and applying them to the problem to see how well they 

perform the task at hand (the objective that is to be optimised). The score that an 

individual achieves at performing the required task is called its fitness. 

 

After the fitness of each individual has been calculated, a procedure known as 

selection is performed. Individuals are selected to contribute towards creating the next 

generation, the probability of selection being related to the individual’s fitness. 

 

Once selection has occurred, crossover takes place between pairs of selected 

individuals. The strings of two individuals are mixed. In this way, new individuals are 

created that contain characteristics that come from different hereto relatively 

successful individuals. 

 

A third operation that occurs is mutation, the random changing of bits in the 

chromosome. It is generally performed with a relatively low probability. Mutation 

ensures that the probability of searching a given part of the solution space is never 

zero. 
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There are many ways in which these different operations can be applied. Different 

algorithms can be used for each and they can also be applied with varying degrees of 

probability. Some of the more popular algorithms for each of these operations are now 

examined and their effects on the GA’s performance is investigated. 

 

4.2 Selection Algor ithms 

A popular selection algorithm is stochastic sampling with replacement, more 

commonly known as the “Roulette Wheel”  algorithm, so called because this method 

works in a way that is analogous to a roulette wheel. Each individual in a population 

is allocated a share of a wheel, the size of the share being in proportion to the 

individual’s fitness. A pointer is spun (a random number generated) and the individual 

to which it points is selected. This continues until the requisite number of individuals 

has been selected. An individual’s probability of selection is thus related to its fitness 

ensuring that fitter individuals are more likely to leave offspring. A problem with this 

approach is that the number of times an individual is actually selected has a high 

variance so there is no guarantee that fitter individuals will be represented in the next 

generation. 

 

Stochastic Remainder Selection is another popular algorithm. In this method the 

expectation of the number of times selected is calculated for each individual. The 

integer portions of this expectation for each individual are assigned deterministically 

and the fractional remainders are assigned in the same way as in roulette wheel 

selection. For example, an individual whose expectation of number of times selected 

was 2.4 would be certain of being selected twice and the probability of being selected 

a third time would be 0.4. This approach reduces the variance associated with the 

roulette wheel algorithm and ensures that all individuals with above-average fitness 

will be represented in the next generation. 
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4.3 Crossover  Algor ithms 

Once selection is finished crossover is performed. Individuals are paired for mating 

and by mixing their strings new individuals are created. The most basic crossover 

algorithm is known as Single Point Crossover. A single point along the string is 

chosen and the strings are swapped over at this point. 

 

Parent 1 101 | 11100 

Parent 2 110 | 10010 

Child 1 101 10010 

Child 2 110 11100 

Figure 4-1 Single Point Crossover  

 

Multipoint crossover algorithms extend simple crossover by selecting multiple 

crossover points and alternately assigning to the first or second offspring the portions 

of string between these points.  

 

Parent 1 10 | 111 | 100 

Parent 2 11 | 010 | 010 

Child 1 10 010 100 

Child 2 11 111 010 

Figure 4-2 Multi-point Crossover  

 

Uniform crossover is another crossover algorithm. This time a random mask of 1s and 

0s of the same length as the parent strings is generated. If a bit in the mask is 1 then 

the corresponding bit in the first child will come from the first parent and the second 

parent will contribute that bit to the second offspring. If the mask bit is 0 the first 

parent contributes to the second child and the second parent to the first child.  
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Parent 1 10111100 

Parent 2 11010010 

Mask 01001101 

Child 1 10011110 

Child 2 11110000 

Figure 4-3 Uniform Crossover  

 

Uniform crossover is the most disruptive of the crossover algorithms [15], i.e. it is the 

most likely to cause neighbouring bits that contribute in a positive way to the fitness 

of the individual to be split up. However at the same time, uniform crossover allows 

for more extensive searching of the solution space as there are significantly more 

potential offspring using this method. 

4.4 Mutation Algor ithms 

For binary codings, there is really only one way to mutate. For each bit generate a 

random number and if it is less than the specified mutation probability, flip the bit, 

i.e., if it is a 1 change it to 0 or vice versa. This mutation probability is generally kept 

quite low and is constant throughout the lifetime of the GA. However, a variation on 

this basic algorithm changes the mutation probability throughout the lifetime of the 

algorithm, starting with a relatively high rate and steadily decreasing it as the GA 

progresses. This allows the GA to search more for potential solutions at the outset and 

to settle down more as it approaches convergence. 

 

When real-valued codings are used, the mutation algorithm can be more complex. 

Many different algorithms are used some of which are as follows: 

• Uniform Mutation: A random value within the constraints of the variable is 

chosen. 

• Boundary Mutation: The variable is set to either its lower or upper bound. 

• Non-Uniform Mutation: The variable is assigned a value based on a bell curve 

that becomes progressively narrower as the GA progresses. This ensures that as 
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convergence is approached, the range within which a variable can be mutated 

also narrows. 

 

4.5 Elitism 

With crossover and mutation taking place, there is a high risk that optimum solutions 

may be lost as there is no guarantee that these operations will preserve fitness. To 

combat this elitist models are often used [1]. In these models, the best individual  

from a population is saved before any of the operations take place. After the new 

population is formed and evaluated, it is examined to see if this best structure has 

been preserved. If not, the saved copy is reinserted back into the population, usually at 

the expense of the weakest member. The GA then proceeds to perform the operations 

on this population. 

 

4.6 Encoding 

Genetic Algorithms can be performed using either binary or real-valued encodings. 

With binary encoding, each parameter is converted into a binary string. These strings 

are concatenated and the genetic operations are performed on this concatenated string. 

With real-valued encoding, the parameters are kept in their real number format. Both 

forms of encodings are used in practice.  

 

The advantages of using a binary format is that it  

… maximises the number of hyperplane partitions directly available in the 

encoding for schema processing. [15] 

In other words, binary alphabets allow for greater sampling of the solution space and 

for the processing of more combinations of alleles. 

 

However encoding using higher cardinalities can be more efficient. For example, if a 

certain parameter could take on five possible values then it would need to be encoded 

using three bits in a binary scheme. However, this leads to eight possible alleles, three 

of which are superfluous. Using a five-letter alphabet in this case would lead to more 

efficient coding. 
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4.7 Investigating GA Parameters 

Other factors also have an effect on how the GA performs. These include population 

size, mutation probability and crossover probability among others. To investigate 

how some of these factors affected the GA an experiment was performed using a test 

function with multiple maxima.  

 

The test function is )5cos(2)7sin(58 xx −+ . This function is plotted in Figure 4-4. As 

can be seen from the plot, this function has many maxima whose peak values are 

different. It is hoped that the GA searching this solution space will find the peak value 

in this range which occurs at x = 5.618, y = 14.958 or somewhere close to it. There 

are also two local maxima whose peaks fall just short of the global peak. Those 

searches that succeed in avoiding getting stuck at these local maxima are those whose 

properties should be noted and emulated. 
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Figure 4-4 Test Function with Multiple Maxima 

 

To perform the GA, Matlab was used in conjunction with the GAOT toolbox, which 

is open-source code provided by Houck et al. [7]. An objective function has to be 

provided for this toolbox that evaluates the string passed in. This code is shown 

below. 
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f unct i on [ x ,  mul t i maxval ]   = mul t i max( x, Ops)  
%Eval uat es t he t est  mul t i pl e maxi ma f unct i on  
%f or  t he GAOT t ool box 
 
mul t i maxval  = 8 + ( 5* s i n( 7* x)  -  2* cos( 5* x) ) ;  

Listing 4-1Code for  Test Objective Function 

 

To apply the parameters to the GA a script file was written in which the essential 

parameters are set. This file is listed in Appendix A.2. Ten different runs of the GA 

were performed, each for 100 generations. The parameters for these runs are given in 

Table 4-1.  To implement some of the algorithms in these runs new Matlab .m files 

were written to supplement the GAOT toolbox. These were stocRemSelec.m, which 

performs Stochastic Remainder Selection, and maskXover.m which performs uniform 

crossover. The code for these files is listed in Appendices A.4 and A.5. 

 

Run 
Population 

Size 

Selection 

Algorithm 

Crossover 

Algorithm 

Crossover 

Probability 

Mutation 

Probability 

Best 

Find 
Gen 

1 10 Roulette Uniform 0.5 0.001 14.586 16 

2 200 Stoc. Rem. Single Pt. 1.0 0.1 14.958 77 

3 200 Stoc. Rem. Uniform 1.0 0.01 14.958 16 

4 10 Stoc. Rem. Uniform 1.0 0.01 14.632 28 

5 50 Stoc. Rem. Uniform 1.0 0.01 14.958 86 

6 100 Stoc. Rem. Uniform 1.0 0.01 14.958 41 

7 50 Stoc. Rem. Single Pt. 1.0 0.01 14.958 20 

8 50 Stoc. Rem. Uniform 0.5 0.01 14.958 13 

9 50 Roulette Uniform 1.0 0.01 14.958 12 

10 50 Stoc. Rem. Uniform 1.0 0.1 14.958 66 

Table 4-1 Parameters for  GA Runs 

Of these ten runs only runs 1 (Figure 4-5) and 4 failed to come to within 1% of the 

actual peak value within the first hundred generations. In both of these cases the run 

converged to the final value before the thirtieth generation suggesting that both of 

these runs got stuck at a local maximum. This suggests strongly that population size 

has a strong bearing on the performance of a genetic algorithm. 
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Figure 4-5 Run 1 

Runs 2 (Figure 4-6) and 10 (Figure 4-7) both have high mutation rates (10%). As the 

average value of the test function is 8.02 and the mean fitness of the individuals for 

these runs does not go much higher than this, it can be seen that high mutation rates 

render the GA as almost a random search, i.e., the purposefulness of the search is 

reduced significantly. 
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Figure 4-6 Run 2 
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Figure 4-7 Run 10 

 

Runs 3 to 6 differ in only their population size. Run 5 (Figure 4-8) performed well as 

the mean fitness is significantly larger than that of a random search while it remains 

low enough to suggest that the GA is doing a significant amount of searching of the 

solution space.  This is desirable as it increases the likelihood of the GA finding a 

better solution (even though we know there isn’ t one in this case). If the GA 

converges too quickly (prematurely), it is more likely to get stuck in a local 

maximum. 
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Figure 4-8 Run 5 
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Using the parameters of Run 5 as a baseline, the effects of changing the other 

parameters are then investigated. In Run 7 (Figure 4-9), the crossover algorithm 

changes from uniform to single-point crossover. This has the effect of increasing the 

rate at which the mean fitness approaches the maximum fitness, showing that single-

point crossover is indeed less disruptive than uniform crossover. 
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Figure 4-9 Run 7 

 

In Run 8, the crossover rate is changed to 0.5. Again, this leads to less disruption and 

hence quicker convergence. These runs suggest that instead of large population sizes a 

medium-sized population used in conjunction with stochastic remainder selection and 

high crossover rates can be quite effective. 

 

The roulette wheel selection algorithm is tried in Run 9 (Figure 4-10). This also leads 

to quick convergence. Perhaps because of the reduced variance in selection 

probabilities, the less fit individuals contribute more consistently in the Stochastic 

Remainder Selection Algorithm than in the Roulette Wheel one. This however should 

be confirmed with more investigation. 
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Figure 4-10 Run 9 

 

Having gained a good knowledge of how various parameters affect GA performance, 

the GA can now be applied to the main task of optimising a FLC. Before this can be 

done, a way of automating the design of the FLC in Matlab needs to be devised. This 

problem is tackled in the next chapter. 
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5 Designing a Fuzzy Logic Controller Using 

Matlab 
 

In this chapter, a demonstration is given of how to automate the design of a Fuzzy 

Logic Controller. The assumptions used and the constraints introduced to simplify this 

process are explained. Reference is made to the Matlab code that is written to 

implement this process and a summary of how this code works is provided. 

5.1 Assumptions and Constraints 

To apply the Fuzzy Logic Controller to the Inverted Pendulum System, certain 

properties of the system are exploited so that the design of the controller can be made 

easier. As the system is symmetrical, it is assumed that symmetrical membership 

functions about the y-axis will provide a valid controller. A symmetrical rule-base is 

also assumed. 

 

• Other constraints are also introduced to the design of the FLC: 

• All universes of discourses are normalised to lie between –1 and 1 with scaling 

factors external to the FLC used to give appropriate values to the variables.  

• It is assumed that the first and last membership functions have their apexes at –1 

and 1 respectively. This can be justified by the fact that changing the external 

scaling would have similar effect to changing these positions. 

• Only triangular membership functions are to be used. 

• The number of fuzzy sets is constrained to be an odd integer greater than unity. In 

combination with the symmetry requirement, this means that the central 

membership function for all variables will have its apex at zero.  

• The base vertices of membership functions are coincident with the apex of the 

adjacent membership functions. This ensures that the value of any input variable 

is a member of at most two fuzzy sets, which is an intuitively sensible situation. It 

also ensures that when a variable’s membership of any set is certain, i.e. unity, it 

is a member of no other sets. 
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Using these constraints the design of the membership functions can be described 

using two parameters: 

• The number of membership functions 

• The positioning of the triangle apexes 

 

5.2 Spacing Parameter  

The second parameter specifies how the centres are spaced out across the universe of 

discourse. A value of one indicates even spacing, while a value larger than unity 

indicates that the membership functions are closer together in the centre of the range 

and more spaced out at the extremes as shown in Figure 5-1. The position of each 

centre is calculated by taking the position the centre would be if the spacing were 

even and by raising this to the power of the spacing parameter. For example, in the 

case where there are five sets, with even spacing (p=1) the centre of one set would be 

at 0.5. If p is set to two, the position of this centre moves to 0.25. If the spacing 

parameter is set to 0.5 then this centre moves to 0.707 in the normalised universe of 

discourse. 
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Figure 5-1 Effects of Spacing Parameters on Mfs 
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This method of designing the membership functions is inspired by the work of Park et 

al. [8] and Cheong et al [9]. It does mean that there is a reduction in the number of 

possible FLCs than if the design was fully flexible but the trade-off is that the design 

process is made much simpler. Also it is felt that even within these constraints there is 

sufficient flexibility to allow a FLC that meets the design requirements to be built. 

5.3 Designing the Rule-Base 

As well as specifying the membership functions, the rule-base also needs to be 

designed. Again ideas presented by Park et al. [8] were used. In specifying a rule 

base, characteristic spacing parameters for each variable and characteristic angles for 

each input variable less one are used to construct the rules.  

 

Certain characteristics of the rule-base are assumed in using the proposed construction 

method: 

• Extreme outputs more usually occur when the inputs have extreme values while 

mid-range outputs generally are generated when the input values are mid-range. 

• Similar combinations of input linguistic values lead to similar output values 

 

Using these assumptions the output space is partitioned into different regions 

corresponding to different output linguistic values. How the space is partitioned is 

determined by the characteristic spacing parameters and the characteristic angle. The 

angle determines the slope of a line1 through the origin on which seed points are 

placed. The positioning of the seed points is determined by a similar spacing method 

as was used to determine the centres of the membership functions. 

 

Grid points are also placed in the output space representing each possible 

combination of input linguistic values. These are spaced in the same way as before. 

The rule-base is determined by calculating which seed-point is closest to each grid 

point. The output linguistic value representing the seed-point is set as the consequent 

of the antecedent represented by the grid point. This is illustrated in Figure 5-2, 

which is a graph showing seed points (blue circles) and grid-points (red circles). 
                                                
1 For two input (2-D) variables the angle of the line with the x-axis needs to be specified. For three 
inputs (3-D) two angles need to be specified to position the line, and so on. Therefore the number of 
characteristic angles needed is one less than the number of input variables. To account for the lost 
degree of freedom note that the line is fixed to pass through the origin. 
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Table 5-1 shows the derived rule base. The lines on the graph delineate the different 

regions corresponding to different consequents. The parameters for this example are 

0.9 for both input spacings, 1 for the output spacing and 45° for the angle. 
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Figure 5-2 Seed Points and Gr id Pts For  Rule-Base Construction 
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Table 5-1 Der ived Rule Base 

5.4 Matlab Implementation 

To implement these design methodologies in Matlab, .m function files were written. 

These functions make use of the Fuzzy Logic Toolbox for Matlab in creating the 

fuzzy logic controller. Two function files create_mfs.m and create_rules.m 
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respectively create the membership functions and the rule-base. A third function 

make_fis.m puts together the Fuzzy Inference System (FIS) by using these two 

functions. 

 

The code for make_fis.m is listed in Listing 5-1. Firstly, error checking is performed 

to ensure that the parameters are valid. Once this is done, create_mfs.m is called to get 

the parameters for the membership functions of each of the variables.  Then a suitable 

rule-base is created for each of the output variables by calling create_rules.m, which 

returns a rules matrix in the format required by the Fuzzy Logic Toolbox. This 

information is then put together in a suitable way to create the FIS. Only triangular 

membership functions can be created using this function. 

 

f unct i on t he_f i s = make_f i s( i np, out , n, pm, ps, t het a_s)  
%MAKE_FI S        Cr eat e a FI S based on i nput t ed par amet er s 
% 
%t he_f i s = make_f i s( i np,  out ,  n,  pm,  ps,  t het a_s)  
%i np        Number  of  i nput  var i abl es 
%out         Number  of  out put  var i abl es 
%n          Col umn vect or  of  l engt h i np+out  cont ai ni ng t he number  
%           of  member shi p f unct i ons per  var i abl e 
%pm         Col umn vect or  of  l engt h i np+out  i ndi cat i ng how t he  
%           member shi p f unct i ons ar e spr ead f or  each var i abl e 
%ps         Mat r i x of  s i ze i np+1 x out  i ndi cat i ng how t he r ul e-  
%           base i s % f or med 
%t het a_s    Mat r i x of  s i ze i np- 1 x out .  Each col umn cont ai ns t he  
%           seed angl es f or  t he r ul e mat r i ces 
% 
%Cr eat ed By Joe For an Jul y 2002 
 
i f  ~i sposi nt ( i np)  |  ~i sposi nt ( out )  
   er r or ( ' i np and out  shoul d be posi t i ve i nt eger  scal ar s' )  
end 
 
i f  s i ze( n)  ~= [ i np+out  1]  
   er r or ( ' n shoul d be a col umn vect or  whose l engt h i s equal  t o t he 
number  of  i nput s and out put s' )  
end 
 
i f  s i ze( pm) ~= [ i np+out  1]  
   er r or ( ' pm shoul d be a col umn vect or  whose l engt h i s equal  t o 
t he number  of  i nput s and out put s' )  
end 
 
i f  s i ze( ps) ~= [ i np+1 out ]  
   er r or ( ' pm shoul d be a col umn vect or  whose l engt h i s equal  t o 
t he number  of  out put s' )  
end 
 
i f  s i ze( t het a_s)  ~= [ i np- 1 out ]  
   er r or ( ' t het a_s shoul d be a mat r i x of  s i ze i np- 1 x out ' )  
end 
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%Get  t he member shi p f unct i on par amet er s 
mf par  = zer os( i np+out , 3* max( n) ) ;  
 
f or  i  = 1: i np+out  
   mf par ( i , 1: 3* n( i ) )  = cr eat e_mf s( n( i ) , pm( i ) ) ;  
end 
 
%Cr eat e t he r ul e mat r i x 
f or  i  = 1: out  
   r ul e_mat  = cr eat e_r ul es( i np, [ n( 1: i np) ;  n( i np+i ) ] ,  ps( : , i ) ,  
t het a_s( : , i ) ) ;  
   i f  i  == 1 
      r ul es = r ul e_mat ;  
   el se 
      r ul es( : , i np+i +1: i np+i +2)  = r ul es( : , i np+i : i np+i +1) ;  
      r ul es( : , i np+i )  = r ul e_mat ( : , end- 2) ;  
   end 
end 
 
%Cr eat e t he FI S 
t he_f i s = newf i s( ' f i sname' ) ;  
 
f or  i  = 1: i np 
   var name = [ ' i np'  i nt 2st r ( i ) ] ;  
   r ange = [ mf par ( i , 2)  mf par ( i , n( i ) * 3- 1) ] ;  
   t he_f i s = addvar ( t he_f i s, ' i nput ' , var name, r ange) ;  
end 
f or  i  = i np+1: i np+out  
   var name = [ ' out '  i nt 2st r ( i - i np) ] ;  
   r ange = [ mf par ( i , 2)  mf par ( i , n( i ) * 3- 1) ] ;  
   t he_f i s = addvar ( t he_f i s, ' out put ' , var name, r ange) ;  
end 
 
%I ni t i al l y  onl y t r i angul ar  member shi p f unct i ons ar e t o be al l owed.  
f or  i =1: i np 
   f or  j  = 1: n( i )  
      mf name = i nt 2st r ( j ) ;  
      t he_f i s = addmf ( t he_f i s, ' i nput ' , i , mf name, ' t r i mf ' ,  
mf par ( i , ( ( j * 3) - 2) : ( j * 3) ) ) ;  
   end 
end 
f or  i  = i np+1: i np+out  
   f or  j  = 1: n( i )  
      mf name = i nt 2st r ( j ) ;  
      t he_f i s = addmf ( t he_f i s, ' out put ' , i -
i np, mf name, ' t r i mf ' , mf par ( i , ( ( j * 3) - 2) : ( j * 3) ) ) ;  
   end 
end 
 
t he_f i s = addr ul e( t he_f i s,  r ul es) ;  

Listing 5-1 make_fis.m 

 

The function that calculates the appropriate parameters for these membership 

functions, create_mfs.m is listed in Listing 5-2. This function takes two parameters, 

the number of membership functions and the spacing parameter for the centres of 

these functions. Based on these parameters, the centres of each membership function 
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are calculated. As the base vertices are at the same positions as the centres of adjacent 

membership functions, calculating the full set of parameters is then a relatively easy 

task, as only vertex coordinates are required for triangular membership functions. 

These parameters are returned by the function. 

 

f unct i on mf par ams = cr eat e_mf s( no_mf s, p)  
%CREATE_MFS Cal cul at e MFpar ams f or  a f uzzy var i abl e 
% 
%Onl y t r i angul ar  MFs can be cr eat ed.  The MFs ar e such t hat  t he 
%base ver t i ces ar e coi nci dent  wi t h t he apexes of  adj acent  
%t r i angl es.  
% 
%no_mf s   The number  of  member shi p f unct i ons 
%p        A t uni ng par amet er  whi ch i ndi cat es how t he cent r es ar e  
%         spaced out .  1 i ndi cat es even spaci ng,  <1 i ndi cat es  
%         compr essed at  t he ext r emes 
%         whi l e >1 i ndi cat es compr essi on at  t he cent r e 
 
n = ( no_mf s- 1) / 2;  %Or der  of  member shi p f unct i ons 
i f  ~i sposi nt ( n)  
   er r or ( ' The number  of  member shi p f unct i ons shoul d be a posi t i ve 
odd i nt eger  gr eat er  t han 1' )  
end 
 
i f  ~( p>0)  
   er r or ( ' p shoul d be a posi t i ve number ' )  
end 
 
%Cal cul at e how t he cent r es ar e spaced 
c = zer os( n, 1) ;  
f or  i  = 1: n;  
   c( i )  = ( i / n) ^ p;  
end 
 
%Al l ocat e cent r e posi t i ons 
cent r es = zer os( no_mf s, 1) ;  
 
f or  i  = 1: no_mf s 
   i f  i  < n+1 
      cent r es( i )  = - c( n- i +1) ;  
   el sei f  i  == n+1 
      cent r es( i )  = 0;  
   el se 
      cent r es( i )  = c( i - n- 1) ;  
   end 
end 
 
%Cr eat e t r i angul ar  mf s based on t hese cent r es 
%The base ver t i ces ar e coi nci dent  wi t h t he apexes of  
%t he adj acent  t r i angl e.  
pt  = zer os( no_mf s, 3) ;  
 
f or  i  = 1: no_mf s 
   i f  i  == 1 
      pt ( i , 1)  = 2* cent r es( i ) - cent r es( i +1) ;  
   el se  
      pt ( i , 1)  = cent r es( i - 1) ;  
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   end 
   i f  i  ==no_mf s 
      pt ( i , 3)  = 2* cent r es( i ) - cent r es( i - 1) ;  
   el se 
      pt ( i , 3)  = cent r es( i +1) ;  
   end 
   pt ( i , 2)  = cent r es( i ) ;  
end 
 
mf par ams = zer os( 1, no_mf s* 3) ;  
f or  i  = 1: no_mf s 
   mf par ams( 3* i - 2: 3* i )  = pt ( i , : ) ;  
end 

Listing 5-2 create_mfs.m 

 

The next piece of code used is create_rules.m given in Listing 5-3. This function 

returns the rule-base based on the parameters passed in. These parameters are the 

number of membership functions per variable, the spacing parameters for each 

variable and the characteristic angles for the seed line. Firstly the co-ordinates of the 

seed points are calculated. The grid-point co-ordinates are then calculated. The 

consequents for each rule are then generated by, for each grid-point, measuring the 

distance to each seed point and finding the shortest. The antecedents and consequents 

are then returned in a matrix in the format required by the Fuzzy Logic Toolbox. 

 

f unct i on r ul emat  = cr eat e_r ul es( i np, no_mf s, p_s, t het a_s)  
%CREATE_RULES Cr eat e a r ul e mat r i x based on t he i nput  
%char act er i st i c par amet er s 
% 
%r ul emat     The r ul ebase mat r i x t o be used by a FI S 
% 
%i np      Number  of  i nput  var i abl es 
%no_mf s   Vect or  of  number  of  member shi p f unct i ons -  shoul d  
%         be of  l engt h one mor e t han no.  of  i nput s.  The l ast  one 
%         i s  number  of  out put  member shi p f unct i ons.  
%p_s      A vect or  of  par amet er s i ndi cat i ng spaci ng of  seed pt s.   
%         and gr i d pt s.   
%t het a_s  Speci f i es sl ope of  seed l i ne.  
% 
%Wr i t t en by Joe For an Jul y 2002 
% 
%Last  Modi f i ed 20- 08- 02 
 
i f  s i ze( i np)  ~= [ 1 1]  |  ~i sposi nt ( i np)  
   er r or ( ' i np shoul d be a posi t i ve i nt eger  scal ar ' )  
end 
 
i f  s i ze( no_mf s)  ~= [ i np+1 1]  
   er r or ( ' n shoul d be a col umn vect or  whose l engt h i s one gr eat er  
t han t he number  of  i nput  var i abl es' )  
end 
 
i f  s i ze( t het a_s)  ~= [ i np- 1 1]  
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   er r or ( ' t het a_s shoul d be a col umn vect or  whose l engt h i s one 
l ess t han t he number  of  i nput  var i abl es' )  
end 
 
i f  s i ze( p_s)  ~= [ i np+1 1]   
   er r or ( ' p_s shoul d be a col umn vect or  whose l engt h i s one 
gr eat er  t han t he number  of  i nput  var i abl es' )  
end 
 
mf Or der  = ( no_mf s- 1) / 2;  
 
f or  i  = 1: l engt h( mf Or der )  
   i f  ~i sposi nt ( mf Or der ( i ) )  
      er r or ( ' The number  of  out put  member shi p f ns.  shoul d be an odd 
i nt eger  of  at  l east  val ue 3' )  
   end 
end 
 
out Or der  = mf Or der ( end) ;  
% Fi nd posi t i ons of  seed pt s.  al ong seed hyper pl ane 
c = zer os( out Or der , 1) ;  
f or  i  = 1: out Or der ;  
   c( i )  = ( i / out Or der ) ^ p_s( end) ;  
end 
 
n_out  = no_mf s( end) ;  
%Get  t he co- or di nat es of  t he seed poi nt s 
%Ther e ar e n_out  seed poi nt s and t hey need t o be speci f i ed  
%i n n- di mensi onal  space,  n bei ng equal  t o i np 
co_or ds = zer os( i np, n_out ) ;  
 
%Speci f y x- posi t i on of  co_or ds 
f or  j  = 1: n_out  
   i f  j  < out Or der +1 
      co_or ds( 1, j )  = - c( out Or der - j +1) ;  
   el se 
      i f  j  == out Or der +1 
         co_or ds( 1, j )  = 0;  
      el se 
         co_or ds( 1, j )  = c( j - out Or der - 1) ;  
      end 
   end 
end 
 
%To get  co- or di nat es i n ot her  di mensi ons mul t i pl y by t an 
%of  appr opr i at e angl e 
f or  k = 2: i np 
   co_or ds( k, : )  = co_or ds( 1, : ) * t an( t het a_s( k- 1) ) ;  
end 
 
%Nor mal i se t he co_or di ant es t o be bet ween - 1 and 1 
nor m_f act  = max( max( abs( co_or ds) ) ) ;  
co_or ds = co_or ds. / nor m_f act ;  
 
 
%Get  t he gr i d poi nt  co- or di nat es 
no_r ul es = pr od( no_mf s( 1: i np) ) ;  
c = zer os( i np, ( max( no_mf s( 1: i np) ) - 1) / 2) ;  
cent r es = zer os( i np, max( no_mf s( 1: i np) ) ) ;  
ant ecedent s = zer os( no_r ul es, i np) ;  
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%Space out  gr i d- poi nt s i n each di mensi on 
f or  i  = 1: i np 
   f or  j  = 1: no_mf s( i ) ;  
      c( i , j )  = ( j / ( ( no_mf s( i ) - 1) / 2) ) ^ p_s( i ) ;  
   end 
end 
 
f or  i  = 1: i np 
   f or  j  = 1: no_mf s( i )  
      i f  j  < mf Or der ( i ) +1 
         cent r es( i , j )  = - c( i , mf Or der ( i ) - j +1) ;  
      el sei f  j  == mf Or der ( i ) +1 
         cent r es( i , j )  = 0;  
      el se 
         cent r es( i , j )  = c( i , j - mf Or der ( i ) - 1) ;  
      end 
       
   end 
end 
 
%Cr eat e each possi bl e combi nat i on of  ant ecedent s 
f or  i  = 1: no_r ul es 
   f or  j  = 1: i np 
      i f  j  == i np 
         ant ecedent s( i , j )  = mod( i , no_mf s( i np) ) ;           
      el se 
         ant ecedent s( i , j )  = 
mod( cei l ( i / pr od( no_mf s( j +1: i np) ) ) , no_mf s( j ) ) ;  
      end 
       
      i f  ant ecedent s( i , j )  ==0 
         ant ecedent s( i , j )  = no_mf s( j ) ;  
      end 
   end 
end 
 
 
%Di st ance f r om each seed- poi nt  of  al l  gr i d- pt s 
r egi on = zer os( no_r ul es, n_out ) ;  
 
poi nt  = ones( no_r ul es, i np) ;  %Co- or di nat es of  each gr i d- poi nt  
 
%Cal cul at e di st ance f r om each gr i d- poi nt  t o each seed- poi nt  
f or  i  = 1: no_r ul es 
   f or  j  = 1: i np 
      poi nt ( i , j ) =cent r es( j , ant ecedent s( i , j ) ) ;  
   end 
   f or  j  = 1: n_out  
      r egi on( i , j )  = sum( ( poi nt ( i , : ) - co_or ds( : , j ) ' ) . ^ 2) ;  
   end 
end 
 
consequent  = zer os( no_r ul es, 1) ;  
 
%To ensur e f ul l  r ot at i on of  r ul es adj ust  t he r egi on f i ndi ng 
al gor i t hm accor di ng t o t he r egi me 
t emp = mean( t het a_s) ;  %Fi nd t he aver age angl e 
t emp = mod( t emp, 2* pi ) ;  %Map back t o bet ween 0- >360 degr ees 
 
%I f  r egi me i s i n l ef t - hand hal f - pl ane 
i f  180* t emp/ pi >90 & t emp* 180/ pi <=270 
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   t 2 = - 1;  
el se 
   t 2 =1;  
end 
 
f l i p =1;  
%Fi nd t he r egi on i n whi ch each gr i d_pt  l i es.  
f or  i  = 1: no_r ul es 
   i ndex = f i nd( r egi on( i , : ) ==mi n( r egi on( i , : ) ) ) ;  
   i f  s i ze( i ndex)  == [ 1 1]  
      consequent ( i )  = i ndex;  
   el se %i f  gr i d- poi nt  i s  equi di st ant  f r om t wo seed- poi nt s 
      i f  f l i p ==1 
         consequent ( i )  = i ndex( 1) ;  
      el se 
         consequent ( i )  = i ndex( 2) ;  
      end 
      f l i p = - f l i p;  
   end 
       
   i f  t 2 == - 1 %Swap over  consequent s i f  we ar e i n l ef t - hand hal f -
pl ane 
      consequent ( i )  = n_out +1- consequent ( i ) ;  
   end 
end 
 
 
r ul emat  = [ ant ecedent s consequent  ones( no_r ul es, 2) ] ;  

Listing 5-3 create_rules.m 

 

 

With all of this code a full FIS can be specified using only a few parameters. This is 

ideal for using a Genetic Algorithm to find an optimal FLC as the GA can work on 

these parameters and improve the FLC characteristics. How this is achieved is 

demonstrated in the next chapter. 
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6 Using Genetic Algor ithms to Design 

Fuzzy Logic Controllers 
 
In this chapter an attempt is made to apply GAs to achieve satisfactory design of a 

FLC. It is shown how designs can be evaluated to determine their efficacy. Results are 

presented from various different experimental runs to show the effectiveness of the 

approach taken and a resultant FLC is then evaluated more thoroughly. 

6.1 Evaluation Functions 

To apply a Genetic Algorithm to the design of Fuzzy Logic Controllers, a means of 

evaluating different designs is required. This evaluation needs to be performed 

relatively quickly as a GA needs to be able to process large numbers of different 

combinations of parameters. 

 

Evaluation Functions are functions called by a GA to calculate the fitness of a set of 

parameters. The parameters are passed to the evaluation function, which processes 

them and returns a value corresponding to how well the parameters performed the 

task at hand. 

 

For this project the evaluation function run_fuzzy_pole_only.m was written. This is 

listed in Listing 6-1. This function firstly extracts the relevant parameters from the 

chromosome passed in. After performing some error checking, the parameters are 

used to create a Fuzzy Inference System (FIS) and set the appropriate scaling factors.  

 

A SIMULINK model is then called, from which a record of the error in the pole angle 

throughout the duration of the simulation is returned. The square of the error is 

multiplied by a time weight and the sum of this time weighted square error is inverted 

to give a fitness value. If the pole angle should at any stage of the simulation saturate, 

i.e. reach ±90°, then the simulation is stopped immediately so that time is not wasted 

modelling controllers that fail to balance the pole. In this case the fitness is calculated 
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as the time taken before the pole collapsed multiplied by 1x109. This gives a reward to 

designs that manage to keep the pole from collapsing that little bit longer. 

 

f unct i on [ chr om,  ef f ]  = r un_f uzzysi m( chr om, opt i ons)  
%RUN_FUZZYSI M Thi s i s t he eval uat i on f unct i on f or  t he f uzzy 
si mul at i on used by t he GA 
%Thi s r uns a 2 i nput  one out put  f unct i on 
% 
%chr om    The r eal - val ued chr omosome passed i n% 
%ef f       The cal cul at ed f i t ness val ue 
 
%Wr i t t en by:   Joe For an Jul y 2002 
% 
%Last  Modi f i ed:  Joe For an 07/ 08/ 2002 
 
n = chr om( 1: 3) ' ;  
pm = ( chr om( 4: 6) . ^ chr om( 10: 12) ) ' ;  
pr  = ( chr om( 7: 9) . ^ chr om( 13: 15) ) ' ;  
scal e = chr om( 16: 18) ' ;  
t het a = chr om( 19) ;  
i np = 2;  
out  = 1;  
 
i f  s i ze( n)  ~= [ i np+out  1]  
   er r or ( ' n shoul d be a col umn vect or  whose l engt h i s equal  t o t he 
number  of  i nput s and out put s' )  
end 
 
i f  s i ze( pm) ~= [ i np+out  1]  
   er r or ( ' pm shoul d be a col umn vect or  whose l engt h i s equal  t o 
t he number  of  i nput s and out put s' )  
end 
 
i f  s i ze( pr ) ~= [ i np+1 out ]  
   er r or ( ' pm shoul d be a col umn vect or  whose l engt h i s equal  t o 
t he number  of  out put s' )  
end 
 
i f  s i ze( t het a)  ~= [ i np- 1 out ]  
   er r or ( ' t het a_s shoul d be a mat r i x of  s i ze i np- 1 x out ' )  
end 
 
i f  s i ze( scal e)  ~= [ i np+out  1]  
   er r or ( ' scal e shoul d be a col umn vect or  whose l engt h equal s t he 
number  of  i nput s and out put s' )  
end 
 
gl obal  FUZZY_SCALI NG I NVPEND_FUZZY 
 
FUZZY_SCALI NG = scal e;  
 
I NVPEND_FUZZY = make_f i s( i np, out , n, pm, pr , t het a) ;  
 
t  = 0: 0. 01: 6;  
 
st abl e = 1;  
 
eval  ( ' s i m( ' ' s_i nvpen_f uzzy_di st ' ' , t ) ; ' , ' st abl e = 0; ' ) ;  
i f  st abl e == 0 |  s_Ti me( end) ~= t ( end)  
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   ef f  = 1e- 9* s_Ti me( end) * st abl e;  
el se 
   ef f  = 1/ ( ( s_Er r or . ^ 2) ' * s_Ti me) ;  
end 

Listing 6-1 Evaluation Function run_fuzy_pole_only.m 

 

A diagram of the SIMULINK model that is used is shown in Figure 6-1. The desired 

angle of the pole is 0°, i.e. upright. The error in the angle and the change of error are 

scaled by the appropriate gains (these parameters are also set by the GA) and the 

result is clipped so that it lies in the range –1 to 1. These inputs are fed into the FLC 

and the FLC’s output is then scaled by another gain. This force is applied to the 

system, which in turn, outputs the pendulum angle, angular speed, cart position and 

cart velocity. 
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Figure 6-1 Simulink Model used to evaluate FLCs 

 
A periodic disturbance is also applied to the system. This is a force of relatively large 

magnitude, which ensures that the arena in which the FLC is examined is a testing 

one. This disturbance is of the magnitude of 8kN and has a duration of 10ms (which is 

also the step time of the simulation) and is applied every two seconds, in alternately 

positive and negative directions. This disturbance perturbs the pendulum enough to 

make controlling the system a sufficiently challenging task. Each FLC is tested over 

three cycles, i.e. for six seconds. It is felt that this is enough time for an adequately 

large range of the system’s properties to be examined. 
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6.2 Parameter  Encoding 

To run a GA, a suitable encoding for each of the parameters and bounds for each of 

them needs to be decided. For this task the parameters given in Table 6-1 are used 

with the shown ranges and precisions. Binary encoding is used as it is felt that this  

allows the GA more to search the solution space more thoroughly. 

 
Parameter Range Precision No. of Bits 

Number of Membership Functions 3 –9 2 2 
Membership Function Spacing 0.1 – 1.0 0.01 7 

MF Spacing (Power to be Raised by) -1 – 1 2 1 
Rule-Base Scaling 0.1 – 1.0 0.01 7 

Rule-Base Spacing (Power to be Raised by) -1 – 1 2 1 
Input Scaling 0 – 100 0.1 10 

Output Scaling 0 – 10000 0.1 17 
Rule-Base Angle 0 – 2π π/512 11 

Table 6-1Parameters used for  encoding 

 

The numbers of membership functions are limited to the odd integers inclusive 

between three and nine. As most FLCs reported in the literature are within this range 

[12], this was felt to be a reasonable constraint to apply. The advantage of doing this 

is that this information can be captured in just two bits per variable.  

 
For the spacing parameters, two separate parameters are used. The first, with the 

range [0.1 – 1.0], determines the magnitude and the second, which takes only the 

values –1 or 1, is the power by which the magnitude is to be raised. This determines 

whether the membership functions compress in the centre or at the extremes. The 

precision required for the magnitude is 0.01, meaning that 8 bits are used in total for 

each spacing parameter. 

 
The scaling for the input variables is allowed to vary in the range [0 – 100], while that 

of the output variable is given the range [0 – 10,000]. These values were decided after 

a few trials of the GA using wider ranges as the values returned were found to lie in 

these ranges. 

 
For this encoding scheme the total number of bits per individual is 102. This means 

that there are 2102 or approximately 5x1030 potential solutions, an unknown but likely 

very small fraction of which represents viable controllers. This indicates that the 
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solution space is large despite the constraints that are introduced. If GAs succeed in 

finding close to optimal solutions in such a large space despite having no prior 

knowledge this would indicate their power. 

6.3 Running the GA 

Run 
Pop. 
Size 

Selection 
Routine 

Crossover 
Routine 

Crossover 
Probability 

Mutation 
Probability 

Best 
Fitness 

1 150 Stoc. Rem Uniform 1.0 0.01 1.1597 
2 50 Stoc. Rem Uniform 1.0 0.01 0.9105 
3 100 Stoc. Rem Uniform 1.0 0.01 0.9449 
4 100 Stoc. Rem Single Pt. 1.0 0.01 1.1171 
5 100 Stoc. Rem Uniform 0.5 0.01 1.1851 
6 50 Stoc. Rem Uniform 1.0 0.05 0.8880 
7 50 Roulette Uniform 1.0 0.01 1.0925 
8 50 Roulette Uniform 1.0 0.001 0.0141 
9 50 Stoc. Rem Single Pt. 0.5 0.05 1.2525 
10 50 Stoc. Rem Uniform 1.0 0.01 0.8937 

Table 6-2 Parameters for  GA Runs with FLC 

The file in which the GA parameters are set and which calls the main GA routine is 

ga_poleonly.m. The source code for this file is given in Appendix A.9 

ga_poleonly.mThis file calls the Matlab functions run_ga.m and initGa.m, which are 

modified versions of the routines provided with the GAOT toolbox. The code for 

these files is listed in Appendices A.10 and A.11 respectively. The reason modified 

code is used is 

• to eliminate some small bugs discovered in the process of converting from binary 

to real values and vice-versa (see also Appendix A.20) and  

• to change the way the progress of the GA was output to the screen. 

An elitist model was used for all runs of the GA also. 

 
Ten runs of the GA were performed for a hundred generations each. The details of 

these runs are listed in Table 6-2. Again the parameters that were varied were 

selection routine, crossover routine, crossover probability and mutation probability. 

The best controller was found during Run 9. This run was continued for a further two 

hundred generations, but the best fitness did not increase much. A plot of the progress 

of this GA run is shown in Figure 6-2.  
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Figure 6-2 Progress of GA that found best fitness 

 

Details of the FLC found by the GA are presented in Figure 6-3, Table 6-3 and Figure 

6-4. The Error variable was assigned seven membership functions, whereas both the 

error derivative and control actions were assigned nine membership functions. For 

both of the inputs, the membership functions are compressed towards the centre, 

while they were compressed at the extremes for the output. The control surface shown 

in Figure 6-4 shows that the mapping between the input and output spaces is highly 

linear. An advantage of FLCs over linear controllers is that they allow the creation of 

these kinds of mappings; the control surface of a two-input linear controller, no matter 

how well designed, will always be a plane in three-dimensional space [2]. 
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Figure 6-3 Membership functions of Optimised FLC 

 

    Rate of Change of Er ror  

    NB NM NS NZ Z PZ PS PM PB 

NB NB NB NB NB NM NM NS NZ NZ 
NM NB NM NS NS NZ NZ NZ NZ NZ 
NS NS NZ NZ NZ NZ NZ NZ NZ Z 
Z Z Z Z Z Z Z Z Z Z 

PS Z PZ PZ PZ PZ PZ PZ PZ PS 
PM PZ PZ PZ PZ PZ PS PS PM PB 

E
rr

or
 

PB PZ PZ PS PM PM PB PB PB PB 

Table 6-3 Rule-Base of Optimised FLC 
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Figure 6-4 Sur face Plot of Optimised FLC (Scaled) 
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In Figure 6-5 the impulse responses of this FLC and that of the linear controller 

examined in Chapter 2 are compared. It can be seen that while the pole collapses 

when controlled by the linear controller, it hardly moves when the FLC is used. 
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Figure 6-5 FLC and SSC Impulse Response Compar ison 

The response of the controller to a larger impulse is shown in Figure 6-6. This time 

the pole does move, but it is quickly brought under control and settles to the 

equilibrium position in about 0.1s. 
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Figure 6-6 Response To Large Impulse 

 

This FLC is also successful at bringing the pole to its equilibrium position from a 

large range of initial angles as shown in Figure 6-7. Interestingly, the settling time is 
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quicker for the initial angle of -89° than for -30°. This suggests that the FLC is better 

designed when the deviations are large and is not so well designed at smaller 

perturbations. This is further emphasised by comparing how it and the State-Space 

Controller balance a system with an initial angle of 5° as shown in Figure 6-8. To 

obtain a better controller, the evaluation may have to include smaller impulses as well 

as the larger ones used here. 
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Figure 6-7 Br inging Pole to Upr ight Position 
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Figure 6-8 Compar ison of FLC and SSC from Initial Angle of 5°°°° 
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6.4 Controlling Both Pole Angle and Car t Position 

These algorithms were run with the cart being allowed to move an infinite distance in 

either direction, i.e., no effort was made to control the cart’s position. As this would 

be impractical if a real controller were to be built, an attempt was made to use the 

Genetic Algorithm to find a Fuzzy Controller that could control both the angle and 

cart position. 

 

To this end, the Fuzzy Logic Controller used would have to have four input variables, 

the error and change in error for both angle and position. It was found that the time 

taken to evaluate the fitness for one individual was approximately one minute for five 

seconds of simulation time (This was on a machine whose processor speed was 1.3 

GHz). Thus, it took one hour to evaluate a single generation. This length of time was 

considered impractical and so this approach was abandoned. The reason the time had 

increased so much was as there was now four input variables, each being generally a 

member of two fuzzy sets, there was 24 rules fired per time-step. The extra time 

required to infer the control action slowed the simulation significantly. 

 

A new method was then tried. This time two two-input fuzzy controllers were used, 

one for the angle and one for the position. Their output actions were then added to 

give the actual force applied to the system. It was found that using the 8kN 

disturbance as used in the previous runs to test the controllers was too onerous a task 

and no controllers of significant fitness were found. The requirement was reduced to 

coping with a disturbance impulse of 1 kN and a controller that met this requirement 

was discovered by the GA. The response of this controller to this 1kN impulse is 

plotted in Figure 6-9. The controller in this case does keep the system close to the 

desired state, though there are still oscillations about this position.  
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Figure 6-9 Response to 1kN disturbance 

 

The response to a disturbance input of 150N was also plotted and is shown in Figure 

6-10. Even though the impulse was reduced, the controller still fails to remove the 

oscillations from the system.  
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Figure 6-10 Response to 150N disturbance impulse 

 

The combinations of FLC designed here is not an ideal controller. A four input FLC 

would probably work better but the time taken to find a good one through GAs is 

significant. Much work may have to be done to achieve this. 

 



55 

7 Online Genetic Algor ithms 
Online GAs applied to controllers are Genetic Algorithms that attempt to adjust the 

parameters of a controller during operation. When successfully implemented, they enable 

continuous improvement in performance. However, as they are operating on a real system, 

care must be taken to ensure that no action is imparted to the system that could cause 

damage. For this reason, online GAs are more difficult to design and are less flexible than 

offline GAs which only work on models of a system and can therefore handle inappropriate 

actions [17]. 

 

7.1 SIMULINK S-Functions 

To design an online GA, the first step taken was to try to apply it in SIMULINK. No pre-

existing software tools were available so the code for this needed to be written. This code 

was written in the form of S-functions, which are functions that allow the creation of user-

defined blocks in SIMULINK [18].  

 

Each block in SIMULINK has the following general characteristic. A vector of inputs is 

applied to the system and these inputs interact with the system states, also in vector form, to 

generate a vector of outputs. 

 

Figure 7-1 Simulink Block Character istics 

 

To create S-Functions, the user must write code that instructs SIMULINK on how to update 

the states and how to generate outputs. Therefore, the code written must have a special form. 

Each S-Function generally consists of sub-functions that initialise states, generate outputs 

and update state information. The only memory that the S-Function has is contained in the 

state vector so it is important that any information that needs to be carried over from time-

step to time-step is contained here. The size of the state vector is static which also introduces 

another constraint on how the code can be designed. 
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7.2 Implementing a GA in SIMULINK 

With all this in mind, an s-function was written to create a GA block for SIMULINK. This 

code is listed in Appendix A.12 The parameters passed into this block by the user are 

population size, a matrix of bounds for each variable, a vector of bits specifying how many 

bits are to represent each variable and the time allocated to each individual. The input to the 

block is the fitness of the set of parameters outputted in the previous time-step, while the 

block output is the set of chromosome parameters to be evaluated as well as details of the 

generation number and optimum fitness found so far. 

 

In the code to initialise the model, listed below, each bit of every individual is a system state. 

States are allocated for a tracker of the optimum individual found up to the present time as 

well. Another three states are also used, a generation counter, an individual counter and a 

store for the number of bits per individual. This is stored as a state so that it doesn’t need to 

be recalculated every simulation step. 

 

f unct i on [ sys, x0, st r , t s]  = 
mdl I ni t i al i zeSi zes( popSi ze, bounds, bi t s, per i od)  
 
numVar  = si ze( bounds, 1) ;  
i ni t Pop = i ni t ga( popSi ze, bi t s) ;  
numGenes = si ze( i ni t Pop, 2) ;  
gen = 1;  %Gener at i on count er  
 
s i zes = si msi zes;  
s i zes. NumCont St at es  = 0;  
s i zes. NumDi scSt at es  = ( popSi ze+1) * numGenes+3;  
si zes. NumOut put s     = numVar +3;  
si zes. NumI nput s      = 1;  
s i zes. Di r Feedt hr ough = 0;  
s i zes. NumSampl eTi mes = 1;  
 
sys = si msi zes( si zes) ;  
 
i ni t Pop = r eshape( i ni t Pop' , popSi ze* numGenes, 1) ;  %Make i ni t Pop a vect or  
 
x0  = zer os( si zes. NumDi scSt at es, 1) ;  
x0( 1: popSi ze* numGenes)  = i ni t Pop;  %Pl ace i ni t Pop i nt o st at e vect or  
x0( end- 2)  = numGenes;  %St or e t hi s val ue so i t  doesn' t  have t o be 
const ant l y r ecal cul at ed 
x0( end- 1)  = gen;  %Pl ace gener at i on count er  i nt o st at e vect or ;  
x0( end)  = 1;  %Tr acks whi ch chr omosome i s bei ng eval uat ed 
 
 
st r  = [ ] ;  
t s  = [ per i od 0] ;  

Listing 7-1 Initialising State Information 
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The code for updating the system states is presented in Listing 7-2. Firstly, the input is 

checked to make sure it is positive and if it isn’ t, is set to a low fitness value. This is to 

prevent fitness values of zero, which would cause division by zero in later routines. The 

input fitness is then assigned to the previous chromosome and compared to the present 

optimum, which is updated if necessary. If the GA has reached the end of a generation then 

the population is updated using selection, crossover and mutation. The states of the system 

are then updated with details of the new population. 
 

f unct i on [ sys]  = mdl Updat e( t , x, u, popSi ze)  
i nput  = u;  
i f  u<=0 
   i nput  =1e- 9;  
end 
numGenes = x( end- 2) ;  
cc = x( end) ;  
 
%Get  cur r ent  popul at i on i nt o mat r i x f or m 
pop = r eshape( x( 1: ( popSi ze+1) * numGenes) , numGenes, popSi ze+1) ' ;   
 
cur r ent _opt i mum = pop( end, end) ;  
 
%The f i t ness i n i nput  r ef er s t o t he pr evi ous chr omosome 
i f  cc>1 %Thi s i s because out put  occur s bef or e updat e 
   pop( cc- 1, end) =i nput ; %Read i n i nput  i nt o t he f i t ness val ue of  t he  
                       %pr evi ous chr omosome 
   i f  i nput >cur r ent _opt i mum %Save new best  sol ut i on 
      pop( end, : )  = pop( cc- 1, : ) ;  
   end 
end 
 
x( end)  = x( end) +1;  %I ncr ement  chr omosome count er  
 
i f  x( end)  > popSi ze+1 %End of  a gener at i on 
   i f  max( pop( : , end- 1) ) <cur r ent _opt i mum %I f  t he opt i mum was l ost  i n 
t hi s gener at i on 
      [ wval  wi ndx]  = mi n( pop( : , end- 1) ) ;  %Repl ace t he wor st  of  t hi s 
gener at i on 
      pop( wi ndx, : )  = pop( end, : ) ;  %Wi t h t he opt i mum 
   end 
   newPop = cr eat e_next _gener at i on( pop( 1: end- 1, : ) ) ;  %f i nd next  
gener at i on 
   pop = [ newPop;  pop( end, : ) ] ;  
   x( end)  = 1;    %St ar t  agai n at  begi nni ng of  next  gener at i on 
   x( end- 1)  = x( end- 1) +1;  %I ncr ement  Gener at i on Count er  
end 
 
x( 1: ( popSi ze+1) * numGenes)  = r eshape( pop' , numGenes* ( popSi ze+1) , 1) ;  
%Tr ansf or m mat r i x back i nt o vect or  
 
sys = x;  
 
%end mdl Updat e 

Listing 7-2 Updating GA s-function 
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The functions that perform the GA operations are listed below. The selection routine used 

was Stochastic Remainder Selection and uniform crossover was performed with 100% 

probability. A mutation rate of 10% was also specified. The code specifies these routines and 

probabilities at present, but it could be easily modified to have them specified by the user 

using input parameters to the block. 

 

f unct i on newPop = cr eat e_next _gener at i on( ol dPop)  
[ popSi ze,  nVar s]  = si ze( ol dPop) ;  
 
%Sel ect  usi ng st ochast i c Remai nder  Sel ect i on 
newPop = st ocRemSel ec( ol dPop) ;  
 
%Cr ossover  usi ng mask cr ossover  
l i st  = r and( popSi ze, 1) ;  %Gener at e a l i st  t o deci de how cr ossover s ar e 
%pai r ed 
 
f or  i  = 1: f l oor ( popSi ze/ 2)  
   [ t mp, i nd]  = max( l i st ( : , 1) ) ;  
   a = newPop( i nd, : ) ;  
   l i st ( i nd)  = 0;  
   [ t mp, i nd]  = max( l i st ( : , 1) ) ;  
   b = newPop( i nd, : ) ;  
   l i st ( i nd)  = 0;  
   [ c  d]   = maskXover ( a, b) ;  
   newPop( i * 2- 1, : )  = c;  
   newPop( i * 2, : )  = d;  
end 
 
%Mut at e 
f or  i  = 1: popSi ze 
   newPop( i , : )  = bi nMut at i on( newPop( i , : ) , 0. 01) ;  
end 
 
%end of  cr eat e_next _gener at i on 

Listing 7-3 S_Function GA Operation 

 
The last major part of the S-Function is the output routine (Listing 7-4). In this part of the 

code, the binary representation of the chromosome to be evaluated is converted into a real-

valued representation. The present optimum fitness, the current generation number and the 

current individual number are also outputted for the user’s information. 

 

f unct i on sys = mdl Out put s( t , x, u, popSi ze, bounds, bi t s)  
 
numGenes = x( end- 2) ;  
gener at i on = x( end- 1) ;  
cc = x( end) ;  
opt i mum = x( ( popSi ze+1) * numGenes) ;  
pop = r eshape( x( 1: ( popSi ze+1) * numGenes) , numGenes, popSi ze+1) ' ;  
chr om = b2f ( pop( cc, 1: end- 1) , bounds, bi t s) ;  
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%Out put  cur r ent  chr omosome,  best  chr omosome so f ar ,  best  f i t ness so f ar  
and cur r ent  gener at i on number  
sys = [ chr om cc opt i mum gener at i on] ;  

Listing 7-4 S-Function Output Routine 

 

The reader may have noted that the s-function as presented outputs the chromosome 

corresponding to the optimum at the end of each generation. The reason this is done is to 

synchronise the assignment of the fitness of the last chromosome so that it occurs before the 

GA operations are performed. 

 

The GA S-function thus created is then applied to the optimisation of a FLC as shown in 

Figure 7-2. The parameters outputted from the GA are input into another S-Function (listed 

in Appendix A.13), which creates the FLC described by the parameters and uses this 

controller to calculate a control action based on information fed back from the plant. The 

square of the error is calculated and it is multiplied by a time-weight. This is fed into an 

integration block which sums up the total time-weighted error. After a unit delay this is then 

fed into another sub-system that calculates the inverse. This sub-system is a triggered one 

and it outputs the calculated inverse sum of time-weighted error back to the GA as the 

fitness. The reason for the delay is to ensure that the fitness fed into the GA is the correct 

value. If this were not done the fitness input to the GA would be zero corresponding to the 

beginning of a new cycle. A disturbance impulse is used to reset the integrators and to trigger 

the sub-system so that everything is synchronized with the GA. 

 

When running this model initially it was found that unless the angle and angular velocity 

were reset to zero at the beginning of each cycle, then the GA wouldn’t be able to find a 

good controller as it found it too hard to lift the pole from its horizontal state. However, if the 

angle and angular velocity are being reset, then the behaviour of this system is more like an 

offline GA as the ability to reset the system would not be present in a real-life application. 

Therefore a different approach to creating an online GA is taken, and this is outlined in the 

next section. The work done here is not in vain however, as a block for performing offline 

GAs in SIMULINK has been created which wasn’t available beforehand. 
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Figure 7-2 Simulink Model for  GA 
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7.3 Genetic-Based Machine Learning 

In an effort to achieve a working online genetic algorithm, the use of Genetic-Based 

Machine Learning (GBML) was studied. More specifically, classifier systems, common 

GBML architectures, were investigated to see if they could help in the search for a 

continually self-improving controller.  

 

A major feature of classifier systems1 is that each individual classifier consists of a message 

and an action. Each message is compared to a message from the environment (in the case of 

controllers this could represent the state of the system) and those that match compete in an 

auction to have their associated action become the output. The amount each classifier bids is 

proportional to its strength, which increases when it is successful and decreases when it 

competes in auctions and loses. A winner is chosen and their action is performed. If the 

action has a beneficial effect then a reward is paid to the winner, who becomes stronger and 

hence has a better chance of winning subsequent auctions. In this way, those classifiers 

whose actions are the most suitable responses to the states that their messages represent 

should become stronger and dominate the population. 

 

To apply this idea to a fuzzy logic controller, the classifier population was initialised to be 

every possible combination of antecedents and consequents for a fuzzy system. Each 

classifier was given the same initial strength. As code to implement this was not immediately 

available, the Pascal code presented by Goldberg [1] was converted to Matlab code and then 

inserted into an S-Function. Code was also written to fuzzify the inputs and de-fuzzify the 

outputs of the system. The code written for all this is listed in Appendices A.14 to A.19. 

  

A SIMULINK model was created to implement this classifier system and is shown in Figure 

7-3. A reference value of 0 degrees is used and periodic disturbances are applied as before. 

The error and error derivative are input into a S-Function block fuzzifyOnline.m which 

converts the real-numbered variables to fuzzy variables. The four fuzzy sets are passed to the 

classifier system for an auction to determine suitable output rules. These output rules are 

combined with the degrees of firing calculated by the fuzzification block to produce a control 

action. 

 

                                                
1 For a more detailed discussion of how GBML and classifier systems operate, please refer to Goldberg [1] 
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Figure 7-3 SIMULINK Implementation of Fuzzy Classifier  System 
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The error in the system is compared with that of the previous time-step and used to calculate 

the reward, which is passed to the classifier S-Function Block so that the appropriate 

classifier can have its strength increased. The membership functions and scaling for all 

variables were ones found using an offline GA. Also the disturbance impulse applied was a 

very small one, being 0.1N for 0.01s every second. 

 

When this model was run, it was found to have some beneficial effect but with lots of room 

for improvement. In the early stages, the pole swung dramatically around (the limits on the 

poles movement to the upper half of the plane was removed). It then settled to a steady state 

value as shown in Figure 7-4. When the impulse was increased to 100N the classifier system 

still failed to remove the steady state error (see Figure 7-5).  
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Figure 7-4 GBML Progress (Disturbance Impulse 0.1N 0.01s) 
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Figure 7-5 GMBL Progress (Impulse Disturbance 100N, 0.01s) 
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Examining a close-up, Figure 7-6, we see that the angle oscillates between approximately 1 

and 9 degrees, showing that there is still some work to be done to improve this system. It is 

felt that the system of deciding the reward passed to the classifiers is too simplistic and that a 

more sophisticated algorithm may be required. Also more investigation may be needed into 

the parameters used for the classifiers such as what proportion of a classifier’s strength is bid 

in the auctions. 
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Figure 7-6 Close up of Figure 7-5 

 
Unfortunately due to time constraints, it was not possible to investigate these matters further 

before the project was due to be completed. However, should there be a continuation of this 

work, enough may have been done to provide a foundation for further investigation and 

improvements. 

 

It must also be noted that no action was taken in developing this system to ensure that no 

damage was inflicted on the plant. For an online GA to be successfully implemented, this 

defect needs to be remedied. 
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8 Conclusion 
The main objective of this project was to find a way to optimise a Fuzzy Logic 

Controller using Genetic Algorithms and this was successfully achieved. However, 

the attempt to do this using online GAs was less successful. This effort was not in 

vain and some insights arose from it. 

 

8.1 Suggestions for  Future Work 

During this project, a broad investigation into applying Genetic Algorithms to Fuzzy 

Logic Controllers was carried out. As well as successfully keeping the pole upright, 

an attempt to control both pole angle and cart position was made. Though the results 

from this effort were not entirely satisfactory, progress was made. Progress was also 

made in the quest to apply an online GA to the system. 

 

Suggestions for follow-up work that may come after this project are: 

• Perform a more in-depth study of how the various parameters and encodings 

affect GA performance in FLC optimisation. This work attempted here was too 

broad to allow enough time for more investigations of this kind. 

• Investigate more thoroughly if GAs can be applied to FLCs or other types of non-

linear controllers so that they may successfully control fully the inverted 

pendulum system. This may then lead eventually to the  building of a real-life 

controller. Perhaps by limiting the range of the parameters using heuristics, GAs 

with faster performance may be found. 

• Search for a more sophisticated algorithm to pass reward to successful classifiers 

so that a successful online GA may be built. 

• Investigate how damaging control actions may be prevented from affecting the 

plant when building such a system. One possibility may be to process an offline 

GA in parallel using a model that is updated using System Identification 

techniques and only trying actions that the offline GA suggests would be 

successful. 

• Investigate whether any of the assumptions made in designing FLCs such as 

using only triangular membership functions or only allowing an odd number of 
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these sets have a significant impact on the performance obtainable from the 

controllers. 

• Attempt to optimise some of the code written here by using techniques such as 

vectorisation so that these algorithms can run quicker. 

 

8.2 Conclusions 

Genetic Algorithms have been shown to be powerful search tools that can reduce the 

time and effort involved in designing systems for which no systematic design 

procedure exists. They can quickly find close-to-optimal solutions and if set-up well 

can avoid local optima. They are certainly useful tools when trying to solve 

analytically difficult problems. However, they are only as good as the model they are 

presented with. In other words, if the model of the problem to be solved is not 

realistic, then a good solution should not be expected. 

 

Fuzzy Logic Controllers can provide more effective control of non-linear systems 

than linear controllers, as there is more flexibility in designing the mapping from the 

input to the output space. Whereas expert knowledge is usually required to design a 

fuzzy controller using traditional methods, it has been shown in this report that even 

without using any knowledge of the system, GAs can build an effective controller 

relatively quickly. This technique may lead an increase in the use of FLCs as the 

previously time-consuming design procedure can be reduced dramatically. 

 

It has also been shown that it is possible to use Genetic-Based Machine Learning to 

build an intelligent controller, intelligent in this sense meaning one that can improve 

its own performance as it progresses. More work is needed in this area but it is felt 

that a good foundation has been laid. 
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Appendix A Matlab Scr ipt and Function 

Files 

Appendix A.1 Invpenstspace.m 
 
%Thi s  scr i pt  f i l e cr eat es t he st at e- space mat r i ces and usi ng t he l qr  f unct i on  
%cr eat es a cont r ol l er  f or  t he l i near i sed i nver t ed pendul um model .  
 
%Thi s  i s  a modi f i cat i on of  wor k f ound at  
%ht t p: / / www. engi n. umi ch. edu/ gr oup/ ct m/ exampl es/ pend/ i nvSS. ht ml #l qr  
% 
%Last  Modi f i ed:  Joe For an 06- 08- 02 
 
%Fi r st  set  t he par amet er s of  t he syst em.  
M = 1;  %Mass of  car t  
m = 0. 1;  %Mass of  pendul um 
l  = 0. 5;  %Di st ance f r om pi vot  t o cent r e of  mass of  pendul um 
i  = ( 4/ 3) * m* l ^ 2;  %Moment  of  I ner t i a of  pendul um 
g = 9. 81;  %Accel er at i on due t o gr avi t y  
 
 
p = ( M+m) * i - ( m* l ) ^ 2;  %denomi nat or  
 
%Cr eat e t he st at e- space mat r i ces 
A = [  0  1    0    0;  
    0  0 ( ( m* l ) ^ 2) * g/ p  0;  
      0  0   0   1;  
      0 0 ( M+m) * m* g* l / p 0] ;  
B = [ 0;  
    i / p;  
     0 
   m* l / p] ;  
C = [ 1 0 0 0;  
   0 0 1 0] ;  
D = [ 0; 0] ;  
       
%Set  r el at i ve wei ght s  of  Q mat r i x  
x  = 5000;  
y  = 5000;  
Q = [ x  0 0 0;  
   0 0 0 0;  
   0 0 y  0;  
   0 0 0 0] ;  
R = 1;  
 
%Desi gn cont r ol l er  
K = l qr ( A, B, Q, R)  
Ac = [ ( A- B* K) ] ;  
Bc = [ B] ;  
Cc = [ C] ;  
Dc = [ D] ;  
 
%f i nd Nbar  t o el i mi nat e t he st eady st at e er r or  
Nbar  = r scal e( A, B, Cn, 0, K)   
%The f unct i on r scal e was cr eat ed by t he or i gi nal  aut hor s and i s  avai l abl e 
%at  ht t p: / / www. engi n. umi ch. edu/ gr oup/ ct m/ ext r as/ r scal e. ht ml  
 

Appendix A.2 gaMultimax.m 
 
%Thi s  scr i pt f i l e set s  t he par amet er s,  i ni t i al i ses t he popul at i on,  r uns t he genet i c  
%al gor i t hm and col l ect s  t he r esul t s  f or  t he t est  f unct i on mul t i max 
echo of f  
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cl ear  
 
obj Fun = ' mul t i max' ;  
ngens = 100;  
l b = [ 0] ' ;          %Lower  Bound on t he Popul at i on 
ub = [ 10] ' ;          %Upper  Bound on t he Popul at i on 
pr ec = [ 0. 0001] ' ;  
bounds = [ l b ub] ;  
bi t s  = cal cbi t s2( bounds, pr ec) ;  
 
evOpt s = [ ] ;      
popSi ze = 50;     %Number  of  i ndi v i dual s  i n popul at i on 
 
epsi l on = 1e- 6;  % change r equi r ed t o consi der  t wo sol ut i ons di f f er ent  
pr ob_ops = 0;    % 0 i f  you want  t o appl y  t he genet i c  oper at or s  pr obabi l i s t i c l y  t o each 
sol ut i on,  1 i f  
% you ar e suppl y i ng a det er mi ni s t i c  number  of  oper at or  appl i cat i ons 
di spl ay =0;      % 1 t o out put  pr ogr ess 0 f or  qui et .  
opt s  = [ epsi l on pr ob_ops di spl ay] ;  
 
t er mFn = ' maxGenTer m' ;  %Ter mi nat i on Funct i on 
t er mOps = ngens;  %No of  Gener at i ons t o be r un f or  i n case of  maxGenTer m 
sel ect Fn = ' s t ocRemSel ec ' ;  %name of  t he . m sel ect i on f unct i on ( [ ' nor mGeomSel ect ' ] )  
sel ect Ops = [ 0. 08] ;  %opt i ons f or  sel ect  Funct i on 
xover Fn = [ ' maskXover ' ] ;  % a st r i ng cont ai ni ng bl ank seper at ed names of  Xover . m f i l es   
% ( [ ' ar i t hXover  heur i s t i cXover  s i mpl eXover ' ] )   
xover Ops = [ 1 0] ;  % A mat r i x  of  opt i ons t o pass t o Xover . m f i l es  wi t h t he 
% f i r s t  col umn bei ng t he number  of  t hat  xOver  t o per f or m s i mi l i ar l y  f or  mut at i on  
mut Fn = ' bi nar yMut at i on' ;  % a st r i ng cont ai ni ng bl ank seper at ed names of  mut at i on. m 
f i l es   
%( [ ' boundar yMut at i on mul t i NonUni f Mut at i on nonUni f Mut at i on uni f Mut at i on' ] )  
mut Ops = [ 0. 1 ngens 3] ;  % A mat r i x  of  opt i ons t o pass t o Xover . m f i l es  wi t h t he 
% f i r s t  col umn bei ng t he number  of  t hat  xOver  t o per f or m 
% s i mi l i ar l y  f or  mut at i on 
 
 
%Cr eat e a r andom i ni t i al  popul at i on f or  t he GA 
i ni t Pop=i ni t Ga( popSi ze, bounds, bi t s , obj Fun,  evOpt s, opt s( 1: 2) ) ;  
 
%Run t he GA 
[ x  endPop bpop t r ace]  = 
r un_ga( bounds, bi t s , obj Fun, evOpt s, i ni t Pop, opt s, t er mFn, t er mOps, . . .  
   sel ect Fn, sel ect Ops, xover Fn, xover Ops, mut Fn, mut Ops) ;  
 
%Pl ot  t he pr ogr ess of  t he f i t ness 
hol d of f  
pl ot ( t r ace( : , 1) , t r ace( : , 2) , ' r - ' ) ;  
hol d on 
pl ot ( t r ace( : , 1) , t r ace( : , 3) , ' b- - ' ) ;  
x l abel ( ' Gener at i on' ) ;  
y l abel ( ' Fi t ness ' ) ;  
t i t l e( ' Pr ogr ess of  GA over  t i me' ) ;  
popSi zeText  = num2st r ( popSi ze) ;  
pXover Text  = num2st r ( xover Ops( 1) , 4+l og10( xover Ops( 1) ) ) ;  
pMut Text  = num2st r ( mut Ops( 1) , 4+l og10( mut Ops( 1) ) ) ;  
i f  s t r cmp( sel ect Fn,  ' r oul et t e' )  
   sel ect FnText  = ' Roul et t e' ;  
el sei f  s t r cmp( sel ect Fn, ' s t ocRemSel ec ' )  
   sel ect FnText  = ' St oc.  Rem. ' ;  
el se 
   sel ect FnText  = sel ect Fn;  
end 
 
i f  s t r cmp( xover Fn,  ' maskXover ' )  
   xover FnText  = ' Uni f or m' ;  
el sei f  s t r cmp( xover Fn,  ' s i mpl eXover ' )  
   xover FnText  = ' Si ngl e Pt . ' ;  
el se 
   xover FnText  = xover Fn;  
end 
 
pl ot Text { 1}  = [ ' Popul at i on:        '  popSi zeText ] ;  
pl ot Text { 2}  = [ ' Sel ect i on Met hod:  '  sel ect FnText ] ;  
pl ot Text { 3}  = [ ' Xover  Met hod:      '  xover FnText ] ;  
 
pl ot Text { 4}  = [ ' Xover  Pr ob:        '  pXover Text ] ;  
pl ot Text { 5}  = [ ' Mut at i on Pr ob:     '  pMut Text ] ;  
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t ext ( ngens/ 2, 13, char ( pl ot Text ) , ' Font Name' , ' Fi xedWi dt h' ) ;  
 
i f  0 %Comment  out  next  sect i on 
   l oad GAr esul t s . mat  
   GA( end+1) . gen = bpop( end- 1, 1) ;  
   GA( end) . best  = bpop( end, end) ;  
   save GAr esul t s . mat  GA 
end 

Appendix A.3 StocRemSelec.m 
 
f unct i on newPop = st ocRemSel ec( ol dPop, opt i ons)  
%STOCREMSELEC St ochast i c  Remai nder  Sel ect i on a l a Gol dber g p. 123 
% 
%Thi s  al gor i t hm r et ur ns a popul at i on t he same s i ze as t he one passed i n.  
% 
%newPop    The new popul at i on sel ect ed f r om t he ol d one 
% 
%ol dPop    The popul at i on f r om whi ch t he new Popul at i on i s  t o be sel ect ed 
%opt i ons   Opt i ons t o be passed t o sel ect i on al gor i t hms.  
%          Not  used f or  t hi s  al gor i t hm 
 
popSi ze = s i ze( ol dPop, 1) ;  
expec = ol dPop( : , end) / mean( ol dPop( : , end) ) ;  %Expect at i on of  sel ect i on 
i nt exp = f l oor ( expec) ;  %I nt eger  por t i on of  expect at i on 
f r acexp = expec -  i nt exp;  %Fr act i onal  por t i on of  expect at i on.  
 
choi ce = zer os( popSi ze, 1) ;  %Hol ds r ecor d of  sel ect ed i ndi v i dual s  
count  = 1;  %Recor d of  whi ch posi t i on i s  t o be f i l l ed.  
 
%al l ocat e I nt eger  por t i ons 
f or  j  = 1: popSi ze 
   al l oc  = i nt exp( j ) ;  
   whi l e al l oc >0 
      choi ce( count )  = j ;  
      al l oc  = al l oc - 1;  
      count  = count +1;  
   end 
end 
 
%Al l ocat e f r act i onal  por t i ons 
nr emai n = popSi ze -  count +1;  %Number  of  pl aces r emai ni ng 
 
whi l e nr emai n >0 
   r andNums = r and( popSi ze, 1) ;  %Gener at e r andom number s  
   sel ec = f r acexp > r andNums;  %Compar e t o f r act .  exp.  of  sel ect i on f or  each i nd.  
   numSel ec = sum( sel ec) ;  %Number  sel ect ed t hi s  r ound 
   
   i f  numSel ec>nr emai n %I f  mor e wer e sel ect ed t han pl aces ar e avai l abl e 
      sel ec( : , 2)  = cumsum( sel ec) ;  %Thi s  gi ves a di f f er ent  t i cket  t o each ent r y  
      r andNums = r and( numSel ec, 1) ;  
      [ t mp i nd]  = sor t ( r andNums) ;  %Choose t he wi nni ng t i cket s  at  r andom 
      f or  i  = 1: nr emai n %Fi nd t he wi nner s and gi eve t hem t hei r  pr i ze 
         choi ce( count )  = f i nd( ( sel ec( : , 2)  == i nd( i ) ) & ( sel ec( : , 1)  == 1) ) ;   
         f r acexp( i nd( i ) )  = 0;  
         count  = count +1;  
      end 
      nr emai n = 0;  
   el se %Ot her wi se al l ocat e pl aces t o al l  t hose sel ect ed 
      nr emai n = nr emai n- numSel ec;  
      f or  i  = 1: popSi ze 
         i f  sel ec( i )  == 1 
            choi ce( count )  = i ;  
            count  = count +1;  
            f r acexp( i )  = 0;  
         end 
      end 
   end 
end 
 
%Shuf f l e t he sel ect ed popul at i on 
[ ans,  shuf ]  = sor t ( r and( popSi ze, 1) ) ;  
newPop= ol dPop( choi ce( shuf ) , : ) ;  
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Appendix A.4 maskXover .m 
 
f unct i on [ c1, c2]  = maskXover ( p1, p2, bounds, Ops)  
% Mask cr ossover  t akes t wo par ent s  P1, P2 and per f or ms 
% uni f or m cr ossover  us i ng a r andom mask.    
% 
% f unct i on [ c1, c2]  = s i mpl eXover ( p1, p2, bounds, Ops)  
% p1      -  t he f i r s t  par ent  (  [ sol ut i on st r i ng f unct i on val ue]  )  
% p2      -  t he second par ent  (  [ sol ut i on st r i ng f unct i on val ue]  )  
% bounds  -  t he bounds mat r i x  f or  t he sol ut i on space 
% Ops     -  Opt i ons mat r i x  f or  s i mpl e cr ossover  [ gen #Si mpXover s] .  
 
%Wr i t t en by Joe For an 19 -  07 - 2002 
% 
numVar  = s i ze( p1, 2) - 1;     % Get  t he number  of  var i abl es  
 
mask1 = r ound( r and( 1, numVar ) ) ;  %Gener at e a mask 
mask2 = ~mask1;       %Gener at e i t s  compl ement  
      
 
 
c1 = zer os( 1, numVar +1) ;  %Al l ocat e space f or  chi l dr en 
c2 = zer os( 1, numVar +1) ;  
 
%Gener at e chi l dr en 
c1( 1: numVar )  = ( p1( 1: end- 1) . * mask1+p2( 1: end- 1) . * mask2) ;  
c2( 1: numVar )  = ( p1( 1: end- 1) . * mask2+p2( 1: end- 1) . * mask1) ;  
 

Appendix A.5 make_fis.m 
f unct i on t he_f i s  = make_f i s( i np, out , n, pm, ps, t het a_s)  
%MAKE_FI S        Cr eat e a FI S based on i nput t ed par amet er s 
% 
%t he_f i s  = make_f i s( i np,  out ,  n,  pm,  ps,  t het a_s)  
%i np        Number  of  i nput  var i abl es 
%out         Number  of  out put  var i abl es 
%n          Col umn vect or  of  l engt h i np+out  cont ai ni ng t he number  
%           of  member shi p f unct i ons per  var i abl e 
%pm         Col umn vect or  of  l engt h i np+out  i ndi cat i ng how t he member shi p 
%           f unct i ons ar e spr ead f or  each var i abl e 
%ps         Mat r i x  of  s i ze i np+1 x  out  i ndi cat i ng how t he r ul e- base i s  f or med 
%t het a_s    Mat r i x  of  s i ze i np- 1 x  out .  Each col umn cont ai ns t he seed angl es f or  t he 
r ul e mat r i ces 
 
i f  ~i sposi nt ( i np)  |  ~i sposi nt ( out )  
   er r or ( ' i np and out  shoul d be posi t i ve i nt eger  scal ar s ' )  
end 
 
i f  s i ze( n)  ~= [ i np+out  1]  
   er r or ( ' n shoul d be a col umn vect or  whose l engt h i s  equal  t o t he number  of  i nput s  
and out put s ' )  
end 
 
i f  s i ze( pm) ~= [ i np+out  1]  
   er r or ( ' pm shoul d be a col umn vect or  whose l engt h i s  equal  t o t he number  of  i nput s  
and out put s ' )  
end 
 
i f  s i ze( ps) ~= [ i np+1 out ]  
   er r or ( ' pm shoul d be a col umn vect or  whose l engt h i s  equal  t o t he number  of  
out put s ' )  
end 
 
i f  s i ze( t het a_s)  ~= [ i np- 1 out ]  
   er r or ( ' t het a_s shoul d be a mat r i x  of  s i ze i np- 1 x  out ' )  
end 
 
%Get  t he member shi p f unct i on par amet er s 
mf par  = zer os( i np+out , 3* max( n) ) ;  
 
f or  i  = 1: i np+out  



73 

   mf par ( i , 1: 3* n( i ) )  = cr eat e_mf s( n( i ) , pm( i ) ) ;  
end 
 
%Cr eat e t he r ul e mat r i x  
f or  i  = 1: out  
   r ul e_mat  = cr eat e_r ul es( i np, [ n( 1: i np) ;  n( i np+i ) ] , ps( : , i ) , t het a_s( : , i ) ) ;  
   i f  i  == 1 
      r ul es = r ul e_mat ;  
   el se 
      r ul es( : , i np+i +1: i np+i +2)  = r ul es( : , i np+i : i np+i +1) ;  
      r ul es( : , i np+i )  = r ul e_mat ( : , end- 2) ;  
   end 
end 
 
%Cr eat e t he FI S 
t he_f i s  = newf i s( ' f i sname' ) ;  
 
f or  i  = 1: i np 
   var name = [ ' i np'  i nt 2st r ( i ) ] ;  
   r ange = [ mf par ( i , 2)  mf par ( i , n( i ) * 3- 1) ] ;  
   t he_f i s  = addvar ( t he_f i s , ' i nput ' , var name, r ange) ;  
end 
f or  i  = i np+1: i np+out  
   var name = [ ' out '  i nt 2st r ( i - i np) ] ;  
   r ange = [ mf par ( i , 2)  mf par ( i , n( i ) * 3- 1) ] ;  
   t he_f i s  = addvar ( t he_f i s , ' out put ' , var name, r ange) ;  
end 
 
%I ni t i al l y  onl y  t r i angul ar  member shi p f unct i ons ar e t o be al l owed.  
f or  i =1: i np 
   f or  j  = 1: n( i )  
      mf name = i nt 2st r ( j ) ;  
      t he_f i s  = addmf ( t he_f i s , ' i nput ' , i , mf name, ' t r i mf ' , mf par ( i , ( ( j * 3) - 2) : ( j * 3) ) ) ;  
   end 
end 
f or  i  = i np+1: i np+out  
   f or  j  = 1: n( i )  
      mf name = i nt 2st r ( j ) ;  
      t he_f i s  = addmf ( t he_f i s , ' out put ' , i - i np, mf name, ' t r i mf ' , mf par ( i , ( ( j * 3) - 2) : ( j * 3) ) ) ;  
   end 
end 
 
t he_f i s  = addr ul e( t he_f i s ,  r ul es) ;  

Appendix A.6 create_mfs.m 
f unct i on mf par ams = cr eat e_mf s( no_mf s, p)  
%CREATE_MFS Cal cul at e MFpar ams f or  a f uzzy var i abl e 
% 
%Onl y t r i angul ar  MFs can be cr eat ed.  The MFs ar e such t hat  t he base ver t i ces 
%ar e coi nc i dent  wi t h t he apexes of  adj acent  t r i angl es.  
% 
%no_mf s       The number  of  member shi p f unct i ons 
%p         A t uni ng par amet er  whi ch i ndi cat es how t he cent r es ar e spaced out  
%             1 i ndi cat es even spaci ng,  <1 i ndi cat es compr essed at  t he ext r emes 
%             whi l e >1 i ndi cat es compr essi on at  t he cent r e 
 
n = ( no_mf s- 1) / 2;  %Or der  of  member shi p f unct i ons 
i f  ~i sposi nt ( n)  
   er r or ( ' The number  of  member shi p f unct i ons shoul d be a posi t i ve odd i nt eger  gr eat er  
t han 1' )  
end 
 
i f  ~( p>0)  
   er r or ( ' p shoul d be a posi t i ve number ' )  
end 
 
%Cal cul at e how t he cent r es ar e spaced 
c  = zer os( n, 1) ;  
f or  i  = 1: n;  
   c( i )  = ( i / n) ^ p;  
end 
 
%Al l ocat e cent r e posi t i ons 
cent r es = zer os( no_mf s, 1) ;  
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f or  i  = 1: no_mf s 
   i f  i  < n+1 
      cent r es( i )  = - c( n- i +1) ;  
   el sei f  i  == n+1 
      cent r es( i )  = 0;  
   el se 
      cent r es( i )  = c( i - n- 1) ;  
   end 
end 
 
%Cr eat e t r i angul ar  mf s based on t hese cent r es 
%The base ver t i ces ar e coi nc i dent  wi t h t he apexes of  
%t he adj acent  t r i angl e.  
pt  = zer os( no_mf s, 3) ;  
 
f or  i  = 1: no_mf s 
   i f  i  == 1 
      pt ( i , 1)  = 2* cent r es( i ) - cent r es( i +1) ;  
   el se  
      pt ( i , 1)  = cent r es( i - 1) ;  
   end 
   i f  i  ==no_mf s 
      pt ( i , 3)  = 2* cent r es( i ) - cent r es( i - 1) ;  
   el se 
      pt ( i , 3)  = cent r es( i +1) ;  
   end 
   pt ( i , 2)  = cent r es( i ) ;  
end 
 
mf par ams = zer os( 1, no_mf s* 3) ;  
f or  i  = 1: no_mf s 
   mf par ams( 3* i - 2: 3* i )  = pt ( i , : ) ;  
end 

Appendix A.7 create_rules.m 
 
f unct i on r ul emat  = cr eat e_r ul es( i np, no_mf s, p_s, t het a_s, pl ot _on)  
%CREATE_RULES Cr eat e a r ul e mat r i x  based on t he i nput  char act er i s t i c  par amet er s 
% 
%r ul emat     The r ul ebase mat r i x  t o be used by a FI S 
% 
%i np   Number  of  i nput  var i abl es 
%no_mf s  Vect or  of  number  of  member shi p f unct i ons -  shoul d be of  l engt h one mor e 
t han no.  of  i nput s  
%    The l ast  one i s  number  of  out put  member shi p f unct i ons.  
%p_s   A vect or  of  par amet er s i ndi cat i ng spaci ng of  seed pt s.  and gr i d 
pt s.   
%t het a_s  Speci f i es s l ope of  seed l i ne.  
% 
%Wr i t t en by Joe For an Jul y  2002 
% 
%Last  Modi f i ed 20- 08- 02 
 
i f  s i ze( i np)  ~= [ 1 1]  |  ~i sposi nt ( i np)  
   er r or ( ' i np shoul d be a posi t i ve i nt eger  scal ar ' )  
end 
 
i f  s i ze( no_mf s)  ~= [ i np+1 1]  
   er r or ( ' n shoul d be a col umn vect or  whose l engt h i s  one gr eat er  t han t he number  of  
i nput  var i abl es ' )  
end 
 
i f  s i ze( t het a_s)  ~= [ i np- 1 1]  
   er r or ( ' t het a_s shoul d be a col umn vect or  whose l engt h i s  one l ess t han t he number  
of  i nput  var i abl es ' )  
end 
 
i f  s i ze( p_s)  ~= [ i np+1 1]   
   er r or ( ' p_s shoul d be a col umn vect or  whose l engt h i s  one gr eat er  t han t he number  of  
i nput  var i abl es ' )  
end 
 
n_out  = no_mf s( end) ;  
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n = ( n_out - 1) / 2;  
 
i f  ~i sposi nt ( n)  
   er r or ( ' The number  of  out put  member shi p f ns.  shoul d be an odd i nt eger  of  at  l east  
val ue 3' )  
end 
 
% Fi nd posi t i ons of  seed pt s.  al ong seed hyper pl ane 
c  = zer os( n, 1) ;  
f or  i  = 1: n;  
   c( i )  = ( i / n) ^ p_s( end) ;  
end 
 
%Get  t he co- or di nat es of  t he seed poi nt s  
%Ther e ar e n_out  seed poi nt s  and t hey need t o be speci f i ed  
%i n n- di mensi onal  space,  n bei ng equal  t o i np 
co_or ds = zer os( i np, n_out ) ;  
 
%Speci f y  x- posi t i on of  co_or ds 
f or  j  = 1: n_out  
   i f  j  < n+1 
      co_or ds( 1, j )  = - c( n- j +1) ;  
   el se 
      i f  j  == n+1 
         co_or ds( 1, j )  = 0;  
      el se 
         co_or ds( 1, j )  = c( j - n- 1) ;  
      end 
   end 
end 
 
%To get  co- or di nat es i n ot her  di mensi ons mul t i pl y  by t an 
%of  appr opr i at e angl e 
f or  k  = 2: i np 
   co_or ds( k, : )  = co_or ds( 1, : ) * t an( t het a_s( k- 1) ) ;  
end 
 
%Nor mal i se t he co_or di ant es t o be bet ween - 1 and 1 
nor m_f act  = max( max( abs( co_or ds) ) ) ;  
co_or ds = co_or ds. / nor m_f act ;  
 
 
%Get  t he gr i d poi nt  co- or di nat es 
no_r ul es = pr od( no_mf s( 1: i np) ) ;  
c  = zer os( i np, ( max( no_mf s( 1: i np) ) - 1) / 2) ;  
cent r es = zer os( i np, max( no_mf s( 1: i np) ) ) ;  
ant ecedent s = zer os( no_r ul es, i np) ;  
 
%Space out  gr i d- poi nt s  i n each di mensi on 
f or  i  = 1: i np 
   f or  j  = 1: no_mf s( i ) ;  
      c( i , j )  = ( j / ( ( no_mf s( i ) - 1) / 2) ) ^ p_s( i ) ;  
   end 
end 
 
f or  i  = 1: i np 
   f or  j  = 1: no_mf s( i )  
      n = ( no_mf s( i ) - 1) / 2;  
      i f  j  < n+1 
         cent r es( i , j )  = - c( i , n- j +1) ;  
      el sei f  j  == n+1 
         cent r es( i , j )  = 0;  
      el se 
         cent r es( i , j )  = c( i , j - n- 1) ;  
      end 
       
   end 
end 
 
%Cr eat e each possi bl e combi nat i on of  ant ecedent s 
f or  i  = 1: no_r ul es 
   f or  j  = 1: i np 
      i f  j  == i np 
         ant ecedent s( i , j )  = mod( i , no_mf s( i np) ) ;           
      el se 
         ant ecedent s( i , j )  = mod( cei l ( i / pr od( no_mf s( j +1: i np) ) ) , no_mf s( j ) ) ;  
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      end 
       
      i f  ant ecedent s( i , j )  ==0 
         ant ecedent s( i , j )  = no_mf s( j ) ;  
      end 
   end 
end 
 
 
r egi on = zer os( no_r ul es, n_out ) ;  %Di st ance f r om each seed- poi nt  of  al l  gr i d- pt s  
poi nt  = ones( no_r ul es, i np) ;  %Co- or di nat es of  each gr i d- poi nt  
 
%Cal cul at e di s t ance f r om each gr i d- poi nt  t o each seed- poi nt  
f or  i  = 1: no_r ul es 
   f or  j  = 1: i np 
      poi nt ( i , j ) =cent r es( j , ant ecedent s( i , j ) ) ;  
   end 
   f or  j  = 1: n_out  
      r egi on( i , j )  = sum( ( poi nt ( i , : ) - co_or ds( : , j ) ' ) . ^ 2) ;  
   end 
end 
 
consequent  = zer os( no_r ul es, 1) ;  
 
%To ensur e f ul l  r ot at i on of  r ul es adj ust  t he r egi on f i ndi ng al gor i t hm accor di ng t o 
%t he r egi me 
t emp = mean( t het a_s) ;  %Fi nd t he aver age angl e 
t emp = mod( t emp, 2* pi ) ;  %Map back t o bet ween 0- >360 degr ees 
 
i f  180* t emp/ pi >90 & t emp* 180/ pi <=270 %I f  r egi me i s  i n l ef t - hand hal f - pl ane 
   t 2 = - 1;  
el se 
   t 2 =1;  
end 
 
f l i p =1;  
%Fi nd t he r egi on i n whi ch each gr i d_pt  l i es.  
f or  i  = 1: no_r ul es 
   i ndex = f i nd( r egi on( i , : ) ==mi n( r egi on( i , : ) ) ) ;  
   i f  s i ze( i ndex)  == [ 1 1]  
      consequent ( i )  = i ndex;  
   el se %i f  gr i d- poi nt  i s  equi di s t ant  f r om t wo seed- poi nt s  
      i f  f l i p ==1 
         consequent ( i )  = i ndex( 1) ;  
      el se 
         consequent ( i )  = i ndex( 2) ;  
      end 
      f l i p = - f l i p;  
   end 
       
   i f  t 2 == - 1 %Swap over  consequent s i f  we ar e i n l ef t - hand hal f - pl ane 
      consequent ( i )  = n_out +1- consequent ( i ) ;  
   end 
end 
 
 
r ul emat  = [ ant ecedent s consequent  ones( no_r ul es, 2) ] ;  

Appendix A.8 run_fuzzy_pole_only 
 
f unct i on [ chr om,  ef f ]  = r un_f uzzysi m( chr om, opt i ons)  
%RUN_FUZZYSI M Thi s  i s  t he eval uat i on f unct i on f or  t he f uzzy s i mul at i on used by t he GA 
%      Thi s  r uns a 2 i nput  one out put  f unct i on 
% 
%chr om   The r eal - val ued chr omosome passed i n 
% 
%ef f     The cal cul at ed f i t ness val ue 
 
%Wr i t t en by:   Joe For an Jul y  2002 
% 
%Last  Modi f i ed:  Joe For an 07/ 08/ 2002 
n = chr om( 1: 3) ' ;  
pm = ( chr om( 4: 6) . ^ chr om( 10: 12) ) ' ;  
pr  = ( chr om( 7: 9) . ^ chr om( 13: 15) ) ' ;  
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scal e = chr om( 16: 18) ' ;  
t het a = chr om( 19) ;  
i np = 2;  
out  = 1;  
 
i f  s i ze( n)  ~= [ i np+out  1]  
   er r or ( ' n shoul d be a col umn vect or  whose l engt h i s  equal  t o t he number  of  i nput s  
and out put s ' )  
end 
 
i f  s i ze( pm) ~= [ i np+out  1]  
   er r or ( ' pm shoul d be a col umn vect or  whose l engt h i s  equal  t o t he number  of  i nput s  
and out put s ' )  
end 
 
i f  s i ze( pr ) ~= [ i np+1 out ]  
   er r or ( ' pm shoul d be a col umn vect or  whose l engt h i s  equal  t o t he number  of  
out put s ' )  
end 
 
i f  s i ze( t het a)  ~= [ i np- 1 out ]  
   er r or ( ' t het a_s shoul d be a mat r i x  of  s i ze i np- 1 x  out ' )  
end 
 
i f  s i ze( scal e)  ~= [ i np+out  1]  
   er r or ( ' scal e shoul d be a col umn vect or  whose l engt h equal s  t he number  of  i nput s  and 
out put s ' )  
end 
 
gl obal  FUZZY_SCALI NG I NVPEND_FUZZY 
 
FUZZY_SCALI NG = scal e;  
I NVPEND_FUZZY = make_f i s( i np, out , n, pm, pr , t het a) ;  
 
t  = 0: 0. 01: 3;  
s t abl e = 1;  
eval  ( ' s i m( ' ' s_i nvpen_f uzzy ' ' , t ) ; ' , ' s t abl e = 0; ' ) ;  
 
i f  s t abl e == 0 |  s_Ti me( end) ~= t ( end)  
   ef f  = 1e- 9* s_Ti me( end) * st abl e;  
el se 
   ef f  = 1e4/ ( s_Er r or . ^ 2) ' * s_Ti meWei ght ;  
end 
 

Appendix A.9 ga_poleonly.m 
%Scr i pt  Fi l e t o set  bounds and par amet er s f or  of f l i ne GA opt i mi sat i on of   
%FLC f or  I nver t ed Pendul um Syst em -  t hi s  onl y  t r i es  t o bal ance t he pol e  
%wi t hout  r egar d f or  t he car t  posi t i on.  
 
gl obal  FUZZY_SCALI NG I NVPEND_FUZZY %Gl obal  var i abl es needed by SI MULI NK model  
l oad r unDet ai l s . mat  %St r uct ur e r un has di f f er ent  par amet er s f or  di f f er ent  r uns 
 
f or  i  = 1: s i ze( r un, 2)  
       
   popSi ze = r un( i ) . popSi ze;  
   sel ect Fn = r un( i ) . sRout i ne;  
   xover Fn = r un( i ) . Xr out i ne;  
   xOver Rat e = r un( i ) . xRat e;  
   mut Pr ob = r un( i ) . mRat e;  
    
   obj Fun = ' r un_f uzzy_pol e_onl y_2' ;  
   ngens = 100;  
   l b = [ 3 3 3 0. 1 0. 1 0. 1 0. 1 0. 1 0. 1 - 1 - 1 - 1 - 1 - 1 - 1 0 0 0 0] ' ;          %Lower  
Bound on t he Popul at i on 
   ub = [ 9 9 9 1 1 1 1 1 1 1 1 1 1 1 1 100 100 10000 2* pi ] ' ;          %Upper  Bound on 
t he Popul at i on 
   pr ec = [ 2 2 2 0. 01 0. 01 0. 01 0. 01 0. 01 0. 01 2 2 2 2 2 2 0. 1 0. 1 0. 1 pi / 512] ' ;  
   bounds = [ l b ub] ;  
   bi t s  = cal cbi t s2( bounds, pr ec) ;  
   evOpt s = 1;      
   %popSi ze = 60;     %Number  of  i ndi v i dual s  i n popul at i on 
    
   epsi l on = 1e- 6;  % change r equi r ed t o consi der  t wo sol ut i ons di f f er ent  
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   pr ob_ops = 0;    % 0 i f  you want  t o appl y  t he genet i c  oper at or s  pr obabi l i s t i c l y  t o 
each sol ut i on,  1 i f  
   % you ar e suppl y i ng a det er mi ni s t i c  number  of  oper at or  appl i cat i ons 
   di spl ay =1;      % 1 t o out put  pr ogr ess 0 f or  qui et .  
   det ai l s  = 0;  
   opt s  = [ epsi l on pr ob_ops di spl ay det ai l s ] ;  
   t er mFn = ' maxGenTer m' ;  %Ter mi nat i on Funct i on 
   t er mOps = ngens;  %No of  Gener at i ons t o be r un f or  i n case of  maxGenTer m 
   %sel ect Fn = ' s t ocRemSel ec ' ;  %name of  t he . m sel ect i on f unct i on ( [ ' nor mGeomSel ect ' ] )  
   sel ect Ops = [ 0. 08] ;  %opt i ons f or  sel ect  Funct i on 
   %xover Fn = [ ' maskXover ' ] ;  % a st r i ng cont ai ni ng bl ank seper at ed names of  Xover . m 
f i l es   
   % ( [ ' ar i t hXover  heur i s t i cXover  s i mpl eXover ' ] )   
   xover Ops = [ xOver Rat e 0] ;  % A mat r i x  of  opt i ons t o pass t o Xover . m f i l es  wi t h t he 
   % f i r s t  col umn bei ng t he number  of  t hat  xOver  t o per f or m s i mi l i ar l y  f or  mut at i on  
   mut Fn = ' bi nar yMut at i on' ;  % a st r i ng cont ai ni ng bl ank seper at ed names of  mut at i on. m 
f i l es   
   %( [ ' boundar yMut at i on mul t i NonUni f Mut at i on nonUni f Mut at i on uni f Mut at i on' ] )  
   mut Ops = [ mut Pr ob ngens 3] ;  % A mat r i x  of  opt i ons t o pass t o Xover . m f i l es  wi t h t he 
   % f i r s t  col umn bei ng t he number  of  t hat  xOver  t o per f or m 
   % s i mi l i ar l y  f or  mut at i on 
    
   %I ni t i al i se t he GA 
   i ni t Pop=i ni t Ga( popSi ze, bounds, bi t s , obj Fun,  evOpt s, opt s) ;  
  
   %Now l et ' s  r un t he ga  
   [ x  endPop bpop t r ace]  = 
r un_ga( bounds, bi t s , obj Fun, evOpt s, i ni t Pop, opt s, t er mFn, t er mOps, . . .  
      sel ect Fn, sel ect Ops, xover Fn, xover Ops, mut Fn, mut Ops) ;  
    
   t r aceRecor d( i ) . pop = endPop;  
   t r aceRecor d( i ) . best Pop = bpop;  
   t r aceRecor d( i ) . t r acedet ai l s  = t r ace;  
   save t r aceRecor d. mat  t r aceRecor d;  
end 

 

Appendix A.10 run_ga.m 
f unct i on [ x , endPop, bPop, t r aceI nf o]  = 
r un_ga( bounds, bi t s , eval FN, eval Ops, st ar t Pop, opt s, . . .  
   t er mFN, t er mOps, sel ect FN, sel ect Ops, xOver FNs, xOver Ops, mut FNs, mut Ops)  
% RUN_GA r un a genet i c  al gor i t hm 
% f unct i on [ x , endPop, bPop, t r aceI nf o] =ga( bounds, eval FN, eval Ops, st ar t Pop, opt s,  
%                                       t er mFN, t er mOps, sel ect FN, sel ect Ops,  
%                                       xOver FNs, xOver Ops, mut FNs, mut Ops)  
%                                 
% Out put  Ar gument s:  
%   x             -  t he best  sol ut i on f ound dur i ng t he cour se of  t he r un 
%   endPop       -  t he f i nal  popul at i on  
%   bPop         -  a t r ace of  t he best  popul at i on 
%   t r aceI nf o    -  a mat r i x  of  best  and means of  t he ga f or  each gener at i on 
% 
% I nput  Ar gument s:  
%   bounds       -  a mat r i x  of  upper  and l ower  bounds on t he var i abl es 
%   eval FN       -  t he name of  t he eval uat i on . m f unct i on 
%   eval Ops      -  opt i ons t o pass t o t he eval uat i on f unct i on ( [ NULL] )  
%   s t ar t Pop     -  a mat r i x  of  sol ut i ons t hat  can be i ni t i al i zed 
%                  f r om i ni t i al i ze. m 
%   opt s          -  [ epsi l on pr ob_ops di spl ay]  change r equi r ed t o consi der  t wo  
%                  sol ut i ons di f f er ent ,  pr ob_ops 0 i f  you want  t o appl y  t he 
%                  genet i c  oper at or s  pr obabi l i s t i c l y  t o each sol ut i on,  1 i f  
%                  you ar e suppl y i ng a det er mi ni s t i c  number  of  oper at or  
%                  appl i cat i ons and di spl ay i s  1 t o out put  pr ogr ess 0 f or  
%                  qui et .  ( [ 1e- 6 1 0] )  
%   t er mFN       -  name of  t he . m t er mi nat i on f unct i on ( [ ' maxGenTer m' ] )  
%   t er mOps      -  opt i ons st r i ng t o be passed t o t he t er mi nat i on f unct i on 
%                  ( [ 100] ) .  
%   sel ect FN     -  name of  t he . m sel ect i on f unct i on ( [ ' nor mGeomSel ect ' ] )  
%   sel ect Opt s   -  opt i ons st r i ng t o be passed t o sel ect  af t er  
%                  sel ect ( pop, #, opt s)  ( [ 0. 08] )  
%   xOver FNS     -  a s t r i ng cont ai ni ng bl ank seper at ed names of  Xover . m 
%                  f i l es  ( [ ' ar i t hXover  heur i s t i cXover  s i mpl eXover ' ] )   
%   xOver Ops     -  A mat r i x  of  opt i ons t o pass t o Xover . m f i l es  wi t h t he 
%                  f i r s t  col umn bei ng t he number  of  t hat  xOver  t o per f or m 
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%                  s i mi l i ar l y  f or  mut at i on ( [ 2 0; 2 3; 2 0] )  
%   mut FNs       -  a s t r i ng cont ai ni ng bl ank seper at ed names of  mut at i on. m  
%                  f i l es  ( [ ' boundar yMut at i on mul t i NonUni f Mut at i on . . .  
%                           nonUni f Mut at i on uni f Mut at i on' ] )  
%   mut Ops       -  A mat r i x  of  opt i ons t o pass t o Xover . m f i l es  wi t h t he 
%                  f i r s t  col umn bei ng t he number  of  t hat  xOver  t o per f or m 
%                  s i mi l i ar l y  f or  mut at i on ( [ 4 0 0; 6 100 3; 4 100 3; 4 0 0] )  
 
% Bi nar y and Real - Val ued Si mul at i on Evol ut i on f or  Mat l ab  
% Copyr i ght  ( C)  1996 C. R.  Houck,  J . A.  Joi nes,  M. G.  Kay  
% 
% C. R.  Houck,  J . Joi nes,  and M. Kay.  A genet i c  al gor i t hm f or  f unct i on 
% opt i mi zat i on:  A Mat l ab i mpl ement at i on.  ACM Tr ansact i ons on Mat hmat i cal  
% Sof t war e,  Submi t t ed 1996.  
% 
% Thi s  pr ogr am i s  f r ee sof t war e;  you can r edi st r i but e i t  and/ or  modi f y  
% i t  under  t he t er ms of  t he GNU Gener al  Publ i c  Li cense as publ i shed by 
% t he Fr ee Sof t war e Foundat i on;  ei t her  ver s i on 1,  or  ( at  your  opt i on)  
% any l at er  ver s i on.  
% 
% Thi s  pr ogr am i s  di s t r i but ed i n t he hope t hat  i t  wi l l  be usef ul ,  
% but  WI THOUT ANY WARRANTY;  wi t hout  even t he i mpl i ed war r ant y  of  
% MERCHANTABI LI TY or  FI TNESS FOR A PARTI CULAR PURPOSE.   See t he 
% GNU Gener al  Publ i c  Li cense f or  mor e det ai l s .  A copy of  t he GNU  
% Gener al  Publ i c  Li cense can be obt ai ned f r om t he  
% Fr ee Sof t war e Foundat i on,  I nc. ,  675 Mass Ave,  Cambr i dge,  MA 02139,  USA.  
 
%%$Log:  ga. m, v $ 
%Revi s i on 1. 10  1996/ 02/ 02  15: 03: 00  j j oi ne 
% Fi xed t he or der i ng of  i mput  ar gument s i n t he comment s t o mat ch 
% t he act ual  or der  i n t he ga f unct i on.  
% 
%Revi s i on 1. 9  1995/ 08/ 28  20: 01: 07  chouck 
% Updat ed i ni t i al i zat i on par amet er s,  updat ed mut at i on par amet er s t o r ef l ect  
% b bei ng t he t hi r d opt i on t o t he nonuni f or m mut at i ons 
% 
%Revi s i on 1. 8  1995/ 08/ 10  12: 59: 49  j j oi ne 
%St ar t ed Logf i l e t o keep t r ack of  r ev i s i ons 
% 
 
 
n=nar gi n;  
i f  n<2 |  n==6 |  n==10 |  n==12 
   di sp( ' I nsuf f i c i ent  ar guement s ' )   
end 
i f  n<3 %Def aul t  eval at i on opt s.  
   eval Ops=[ ] ;  
end 
i f  n<5 
   opt s  = [ 1e- 6 1 0 0] ;  
end 
i f  i sempt y( opt s)  
   opt s  = [ 1e- 6 1 0 0] ;  
end 
 
i f  any( eval FN<48)  %Not  us i ng a . m f i l e 
   i f  opt s( 2) ==1 %Fl oat  ga 
      e1st r =[ ' x=c1;  c1( xZomeLengt h) =' ,  eval FN ' ; ' ] ;    
      e2st r =[ ' x=c2;  c2( xZomeLengt h) =' ,  eval FN ' ; ' ] ;    
   el se %Bi nar y ga 
      e1st r =[ ' x=b2f ( endPop( j , : ) , bounds, bi t s) ;  endPop( j , xZomeLengt h) =' , . . .  
            eval FN ' ; ' ] ;  
      end 
   el se %Ar e usi ng a . m f i l e 
      i f  opt s( 2) ==1 %Fl oat  ga 
         e1st r =[ ' [ c1 c1( xZomeLengt h) ] ='  eval FN ' ( c1, [ gen eval Ops] ) ; ' ] ;    
         e2st r =[ ' [ c2 c2( xZomeLengt h) ] ='  eval FN ' ( c2, [ gen eval Ops] ) ; ' ] ;    
      el se %Bi nar y ga 
         %         e1st r =[ ' x=b2f ( endPop( j , : ) , bounds, bi t s) ; [ x  v ] ='  eval FN . . .  
         %               ' ( x , [ gen eval Ops] ) ;  endPop( j , : ) =[ f 2b( x, bounds, bi t s)  v ] ; ' ] ;    
         e1st r =[ ' x=b2f ( endPop( j , : ) , bounds, bi t s) ; [ x  v ] ='  eval FN . . .  
               ' ( x , [ gen eval Ops] ) ;  endPop( j , end) = v; ' ] ;   %Ther e seems t o be a 
di scr epancy i n how f 2b wor ks so avoi d us i ng i t  
      end 
   end 
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   i f  n<6 %Def aul t  t er mi nat i on i nf or mat i on 
      t er mOps=[ 100] ;  
      t er mFN=' maxGenTer m' ;  
   end 
   i f  n<12 %Def aul t  muat at i on i nf or mat i on 
      i f  opt s( 2) ==1 %Fl oat  GA 
         mut FNs=[ ' boundar yMut at i on mul t i NonUni f Mut at i on nonUni f Mut at i on 
uni f Mut at i on' ] ;  
         mut Ops=[ 4 0 0; 6 t er mOps( 1)  3; 4 t er mOps( 1)  3; 4 0 0] ;  
      el se %Bi nar y GA 
         mut FNs=[ ' bi nar yMut at i on' ] ;  
         mut Ops=[ 0. 05] ;  
      end 
   end 
   i f  n<10 %Def aul t  cr ossover  i nf or mat i on 
      i f  opt s( 2) ==1 %Fl oat  GA 
         xOver FNs=[ ' ar i t hXover  heur i s t i cXover  s i mpl eXover ' ] ;  
         xOver Ops=[ 2 0; 2 3; 2 0] ;  
      el se %Bi nar y GA 
         xOver FNs=[ ' s i mpl eXover ' ] ;  
         xOver Ops=[ 0. 6] ;  
      end 
   end 
   i f  n<9 %Def aul t  sel ect  opt s  onl y  i . e.  r oul l et e wheel .  
      sel ect Ops=[ ] ;  
   end 
   i f  n<8 %Def aul t  sel ect  i nf o 
      sel ect FN=[ ' nor mGeomSel ect ' ] ;  
      sel ect Ops=[ 0. 08] ;  
   end 
   i f  n<6 %Def aul t  t er mi nat i on i nf or mat i on 
      t er mOps=[ 100] ;  
      t er mFN=' maxGenTer m' ;  
   end 
   i f  n<4 %No st ar t i ng popul at i on passed gi ven 
      s t ar t Pop=[ ] ;  
   end 
   i f  i sempt y( st ar t Pop)  %Gener at e a popul at i on at  r andom 
      %st ar t Pop=zer os( 80, s i ze( bounds, 1) +1) ;  
      s t ar t Pop=i ni t i al i zega( 80, bounds, eval FN, eval Ops, opt s( 1: 2) ) ;  
   end 
    
   i f  opt s( 2) ==0 %bi nar y 
      %bi t s=cal cbi t s( bounds, opt s( 1) ) ;  
      %bi t s  = cal cbi t s( bounds( : , 1: 2) , bounds( : , 3) ' ) ;  
   end 
   bounds = bounds( : , 1: 2) ;  
    
   xOver FNs=par se( xOver FNs) ;  
   mut FNs=par se( mut FNs) ;  
    
   xZomeLengt h  = s i ze( st ar t Pop, 2) ;   %Lengt h of  t he xzome=numVar s+f i t t ness 
   numVar        = xZomeLengt h- 1;    %Number  of  var i abl es 
   popSi ze      = s i ze( st ar t Pop, 1) ;   %Number  of  i ndi v i dual s  i n t he pop 
   endPop       = zer os( popSi ze, xZomeLengt h) ;  %A secondar y popul at i on mat r i x  
   c1           = zer os( 1, xZomeLengt h) ;   %An i ndi v i dual  
   c2           = zer os( 1, xZomeLengt h) ;   %An i ndi v i dual  
   numXOver s    = s i ze( xOver FNs, 1) ;   %Number  of  Cr ossover  oper at or s  
   numMut s      = s i ze( mut FNs, 1) ;    %Number  of  Mut at i on oper at or s  
   epsi l on      = opt s( 1) ;                  %Thr eshol d f or  t wo f i t t ness t o di f f er  
   oval          = max( st ar t Pop( : , xZomeLengt h) ) ;  %Best  val ue i n s t ar t  pop 
   bFoundI n     = 1;     %Number  of  t i mes best  has changed 
   done         = 0;                        %Done wi t h s i mul at ed evol ut i on 
   gen          = 1;     %Cur r ent  Gener at i on Number  
   col l ect Tr ace = ( nar gout >3) ;    %Shoul d we col l ect  i nf o ever y gen 
   f l oat GA      = opt s( 2) ==1;               %Pr obabi l i s t i c  appl i cat i on of  ops 
   di spl ay      = opt s( 3) ;                  %Di spl ay summar y 
   det ai l s       = opt s( 4) ;                   %Di spl ay det ai l s  
    
   i f  col l ect Tr ace 
      f i gur e 
   end 
    
   whi l e( ~done)  
      %El i t i s t  Model  
      [ bval , bi ndx]  = max( st ar t Pop( : , xZomeLengt h) ) ;  %Best  of  cur r ent  pop 
      best  =  s t ar t Pop( bi ndx, : ) ;  
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      i f  col l ect Tr ace 
         t r aceI nf o( gen, 1) =gen;              %cur r ent  gener at i on 
         t r aceI nf o( gen, 2) =st ar t Pop( bi ndx, xZomeLengt h) ;        %Best  f i t t ness 
         t r aceI nf o( gen, 3) =mean( st ar t Pop( : , xZomeLengt h) ) ;      %Avg f i t t ness 
         t r aceI nf o( gen, 4) =st d( st ar t Pop( : , xZomeLengt h) ) ;  
         hol d of f  
         pl ot ( t r aceI nf o( : , 1) , t r aceI nf o( : , 2) , ' r ' )  
         hol d on 
         pl ot ( t r aceI nf o( : , 1) , t r aceI nf o( : , 3) , ' b' )  
      end 
       
      i f  (  ( abs( bval  -  oval ) >epsi l on)  |  ( gen==1) )  %I f  we have a new best  sol  
         i f  di spl ay 
            %f pr i nt f ( 1, ' \ n%d %f \ n' , gen, bval ) ;           %Updat e t he di spl ay 
            f pr i nt f ( 1, ' St ar t i ng Gener at i on %d.  New best  i s  %g\ n' , gen, bval ) ;  
         end 
         i f  f l oat GA 
            bPop( bFoundI n, : ) =[ gen st ar t Pop( bi ndx, : ) ] ;  %Updat e bPop Mat r i x  
         el se 
            bPop( bFoundI n, : ) =[ gen b2f ( st ar t Pop( bi ndx, 1: numVar ) , bounds, bi t s) . . .  
                  s t ar t Pop( bi ndx, xZomeLengt h) ] ;  
         end 
         bFoundI n=bFoundI n+1;                       %Updat e number  of  changes 
         oval =bval ;                                 %Updat e t he best  val  
            end 
       
      endPop = f eval ( sel ect FN, st ar t Pop, [ gen sel ect Ops] ) ;  %Sel ect  
       
      i f  f l oat GA %Runni ng wi t h t he model  wher e t he par amet er s ar e number s of  ops 
         f or  i =1: numXOver s,  
            f or  j =1: xOver Ops( i , 1) ,  
               a = r ound( r and* ( popSi ze- 1) +1) ;   %Pi ck a par ent  
               b = r ound( r and* ( popSi ze- 1) +1) ;   %Pi ck anot her  par ent  
               xN=debl ank( xOver FNs( i , : ) ) ;   %Get  t he name of  cr ossover  f unct i on 
               [ c1 c2]  = f eval ( xN, endPop( a, : ) , endPop( b, : ) , bounds, [ gen xOver Ops( i , : ) ] ) ;  
                
               i f  c1( 1: numVar ) ==endPop( a, ( 1: numVar ) )  %Make sur e we cr eat ed a new  
                  c1( xZomeLengt h) =endPop( a, xZomeLengt h) ;  %sol ut i on bef or e eval uat i ng 
               el sei f  c1( 1: numVar ) ==endPop( b, ( 1: numVar ) )  
                  c1( xZomeLengt h) =endPop( b, xZomeLengt h) ;  
               el se  
                  %[ c1( xZomeLengt h)  c1]  = f eval ( eval FN, c1, [ gen eval Ops] ) ;  
                  eval ( e1st r ) ;  
               end 
                
               i f  c2( 1: numVar ) ==endPop( a, ( 1: numVar ) )  
                  c2( xZomeLengt h) =endPop( a, xZomeLengt h) ;  
               el sei f  c2( 1: numVar ) ==endPop( b, ( 1: numVar ) )  
                  c2( xZomeLengt h) =endPop( b, xZomeLengt h) ;  
               el se  
                  %[ c2( xZomeLengt h)  c2]  = f eval ( eval FN, c2, [ gen eval Ops] ) ;  
                  eval ( e2st r ) ;  
               end       
                
               endPop( a, : ) =c1;  
               endPop( b, : ) =c2;  
            end 
         end 
          
         f or  i =1: numMut s,  
            f or  j =1: mut Ops( i , 1) ,  
               a = r ound( r and* ( popSi ze- 1) +1) ;  
               c1 = f eval ( debl ank( mut FNs( i , : ) ) , endPop( a, : ) , bounds, [ gen mut Ops( i , : ) ] ) ;  
                
               i f  c1( 1: numVar ) ==endPop( a, ( 1: numVar ) )   
                  c1( xZomeLengt h) =endPop( a, xZomeLengt h) ;  
               el se 
                  %[ c1( xZomeLengt h)  c1]  = f eval ( eval FN, c1, [ gen eval Ops] ) ;  
                  eval ( e1st r ) ;  
               end 
               endPop( a, : ) =c1;  
            end 
         end 
          
      el se %We ar e r unni ng a pr obabi l i s t i c  model  of  genet i c  oper at or s  
         % f or  i =1: numXOver s,  
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         i  = 1;  
            xN=debl ank( xOver FNs( i , : ) ) ;   %Get  t he name of  cr ossover  f unct i on 
            cp=f i nd( r and( popSi ze, 1) <xOver Ops( i , 1) ==1) ;  
            i f ~i sempt y( cp)  
               i f  r em( si ze( cp, 1) , 2)  cp=cp( 1: ( s i ze( cp, 1) - 1) ) ;  end 
                
               l i s t  = r and( s i ze( cp) ) ;  %Gener at e a r andom l i s t  f or  choosi ng whi ch 
i ndi v i dual s  get  pai r ed f or  xOver  
                
               f or  j =1: s i ze( cp, 1)  %NEED TO TEST THAT I NDI VI DUALS ARE CHOSEN RANDOMLY 
                  [ t mp,  a]  = max( l i s t ) ;  
                  l i s t ( a)  = 0;  
                  [ t mp,  b]  = max( l i s t ) ;  
                  l i s t ( b)  = 0;  
                  a = cp( a) ;  
                  b = cp( b) ;  
                  [ endPop( a, : )  endPop( b, : ) ]  = f eval ( xN, endPop( a, : ) , endPop( b, : ) , . . .  
                     bounds, [ gen xOver Ops( i , : ) ] ) ;  
               end 
            end 
         %end 
          
         %f or  i =1: numMut s 
          
            mN=debl ank( mut FNs( i , : ) ) ;  
            f or  j =1: popSi ze 
               endPop( j , : )  = f eval ( mN, endPop( j , : ) , bounds, [ gen mut Ops( i , : ) ] ) ;  
               eval ( e1st r ) ;  
               i f  det ai l s  
                  f pr i nt f ( 1, ' Gen:  %d\ t  I nd:  %d\ t  Fi t ness:  %g\ n' , gen, j , v) ;  
               end 
            end 
         %end 
      end 
       
      gen=gen+1;  
      done=f eval ( t er mFN, [ gen t er mOps] , bPop, endPop) ;  %See i f  t he ga i s  done 
      s t ar t Pop=endPop;     %Swap t he popul at i ons 
      [ bval , bi ndx]  = mi n( st ar t Pop( : , xZomeLengt h) ) ;  %Keep t he best  sol ut i on 
      s t ar t Pop( bi ndx, : )  = best ;    %r epl ace i t  wi t h t he wor st  
       
      save l at est . mat  s t ar t Pop t r aceI nf o bPop 
       
   end 
    
   endPop = st ar t Pop;  
   [ bval , bi ndx]  = max( st ar t Pop( : , xZomeLengt h) ) ;  
   i f  di spl ay  
      f pr i nt f ( 1, ' \ n%d %f \ n' , gen, bval ) ;     
   end 
   x=st ar t Pop( bi ndx, : ) ;  
   i f  opt s( 2) ==0 %bi nar y 
      x=b2f ( x, bounds, bi t s) ;  
      bPop( bFoundI n, : ) =[ gen b2f ( st ar t Pop( bi ndx, 1: numVar ) , bounds, bi t s) . . .  
            s t ar t Pop( bi ndx, xZomeLengt h) ] ;  
   el se 
      bPop( bFoundI n, : ) =[ gen st ar t Pop( bi ndx, : ) ] ;  
   end 
    
   i f  col l ect Tr ace 
      t r aceI nf o( gen, 1) =gen;    %cur r ent  gener at i on 
      t r aceI nf o( gen, 2) =st ar t Pop( bi ndx, xZomeLengt h) ;  %Best  f i t t ness 
      t r aceI nf o( gen, 3) =mean( st ar t Pop( : , xZomeLengt h) ) ;  %Avg f i t t ness 
      t r aceI nf o( gen, 4) =st d( st ar t Pop( : , xZomeLengt h) ) ;  %St d.  Devi at i on 
      hol d of f  
      pl ot ( t r aceI nf o( : , 1) , t r aceI nf o( : , 2) , ' r ' )  
      hol d on 
      pl ot ( t r aceI nf o( : , 1) , t r aceI nf o( : , 3) , ' b' )  
   end 

Appendix A.11 initGa.m 
f unct i on [ pop]  = i ni t i al i ze_r un_ga( num,  bounds,  bi t s ,  eval FN, eval Ops, opt s)  
% f unct i on [ pop] =i ni t i al i zega( popul at i onSi ze,  var i abl eBounds, eval FN,  
%                           eval Ops, opt s)  
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%    i ni t i al i zega cr eat es a mat r i x  of  r andom number s wi t h  
%    a number  of  r ows equal  t o t he popul at i onSi ze and a number  
%    col umns equal  t o t he number  of  r ows i n bounds pl us 1 f or  
%    t he f ( x)  val ue whi ch i s  f ound by appl y i ng t he eval FN.  
%    Thi s  i s  used by t he ga t o cr eat e t he popul at i on i f  i t  
%    i s  not  suppl i ed.  
% 
% pop            -  t he i ni t i al ,  eval uat ed,  r andom popul at i on  
% popul at oi nSi ze -  t he s i ze of  t he popul at i on,  i . e.  t he number  t o cr eat e 
% var i abl eBounds -  a mat r i x  whi ch cont ai ns t he bounds of  each var i abl e,  i . e.  
%                  [ var 1_hi gh var 1_l ow;  var 2_hi gh var 2_l ow;  . . . . ]  
% eval FN         -  t he eval uat i on f n,  usual l y  t he name of  t he . m f i l e f or   
%                  eval uat i on 
% eval Ops        -  any opt s  t o be passed t o t he eval  f unct i on def aul t s  [ ]  
% opt s         -  opt i ons t o t he i ni t i al i ze f unct i on,  i e.   
%                  [ t ype pr ec]  wher e eps i s  t he epsi l on val ue  
%                  and t he second opt i on i s  1 f or  f l oat  and 0 f or  bi nar y,   
%                  pr ec i s  t he pr eci s i on of  t he var i abl es def aul t s  [ 1e- 6 1]  
 
% Bi nar y and Real - Val ued Si mul at i on Evol ut i on f or  Mat l ab GAOT V2  
% Copyr i ght  ( C)  1998 C. R.  Houck,  J . A.  Joi nes,  M. G.  Kay  
% 
% C. R.  Houck,  J . Joi nes,  and M. Kay.  A genet i c  al gor i t hm f or  f unct i on 
% opt i mi zat i on:  A Mat l ab i mpl ement at i on.  ACM Tr ansact i ons on Mat hmat i cal  
% Sof t war e,  Submi t t ed 1996.  
% 
% Thi s  pr ogr am i s  f r ee sof t war e;  you can r edi st r i but e i t  and/ or  modi f y  
% i t  under  t he t er ms of  t he GNU Gener al  Publ i c  Li cense as publ i shed by 
% t he Fr ee Sof t war e Foundat i on;  ei t her  ver s i on 1,  or  ( at  your  opt i on)  
% any l at er  ver s i on.  
% 
% Thi s  pr ogr am i s  di s t r i but ed i n t he hope t hat  i t  wi l l  be usef ul ,  
% but  WI THOUT ANY WARRANTY;  wi t hout  even t he i mpl i ed war r ant y  of  
% MERCHANTABI LI TY or  FI TNESS FOR A PARTI CULAR PURPOSE.   See t he 
% GNU Gener al  Publ i c  Li cense f or  mor e det ai l s .  A copy of  t he GNU  
% Gener al  Publ i c  Li cense can be obt ai ned f r om t he  
% Fr ee Sof t war e Foundat i on,  I nc. ,  675 Mass Ave,  Cambr i dge,  MA 02139,  USA.  
 
i f  nar gi n<5 
   opt s  = [ 1e- 6 1 0 0] ;  
end 
i f  i sempt y( opt s)  
   opt s  = [ 1e- 6 1 0 0] ;  
end 
 
i f  any( eval FN<48)  %Not  a . m f i l e 
   i f  opt s( 2) ==1 %Fl oat  GA 
      est r =[ ' x=pop( i , 1) ;  pop( i , xZomeLengt h) =' ,  eval FN ' ; ' ] ;    
   el se %Bi nar y GA 
      est r =[ ' x=b2f ( pop( i , : ) , bounds, bi t s) ;  pop( i , xZomeLengt h) =' ,  eval FN ' ; ' ] ;   
   end 
el se %A . m f i l e 
   i f  opt s( 2) ==1 %Fl oat  GA 
      est r =[ ' [  pop( i , : )  pop( i , xZomeLengt h) ] ='  eval FN ' ( pop( i , : ) , [ 0 eval Ops] ) ; ' ] ;   
   el se %Bi nar y GA 
      %    est r =[ ' x=b2f ( pop( i , : ) , bounds, bi t s) ; [ x  v ] ='  eval FN . . .  
      %          ' ( x , [ 0 eval Ops] ) ;  pop( i , : ) =[ f 2b( x, bounds, bi t s)  v ] ; ' ] ;    
      est r =[ ' x=b2f ( pop( i , : ) , bounds, bi t s) ; [ x  v ] ='  eval FN . . .  
            ' ( x , [ 0 eval Ops] ) ;  pop( i , end)  = v ; ' ] ;  %Ther e seems t o be a di scr epancy i n 
how f 2b wor ks so avoi d us i ng i t  
   end 
end 
det ai l s  = opt s( 4) ;  
 
 
 
numVar s     = s i ze( bounds, 1) ;    %Number  of  var i abl es 
r ng         = ( bounds( : , 2) - bounds( : , 1) ) ' ;  %The var i abl e r anges'  
 
i f  opt s( 2) ==1 %Fl oat  GA 
   xZomeLengt h = numVar s+1;    %Lengt h of  s t r i ng i s  numVar  + f i t  
   pop         = zer os( num, xZomeLengt h) ;   %Al l ocat e t he new popul at i on 
   pop( : , 1: numVar s) =( ones( num, 1) * r ng) . * ( r and( num, numVar s) ) +. . .  
      ( ones( num, 1) * bounds( : , 1) ' ) ;  
el se %Bi nar y GA 
   %bi t s=cal cbi t s( bounds( : , 1: 2) , bounds( : , 3) ' ) ;  
   xZomeLengt h = sum( bi t s) +1;    %Lengt h of  s t r i ng i s  numVar  + f i t  
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   pop = r ound( r and( num, sum( bi t s) +1) ) ;  
end 
bounds = bounds( : , 1: 2) ;  
f or  i =1: num 
   eval ( est r ) ;  
   i f  det ai l s  
      f pr i nt f ( ' I ni t i al i s i ng:  I ndi v i dual  %d \ t Fi t ness %g\ n' , i , v) ;  
   end 
end 

 

 

Appendix A.12 ga_sfn.m 
f unct i on [ sys, x0, st r , t s ]  = ga_sf n( t , x , u, f l ag, popSi ze, bounds, bi t s , per i od)  
%Run a genet i c  al gor i t hm as an S- Funct i on 
%Assume a bi nar y GA wi t h r oul et et e sel ect i on, maskXover ,  
%bi nar y mut at i on wi t h pr obabi l i t y  . 01 
% 
 
%Wr i t t en By Joe For an August  2002 
 
swi t ch f l ag,  
    
   %%%%%%%%%%%%%%%%%% 
   % I ni t i al i zat i on % 
   %%%%%%%%%%%%%%%%%% 
case 0,  
   [ sys, x0, st r , t s ]  = mdl I ni t i al i zeSi zes( popSi ze, bounds, bi t s , per i od) ;  
    
   %%%%%%%%%% 
   % Updat e % 
   %%%%%%%%%% 
case 2,                                                  
   [ sys]  = mdl Updat e( t , x , u, popSi ze) ;   
    
   %%%%%%%%%% 
   % Out put  % 
   %%%%%%%%%% 
case 3,                                                  
   sys  = mdl Out put s( t , x , u, popSi ze, bounds, bi t s) ;  
    
   %%%%%%%%%%%%% 
   % Ter mi nat e % 
   %%%%%%%%%%%%% 
case 9,                                                  
   mdl Ter mi nat e( t , x , u, popSi ze, bounds, bi t s) ;  %save r esul t s  t o di sk 
    
   %%%%%%%%%%%%%%%%%%%% 
   % Unexpect ed f l ags % 
   %%%%%%%%%%%%%%%%%%%% 
ot her wi se 
   er r or ( [ ' unhandl ed f l ag = ' , num2st r ( f l ag) ] ) ;  
end 
 
% 
%======================================================================= 
% mdl I ni t i al i zeSi zes 
% Ret ur n t he s i zes,  i ni t i al  condi t i ons,  and sampl e t i mes f or  t he S- f unct i on.  
%======================================================================= 
% 
f unct i on [ sys, x0, st r , t s ]  = mdl I ni t i al i zeSi zes( popSi ze, bounds, bi t s , per i od)  
 
numVar  = s i ze( bounds, 1) ;  
i ni t Pop = i ni t ga( popSi ze, bi t s) ;  
 
numGenes = s i ze( i ni t Pop, 2) ;  
gen = 1;  %Gener at i on count er  
 
s i zes = s i msi zes;  
s i zes. NumCont St at es  = 0;  
s i zes. NumDi scSt at es  = ( popSi ze+1) * numGenes+3;  
s i zes. NumOut put s      = numVar +3;  
s i zes. NumI nput s       = 1;  
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si zes. Di r Feedt hr ough = 0;  
s i zes. NumSampl eTi mes = 1;  
 
sys = s i msi zes( s i zes) ;  
 
i ni t Pop = r eshape( i ni t Pop' , popSi ze* numGenes, 1) ;  %Make i ni t Pop a vect or  
 
 
x0  = zer os( s i zes. NumDi scSt at es, 1) ;  
x0( 1: popSi ze* numGenes)  = i ni t Pop;  %Pl ace i ni t Pop i nt o s t at e vect or  
x0( end- 2)  = numGenes;  %St or e t hi s  val ue so i t  doesn' t  have t o be const ant l y  
r ecal cul at ed 
x0( end- 1)  = gen;  %Pl ace gener at i on count er  i nt o s t at e vect or ;  
x0( end)  = 1;  %Tr acks whi ch chr omosome i s  bei ng eval uat ed 
 
 
s t r  = [ ] ;  
t s   = [ per i od 0] ;   
 
% end mdl I ni t i al i zeSi zes 
% 
%======================================================================= 
% mdl Updat e 
% Handl e di scr et e s t at e updat es,  sampl e t i me hi t s ,  and maj or  t i me st ep 
% r equi r ement s.  
%======================================================================= 
% 
f unct i on [ sys]  = mdl Updat e( t , x , u, popSi ze)  
i nput  = u;  
i f  u<=0 
   i nput  =1e- 9;  
end 
numGenes = x( end- 2) ;  
cc  = x( end) ;  
 
%Get  cur r ent  popul at i on i nt o mat r i x  f or m 
pop = r eshape( x( 1: ( popSi ze+1) * numGenes) , numGenes, popSi ze+1) ' ;   
 
cur r ent _opt i mum = pop( end, end) ;  
 
%The f i t ness i n i nput  r ef er s  t o t he pr evi ous chr omosome 
i f  cc>1 %Thi s  i s  because out put  occur s bef or e updat e 
   pop( cc- 1, end) =i nput ; %Read i n i nput  i nt o t he f i t ness val ue of  t he pr evi ous 
chr omosome 
   i f  i nput >cur r ent _opt i mum %Save new best  sol ut i on 
      pop( end, : )  = pop( cc- 1, : ) ;  
   end 
end 
 
x( end)  = x( end) +1;  %I ncr ement  chr omosome count er  
 
i f  x( end)  > popSi ze+1 %End of  a gener at i on 
   i f  max( pop( : , end- 1) ) <cur r ent _opt i mum %I f  t he opt i mum was l ost  i n t hi s  gener at i on 
      [ wval  wi ndx]  = mi n( pop( : , end- 1) ) ;  %Repl ace t he wor st  of  t hi s  gener at i on 
      pop( wi ndx, : )  = pop( end, : ) ;  %Wi t h t he opt i mum 
   end 
   newPop = cr eat e_next _gener at i on( pop( 1: end- 1, : ) ) ;  %f i nd next  gener at i on 
   pop = [ newPop;  pop( end, : ) ] ;  
   x( end)  = 1;    %St ar t  agai n at  begi nni ng of  next  gener at i on 
   x( end- 1)  = x( end- 1) +1;  %I ncr ement  Gener at i on Count er  
end 
 
x( 1: ( popSi ze+1) * numGenes)  = r eshape( pop' , numGenes* ( popSi ze+1) , 1) ;  %Tr ansf or m mat r i x  
back i nt o vect or  
 
sys = x;  
 
%end mdl Updat e 
% 
%======================================================================= 
% mdl Out put s  
% Ret ur n Ret ur n t he out put  vect or  f or  t he S- f unct i on 
%======================================================================= 
% 
f unct i on sys = mdl Out put s( t , x , u, popSi ze, bounds, bi t s)  
 
numGenes = x( end- 2) ;  
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gener at i on = x( end- 1) ;  
cc  = x( end) ;  
opt i mum = x( ( popSi ze+1) * numGenes) ;  
pop = r eshape( x( 1: ( popSi ze+1) * numGenes) , numGenes, popSi ze+1) ' ;  
chr om = b2f ( pop( cc, 1: end- 1) , bounds, bi t s) ;  
 
%Out put  cur r ent  chr omosome,  best  chr omosome so f ar ,  best  f i t ness so f ar  and cur r ent  
gener at i on number  
sys = [ chr om cc opt i mum gener at i on] ;  
 
%end mdl Out put s  
 
f unct i on mdl Ter mi nat e( t , x , u, popSi ze, bounds, bi t s)  
 
numGenes = x( end- 2) ;  
cur r ent Chr om = x( end) ;  
cur r ent Gen = x( end) - 1;  
 
pop = r eshape( x( 1: ( popSi ze+1) * numGenes) , numGenes, popSi ze+1) ' ;  
best _chr om = pop( end, : ) ;  
 
save f i nal St at e. mat  best _chr om cur r ent Chr om cur r ent Gen pop 
 
 
%end Mdl Ter mi nat e 
 
 
 
f unct i on [ pop]  = i ni t ga( num, bi t s)  
% f unct i on [ pop] =i ni t i al i zega( popul at i onSi ze,  var i abl eBounds,  bi t s)  
%                            
%    i ni t i al i zega cr eat es a mat r i x  of  r andom number s wi t h  
%    a number  of  r ows equal  t o t he popul at i onSi ze  
% 
% pop            -  t he i ni t i al ,  eval uat ed,  r andom popul at i on  
% popul at oi nSi ze -  t he s i ze of  t he popul at i on,  i . e.  t he number  t o cr eat e 
% bi t s      -  a vect or  wi t h t he number  of  bi t s  r equi r ed per  var i abl e 
 
pop = r ound( r and( num, sum( bi t s) +1) ) ;  
pop( : , end)  = zer os( num, 1) ;  
 
%end i ni t ga 
 
 
f unct i on newPop = cr eat e_next _gener at i on( ol dPop)  
[ popSi ze,  nVar s]  = s i ze( ol dPop) ;  
 
%Sel ect  us i ng st ochast i c  Remai nder  Sel ect i on 
newPop = st ocRemSel ec( ol dPop) ;  
 
%Cr ossover  us i ng mask cr ossover  
 
l i s t  = r and( popSi ze, 1) ;  %Gener at e a l i s t  t o deci de how cr ossover s ar e pai r ed 
 
f or  i  = 1: f l oor ( popSi ze/ 2)  
   [ t mp, i nd]  = max( l i s t ( : , 1) ) ;  
   a = newPop( i nd, : ) ;  
   l i s t ( i nd)  = 0;  
   [ t mp, i nd]  = max( l i s t ( : , 1) ) ;  
   b = newPop( i nd, : ) ;  
   l i s t ( i nd)  = 0;  
   [ c  d]   = maskXover ( a, b) ;  
   newPop( i * 2- 1, : )  = c ;  
   newPop( i * 2, : )  = d;  
end 
 
%Mut at e 
f or  i  = 1: popSi ze 
   newPop( i , : )  = bi nMut at i on( newPop( i , : ) , 0. 01) ;  
end 
 
%end of  cr eat e_next _gener at i on 
 
f unct i on par ent  = bi nMut at i on( par ent , mut _pr ob)  
% Bi nar y mut at i on changes each of  t he bi t s  of  t he par ent  
% based on t he pr obabi l i t y  of  mut at i on 
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%Based on bi nar yMut at i on i n GAOT t ool box.  Modi f i ed by Joe For an 
numVar  = s i ze( par ent , 2) - 1;    % Get  t he number  of  var i abl es  
% Pi ck a var i abl e t o mut at e r andoml y f r om 1- number  of  var s  
r N=r and( 1, numVar ) <mut _pr ob;  
par ent =[ abs( par ent ( 1: numVar )  -  r N)  par ent ( numVar +1) ] ;  

Appendix A.13 evalfis_sfn.m 
f unct i on [ sys, x0, st r , t s ]  = eval f i s_sf n3( t , x , u, f l ag)  
%Eval uat es a t wo- i nput  FI S based on par amet er s and er r or  
%val ues i nput  i nt o t he bl ock 
 
gl obal  t he_f uzzy 
swi t ch f l ag,  
    
   %%%%%%%%%%%%%%%%%% 
   % I ni t i al i zat i on % 
   %%%%%%%%%%%%%%%%%% 
case 0,  
   [ sys, x0, st r , t s ] =mdl I ni t i al i zeSi zes;  
    
   %%%%%%%%%%%%%%% 
   % Der i vat i ves % 
   %%%%%%%%%%%%%%% 
case 1,  
   sys=[ ] ;  
    
   %%%%%%%%%% 
   % Updat e % 
   %%%%%%%%%% 
case 2,  
   sys=mdl Updat e( t , x , u) ;  
    
   %%%%%%%%%%% 
   % Out put s  % 
   %%%%%%%%%%% 
case 3,  
   sys=mdl Out put s( t , x , u) ;  
    
   %%%%%%%%%%%%%%%%%%%%%%% 
   % Get Ti meOf Next Var Hi t  % 
   %%%%%%%%%%%%%%%%%%%%%%% 
case 4,  
   sys=[ ] ;  
    
   %%%%%%%%%%%%% 
   % Ter mi nat e % 
   %%%%%%%%%%%%% 
case 9,  
   sys=[ ] ;  
    
   %%%%%%%%%%%%%%%%%%%% 
   % Unexpect ed f l ags % 
   %%%%%%%%%%%%%%%%%%%% 
ot her wi se 
   er r or ( [ ' Unhandl ed f l ag = ' , num2st r ( f l ag) ] ) ;  
    
end 
 
% end sf unt mpl  
 
% 
%============================================================================= 
% mdl I ni t i al i zeSi zes 
% Ret ur n t he s i zes,  i ni t i al  condi t i ons,  and sampl e t i mes f or  t he S- f unct i on.  
%============================================================================= 
% 
f unct i on [ sys, x0, st r , t s ] =mdl I ni t i al i zeSi zes 
 
% 
% cal l  s i msi zes f or  a s i zes st r uct ur e,  f i l l  i t  i n and conver t  i t  t o a 
% s i zes ar r ay.  
% 
% Not e t hat  i n t hi s  exampl e,  t he val ues ar e har d coded.   Thi s  i s  not  a 
% r ecommended pr act i ce as t he char act er i s t i cs  of  t he bl ock ar e t ypi cal l y  
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% def i ned by t he S- f unct i on par amet er s.  
% 
s i zes = s i msi zes;  
 
s i zes. NumCont St at es  = 0;  
s i zes. NumDi scSt at es  = 19;  
s i zes. NumOut put s      = 1;  
s i zes. NumI nput s       = 21;  
s i zes. Di r Feedt hr ough = 1;  
s i zes. NumSampl eTi mes = 1;    % at  l east  one sampl e t i me i s  needed 
 
sys = s i msi zes( s i zes) ;  
 
% 
% i ni t i al i ze t he i ni t i al  condi t i ons 
% 
x0  = zer os( s i zes. NumDi scSt at es, 1) ;  
 
% 
% st r  i s  al ways an empt y mat r i x  
% 
st r  = [ ] ;  
 
% 
% i ni t i al i ze t he ar r ay of  sampl e t i mes 
% 
t s   = [ - 1 0] ;  
 
% end mdl I ni t i al i zeSi zes 
 
% 
%============================================================================= 
% mdl Updat e 
% Handl e di scr et e s t at e updat es,  sampl e t i me hi t s ,  and maj or  t i me st ep 
% r equi r ement s.  
%============================================================================= 
f unct i on sys = mdl Updat e( t , x , u)  
sys = u( 1: 19) ;  
 
 
 
 
%============================================================================= 
% mdl Out put s  
% Ret ur n t he bl ock out put s.  
%============================================================================= 
% 
f unct i on sys=mdl Out put s( t , x , u)  
gl obal  t he_f uzzy 
i nput  = u( 20: 21) ;  
 
%Check i f  FLC needs t o be changed 
i f  any( u( 1: 15)  ~= x( 1: 15) ) |  u( 19) ~=x( 19)  
   n = u( 1: 3) ;  
   pm = u( 4: 6) . ^ u( 10: 12) ;  
  pr  = u( 7: 9) . ^ u( 13: 15) ;  
   t het a = u( 19) ;  
    
   t he_f uzzy = make_f i s( 2, 1, n, pm, pr , t het a) ;  
end 
 
scal e = u( 16: 18) ;  
i nput  = i nput . * scal e( 1: 2) ;  
 
%Sat ur at e t he i nput  t o bet ween - 1 and 1 
f or  i  = 1: l engt h( i nput )  
   i f  abs( i nput ( i ) ) >1 
      i nput ( i )  = s i gn( i nput ( i ) ) ;  
   end 
end 
 
%Cal cul at e out put  
sys = scal e( end) * eval f i s( i nput , t he_f uzzy) ;  
 
% end mdl Out put s  
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Appendix A.14 fuzz_class.m 
f unct i on [ sys, x0, st r , t s ]  = f uzz_cl ass( t , x , u, f l ag, bi dOpt s, t axOpt s)  
%S_Funct i on t hat  r uns a genet i c  based f uzzy c l assi f i er  
 
gl obal  RULES THE_FUZZY WI NNERS 
 
swi t ch f l ag,  
    
   %%%%%%%%%%%%%%%%%% 
   % I ni t i al i zat i on % 
   %%%%%%%%%%%%%%%%%% 
case 0,  
   [ sys, x0, st r , t s ] =mdl I ni t i al i zeSi zes;  
    
   %%%%%%%%%%%%%%% 
   % Der i vat i ves % 
   %%%%%%%%%%%%%%% 
case 1,  
   sys=[ ] ;  
    
   %%%%%%%%%% 
   % Updat e % 
   %%%%%%%%%% 
case 2,  
   sys=mdl Updat e( t , x , u) ;  
    
   %%%%%%%%%%% 
   % Out put s  % 
   %%%%%%%%%%% 
case 3,  
   sys=mdl Out put s( t , x , u, bi dOpt s, t axOpt s) ;  
    
   %%%%%%%%%%%%%%%%%%%%%%% 
   % Get Ti meOf Next Var Hi t  % 
   %%%%%%%%%%%%%%%%%%%%%%% 
case 4,  
   sys=[ ] ;  
    
   %%%%%%%%%%%%% 
   % Ter mi nat e % 
   %%%%%%%%%%%%% 
case 9,  
   sys=mdl Ter mi nat e( t , x , u) ;  
    
   %%%%%%%%%%%%%%%%%%%% 
   % Unexpect ed f l ags % 
   %%%%%%%%%%%%%%%%%%%% 
ot her wi se 
   er r or ( [ ' Unhandl ed f l ag = ' , num2st r ( f l ag) ] ) ;  
    
end 
 
% end sf unt mpl  
 
% 
%============================================================================= 
% mdl I ni t i al i zeSi zes 
% Ret ur n t he s i zes,  i ni t i al  condi t i ons,  and sampl e t i mes f or  t he S- f unct i on.  
%============================================================================= 
% 
f unct i on [ sys, x0, st r , t s ] =mdl I ni t i al i zeSi zes 
 
% 
% cal l  s i msi zes f or  a s i zes st r uct ur e,  f i l l  i t  i n and conver t  i t  t o a 
% s i zes ar r ay.  
% 
% Not e t hat  i n t hi s  exampl e,  t he val ues ar e har d coded.   Thi s  i s  not  a 
% r ecommended pr act i ce as t he char act er i s t i cs  of  t he bl ock ar e t ypi cal l y  
% def i ned by t he S- f unct i on par amet er s.  
% 
gl obal  RULES THE_FUZZY WI NNERS 
 
numMf s = zer os( 1, 2) ;  
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f or  i  = 1: 2 
   numMf s( i )  = s i ze( THE_FUZZY. i nput ( i ) . mf , 2) ;  
end 
 
numOut Mf s = s i ze( THE_FUZZY. out put . mf , 2) ;  
RULES = combi neVect or s( [ numMf s numOut Mf s] ) ;  
numRul es = s i ze( RULES, 1) ;  
RULES( : , 4)  = 3* ones( numRul es, 1) ;  
RULES( : , 5)  = 100* ones( numRul es, 1) ;  %Make I ni t i al  Fi t ness of  al l  r ul es 100;  
WI NNERS = [ 1 1 1 1] ' ;  %Set  t he f i r s t  r ul e t o be t he i ni t i al  wi nner  
 
 
s i zes = s i msi zes;  
 
s i zes. NumCont St at es  = 0;  
s i zes. NumDi scSt at es  = numRul es* 5+5;  
s i zes. NumOut put s      = 4;  
s i zes. NumI nput s       = 5;  
s i zes. Di r Feedt hr ough = 1;  
s i zes. NumSampl eTi mes = 1;    % at  l east  one sampl e t i me i s  needed 
 
sys = s i msi zes( s i zes) ;  
 
% 
% i ni t i al i ze t he i ni t i al  condi t i ons 
% 
x0  = [ r eshape( RULES, numRul es* 5, 1) ;  numRul es;  WI NNERS] ;  
 
% 
% st r  i s  al ways an empt y mat r i x  
% 
st r  = [ ] ;  
 
% 
% i ni t i al i ze t he ar r ay of  sampl e t i mes 
% 
t s   = [ - 1 0] ;  
 
% end mdl I ni t i al i zeSi zes 
 
% 
%============================================================================= 
% mdl Updat e 
% Handl e di scr et e s t at e updat es,  sampl e t i me hi t s ,  and maj or  t i me st ep 
% r equi r ement s.  
%============================================================================= 
% 
f unct i on sys=mdl Updat e( t , x , u)  
gl obal  RULES WI NNERS 
 
numRul es = x( end- 4) ;  
sys = [ r eshape( RULES, numRul es* 5, 1) ;  numRul es;  WI NNERS] ;  
 
% end mdl Updat e 
 
% 
%============================================================================= 
% mdl Out put s  
% Ret ur n t he bl ock out put s.  
%============================================================================= 
% 
f unct i on sys=mdl Out put s( t , x , u, bi dOpt s, t axOpt s)  
gl obal  RULES WI NNERS 
 
r ewar d = u( 1) ;  
mf s = u( 2: end) ' ;  
message = [ mf s( 1)  mf s( 1)  mf s( 2)  mf s( 2)  mf s( 3)  mf s( 4)  mf s( 3)  mf s( 4) ] ' ;  
 
message = r eshape( message, 4, 2) ;  
numRul es = x( end- 4) ;  
RULES = r eshape( x( 1: end- 5) , numRul es, 5) ;  
ol dWi nner  = x( end- 3: end) ;  
newWi nner  = ol dWi nner ;  
act i on = zer os( 4, 1) ;  
numOl dWi nner s = sum( f i nd( ol dWi nner >0) ) ;  
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f or  i  = 1: 4 
   i f ~al l ( message( i ) )  
      newWi nner ( i )  = 0;  %Def aul t  t o r ul e 1 i f  not  appl i cabl e 
      act i on( i )  = 0;  
   el se 
      mat chLi st  = mat chMessage( RULES, message( i ) ) ;  
      i f  ol dWi nner ( i )  == 0 
         [ wi nner s, RULES]  = appor t i onCr edi t ( RULES, mat chLi st , [ ] , bi dOpt s, t axOpt s) ;  
      el se 
         [ wi nner s, RULES]  = appor t i onCr edi t ( RULES, mat chLi st , ol dWi nner ( i ) , bi dOpt s,  
t axOpt s) ;  
         RULES( ol dWi nner ( i ) , end)  = RULES( ol dWi nner ( i ) , end) +r ewar d/ numOl dWi nner s;  
      end 
      i f  i sempt y( wi nner s)  
         newWi nner ( i )  = 0;  
         act i on( i )  = 0;  
      el se 
         newWi nner ( i )  = wi nner s( cei l ( r and* l engt h( wi nner s) ) ) ;  
         act i on( i )  = RULES( newWi nner ( i ) , 3) ;  
      end 
   end 
end 
 
WI NNERS = newWi nner ;  
 
 
sys = act i on;  
 
% end mdl Out put s  
 
 
% 
%============================================================================= 
% mdl Ter mi nat e 
% Per f or m any end of  s i mul at i on t asks.  
%============================================================================= 
% 
f unct i on sys=mdl Ter mi nat e( t , x , u)  
 
numRul es = x( end- 4) ;  
RULES = r eshape( x( 1: end- 5) , numRul es, 5) ;  
save Fi nal Rul es. mat  RULES 
c l ear  RULES;  
sys = [ ] ;  
 
% end mdl Ter mi nat e 
 

Appendix A.15 match_message.m 
f unct i on mat chLi st  = mat chMessage( c l assi f i er s, message)  
%MATCHMESSAGE Ret ur ns a l i s t  of  whi ch c l assi f i er s  mat ch t he message 
% 
%Ret ur ns a 0 i f  no mat ch 1 i f  a succesf ul  mat ch 
 
[ numMess l enMess]  = s i ze( message) ;  
 
t est Samp = r ound( c l assi f i er s( : , 1: l enMess) ) ;  
 
f or  i  = 1: s i ze( c l assi f i er s, 1)  
   f or  j  = 1: numMess 
      mat chLi st ( i , j )  = al l ( ( t est Samp( i , : )  == message( j , : ) ) | ( t est Samp( i , : )  == - 1) ) ;  
   end 
end 
 

Appendix A.16 appor tion_credit.m 
f unct i on [ wi nner , c l assi f i er s]  =  
appor t i onCr edi t ( c l ass i f i er s, mat chLi st , ol dWi nner , bi dOpt s, t axOpt s)  
%APPORTI ONCREDI T appor t i ons cr edi t  i n a c l ass i f i er  syst em 
% 
%wi nner    The wi nner  of  t hi s  r ound 



92 

%  
%cl assi f i er s  The l i s t  of  c l ass i f i er s  
%mat chLi st   Li s t  of  t hose mat chi ng cur r ent  messages 
%ol dWi nner   The wi nner  f r om pr evi ous r ounds 
%b1, b2   Par amet er s f or  scal i ng bi d wi t h r egar d t o speci f i c i t y  
 
i f  nar gi n<3 
   er r or ( ' I nsuf f i c i ent  i nput  ar gument s ' ) ;  
end 
 
i f  nar gi n<5 |  l engt h( t axOpt s)  < 2 
   t axOpt s = [ 0 0] ;  
end 
exi s t Tax = t axOpt s( 1) ;  
bi dTax = t axOpt s( 2) ;  
 
 
i f  nar gi n<4 | l engt h( bi dOpt s <3)  
   bi dOpt s = [ 0. 1 0. 25 0. 125] ;  
end 
cBi d = bi dOpt s( 1) ;  
b1 = bi dOpt s( 2) ;  
b2 = bi dOpt s( 3) ;  
 
maxBi d = 0;  
i f  any( mat chLi st )  
   act i veI nd = f i nd( mat chLi st  == 1) ;  
   bi d = cBi d* c l assi f i er s( act i veI nd, end) . * ( c l assi f i er s( act i veI nd, end- 1) * b2+b1) ;  
   maxBi d  = max( bi d) ;  
   maxI nd = f i nd( bi d == maxBi d) ;  
   wi nner  = act i veI nd( maxI nd) ;  
el se 
   wi nner  = ol dWi nner ;  %I f  t her e i s  no mat ch,  t he ol d wi nner  wi ns agai n 
end 
 
%Col l ect  Taxes 
c l assi f i er s( : , end)  = c l assi f i er s( : , end)  -  c l ass i f i er s( : , end) * exi s t Tax -  
c l ass i f i er s( : , end) . * mat chLi st * bi dTax;  
 
%Di st r i but e Payment s 
 
c l ass i f i er s( wi nner , end)  = c l assi f i er s( wi nner , end) - maxBi d;  
negI nd = f i nd( c l assi f i er s( wi nner , end) <0) ;  
c l ass i f i er s( negI nd, end)  =0;  
i f  ~i sempt y( ol dWi nner )  
   c l ass i f i er s( ol dWi nner , end)  = 
c l assi f i er s( ol dWi nner , end) +maxBi d* l engt h( wi nner ) / l engt h( ol dWi nner ) ;  
end 
 

Appendix A.17 fuzzify_online.m 
f unct i on [ sys, x0, st r , t s ]  = f uzz i f yOnl i ne( t , x , u, f l ag, scal e)  
%S_Funct i on t hat  f uzz i f i es  er r or  f or  c l ass i f i er  
%Onl y wor ks f or  t r i angul ar  MFs and assumes t hat  t he set s  ar e spaced such  
%t hat  any val ue i s  a member  of  at  most  t wo set s  
 
gl obal  THE_FUZZY  
 
swi t ch f l ag,  
    
   %%%%%%%%%%%%%%%%%% 
   % I ni t i al i zat i on % 
   %%%%%%%%%%%%%%%%%% 
case 0,  
   [ sys, x0, st r , t s ] =mdl I ni t i al i zeSi zes;  
    
   %%%%%%%%%%%%%%% 
   % Der i vat i ves % 
   %%%%%%%%%%%%%%% 
case 1,  
   sys=[ ] ;  
    
   %%%%%%%%%% 
   % Updat e % 
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   %%%%%%%%%% 
case 2,  
   sys = [ ] ;  
    
   %%%%%%%%%%% 
   % Out put s  % 
   %%%%%%%%%%% 
case 3,  
   sys=mdl Out put s( t , x , u, scal e) ;  
    
   %%%%%%%%%%%%%%%%%%%%%%% 
   % Get Ti meOf Next Var Hi t  % 
   %%%%%%%%%%%%%%%%%%%%%%% 
case 4,  
   sys=[ ] ;  
    
   %%%%%%%%%%%%% 
   % Ter mi nat e % 
   %%%%%%%%%%%%% 
case 9,  
   sys=[ ] ;  
    
   %%%%%%%%%%%%%%%%%%%% 
   % Unexpect ed f l ags % 
   %%%%%%%%%%%%%%%%%%%% 
ot her wi se 
   er r or ( [ ' Unhandl ed f l ag = ' , num2st r ( f l ag) ] ) ;  
    
end 
 
% end sf unt mpl  
 
% 
%============================================================================= 
% mdl I ni t i al i zeSi zes 
% Ret ur n t he s i zes,  i ni t i al  condi t i ons,  and sampl e t i mes f or  t he S- f unct i on.  
%============================================================================= 
% 
f unct i on [ sys, x0, st r , t s ] =mdl I ni t i al i zeSi zes 
 
% 
% cal l  s i msi zes f or  a s i zes st r uct ur e,  f i l l  i t  i n and conver t  i t  t o a 
% s i zes ar r ay.  
% 
% Not e t hat  i n t hi s  exampl e,  t he val ues ar e har d coded.   Thi s  i s  not  a 
% r ecommended pr act i ce as t he char act er i s t i cs  of  t he bl ock ar e t ypi cal l y  
% def i ned by t he S- f unct i on par amet er s.  
% 
 
gl obal  THE_FUZZY 
 
numEr r or Mf s = s i ze( THE_FUZZY. i nput ( 1) . mf , 2) ;  
numDeMf s = s i ze( THE_FUZZY. i nput ( 2) . mf , 2) ;  
 
er r or Mf Par ams = zer os( numEr r or Mf s, 3) ;  
deMf Par ams = zer os( numDeMf s, 3) ;  
 
f or  i  = 1: numEr r or Mf s 
   er r or Mf Par ams( i , : )  = THE_FUZZY. i nput ( 1) . mf ( i ) . par ams;  
end 
 
f or  i  = 1: numDeMf s 
   deMf Par ams( i , : )  = THE_FUZZY. i nput ( 2) . mf ( i ) . par ams;  
end 
 
s i zes = s i msi zes;  
 
s i zes. NumCont St at es  = 0;  
s i zes. NumDi scSt at es  = 2+3* numEr r or Mf s+3* numDeMf s;  
s i zes. NumOut put s      = 8;  
s i zes. NumI nput s       = 2;  
s i zes. Di r Feedt hr ough = 1;  
s i zes. NumSampl eTi mes = 1;    % at  l east  one sampl e t i me i s  needed 
 
sys = s i msi zes( s i zes) ;  
 
% 
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% i ni t i al i ze t he i ni t i al  condi t i ons 
% 
x0  = [ numEr r or Mf s;  numDeMf s;  r eshape( er r or Mf Par ams, numEr r or Mf s* 3, 1) ;  
r eshape( deMf Par ams, 3* numDeMf s, 1) ] ;  
% 
% st r  i s  al ways an empt y mat r i x  
% 
st r  = [ ] ;  
 
% 
% i ni t i al i ze t he ar r ay of  sampl e t i mes 
% 
t s   = [ - 1 0] ;  
 
% end mdl I ni t i al i zeSi zes 
 
% end mdl Updat e 
 
% 
%============================================================================= 
% mdl Out put s  
% Ret ur n t he bl ock out put s.  
%============================================================================= 
% 
f unct i on sys = mdl Out put s( t , x , u, scal e)  
 
er r or  = u( 1) * scal e( 1) ;  
dEr r or  = u( 2) * scal e( 2) ;  
 
numEr r or Mf s = x( 1) ;  
numDeMf s= x( 2) ;  
er r or Mf Par ams = r eshape( x( 3: 2+numEr r or Mf s* 3) , numEr r or Mf s, 3) ;  
deMf Par ams = r eshape( x( 3+numEr r or Mf s* 3: end) , numDeMf s, 3) ;  
 
[ er r or Set s,  er r or Dof ]  = f i ndSet s( er r or , numEr r or Mf s, er r or Mf Par ams) ;  
[ deSet s,  deDof ]  = f i ndSet s( dEr r or , numDeMf s, deMf Par ams) ;  
 
sys = [ er r or Set s;  deSet s;  er r or Dof ;  deDof ] ;  
 
 
% end mdl Out put s  

Appendix A.18 defuzzify_online.m 

 
f unct i on [ sys, x0, st r , t s ]  = def uzzi f yOnl i ne( t , x , u, f l ag, scal e)  
%S_Funct i on t hat  f uzz i f i es  er r or  f or  c l ass i f i er  
%Onl y wor ks f or  t r i angul ar  MFs and assumes t hat  t he set s  ar e spaced such  
%t hat  any val ue i s  a member  of  at  most  t wo set s  
 
gl obal  THE_FUZZY  
 
swi t ch f l ag,  
    
   %%%%%%%%%%%%%%%%%% 
   % I ni t i al i zat i on % 
   %%%%%%%%%%%%%%%%%% 
case 0,  
   [ sys, x0, st r , t s ] =mdl I ni t i al i zeSi zes;  
    
   %%%%%%%%%%%%%%% 
   % Der i vat i ves % 
   %%%%%%%%%%%%%%% 
case 1,  
   sys=[ ] ;  
    
   %%%%%%%%%% 
   % Updat e % 
   %%%%%%%%%% 
case 2,  
   sys = [ ] ;  
    
   %%%%%%%%%%% 
   % Out put s  % 
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   %%%%%%%%%%% 
case 3,  
   sys=mdl Out put s( t , x , u, scal e) ;  
    
   %%%%%%%%%%%%%%%%%%%%%%% 
   % Get Ti meOf Next Var Hi t  % 
   %%%%%%%%%%%%%%%%%%%%%%% 
case 4,  
   sys=[ ] ;  
    
   %%%%%%%%%%%%% 
   % Ter mi nat e % 
   %%%%%%%%%%%%% 
case 9,  
   sys=[ ] ;  
    
   %%%%%%%%%%%%%%%%%%%% 
   % Unexpect ed f l ags % 
   %%%%%%%%%%%%%%%%%%%% 
ot her wi se 
   er r or ( [ ' Unhandl ed f l ag = ' , num2st r ( f l ag) ] ) ;  
    
end 
 
% end sf unt mpl  
 
% 
%============================================================================= 
% mdl I ni t i al i zeSi zes 
% Ret ur n t he s i zes,  i ni t i al  condi t i ons,  and sampl e t i mes f or  t he S- f unct i on.  
%============================================================================= 
% 
f unct i on [ sys, x0, st r , t s ] =mdl I ni t i al i zeSi zes 
 
% 
% cal l  s i msi zes f or  a s i zes st r uct ur e,  f i l l  i t  i n and conver t  i t  t o a 
% s i zes ar r ay.  
% 
% Not e t hat  i n t hi s  exampl e,  t he val ues ar e har d coded.   Thi s  i s  not  a 
% r ecommended pr act i ce as t he char act er i s t i cs  of  t he bl ock ar e t ypi cal l y  
% def i ned by t he S- f unct i on par amet er s.  
% 
 
gl obal  THE_FUZZY 
 
numOut put Mf s = s i ze( THE_FUZZY. out put . mf , 2) ;  
 
out put Mf Par ams = zer os( numOut put Mf s, 3) ;  
 
f or  i  = 1: numOut put Mf s 
   out put Mf Par ams( i , : )  = THE_FUZZY. out put . mf ( i ) . par ams;  
end 
out put Mf Par ams( 1, 1)  = - 1;  
out put Mf Par ams( end, end)  = 1;  
 
 
s i zes = s i msi zes;  
 
s i zes. NumCont St at es  = 0;  
s i zes. NumDi scSt at es  = 1+3* numOut put Mf s;  
s i zes. NumOut put s      = 1;  
s i zes. NumI nput s       = 8;  
s i zes. Di r Feedt hr ough = 1;  
s i zes. NumSampl eTi mes = 1;    % at  l east  one sampl e t i me i s  needed 
 
sys = s i msi zes( s i zes) ;  
 
% 
% i ni t i al i ze t he i ni t i al  condi t i ons 
% 
x0  = [ numOut put Mf s;  r eshape( out put Mf Par ams, numOut put Mf s* 3, 1) ] ;  
% 
% st r  i s  al ways an empt y mat r i x  
% 
st r  = [ ] ;  
 
% 
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% i ni t i al i ze t he ar r ay of  sampl e t i mes 
% 
t s   = [ - 1 0] ;  
 
% end mdl I ni t i al i zeSi zes 
 
% 
%============================================================================= 
% mdl Out put s  
% Ret ur n t he bl ock out put s.  
%============================================================================= 
% 
f unct i on sys = mdl Out put s( t , x , u, scal e)  
 
numOut put Mf s = x( 1) ;  
out put Mf Par ams = r eshape( x( 2: end) , numOut put Mf s, 3) ;  
mf s = u( 1: 4) ;  
dof  = u( 5: 8) ;  
 
mf s = mf s( f i nd( mf s>0) ) ;  
dof  = dof ( f i nd( mf s>0) ) ;  
t r i angl es = out put Mf Par ams( mf s, : ) ;  
sys = scal e* cent r oi d( t r i angl es, dof ) ;  
 

Appendix A.19 centroid.m 
f unct i on cent r oi d = cent r oi d( t r i angl es, cut of f s)  
%CENTROI D Ret ur ns t he cent r oi d of  t he over al l  gr oup of  t r i angl es 
 
numTr i  = s i ze( t r i angl es, 1) ;  
 
i f  s i ze( t r i angl es, 2)  ~=3 
   er r or ( ' Tr i angl es mat r i x  shoul d have t hr ee col umns' )  
end 
 
i f  any( [ t r i angl es( : , 2) - t r i angl es( : , 1)  t r i angl es( : , 3) - t r i angl es( : , 2) ] <0)  
   er r or ( ' Par amet er s f or  al l  t r i angl es shoul d be i n ascendi ng or der ' )  
end 
 
i f  l engt h( cut of f s) ~=numTr i  
   er r or ( ' cut of f s  shoul d be a vect or  of  same l engt h as t her e ar e t r i angl es ' )  
end 
 
t r i angl es = sor t r ows( t r i angl es) ;  
 
sumI yx = 0;  
sumI y = 0;  
pr evOver l ap = 0;  
 
f or  i  = 1: numTr i  
   i f  i <numTr i &( t r i angl es( i , 3) >t r i angl es( i +1, 1) )  %Over l ap bet ween t hi s  and next  
t r i angl e 
      next Over l ap = 1;  
   el se 
      next Over l ap = 0;  
   end 
   i f  ~pr evOver l ap 
      a = t r i angl es( i , 1) ;  
      b = a+cut of f s( i ) * ( t r i angl es( i , 2) - a) ;  
      [ sumI yx sumI y]  = addLi neI nt s( a, b, 0, cut of f s( i ) , sumI yx, sumI y) ;      
   end 
   i f  ~next Over l ap 
      d = t r i angl es( i , 3) ;  
      c  = d- cut of f s( i ) * ( d- t r i angl es( i , 2) ) ;  
      [ sumI yx sumI y]  = addLi neI nt s( b, c, cut of f s( i ) , cut of f s( i ) , sumI yx, sumI y) ;  
      [ sumI yx sumI y]  = addLi neI nt s( c, d, cut of f s( i ) , 0, sumI yx, sumI y) ;  
   el se 
      i f  cut of f s( i ) <cut of f s( i +1)  
         c  = t r i angl es( i +1, 1) +cut of f s( i ) * ( t r i angl es( i +1, 2) - t r i angl es( i +1, 1) ) ;  
         d = t r i angl es( i +1, 1) +cut of f s( i +1) * ( t r i angl es( i +1, 2) - t r i angl es( i +1, 1) ) ;  
      el se 
         c  = t r i angl es( i , 3) - cut of f s( i ) * ( t r i angl es( i , 3) - t r i angl es( i , 2) ) ;  
         d = t r i angl es( i , 3) - cut of f s( i +1) * ( t r i angl es( i , 3) - t r i angl es( i , 2) ) ;  
      end 
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      [ sumI yx, sumI y]  = addLi neI nt s( b, c, cut of f s( i ) , cut of f s( i ) , sumI yx, sumI y) ;  
      [ sumI yx sumI y]  = addLi neI nt s( c, d, cut of f s( i ) , cut of f s( i +1) , sumI yx, sumI y) ;  
      b = d;  %Br i ng f or war d f or  next  cal cul at i ons 
   end 
   pr evOver l ap = next Over l ap;  
end 
 
cent r oi d = sumI yx/ sumI y;  
 
%END cent r oi d f unct i on 
 
f unct i on [ I yx,  I y ]  = l i neI nt s( x1, x2, y1, y2)  
I yx  = ( ( y2- y1) / ( x2- x1) ) * ( ( x2^ 3) / 3+( x1^ 3) / 6- ( x1* ( x2^ 2) ) / 2) +0. 5* y1* ( x2^ 2- x1^ 2) ;  
I y  = ( x2- x1) * ( y1+0. 5* ( y2- y1) ) ;  
 
f unct i on [ s I yx,  s I y ]  = addLi neI nt s( x1, x2, y1, y2, sI yx, sI y)  
i f  x1~=x2 %avoi d di v i s i on by zer o -  i n t hi s  case i nt egr al s  ar e bot h zer o anyway so no 
need t o add 
   [ i yx, i y ]  = l i neI nt s( x1, x2, y1, y2) ;  
   s I yx  = sI yx+i yx;  
   s I y  = s I y+i y;  
end 

 
 
 

Appendix A.20 calcbits2.m 
f unct i on [ bi t s , pr ec]  = cal cbi t s2( bounds, des_pr ec)  
%cal cbi t s2 Cal cul at e t he number  of  bi t s  r equi r ed t o r epr esent  t he 
%desi r ed pr eci s i on bet ween bounds 
 
%Based on cal cbi t s . m i n GAOT t ool box 
%Thi s  f i xes a smal l  bug i n t he or i gi nal  pr ogr am 
 
[ numVar ,  ans]  = s i ze( bounds) ;  
 
i f ( s i ze( des_pr ec, 1)  ~= numVar )  
   er r or ( ' des_pr ec shoul d have t he same number  of  r ows as bounds' )  
end 
 
r ange = ( bounds( : , 2)  -  bounds( : , 1) ) ' ;  
%Or i gi nal l y  was cei l  and 1 wasn' t  added.  
bi t s=f l oor ( l og2( r ange . /  des_pr ec ' ) ) +1;  
pr ec = r ange. / ( 2. ^ bi t s- 1) ;  

 
 
 
    

 
 
 
 

 


