Optimization in ComPASS-4

Stefan Wild \& Jeff Larson

Argonne National Laboratory
Mathematics and Computer Science Division

April 23, 2018

The Plan

1. Optimization Formulations and Taxonomy

- Stochastic Optimization
- Multiobjective Optimization
- Simulation-Based Optimization
- Derivative-Free Optimization
- Global Optimization

2. An Example LPA Optimization to Highlight Challenges
3. POPAS
4. Why not Blackbox Optimization
5. APOSMM

Mathematical/Numerical Nonlinear Optimization

Optimization is the "science of better"

Find parameters (controls) $x=\left(x_{1}, \ldots, x_{n}\right)$ in domain Ω to improve objective f

$$
\min \left\{f(x): x \in \Omega \subseteq \mathbb{R}^{n}\right\}
$$

\diamond (Unless Ω is very special) Need to evaluate f at many x to find a good \hat{x}_{*}
\diamond Focus on local solutions: $f\left(\hat{x}_{*}\right) \leq f(x) \forall x \in \mathcal{N}\left(\hat{x}_{*}\right) \cap \Omega$
\diamond constraints defined the feasibility region Ω

Stochastic Optimization

Addresses situations where you obtain a nondeterministic quantity $F(x, \xi)$

$$
\min \{f(x)=\mathrm{E}\{F(x, \xi)\}: x \in \Omega\}
$$

$\diamond x \in \mathbb{R}^{n}$ decision variables
$\diamond \xi$ vector of random variables

- independent of x
- $P(\xi)$ distribution function for ξ
- ξ has support Ξ
$\diamond F(x, \cdot)$ functional form of uncertainty for decision x
$\diamond \Omega \subseteq \mathbb{R}^{n}$ set defined by deterministic constraints
- Also: stochastic/probabilistic constraints
\diamond Nonstationarity: does $\operatorname{Var}\{F(x, \xi)\}$ depend on x ?

Multiobjective Optimization

Simultaneously minimize $n_{f}>1$ objectives

$$
\min _{x \in \Omega} f_{1}(x), \cdots, f_{n_{f}}(x)
$$

" x^{1} dominates x^{2} " if:
$\diamond f_{i}\left(x^{1}\right) \leq f_{i}\left(x^{2}\right)$ for all i, and
$\diamond f_{i}\left(x^{1}\right)<f_{i}\left(x^{2}\right)$ for at least one i
" x^{1} is nondominated in \mathcal{X} " if there is no $x^{2} \in \mathcal{X}$ that dominates x^{1}

Pareto optimal solutions: A set \mathcal{P} of points are nondominated in Ω
\diamond Especially useful when missing a currency exchange between objectives
\diamond Significantly more expensive than single-objective optimization

Simulation-Based Optimization

$$
\min _{x \in \mathbb{R}^{n}}\{f(x)=F[\mathbf{S}(\mathbf{x})]: c(\mathbf{S}(\mathbf{x})) \leq 0, x \in \mathcal{B}\}
$$

$\diamond S$ (numerical) simulation output, (here deterministic)
\diamond Derivatives $\nabla_{x} S$ often unavailable or prohibitively expensive to obtain/approximate directly
\diamond Some AD hurdle (e.g., proprietary/legacy/coupled/mixed-language codes)
\diamond Single evaluation of S could take seconds/minutes/hours/days
Evaluation is a bottleneck for optimization
\mathcal{B} compact, known region (e.g., finite bound constraints)

Computing advances have driven this research area.

Argonne's AVIDAC (1953 vacuum tubes)

Argonne's BlueGene/Q (2012 0.79M cores)

Argonne's Theta (2017 0.23M cores)

Sunway TaihuLight (2016 11M cores)

Derivative-Free/Zero-Order Optimization

"Some derivatives are unavailable for optimization purposes"

Derivative-Free/Zero-Order Optimization

"Some derivatives are unavailable for optimization purposes"

The Challenge: Optimization is tightly coupled with derivatives

Typical optimality (no noise, smooth functions)

$$
\nabla_{x} f\left(x^{*}\right)+\lambda^{T} \nabla_{x} c_{E}\left(x^{*}\right)=0, c_{E}\left(x^{*}\right)=0
$$

(sub)gradients $\nabla_{x} f, \nabla_{x} c$ enable:
\diamond Faster feasibility
\diamond Faster convergence

- Guaranteed descent
- Approximation of nonlinearities
\diamond Better termination
- Measure of criticality $\left\|\nabla_{x} f\right\|$ or $\left\|\mathcal{P}_{\Omega}\left(\nabla_{x} f\right)\right\|$
\diamond Sensitivity analysis
- Correlations, standard errors, UQ, ...

Ways to Get Derivatives

Handcoding (HC)

"Army of students/programmers"
? Prone to errors/conditioning
? Intractable as number of ops increases

Algorithmic/Automatic Differentiation (AD)

"Exact* derivatives!"
? No black boxes allowed
? Not always automatic/cheap/well-conditioned

Finite Differences (FD)

"Nonintrusive"
? Expense grows with n
? Sensitive to stepsize choice/noise

Caution
High noise levels
\rightarrow [Moré \& W.; SISC 2011], [Moré \& W.; TOMS 2012]
... then apply derivative-based method (that handles inexact derivatives)

Algorithmic Differentiation

\rightarrow [Coleman \& Xu; SIAM 2016], [Griewank \& Walther; SIAM 2008]

Computational Graph

$\diamond y=\sin (a * b) * c$
\diamond Forward and reverse modes
\diamond AD tool provides code for your derivatives

Write codes and formulate problems with AD in mind!

Many tools (see www. autodiff.org):

F OpenAD
F/C Tapenade, Rapsodia
$\mathrm{C} / \mathrm{C}++\mathrm{ADOL}-\mathrm{C}, \mathrm{ADIC}$

Matlab ADiMat, INTLAB
Python/R ADOL-C

Also done in AMPL, GAMS, JULIA!

The Price of Algorithm Choice: Solvers in PETSc/TAO

Toolkit for Advanced Optimization
[Munson et al.; mcs.anl.gov/tao]

Increasing level of user input:

nm Assumes $\nabla_{x} f$ unavailable, black box
pounders Assumes $\nabla_{x} f$ unavailable, exploits problem structure

Imvm Uses available $\nabla_{x} f$

The Price of Algorithm Choice: Solvers in PETSc/TAO

Toolkit for Advanced Optimization [Munson et al.; mcs.anl.gov/tao]

Increasing level of user input:

nm Assumes $\nabla_{x} f$ unavailable, black box
pounders Assumes $\nabla_{x} f$ unavailable, exploits problem structure

THIS TALK
Imvm Uses available $\nabla_{x} f$

DFO methods should be designed to beat finite-difference-based methods

Observe: Constrained by budget on \#evals, method limits solution accuracy/problem size

Why Algorithms Matter: The Accelerator Case

Varying skew quadrupoles to meet beam size targets (in PELEGANT)

\diamond Heuristics often "embarrassingly/naturally parallel"; PSO = particle swarm method

- Typically through stochastic sampling/evolution
- 1024 function evaluations per iteration
\diamond Simplex is Nelder-Mead; POUNDERS is model-based trust-region algorithm
* one function evaluation per iteration

Global Optimization, $\min _{x \in \Omega} f(x)$

Careful:
\diamond Global convergence: Convergence (to a local solution/stationary point) from anywhere in Ω
\diamond Convergence to a global minimizer: Obtain x^{*} with $f\left(x^{*}\right) \leq f(x) \forall x \in \Omega$

Global Optimization, $\min _{x \in \Omega} f(x)$

Careful:
\diamond Global convergence: Convergence (to a local solution/stationary point) from anywhere in Ω
\diamond Convergence to a global minimizer: Obtain x^{*} with $f\left(x^{*}\right) \leq f(x) \forall x \in \Omega$

Anyone selling you global solutions when derivatives are unavailable:

either assumes more about your problem (e.g., convex f)
or expects you to wait forever
Törn and Žilinskas: An algorithm converges to the global minimum for any continuous f if and only if the sequence of points visited by the algorithm is dense in Ω.
or cannot be trusted

Global Optimization, $\min _{x \in \Omega} f(x)$

Careful:
\diamond Global convergence: Convergence (to a local solution/stationary point) from anywhere in Ω
\diamond Convergence to a global minimizer: Obtain x^{*} with $f\left(x^{*}\right) \leq f(x) \forall x \in \Omega$

Anyone selling you global solutions when derivatives are unavailable:

either assumes more about your problem (e.g., convex f)
or expects you to wait forever
Törn and Žilinskas: An algorithm converges to the global minimum for any continuous f if and only if the sequence of points visited by the algorithm is dense in Ω.
or cannot be trusted

Instead:
\diamond Rapidly find good local solutions and/or be robust to poor solutions
\diamond Consider multistart approaches and/or structure of multimodality

Why Multistart?

Best minimizer(s) approximate global minimizer $x^{*}, f\left(x^{*}\right) \leq f(x) \forall x \in \mathcal{D}$

Multiple local minima are often of interest in practice

Design Multiple objectives/constraints might later be of interest
Distinctness j best minimizers have physical meaning
Simulation Errors Spurious local minima from simulator anomalies

Uncertainty Some minima more sensitive to perturbations

Increased opportunity for parallelism

Trilevel simulation/function \rightarrow local solver \rightarrow global solver

Efficient local solvers

\diamond (Local) surrogate-based, exploit problem structure

- least-squares objectives, (un)relaxable constraints, known nonsmoothness,...

Motivating Example: Staging a Laser Plasma Accelerator

\diamond Electron bunch is injected in a laser-induced plasma wave

- Typically when laser intensity reaches its first maximum
\diamond Nonlinear effects \Rightarrow plasma wave shrinks and electron bunch is lost
- Typically because bunch ends up in a defocusing region when laser intensity reaches its (first) minimum

Goal: Shape initial section of capillary to raise the minimum intensity and/or lower the maximum intensity.
\rightarrow For a given x, we compute $v(t ; x)$, the (smooth) laser intensity at time t
Under ComPASS-3 with Carlo Benedetti \& Jean-Luc Vay (LBNL)

Motivating Example: $\min \left\{f(x): x \in \mathcal{D} \subset \mathbb{R}^{n}\right\}$

Simulation provides intensity at a discrete set of times
$t_{1}<\cdots<t_{p=|I|}:$

$$
B_{i}(x)=v\left(t_{i} ; x\right), \quad i \in I
$$

$f(x)=\max _{i \in \Theta_{1}(x)} v\left(t_{i} ; x\right)-\min _{i \in I} v\left(t_{i} ; x\right)$

$\Theta_{1}(x)=\left\{i \in I: i \leq \max \underset{j \in I}{\operatorname{argmin}} v\left(t_{j} ; x\right)\right\}$

Motivating Example: $\min \left\{f(x): x \in \mathcal{D} \subset \mathbb{R}^{n}\right\}$

Simulation provides intensity at a discrete set of times
$t_{1}<\cdots<t_{p=|I|}$:

$$
B_{i}(x)=v\left(t_{i} ; x\right), \quad i \in I
$$

$f(x)=\max _{i \in \Theta_{1}(x)} v\left(t_{i} ; x\right)-\min _{i \in I} v\left(t_{i} ; x\right)$

$\Theta_{1}(x)=\left\{i \in I: i \leq \underset{j \in I}{\max } \underset{j \in \min }{\operatorname{argmin}} v\left(t_{j} ; x\right)\right\}$

Slice Through LPA Subproblem

This is a nonsmooth (piecewisesmooth) function of the parameters x

LPA Feasible Region

Variable	Range
Length	$2 \leq L \leq 6$
Plasma channel radius	$1 \leq X_{\max } \leq 1.5$
Minimum channel radius	$0.7 \leq X_{\min } \leq 1$
Longitudinal location	$0 \leq Z_{\min } \leq 1$
Laser focus position	$-1.2 \leq Z_{f} \leq 0$
$c_{1}(x)=-X_{\max } Z_{\min }^{4}$	
$\quad-\left(X_{\max }-X_{\min }\right)\left(2 Z_{\min }-3 Z_{\min }^{2}\right)$	
≤ 0	
$c_{2}(x)=$	$X_{\max }\left(Z_{\min }^{4}-4 Z_{\min }^{3}+3 Z_{\min }^{2}\right)$
	$+\left(X_{\max }-X_{\min }\right)\left(3 Z_{\min }^{2}-4 Z_{\min }+1\right)$
≤ 0	

LPA Feasible Region

Variable	Range			
Length	$2 \leq L \leq 6$			
Plasma channel radius	$1 \leq X_{\max } \leq 1.5$			
Minimum channel radius	$0.7 \leq X_{\min } \leq 1$			
Longitudinal location	$0 \leq Z_{\min } \leq 1$			
Laser focus position	$-1.2 \leq Z_{f} \leq 0$			
$c_{1}(x)=$	$-X_{\max } Z_{\min }^{4}$			
	$-\left(X_{\max }-X_{\min }\right)\left(2 Z_{\min }-3 Z_{\min }^{2}\right)$			
≤ 0		\quad	$c_{2}(x)=$	$X_{\max }\left(Z_{\min }^{4}-4 Z_{\min }^{3}+3 Z_{\min }^{2}\right)$
---:	:---			
	$\quad+\left(X_{\max }-X_{\min }\right)\left(3 Z_{\min }^{2}-4 Z_{\min }+1\right)$			
≤ 0				

$c(x) \leq 0$ are UNRELAXABLE: Simulator (often) fails in \mathcal{D}^{c}
QUAK
SBO constraint taxonomy \rightarrow [Le Digabel \& W.; ANL/MCS-P5350-0515]

LPA Feasible Region

Variable	Range
Length	$2 \leq L \leq 6$
Plasma channel radius	$1 \leq X_{\text {max }} \leq 1.5$
Minimum channel radius	$0.7 \leq X_{\text {min }} \leq 1$
Longitudinal location	$0 \leq Z_{\text {min }} \leq 1$
Laser focus position	$-1.2 \leq Z_{f} \leq 0$
$c_{1}(x)=-X_{\text {max }} Z_{\text {min }}^{4}$	
$-\left(X_{\max }-X_{\min }\right)\left(2 Z_{\text {min }}-3 Z_{\text {min }}^{2}\right)$	
≤ 0	
$c_{2}(x)=X_{\max }\left(Z_{\text {min }}^{4}-4 Z_{\text {min }}^{3}+3 Z_{\text {min }}^{2}\right)$	
$+\left(X_{\max }-X_{\min }\right)\left(3 Z_{\min }^{2}-4 Z_{\min }+1\right)$	
≤ 0	

$c(x) \leq 0$ are UNRELAXABLE: Simulator (often) fails in \mathcal{D}^{c}
QUAK
SBO constraint taxonomy \rightarrow [Le Digabel \& W.; ANL/MCS-P5350-0515]

Numerical Experiments on LPA Problem

Test multimodality:

$\diamond 51$ starting points x^{0} generated uniformly from within \mathcal{D}
\diamond Significant variation in $f\left(x^{0}\right)$
\diamond Includes pathological $t_{1}=$
$\arg \max _{i \in \Theta_{1}\left(x^{0}\right)} v\left(t_{i}\right.$
\diamond Maximum of $20 n v$ evaluations
(7.5 minutes each)
$\diamond 51$ CPU days

Solutions Found for I D^ Drahinm

51 Solutions:

\diamond Converge to two solutions (A, B)
$\diamond \approx 10 \%$ to B
\diamond Behavior after
$t_{\max \left\{i: i \in \Omega_{1}\right\}}$ unconstrained
$\diamond c\left(x^{A}\right), c\left(x^{B}\right)<0$
PS solutions remarkably consistent

Structured POUNDER code

Solutions Found for LPA Problem

51 Solutions:

\diamond Converge to two solutions (A, B)
$\diamond \approx 10 \%$ to B
\diamond Behavior after $t_{\max \left\{i: i \in \Omega_{1}\right\}}$ unconstrained
$\diamond c\left(x^{A}\right), c\left(x^{B}\right)<0$
PS solutions remarkably consistent

Constrained Nelder-Mead code

POPAS Activity Proposed for ComPASS-4

Platform for Optimization of Particle Accelerators at Scale

\diamond integrated platform for coordinating the evaluation and numerical optimization of accelerator simulations on leadership-class DOE computers
\diamond orchestrate concurrent evaluations of OSIRIS, QuickPIC, Synergia, and MARS (or combinations thereof) with distinct inputs/parameter values
\diamond account for resource requirements of the above
\diamond API will allow the user to describe the mapping from simulation outputs and the derived quantities of interest used to define objective and constraint quantities

TH: Provide enough information so that optimization is efficient
"Simplest" (=Most Naive) Formulation: Blackbox f

Inputs

Optimizer gives x, physicist provides $f(x)$

$\diamond f$ can be a blackbox (executable only or proprietary/legacy codes)
\diamond Only give a single output

- no derivatives with respect to $x: \nabla_{x} S(x), \nabla_{x, x}^{2} S(x)$
- no problem structure

Good solutions guaranteed in the limit, but:

\diamond Computational budget limits number of evaluations
-SIMULATOR-
"Simplest" (=Most Naive) Formulation: Blackbox f

Optimizer gives x, physicist provides $f(x)$

$\diamond f$ can be a blackbox (executable only or proprietary/legacy codes)
\diamond Only give a single output

- no derivatives with respect to $x: \nabla_{x} S(x), \nabla_{x, x}^{2} S(x)$
- no problem structure

Good solutions guaranteed in the limit, but:

\diamond Computational budget limits number of evaluations

Two main styles of local algorithms

\diamond Direct search methods (pattern search, Nelder-Mead, ...)
\diamond Model- ("surrogate-")based methods (quadratics, radial basis functions, ...)

Black-Box Algorithms: Direct Search Methods

Pattern Search + Variants

Easy to parallelize f evaluations

Nelder-Mead + Variants

Popularized by Numerical Recipes
\diamond Rely on indicator functions: $\left[f\left(x_{k}+s\right)<? f\left(x_{k}\right)\right] f\left(x_{k}\right)$, short memory
\diamond Work with black-box $f(x)$, do not exploit structure $F[x, S(x)]$
\diamond Convergence results for variety of settings

Survey \rightarrow [Kolda, Lewis, Torczon; SIREV 2003]
Newer NM \rightarrow [Lagarias, Poonen, Wright; SIOPT 2012] Tools \rightarrow DFL [Liuzzi et al.], NOMAD [Audet et al.], . . .

Making the Most of Little Information About Smooth f

\diamond Overhead of the optimization routine is minimal (negligible?) relative to cost of evaluating simulation

Making the Most of Little Information About Smooth f

\diamond Overhead of the optimization routine is minimal (negligible?) relative to cost of evaluating simulation

Making the Most of Little Information About Smooth f

\diamond Overhead of the optimization routine is minimal (negligible?) relative to cost of evaluating simulation

Bank of data, $\left\{x_{i}, f\left(x_{i}\right)\right\}_{i=1}^{k}$

$=$ Points (\& function values) evaluated so far
$=$ Everything known about f
Goal:
\diamond Make use of growing Bank as optimization progresses
\diamond Limit unnecessary evaluations
(geometry/approximation)

Derivative-Free, Model-Based Trust-Region Algorithms

f expensive, no ∇f
Substitute $\min \left\{m_{k}(x): x \in \mathcal{B}_{k}\right\}($ TRSP $)$ for $\min f(x)$ m_{k} cheap, analytic derivatives

Trust region:

$$
\mathcal{B}_{k}=\left\{x \in \Omega:\left\|x-x^{k}\right\| \leq \Delta_{k}\right\}
$$

Basic algorithm

\diamond Build model $m_{k}\left(\approx f\right.$ in $\left.\mathcal{B}_{k}\right)$
$\diamond x^{+} \approx \arg \min \left\{m_{k}(x): x \in \mathcal{B}_{k}\right\}$
$\diamond \rho_{k}=\frac{f\left(x^{k}\right)-f\left(x^{+}\right)}{m_{k}\left(x^{k}\right)-m_{k}\left(x^{+}\right)}$
\diamond If $\rho_{k} \geq \eta_{1}>0$, accept $x^{k+1}=x^{+}$; Elseif m_{k} is valid in \mathcal{B}_{k}, shrink Δ_{k} Else, improve m_{k} in \mathcal{B}_{k}

[^0]
Derivative-Free, Model-Based Trust-Region Algorithms

f expensive, no ∇f
Substitute $\min \left\{m_{k}(x): x \in \mathcal{B}_{k}\right\}($ TRSP $)$ for $\min f(x)$ m_{k} cheap, analytic derivatives

Trust region:

$$
\mathcal{B}_{k}=\left\{x \in \Omega:\left\|x-x^{k}\right\| \leq \Delta_{k}\right\}
$$

Basic algorithm

\diamond Build model $m_{k}\left(\approx f\right.$ in $\left.\mathcal{B}_{k}\right)$
$\diamond x^{+} \approx \arg \min \left\{m_{k}(x): x \in \mathcal{B}_{k}\right\}$
$\diamond \rho_{k}=\frac{f\left(x^{k}\right)-f\left(x^{+}\right)}{m_{k}\left(x^{k}\right)-m_{k}\left(x^{+}\right)}$
\diamond If $\rho_{k} \geq \eta_{1}>0$, accept $x^{k+1}=x^{+}$; Elseif m_{k} is valid in \mathcal{B}_{k}, shrink Δ_{k} Else, improve m_{k} in \mathcal{B}_{k}

[^1]
Derivative-Free, Model-Based Trust-Region Algorithms

f expensive, no ∇f
Substitute $\min \left\{m_{k}(x): x \in \mathcal{B}_{k}\right\}($ TRSP $)$ for $\min f(x)$ m_{k} cheap, analytic derivatives

Trust region:

$$
\mathcal{B}_{k}=\left\{x \in \Omega:\left\|x-x^{k}\right\| \leq \Delta_{k}\right\}
$$

Basic algorithm

\diamond Build model $m_{k}\left(\approx f\right.$ in $\left.\mathcal{B}_{k}\right)$
$\diamond x^{+} \approx \arg \min \left\{m_{k}(x): x \in \mathcal{B}_{k}\right\}$
$\diamond \rho_{k}=\frac{f\left(x^{k}\right)-f\left(x^{+}\right)}{m_{k}\left(x^{k}\right)-m_{k}\left(x^{+}\right)}$
\diamond If $\rho_{k} \geq \eta_{1}>0$, accept $x^{k+1}=x^{+}$; Elseif m_{k} is valid in \mathcal{B}_{k}, shrink Δ_{k} Else, improve m_{k} in \mathcal{B}_{k}

[^2]
Derivative-Free, Model-Based Trust-Region Algorithms

Substitute $\min \left\{m_{k}(x): x \in \mathcal{B}_{k}\right\}(T R S P)$ for $\min f(x)$
f expensive, no ∇f
m_{k} cheap, analytic derivatives

Trust region:

$$
\mathcal{B}_{k}=\left\{x \in \Omega:\left\|x-x^{k}\right\| \leq \Delta_{k}\right\}
$$

Basic algorithm

\diamond Build model $m_{k}\left(\approx f\right.$ in $\left.\mathcal{B}_{k}\right)$
$\diamond x^{+} \approx \arg \min \left\{m_{k}(x): x \in \mathcal{B}_{k}\right\}$
$\diamond \rho_{k}=\frac{f\left(x^{k}\right)-f\left(x^{+}\right)}{m_{k}\left(x^{k}\right)-m_{k}\left(x^{+}\right)}$
\diamond If $\rho_{k} \geq \eta_{1}>0$, accept $x^{k+1}=x^{+}$; Elseif m_{k} is valid in \mathcal{B}_{k}, shrink Δ_{k} Else, improve m_{k} in \mathcal{B}_{k}

ORBIT: [W., Regis, Shoemaker, SISC 2008]

Radial Basis Function Interpolation Models

Given
\diamond base point x_{k}
\diamond interpolation points
$\mathcal{Y}=\left\{y_{j}\right\}_{j=1}^{|\mathcal{Y}|} \subset \mathbb{R}^{n}$
\diamond values $f\left(x_{k}+y_{j}\right)$ for $j=1, \ldots,|\mathcal{Y}|$
\diamond radial kernel $\phi: \mathbb{R}_{+} \rightarrow \mathbb{R}$

Unique coefficients λ and polynomial p define interpolating RBF model

$$
m_{k}^{f}\left(x_{k}+s\right)=\sum_{j=1}^{|\mathcal{Y}|} \lambda_{j} \phi\left(\left\|s-y_{j}\right\|\right)+p(s)
$$

Structure in Simulation-Based Optimization, $\min f(x)=F[x, S(x)]$

f is often not a black box S
NLS Nonlinear least squares

$$
f(x)=\sum_{i}\left(S_{i}(x)-d_{i}\right)^{2}
$$

CNO Composite (nonsmooth) optimization

$$
f(x)=h(S(x))
$$

SKP Not all variables enter simulation

$$
f(x)=g\left(x_{I}, x_{J}\right)+h\left(S\left(x_{J}\right)\right)
$$

BLO Bilevel optimization

$$
\min \left\{S_{1}\left(x_{I}, x_{J}\right): x_{I} \in \arg \max _{y} S_{2}\left(y, x_{J}\right)\right\}
$$

SCO Only some constraints depend on simulation

$$
\min \left\{f(x): c_{1}(x)=0, c_{S}(x)=0\right\}
$$

Model-based methods offer one way to exploit such structure

Nonlinear Least Squares $f(x)=\frac{1}{2} \sum_{i} R_{i}(x)^{2}$

Obtain a vector of output $R_{1}(x), \ldots, R_{p}(x)$

\diamond Model each R_{i}

$$
R_{i}(x) \approx m_{k}^{R_{i}}(x)=R_{i}\left(x_{k}\right)+\left(x-x_{k}\right)^{\top} g_{k}^{(i)}+\frac{1}{2}\left(x-x_{k}\right)^{\top} H_{k}^{(i)}\left(x-x_{k}\right)
$$

\diamond Approximate:

$$
\begin{aligned}
\nabla f(x)= & \sum_{i} \nabla \mathbf{R}_{\mathbf{i}}(\mathbf{x}) R_{i}(x) \quad \longrightarrow \sum_{i} \nabla m_{k}^{R_{i}}(x) R_{i}(x) \\
\nabla^{2} f(x)= & \sum_{i} \nabla \mathbf{R}_{\mathbf{i}}(\mathbf{x}) \nabla \mathbf{R}_{\mathbf{i}}(\mathbf{x})^{\top}+\sum_{i} R_{i}(x) \nabla^{\mathbf{2}} \mathbf{R}_{\mathbf{i}}(\mathbf{x}) \\
& \longrightarrow \sum_{i} \nabla m_{k}^{R_{i}}(x) \nabla m_{k}^{R_{i}}(x)^{\top}+\sum_{i} R_{i}(x) \nabla^{2} m_{k}^{R_{i}}(x)
\end{aligned}
$$

\diamond Model f via Gauss-Newton or similar

$$
\text { regularized Hessians } \rightarrow \text { DFLS [Zhang, Conn, Scheinberg] }
$$ full Newton \rightarrow POUNDERS [W., Moré]

POUNDERS for χ^{2} (=Nonlinear Least Squares Calibration)

POUNDERS (in PETSc/TAO) well tested for calibration problems:

$$
f(x) \propto \sum_{i, j} W_{i, j}\left(S\left(x ; \theta^{i}\right)-d_{i}\right)\left(S\left(x ; \theta^{j}\right)-d_{j}\right)
$$

Constraints in Simulation-Based Optimization

[le Digabel, W.; 2017]; [Regis, W.; OMS, 2017]

Why Expressing Constraint Functions Matters

Augmented Lagrangian methods, $L_{A}(x, \lambda ; \mu)=f(x)-\lambda^{T} c(x)+\frac{1}{\mu}\|c(x)\|^{2}$

$\min _{x}\{f(x): c(x)=0\}$

Four choices:

1. Penalize constraints
2. Treat c and f both as (separate) black boxes
3. Work with f and $\nabla_{x} c$
4. Have both $\nabla_{x} f$ and $\nabla_{x} c$
\rightarrow With Slava Kungurtsev

$$
n=15,11 \text { constraints }
$$

What is APOSMM?

Asynchronous Parallel Optimization Solver for Multiple Minima

\diamond Better account for dynamic number of local runs
\diamond Decouple local run from fixed resource
\diamond Anticipate nontrivial $\operatorname{Var}[\operatorname{time}(f(x))]$
[Larson \& W. Asynchronously Parallel Optimization Solver for Finding Multiple Minima, Math. Program. Comput., 2018.]

The (A)POSMM Algorithm

Repeat:
\diamond Receive from worker(s) $w_{\ell} \in W$ that has evaluated its point
\diamond If point was a sample point, update $r_{k}=\frac{1}{\sqrt{\pi}} \sqrt[n]{\operatorname{vol}(\mathcal{D}) \frac{5 \Gamma\left(1+\frac{n}{2}\right) \log \left(\left|\mathcal{S}_{k}\right|\right)}{\left|\mathcal{S}_{k}\right|}}$
\diamond If point was a local optimization point, add subsequent point in the run (not in \mathcal{H}_{k}) to Q_{L} if not terminated
\diamond Start run(s) at all point(s) now satisfying conditions, adding subsequent point from each run to Q_{L}
\diamond Merge/collapse runs within Q_{L}
\diamond Send point(s) from Q_{L} and/or \mathcal{R} to worker(s)
W Set of workers
\mathcal{R} Stream of sample points (from \mathcal{D})
\mathcal{S}_{k} Sample points after iteration k
Q_{L} Queue of local optimization points (needed by \mathcal{A})
\mathcal{H}_{k} History after k evaluations

Basic Idea: Multi Level Single Linkage (MLSL) Clustering

Where to start \mathcal{A} in k th iteration [Rinnooy Kan \& Timmer (MathProg, 1987)]

Start \mathcal{A} at each sample point $x^{i} \in \mathcal{S}_{k}$ provided:

$\diamond \mathcal{A}$ has not been started from x^{i}, and
\diamond no other sample point $x^{j} \in \mathcal{S}_{k}$ with $f\left(x^{j}\right)<f\left(x^{i}\right)$ is within a distance

$$
r_{k}=\frac{1}{\sqrt{\pi}} \sqrt[n]{\operatorname{vol}(\mathcal{D}) \frac{5 \Gamma\left(1+\frac{n}{2}\right) \log (k N)}{k N}}
$$

Ex.: It. 1 Exploration

Basic Idea: Multi Level Single Linkage (MLSL) Clustering

Where to start \mathcal{A} in k th iteration [Rinnooy Kan \& Timmer (MathProg, 1987)]

Start \mathcal{A} at each sample point $x^{i} \in \mathcal{S}_{k}$ provided:

$\diamond \mathcal{A}$ has not been started from x^{i}, and
\diamond no other sample point $x^{j} \in \mathcal{S}_{k}$ with $f\left(x^{j}\right)<f\left(x^{i}\right)$ is within a distance

$$
r_{k}=\frac{1}{\sqrt{\pi}} \sqrt[n]{\operatorname{vol}(\mathcal{D}) \frac{5 \Gamma\left(1+\frac{n}{2}\right) \log (k N)}{k N}}
$$

Ex.: It. 1 Exploration

Basic Idea: Multi Level Single Linkage (MLSL) Clustering

Where to start \mathcal{A} in k th iteration [Rinnooy Kan \& Timmer (MathProg, 1987)]

Start \mathcal{A} at each sample point $x^{i} \in \mathcal{S}_{k}$ provided:

$\diamond \mathcal{A}$ has not been started from x^{i}, and
\diamond no other sample point $x^{j} \in \mathcal{S}_{k}$ with $f\left(x^{j}\right)<f\left(x^{i}\right)$ is within a distance

$$
r_{k}=\frac{1}{\sqrt{\pi}} \sqrt[n]{\operatorname{vol}(\mathcal{D}) \frac{5 \Gamma\left(1+\frac{n}{2}\right) \log (k N)}{k N}}
$$

Ex.: It. 1 Exploration

Thm [RK-T]- With probability 1, MLSL will start finitely many local runs.

Basic Idea: Multi Level Single Linkage (MLSL) Clustering

Where to start \mathcal{A} in k th iteration [Rinnooy Kan \& Timmer (MathProg, 1987)]

Start \mathcal{A} at each sample point $x^{i} \in \mathcal{S}_{k}$ provided:

$\diamond \mathcal{A}$ has not been started from x^{i}, and
\diamond no other sample point $x^{j} \in \mathcal{S}_{k}$ with $f\left(x^{j}\right)<f\left(x^{i}\right)$ is within a distance

$$
r_{k}=\frac{1}{\sqrt{\pi}} \sqrt[n]{\operatorname{vol}(\mathcal{D}) \frac{5 \Gamma\left(1+\frac{n}{2}\right) \log (k N)}{k N}}
$$

Ex.: It. 1 Refinement

Thm [RK-T]- With probability 1, MLSL will start finitely many local runs.

Basic Idea: Multi Level Single Linkage (MLSL) Clustering

Where to start \mathcal{A} in k th iteration [Rinnooy Kan \& Timmer (MathProg, 1987)]

Start \mathcal{A} at each sample point $x^{i} \in \mathcal{S}_{k}$ provided:

$\diamond \mathcal{A}$ has not been started from x^{i}, and
\diamond no other sample point $x^{j} \in \mathcal{S}_{k}$ with $f\left(x^{j}\right)<f\left(x^{i}\right)$ is within a distance

$$
r_{k}=\frac{1}{\sqrt{\pi}} \sqrt[n]{\operatorname{vol}(\mathcal{D}) \frac{5 \Gamma\left(1+\frac{n}{2}\right) \log (k N)}{k N}}
$$

Ex.: It. 2 Exploration

Thm [RK-T]- With probability 1, MLSL will start finitely many local runs.

(A)POSMM Framework

Data Profiles: Ability to Find Approximate Global Minimizer

600 GKLS problems

(A) POSMM
\diamond Makes rapid progress to f_{G}
\diamond Outperforms other algorithms (even while demanding 14-fold concurrency) evaluations

Data Profiles: Ability to Find Approximate Global Minimizer

600 GKLS problems

(A) POSMM
\diamond Makes rapid progress to f_{G}
\diamond Outperforms other algorithms (even while demanding 14-fold concurrency) evaluations

Data Profiles: Ability to Find j Best Minimizers

600 GKLS problems

(A) POSMM
\diamond Designed to find more than just the global minimizer
\diamond Extends lead for tighter tolerances

Data Profiles: Ability to Find j Best Minimizers

600 GKLS problems

(A) POSMM
\diamond Designed to find more than just the global minimizer
\diamond Extends lead for tighter tolerances

Data Profiles: Ability to Find j Best Minimizers

600 GKLS problems

(A) POSMM
\diamond Designed to find more than just the global minimizer
\diamond Extends lead for tighter tolerances

Data Profiles: Ability to Find j Best Minimizers

600 GKLS problems

(A) POSMM
\diamond Designed to find more than just the global minimizer
\diamond Extends lead for tighter tolerances

Argonne/Optimization Milestones in ComPASS-4

Activity	Institution(s)	Sec	Year
Develop API for POPAS prototype	ANL, FNAL, UCLA	$\S 2.4$	1
Identify optimizable elements in the MARS and Synergia PIP-II models; connect with POPAS prototype	FNAL, ANL	$\S 2.1 .1$	2
Use MARS-Synergia-POPAS prototype for preliminary optimization	FNAL, ANL	$\S 2.1 .1$	3
Include prototype of structure-exploiting optimization algorithm for standard PIC/QuickPIC simulations; enable basic execution of all ComPASS-4 codes in POPAS	ANL, FNAL, UCLA	$\S 2.4$	3
Link numerical optimization algorithm to POPAS; Remove file I/O layer from POPAS	ANL, FNAL, UCLA	$\S 2.4$	3
Connect IOTA Synergia model with POPAS	FNAL, ANL	$\S 2.1 .1$	3
Release POPAS; apply POPAS to standard PIC/QuickPIC and Synergia	ANL, FNAL, UCLA	$\S 2.4$	4
Refine MARS-Synergia-POPAS	FNAL, ANL	$\S 2.1 .1$	4
Apply IOTA Synergia-POPAS	FNAL, ANL	$\S 2.1 .1$	4
Carry out parameter optimization on PWFA-LC relevant parameters using QuickPIC	UCLA, FNAL, ANL	$\S 2.5 .2$	5

[^0]: ORBIT: [W., Regis, Shoemaker, SISC 2008]

[^1]: ORBIT: [W., Regis, Shoemaker, SISC 2008]

[^2]: ORBIT: [W., Regis, Shoemaker, SISC 2008]

