

Optimization in ComPASS-4

Stefan Wild & Jeff Larson

Argonne National Laboratory Mathematics and Computer Science Division

April 23, 2018

The Plan

1. Optimization Formulations and Taxonomy

- Stochastic Optimization
- Multiobjective Optimization
- Simulation-Based Optimization
- Derivative-Free Optimization
- Global Optimization
- 2. An Example LPA Optimization to Highlight Challenges
- 3. POPAS
- 4. Why not Blackbox Optimization
- 5. APOSMM

Mathematical/Numerical Nonlinear Optimization

Optimization is the "science of better"

Find parameters (controls) $x = (x_1, \ldots, x_n)$ in domain Ω to improve objective f

```
\min\left\{f(x):x\in\Omega\subseteq\mathbb{R}^n\right\}
```

- $^{\diamond}$ (Unless Ω is very special) Need to evaluate f at many x to find a good \hat{x}_{*}
- ♦ Focus on local solutions: $f(\hat{x}_*) \leq f(x) \ \forall x \in \mathcal{N}(\hat{x}_*) \cap \Omega$
- $^{\diamond}$ constraints defined the feasibility region Ω

Stochastic Optimization

Addresses situations where you obtain a nondeterministic quantity $F(x,\xi)$

 $\min\left\{f(x) = \mathrm{E}\left\{F(x,\xi)\right\}: \ x \in \Omega\right\}$

- $^{\diamond} x \in \mathbb{R}^n$ decision variables
- $\diamond \xi$ vector of random variables
 - $\bullet \ \text{independent of } x$
 - $P(\xi)$ distribution function for ξ
 - ξ has support Ξ
- $^{\diamond}$ $F(x,\cdot)$ functional form of uncertainty for decision x
- $^{\diamond}\ \Omega \subseteq \mathbb{R}^n$ set defined by deterministic constraints
 - Also: stochastic/probabilistic constraints
- ♦ Nonstationarity: does $Var \{F(x,\xi)\}$ depend on x?

Multiobjective Optimization

Simultaneously minimize $n_f > 1$ objectives

$$\min_{x\in\Omega}f_1(x),\cdots,f_{n_f}(x)$$

- " x^1 dominates x^2 " if:
 - $\circ f_i(x^1) \leq f_i(x^2)$ for all i, and
 - $\label{eq:final} \stackrel{\diamond}{} f_i(x^1) < f_i(x^2) \text{ for at least} \\ \text{ one } i$

 $``x^1 \text{ is nondominated in } \mathcal{X}"$ if there is no $x^2 \in \mathcal{X}$ that dominates x^1

Pareto optimal solutions: A set ${\cal P}$ of points are nondominated in Ω

- Especially useful when missing a currency exchange between objectives
- Significantly more expensive than single-objective optimization

Simulation-Based Optimization

$$\min_{x \in \mathbb{R}^n} \left\{ f(x) = F[\mathbf{S}(\mathbf{x})] : c(\mathbf{S}(\mathbf{x})) \le 0, x \in \mathcal{B} \right\}$$

- ◊ S (numerical) simulation output, (here deterministic)
- Derivatives \(\nabla_x S\) often unavailable or prohibitively expensive to obtain/approximate directly
- Some AD hurdle (e.g., proprietary/legacy/coupled/mixed-language codes)
- ◊ Single evaluation of S could take seconds/minutes/hours/days

Evaluation is a bottleneck for optimization

B compact, known region (e.g., finite bound constraints)

Computing advances have driven this research area...

Argonne's AVIDAC (1953 vacuum tubes)

Argonne's BlueGene/Q (2012 0.79M cores)

Argonne's Theta (2017 0.23M cores)

Sunway TaihuLight (2016 11M cores)

Derivative-Free/Zero-Order Optimization

"Some derivatives are unavailable for optimization purposes"

Derivative-Free/Zero-Order Optimization

"Some derivatives are unavailable for optimization purposes"

The Challenge: Optimization is tightly coupled with derivatives

Typical optimality (no noise, smooth functions)

$$\nabla_x f(x^*) + \lambda^T \nabla_x c_E(x^*) = 0, c_E(x^*) = 0$$

(sub)gradients $\nabla_x f$, $\nabla_x c$ enable:

- Faster feasibility
- Faster convergence
 - Guaranteed descent
 - Approximation of nonlinearities
- Better termination
 - Measure of criticality $\|\nabla_x f\|$ or $\|\mathcal{P}_{\Omega}(\nabla_x f)\|$
- Sensitivity analysis
 - Correlations, standard errors, UQ, ...

Ways to Get Derivatives

(assuming they exist)

Handcoding (HC)

- "Army of students/programmers"
 - ? Prone to errors/conditioning
 - ? Intractable as number of ops increases

Algorithmic/Automatic Differentiation (AD)

"Exact* derivatives!"

- ? No black boxes allowed
- ? Not always automatic/cheap/well-conditioned

Finite Differences (FD)

"Nonintrusive"

- ? Expense grows with n
- ? Sensitive to stepsize choice/noise

 \rightarrow [Moré & W.; SISC 2011], [Moré & W.; TOMS 2012]

... then apply derivative-based method (that handles inexact derivatives)

Algorithmic Differentiation

Many tools (see www.autodiff.org):

F OpenAD F/C Tapenade, Rapsodia C/C++ ADOL-C, ADIC Matlab ADiMat, INTLAB Python/R ADOL-C

Also done in AMPL, GAMS, JULIA!

The Price of Algorithm Choice: Solvers in PETSc/TAO

Toolkit for Advanced Optimization [Munson et al.; mcs.anl.gov/tao]

Increasing level of user input:

nm Assumes $\nabla_x f$ unavailable, black box pounders Assumes $\nabla_x f$ unavailable, exploits problem structure

Imvm Uses available $\nabla_x f$

9 < □ >

The Price of Algorithm Choice: Solvers in PETSc/TAO

Observe: Constrained by budget on #evals, method limits solution accuracy/problem size

g < □ >

Why Algorithms Matter: The Accelerator Case

- Heuristics often "embarrassingly/naturally parallel";
 PS0= particle swarm method
 - Typically through stochastic sampling/evolution
 - 1024 function evaluations per iteration
- Simplex is Nelder-Mead; POUNDERS is model-based trust-region algorithm
 - one function evaluation per iteration

Global Optimization, $\min_{x \in \Omega} f(x)$

Careful:

- $^{\diamond}$ Global convergence: Convergence (to a local solution/stationary point) from anywhere in Ω
- $^\diamond\,$ Convergence to a global minimizer: Obtain x^* with $f(x^*) \leq f(x) \, \forall x \in \Omega$

Global Optimization, $\min_{x \in \Omega} f(x)$

Careful:

- $^{\diamond}$ Global convergence: Convergence (to a local solution/stationary point) from anywhere in Ω
- $^{\diamond}$ Convergence to a global minimizer: Obtain x^* with $f(x^*) \leq f(x) \, \forall x \in \Omega$

Anyone selling you global solutions when derivatives are unavailable:

either assumes more about your problem (e.g., convex f)

or expects you to wait forever

Törn and Žilinskas: An algorithm converges to the global minimum for any continuous f if and only if the sequence of points visited by the algorithm is dense in Ω .

or cannot be trusted

Global Optimization, $\min_{x \in \Omega} f(x)$

Careful:

- $^{\diamond}$ Global convergence: Convergence (to a local solution/stationary point) from anywhere in Ω
- $^\diamond\,$ Convergence to a global minimizer: Obtain x^* with $f(x^*) \leq f(x) \, \forall x \in \Omega$

Anyone selling you global solutions when derivatives are unavailable:

either assumes more about your problem (e.g., convex f)

or expects you to wait forever

Törn and Žilinskas: An algorithm converges to the global minimum for any continuous f if and only if the sequence of points visited by the algorithm is dense in Ω .

or cannot be trusted

Instead:

- $^{\diamond}\,$ Rapidly find good local solutions and/or be robust to poor solutions
- Consider multistart approaches and/or structure of multimodality

Why Multistart?

Best minimizer(s) approximate global minimizer x^* , $f(x^*) \leq f(x) \ \forall x \in \mathcal{D}$

Multiple local minima are often of interest in practice

 Design
 Multiple objectives/constraints might later be of interest

 Distinctness
 j best minimizers have physical meaning

 Simulation Errors
 Spurious local minima from simulator anomalies

 Uncertainty
 Some minima more sensitive to perturbations

Increased opportunity for parallelism

Trilevel simulation/function \rightarrow local solver \rightarrow global solver

Efficient local solvers

- (Local) surrogate-based, exploit problem structure
 - least-squares objectives, (un)relaxable constraints, known nonsmoothness, ...

Motivating Example: Staging a Laser Plasma Accelerator

- Electron bunch is injected in a laser-induced plasma wave
 - Typically when laser intensity reaches its first maximum
- $^{\diamond}\,$ Nonlinear effects \Rightarrow plasma wave shrinks and electron bunch is lost
 - Typically because bunch ends up in a defocusing region when laser intensity reaches its (first) minimum

Goal: Shape initial section of capillary to raise the minimum intensity and/or lower the maximum intensity.

 \rightarrow For a given x, we compute v(t; x), the (smooth) laser intensity at time t

Under ComPASS-3 with Carlo Benedetti & Jean-Luc Vay (LBNL)

Motivating Example: $\min\{f(x) : x \in \mathcal{D} \subset \mathbb{R}^n\}$

14 🔍 🗆 🕨

Motivating Example: $\min\{f(x) : x \in \mathcal{D} \subset \mathbb{R}^n\}$

14 ◀ □ ▶

Slice Through LPA Subproblem

LPA Feasible Region

Variable	Range	1					
Length	$2 \leq L \leq 6$	0.95	_				
Plasma channel radius	$1 \leq X_{\max} \leq 1.5$	0.00					
Minimum channel radius Longitudinal location	$\begin{array}{c} 0.7 \le X_{\min} \le 1\\ 0 < Z_{\min} < 1 \end{array}$	0.9	X		//	1 /	
Laser focus position	$0 \le Z_{\min} \le 1$ $-1.2 \le Z_f \le 0$	0.9	$X_{max} = 1.0$	11			// 1
$c_1(x) = -X_{\max} Z_{\min}^4$, , , , , , , , , , , , , , , , , , ,	× ^{E 0.85}	- X _{max} =1.1	- 17			
$-(X_{\max} - X_{\min})(2Z_{\min} - 3Z_{\min}^2)$		0.8	$X_{max} = 1.2$				
≤ 0			IIIax				
$c_2(x) = X_{\max}(Z_{\min}^4 - 4Z_{\min}^3 + 3Z_{\min}^2)$		0.75	_				
$+ (X_{\max} - X_{\min})(3Z_{\min}^2 - 4Z_{\min} + 1)$		1) 0.7		Ш			
≤ 0		(0.2	0.4	0.6	0.8	1
—					Z _{min}		

16 ◀ ◻ ▸

LPA Feasible Region

 $\begin{array}{ll} c(x) \leq 0 \text{ are } {\small \textsf{UNRELAXABLE: Simulator (often) fails in } \mathcal{D}^c \\ {\small \textsf{QUAK}} & {\small \textsf{SBO constraint taxonomy}} \rightarrow [\texttt{Le Digabel \& W.; ANL/MCS-P5350-0515}] \end{array}$

16 < 🗆 🕨

LPA Feasible Region

 $\begin{array}{ll} c(x) \leq 0 \text{ are } \mathsf{UNRELAXABLE: Simulator (often) fails in } \mathcal{D}^c \\ \mathtt{QUAK} & \mathtt{SBO \ constraint \ taxonomy } \rightarrow [\texttt{Le \ Digabel \& W.; ANL/MCS-P5350-0515}] \end{array}$

Numerical Experiments on LPA Problem

Test multimodality:

- \diamond 51 starting points x^0 generated uniformly from within \mathcal{D}
- \diamond Significant variation in $f(x^0)$
- ◇ Includes pathological $t_1 = \arg \max_{i \in \Theta_1(x^0)} v(t_i)$
- Maximum of 20n v evaluations (7.5 minutes each)
- ◇ 51 CPU days

Solutions Found for I DA Droblom

Structured **POUNDER** code

Solutions Found for LPA Problem

POPAS Activity Proposed for ComPASS-4

Platform for Optimization of Particle Accelerators at Scale

- integrated platform for coordinating the evaluation and numerical optimization of accelerator simulations on leadership-class DOE computers
- orchestrate concurrent evaluations of OSIRIS, QuickPIC, Synergia, and MARS (or combinations thereof) with distinct inputs/parameter values
- $^{\diamond}$ account for resource requirements of the above
- API will allow the user to describe the mapping from simulation outputs and the derived quantities of interest used to define objective and constraint quantities

TH: Provide enough information so that optimization is efficient

"Simplest" (=Most Naive) Formulation: Blackbox f

Optimizer gives x, physicist provides f(x)

- f can be a blackbox (executable only or proprietary/legacy codes)
- Only give a single output
 - no derivatives with respect to x: $\nabla_x S(x), \nabla^2_{x,x} S(x)$
 - no problem structure

Good solutions guaranteed in the limit, but:

Computational budget limits number of evaluations

"Simplest" (=Most Naive) Formulation: Blackbox f

Optimizer gives x, physicist provides f(x)

- f can be a blackbox (executable only or proprietary/legacy codes)
- Only give a single output
 - no derivatives with respect to x: $\nabla_x S(x), \nabla^2_{x,x} S(x)$
 - no problem structure

Good solutions guaranteed in the limit, but:

Computational budget limits number of evaluations

Two main styles of local algorithms

- Direct search methods (pattern search, Nelder-Mead, ...)
- Model- ("surrogate-")based methods (quadratics, radial basis functions, ...)

Black-Box Algorithms: Direct Search Methods

- $^{\diamond}$ Rely on indicator functions: $[f(x_k+s)<^? f(x_k)] f(x_k)$, short memory
- \diamond Work with black-box f(x), do not exploit structure F[x, S(x)]
- Convergence results for variety of settings

 $\begin{array}{l} \mbox{Survey} \rightarrow \mbox{[Kolda, Lewis, Torczon; SIREV 2003]} \\ \mbox{Newer NM} \rightarrow \mbox{[Lagarias, Poonen, Wright; SIOPT 2012]} \\ \mbox{Tools} \rightarrow \mbox{DFL [Liuzzi et al.], NOMAD [Audet et al.], } . . . \end{array}$

Making the Most of Little Information About Smooth \boldsymbol{f}

 Overhead of the optimization routine is minimal (negligible?) relative to cost of evaluating simulation

Bank of data, $\{x_i, f(x_i)\}_{i=1}^k$:

- Points (& function values) evaluated so far
- = Everything known about f

Goal:

- Make use of growing Bank as optimization progresses
- Limit unnecessary evaluations

(geometry/approximation)

Making the Most of Little Information About Smooth \boldsymbol{f}

 Overhead of the optimization routine is minimal (negligible?) relative to cost of evaluating simulation

Bank of data, $\left\{x_i, f(x_i) ight\}_{i=1}^k$:

- Points (& function values) evaluated so far
- = Everything known about f

Goal:

- Make use of growing Bank as optimization progresses
- Limit unnecessary evaluations

(geometry/approximation)

Making the Most of Little Information About Smooth f

 Overhead of the optimization routine is minimal (negligible?) relative to cost of evaluating simulation

Bank of data, $\{x_i, f(x_i)\}_{i=1}^k$:

- Points (& function values) evaluated so far
- = Everything known about f

Goal:

- Make use of growing Bank as optimization progresses
- Limit unnecessary evaluations

(geometry/approximation)

Derivative-Free, Model-Based Trust-Region Algorithms

Substitute $\min \{m_k(x) : x \in \mathcal{B}_k\}$ (TRSP) for $\min f(x)$

f expensive, no ∇f

 m_k cheap, analytic derivatives

Trust region: $\mathcal{B}_k = \{x \in \Omega : ||x - x^k|| \le \Delta_k\}$

Basic algorithm

- ♦ Build model m_k (≈ f in \mathcal{B}_k)
- $^{\diamond} x^{+} \approx \arg\min\{m_{k}(x) : x \in \mathcal{B}_{k}\}$

$$\ \ \, \rho_k = \frac{f(x^k) - f(x^+)}{m_k(x^k) - m_k(x^+)}$$

 $\label{eq:product} \stackrel{\diamond}{=} \begin{array}{l} {\rm If} \ \rho_k \geq \eta_1 > 0, \ {\rm accept} \ x^{k+1} = x^+; \\ {\rm Elseif} \ m_k \ {\rm is \ valid \ in} \ \mathcal{B}_k, \ {\rm shrink} \ \Delta_k \\ {\rm Else, \ improve} \ m_k \ {\rm in} \ \mathcal{B}_k \end{array}$

ORBIT: [W., Regis, Shoemaker, SISC 2008]

Derivative-Free, Model-Based Trust-Region Algorithms

Substitute $\min \{m_k(x) : x \in \mathcal{B}_k\}$ (TRSP) for $\min f(x)$

f expensive, no ∇f

 m_k cheap, analytic derivatives

ORBIT: [W., Regis, Shoemaker, SISC 2008]

Trust region: $\mathcal{B}_k = \{x \in \Omega : ||x - x^k|| \le \Delta_k\}$

Basic algorithm

- ♦ Build model m_k (≈ f in \mathcal{B}_k)
- $^{\diamond} x^{+} \approx \arg\min\{m_{k}(x) : x \in \mathcal{B}_{k}\}$

$$\ \ \, \rho_k = \frac{f(x^k) - f(x^+)}{m_k(x^k) - m_k(x^+)}$$

 $\label{eq:constraint} \begin{array}{l} \diamond \ \ \, \mbox{If } \rho_k \geq \eta_1 > 0, \mbox{ accept } x^{k+1} = x^+; \\ \mbox{ Elseif } m_k \ \mbox{is valid in } \mathcal{B}_k, \ \mbox{ shrink } \Delta_k \\ \mbox{ Else, improve } m_k \ \mbox{in } \mathcal{B}_k \end{array}$

Derivative-Free, Model-Based Trust-Region Algorithms

Substitute $\min \{m_k(x) : x \in \mathcal{B}_k\}$ (TRSP) for $\min f(x)$

f expensive, no ∇f

 m_k cheap, analytic derivatives

ORBIT: [W., Regis, Shoemaker, SISC 2008]

Basic algorithm

- ♦ Build model $m_k (\approx f \text{ in } \mathcal{B}_k)$
- $^{\diamond} x^{+} \approx \arg\min\{m_{k}(x) : x \in \mathcal{B}_{k}\}$

$$\ \, \rho_k = \frac{f(x^k) - f(x^+)}{m_k(x^k) - m_k(x^+)}$$

 $\label{eq:constraint} \begin{array}{l} \diamond \ \ \, \mbox{If } \rho_k \geq \eta_1 > 0, \mbox{ accept } x^{k+1} = x^+; \\ \mbox{ Elseif } m_k \ \mbox{is valid in } \mathcal{B}_k, \ \mbox{ shrink } \Delta_k \\ \mbox{ Else, improve } m_k \ \mbox{in } \mathcal{B}_k \end{array}$

Derivative-Free, Model-Based Trust-Region Algorithms

Substitute $\min \{m_k(x) : x \in \mathcal{B}_k\}$ (TRSP) for $\min f(x)$

f expensive, no abla f

m_k cheap, analytic derivatives

ORBIT: [W., Regis, Shoemaker, SISC 2008]

Trust region: $\mathcal{B}_k = \{x \in \Omega : ||x - x^k|| \le \Delta_k\}$

Basic algorithm

♦ Build model $m_k (\approx f \text{ in } \mathcal{B}_k)$

$$^{\diamond} x^{+} \approx \arg\min\{m_{k}(x) : x \in \mathcal{B}_{k}\}$$

$$^{\diamond} \ \rho_k = \frac{f(x^k) - f(x^+)}{m_k(x^k) - m_k(x^+)}$$

 $\label{eq:product} \begin{tabular}{ll} \circ & \mbox{If } \rho_k \geq \eta_1 > 0, \mbox{ accept } x^{k+1} = x^+; \\ & \mbox{Elseif } m_k \mbox{ is valid in } \mathcal{B}_k, \mbox{ shrink } \Delta_k \\ & \mbox{ Else, improve } m_k \mbox{ in } \mathcal{B}_k \end{tabular}$

Radial Basis Function Interpolation Models

Unique coefficients λ and polynomial p define interpolating RBF model

$$m_k^f(x_k + s) = \sum_{j=1}^{|\mathcal{Y}|} \lambda_j \phi(\|s - y_j\|) + p(s),$$

Structure in Simulation-Based Optimization, $\min f(x) = F[x, S(x)]$

f is often not a black box S

NLS Nonlinear least squares

$$f(x) = \sum_{i} (S_i(x) - d_i)^2$$

CNO Composite (nonsmooth) optimization

$$f(x) = h(S(x))$$

SKP Not all variables enter simulation

$$f(x) = g(x_I, x_J) + h(S(x_J))$$

BLO Bilevel optimization

$$\min\{S_1(x_I, x_J) : x_I \in \arg\max_y S_2(y, x_J)\}$$

SCO Only some constraints depend on simulation

$$\min\{f(x): c_1(x) = 0, c_{\mathbf{S}}(x) = 0\}$$

Model-based methods offer one way to exploit such structure

Nonlinear Least Squares $f(x) = \frac{1}{2} \sum_{i} R_i(x)^2$

Obtain a vector of output $R_1(x), \ldots, R_p(x)$

 \diamond Model each R_i

$$R_i(x) \approx m_k^{R_i}(x) = R_i(x_k) + (x - x_k)^\top g_k^{(i)} + \frac{1}{2}(x - x_k)^\top H_k^{(i)}(x - x_k)$$

Approximate:

$$\begin{split} \nabla f(x) &= \sum_{i} \nabla \mathbf{R}_{\mathbf{i}}(\mathbf{x}) R_{i}(x) \longrightarrow \sum_{i} \nabla m_{k}^{R_{i}}(x) R_{i}(x) \\ \nabla^{2} f(x) &= \sum_{i} \nabla \mathbf{R}_{\mathbf{i}}(\mathbf{x}) \nabla \mathbf{R}_{\mathbf{i}}(\mathbf{x})^{\top} + \sum_{i} R_{i}(x) \nabla^{2} \mathbf{R}_{\mathbf{i}}(\mathbf{x}) \\ \longrightarrow \sum_{i} \nabla m_{k}^{R_{i}}(x) \nabla m_{k}^{R_{i}}(x)^{\top} + \sum_{i} R_{i}(x) \nabla^{2} m_{k}^{R_{i}}(x) \end{split}$$

Model f via Gauss-Newton or similar

regularized Hessians →DFLS [Zhang, Conn, Scheinberg] full Newton →POUNDERS [W., Moré]

POUNDERS for χ^2 (=Nonlinear Least Squares Calibration)

POUNDERS (in PETSc/TAO) well tested for calibration problems:

Constraints in Simulation-Based Optimization

[le Digabel, W.; 2017]; [Regis, W.; OMS, 2017]

Why Expressing Constraint Functions Matters

Augmented Lagrangian methods, $L_A(x,\lambda;\mu) = f(x) - \lambda^T c(x) + \frac{1}{\mu} \|c(x)\|^2$

$\min_x \left\{ f(x) : c(x) = 0 \right\}$

Four choices:

- 1. Penalize constraints
- 2. Treat c and f both as (separate) black boxes
- 3. Work with f and $\nabla_x c$
- 4. Have both $\nabla_x f$ and $\nabla_x c$

→ With Slava Kungurtsev

n = 15, 11 constraints

29 < 🗆

What is APOSMM?

Asynchronous Parallel Optimization Solver for Multiple Minima

- Better account for dynamic number of local runs
- Decouple local run from fixed resource
- Anticipate nontrivial Var[time (f(x))]

[Larson & W. Asynchronously Parallel Optimization Solver for Finding Multiple Minima, Math. Program. Comput., 2018.]

The (A)POSMM Algorithm

Repeat:

- $^{\diamond}$ Receive from worker(s) $w_\ell \in W$ that has evaluated its point
- \circ If point was a sample point, update $r_k = \frac{1}{\sqrt{\pi}} \sqrt[n]{\operatorname{vol}(\mathcal{D})} \frac{5\Gamma(1+\frac{n}{2})\log(|\mathcal{S}_k|)}{|\mathcal{S}_k|}$
- $^{\circ}\,$ If point was a local optimization point, add subsequent point in the run (not in $\mathcal{H}_k)$ to Q_L if not terminated
- $^{\circ}\,$ Start run(s) at all point(s) now satisfying conditions, adding subsequent point from each run to Q_L
- $^{\diamond}$ Merge/collapse runs within Q_L
- $^{\diamond}$ Send point(s) from Q_L and/or $\mathcal R$ to worker(s)
 - W Set of workers

(level of concurrency |W|)

- \mathcal{R} Stream of sample points (from \mathcal{D})
- \mathcal{S}_k Sample points after iteration k
- Q_L Queue of local optimization points (needed by \mathcal{A})
- \mathcal{H}_k History after k evaluations

Where to start A in kth iteration [Rinnooy Kan & Timmer (MathProg, 1987)]

Ex.: It. 1 Exploration

Start \mathcal{A} at each sample point $x^i \in \mathcal{S}_k$ provided:

- $^{\diamond}$ ${\cal A}$ has not been started from x^i , and
- $^\diamond\,$ no other sample point $x^j \in \mathcal{S}_k$ with $f(x^j) < f(x^i)$ is within a distance

$$r_k = \frac{1}{\sqrt{\pi}} \sqrt[n]{\operatorname{vol}\left(\mathcal{D}\right)} \frac{5\Gamma\left(1 + \frac{n}{2}\right) \log(kN)}{kN},$$

Where to start A in kth iteration [Rinnooy Kan & Timmer (MathProg, 1987)]

Ex.: It. 1 Exploration

Start \mathcal{A} at each sample point $x^i \in \mathcal{S}_k$ provided:

- $^{\diamond}$ ${\cal A}$ has not been started from x^i , and
- $^\diamond\,$ no other sample point $x^j \in \mathcal{S}_k$ with $f(x^j) < f(x^i)$ is within a distance

$$r_k = \frac{1}{\sqrt{\pi}} \sqrt[n]{\operatorname{vol}\left(\mathcal{D}\right)} \frac{5\Gamma\left(1 + \frac{n}{2}\right) \log(kN)}{kN},$$

Where to start A in kth iteration [Rinnooy Kan & Timmer (MathProg, 1987)]

Ex.: It. 1 Exploration

Start \mathcal{A} at each sample point $x^i \in \mathcal{S}_k$ provided:

- $^{\diamond}$ ${\cal A}$ has not been started from x^i , and
- $^\diamond\,$ no other sample point $x^j \in \mathcal{S}_k$ with $f(x^j) < f(x^i)$ is within a distance

$$r_k = \frac{1}{\sqrt{\pi}} \sqrt[n]{\operatorname{vol}\left(\mathcal{D}\right)} \frac{5\Gamma\left(1 + \frac{n}{2}\right) \log(kN)}{kN},$$

Thm [RK-T]- With probability 1, MLSL will start finitely many local runs.

Where to start A in kth iteration [Rinnooy Kan & Timmer (MathProg, 1987)]

Start \mathcal{A} at each sample point

 $^{\diamond}$ ${\cal A}$ has not been started from x^i , and

[◊] no other sample point $x^j \in S_k$ with $f(x^j) < f(x^i)$ is within a distance

 $r_{k} = \frac{1}{\sqrt{\pi}} \sqrt[N]{\operatorname{vol}\left(\mathcal{D}\right)} \frac{5\Gamma\left(1 + \frac{n}{2}\right)\log(kN)}{kN}$

 $x^i \in \mathcal{S}_k$ provided:

Ex.: It. 1 Refinement

Thm [RK-T]- With probability 1, MLSL will start finitely many local runs.

ComPASS-4, April 2018

Where to start A in kth iteration [Rinnooy Kan & Timmer (MathProg, 1987)]

Ex.: It. 2 Exploration

Start \mathcal{A} at each sample point $x^i \in \mathcal{S}_k$ provided:

- $^{\diamond}$ ${\cal A}$ has not been started from x^i , and
- $^\diamond\,$ no other sample point $x^j \in \mathcal{S}_k$ with $f(x^j) < f(x^i)$ is within a distance

$$r_k = \frac{1}{\sqrt{\pi}} \sqrt[n]{\operatorname{vol}\left(\mathcal{D}\right)} \frac{5\Gamma\left(1 + \frac{n}{2}\right) \log(kN)}{kN},$$

Thm [RK-T]- With probability 1, MLSL will start finitely many local runs.

(A)POSMM Framework

Data Profiles: Ability to Find Approximate Global Minimizer

600 GKLS problems

(A)POSMM

- Makes rapid progress to f_G
- Outperforms other algorithms (even while demanding 14-fold concurrency) evaluations

$$\tau = 10^{-2} f(x) - f_G \le (1 - \tau) \left(f(x^0) - f_G \right)$$

34 < □ >

Data Profiles: Ability to Find Approximate Global Minimizer

600 GKLS problems

(A)POSMM

- Makes rapid progress to f_G
- Outperforms other algorithms (even while demanding 14-fold concurrency) evaluations

$$\tau = 10^{-5} f(x) - f_G \le (1 - \tau) \left(f(x^0) - f_G \right)$$

34 < □)

600 GKLS problems

(A)POSMM

- Designed to find more than just the global minimizer
- Extends lead for tighter tolerances

distance $\tau = 10^{-5}$, j = 2 minimizers

35 < 🗆

600 GKLS problems

(A)POSMM

- Designed to find more than just the global minimizer
- Extends lead for tighter tolerances

distance $\tau = 10^{-3}$, j = 7 minimizers

600 GKLS problems

(A)POSMM

- Designed to find more than just the global minimizer
- Extends lead for tighter tolerances

600 GKLS problems

(A)POSMM

- Designed to find more than just the global minimizer
- Extends lead for tighter tolerances

Argonne/Optimization Milestones in ComPASS-4

Activity	Institution(s)	Sec	Year
Develop API for POPAS prototype	ANL, FNAL, UCLA	§ 2.4	1
Identify optimizable elements in the MARS and Synergia PIP-II models; connect with POPAS prototype	FNAL, ANL	§ 2.1.1	2
Use MARS-Synergia-POPAS prototype for preliminary optimization	FNAL, ANL	§ 2.1.1	3
Include prototype of structure-exploiting optimization algorithm for standard PIC/QuickPIC simulations; enable basic execution of all ComPASS-4 codes in POPAS	ANL, FNAL, UCLA	§ 2.4	3
Link numerical optimization algorithm to POPAS; Remove file I/O layer from POPAS	ANL, FNAL, UCLA	§ 2.4	3
Connect IOTA Synergia model with POPAS	FNAL, ANL	§ 2.1.1	3
Release POPAS; apply POPAS to standard PIC/QuickPIC and Synergia	ANL, FNAL, UCLA	§ 2.4	4
Refine MARS-Synergia-POPAS	FNAL, ANL	§ 2.1.1	4
Apply IOTA Synergia-POPAS	FNAL, ANL	§ 2.1.1	4
Carry out parameter optimization on PWFA-LC relevant parameters using QuickPIC	UCLA, FNAL, ANL	§ 2.5.2	5

