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Mathematical/Numerical Nonlinear Optimization

Optimization is the “science of better”

Find parameters (controls) x = (x1, . . . , xn) in domain Ω to improve objective f

min {f(x) : x ∈ Ω ⊆ R
n}

⋄ (Unless Ω is very special) Need to evaluate f at many x to find a good x̂∗
⋄ Focus on local solutions: f(x̂∗) ≤ f(x) ∀x ∈ N (x̂∗) ∩ Ω

⋄ constraints defined the feasibility region Ω
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Stochastic Optimization

Addresses situations where you obtain a nondeterministic quantity F (x, ξ)

min {f(x) = E {F (x, ξ)} : x ∈ Ω}

⋄ x ∈ R
n decision variables

⋄ ξ vector of random variables
� independent of x
� P (ξ) distribution function for ξ
� ξ has support Ξ

⋄ F (x, ·) functional form of uncertainty for decision x

⋄ Ω ⊆ R
n set defined by deterministic constraints

� Also: stochastic/probabilistic constraints

⋄ Nonstationarity: does Var {F (x, ξ)} depend on x?

ComPASS-4, April 2018 3



Multiobjective Optimization
Simultaneously minimize nf > 1
objectives

min
x∈Ω

f1(x), · · · , fnf
(x)

“x1 dominates x2” if:

⋄ fi(x
1) ≤ fi(x

2) for all i, and

⋄ fi(x
1) < fi(x

2) for at least
one i

“x1 is nondominated in X” if there
is no x2 ∈ X that dominates x1

Pareto optimal solutions: A set P
of points are nondominated in Ω

⋄ Especially useful when missing
a currency exchange between
objectives

⋄ Significantly more expensive
than single-objective
optimization
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Simulation-Based Optimization

min
x∈Rn

{f(x) = F [S(x)] : c(S(x)) ≤ 0, x ∈ B}

⋄ S (numerical) simulation output, (here deterministic)

⋄ Derivatives ∇xS often unavailable or prohibitively expensive to
obtain/approximate directly

⋄ Some AD hurdle (e.g., proprietary/legacy/coupled/mixed-language codes)

⋄ Single evaluation of S could take seconds/minutes/hours/days
Evaluation is a bottleneck for optimization

B compact, known region (e.g., finite bound constraints)

Computing advances have driven this research area. . .

Argonne’s AVIDAC

(1953 vacuum tubes)

Argonne’s BlueGene/Q

(2012 0.79M cores)

Argonne’s Theta

(2017 0.23M cores)

Sunway
TaihuLight

(2016 11M cores)
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Derivative-Free/Zero-Order Optimization

“Some derivatives are unavailable for optimization purposes”
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Derivative-Free/Zero-Order Optimization

“Some derivatives are unavailable for optimization purposes”

The Challenge: Optimization is tightly coupled with derivatives

Typical optimality (no noise, smooth functions)

∇xf(x
∗) + λT∇xcE(x∗) = 0, cE(x∗) = 0

(sub)gradients ∇xf, ∇xc enable:

⋄ Faster feasibility
⋄ Faster convergence

� Guaranteed descent
� Approximation of nonlinearities

⋄ Better termination
� Measure of criticality

‖∇xf‖ or ‖PΩ(∇xf)‖
⋄ Sensitivity analysis

� Correlations, standard errors, UQ, . . .
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Ways to Get Derivatives (assuming they exist)

Handcoding (HC)

“Army of students/programmers”

? Prone to errors/conditioning

? Intractable as number of ops increases

Algorithmic/Automatic Differentiation (AD)

“Exact∗ derivatives!”

? No black boxes allowed

? Not always automatic/cheap/well-conditioned

Finite Differences (FD)

“Nonintrusive”

? Expense grows with n

? Sensitive to stepsize choice/noise

→[Moré & W.; SISC 2011], [Moré & W.; TOMS 2012]

. . . then apply derivative-based method (that handles inexact derivatives)
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Algorithmic Differentiation

→ [Coleman & Xu; SIAM 2016], [Griewank & Walther; SIAM 2008]

Computational Graph

⋄ y = sin(a ∗ b) ∗ c

⋄ Forward and reverse modes

⋄ AD tool provides code for your
derivatives

Write codes and formulate
problems with AD in mind!

Many tools (see www.autodiff.org):

F OpenAD

F/C Tapenade, Rapsodia

C/C++ ADOL-C, ADIC

Matlab ADiMat, INTLAB

Python/R ADOL-C

Also done in AMPL, GAMS, JULIA!
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The Price of Algorithm Choice: Solvers in PETSc/TAO

chwirut1 (n = 6)
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lmvm
pounders
nm

Toolkit for Advanced Optimization

[Munson et al.; mcs.anl.gov/tao]

Increasing level of user input:

nm Assumes ∇xf

unavailable, black box

pounders Assumes ∇xf

unavailable, exploits
problem structure

lmvm Uses available ∇xf
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Increasing level of user input:

nm Assumes ∇xf

unavailable, black box

pounders Assumes ∇xf

unavailable, exploits
problem structure

THIS TALK

lmvm Uses available ∇xf

DFO methods should be designed to

beat finite-difference-based methods

Observe: Constrained by budget on #evals, method limits solution accuracy/problem size
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Why Algorithms Matter: The Accelerator Case

Varying skew quadrupoles to meet beam size targets (in PELEGANT)
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Serial** PSO
Serial Simplex
Serial POUNDERS
1024−Core PSO

⋄ Heuristics often “embarrassingly/naturally parallel”;
PSO= particle swarm method

� Typically through stochastic sampling/evolution
� 1024 function evaluations per iteration

⋄ Simplex is Nelder-Mead; POUNDERS is model-based
trust-region algorithm

� one function evaluation per iteration
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Global Optimization, minx∈Ω f(x)

Careful:

⋄ Global convergence: Convergence (to a local solution/stationary point) from
anywhere in Ω

⋄ Convergence to a global minimizer: Obtain x∗ with f(x∗) ≤ f(x)∀x ∈ Ω
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Global Optimization, minx∈Ω f(x)

Careful:

⋄ Global convergence: Convergence (to a local solution/stationary point) from
anywhere in Ω

⋄ Convergence to a global minimizer: Obtain x∗ with f(x∗) ≤ f(x)∀x ∈ Ω

Anyone selling you global solutions when derivatives are unavailable:

either assumes more about your problem (e.g., convex f)

or expects you to wait forever

Törn and Žilinskas: An algorithm converges to the global minimum for any
continuous f if and only if the sequence of points visited by the
algorithm is dense in Ω.

or cannot be trusted
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Global Optimization, minx∈Ω f(x)

Careful:

⋄ Global convergence: Convergence (to a local solution/stationary point) from
anywhere in Ω

⋄ Convergence to a global minimizer: Obtain x∗ with f(x∗) ≤ f(x)∀x ∈ Ω

Anyone selling you global solutions when derivatives are unavailable:

either assumes more about your problem (e.g., convex f)

or expects you to wait forever

Törn and Žilinskas: An algorithm converges to the global minimum for any
continuous f if and only if the sequence of points visited by the
algorithm is dense in Ω.

or cannot be trusted

Instead:

⋄ Rapidly find good local solutions and/or be robust to poor solutions

⋄ Consider multistart approaches and/or structure of multimodality
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Why Multistart?

Best minimizer(s) approximate global minimizer x∗, f(x∗) ≤ f(x)∀x ∈ D

Multiple local minima are often of interest in practice

Design Multiple objectives/constraints
might later be of interest

Distinctness j best minimizers have physical
meaning

Simulation Errors Spurious local minima from
simulator anomalies

Uncertainty Some minima more sensitive to
perturbations 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
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Increased opportunity for parallelism

Trilevel simulation/function → local solver → global solver

Efficient local solvers

⋄ (Local) surrogate-based, exploit problem structure
� least-squares objectives, (un)relaxable constraints, known nonsmoothness, . . .
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Motivating Example: Staging a Laser Plasma Accelerator

⋄ Electron bunch is injected in a laser-induced plasma wave
� Typically when laser intensity reaches its first maximum

⋄ Nonlinear effects ⇒ plasma wave shrinks and electron bunch is lost
� Typically because bunch ends up in a defocusing region when laser intensity reaches its

(first) minimum

Goal: Shape initial section of capillary to raise the minimum intensity and/or lower the
maximum intensity.
→For a given x, we compute v(t; x), the (smooth) laser intensity at time t

Under ComPASS-3 with Carlo Benedetti & Jean-Luc Vay (LBNL)

ComPASS-4, April 2018 13



Motivating Example: min{f(x) : x ∈ D ⊂ R
n}

Simulation provides intensity at a
discrete set of times
t1 < · · · < tp=|I|:

Bi(x) = v(ti; x), i ∈ I

f(x) = max
i∈Θ1(x)

v(ti;x)−min
i∈I

v(ti;x)

Θ1(x) =

{

i ∈ I : i ≤ max argmin
j∈I

v(tj ; x)

}
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Slice Through LPA Subproblem

0 0.2 0.4 0.6 0.8 1
x

m
B
(x

)

h(m B(x))

This is a nonsmooth (piecewisesmooth) function of the parameters x
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LPA Feasible Region

Variable Range
Length 2 ≤ L ≤ 6

Plasma channel radius 1 ≤ Xmax ≤ 1.5
Minimum channel radius 0.7 ≤ Xmin ≤ 1
Longitudinal location 0 ≤ Zmin ≤ 1
Laser focus position −1.2 ≤ Zf ≤ 0
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c(x) ≤ 0 are UNRELAXABLE: Simulator (often) fails in Dc

QUAK SBO constraint taxonomy →[Le Digabel & W.; ANL/MCS-P5350-0515]
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Numerical Experiments on LPA Problem

Test multimodality:

⋄ 51 starting points x0

generated uniformly
from within D

⋄ Significant variation
in f(x0)

⋄ Includes pathological
t1 =
argmaxi∈Θ1(x0) v(ti;x

0)

⋄ Maximum of 20n v

evaluations
(7.5 minutes each)

⋄ 51 CPU days
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Solutions Found for LPA Problem

51 Solutions:

⋄ Converge to two
solutions (A, B)

⋄ ≈ 10% to B

⋄ Behavior after
tmax{i:i∈Ω1}
unconstrained

⋄ c(xA), c(xB) < 0

PS solutions remarkably
consistent
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Structured POUNDER code
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POPAS Activity Proposed for ComPASS-4

Platform for Optimization of Particle Accelerators at Scale

⋄ integrated platform for coordinating the evaluation and numerical optimization of
accelerator simulations on leadership-class DOE computers

⋄ orchestrate concurrent evaluations of OSIRIS, QuickPIC, Synergia, and MARS (or
combinations thereof) with distinct inputs/parameter values

⋄ account for resource requirements of the above

⋄ API will allow the user to describe the mapping from simulation outputs and the
derived quantities of interest used to define objective and constraint quantities

TH: Provide enough information so that optimization is efficient
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“Simplest” (=Most Naive) Formulation: Blackbox f

Optimizer gives x, physicist provides f(x)

⋄ f can be a blackbox (executable only or
proprietary/legacy codes)

⋄ Only give a single output

� no derivatives with respect to x: ∇xS(x),∇2
x,xS(x)

� no problem structure

Good solutions guaranteed in the limit, but:

⋄ Computational budget limits number of evaluations
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“Simplest” (=Most Naive) Formulation: Blackbox f

Optimizer gives x, physicist provides f(x)

⋄ f can be a blackbox (executable only or
proprietary/legacy codes)

⋄ Only give a single output

� no derivatives with respect to x: ∇xS(x),∇2
x,xS(x)

� no problem structure

Good solutions guaranteed in the limit, but:

⋄ Computational budget limits number of evaluations

Two main styles of local algorithms

⋄ Direct search methods (pattern search, Nelder-Mead,
. . . )

⋄ Model- (“surrogate-”)based methods (quadratics, radial
basis functions, . . . )
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Black-Box Algorithms: Direct Search Methods

Pattern Search + Variants
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Easy to parallelize f evaluations

Nelder-Mead + Variants

x

y

Popularized by Numerical Recipes

⋄ Rely on indicator functions: [f(xk + s) <? f(xk)] f(xk), short memory

⋄ Work with black-box f(x), do not exploit structure F [x,S(x)]

⋄ Convergence results for variety of settings

Survey → [Kolda, Lewis, Torczon; SIREV 2003]

Newer NM → [Lagarias, Poonen, Wright; SIOPT 2012]

Tools → DFL [Liuzzi et al.], NOMAD [Audet et al.], . . .
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Making the Most of Little Information About Smooth f

⋄ Overhead of the optimization routine is minimal (negligible?) relative to cost of
evaluating simulation
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Derivative-Free, Model-Based Trust-Region Algorithms

Substitute min {mk(x) : x ∈ Bk} (TRSP) for min f(x)

f expensive, no ∇f

mk cheap, analytic
derivatives
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1.5
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3.5
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4.5

5

Trust region:
Bk = {x ∈ Ω : ‖x− xk‖ ≤ ∆k}

Basic algorithm

⋄ Build model mk(≈ f in Bk)

⋄ x+ ≈ argmin{mk(x) : x ∈ Bk}

⋄ ρk =
f(xk)−f(x+)

mk(xk)−mk(x+)

⋄ If ρk ≥ η1 > 0, accept xk+1 = x+;
Elseif mk is valid in Bk, shrink ∆k

Else, improve mk in Bk

ORBIT: [W., Regis, Shoemaker, SISC 2008]
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Radial Basis Function Interpolation Models

Given

⋄ base point xk

⋄ interpolation points

Y = {yj}
|Y|
j=1 ⊂ R

n

⋄ values f(xk + yj) for j = 1, . . . , |Y|

⋄ radial kernel φ : R+ → R

Unique coefficients λ and polynomial p define interpolating RBF model

m
f
k
(xk + s) =

|Y|
∑

j=1

λjφ(‖s− yj‖) + p(s),
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Structure in Simulation-Based Optimization, min f(x) = F [x, S(x)]

f is often not a black box S

NLS Nonlinear least squares

f(x) =
∑

i

(Si(x)− di)
2

CNO Composite (nonsmooth) optimization

f(x) = h(S(x))

SKP Not all variables enter simulation

f(x) = g(xI , xJ) + h(S(xJ ))

BLO Bilevel optimization

min{S1(xI , xJ ) : xI ∈ argmax
y

S2(y, xJ)}

SCO Only some constraints depend on simulation

min{f(x) : c1(x) = 0, cS(x) = 0}

. . .

Model-based methods offer one way to exploit such structure
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Nonlinear Least Squares f(x) = 1
2

∑
iRi(x)

2

Obtain a vector of output R1(x), . . . , Rp(x)

⋄ Model each Ri

Ri(x) ≈ m
Ri
k

(x) = Ri(xk) + (x− xk)
⊤g

(i)
k

+
1

2
(x− xk)

⊤H
(i)
k

(x− xk)

⋄ Approximate:

∇f(x) =
∑

i

∇Ri(x)Ri(x) −→
∑

i

∇m
Ri
k (x)Ri(x)

∇2f(x) =
∑

i

∇Ri(x)∇Ri(x)
⊤ +

∑

i

Ri(x)∇
2
Ri(x)

−→
∑

i

∇m
Ri
k (x)∇m

Ri
k (x)⊤ +

∑

i

Ri(x)∇
2m

Ri
k (x)

⋄ Model f via Gauss-Newton or similar

regularized Hessians →DFLS [Zhang, Conn, Scheinberg]

full Newton →POUNDERS [W., Moré]
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POUNDERS for χ2 (=Nonlinear Least Squares Calibration)

POUNDERS (in PETSc/TAO) well tested for calibration problems:

f(x) ∝
∑

i,j

Wi,j

(

S(x; θi)− di
) (

S(x; θj)− dj
)
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Constraints in Simulation-Based Optimization

[le Digabel, W.; 2017]; [Regis, W.; OMS, 2017]
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Why Expressing Constraint Functions Matters

Augmented Lagrangian methods, LA(x, λ;µ) = f(x) − λT c(x) + 1
µ
‖c(x)‖2

minx {f(x) : c(x) = 0}

Four choices:

1. Penalize constraints

2. Treat c and f both as
(separate) black boxes

3. Work with f and ∇xc

4. Have both ∇xf and ∇xc

→With Slava Kungurtsev
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What is APOSMM?

Asynchronous Parallel Optimization Solver for
Multiple Minima

⋄ Better account for dynamic number of local runs

⋄ Decouple local run from fixed resource

⋄ Anticipate nontrivial Var[time (f(x))]

[Larson & W. Asynchronously Parallel Optimization Solver for Finding

Multiple Minima, Math. Program. Comput., 2018.]
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The (A)POSMM Algorithm

Repeat:

⋄ Receive from worker(s) wℓ ∈ W that has evaluated its point

⋄ If point was a sample point, update rk = 1√
π

n

√

vol (D)
5Γ(1+n

2 ) log(|Sk|)
|Sk|

⋄ If point was a local optimization point, add subsequent point in the run (not in
Hk) to QL if not terminated

⋄ Start run(s) at all point(s) now satisfying conditions, adding subsequent point
from each run to QL

⋄ Merge/collapse runs within QL

⋄ Send point(s) from QL and/or R to worker(s)

W Set of workers (level of concurrency |W |)

R Stream of sample points (from D)

Sk Sample points after iteration k

QL Queue of local optimization points (needed by A)

Hk History after k evaluations
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Basic Idea: Multi Level Single Linkage (MLSL) Clustering

Where to start A in kth iteration [Rinnooy Kan & Timmer (MathProg, 1987)]

Sampled 
Points

Sampled 
Candidate 
Points

Descent 
Paths

Start 
Points

Ex.: It. 1 Exploration

Start A at each sample point
xi ∈ Sk provided:

⋄ A has not been started from xi, and

⋄ no other sample point xj ∈ Sk with
f(xj) < f(xi) is within a distance

rk =
1

√
π

n

√

√

√

√

vol (D)
5Γ

(

1 + n
2

)

log(kN)

kN
,
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Basic Idea: Multi Level Single Linkage (MLSL) Clustering

Where to start A in kth iteration [Rinnooy Kan & Timmer (MathProg, 1987)]
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Start 
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Thm [RK-T]- With probability 1, MLSL will start finitely many local runs.
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Basic Idea: Multi Level Single Linkage (MLSL) Clustering

Where to start A in kth iteration [Rinnooy Kan & Timmer (MathProg, 1987)]
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Start 
Points

Ex.: It. 2 Exploration

Start A at each sample point
xi ∈ Sk provided:

⋄ A has not been started from xi, and

⋄ no other sample point xj ∈ Sk with
f(xj) < f(xi) is within a distance

rk =
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√
π
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√

√
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5Γ

(
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log(kN)
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Thm [RK-T]- With probability 1, MLSL will start finitely many local runs.
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(A)POSMM Framework

History

Check
history

Queue

Decide

Random
stream

MANAGERWORKERS CUSTODIANS
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...

...

A

A

A

f(x′)

x′
f(x′)

x′

f(x′)

x′
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Data Profiles: Ability to Find Approximate Global Minimizer

600 GKLS problems

(A)POSMM

⋄ Makes rapid
progress to fG

⋄ Outperforms other
algorithms (even
while demanding
14-fold concurrency)
evaluations
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Data Profiles: Ability to Find j Best Minimizers

600 GKLS problems

(A)POSMM

⋄ Designed to find
more than just the
global minimizer

⋄ Extends lead for
tighter tolerances
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Data Profiles: Ability to Find j Best Minimizers

600 GKLS problems

(A)POSMM

⋄ Designed to find
more than just the
global minimizer

⋄ Extends lead for
tighter tolerances
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Argonne/Optimization Milestones in ComPASS-4

Activity Institution(s) Sec Year

Develop API for POPAS prototype ANL, FNAL,
UCLA

§ 2.4 1

Identify optimizable elements in the MARS
and Synergia PIP-II models; connect with
POPAS prototype

FNAL, ANL § 2.1.1 2

Use MARS-Synergia-POPAS prototype for
preliminary optimization

FNAL, ANL § 2.1.1 3

Include prototype of structure-exploiting
optimization algorithm for standard
PIC/QuickPIC simulations; enable basic
execution of all ComPASS-4 codes in POPAS

ANL, FNAL,
UCLA

§ 2.4 3

Link numerical optimization algorithm to
POPAS; Remove file I/O layer from POPAS

ANL, FNAL,
UCLA

§ 2.4 3

Connect IOTA Synergia model with POPAS FNAL, ANL § 2.1.1 3
Release POPAS; apply POPAS to standard
PIC/QuickPIC and Synergia

ANL, FNAL,
UCLA

§ 2.4 4

Refine MARS-Synergia-POPAS FNAL, ANL § 2.1.1 4
Apply IOTA Synergia-POPAS FNAL, ANL § 2.1.1 4
Carry out parameter optimization on
PWFA-LC relevant parameters using
QuickPIC

UCLA, FNAL,
ANL

§ 2.5.2 5

ComPASS-4, April 2018 36


	Basic Optimization Formulations
	Stochastic Optimization
	Multiobjective Optimization
	Simulation-Based Optimization
	Derivative-Free Optimization
	Global Optimization

	An Example: LPA Optimization
	POPAS
	Model-Based DFO
	Constraints
	APOSMM

