

Solving Large Optimization Problems in Finance:

How MATLAB Can Help You

Jorge Paloschi Consulting Services MathWorks Spain

Optimization

Definition of *optimize* in English:

optimize 📣

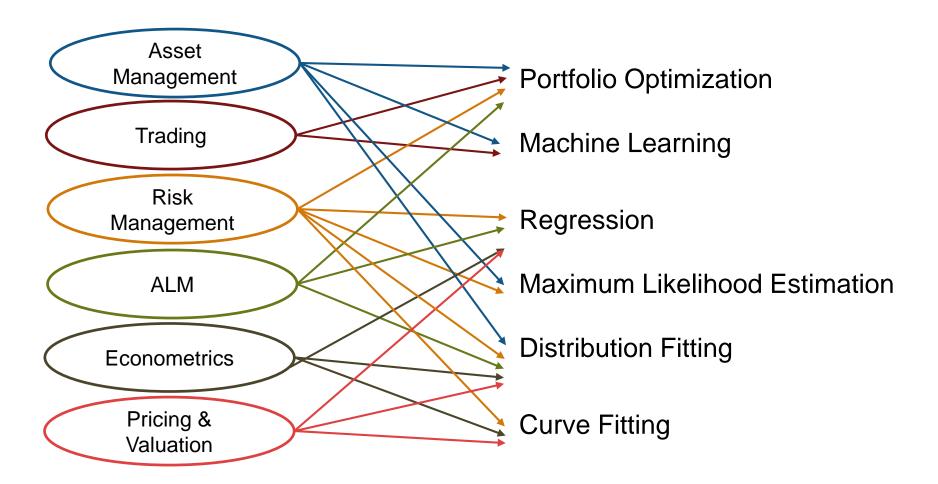
1 Make the best or most effective use of (a situation or resource):

Optimum (disambiguation)

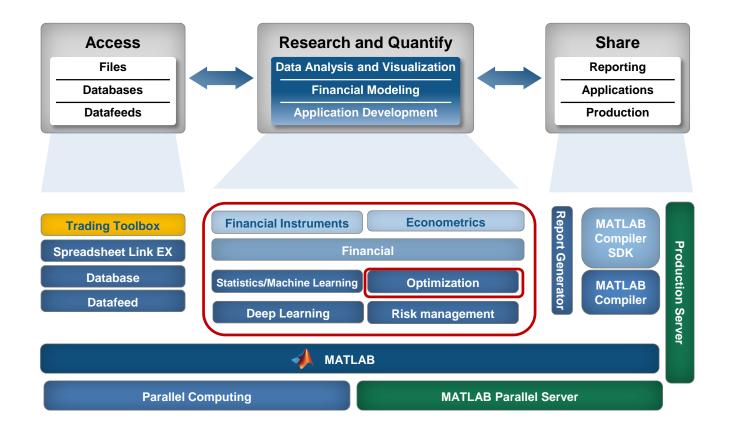
From Wikipedia, the free encyclopedia

The **optimum** is the best or most favorable condition, or the greatest amount or degree possible under specific sets of comparable circumstances.

Optimization in Financial Applications with MATLAB


- Financial Optimization
- Optimization Methods
- Customized Optimization Models

Financial Optimization



Financial Applications and Optimization

MATLAB – The Financial Development Platform

Financial Optimization in MATLAB

Financial

- Mean-Variance Portfolio Optimization
- Conditional Value-at-Risk Portfolio Optimization
- Mean-Absolute Deviation Portfolios

Econometrics

- Time Series Regression Models
- Conditional Mean Variance Models
- Multivariate Models

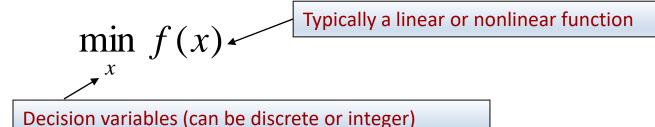
Statistics

- Linear/ Nonlinear Regression
- Probability disribution fitting
- Machine Learning, e.g., SVM, NN,...

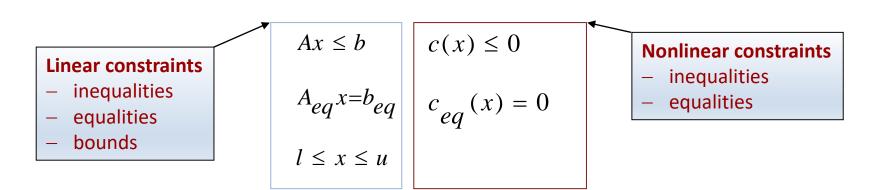
Neural Network

Nonlinear Regression, Convolutional Neural Networks

Optimization

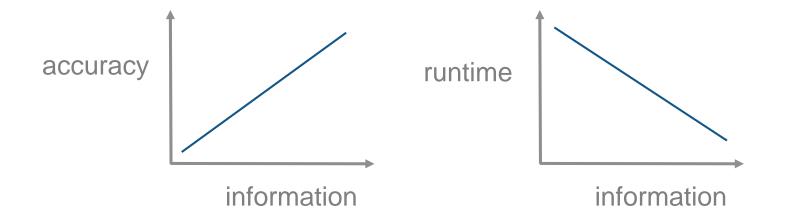


Optimization Methods



Optimization Problem

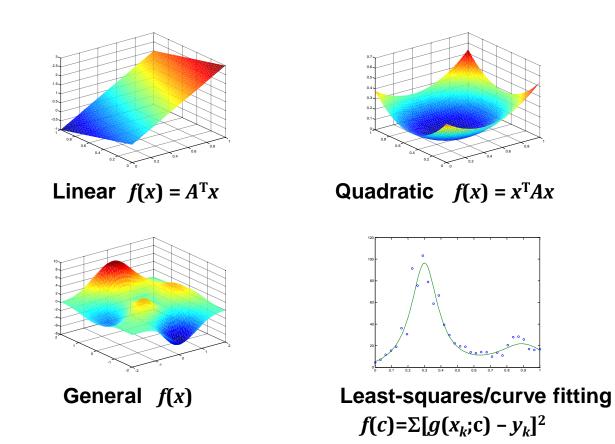
Objective Function



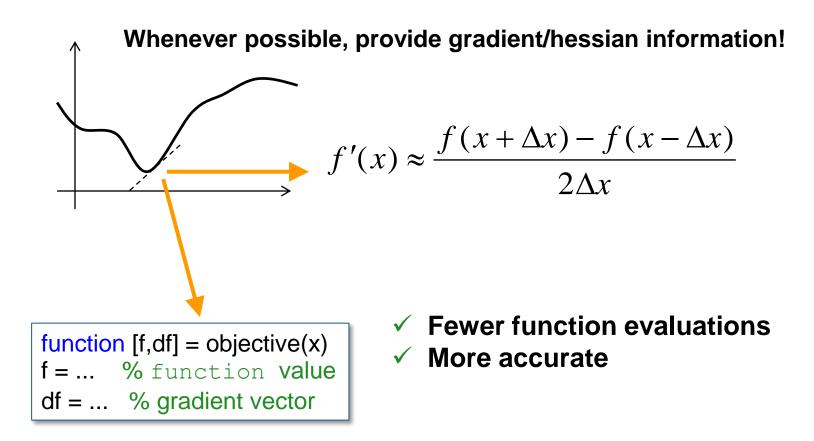
Subject to Constraints

How to solve an optimization problem ?

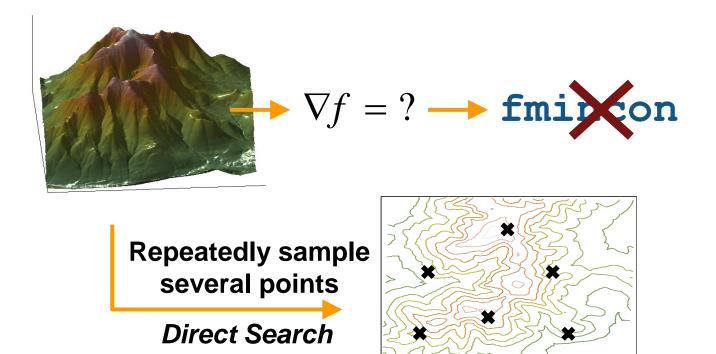
What do you know about your optimization problem ?



Variables & Constraints



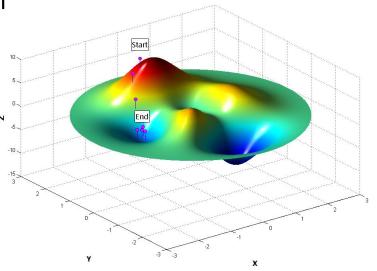
Objective Function



Numerical Optimization

Derivative-Free Optimization

Genetic Algorithm


14

Approaches in MATLAB

Local Optimization

- Finds local minima/maxima
- Uses supplied gradients or estimates them
- Applicable for large scale problems with smooth objective function
- Faster/fewer function evaluations
- Global Optimization
 - No gradient information required
 - Solve problems with non-smooth, discontinuous objective function

Solvers

Variables	Constraints	Objective functio	n Solve	۶r
		Linear $f(x) =$		rog inprog
Continuous	Linear	Quadratic f	$(x) = x^{\mathrm{T}}Ax \qquad \mathbf{quad}$	prog
Discrete	Nonlinear	$\int f(c) = \Sigma[g(x_k; c)]$	$\begin{array}{c} \text{res} & \mathbf{lsql} \\ -y_k \mathbf{l}^2 & \mathbf{lsqn} \end{array}$	in onlin
Contimization Documentation CONTENTS Choosing the Algorithm • finincon Algorithms • fisolve Algorithms	n Toolbox	General f(x	() fmin	
fminunc Algorithms Least Squares Algorithms Linear Programming Algorit Quadratic Programming Alg Large-Stale vs. Medium-Sc Potential Inaccuracy with Int	orithms ale Algorithms			16

Solvers

Variables Solver **Objective function Constraints** GlobalSearch, Nonlinear f(x)MultiStart Continuous Non-smooth patternsearch, **Global Optimization Toolbox** ga, Documentation simulannealbnd **Ξ** CONTENTS limili **Choosing a Solver** Discrete Table for Choosing a Solver There are seven Global Optimization Toolbox solvers: ga ga (genetic algorithm) GlobalSearch MultiStart patternsearch, also called direct search particleswarm simulannealbnd (simulated annealing) gamultiobi, which is not a minimizer; see Multiobiective Optimization

How to Improve Performance?

- Derivatives calculations
 - Gradients
 - Hessian matrix
- Default approach
 - Approximation: Finite differences perturbations (VERY EXPENSIVE!)
- Alternative approaches
 - Cheaper approximations
 - LBFGS
 - Supply your own approximation
 - Analytical calculation

Hessian Analytical Calculation

- Not easy, in general, to calculate analytical Hessian
- Can MATLAB help?
 - -YES! Symbolic MathToolbox

Sample Problem

- Problem: Volatility surface estimation for the pricing of call options. Calibration using market options.
- Objective: $g(x) = ||f(x)||^2$
 - $f_j(x) = C(\mathbf{x}_j, K_j, T_j) C_j$
 - K strikes
 - T maturities
 - C closing prices
 - BSM model (Black Scholes and Merton)

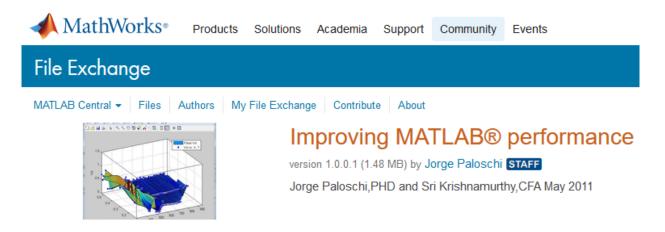
Numerical results (problem size 209)

Gradients	Function evaluations	Time (secs)
Numerical	100,056	1351
Numerical (using parallel)	100,056	642
Analytical	52	3.41

MATLAB Code

```
%Define symbolic residuals
x = evalin(symengine,['n:=',num2str(n),';[x[j] $ j = 1..n]']);
f = evalin(symengine, ['[f[j] $ j = 1...n]']);
for jj=1:n
    d1 = (log(S(jj)/K(jj)) +
(r+x(jj)^2/2)*T(jj))/(x(jj)*sqrt(T(jj)));
    d2 = d1 - x(jj) * sqrt(T(jj));
    val = S(jj) * 0.5 * (1 + erf(d1/sqrt(2))) - ...
        K(jj) * exp(-r*T(jj)) * 0.5*(1+erf(d2/sqrt(2)));
    f(jj) = (val-CP(jj));
end
obj = f*f.';
```


MATLAB Code

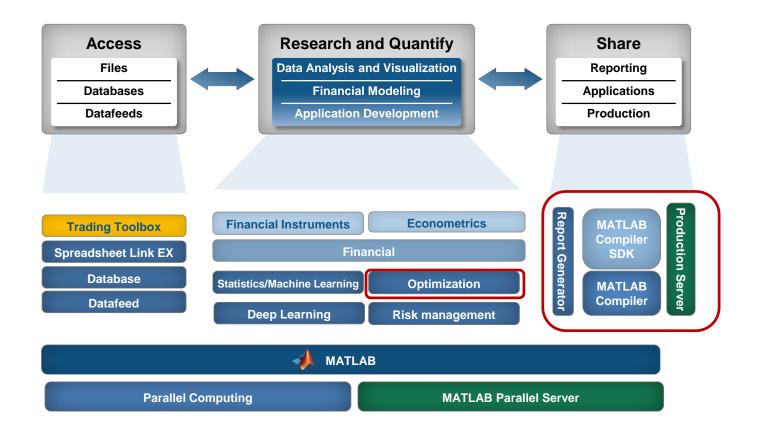

```
%Define objective gradient and hessian
grad = diff(obj,x);
hess = jacobian(grad,x);
```

```
%Transform symbolics into MATLAB function handles
symGrad = matlabFunction(grad);
symHess = matlabFunction(hess);
```


Example of Use

- References
 - Paloschi J and Krishnamurthy S Improving MATLAB performance when solving financial optimization problems – Wilmott Magazine – May 2011
 - <u>https://uk.mathworks.com/matlabcentral/fileexchange/33597-improving-matlab-performance-when-solving-financial-optimization-problems</u>

Customized Optimization Models


Supported Portfolio Optimization Models

Financial Toolbox

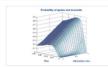
- Mean-Variance Portfolio Optimization
- Conditional Value-at-Risk Portfolio Optimization
- Mean-Absolute Deviation Portfolio Optimization

MATLAB – The Financial Development Platform

Customized Portfolio Optimization -Deployment

- Compile your MATLAB optimization model for your dedicated platform
- Make it available for your enterprise environment

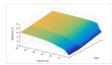
Customer User Stories Involving Optimization in Finance


 <u>https://uk.mathworks.com/company/user_stories/search.html?q=&fq=produ</u> <u>ct:OP%20marketing-industry:financial-services</u>

A2A Develops Comprehensive Risk Management Solution for Energy Markets A2A SpA A2A mitigated risk by using MATLAB and companion toolboxes to process data, develop risk and pricing models, and deploy an interactive dashboard.

Banque Cantonale Vaudoise Speeds Financial Analysis Tasks	Banque
Banque Cantonale Vaudoise modeled the clustering of equity industrial indices using	Cantonale
MATLAB and related toolboxes.	Vaudoise

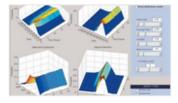
CAMRADATA Models Dependencies for Quantitative Risk Assessment CAMRADATA used MATLAB to develop quantitative tools for factor analysis, risk analysis, and defensive asset allocation.


Text		(1)818
-		
1		
10 - 10	10 H H H	0 0 0

Fulcrum Asset Management Develops Custom Quantitative Risk Management	Fulcrum Asset
System	Management
Fulcrum imported financial data from multiple sources, developed sophisticated risk	
models, and ran optimizations and scenarios analysis.	

-	
2-2-	
10	

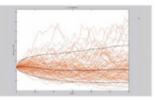
 Gas Natural Fenosa Predicts Energy Supply and Demand
 Gas Natural


 Gas Natural Fenosa built models that incorporate historical usage patterns, weather forecasts, production costs, and regulatory rules.
 Fenosa

ICICI Securities Develops Online Financial Planning and Advisory Platform ICICI Securities deployed algorithms for determining market correlations, running Monte Carlo simulations, and matching liabilities with assets. ICICI Securities

CAMRADATA

Intuitive Analytics Builds Quantitative Tools to Help Bond Issuers Manage Risk Intuitive Analytics Intuitive Analytics used MATLAB to develop algorithms, visualize results, and simplify deployment of an advanced analytical tool.


MATLAB Used to Predict Financial Crises in Emerging Markets Georgetown University developed a model that applies linear methods and neural networks to analyze trends in currency demand over a selected period.

Georgetown University

Risk Management with MATLAB: Q&A with Intuitive Analytics Intuitive Analytics used MATLAB build a quantitative tool for reducing expected cost and risk for municipal bond issuers.

Intuitive Analytics

Robeco

Robeco Develops Quantitative Stock Selection and Portfolio Optimization Models Robeco used MATLAB and MATLAB Compiler SDK to develop algorithms, build

quantitative models, and deploy portfolio construction and management solutions.

Sanlam Multi-Manager International Develops Dashboard for Quantitative Risk

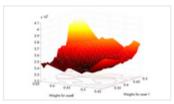
Analysis

SMMI used MATLAB to model risk inputs, generate optimized portfolios, and develop a dashboard for visualizing results.

Sanlam Multi-Manager International

🗛 τ. ε. . 1 τ. τ. - 1

Trient Develops Financial Analytics Platform to Support Its Investment TeamTrient AssetTrient retrieved and cleaned market data, calculated prices, optimized factor weights,
ran Monte Carlo simulations, and developed screening models.Management


	-	_		
/			-	
. /				-
A /			-	-
A			-	-
			10	
1			-	
]			-	-
			- 5	-
	10010	100 J 10		

 UniCredit Bank Austria Develops and Rapidly Deploys a Consistent, Enterprise UniCredit Bank

 Wide Market Data Engine
 Austria

 UniCredit Bank Austria built and rapidly deployed an enterprise-wide data warehouse
 Austria

 to improve risk management operations.
 Image: Construction of the second se

University of Geneva Develops Advanced Portfolio Optimization Techniques University of Geneva developed portfolio optimization algorithms, visualized Geneva results, and rapidly computed solutions.

Summary

- Optimization for financial applications is built within MATLAB toolboxes covering many standard applications
- A large variety of optimization algorithms available in MATLAB®
 Optimization Toolbox[™] and Global Optimization Toolbox[™]
- Customized optimization models made easy by
 - quick modeling (Math to MATLAB)
 - advanced optimization process diagnostics
 - rapid deployment

Thank you !