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Optimization of Projectile Motion Under
Air Resistance Quadratic in Speed

Robert Kantrowitz and Michael M. Neumann

Abstract. This article centers around the problem of maximizing the
horizontal range of a projectile that is launched from atop a tower and
is subject only to gravity and air resistance quadratic in speed. Here the
surface to which the projectile is launched is represented by a convex
impact function, while the projectile motion is described by a classical
approximation model for flight curves that is widely considered accept-
able for quadratic drag and launch angles up to moderate size. In this
setting, the optimal range is given by the point where the impact func-
tion intersects the enveloping function induced by the family of flight
paths. In the special case of a linear impact function, manageable ex-
plicit formulas for the range function, the maximal range, and the cor-
responding optimal launch angle are provided in terms of the Lambert
W function. The article concludes with a solution to Tartaglia’s inverse
problem in this context.
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1. Introduction and Motivation

1.1. Historical Background and State of the Art

A projectile in flight near the surface of the Earth has long provided a setting
ripe with physical questions and mathematical problems—both abstract and
applied. The archetypical case is, of course, that of shooting a projectile from
ground level to ground level in a nonresistive medium where the only acting
force is gravity. In this context, as early as the seventeenth century, the work
of Galileo Galilei revealed that the trajectory of the projectile is parabolic
and that the range of the projectile is maximal precisely when it is launched
with the angle of elevation π/4. Galileo also noticed that the inverse prob-
lem of determining the angles of inclination leading to a given submaximal
range has exactly two solutions, a fact that had been enunciated much ear-
lier by Niccolò Tartaglia; see [4] for a lucid historical discussion and further
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references. Similar optimization problems have been considered in more gen-
eral settings for quite some time. Indeed, there are ongoing efforts to fashion
models that are increasingly refined, comprehensive, and descriptive—both
theoretically and practically. Here we only mention the modest case of firing
a projectile from atop a tower to ground level or to an inclined plane; see
[3,9,11]. Moreover, considerable attention has also been given to the case of
projectile motion under linear air resistance; see [3,4,10,13,15].

1.2. Specific Previous Results

As documented in [12], a remarkable amount of information about such op-
timization problems is available in the case of projectile motion without air
resistance. In fact, some of these results even extend to the case of linear air
resistance where the retarding force for the projectile is assumed to be pro-
portional to the velocity vector with a negative constant factor. For example,
if a projectile is launched to a surface that is represented by a convex impact
function, then, in the cases of either no or linear drag, there exists a unique
angle of inclination for the launch of the projectile that yields maximal lateral
displacement, and, in both cases, this optimal launch angle is characterized
by the condition that the tangent lines to the trajectory of the projectile at
the launch point and at the point of impact are perpendicular; see Theorem
1.1 and Corollary 4.1 of [12] and Theorem 1 of [13]. In particular, for the
case of shooting from ground level to a linear impact function without air
resistance, it turns out that the tangent line for optimal launch bisects the
angle between the impact line and the vertical through the launch point, a
result already known to Halley [9]. On the other hand, for the case of shooting
to ground level under linear air resistance, explicit formulas for the optimal
launch angle and the maximal lateral displacement were obtained in [10] and
[15] based on the Lambert W function. However, although it was observed
even by Isaac Newton that it would be much more realistic to consider pro-
jectile motion under air resistance quadratic in speed, we are not aware of
any previous general optimization result in this direction.

1.3. Main Results of the Present Paper

In this article, we resurrect the classical optimization problem of maximizing
the lateral range of a projectile, now, with a humble nod to Newton, in the
presence of air resistance that is quadratic in speed. While it is easy to derive
from Newton’s law the differential equations for the motion of a projectile
governed by gravity and quadratic drag, no explicit solution formulas are
known. To overcome this difficulty, here we follow a long tradition in this
field and work with certain approximations to the exact solutions that are
commonly considered acceptable for projectile motion with quadratic drag
and small launch angle of inclination; see [7,8,14,16]. Our principal result
for this model is Theorem 4.3 in which we analyze the maximal distance,
the corresponding optimal launch angle, and the associated flight time in the
general case of launching to an arbitrary convex impact function. For the
special case of shooting to a linear impact function, manageable closed form
solution formulas for the range, the maximal range, and the optimal launch
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angle in terms of the Lambert W function are provided in Theorem 3.1 and
Corollary 4.5. In particular, for launching a projectile from ground level to
a linear impact function, we obtain the striking fact that, in our model, the
optimal angle for the case of quadratic drag coincides with the one found by
Halley for motion without drag; see [6,9,12]. Finally, a general solution to
Tartaglia’s inverse problem for the case of projectile motion under quadratic
drag is presented in Theorem 5.2.

1.4. Outline of the Work

In Sect. 2, we collect the background material for projectile motion with air
resistance quadratic in speed and introduce the distance function that results
from shooting the projectile to a convex impact function. Then, in Sect. 3,
we recall the basics of the Lambert W function which continues to be a
powerful and indispensable tool in this context. Here we employ this function
to compute the distance function corresponding to a linear impact function.
Our main optimization results are contained in Sect. 4. While classical work in
this area is often based on a critical point argument or a Lagrange multiplier
approach, in this article we use the method of the enveloping function in the
spirit of our previous papers [11–13]. The key observation is that the maximal
range for our projectile motion coincides with the unique point at which the
convex impact function intersects the enveloping function implemented by
the family of flight trajectories. In the case of a linear impact function and
launch from ground level, this point can be expressed in terms of the Lambert
W function. In Sect. 5, we obtain further information about the shape of
the graph of the distance function for quadratic drag motion. In particular,
again for the special case of shooting from ground level to a linear impact
function, we discover that, in our model, the distance function corresponding
to quadratic drag exhibits the same kind of symmetry that is known from
the classical Galilean model without any air resistance. A summary of our
work is provided in Sect. 6.

2. Projectile Motion Under Quadratic Drag

We first develop the equations that describe the motion of a projectile in
the xy-plane with air resistance quadratic in speed. Given a tower of height
h > 0, we suppose that the projectile is launched at time t = 0 with initial
position (0, h), muzzle speed s > 0, and angle of inclination θ with respect
to the horizontal line y = h in the direction of the positive x-axis.

Throughout we suppose that the motion of the projectile is governed
by two forces. One of these forces is, of course, gravity in the direction of
the negative y-axis which results in acceleration of magnitude g > 0. The
other force is air resistance that here we model by a retarding force for the
projectile that is proportional to the square of the speed and points in the
direction of the negative velocity vector. Specifically, if r(t) = 〈x(t), y(t)〉
denotes the position vector of the projectile at time t ≥ 0, then we suppose
that the retarding force is induced by an acceleration vector of the form
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−α |r′(t)|2 r′(t)
|r′(t)| = −α

√
x′(t)2 + y′(t)2 〈x′(t), y′(t)〉 ,

where α > 0 stands for the quadratic air resistance coefficient.
By Newton’s law, this setting leads to the initial value problem

x′′(t) = −α
√

x′(t)2 + y′(t)2 x′(t), x′(0) = s cos(θ), x(0) = 0,

y′′(t) = −g − α
√

x′(t)2 + y′(t)2 y′(t), y′(0) = s sin(θ), y(0) = h.

As indicated earlier, it was observed already by Newton that this quadratic
model is often more realistic than the corresponding much more tractable
case of air resistance linear in speed, but unfortunately no explicit formulas
for the solution (x(t), y(t)) of the preceding system of differential equations
are known; see, for instance, Chapter 3 of [3] for motion under non-linear drag
and, in particular, [7,8] for an excellent exposition of this theory including
its long history and further references.

As suggested by [7,8], and also by [14,16], here we choose to work with
certain approximations to the exact solutions which are commonly viewed as
acceptable for small angles of inclinations, namely

xs(t) =
1
α

ln (αs cos(θ)t + 1) and

ys(t) = h +
(

tan(θ)
α

+
g sec2(θ)
2α2s2

)
ln(αs cos(θ)t + 1) − gt2

4
− gt sec(θ)

2αs
;

see, for instance, formulas (10) and (11) of [8] together with their lucid deriva-
tion and discussion. In particular, from Theorem 2 of both [7,8] it is known
that y(t) < ys(t) for all t > 0.

It turns out to be beneficial to eliminate the time parameter t in the
preceding equations and thus to express the flight curves of our approximation
framework as functions of the variable x. For arbitrary θ ∈ (−π/2, π/2), it
follows that, in our model, the trajectory traced by the projectile for the
launch angle θ is a segment of the graph of the function

y = pθ(x) = h + tan(θ)x − gκ(x)
4α2s2

sec2(θ), (1)

where we use the shortcut notation

κ(x) = e2αx − 1 − 2αx =
∞∑

k=2

(2αx)k

k!

for all x ≥ 0. Clearly, κ(0) = 0 and κ(x) > 0 for all x > 0. In the special case
h = 0, formula (1) reduces to (19) and (12) of [7,8], respectively, which were
also derived in [14,16] with different methods. Although (1) represents only
an approximation to the solution of our quadratic initial value problem, it
has the advantage of being almost as accessible as the corresponding explicit
formula for the case of linear air resistance; see, for example, (2) of [13]. In
fact, it will be shown that (1) leads to remarkably simple answers to several
natural questions.

It is gratifying to see that, by l’Hospital’s rule, passing to the limit in
(1) as α → 0+ leads to the standard formula for motion without any air
resistance, namely
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y = h + tan(θ)x − gx2

2s2
sec2(θ); (2)

see [12] for a recent discussion of this classical case in the spirit of the present
paper.

From now on we consider a projectile whose flight is represented by (1)
and which remains airborne until it strikes a surface that is modeled by the
graph of a continuous convex function ϕ on [0,∞) for which ϕ(0) = 0, called
the impact function. We refer to [17] for the definition of general convex
functions and their properties; in particular, by Theorem 4.43 of [17], the
convexity of ϕ already guarantees its continuity on (0,∞). As indicated by
the following graphics for the case of a linear impact function ϕ(x) = mx for
some real slope m, our main interest is in comparing the trajectories of the
projectile for different angles of inclination θ.

h

p

x

y

θ

Evidently, we have κ(x)/x → ∞ and hence pθ(x)/x → −∞ as x → ∞
for each θ ∈ (−π/2, π/2). Moreover, pθ is strictly concave, since

p′′
θ (x) = − g

s2
e2αx sec2(θ) < 0

for all x ≥ 0. Because of our conditions on the impact function ϕ, we may
then conclude from Proposition 2.1 of [12] that there exists exactly one x > 0
for which pθ(x) = ϕ(x). We denote this x by d(θ), and put d(±π/2) = 0. The
main goal is to maximize the resulting distance function d, also known as the
range function, over the interval [−π/2, π/2]. Our approach will allow us to
include the classical case h = 0 and ϕ(x) = mx for real m when switching
to the canonical interval [arctan(m), π/2]. Of course, in this case, we have
d(θ) > 0 only when arctan(m) < θ < π/2.

While, in general, there is no hope for an explicit formula for the distance
function d induced by an arbitrary impact function ϕ, in Sect. 3 we will
provide a closed form for the solution x of the equation pθ(x) = ϕ(x) in the
case of a linear impact function ϕ. Section 4 will address the even harder
problem of maximizing the distance function d over [−π/2, π/2], also known
as the optimal range problem.

3. The Range for Quadratic Drag Motion and Linear Impact

In this section, we consider the motion of a projectile corresponding to (1)
together with the impact function ϕ(x) = mx for an arbitrary real constant
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m. Inspired by results in [10,15] for the case of linear drag and m = 0, we
are interested in an explicit formula for the corresponding range in terms of
the Lambert W function. This classical function originates from the function
T given by T (w) = wew for all w ∈ R.

As suggested by the following graphics and confirmed by basic calculus,
T maps the real line onto the interval [−1/e,∞) and is strictly decreasing on
(−∞,−1] and strictly increasing on [−1,∞). Let

W+ : [−1
e
,∞) → [−1,∞) and W− : [−1

e
, 0) → (−∞,−1]

denote the inverses of T when restricted to the intervals [−1,∞) and
(−∞,−1], respectively.

x T w w w

2 1 1
w

1

1

2

x

w W x

w W x
1

x

3

2

1

w

W+ is also known as the main branch of the Lambert W function and de-
noted by ProductLog in Mathematica, while Maple uses just LambertW.
In Theorem 5 of [10], this branch was employed to obtain an explicit formula
for the optimal range of a projectile when shooting to ground level ϕ = 0 un-
der linear air resistance, after the special case h = 0 was settled in Theorem
3 of [15]; see also [18]. In the present context, the second branch W− will also
play an important role.

It will be convenient to consider the non-dimensional parameter γ =
g/(αs2) > 0 as well as the function ζ given by

ζ(θ) = sin(2θ) − 2m cos2(θ) + γ

for all θ ∈ [−π/2, π/2]. Note that ζ(θ) = 2 (tan(θ) − m) cos2(θ) + γ for θ �=
±π/2.

Theorem 3.1. The distance function d corresponding to the projectile motion
represented by (1) and the impact function ϕ(x) = mx for an arbitrary real
m is given by the following formulas: for arbitrary θ ∈ [−π/2, π/2], we have

d(θ) =
1
2α

(
−4αh cos2(θ) + γ

ζ(θ)
− W+

(
− γ

ζ(θ)
exp

(
−4αh cos2(θ) + γ

ζ(θ)

)))

provided that ζ(θ) < 0 and

d(θ) =
1
2α

(
−4αh cos2(θ) + γ

ζ(θ)
− W−

(
− γ

ζ(θ)
exp

(
−4αh cos2(θ) + γ

ζ(θ)

)))
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provided that ζ(θ) > 0, while

d(θ) =
1
2α

ln
(

1 +
4αh cos2(θ)

γ

)

in the case ζ(θ) = 0. Finally, the flight time corresponding to a launch angle
θ in (−π/2, π/2) is given by

t(θ) =
1

αs cos(θ)

(
eαd(θ) − 1

)
.

Proof. Since ζ(±π/2) = γ > 0 and W−(−1/e) = −1, the second of the
displayed formulas correctly reflects the fact that d(±π/2) = 0. It remains to
consider the case when −π/2 < θ < π/2. We already know that the equation
pθ(x) = mx has a unique solution x > 0, namely x = d(θ). To obtain a
formula for x, we rewrite this equation in the form

h + (tan(θ) − m) x − g

4α2s2
(
e2αx − 1 − 2αx

)
sec2(θ) = 0,

which is equivalent to
a + b2αx + ce2αx = 0 (3)

with the choice

a = h +
γ

4α
sec2(θ), b =

2 (tan(θ) − m) + γ sec2(θ)
4α

, c = − γ

4α
sec2(θ).

Clearly, a > 0 and c < 0, while b = ζ(θ) sec2(θ)/(4α) changes sign with ζ(θ).
In particular, ζ(θ) = 0 holds precisely when b = 0, and, in this case, Eq. (3)
assumes the simple form a + ce2αx = 0 with the obvious solution

x =
1
2α

ln
(
−a

c

)
=

1
2α

ln
(

1 +
4αh cos2(θ)

γ

)
,

as stipulated.
Since Mathematica has a problem with the two branches of the Lambert

W function when attempting to solve Eq. (3) for the case b �= 0, it is helpful to
have a closer look at the function ξ given by ξ(x) = a+b2αx+ce2αx for all real
x, not just for x > 0. Note that ξ(0) = h > 0, while ξ′(x) = 2α

(
b + ce2αx

)

and ξ′′(x) = 4α2ce2αx < 0 for all x ∈ R. If b < 0, then ξ is both strictly
decreasing and strictly concave on (−∞,∞) with ξ(x) → −∞ as x → ∞,
so that (3) has exactly one real solution which has to be strictly positive.
However, if b > 0, then the strictly concave function ξ satisfies ξ(x) → −∞
as x → ∞ and also as x → −∞, so that (3) has precisely two real solutions,
one of them in (0,∞) and the other one in (−∞, 0).

Now, for b �= 0, we observe that (3) is equivalent to

−a

b
− 2αx =

c

b
e2αx

and therefore to(
−a

b
− 2αx

)
exp

(
−a

b
− 2αx

)
=

c

b
exp

(
−a

b

)
.

But this means precisely that

T
(
−a

b
− 2αx

)
=

c

b
exp

(
−a

b

)
(4)
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and thus allows us to put the Lambert W function into action.
If ζ(θ) < 0 and hence b < 0, then the right-hand side of Eq. (4) is

strictly positive which means that only the main branch of the Lambert W
function is relevant here. Consequently, in the case ζ(θ) < 0, we obtain

−a

b
− 2αx = W+

(c

b
exp

(
−a

b

))

and therefore

x =
1
2α

(
−a

b
− W+

(c

b
exp

(
−a

b

)))
.

On the other hand, if ζ(θ) > 0 and hence b > 0, then we know that (4)
has exactly two real solutions, one of them given by W+ and the other one
by W−. Since we are interested in the larger of the two solutions, here we
need to take the second branch of the Lambert W function. Thus, in the case
ζ(x) > 0, we obtain

x =
1
2α

(
−a

b
− W−

(c

b
exp

(
−a

b

)))
.

The definition of a, b, and c then leads to the desired formulas for d(θ) for the
case ζ(θ) �= 0. The final claim for the flight time t(θ) is a simple consequence
of the identities αd(θ) = αxs(t(θ)) = ln (αs cos(θ)t(θ) + 1) . �

It may not be immediate from the three formulas for d(θ) provided in
Theorem 3.1 that the distance function d is continuous on [−π/2, π/2], but
this will be established in Theorem 5.2 even in a much more general setting.

A glance at the preceding proof reveals that Theorem 3.1 remains valid
in the case h = 0 once θ is restricted to [arctan(m), π/2]. In fact, only the
formula involving the second branch of the Lambert W function is needed
to express the range of the projectile in the case h = 0, since, for all θ in
[arctan(m), π/2], we have ζ(θ) ≥ γ > 0 and therefore

d(θ) =
1
2α

(
− γ

ζ(θ)
− W−

(
− γ

ζ(θ)
exp

(
− γ

ζ(θ)

)))
. (5)

Since W+(wew) = W+T (w) = w for all w ≥ −1, it is clear that the corre-
sponding formula with W− replaced by W+ would result in d(θ) = 0, the
trivial second solution of the equation pθ(x) = mx in the case h = 0. Unfor-
tunately, Mathematica ignores the subtle difference between W+ and W− for
equations of this type. For the classical case of shooting from ground level to
ground level, i.e., h = 0 and m = 0, an equivalent version of formula (5) was
recently established in [1].

4. Maximal Range and Optimal Launch Angle

Sparked by the success of the enveloping function method for projectile mo-
tion with no or linear air resistance in [11–13], our approach to the optimal
range problem for quadratic drag will be based on the solution of the equation
ψ(c) = ϕ(c) for c > 0, where ϕ is the impact function in place and ψ denotes
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the enveloping function of the family of flight functions pθ from formula (1).
Thus ψ is defined by

ψ(x) = sup {pθ(x) : θ ∈ (−π/2, π/2)}
for all x > 0, while, correspondingly, ψ(0) is defined as the maximal height
of the projectile in the air when launched with the angle θ = π/2.

The latter exceptional case may be handled as follows: first one takes
the limit as θ → π/2− in our previous formula for ys(t) for fixed t ≥ 0,
and then one computes the maximum value of the resulting height function.
Elementary calculus leads to ψ(0) = h + s2/(2g), as the interested reader
may easily check. More importantly, a manageable formula for ψ on (0,∞)
is provided in the following result.

Lemma 4.1. Consider the projectile motion determined by (1) with corre-
sponding enveloping function ψ. Then, for arbitrary fixed x > 0, the height
function ρx given by ρx(θ) = pθ(x) for all θ ∈ (−π/2, π/2) satisfies ρx(θ) →
−∞ as θ → −π/2+ and as θ → π/2−. Moreover, ρx has the unique global
maximum point

θx = arctan
(

2αx

γκ(x)

)
> 0

and is strictly increasing on (−π/2, θx) and strictly decreasing on (θx, π/2) .
Finally, the maximum value is

ψ(x)=ρx(θx)=h+x tan(θx)− γκ(x)
4α

(
1 + tan2(θx)

)
=h +

αx2

γκ(x)
− γκ(x)

4α
.

Proof. Because sec2(θ) = 1 + tan2(θ) and γ = g/(αs2), formula (1) leads to

ρx(θ) = h + tan(θ)x − γκ(x)
4α

(
1 + tan2(θ)

)

for all θ ∈ (−π/2, π/2). From this the desired convergence is immediate.
Moreover, we obtain

ρ′
x(θ) = sec2(θ)x − γκ(x)

2α
tan(θ) sec2(θ) = sec2(θ)

(
x − γκ(x)

2α
tan(θ)

)

for all θ ∈ (−π/2, π/2). By basic calculus, this establishes the second claim,
and the computation of ψ(x) is then straightforward. �

As a consequence of Lemma 4.1, a simple application of l’Hospital’s rule
confirms that ψ(x) converges to the anticipated limit ψ(0) = h + s2/(2g) as
x → 0+. Thus ψ is continuous on the entire interval [0,∞), as one would
expect. Further properties of ψ are exhibited in the following result.

Proposition 4.2. The enveloping function ψ corresponding to (1) satisfies

ψ′(x) = p′
θx

(x) < − cot(θx) < 0

for all x > 0. In particular, ψ is strictly decreasing.
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Proof. Again, because sec2(θ) = 1+tan2(θ) and γ = g/(αs2), we obtain from
(1) that

p′
θx

(x) = η(x) − γκ′(x)
4α

(
1 + η2(x)

)

with the choice η(x) = tan(θx). On the other hand, we know from Lemma
4.1 that

ψ(x) = h + xη(x) − γκ(x)
4α

(
1 + η2(x)

)

which implies, by the product rule, that

ψ′(x) = η(x) + xη′(x) − γκ(x)
4α

2η(x)η′(x) − γκ′(x)
4α

(
1 + η2(x)

)
.

The two middle terms on the right-hand side cancel, since Lemma 4.1 con-
firms that γκ(x)η(x) = 2αx. Thus p′

θx
(x) = ψ′(x). Moreover, it follows that

ψ′(x) + cot(θx) = η(x) − γκ′(x)
4α

(
1 + η2(x)

)
+

1
η(x)

=
1 + η2(x)

η(x)

(
1 − γ

4α
κ′(x)η(x)

)

=
1 + η2(x)
η(x)κ(x)

(
κ(x) − γ

4α
κ′(x)η(x)κ(x)

)

=
1 + η2(x)
η(x)κ(x)

(
(1 − αx)e2αx − 1 − αx

)
,

where we recycled the fact that γκ(x)η(x) = 2αx. Consequently, it remains
to be seen that the function δ given by δ(x) = (1 − x)e2x − 1 − x satisfies
δ(x) < 0 for all x > 0. For this we observe that

δ′(x) = 2(1 − x)e2x − e2x − 1 = e2x − 2xe2x − 1

and therefore

δ′′(x) = 2e2x − 2e2x − 4xe2x = −4xe2x < 0

for all x > 0. We conclude that δ′ strictly decreases on (0,∞) and satisfies
δ′(0) = 0 which ensures that δ′(x) < 0 for all x > 0. Therefore, δ is strictly
decreasing on (0,∞). Because δ(0) = 0, it follows that δ < 0 on (0,∞), as
desired. �

A few remarks are in order. Although θx was created to satisfy merely
ψ(x) = pθx

(x), the corresponding identity for the derivatives is not really
surprising. In fact, the result carries over from the cases of no or linear drag
and could be derived from the construction of the enveloping function as in
the proof of Proposition 4 of [13].

However, in the cases of no or linear drag, the identity p′
θx

(x) = − cot(θx)
holds for all x > 0, which turns out to be the clue to a remarkable geometric
characterization of the optimal launch angle in these two cases. Indeed, for
arbitrary θ ∈ (−π/2, π/2), the tangent lines to the flight function pθ for no or
linear drag at the launch point and at the point of impact are perpendicular
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precisely when θ provides maximal range; see Corollary 4.1 of [12] and Theo-
rem 1 of [13]. It now follows from Proposition 4.2 and Theorem 4.3 below that
this characterization ceases to be true for our quadratic drag model, probably
reflecting the fact that here we only work with certain approximations.

Moreover, for no or linear drag, the enveloping function is strictly con-
cave, but this does not extend to the present context. Indeed, this is illus-
trated by the graph of ψ corresponding to the data g = 9.81 m/s2, h = 0 m,
s = 200 m/s, and α = .015 m−1, as the reader may easily verify.

We proceed with our main optimization result.

Theorem 4.3. Let ψ be the enveloping function corresponding to (1), and
consider an arbitrary continuous convex impact function ϕ on [0,∞) with
ϕ(0) = 0. Then there exist a unique point c > 0 for which ψ(c) = ϕ(c) and
a unique global maximum point θopt in [−π/2, π/2] for the distance function
d resulting from ϕ. Moreover, the maximal distance is exactly c = d(θopt),
while the optimal angle may be obtained from c by the formula

θopt = θc = arctan
(

2αc

γκ(c)

)
> 0.

Finally, the flight time for the optimal launch is given by

topt =
eαc − 1
αsγκ(c)

√
γ2κ2(c) + 4α2c2.

Proof. We first show that the equation ψ(c) = ϕ(c) has at least one solution
c > 0. Since ϕ is convex and satisfies ϕ(0) = 0, for arbitrary u ≥ 1 we obtain

ϕ(1) = ϕ

(
1
u

u +
(

1 − 1
u

)
0
)

≤ 1
u

ϕ(u) +
(

1 − 1
u

)
ϕ(0) =

1
u

ϕ(u)

and therefore ϕ(1)u ≤ ϕ(u). On the other hand, from κ(u)/u → ∞ as u → ∞
we infer that

ψ(u)
u

=
h

u
+

αu

γκ(u)
− γκ(u)

4αu
→ −∞ as u → ∞.

Consequently, for all sufficiently large u ≥ 1, we obtain ψ(u) < ϕ(1)u ≤ ϕ(u)
and hence ψ(u) − ϕ(u) < 0. Because ψ(0) − ϕ(0) > h > 0, the interme-
diate value theorem then ensures that there exists some c > 0 for which
ψ(c) − ϕ(c) = 0, as desired.

Now, given an arbitrary point c > 0 for which ψ(c) = ϕ(c), Lemma 4.1
entails that pθc

(c) = ρc(θc) = ψ(c) = ϕ(c) and therefore d(θc) = c. Moreover,
for each θ ∈ (−π/2, π/2) with θ �= θc, Lemma 4.1 shows that

pθ(c) = ρc(θ) < ρc(θc) = ψ(c) = ϕ(c).

Because pθ(0) = h > 0 = ϕ(0), the intermediate value theorem yields pθ(x) =
ϕ(x) for some x ∈ (0, c) and hence d(θ) < c = d(θc). Consequently, θc

is the unique global maximum point of d, and the maximal distance is c. In
particular, this establishes the uniqueness of the solution c > 0 of ψ(c) = ϕ(c).
Finally, because

sec(θc) =
√

1 + tan2(θc) =

√

1 +
4α2c2

γ2κ2(c)
,
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the last formula for the flight time may be easily deduced from

c = d(θc) = xs (topt) =
1
α

ln (αs cos(θc)topt + 1)

by solving for topt. �
Theorem 4.3 leads to interesting information about the maximal range

and optimal launch angle as functions of the given parameters. As a sample,
we note the following consequence which complements corresponding results
from [10,11] for no and linear drag.

Corollary 4.4. In the setting of Theorem 4.3, the maximal distance d(θopt)
is a strictly increasing function of the initial height h when all the other
parameters are kept fixed, while the optimal angle θopt is strictly decreasing
in h under this condition.

Proof. The first assertion follows easily from the fact that d(θopt) is the u-
nique solution c > 0 of the equation ψ(c) = ϕ(c). By the formula for θopt
provided in Theorem 4.3, it remains to be seen that the function χ given
by χ(c) = c/κ(c) for all c > 0 is strictly decreasing on (0,∞). But this is
immediate from

χ′(c) =
(1 − 2αc)e2αc − 1

κ2(c)
=

1
κ2(c)

∞∑

k=2

1−k
k! (2αc)k < 0

for all c > 0. �
We continue with a typical numerical example for Theorem 4.3. Let

g = 9.81 m/s2, h = 120 m, s = 100 m/s, and α = 0.002 m−1. The corre-
sponding enveloping function ψ is then determined by Lemma 4.1. For the
choice of the impact function ϕ given by ϕ(x) = 0.000625(x − 400)2 − 100,
the FindRoot command of Mathematica leads to a numerical solution of
the equation ψ(c) = ϕ(c), namely c = 572.721 m. By Theorem 4.3, this is an
approximation for the maximal range d (θopt) in this setting, and the formula
for the optimal launch angle from this result then leads to θopt = 0.616359
radian or 35.3148◦. It is now possible to graph the corresponding flight curve
together with ψ and ϕ to geometrically confirm the correctness of this so-
lution. Our figure also includes the Galilean flight parabola pg for dragless
motion with θ = θopt in formula (2), as well as the curve pe given by a nu-
merical representation of the exact solution (x(t), y(t)) of our initial value
problem, based on the NDSolve command of Mathematica.

pe

pg

p opt

200 400 600
x

100

120

630

y

θ

ψ



MJOM Projectile Motion Under Air Resistance Quadratic in Speed Page 13 of 19 9

As predicted by Theorem 2 of [7] and also of [8], the curve pe is domi-
nated by the graph of pθopt which in turn is below the parabola pg. Moreover,
the graphics indicate that pe and ϕ intersect at ĉ = 543.6 m. Taking for
granted that the optimal range problem for the exact solutions of the initial
value problems has a maximal solution c0 implemented by an angle θ0, we
conclude that ĉ ≤ c0 ≤ d(θ0) ≤ d(θopt) = c. Thus, although the exact value
of c0 remains unknown, it follows that c provides a numerical approximation
to c0 that is accurate within an error of only 5.36%. This illustrates that, in
the present example, the model based on (xs(t), ys(t)) works quite well even
though our optimal angle θopt = 35.3148◦ is not particularly small.

For the classical case of linear impact functions, Theorem 4.3 allows us
to develop explicit solution formulas at least when h = 0.

Corollary 4.5. The maximal range for the projectile motion (1) when shooting
from ground level h = 0 to the line ϕ(x) = mx for arbitrary real m is given
by

c = d(θopt) =
1
2α

(
− 1

1 + μ
− W−

(
− 1

1 + μ
exp

(
− 1

1 + μ

)))

with the choice

μ =
αs2

g

(√
1 + m2 − m

)
=

√
1 + m2 − m

γ
> 0.

Moreover, the optimal launch angle is

θopt = arccot
(√

1 + m2 − m
)

= arctan
(√

1 + m2 + m
)

=
arctan(m)

2
+

π

4
,

while the corresponding flight time may be obtained from the formula provided
in Theorem 4.3 for the preceding value of c.

Proof. By Theorem 4.3, it suffices to solve the equation ψ(c) = mc for c > 0.
In the case h = 0, the formula for the enveloping function from Lemma 4.1
simplifies to

ψ(c) =
αc2

γκ(c)
− γκ(c)

4α
=

4α2c2 − γ2κ2(c)
4αγκ(c)

.

Hence the equation ψ(c) = mc may be rewritten as 4α2c2 − γ2κ2(c) =
4αγκ(c)mc or equivalently as

κ2(c) +
4αmc

γ
κ(c) − 4α2c2

γ2
= 0.

The solutions of this quadratic equation for κ(c) are

κ(c) = −2αmc

γ
±

√
4α2m2c2

γ2
+

4α2c2

γ2
=

2αc

γ

(
−m ±

√
1 + m2

)
.

Because c > 0 and κ(c) > 0, we conclude that ψ(c) = mc holds precisely
when

κ(c) = 2αcμ (6)
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with the constant μ provided in the assertion. To solve the last equation in
terms of the Lambert W function, we recycle the technique from our proof
of Theorem 3.1 and consider the following equivalences

ψ(c) = mc ⇐⇒ e2αc − 1 − 2αc = 2αcμ

⇐⇒ − 1
1 + μ

e2αc = −2αc − 1
1 + μ

⇐⇒ − 1
1 + μ

exp
(

− 1
1 + μ

)
=

(
−2αc − 1

1 + μ

)
exp

(
−2αc − 1

1 + μ

)

⇐⇒ T

(
− 1

1 + μ

)
= T

(
−2αc − 1

1 + μ

)
,

where, as before, T (w) = wew for all w ∈ R. From the graph of T we know
that

−2αc − 1
1 + μ

≤ −1 < − 1
1 + μ

< 0

which leads to the equation

−2αc − 1
1 + μ

= W−

(
− 1

1 + μ
exp

(
− 1

1 + μ

))

and hence the desired formula for c. Moreover, since we have seen in (6) that
κ(c) = 2αcμ, the definition of μ yields

2αc

γκ(c)
=

1√
1 + m2 − m

=
√

1 + m2 + m.

Hence the first two equalities in the stipulated formula for θopt and also the
final assertion are clear from Theorem 4.3. It remains to be seen that

arctan
(√

1 + m2 + m
)

=
arctan(m)

2
+

π

4
for all real m. Since a simple computation confirms that both sides have the
same derivative with respect to m, the claim follows from the fact that the
formula holds for m = 0. Alternatively, as shown in Section 5 of [12], the
equality may also be derived from basic trigonometric identities. �

Thus, somewhat surprisingly, it turns out that, in the setting of Corol-
lary 4.5, the optimal launch angle θopt depends only on the slope m of the
impact line, but not on the parameters g, s, and α. In fact, the last formula
for θopt in Corollary 4.5 shows that the optimal angle is a strictly increasing
function of the slope m.

The same formula also reveals that the tangent line to the optimal
flight path at the origin bisects the angle between the positive y-axis and the
impact line ϕ(x) = mx, exactly as in the case of projectile motion without
drag, a classical fact that dates back to Halley [9]; see also Section 4 of [6]
and Corollary 4.1 of [12].

On the other hand, it is interesting to note that, in Corollary 4.5, the
tangent line to the optimal flight path at the point of impact fails to bisect
the angle between the impact line ϕ(x) = mx and the vertical line through
the impact point, since we know from Proposition 4.2 and Theorem 4.3 that
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the tangent lines to the optimal flight path at the origin and at the impact
point are not perpendicular. This stands in sharp contrast to the situation of
projectile motion without drag where, by Corollary 4.1 of [12], the bisection
property at the point of impact also characterizes the optimal flight path.

Furthermore, by Theorem 2 of [11], and also by Section 4.1 of [10],
the angle θopt of Corollary 4.5 coincides with the optimal launch angle for
projectile motion in the same setting, but without any air resistance, i.e.,
the motion given by (2) in the special case h = 0. In particular, for shooting
from ground level to ground level, we obtain θopt = π/4, exactly as in the
archetypical Galilean case of motion in a nonresistive medium.

Along the same line, we note the following convergence result, which is
in the same spirit as Corollary 6 of [10] for the case of air resistance linear in
speed.

Corollary 4.6. For arbitrary α > 0, let cα denote the maximal range for
the projectile motion considered in Corollary 4.5, and let c0 stand for the
maximal range for the projectile motion in the same setting, but without any
air resistance. Then we have cα → c0 as α → 0+.

Proof. First, Corollary 4.5 confirms that 2αcα → −1 − W−(−1/e) = 0 as
α → 0+. Moreover, from formula (6) of the proof of this result we also know
that

κ(cα) = 2αcαμα = 2αcα
αs2

g

(√
1 + m2 − m

)

and therefore

2
e2αcα − 1 − 2αcα

4α2c2α
=

s2

cαg

(√
1 + m2 − m

)

for all α > 0. Here the left-hand side converges to 1 as α → 0+, since it is
well known and easily seen that 2(ex − 1 − x)/x2 → 1 as x → 0. From the
right-hand side we then conclude that

cα → s2

g

(√
1 + m2 − m

)
as α → 0+.

But this limit is exactly c0, as shown in Theorem 2 of [11]. �

5. Tartaglia’s Inverse Problem for Quadratic Drag Motion

Our main undertaking in this section is the following problem attributable to
the Italian mathematician Niccolò Fontana Tartaglia (1499–1557) of Brescia.

Definition 5.1. Tartaglia’s inverse problem means to determine the number
of angles of inclination for launch that result in a given value for the range
of a projectile.

We cast Tartaglia’s inverse problem in the general setting of Theorem
4.3 and thus are led to a closer look at the distance function d considered
there. By the intermediate value theorem, the following result confirms that,
for arbitrary x with 0 < x < d(θopt), the equation d(θ) = x has exactly two
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solutions θ in (−π/2, π/2), one of them, of course, smaller than θopt and the
other one larger.

For a lucid exposition of the historical background of Tartaglia’s inverse
problem and solutions in the case of shooting from ground level to ground level
under linear air resistance, we refer to [4,5,15], while more general impact
functions were recently handled in [12,13].

Note that, in our general context, the functions ϕ and d need not be
differentiable. This means that the monotonicity properties of d cannot be
established by just checking the sign of the derivative and thus require a more
subtle argument from real analysis.

Theorem 5.2. In the general setting of Theorem 4.3 for quadratic drag, the
distance function d is continuous on [−π/2, π/2], strictly increasing on
[−π/2, θopt], and strictly decreasing on [θopt, π/2].

Proof. (i) Since Theorem 4.3 entails that d is bounded, to establish the con-
tinuity of d it suffices, by Theorem 12.56 of [2], to show that the graph of
d is closed in R

2. To this end, we consider an arbitrary sequence (θk)k∈N in
[−π/2, π/2] that converges to some limit θ such that the sequence (d(θk))k∈N

also converges to some limit x. Our task is to prove that d(θ) = x.
For this, we first consider the case θ �= ±π/2. Then we have θk �= ±π/2

for almost all k ∈ N, and for all such k the definition of d confirms that
pθk

(d(θk)) = ϕ(d(θk)) and therefore

h + tan(θk)d(θk) − gκ(d(θk))
4α2s2

sec2(θk) = ϕ(d(θk)).

By continuity, passing to the limit as k → ∞ leads to

h + tan(θ)x − gκ(x)
4α2s2

sec2(θ) = ϕ(x)

and thus pθ(x) = ϕ(x). Because pθ(0) = h > 0 = ϕ(0), this implies that
x > 0 and hence x = d(θ), as desired.

We next turn to the case θ = π/2 for which we have to show that x = 0.
This is obvious when θk = π/2 for infinitely many k ∈ N. So we may assume
that θk �= ±π/2 for almost all k ∈ N, and, as before, for all such k the
definition of d leads to

h +
(

sin(θk) cos(θk)d(θk) − gκ(d(θk))
4α2s2

)
sec2(θk) = ϕ(d(θk)).

By continuity, the right-hand side converges as k → ∞ to the real number
ϕ(x). It follows that x = 0, since otherwise we would have x > 0 so that
the left-hand side would converge to −∞, because κ (d(θk)) → κ(x) > 0 as
k → ∞. This settles the case θ = π/2, and the remaining case θ = −π/2 may
be handled by the same method and is, in fact, even easier.
(ii) To establish the remaining assertions, we recall that a continuous function
on a closed bounded interval [u, v] with exactly one local maximum point w
in [u, v] strictly increases on [u,w] and strictly decreases on [w, v], a fact that
may be deduced from the extreme value theorem, as shown in Lemma 5 of
[11].
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Hence it remains to be seen that any θ in [−π/2, π/2] different from θopt fails
to provide a local maximum for d. For θ = ±π/2, this is trivial, while, for
θ ∈ (−π/2, π/2), we define x = d(θ) and consider the following three cases.

If θ < θx, then, for all θ∗ with θ < θ∗ < θx, we infer from Lemma 4.1
that

ϕ(x) = ϕ(d(θ)) = pθ(d(θ)) = pθ(x) = ρx(θ) < ρx(θ∗) = pθ∗(x).

On the other hand, from the first part of the proof of Theorem 4.3 we know
that pθ∗(u) ≤ ψ(u) < ϕ(u) for all sufficiently large u > 0 which, by the
intermediate value theorem, ensures that pθ∗ < ϕ on (d(θ∗),∞). Because
ϕ(x) < pθ∗(x), we conclude that x < d(θ∗). Thus d(θ) < d(θ∗) whenever
θ < θ∗ < θx, which shows that d has no local maximum at θ.

Similarly, if θx < θ, then it follows that d(θ) < d(θ∗) whenever θx <
θ∗ < θ, so that d fails to have a local maximum at θ also in the case θx < θ.

Finally, if θx = θ, then d(θx) = d(θ) = x and hence ψ(x) = ρx(θx) =
pθx

(x) = ϕ(x). By Theorem 4.3, we conclude that x = d (θopt) and therefore
θ = θopt, as desired. �

Remarkably specific information about the solution of Tartaglia’s in-
verse problem may be gleaned in the special case of launching from ground
level h = 0 to a linear impact function ϕ(x) = mx for arbitrary real m.
In fact, in this case, the graph of the distance function exhibits the same
symmetry as in the classical Galilean model without any drag.

Theorem 5.3. In the setting of Corollary 4.5, we have

d(θopt − θ) = d(θopt + θ) for all θ ∈ [0, π/4 − arctan(m)/2] .

Proof. The clue to the argument will be the corresponding identity for ζ
together with the distance formula (5) from Sect. 3. Let ω = arctan(m).
Then we know from Corollary 4.5 that θopt = ω/2+π/4, and it is clear that

cos(ω) =
1√

1 + m2
and sin(ω) =

m√
1 + m2

.

For arbitrary θ ∈ [ω, π/2], we conclude from basic trigonometric identities
that

sin(2θ) − 2m cos2(θ) = sin(2θ) − m cos(2θ) − m

=
√

1 + m2 (sin(2θ) cos(ω) − cos(2θ) sin(ω)) − m

=
√

1 + m2 sin(2θ − ω) − m.

Hence, for all θ ∈ [0, π/4−ω/2], the symmetry of the sine function about the
vertical line x = π/2 yields

ζ(θopt − θ) =
√

1 + m2 sin (2(θopt − θ) − ω) − m + γ

=
√

1 + m2 sin (π/2 − 2θ) − m + γ

=
√

1 + m2 sin (π/2 + 2θ) − m + γ

=
√

1 + m2 sin (2(θopt + θ) − ω) − m + γ
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= ζ(θopt + θ).

By formula (5), this implies d(θopt − θ) = d(θopt + θ), as desired. �

6. Concluding Comments

The present work addresses a natural optimization problem that arises from
the scenario of a projectile being launched from atop a tower and confronting
quadratic drag during flight. The approach to maximizing the lateral dis-
placement of the projectile entails cultivation of a classical approximation
model for projectile motion with air resistance quadratic in speed. As in the
cases of no or linear air resistance, the enveloping function induced by the
family of flight paths plays a major role: its unique point of intersection with
the convex function representing the impact surface is the key to unlocking
the maximal range of the projectile, the optimal angle for launch, and the
associated flight time.

When the impact function is modeled by a line, the Lambert W function
enables manageable explicit formulas for the range function, the maximal
range, and the corresponding optimal launch angle. Launching from ground
level to a linear impact function exposes a pleasing geometric aspect of the
model: the tangent line to the optimal flight path at the launch point bisects
the angle between the impact line and the vertical through the launch point,
exactly as in the case of projectile motion without drag.

The article closes by confirming various analytic aspects of the distance
function in the general setting. Specifically, continuity and detailed informa-
tion about its monotonicity lead to a solution of Tartaglia’s inverse prob-
lem for determining the number of launch angles that result in a prescribed
range. Here again, the case of launching from ground level to a linear impact
function lends extra geometric insight—the graph of the distance function
exhibits symmetry that is remarkably akin to that of the classical dragless
environment.

As with the case of projectile motion under no or linear air resistance,
we hope that our results will be of interest to teachers and students of both
real analysis and applied mathematics.
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