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ABSTRACT

Re-injection of produced geothermal water for
pressure support is a common practice in geothermal
field management.  The location selection of the re-
injection well and the rate of injection is a
challenging subject for geothermal reservoir
engineers.  The goal of optimization for this type of
problem is usually to find one or more combinations
of geothermal re-injection well locations that will
maximize the production and the pressure support at
minimum cost and minimum temperature decrease.
Although the number of well combinations is
potentially infinite, it has been customary to pre-
specify a grid of potentially good well locations and
then formulate the search to locate the most time- or
cost-effective subset of those locations that meets
production goals.  To achieve this goal neural
network technology is proposed.  First, a knowledge
base of representative solutions for a geothermal field
located in Turkey was developed using a simulator.
Then artificial neural networks to predict selected
outcomes was trained and tested.  In the next step
well combinations and injection rates of these wells
to predict outcomes with a given number of injection
wells were generated.

INTRODUCTION

One of the methods used in geothermal reservoir
management is to reinject geothermal fluid back into
the reservoir.  Initially started as a disposal method,
reinjection has become a common practice for
increasing the amount of energy that can be
recovered from a geothermal reservoir (Goyal, 1999;
Axelsson and Dong, 1998).  Several parameters need
to be considered for a successful reinjection process
(Stefansson, 1997):

1. Disposal of waste fluid
2. Cost
3. Reservoir temperature (thermal

breakthrough)
4. Reservoir pressure or production decline
5. Temperature of injected fluid
6. Silica scaling
7. Location of reinjection wells

8. Chemistry changes in reservoir fluid
9. Recovery of injected fluid
10. Subsidence

The proper selection of reinjection location, is
perhaps the most important factor affecting the
success of the reinjection and it has long been a
controversial subject in the geothermal literature.
There are differing opinions regarding the location
selection from injecting outside the field (Einarsson
et al, 1975) which is the most common reinjection
configuration (Stefansson, 1997) to injection some
fraction of the waste water near the center of the
reservoir (Bodvarsson and Stefansson, 1988).  Yet
another reinjection strategy is to consider production
and injection wells are interchangeable and that they
are distributed uniformly in the field (James, 1979).
A ramification of intermixed reinjection model is to
interchange the injection and production wells at
different parts of the reservoir for different times
(Stefansson, 1986).  Sigurdsson et al (1995)
concluded that the peripheral injection is better if the
maximum thermal sweep is of greater importance
than pressure maintenance.

Artificial Neural Networks
Within recent years there has been a steady increase
in the application of neural network modeling in
engineering.  ANNs have been used to address some
of the fundamental problems, as well as specific ones
that conventional computing has been unable to
solve, in particular when engineering data for design,
interpretations, and calculations have been less than
adequate.  Also with the recent strong advances in
pattern recognition, classification of noisy data,
nonlinear feature detection, market forecasting and
process modeling, neural network technology is very
well suited for solving problems in the petroleum
industry.  Within the last five years, work has been
published covering the successful and potential
application of ANNs in different areas of the
geosciences (Yilmaz et al, 2002).

Neural computing is an alternative to programmed
computing which is a mathematical model inspired



by biological models.  This computing system is
made up of a number of artificial neurons and a huge
number of interconnections between them.
According to the structure of the connections, we
identify different classes of network architectures
(Figure 1).

Figure1. a) Layered feed-forward neural network, b)
Non-layered recurrent neural network

In feed-forward neural networks, the neurons are
organized in the form of layers.  The neurons in a
layer get input from the previous layer and feed their
output to the next layer.  In this kind of networks
connections to the neurons in the same or previous
layers are not permitted.  The last layer of neurons is
called the output layer (right column) and the layers
between the input and output layers are called the
hidden layers.  The input layer (left column) is made
up of special input neurons, transmitting only the
applied external input to their outputs.  In a network
if there is only the layer of input nodes and a single
layer of neurons constituting the output layer then
they are called single layer network.  If there are one
or more hidden layers (middle column), such
networks are called multilayer networks.  The
structures, in which connections to the neurons of the
same layer or to the previous layers are allowed, are
called recurrent networks.

The lines represent weighted connections (i.e., a
scaling factor) between processing elements.  The
performance of a network as shown in Figure 1 is
measured in terms of a desired signal and an error
criterion.  The output of the network is compared
with a desired response to produce an error.  An
algorithm called back-propagation (Haykin, 1994) is
used to adjust the weights a small amount at a time in
a way that reduces the error.  The network is trained
by repeating this process many times.  The goal of
the training is to reach an optimal solution based on
the performance measurement.

In order to tackle the optimum reinjection location
selection for a given geothermal field, an alternative
solution approach using the power of back-
propagation artificial neural networks (ANN) is
proposed.  First, the training of the ANN with

simulator generated data for a geothermal field is
presented.  Then using the ANN optimum reinjection
location, depth and rate for the given conditions are
obtained.  Advantages and disadvantages of the
proposed method are discussed using a case study.  It
was observed that the proposed technique provided
satisfactory results.

METHODOLOGY

Simulation–optimization, a term that refers to the
coupling of models to optimization drivers, has
received extensive attention in the petroleum
literature (Johnson and Rogers, 2001).  The goal of
optimization for this type of problem is usually to
find one or more combinations of injection well
locations that will maximize the production at
minimum cost.  Although the number of well
combinations is potentially infinite, it has been
customary to pre-specify a simulation grid of
potentially good well locations and then formulate
the search to locate the most time- or cost-effective
subset of those locations that meets production goals.
Nonlinear optimization algorithms extend from
genetic algorithm and hybrid versions of genetic
algorithm (Guyaguler, 2002) to artificial neural
networks (Centilmen et al, 1999 McNichol et al,
2001).

In this study, STARS thermal simulator (CMG, 2002)
was used.  Dual porosity simulation model was
calibrated using historical production, temperature
and pressure data from Kizildere geothermal field,
Turkey (Yeltekin et al, 2002).  The developed
simulation model (Table 1) consisted of 8x12x6
rectangular grids (Fig. 1) with equal areal dimensions
(60x60 m).  The depth of the blocks (Fig. 2) matched
the depth of the producing reservoir (Igdecik
formation) divided into five equal parts.  The last z
block was thick (5000 m) and was supported by a
thermal aquifer.  The developed simulation model is
in accord with hydrogeological models (Satman and
Serpen, 2000; Dominco, 1974) that consider
infiltration of meteoric water into deeper sections of
the Earth and up-flow of it after heating.  Sample
pressure and temperature history matches for wells
KD-6, KD-13 and KD-20 are provided in Figures 3
through 5.  The permeability data initially derived
from well test analysis (Kappa, 2001) was modified
to achieve a reasonable match (Fig. 6).  The initial
and final temperature and pressure distributions at the
end of 14 years of history match are given in Fig. 7
and 8 respectively.



Table 1. Simulation model properties

Property Value
Fracture spacing 20 m.
Shape factor Gilman - Kazemi
Fracture relative permeability Power law n = 2.8
Matrix permeability 1 md.
Fracture porosity 0.08
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Figure 1. Reservoir model grid diagram
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Figure 2. Grid tops (m) distribution for the producing
layer.
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Figure 3. Pressure (top) and temperature (bottom)
match for well KD-6.
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Figure 4. Pressure (top) and temperature (bottom)
match for well KD-13.
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Figure 5. Pressure (top) and temperature (bottom)
match for well KD-13.
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Figure 6. Permeability (md) distribution.
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Figure 7. Temperature (°C) distribution. Initial -
01/01/1988 (top), final - 01/09/2002
(bottom)
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Figure 8. Pressure (kPa) distribution. Initial-
01/01/1988 (top), final-01/09/2002
(bottom)

RESULTS AND DISCUSSIONS

A knowledge base of 126 simulations sampling 85
possible injection locations and three different rates
(2500, 3750, 4911 m3/day) was generated using the
final simulation model by opening an injection well
at each empty grid block skipping one grid block in a
chessboard fashion at 10 years after the
commencement of injection at 150°C.  The maximum
flow rate was selected based on operating company’s
pump capacity.  The knowledgebase data consisted of
pressure and temperature data of the production and
observation wells at different time steps.  As a
general observation for high injection rate (4911

m3/day) overall temperature decrease was less
pronounced (usually less than 4°C per grid block)
with corner injections; however, pressure drop was
the highest (more than 130 kPa per grid block).  On
the other hand, injections near the center of the field
resulted in better pressure support (less than 117 kPa
per grid block) but cooling was somewhat more
(about 5 and 6 °C per grid block).  These
observations were valid also for the lower injection
rates; however, the magnitudes of the pressure drop
and the temperature decrease were somewhat less.

Then using this knowledgebase several different
ANN’s were trained.  During the training process for
determining the weights, some simulation data should
be withheld for later verification of network
accuracy.  These data are often referred to as test or
validation data.  Once the weights have been
determined through back propagation, the test data
were used as network inputs for determining the
network’s accuracy in predicting unprocessed data
sets.  The quality or goodness of training was judged
based on the closeness of the prediction of the
remaining “testing” data (i.e. simulated injection data
that was not used for training).  This process was
repeated for various networks and the network with
the highest accuracy was used as the model.  Rather
than randomly selecting the initial weight matrix,
previously generated successful matrices were used
at the start.  This feature decreased the iterations
approximately 30% and also guaranteed training of a
“good” network (Yimaz et al, 2002).

Several networks with varying degree of complexity
have been trained with no success.  A two hidden
layer network composed of 4 and 13 hidden nodes
resulted in the lowest error among the single and
double layer networks tried.  Although use of more
than a single layer can lead to a very large number of
local minima and make the training extremely
difficult (Hornik et al; 1989) this network resulted in
the best error.

The rapid estimates of temperature and pressure data
provided by the ANN were fed into calculations
where minimum temperature decrease – maximum
pressure support is sought, which in turn were used
by a search algorithm to evaluate the effectiveness of
different injection well locations and injection rates.
Several dimensionless surface plots (see for example
figures 9 and 10) were generated for evaluating the
optimum reinjection location.  In these plots ANN
temperature and pressure outputs are scaled with
maximum values and then averaged by dividing to
total number of wells to find a representative number
(dimensionless decrease per well) for the injection
location.  Thus, high values of this number (hot
colors like red) correspond to relatively small
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Figure 9. ANN dimensionless pressure decrease per
well (top) and ANN dimensionless
temperature decrease per well (bottom)
plots for high injection rate (4911
m3/day).

decreases of the corresponding parameter (i.e.
temperature or pressure).

When two extreme injection rates are considered,
high injection rate results in better pressure support
especially at the southeast of the reservoir.  The
overall pressure decrease is considerably less than
that of the low injection rate.  On the other hand,
when low injection rate is preferred, the reservoir
cools faster.  If maximum enthalpy is the overall
objective then lower injection rates need to be
selected (see Fig. 10).  In all cases bottom low
quadrant or southeast of the reservoir seems to be the
ideal location for reinjection.  This location also hosts
a fault named as southern fault zone and connects to

another geothermal reservoir namely Tekkehamam
region located approximately 4 km from the nearest
well in the area.

0.00 100.00 200.00 300.00 400.00 500.00 600.00
0.00

100.00

200.00

300.00

400.00

500.00

600.00

700.00

0.20
0.21
0.21

0.22
0.22

0.23
0.23
0.24

0.24
0.25
0.25

0.26
0.26
0.27

0.27
0.28

0.28
0.29

0.00 100.00 200.00 300.00 400.00 500.00 600.00
0.00

100.00

200.00

300.00

400.00

500.00

600.00

700.00

0.40

0.41

0.42

0.43

0.44

0.45

0.46

0.47

0.48

0.49

0.50

0.51

0.52

Figure 10. ANN dimensionless pressure decrease per
well (top) and ANN dimensionless
temperature decrease per well (bottom)
plots for low injection rate (2500 m3/day).

CONCLUSIONS

Optimization of reinjection well placement and
reinjection rate by simulation-optimization via
artificial neural networks is proposed.  The use of the
developed technology is demonstrated through a
water dominated geothermal field located in Turkey.
The performance of the reinjection location is
evaluated by means of dimensionless temperature
and pressure drop per well plots obtained for the
whole field.  With these plots it is possible to



pinpoint locations that will result in maximum
pressure or maximum enthalpy support.  For the
water dominated geothermal system studied here, the
best reinjection location is the southeast of the
reservoir.
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