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ABSTRACT 

The objective of this aerodynamic shape design effort is to minimize total pressure loss across 

the two-dimensional linear-airfoil cascade row while satisfying a number of constraints.  They 

included fixed axial chord, total torque, inlet and exit flow angles, and blade cross-section area, 

while maintaining thickness distribution greater than a minimum specified value.  The 

aerodynamic shape optimization can be performed by using any available flow-field analysis 

code.  For the analysis of the performance of intermediate cascade shapes we used an 

unstructured-grid-based compressible Navier-Stokes flow-field analysis code with k-e turbulence 

model.  A robust genetic optimization algorithm was used for optimization and a constrained 

sequential quadratic programming was used for enforcement of certain constraints.  The airfoil 

geometry was parameterized using conic section parameters and B-splines thus keeping the 

number of geometric design variables to a minimum while achieving a high degree of geometric 

flexibility and robustness.  Significant reductions of the total pressure loss were achieved using 

this constrained method for a supersonic exit flow axial turbine cascade. 

 

NOMENCLATURE 

A   cross-sectional area of the airfoil (m2) 

c  penalty constant 
 



L   lift (N) 

m�   mass flow rate (kg s-1) 

P0   total pressure (Pa) 

θ    average exit flow angle (degrees) 

 

 
1. INTRODUCTION 

Aerodynamic shape design has a global objective of increasing the aerodynamic efficiency of 

the flow-field created by the designed object.  This means that the design objective should be 

minimization of entropy generation in the flow-field.  In general, entropy generation is caused by 

viscous dissipation, heat transfer, internal heat sources, chemical reactions, and electro-magneto-

gasdynamic effects.  In the case of a turbomachinery aerodynamics, sources of entropy 

production other than viscous effects and heat transfer could be neglected.  This means that the 

entropy is generated by viscosity and heat transfer.  The most prominent regions of entropy 

production are viscous boundary layer and shock waves1.  Then, any reliable Navier-Stokes flow-

field analysis code could be used to compute local values of total pressure or entropy.  For a 

given set of inlet and exit flow boundary conditions, the amount of entropy generated in the flow-

field is determined by the shape of the turbomachinery blade row.  

Minimization of the entropy generation (flow losses) can therefore be achieved by the 

proper reshaping of the blade row.  This process of achieving a global design goal is called shape 

optimization.  It is different and much more powerful than the shape inverse design2,3,4 where a 

desired pressure distribution is enforced on the blade surface.  The surface pressure is often 

enforced without any direct evaluation criterion5 to judge the effects of this pressure distribution 

on the corresponding global design objectives.  There have been numerous inverse shape design 



attempts reported where the desired surface pressure distribution was enforced via an 

optimization algorithm.  However, there are considerably less expensive and more accurate 

methods for performing the aerodynamic shape inverse design6.  In other words, the optimization 

algorithms should be used for actual optimization of the global aerodynamic and geometric 

parameters, not for achieving inverse shape design by enforcing the specified surface pressure 

distributions3,6. 

Shape optimization, especially when subjected to numerous user specified constraints, is 

considerably more time-consuming than the shape inverse design because it requires a large 

number of calls to the aerodynamic flow-field analysis code.  This was one of the main reasons 

why the aerodynamic shape optimization has not been used until very recently.  With the rapidly 

increasing use of distributed parallel computing, the adequate computing hardware is becoming 

affordable to perform aerodynamic shape optimization.  This trend is also supported by the fact 

that for optimization purposes the flow-field analysis code does not need to be changed, while for 

inverse shape design it is often necessary to perform extensive modifications to an existing flow-

field analysis code4.   

 

 

2. PROBLEM STATEMENT AND CONSTRAINTS  

There are basically two types of aerodynamic shape design problems.  One problem is to 

design an entirely new turbomachine in which case only loose geometric constraints are needed.  

A considerably more difficult problem is the aerodynamic shape design for retrofitting an 

existing turbomachine with a more efficient rotor or a stator.  This is because the retrofitted 

design has a number of specific constraints.  In this work, the following constraints were 

enforced. 



The axial chord of the new row of blades must be the same or slightly smaller than the axial 

chord length of the original blade row.  Otherwise, the new blade row will not be able to fit in the 

existing turbomachine.  Inlet and exit flow angles must be the same in the redesigned blade row 

as in the original blade row or the velocity triangles will not match with the neighboring blade 

rows.  Mass flow rate through the new blade row must be the same as through the original blade 

row or the entire machine will perform at an off-design mass flow rate which can lead to serious 

drop in overall efficiency and create unsteady flow problems.  Torque created on the new rotor 

blade row must be the same as on the old rotor blade row or the new rotor will rotate at the 

wrong angular speed.  The cross-section area of the new blade should be the same as the cross-

section area of the original rotor blade.  This is to insure that the new blade will be able to sustain 

the expected loads without performing a detailed elasticity analysis of each candidate blade 

geometry.  Minimum airfoil thickness distribution has to be specified or the new aerodynamically 

optimized cascade of airfoils could have (an example will be shown in this paper) an 

unacceptably thin shape.  In the case of an internally-cooled turbine blade, such a thin airfoil will 

not be able to accommodate the internal coolant flow passages.  In addition, airfoil trailing edge 

thickness should not be smaller than a user-specified value or it will overheat and burn in the 

case of a turbine airfoil.  This condition can be easily incorporated in the constraint on the 

specified minimum airfoil thickness distribution.  Gap-to-axial chord ratio will be kept fixed in 

this work since the total number of blades will be treated as fixed.  Otherwise, if the gap between 

the neighboring airfoils is treated as an additional design variable, the optimization will involve 

both shape optimization and the minimization of the number of blades in the rotor or a stator. 

In summary, this version of the aerodynamic shape optimization for a retrofit application 

includes five equality constraints and one inequality constraint.   

 



 

3. GEOMETRIC DESIGN VARIABLES 

The shape optimization of a two-dimensional cascade of airfoils will be performed by 

iteratively determining an optimum airfoil shape that also satisfies the constraints listed above.  

This means that a large number of candidate airfoil shapes will be created and examined using an 

appropriate constrained optimization algorithm.  In order to minimize the computing effort, the 

candidate airfoil shapes will be parameterized with a relatively small number of parameters that 

will then serve as design variables.  In this paper, two approaches were used.   

In the first approach of using a minimum possible number of the design variables, the shape of 

an airfoil in a turbomachinery cascade was chosen to require only nine parameters (Fig. 1).  

These variables include: the tangential and axial chord, the inlet and exit half wedge angle, the 

inlet and outlet airfoil angle, the throat, unguided turning angle, and the leading and trailing edge 

radii7,8,9.  One of these parameters (axial chord) will be kept fixed in this exercise.  

In the second approach, the airfoil shape was allowed significant additional flexibility by 

adding a continuous arbitrary perturbation in addition to the original nine parameters.  This shape 

perturbation was modeled with a B-spline that had eight control vertices thus resulting in a total 

of 9 + 8 = 17 design variables.  The design variables ranges were set so that the optimizer would 

have a wide variety of very different airfoil shapes so as to test its robustness.  Users with 

experience in turbomachinery airfoil design could easily narrow these ranges and target a specific 

area where they think the best design will be found.  For example, in the work of Trigg, Tubby 

and Sheard10, the airfoil geometry was parameterized using seventeen geometric parameters with 

very narrow ranges thus circumventing a need for explicit constraints.  Their design application 

was not a retrofit, but a design of a new cascade. 

 



 

4. FLOW-FIELD ANALYSIS 

With the genetic algorithm, variations in geometry from iteration to iteration might not be 

small especially if a large design space is to be explored.  Thus, it is of utmost importance that a 

robust flow-field analysis code and a robust grid generation code are used.  For this reason we 

used a two-dimensional compressible turbulent flow Navier-Stokes analysis code that utili zes 

Runge-Kutta time stepping.  The flow-field analysis code uses unstructured triangular grids11 

generated using a Delaunay tessellation with iterative point insertion12.  All boundary conditions 

in the flow-field analysis code were imposed using first order accuracy.  The inlet and outlet 

boundary conditions were treated with locally one-dimensional non-reflection of waves passing 

out of the computational domain.  Implementation of two-dimensional non-reflection boundary 

conditions at inlet and exit boundaries would require considerably more computing time.  The 

flow-field periodic conditions were imposed with phantom cells’ values equal to the 

corresponding periodic real cells’ values.  The flow variables at the cells’ vertices were 

calculated from surrounding cells’ centers’ values with distance weighted averaging method13.  

The k-ε limiter and wall function were used in turbulence modeling. 

Accuracy of the flow-field analysis code can be evaluated by comparing computed and 

experimentally measured surface isentropic Mach number distribution (Fig. 2) on an axial turbine 

cascade tested by the VKI 14. 

In all test cases described in this paper, the inlet total pressure, total temperature, and inlet 

flow angle were set to 440,000 Pa, 1600.0 K, and 30.0o, respectively.  The exit static pressure 

was specified as 101,330 Pa thus making this a supersonic exit cascade.  Adiabatic wall 

conditions were enforced along the airfoil surface.  The unstructured grid flow-field analysis 

code was used by the optimizer to determine the total pressure loss, li ft, and exit flow angle for a 



given airfoil design.  The triangular meshes generated around typical airfoil designs contained 

around 3000 nodes and 6000 triangles.  Reduction of the residual three and a half orders of 

magnitude takes the flow solver around 1200 time steps when starting from an initially uniform 

flow field and a CFL number of 1.8.  A single flow-field analysis for a typical airfoil cascade 

takes around eight minutes on a 175 MHz R10000 processor. 

 

 

5. OPTIMIZATION ALGORITHM 

A genetic algorithm (GA) based optimizer15,16,17 was used to design a turbine airfoil cascade 

shape by varying the geometric parameterization parameters.  The objective of the optimization 

was to determine the airfoil shape that gives the minimum total pressure loss while conforming 

to the specified constraints of producing 22000.0 N li ft force, an average exit flow angle of –63.0 

degrees, a mass flow rate of 15.5 kg s-1, an airfoil cross-sectional area of 0.00223 m2, and an 

airfoil axial chord of 0.1 m.  One possibilit y of enforcing these constraints is to use a penalty 

function formulation by combining them with the true objective function (the difference between 

the total pressure computed at the exit and the total pressure imposed at the inlet).  The 

mathematical form of such a combined objective function, F, could be expressed as 
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The variable tde is the largest relative error in the airfoil thickness distribution compared to a 

specified thickness distribution that is considered to be minimum allowable.  This geometric 



constraint prevents airfoil from becoming too thin so that it would not become mechanically or 

thermally infeasible.  The constants ci are user specified penalty terms.  

The genetic algorithm based optimizer used the micro-GA technique18 with no mutation.  The 

objective was to perform the entire constrained optimization with as few calls to the flow-field 

analysis code as possible.  Trigg et al.10 did not use the micro-GA approach.  Instead, they used a 

very large randomly generated initial population of designs, which was then progressively 

reduced during each consecutive optimization cycle.  As a result, they typically required 1000 

flow-field analysis runs to optimize an airfoil cascade even without enforcing stringent 

constraints.   

A binary string that used eight bits for each design variable represented each design in the 

population.  A tournament selection was used to determine the mating pairs15.  Each pair 

produced two children designs that then replaced the parents in the population.  Uniform 

crossover with a 50% probability of crossover was used to produce the children.  Elitism was 

also implemented in the optimizer; the best individual found from the previous generations was 

placed in the current generation.   

 

5.1 Penalty Method for Constraints 

This example optimization case used penalty terms alone to enforce the constraints.  A 

constant penalty term ci = 4.0E6 was applied to each normalized constraint. For this application, 

the micro-GA approach was found to be rather insensitive to the exact value of the penalty terms. 

It was found the algorithm performed better at satisfying the constraints when the penalty 

constants were larger than 1.0E5. 

The first example optimization run was performed without enforcing a minimum thickness 

distribution constraint.  Instead, a minimum allowable trailing edge radius was used as an 



inequality constraint.  Range of the design variables is given in Table 1 indicating that B-spline 

shape perturbations were not used in this example. 

The genetic optimizer was run for 45 generations with a population of 15 amounting to 45 x 

15 = 675 flow-field analysis calculations.  It used eight bit strings for each design variables.  This 

implies very high accuracy in the representation of the design variables.  In this study we 

considered this to be necessary in order to eliminate any possible cause for premature 

convergence that might be caused by the insufficient accuracy of the representation of the 

geometry.  In actual turbomachinery shape optimization applications, it should suffice to use five 

bit strings for each design variable.  The best design in the randomly generated initial generation 

of airfoil shapes had a total pressure loss of 11231.2 Pa.  The best design of generation 45 had a 

total pressure loss of 5965.6 Pa.  This represents 46.9% decrease in the total pressure loss as 

compared to the best member of the initial population.  Figure 3 shows the difference in airfoil 

shapes for the best designs from generations 1, 25, and 45.  By generation 25, the airfoil had 

largely converged to the final shape shown for generation 45.  Figure 4 shows the percent error in 

the constraints for the best design of each generation.  It is obvious that the optimizer has 

difficulty satisfying all constraints simultaneously and tends to violate one constraint to satisfy 

another.  This was particularly true for the lift and mass flow rate.  By generation 45, all 

constraints were less than 4% violated.  The most intriguing aspect of the optimized geometry is 

the unacceptably-thin final airfoil shape, which cannot be used because it cannot accommodate 

internal cooling passages.  Thus, this example should serve as a demonstration of an 

unacceptable geometry that can result if no constraint is enforced on the minimum-allowable-

thickness distribution along the airfoil. 

The second example optimization run had the objective to demonstrate the difference that 

enforcement of the minimum allowable thickness distribution can make.  The genetic optimizer 



was run for 30 generations with a population of 20 (thus 30 x 20 = 600 flow-field analysis).  The 

calculation consumed 70 hours of CPU time on a 350 MHz Pentium II based PC.  The best 

airfoil designs from generation 1 and generation 30 are shown in Fig. 5.  The final airfoil shape in 

this example is significantly different from the final airfoil shape in the previous example (Fig. 

2).  The best design from the GA generation 1 had a total pressure loss of 8200.0 Pa, which was 

after 30 generations reduced to 6850 Pa representing a reduction of 16.4%.  The smaller 

reduction of the total pressure loss in this example is caused by the minimum thickness 

distribution constraint.  Also, after 30 generations, a 3.5% violation of the lift constraint, a 1% 

violation in the exit flow angle constraint, a 3.3% violation of the mass flow rate constraint, a 

3.1% violation of the area constraint, and a 4% violation in the thickness distribution constraint 

were achieved (Fig. 6).   

 

5.2 Gene Correction SQP Method for Constraints 

In this example optimization run, a gene correction method based on sequential quadratic 

programming (SQP)19 was used to enforce the cross-sectional area and thickness distribution 

constraints while penalty terms were used to enforce the lift, mass flow rate, and average exit 

angle constraints with a penalty constant of 4.0E6.  The SQP algorithm is used to minimize the 

thickness distribution error with the specified cross-sectional area of the airfoil as an equality 

constraint.  This is done to every individual in the population for each generation before the flow-

field analysis is performed. This procedure is implemented in the genetic algorithm by calling the 

SQP algorithm after each individual is formed directly after the crossover operation is completed. 

With this treatment of the constraints, essentially all the designs become geometrically 

feasible before the expensive flow-field analysis is performed.  This allows the genetic algorithm 

to focus on satisfying the lift, mass flow rate, and exit angle constraints only.  The combined 



genetic and SQP optimizer was then run for 30 generations with a population of 15 (thus 30 x 15 

= 300 flow-field analysis) and consumed 50 hours of computing time on a 550 MHz AlphaPC 

workstation.  The best airfoil designs from the GA generation 1 and generation 30 are shown in 

Fig. 7.  The best design from generation 1 had a total pressure loss of 7800.0 Pa, which was 

reduced after 30 generations to 6546.0 Pa representing a reduction of 16.1%.  Also, after 30 

generations, the design had a 5.8% violation of the lift constraint, a 1% violation in the exit flow 

angle constraint, a 1.9% violation of the mass flow rate constraint, and a 0% violation of the area 

constraint, and a 0% violation in the thickness distribution constraint.  Figure 8 shows the 

violation of the constraints for the best design of each generation.  This method consistently 

produced higher fitness designs over the previous method that enforces all constraints via a 

composite penalty function.  

The computations required to find airfoil cross-section area and thickness distribution are very 

inexpensive.  This proved to be more economical than trying to use SQP to satisfy all the 

constraints simultaneously.  Besides, for every new design generated by the GA, the SQP code 

converged to a local minimum before finding a feasible solution.  When applying it only to area 

and thickness distribution constraints, the SQP was able to find a design meeting those 

constraints most of the time.  It was also more effective than treating all the constraints with just 

a penalty function.  

The final example optimization run had the objective of demonstrating what benefits can be 

obtained from utilizing more flexible geometry parameterization.  In this example run, the eight 

B-spline control points (four on the pressure surface and four on the suction surface) were used 

to allow a limited range of perturbations of the airfoil shape in addition to those created by the 

basic nine parameters.  This means that there were 17 design variables in this test case where 

each variable was represented by an eight-bit string.  Like in the previous example run, penalty 



formulation was used to enforce mass flow rate, lift, and exit flow angle.  The SQP algorithm 

was used to enforce airfoil cross-sectional area and minimum allowable thickness distribution.  

The combined micro-GA and SQP optimizer was then run for 11 generations with a population 

of 20 (thus 11 x 20 = 220 flow-field analysis) and consumed 33 hours of computing time on a 

550 MHz AlphaPC workstation.  The best airfoil designs from the GA generation 1 and 

generation 11 are shown in Fig. 9.  The best design from generation 1 had a total pressure loss of 

7800.0 Pa, which was reduced after 11 generations to 6546.0 Pa representing a reduction of 

16.1%.  After 11 generations, the design had a 4.0% violation of the lift constraint, a 0.3% 

violation in the exit flow angle constraint, a 0.7% violation of the mass flow rate constraint, and 

a 0% violation of the area constraint, and a 0% violation in the thickness distribution constraint 

(Fig. 10).  This was a clear improvement over the case when airfoil geometry was parameterized 

without the addition of Β-spline perturbations.   

Since the limits on the Β-spline perturbations are user specified, the optimization in this 

example run was continued beyond the generation 11 by doubling the user specified limit on 

each of the eight Β−spline control point motions in the direction outward of the airfoil.  This 

additional geometry flexibility resulted in an even better average satisfaction of all constraints 

(Fig. 10) after the generation 11.  The total pressure loss, which was reducing non-monotonically 

because of the conflicting constraints, in this optimization case was also smaller than after 

generation 11 (Fig. 11).  The computed surface pressure distributions for the best airfoils after 

generation 1 and generation 11 show that the optimized airfoil is thicker and more loaded in the 

leading edge region although its curvature in this region is decreased (Fig. 12).  

 

 



CONCLUSIONS 

We have developed and demonstrated an aerodynamic shape design optimization algorithm 

that utilizes a Navier-Stokes flow-field analysis code and a constrained micro-genetic optimizer 

and a sequential quadratic programming optimizer for enforcement of certain constraints.  The 

design optimization algorithm was applied in a redesign of an existing two-dimensional cascade 

of supersonic exit turbine airfoils with the objective to minimize the total pressure loss across the 

cascade.  The airfoil geometry was discretized with either nine or 17 parameters and a clustered 

unstructured grid was created for every airfoil cascade configuration generated during the 

optimization process.  The following equality constraints were iteratively enforced: specified 

aerodynamic lift force, mass flow rate, exit flow angle, and airfoil cross-section area.  In addition, 

axial chord and the gap-to-axial chord were kept fixed, while enforcing an inequality constraint 

that the airfoil thickness should always be greater or equal than the specified minimum allowable 

thickness distribution.  The optimization code proved to be very robust since it found the narrow 

feasible domain and converged to a minimum that satisfied all the constraints within the 

tolerances specified.  The design optimization process results in a significantly more efficient 

aerodynamic shape of the turbomachinery cascade.  The optimization is feasible on a single 

processor workstation, it requires no changes to the existing flow-field analysis code, and can be 

operated even by a semi-skilled designer.  Improving the results further may require larger 

population sizes, more flexibility in geometric shape parameterization, and longer bit strings for 

the design variable encoding.  Use of variable penalty terms that vary with generation may also 

prove to be beneficial. 
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Table 1.   User specified range of design variables 
 Minimum Maximum 
Tangential chord (meters) 0.05 0.16 
Unguided turning (degrees) -15.0 15.0 
Inlet blade angle (degrees) -25.0 45.0 
Outlet half wedge angle (degrees) -10.0 10.0 
Inlet half wedge angle (degrees) 1.0 40.0 
Leading edge radius (meters) 0.001 0.03 
Outlet blade angle (degrees) -75.0 -57.0 
Throat (meters) 0.05 0.10 
Traili ng edge radius (meters) 0.0015 0.007 

 
  
 
 
 
 
 



Figure 2. Surface isentropic Mach number distribution on the original VKI 
turbine airfoil cascade with sonic exit flow condition: comparison of 
experimental data and numerical results obtained 
 

Figure 1. Basic airfoil parameterization. 
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Figure 3. Best designs for generations 1, 25, and 30 when using penalty 
function only and without minimum thickness distribution constraint. 

 

Figure 4. Violation of constraints when using penalty function only and 
without minimum thickness distribution constraint. 

 

0 0.5 1 1.5
V1

0

0.2

0.4

0.6

0.8

1

1.2

1.4

V
2

Best of Generation 45

Best of Generation 1

Best of Generation 25

10 20 30 40
Generation

1

2

3

4

5

6

7

8

9

10

11

12

13

P
er

ce
nt

C
on

st
ra

in
tV

io
la

tio
n

lift
exit angle
mass flow rate
area

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Figure 5. Best designs for generations 1 and 30 when using penalty function 
and thickness constraint. 
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Figure 6. Violation of constraints when using penalty function only and 
minimum thickness distribution constraint. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Figure 7. Best designs for generations 1 and 30 when using penalty function 
with SQP and minimum thickness distribution constraint. 

Figure 8. Violation of constraints when using penalty function with SQP and 
minimum thickness distribution constraint. 
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Figure 10. Violation of constraints when using penalty function 
with SQP, minimum thickness distribution constraint, and B-
spline geometry perturbation. 
 
 

Figure 9. Best designs for generations 1 and 11 when using penalty function 
with SQP, minimum thickness distribution constraint, and B-spline geometry 
perturbation. 
 



 
 

 
 
 

Figure 12: Static pressure distribution for best design of generation 1 and 
generation 11 when using penalty function with SQP, minimum thickness 
distribution constraint, and B-spline geometry perturbation. 
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Figure 11. Convergence history of total pressure loss  for best 
designs when using penalty function with SQP, minimum 
thickness distribution constraint, and B-spline geometry 
perturbation. 
 


