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Pause café? 

You have an espresso 
machine with many buttons 
and knobs to tweak. 

Your task is to brew the best 
cup of espresso before 
dying of caffeine overdose.

Credits: Steampunk coffee machine

https://www.facebook.com/steampunkcoffeemachine


● f is a black box function, 
with no closed form nor 
gradients.

● f is expensive to 
evaluate.

● You may only have 
noisy observations of f. 



If you do not have 
these constraints, 
do not use Bayesian 
optimization.



Bayesian optimisation, step-by-step

Start with observations of 
the objective f :



Bayesian optimisation, step-by-step

Build a probabilistic model for  f 
(typically, a Gaussian process).



Bayesian optimisation, step-by-step

Optimize a cheap utility function u 
based on the posterior 
distribution for sampling the next 
point.



Bayesian optimisation, step-by-step

Evaluate f and repeat.



What is Bayesian about 
Bayesian optimization?

● The unknown objective is considered as 
a random function (a stochastic process) 
on which we place a prior (here defined 
by a Gaussian process capturing our 
beliefs about the function behaviour).

● Function evaluations are treated as data 
and used to update the prior to form the 
posterior distribution over the objective 
function.



Scikit-Optimize

pip install scikit-optimize

A simple library for black-box 
optimization with a 

scipy.optimize interface.

Sprouted from a (never-ending) 
Scikit-Learn pull request.

https://scikit-optimize.github.io 

https://github.com/scikit-learn/scikit-learn/pull/5491
https://scikit-optimize.github.io/


Objective function

● Takes a list of values 
as argument.

● Returns a scalar 
(the lower, the better)



Minimize

● Takes the objective 
function and the bounds
of the parameter space.

● That’s it!

● The r tuple contains
all the results 
(final and intermediate).



Visualization

● Convergence plot
● Pairwise partial dependence plot  

of the surrogate objective. 



Acquisition function

Specifies the next sample x.

● Upper confidence bound

● Probability of improvement

● Expected improvement

ᶜ provides a knob for controlling the exploration-exploitation trade-off.

Credits: arXiv:1012.2599

https://arxiv.org/abs/1012.2599


Surrogate model

The probabilistic model for  f is usually built as a 
Gaussian Process.

Scikit-Optimize supports any Scikit-Learn 
regressor that can also return the variance of the 
predictions (return_std=True). 

● Random forests / Extra-trees 
● Gradient boosting 

Tree-based optimization is fast and usually better 
on discontinuous high-dimensional spaces.

Random forests as 
a probabilistic model.



Is this better than 
random?
Was this actually worth it?



Random search

● If nothing works, try random
search.

● Works surprisingly well,
often only slightly worse than
“smart” algorithms.

Ouf!



Wait.

That’s nice, but how do I put 
my coffee maker into a 
Python function?

Credits: 3Dprint

https://3dprint.com/37834/coffee-3d-printer-debrew/


Ask and tell API

● Factor out the evaluation of the 
objective function.

● ask: query next point to 
evaluate
tell: provide function value

● Resume long optimization by 
pickling/unpickling the 
Optimizer object.



Beyond coffee (or ML) 

Tuning high energy physics 
simulators to match 
experimental data 
(e.g., 1610.08328)

Credits: ATLAS

https://arxiv.org/abs/1610.08328
https://atlas.cern


Good coffee is expensive 
and does not come with 
gradients.
Bayesian optimisation 
can help.



Summary

● Bayesian optimisation is a principled approach for 
optimising an expensive function f.

● Scikit-Optimize provides an easy-to-use set of tools for this.



We want you!
Help us improve 
Scikit-Optimize

https://github.com/scikit-optimize/scikit-optimize 

https://github.com/scikit-optimize/scikit-optimize

