
Bayesian
optimization with
Scikit-Optimize

Gilles Louppe
@glouppe PyData Amsterdam 2017

https://twitter.com/glouppe?lang=en

Pause café?

You have an espresso
machine with many buttons
and knobs to tweak.

Your task is to brew the best
cup of espresso before
dying of caffeine overdose.

Credits: Steampunk coffee machine

https://www.facebook.com/steampunkcoffeemachine

● f is a black box function,
with no closed form nor
gradients.

● f is expensive to
evaluate.

● You may only have
noisy observations of f.

If you do not have
these constraints,
do not use Bayesian
optimization.

Bayesian optimisation, step-by-step

Start with observations of
the objective f :

Bayesian optimisation, step-by-step

Build a probabilistic model for f
(typically, a Gaussian process).

Bayesian optimisation, step-by-step

Optimize a cheap utility function u
based on the posterior
distribution for sampling the next
point.

Bayesian optimisation, step-by-step

Evaluate f and repeat.

What is Bayesian about
Bayesian optimization?

● The unknown objective is considered as
a random function (a stochastic process)
on which we place a prior (here defined
by a Gaussian process capturing our
beliefs about the function behaviour).

● Function evaluations are treated as data
and used to update the prior to form the
posterior distribution over the objective
function.

Scikit-Optimize

pip install scikit-optimize

A simple library for black-box
optimization with a

scipy.optimize interface.

Sprouted from a (never-ending)
Scikit-Learn pull request.

https://scikit-optimize.github.io

https://github.com/scikit-learn/scikit-learn/pull/5491
https://scikit-optimize.github.io/

Objective function

● Takes a list of values
as argument.

● Returns a scalar
(the lower, the better)

Minimize

● Takes the objective
function and the bounds
of the parameter space.

● That’s it!

● The r tuple contains
all the results
(final and intermediate).

Visualization

● Convergence plot
● Pairwise partial dependence plot

of the surrogate objective.

Acquisition function

Specifies the next sample x.

● Upper confidence bound

● Probability of improvement

● Expected improvement

ᶜ provides a knob for controlling the exploration-exploitation trade-off.

Credits: arXiv:1012.2599

https://arxiv.org/abs/1012.2599

Surrogate model

The probabilistic model for f is usually built as a
Gaussian Process.

Scikit-Optimize supports any Scikit-Learn
regressor that can also return the variance of the
predictions (return_std=True).

● Random forests / Extra-trees
● Gradient boosting

Tree-based optimization is fast and usually better
on discontinuous high-dimensional spaces.

Random forests as
a probabilistic model.

Is this better than
random?
Was this actually worth it?

Random search

● If nothing works, try random
search.

● Works surprisingly well,
often only slightly worse than
“smart” algorithms.

Ouf!

Wait.

That’s nice, but how do I put
my coffee maker into a
Python function?

Credits: 3Dprint

https://3dprint.com/37834/coffee-3d-printer-debrew/

Ask and tell API

● Factor out the evaluation of the
objective function.

● ask: query next point to
evaluate
tell: provide function value

● Resume long optimization by
pickling/unpickling the
Optimizer object.

Beyond coffee (or ML)

Tuning high energy physics
simulators to match
experimental data
(e.g., 1610.08328)

Credits: ATLAS

https://arxiv.org/abs/1610.08328
https://atlas.cern

Good coffee is expensive
and does not come with
gradients.
Bayesian optimisation
can help.

Summary

● Bayesian optimisation is a principled approach for
optimising an expensive function f.

● Scikit-Optimize provides an easy-to-use set of tools for this.

We want you!
Help us improve
Scikit-Optimize

https://github.com/scikit-optimize/scikit-optimize

https://github.com/scikit-optimize/scikit-optimize

