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Outline 

Objective:  Learn about the progress of new evidence-
informed clinical decision support algorithms for Personal 
Support and Long-term Care. 
 
Outline: 
1)  Roll out of the Provincial Assessment Solution  
2) Personal Support Algorithm  
3) Determining Appropriateness of Care Algorithm 
4) CRisis Identification and Situational Improvement Strategies 

(CRISIS) Algorithm  
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Background 

Janet McMullan, OACCAC 
Nancy Ackerman, OACCAC  
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Transitioning to the interRAI HC 

2002  
RAI HC 
was first 

introduced in 
Ontario 

2010  
interRAI CA  

and interRAI PC 
are introduced 

2017  
interRAI HC 
will replace 
the  RAI-HC 

An evolution of assessment tools 
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 Transitioning to the interRAI HC 

Patient- 
centered 

information 
gathering 

Better support 
patient service 

planning 

Compatibility 
and 

standardization 
across the 
healthcare 

sector 

Access to 
updated 
interRAI  

outcome scales 

Revised  
assessment  to 

incorporate 
clinician 
feedback 

Enabling a 
coordinated 
approach to 

care 

Access to new 
and improved 

CAPs 



Slide 7 

Moving Away from the  
RAI Aggregate Score 

• RAI Aggregate Score was developed by CCACs to support Care 
Coordinators with decisions related to patient care planning.   

 

RAI Aggregate Score will not be available in the 
interRAI HC. 

 

New decision support algorithms have been developed to promote 
provincial consistency by supporting decisions related to:  

• allocation of personal support hours 
• appropriateness of care needs for placement 
• patient level of risk for immediate placement, and 

opportunities to modify risk through interventions.  
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Every CCAC uses the RAI Aggregate Score differently  
• Some CCACs use exact cut-offs by RAI Aggregate Score           
• Service allocation amount by RAI Aggregate Score differ 
• Service maximum amounts by RAI Aggregate Score differ 

 
Table 2. Personal Support Guidelines CCAC B 

RAI Score Priority Waitlist Allocation 

1-6 Low Yes Up to 1 
hour/week 

7-10 Moderate Yes Up to 2.5 
hours/week 

11-13 High No Up to 7 
hours/week 

14-16 High No Up to 12 
hours/week 

17+ Very high No Up to 16 
hours/week 

Table 1. Personal Support Guidelines CCAC A 

 RAI 
Score 

Priority Allocation if 
new referral 

Allocation if 
on service 

0-10 Low or 
moderate 

Admit to 
waitlist 

Up to 2 
hours/week 

11-16 High Up to 5 
hours/week 

Up to 5 
hours/week 

17+ Very high Up to 7 
hours/week 

Up to 14 
hours/week 
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Task Group Developed  

Members 
Gail Riihimaki, HNHB CCAC (Chair) Dr. John Hirdes, University of Waterloo 

Ian Ritchie, NW CCAC Chi-Ling Joanna Sinn, University of Waterloo 

Laszlo Cifra, CE CCAC Nancy Curtin-Telegdi, University of Waterloo 

Jennifer Wright, Central CCAC Leslie Eckel, University of Waterloo 

Valerie Armstrong, NSM CCAC Jenn Bucek University of Waterloo 

Gayle Seddon, TC CCAC Heather Binkle, OACCAC 

Amy Mangone, NE CCAC Nancy Ackerman, OACCAC 

Aaron Jones, OACCAC Shelly Anne Hall, OACCAC 

Janet McMullan, OACCAC 

Collaborative effort across researchers, CCACs, and OACCAC – Education, 
Information Management, Technology, and Client Services Team 

to address the need for new evidence-informed decision support algorithms. 
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• Patient needs for the purpose of resource allocation are clearly 
distinguishable 
 

• Clinical decision-making is equitable and consistent  
 

• Decisions are fiscally responsible  
 

• Decisions are evidence-informed and use the full range of tools 
available  
 

• Practical and simple to provide guidance for Care Coordinators 
 
 

Development Principles 
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Decision-making and  
Role of the Care Coordinator 
Develop a patient-centered care plan based on: 

Evidence 

Patient 
Needs and 

Preferences 
Clinical 

Expertise 
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Personal Support Algorithm 

Chi-Ling Joanna Sinn, University of Waterloo 
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• The Personal Support algorithm provides a 
framework for allocating personal support 
 

• Ranges from 1 to 6, where a higher group indicates 
greater need for personal support 
 

• Developed using RAI-HC/interRAI HC and  
interRAI CHA assessments in Ontario 
• To support standard assessment and consistent 

service levels across home and community care 

Overview 
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Approach to Algorithm Development 

• Grounded in: 
• Clinical knowledge  incorporate working group 

feedback from conception to implementation 
• Existing practice  use completed RAI-HC 

assessments 
• Evidence  apply rigorous statistical procedures and 

pursue face, convergent, and predictive validity 
 

• Achieve balance between structure and flexibility in 
decision-making 
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Data Sources (RAI-HC) 

• Unique RAI-HC assessments from 14 home care 
agencies in Ontario (Jan-Dec 2013) 
• Excluded: hospital versions, received case 

management or placement services only, fewer than 
three weeks of active service*, top 1% of personal 
support users (i.e., service maximums) 

• Linked to actual services data 
• Calculated weekly average of hours received within 

12 weeks of RAI-HC assessment 
• N=128,169 

 

*Services include Nursing (visit/shift), Nutrition, PT, OT, SLP, Social Work, PSW, Other 
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Data Sources (interRAI CHA) 

• Unique interRAI CHA assessments from three 
community support agencies in Ontario 
(Jan-Dec 2013) 

• N=1,985 
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Patient Attributes Associated with 
Hours of Personal Support Received 

• ADL and cognition scales were most strongly 
associated with more hours of personal support 

REF 
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“Average number of hours per 
week changes by __% for a one 
unit/category increase in the 
independent variable while all 
other variables are held constant” 

*Adjusted for CCAC 
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Developing Decision Trees 

• Patient attributes were examined in decision trees 
• Decision trees can identify attributes that contribute 

to personal support received for one group of 
patients, but not for another group  

• E.g., IADL may only be a relevant factor for patients with low 
ADL needs, not high ADL needs 

• This increases sensitivity to unique patient needs 
 

• A number of decision tree options were explored 
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Selected Decision Tree 

*Note: The group will be calculated by software. 
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There are six levels,  
where 1=lowest need and 

6=highest need. 

Selected Decision Tree 

*Note: The group will be calculated by software. 
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Self-Reliance Index is 
crosswalked from interRAI CA 
to RAI-HC/interRAI CHA and is 

the first split. 

Selected Decision Tree 

*Note: The group will be calculated by software. 
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Those who are “self-reliant” 
are in Group 1. 

Selected Decision Tree 

*Note: The group will be calculated by software. 
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Selected Decision Tree 

For those who are “impaired”, 
the ADL Short scale is the 

second split. 

Lower personal support needs Higher personal support needs 

*Note: The group will be calculated by software. 
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Selected Decision Tree 

Attributes can appear 
throughout the tree or only in 

certain branches. 

*Note: The group will be calculated by software. 
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EXAMPLE: Mrs. Smith 

Is she self-reliant or impaired? 

Impaired 

*Note: The patient level will be calculated by soft ware.  This walkthrough is for illustration purposes only.  
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What is her ADL Short score? 

0-3 

EXAMPLE: Mrs. Smith 

*Note: The patient level will be calculated by software.  This walkthrough is for illustration purposes only.  
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EXAMPLE: Mrs. Smith 

Does she need supervision or 
any physical help in dressing 
upper body? 

Yes 

*Note: The patient level will be calculated by software.  This walkthrough is for illustration purposes only.  
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Is she impaired in daily 
decision-making? 

No 

EXAMPLE: Mrs. Smith 

*Note: The patient level will be calculated by software.  This walkthrough is for illustration purposes only.  
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EXAMPLE: Mrs. Smith 

What is her IADL Capacity 
score? 

0-3 

*Note: The patient level will be calculated by software.  This walkthrough is for illustration purposes only.  
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Mrs. Smith falls in patient 
group 2 on the Personal 
Support algorithm 

EXAMPLE: Mrs. Smith 

*Note: The patient level will be calculated by software.  This walkthrough is for illustration purposes only.  
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Do I Look at the Group or the 
Branch? 

• Each group is a collection of branches that are 
MOST similar to each other and MOST different 
from other groups 
 

• Regardless of the exact attributes used, all patients 
who fall in group 2 have similar need for personal 
support 
 

• The group is the key piece of information 
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Distribution of Patients  

• The majority of patients belong to Groups 2 and 3 
 

Group N N (%) 
1 8154 6.4% 
2 58307 45.5% 
3 36130 28.2% 
4 9800 7.6% 
5 8451 6.6% 
6 7327 5.7% 
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Distribution of Personal Support Hours 

• Personal support hours increase within and between 
groups 

 

Group N (%) Hours per week+ 

Mean* 10th 
Percentile 

25th 
Percentile 

50th 
Percentile 
(Median) 

75th 
Percentile 

90th 
Percentile 

1 6.4% 0.4 0.0 0.0 0.0 0.0 1.0 
2 45.5% 2.3 0.0 0.9 1.7 2.8 5.2 
3 28.2% 4.8 0.7 1.9 3.4 6.7 11.0 
4 7.6% 6.9 0.9 2.7 5.7 10.2 14.0 
5 6.6% 8.4 1.1 3.5 7.0 13.1 16.3 
6 5.7% 11.3 1.9 6.3 12.0 14.8 20.6 

*All group means are significantly different from each other 
+Hours are based on historical averages and do not necessarily reflect future allocation practices 
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• Patient descriptions make sense 
 

• This algorithm performs well in explaining 
variability in personal support allocation and 
differentiating between groups 
 

• Explained variance (or R2) 
• Keep in mind that the current RUG-III/HC algorithm 

explains 33.7% variance in total home care resource 
use (including informal hours) 

Why This Model? 
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• Algorithm performs consistently over time  
• Algorithm outperforms ADL Hierarchy in being able 

to identify patients with the highest and lowest 
needs for personal support 
 

Personal Support 
Algorithm 

ADL Hierarchy 

Sample R2 Range 
(highest divided by 

lowest group means) 

R2 Range 
(highest divided by 

lowest group means) 

Ontario 2013 30.8% 32x 26.2% 6x 
Ontario 2012 32.2% 39x 26.7% 6x 
Ontario 2011 31.4% 36x 25.5% 5x 

Performance Over Time in Ontario 
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Performance across Ontario CCACs 

• Algorithm performs well across all CCACs  
expected variation given different organizational 
practices 
 

CCAC R2 
A 41.8% 
B 36.3% 
C 35.9% 
D 34.7% 
E 33.1% 
F 33.0% 
G 31.6% 

CCAC R2 
H 31.1% 
I 28.2% 
J 28.0% 
K 27.3% 
L 26.8% 
M 26.3% 
N 25.7% 
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Use in Clinical Practice:  
For Care Coordinators 

• After completing the  
RAI-HC/interRAI HC 
assessment, the software 
will electronically generate 
a group and range of 
hours per week 

• These numbers may be 
used as anchors to assist 
in assigning actual hours of 
personal support 

Group 

Hours per week+ 

10th 
Percentile 

(Lower range) 

50th 
Percentile 
(Median) 

90th 
Percentile 

(Upper range) 

1 0.0 0.0 1.0 

2 0.0 1.7 5.2 

3 0.7 3.4 11.0 

4 0.9 5.7 14.0 

5 1.1 7.0 16.3 

6 1.9 12.0 20.6 

+Hours are based on historical averages and do not necessarily reflect future allocation practices 
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Use in Clinical Practice:  
For Care Coordinators 

• If your patient falls in group 2 on the algorithm: 
• Decide whether the range is clinically reasonable  
• Decide actual number of hours to allocate based on all 

sources of information 
 
 

 

0       2       4       6       8       10      12      14      16 

Median 
1.7 hours/week 

Evidence 

Patient 
Needs and 

Preferences 
Clinical 

Expertise 

Upper range  
5.2 hours/week 

Lower range  
0 hours/week 
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Use in Clinical Practice:  
For CCACs 

• CCACs can use the groups 
as a benchmarking tool for 
evaluating caseloads and 
comparing to other CCACs 

Group 

Hours per week+ 

10th 
Percentile 

(Lower range) 

50th 
Percentile 
(Median) 

90th 
Percentile 

(Upper range) 

1 0.0 0.0 1.0 

2 0.0 1.7 5.2 

3 0.7 3.4 11.0 

4 0.9 5.7 14.0 

5 1.1 7.0 16.3 

6 1.9 12.0 20.6 

+Hours are based on historical averages and do not necessarily reflect future allocation practices 
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• A shared algorithm may be used to support Home 
and Community-Based Care Coordination through: 
• Coordinated access and intake 
• On-going care coordination 

Use in Clinical Practice:  
For Home and Community Care 



Slide 41 

Distribution of Home and 
Community Care Patients 

• Expected distribution 
of both samples  

• CCAC patients have 
generally higher 
personal support 
needs 

• CSS patients have 
generally lower 
personal support 
needs 

• Group 2 is the largest 
group for both CCAC 
and CSS samples 

3.2% 2.9% 
0.3% 

45.5% 

28.2% 

7.5% 6.7% 5.8% 
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Long-Term Care Home Eligibility 
and Priority Category 
 Aaron Jones, OACCAC 
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Overview 
  

 
 

 
 
 

 
 
 
 
 

 

Appropriateness of Care Needs Algorithm 
 
• Development 
• Performance 
• Implications 

 
 

CRISIS Algorithm  
 

• Development 
• Performance 
• Uses 
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Ontario Long Term Care Homes Act 79/10 
Criteria for eligibility, long-stay 

(a) the person is at least 18 years of age. 
(b) the person  is an insured person under the Health 
Insurance Act  

(i) requires that nursing care be available on site 24 hours a day, 
(ii) requires, at frequent intervals throughout the day, 
assistance with activities of daily living, or 
(iii) requires, at frequent intervals throughout the day, on –site 
supervision or on –site monitoring to ensure his or her safety or 
well being; 

the publicly-funded community -based services 
available to  the person and the other caregiving, 
support or companionship arrangements available 
to the person are not sufficient, in any combination, 
to meet the person’s requirements; and 

(e)  the person’s care requirements can be met in a long term 
care home. 

How can we determine which patients have eligible care 
needs? 
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Data Selection and Model Development 

 
 

• Long-Stay Home Care referrals from August 2010 – July 2012 
• RAI-HC assessment within 45 days 
• No previous LTCH referrals 
• No hospital assessments 
• N= 88,492 

 
• Two-year follow-up for placement in a LTCH 

 
• Modelled factors most predictive of placement 
 
• A vs. B priority category also examined 
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Predictive Validity - MAPLe Levels 

• Line separation indicates differentiation in risk of placement 
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Moderate Subdivision 

• The Moderate subdivisions are close to the High and Mild levels  
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Implications 
 
 
 
 
 

 
 

• Reduction in % of patients appropriate for placement. 
 
• 5% of eligible LTCH referrals in the last year would not 

have been eligible on the basis of their care needs within 
the new definition.  
 

Probable Change RAI-score New 
Algorithm 

 % of Long-Stay Home Care Population with care needs 
appropriate for placement 80.25% 70.83% 

 % of MAPLe Moderate Population with care needs appropriate for 
placement 77.17% 53.97% 

 % of patients found Eligible for LTCH Placement in last year that 
do not have care needs appropriate for placement 0%* 5.34%* 

*Other than Exceptional Cases 
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Long Term Care 
CRISIS Algorithm 
 Aaron Jones, OACCAC 
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Crisis Priority Category 
• Intended to identify requiring immediate placement on the 

basis of their needs and circumstances 
 

• Dramatic variation assignment to crisis priority category 
across CCACs 

 
Goals 
• Improve provincial consistency 

 
• Improve use of Crisis Priority Category to prioritize patients 

based on patient need and appropriateness 
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CRISIS Algorithm 

CRisis Identification and Situation Improvement Strategies 
 

• Identifies patient’s level of risk for immediate placement 
through the crisis priority category  
 

• Identifies risk areas and identifies clinical assessment 
protocols (CAPs) that may be used to modify the situation 
through interventions to reduce patient risk and prevent 
crisis placements 

 
Is a patient at risk for immediate placement?  

What are the risks?  
What can be done about it? 
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Guide care planning to avoid preventable crisis placements 

Support decision-making around the crisis priority category 

Rank patients within the crisis category 

Benchmarking and comparative reporting 
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Data and Development 

 

• Placement patients from April 2011 though December 2014 
• RAI-HC asessments closely linked to a priority  
• No hospital assessments  
• No previous LTCH placement 
• N = 18,375 

 

• 90-day follow-up for crisis placement 
 

• Modelled factors most predictive of crisis placement 
 
 



Slide 57 Two-Stage Process 
 
 

Abusive Relationship CAP 

High ADL Impairment 

Wandering 

Behaviour, Delusions or 
Hallucinations 

Cognitive Impairment 

Moderate ADL Impairment 

Mild ADL Impairment 

Step 1: 
Patients categorized into 7 
distinct clinical groups 

 

Step 2: 
Patient attributes from 
interRAI HC guide classification 
into 1 of 5 levels of risk 
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Abusive Relationship CAP 

High ADL Impairment 

Wandering 

Behaviour, Delusions or Hallucinations 

Cognitive Impairment 

Moderate ADL Impairment 

Step 1: Clinical Categories 
 
 

Mild ADL Impairment 

• Patients fall into the first 
category for which they meet 
criteria. 

 
• Lower categories represent 

generally decreasing risk. 
 

• Risk still varies dramatically 
within categories. 
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 Clinical Category Criteria 

Abusive Relationship CAP 
 Any of K9a, K9b, K9d = 1 

High ADL Impairment 
 ADL Hierarchy 4-6 

Wandering 
 E3a = 1 or 2 

Behaviour, Delusions or 
Hallucinations 

 

Any of E3b – E3e = 1 or 2, or K3f = 1 
or K3g = 1 

Cognitive Impairment 
 B2a = 3 or 4 

Moderate ADL Impairment 
 ADL Hierarchy 2-3 

Mild ADL Impairment 
 ADL Hierarchy 0-1 
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Moderate 
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Recent Decline 

Delirium 

DRS 6+ w/ 
Mood Decline 

5 

4 

Caregiver 
Distress 

4 

3 

Delirium 3 

Caregiver 
Distress 

3 
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Behaviour, Delusions, Hallucinations 
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The Numbers 
 
• 7 Clinical Risk 

Categories 
 

• 33 Terminal Nodes 
 

• 5 Levels of Risk 

CRISIS  

 5 - Very High 

 4 – High 

 3 – Moderate 

 2 – Mild 

 1 – Low 
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The Numbers 
 
• 7 Clinical Risk 

Categories 
 

• 33 Terminal Nodes 
 

• 5 Levels of Risk 

CRISIS  

 5 - Very High 

 4 – High 

 3 – Moderate 

 2 – Mild 

 1 – Low 
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The Numbers 
 
• 7 Clinical Risk 

Categories 
 

• 33 Terminal Nodes 
 

• 5 Levels-of-Risk 

CRISIS  

 5 - Very High 

 4 – High 

 3 – Moderate 

 2 – Mild 

 1 – Low 
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Patient Characteristics 
  

• Aggressive Behaviour 
• Declined recently in self-sufficiency 
• Delirium 
• Caregiver is in high distress 

 
CRISIS Algorithm Outputs 
 
  
  
 

 
 

 
 
 

CRISIS Level-of-Risk:     4-High 
 
Clinical Risk Category – Behaviour, Delusions, or Hallucinations 
 
Key CAPs to Modify Risk – Behaviour, Delirium 
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Placement Population (Jan. 1 – Dec. 31 2014) 
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CRISIS Level 

90-Day Crisis Placement 

• The proportion of patients placed as a crisis 
increases steadily across levels 
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Placement Population (Jan. 1 – Dec. 31 2014) 
 

• AUC (Area Under the Curve)= 0.728 (0.686 – 0.780) by CCAC 
• More predictive in CCACs with lower overall rates of placement 
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Placement Population (Jan. 1 – Dec. 31 2014) 
 

Clinical Category % 
 Abusive Relationship CAP 1.29% 
 High ADL Impairment 14.68% 
 Wandering 7.81% 
 Behaviour, Delusions, Hallucinations 17.50% 
 Cognitive Impairment 13.21% 
 Moderate ADL Impairment 16.94% 
 Mild ADL Impairment 28.58% 
 Total 100.00% 

CRISIS  % 

 5 - Very High 2.82% 

 4 – High 21.39% 

 3 – Moderate 31.92% 

 2 – Mild 22.98% 

 1 – Low 20.89% 

 Total 100.00% 
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Important Points 

Crisis placement is not always the best care 
option for patients with a high CRISIS level.  It 
is important to consider interventions to modify 
risk of immediate placement, e.g., delirium. 

CRISIS Algorithm supports clinical decision-
making and does not automate the process. 

CRISIS Algorithm is different from the MAPLe. 
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Next Steps 

Janet McMullan, OACCAC 
Nancy Ackerman, OACCAC 
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Next Steps 

• Pilot Testing for user acceptance: 
• Personal Support Algorithm – Early June 2015, 
• Long Term Care Algorithms – Late June 2015, 
• Final Report to PCSC – November 2015, 
• Six CCACs participating – HNHB, MH, Central, 

Central West, Central East, North West. 
• Review through interRAI processes. 
• Consider opportunities for use with the interRAI 

CHA. 
• Finalize algorithms for use with transition to 

the interRAI HC. 
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