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Abstract

We present a D3Q19 lattice scheme based in MRT with central moments (MRT-
CM), where the free parameters of the model are optimized to dissipate high
wavenumber under-resolved flow structures. In [16], the authors compared the
BGK, MRT-RM and MRT-CM for the D2Q9 lattice scheme, using von Neumann
analyses, to quantify their numerical properties, and based on these findings,
proposed an optimized 2D MRT-CM scheme with enhanced stability for under-
resolved flows. Here, we extend the idea to the D3Q19 MRT-CM scheme.
As before, we base our optimization, for the free parameters, on the k-1%
dispersion-error rule, that states that waves with dispersive errors above 1%
should be dissipated since they pollute the solution and may cause instabilities.
To this aim we increase dissipation in the scheme for waves with dispersive
errors above 1%.

The resulting optimized scheme is verified through a Von Newmann analysis
and validated for the 3D Taylor-Green isotropic turbulent flow. We show how
the original D3Q19 MRT-CM (d’Humiéres version) leads to unrealistic kinetic
energy accumulation at high wave numbers, whilst our optimized MRT-CM
provides the correct energy dissipated rate, avoiding energy build up at high

wavenumbers. These results suggest that our optimization strategy enhances
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stability and allows for accurate energy spectra in under-resolved flows simulations
such as typically found in Large Eddy Simulations.
Keywords: Lattice Boltzmann, D3Q19 multiple-relaxation time, von Neumann

analysis, rule of k-1% dispersion-error, homogeneous isotropic turbulence.

1. Introduction

Over the last decades, the Lattice Boltzmann method (LBM) has become
an alternative to traditional discretization techniques of the Navier-Stokes (NS)
equations to simulate fluid flows. Thanks to the efficient parallelization [1], the
LBM has a high computing performance being competitive against NS approaches
for many applications. The LBM is capable of simulating situations where sound
and flow interact, such as aeroacoustic generation [2| [3]. Additionally, it is
to simulate a wide range of multiphase [4} 5] and multicomponent [6] flows.
Despite its multiple use, in particular the turbulent flow simulations have to
be validated properly because it appears in many applications. In this work,
the homogeneous isotropic turbulence is computed to analyzed the turbulence
quantities for different LB approaches.

The collision operator is responsibility of modeling the physics correctly, and
has an strong effect in the numerical stability of the scheme [7, [8]. Several
collision operators have been proposed to extend the range of applicability of
the LBM. Recently, Coreixas et al. [9] proposed a formalism that encompasses
all these approaches within a common mathematical framework. In this work,
we focus into the single BGK and multiple-relaxation MRT time collision operators.

The most popular collision operator, the single-relaxation time, is based
on the BGK [10] approximation. In this model a unique relaxation time is
considered for all the probability distribution functions. As a result of its simplicity,
it has severe stability limitations [11], precluding its use at low viscosities, large
Mach numbers or under-resolved simulations.

On the other hand, the multiple-relaxation time with raw moments (MRT-

RM) collision operator [12] was introduced in an attempt to improve the BGK
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stability limitations. This operator enables different relaxation times for each
probability distribution function. The increased complexity with respect to BGK
resulted in a improved numerical stability [13].

Despite the enhancement in the stability of the MRT-RM with respect to
the BGK collision operator, the MRT-RM can still show instabilities for small
fluid viscosities [14]]. Consequently, the MRT with central moments (MRT-
CM) collision operator was introduced [15]. Unlike the MRT-RM, where the
moments are calculated in the global reference frame; the MRT-CM is calculated
with the local macroscopic velocity. Using this formulation for the collision
operator in the space of moments, it is possible to obtain a higher numerical
stability because the higher dissipation at high wavenumbers [[16]].

Von Neumann stability analyses [[17] enable the quantification of numerical
errors in numerical schemes. Sterling and Chen [18] were the first to apply
this analysis to the LB BGK approach. Then, Lallemand and Luo [13]] used
it to compare the enhanced stability of the MRT-RM over the BGK approach.
Subsequently, Siebert et al. [19] included high order terms into the equilibrium
distribution of the D2Q9 model to improve the linear stability of the scheme (as
shown depicted Fig. 2 in [19]). Malaspinas [20] proposed a new version of the
BGK with improved stability and based on recursive relations and regularization
for the LB posed as Hermite series, which has been subsequently validated by
Mattila et al. [21]] and Coreixas et al. [22]. Later, in a previous work [[16], we
shown how the MRT-CM is more dissipative at higher wavenumbers compared
with BGK and MRT-RM, which provides a better numerical stability.

Besides providing insight into numerical stability, this technique has been
successfully used to provide insight into dispersive and dissipative errors. Marié
et al. [23]] compared BGK and MRT-RM collision operators. Dubois et al. [24]
studied the numerical stability of the relative velocity (MRT-RM and MRT-CM)
D2Q9 schemes with two different set of moments, proposed by Lallemand and
Luo [13] and Geier et al. [14]. They concluded that MRT-CM with Geier’s
conservation law [[14] had better stability properties. Recently, Gauthier et al.

analyzed the information carried by the interaction between modes [25], giving
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an understanding to the reason of the numerical instability.

As mentioned, both the MRT-RM and the MRT-CM relax each hydrodynamic
moment with a different relaxation time but all combinations lead to the same
macroscopic state through the Chapman-Enskog expansion [26]]. The relaxation
times that are not fixed by the physics of interest become free parameters that
can be optimized to enhance particular numerical aspects. Lallemand and Luo
[13] optimized these parameters (for the D2Q9 lattice scheme) maximizing
the Galilean invariance of the scheme, while reducing numerical errors (i.e.
dispersion and dissipation). Similarly, Xu and Sagaut [2} [27] proposed an
optimization to minimize dispersion/dissipation errors for the MRT-RM in D2Q9
scheme. Recently, in a previous work [[16]], we optimize the D2Q9 MRT-CM to
increase dissipation only for high under-resolved wavenumbers (above the k-1%
dispersion-error), leaving low wavenumbers (well resolved scales) unchanged.
This was tested successfully in the double periodic shear layer test.

In this work we extend previous ideas to improve the MRT-CM for 3D flows.
The optimization strategy used previously for D2Q9[16] is now extended to
the D3Q19 lattice scheme. Instead of minimizing dissipation errors for all
wavenumbers, we propose to maintain numerical dissipation for well resolved
wavenumbers whilst increasing dissipation for under-resolved wavenumbers.
The optimization is inspired in the rule of k-1% dispersion-error presented
by Moura et al. [28] in the context of high order numerical methods. They
suggested that waves are only accurately resolved if the dispersion error (difference
between theoretical and numerical) is below 1%. The wavenumber at which
the error becomes 1% was named “k-1% dispersion-error” and lead to the “1%
rule”. Following this rule, all waves above the k-1% should be dissipated since
these are poorly resolved and may pollute the solution. We follow the idea of
damping under-resolved waves and apply it to the LBM for the first time in a
3D lattice scheme.

To assess the D3Q19 optimized MRT-CM, we simulate the Taylor-Green vortex

(TGV) case [29] that includes starting transitional flow followed by decaying

homogeneous turbulence. This case enalbes the quatification of vortex stretching/pairing
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processes and production of small-scale eddies, allowing the study of the dynamics
of transition to turbulenc ans subsequent decaye. This test-case has been widely
used to study dissipation errors of numerical schemes, of high order type, see
e.g. [30,/40] and also LB schemes, e.g. [31} 32} 133]].

The remaining of this text is organized as follows. First, in Section 2, we
describe the numerical methodology which is divided in two parts: first, the
Lattice Boltzmann method with the different collision operators and second the
optimization strategy. Then, in Section 3, the results of the optimized approach
are tested for the turbulent Taylor Green Vortex case. Finally, in Section 4

conclusions are presented.

2. Methodology

In this section the numerical methodology used in this work is presented.
First, the Lattice Boltzmann method (LBM) is introduced. Special attention
is paid to the definition of the collision operator. Secondly, an optimization
method based on linear stability analysis is shown. The optimization aims at
maximizing the robustness of the scheme for under-resolver simulations without
penalizing its accuracy. The final objective is to improve the performance of
the scheme for turbulent flows, therefore a three dimensional LBM scheme, in

particular the D3Q19, is considered.

2.1. Lattice Boltzmann method

2.1.1. Generalities
The LBM is a numerical technique that provides numerical solutions of the

continuous Boltzmann equation. The discrete Boltzmann equation reads:
filx+ e At t + At) — fi(x,t) = AtQ;(x,t), 1 =0,...,Q — 1. (D)

The discrete set of velocities is a vector of () components represented by
the symbol e;. As a consequence, the discrete probability distribution functions

(PDFs), fi(x,e;,t), are stored at each lattice node for each time step, At. At



each time step, the information stored in the discrete PDFs is streamed through
the lattice and collided. The discrete collision operator €2; is the responsible of
computing the post-collision state conserving mass and linear momentum.

115 The collision operator is of critical importance in the LBM method, as it
is responsible of the modelization of the physics. The first approach for the
collision operator was proposed by McNamara [34], but it was still rather complicated.
The high cost of its evaluation precluded its use until Higuera and Jimenez [8]
simplified this operator by performing linearization (under the assumption that

120 the discrete PDF, f;, is close to its equilibrium state). Expanding the discrete
collision operator, €;, around the equilibrium state of the discrete PDF, f/9,

leads to a linearized operator:

Q; = K;i(fi* = fi), 2

where K; is known as collision matrix, and was further simplified to obtain the

different collision operators. The collision matrix describes how the PDFs relax

125 towards the equilibrium state. It is directly related with the viscosity and Mach
number.

The discrete local equilibrium function f;* is usually computed as a second

order Taylor expansion of the Maxwell-Boltzmann distribution,

2 2

fieq = pw; <1 + ei2u + (eiu) u ) , (3)

4 9.2
c? 2cs 2cz

where w; are weighting constants built to preserve isotropy and c; is the speed
of sound. The particular values of the weighting constants w;, depend on the

discrete set of velocities [35]].

130 2.1.2. Collision operators
Single-relaxation time
The single-relaxation time based on the Bhatnagar-Gross-Krook (BGK) [10]]
approximation is the most popular approach for the collision operator. In this

case, using KX = (1/7)4;; (assuming d;; Kronecker delta notation) the collision
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operator simplifies to:

1
QP = —(F* = fi)- C))

Only one relaxation time for all PDFs, 7, is considered. The Chapman-
Enskog expansion applied to the classical LBM equation (Eq. [I), with Eq. [4as
the discrete collision operator, establishes the relation between the relaxation
time, the kinematic shear, v, and bulk viscosities, n, of the macroscopic fluid
[36[:

At 2

(T_i)v n= Bya

. 5 &)

vV ==cC

where D is the dimension space. The BGK collision operator, is still widely
used but has several shortcomings. For example, the kinematic viscosity is
conditioned by the relaxation parameter, 7, (see Eq. |5) which causes numerical
instabilities for values near 7 = 0.5 (with At = 1), therefore complicating the
simulation of high Reynolds number flows [11]]. It should also be noticed that
the bulk viscosity, 7, cannot be freely chosen because it is constrained by the

kinematic viscosity, v.

Multiple-relaxation time
In the MRT, the relaxation matrix is computed as a product of three matrices,
K %RT =M ﬁcl S Mi;. The matrix M accounts for the definition of the moments

while the matrix S is defined as a diagonal matrix:
Skt = k01, (6)

where s is a vector with relaxation times for the different moments. The MRT-

CM collision operator is obtained defining the collision matrix as K jl\f RT-CM _
My (w) =1 Spi M (u):
Q?ART_CM = M () "' S My () (7 = fi). 7

This notation allows working with the equilibrium PDF, f;* defined in the
BGK model. Note that Eq. [/] corresponds the MRT-CM because it takes into

account the macroscopic velocity, u. On the other hand, if u = 0 the MRT with
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raw moments (MRT-RM) is obtained. Additionally, note that the BGK collision

operator can be recovered by setting all the diagonal elements S;; to 1/7.

The formulation introduced up to this point is general for any lattice distribution
and spatial dimensions. In this work we aim at improving the performance of
LBM for under-resolved turbulent flows, therefore a three dimensional LBM

is considered. In particular we focus on the popular D3Q19, whose moment

matrix, M, can be found in[Appendix Al

2.2. Optimization method for the MRT-CM

In this section the optimization method to improve the performance of LBM
for turbulent flows is introduced. This method, introduced by the authors in
a previous work [16], modifies the relaxation times of the collision operator in
order to maximize the dissipation of under-resolved wavelengths. The optimization
method makes use of linear stability analysis to separate well-resolved and

under-resolved wavelengths.

2.2.1. Linear stability analysis
Theoretical modes

The theoretical modes are obtained through an analytic linearization of the
NS equations [37]]. The resulting hydrodynamic modes are known as shear
mode, w{, and acoustic modes, wf. The first is related to the kinematic shear
viscosity. The second is related to both kinematic shear and bulk viscosities. The

analytical expressions for the theoretical hydrodynamic modes read:

wi=u-k—ivk?

8

+ .1 (D=1) n
wi = (ufc) -k—i[*5 V—|—§],
where k is the wavenumber. For an illustrative purpose Figure[I]depicts dispersion
(real part of w, Re(w)) and dissipation (imaginary part of w, Im(w)) behavior

for a range of wavenumbers [0, 7], following Eq. |8|for three-dimensions (D=3),
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Figure 1: Dispersion, Re(w), (a) and dissipation, Im(w), (b) of the three-dimension theoretical

shear mode, w;: ===, and acoustic modes, wti:

== ,at Ma = 0 with v = 10‘3’"72 and
n=3.66-10"2m,

u = {u,,0,0} and k = {k,,0,0}.

Numerical modes

The numerical modes can be obtained by means of von Neumann (VN)

analysis [18]. Von Neumann analysis splits the PDF into an equilibrium state,
fi, plus a perturbation, 0 f;(x,t):

The first term in the right hand side, f;, is the global PDF, which does not vary
with time and space i.e., it depends only on the average density and velocity.
The second term in the right hand side, J f;(x,t), accounts for the fluctuations

from equilibrium. The fluctuation is assumed as a sinusoidal wave Fje?(kx—«%)

with an amplitude F;.

Substituting Eq. @] into Eq. |2, expanding the f;? by means of Taylor series
centred at the global distribution and after rearranging the expression, an eigenvalue
problem is obtained, F;\ = F;G;;, where \ = e~ WAt are the eigenvalues of the
amplification matrix, G,;, defined as:

A =0 ikAte;

1 . ik = 0ik€ ;

Gij = Ay, [0k + AtKpn Ny | with ofen (10)
Ny = Tfnj — bnjs
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where the different collision matrices, K;;, are defined in Section For

more details on the VN analysis for the LBM, see [18 [16].

2.2.2. Optimization process: Rule of k-1% dispersion-error

The optimization described here has been inspired by the rule of k-1% dispersion-

error proposed by Moura et al. [28] in the context of hp spectral methods
[38} 139, [40]]. Moura et al. suggested that wavenumbers with dispersion errors
(difference between theoretical and numerical dispersion modes) higher than
1% should be dissipated, since high dispersion errors tend to pollute the solution.
In other words, a high dissipative error at high wavenumbers is a positive
feature of a numerical method. In a previous work [16], we proposed to

optimize the values of the free relaxation times (those affecting moments of

order higher than two), to maximize the dissipation of the shear mode in wavenumbers

higher than the k-1% dispersion-error wavenumber for the D2Q9 MRT-CM.
The dissipation level is measured as the area defined by the theoretical shear
mode and numerical shear mode curves for wavenumbers higher than k-1%
dispersion-error wavenumber (green area in Figure [2). The error for the k-1%
dispersion-error is calculated with the shear mode (theoretical and numerical)
by means of the following expression:

|ws _w§|

%Error(k) = - 100. (11D

w§
As the rule describes, k-1% dispersion-error wavenumber occurs when this
error is 1%. The dissipation of acoustic modes has not been taken into account

because they barely change with the free parameters.

2.2.3. Optimized MRT-CM

This section details the optimization process for D3Q19 MRT-CM lattice
scheme. The optimization aims at maximizing the dissipation of the shear
mode in wavenumbers higher than the k-1% dispersion-error wavenumber by

modifying the values of the free relaxation times (s19_1s)-

10
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Figure 2: Dissipation area calculated from the difference between the theoretical, w!,and numerical,

ws,shear mode.

The free parameters s19,11,12, $13,14,15 and $16,17,1s are grouped due to moments
symmetry constrains. Besides, only the first two groups are considered in the
optimization, as we found that the last group does not affect the shear dissipation
mode. As aresult, s16,17,1s has been fixed to 1.4, the value proposed by d’Humieres
[41]. The flow direction and the perturbations are considered parallel to the
lattice direction in the optimization process, i.e., u = {u,, 0,0} and k = {k,,0,0}.
As numerical and theoretical modes depend on the fluid conditions (Mach number,
Ma and viscosity v), the free relaxation times of the model have been optimized
for different values of Mach number (Ma=0.1, 0.2 and 0.3) and viscosity (v=1n=10"3,
10~* and 1079).

The optimal values of s10,11,12 and s13 14,15 are found by a brute force approach
where the parametric space of the free parameters is discretized with As; =
0.01 (i.e. a tolerance of 1%). Besides, only values of the relaxation times
in the range [0, 2] are considered. Table [1f shows the optimal values of these
parameters. It can be observed that the values are dependent on Ma and
are almost independent of the viscosity (see Table [I). These values are very
different from the free parameters proposed by d’Humieres [41] were s19_12 =
1.98, s15_15 = 1.98 and s16_15 = 1.4.

To illustrate the effect of the optimization, the numerical modes of the

optimized MRT-CM are compared with the ones of d’Humieres’ MRT-CM in

11
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Ma =0.1 Ma = 0.2 Ma=10.3

v="mn| Sio-12 S13-15 | S10-12 S13-15 | S10-12 S13-15
1073 0.62 0.81 0.92 1.12 1.11 1.32
10~4 0.61 0.80 0.90 1.10 1.10 1.30
1075 0.61 0.80 0.90 1.10 1.10 1.30

Table 1: Optimized values for s10 = s11 = s12 and s13 = s14 = s15 at different viscosities and

Mach numbers.

ms

Figure These modes are computed for Ma= 0.2, v = 10732 and 5 =
6.7 - 10‘4%. The values of the Mach number, Ma , viscosities, v and 7, and
wavenumbers, k, have been taken from [16] to permit a comparison of the
results. It can be seen that the optimized MRT-CM presents a higher dissipation
rate at high wavenumbers than d’Humieres MRT-CM. This should result in an
enhanced robustness for under-resolved simulations. Besides, it should be noticed
that this increase in the dissipation rate does not affect the dispersion error at
low wavenumbers. As a result, similar behaviour of the optimized MRT-CM and
d’Humieres MRT-CM is expected for low wavenumbers. Both approaches will
be tested for an isotropic turbulent flow in the following section.

In we have included a comparison between the numerical
modes of BGK, MRT-RM and MRT-CM for D3Q19 lattice scheme. Besides, some
insight on the effect of the relaxation parameters on numerical modes is given
in where d’Humiéres [41]] and Lallemand’s [13] relaxation times

are compared for D3Q19 lattice scheme.

3. Numerical validation

In this section the new optimized scheme is compared with previous approaches
found in the literature. The aim of this section is to show that the proposed
scheme provides increased stability without penalizing the accuracy.

In order to study the effect of the present optimized MRT-CM on a three-

dimensional turbulent configuration, the decaying Taylor-Green vortex (TGV)

12
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Figure 3: Dispersion (a) and dissipation (b) for D3Q19 with d’Humiéres’ MRT-CM: A, optimized
MRT-CM: * and theoretical modes (shear mode: ==mand acoustic modes: = =) atMa = 0.2 with

v=10"3 % (Note that the dissipation theoretical modes are overlapped).

[29] has been simulated. It is a fundamental test case used as prototype for
vortex stretching and production of small-scale eddies and therefore allows
the study of the dynamics of transition to turbulence. This test-case has been
widely used to study the dissipation errors of numerical schemes [30]]. In the
LB context, few studies have been validated their approaches with the three-
dimensional TGV [31][32]].

In this work, the TGV is simulated with BGK, d’Humiéres’ MRT-CM and
optimized MRT-CM with different lattice resolutions. Grid resolution of N =
32,64,128 and 256 have been computed, but the analysis has focused in the
under-resolved resolutions (N = 32 and 64), to prove if the new optimized

approach provides a correct dissipation evolution.

3.1. Simulation setup

The TGV problem can be run using a variety of flow and initial conditions.
However, the conditions and post processing used here were specified by the
organizers of the AIAA First International Workshop on High-Order Methods in
Computational Fluid Dynamics [30].

The domain simulated consists of a cube with length defined as —7L <

x,y, z < wL. The boundary conditions are periodic and the initial conditions of

13
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the simulation are selected as:
u, =Upsinfz/L] cosly/L] cos[z/L],
u, = — Up cos[z/L]sinly/L] cos[z/L],
(12)
u, =0,

_poU¢
16

Po (cos[2x/L] + cos[2y/L])(cos[2z/L] + 2),

where the reference density and length, pg and L, are set to one.

The reference velocity, Uy, is selected through the Mach number, Ma =
Up/cs = 0.1. The kinematic shear viscosity is set through the relation with
the Reynolds number, Re = Uy L /v = 1600. The physical time computed in each
simulation is ¢ = 20t.,, where the characteristic time, ¢, is defined as t. = L/Uj.
Besides, different lattice numbers (N = 32, 64, 128 and 256) have been used in

order to test the different collision operators.

3.2. Results

To analyze the capabilities of each collision operator the dynamics of a
three-dimensional decaying vortex has been computed and compared with a
DNS simulation performed with a spectral method [30]. In the following, the
dissipation rate and the spectrum of the kinetic energy is scrutinized for various

under-resolved grids.

3.2.1. Reference results

The TGV evolution is characterized by three main steps visible in the time
trace of kinetic energy dissipation rate, ¢ (see Eq. [13). First, the initial laminar
state is transitioning to turbulence until the stretched vortex tubes break down
into small scales around ¢/t. = 5. Then the dissipation rate rises to a sharp
peak near ¢/t. = 9 corresponding to the fully turbulent state which is then
decaying similarly to an isotropic and homogeneous turbulence. Figure [4]shows
the different steps described through the time evolution of the kinetic energy
dissipation rate, ¢, for Re = 1600 and Ma = 0.1. Flow structures are represented

by isosurface of the Q-criterion colored by kinetic energy. The simulation on a

14



N = 256 grid is in very good agreement with the spectral results also plotted in

Figure[4]

0.014
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0.0041
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Spectral DNS N=512

BGK N=256

2.5 5.0 7.5 10.0 125 15.0 17.5 20.0
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0.000

Figure 4: Isosurface of the Q-criterion colored by kinetic energy at time ¢/t. = 4 (a), 8 (b), 10 (),
16 (d) for Re = 1600 on a N = 256 grid compared with DNS results with N = 512 [30].

3.2.2. Kinetic energy dissipation rate
As illustrated before, in order to study the evolution of the fluid the temporal

evolution of the kinetic energy dissipation rate ¢ is calculated:

dFE}
=——. 13
7 (13)

As shown by Eq. the kinetic energy dissipation rate is the temporal
derivative of the kinetic energy, Fj, which is estimated using the following

formula:

1 u?
) O — —d 1
g ,OOV/p2 v (14

where the density is p = pg and V is the volume of the domain.
The results obtained with this definition are compared to the kinetic energy
dissipation rate of the reference [30]. Figure[5|shows the time evolution of the

kinetic energy dissipation rate, ¢, for BGK and MRT-CM (with d’'Humiéres’ and

15
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optimized parameters) at different grid resolutions, taking as reference data the
spectral DNS solution N = 512.

Analyzing the BGK behavior, the N = 32 and 64 simulations give rise to
numerical instability at different times, while the NV = 128 grid is stable. The
N = 32 becomes unstable almost at the beginning of the simulation. The
N = 64 grid simulation collapses earlier around ¢/t. = 5, when the stretched
vortex tubes break down into small scales. However, the N = 128 grid gives
satisfactory results for the transition region and the peak but the decaying phase
is not properly captured.

Regarding the MRT-CM, both set of relaxation times are stable with the
N = 32 and 64 grids. The laminar stage (from ¢/t. = 0 to t/t. = 5) is
well predicted but the difference comes when turbulence structures starts to
develop. For the coarser grid, N = 32, the transition evolution is faster than
the spectral solution, in consequence the peak is produced earlier. Note that
with the optimized values, turbulence levels are well predicted. Additionally,
d’Humieres’ parameters have a lower dissipation rate, showing zero dissipation
at the end of the simulation ¢/t. = 20. Using N = 64, the dissipation rate is
more accurate in the transition since the peak is produced at ¢/t. = 8 instead
t/t. = 9. Then, similar behavior is produced, as in N = 32, where the optimized
approach has some extra dissipation and ends with the correct dissipation level.
Again, d’'Humieres’ approach ends with zero dissipation rate. Finally, with the
resolutions N = 128 and N = 256, both set of parameters reproduce with a
good accuracy the dynamics of transition to turbulence. Note that for N = 256

the results of the three approaches are overlapped.

3.2.3. Kinetic Energy spectra

The transfer of energy from large scales to small scales is referred to as
inviscid energy cascade (as proposed by Kolgomorov in 1941). The largest
eddies contain most of the kinetic energy, whereas the smallest eddies are
responsible for the viscous dissipation of kinetic energy.

Therefore, since turbulence exists with a range of eddy sizes, it is frequently

16
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Figure 5: Kinetic energy dissipation rate for BGK: e, ’’Humieres’ MRT-CM: A, and optimized MRT-
CM: B, on a grid N = 32 (a), N = 64 (b), N = 128 (c) and N = 256 (d) at Re = 1600 and Ma
=0.1.

convenient to take the Fourier transform of the velocity field in order to consider
the Fourier components of different wavenumbers. The components of the

velocity in Fourier space will be:

u(k) = /u’(x) e kX dx, (15)

where u’ is the turbulent component velocity. Then, the energy spectrum function
E(k) is a characterization of the energy turbulent flow in the case of homogeneous

turbulence obtained, it reads:

Ek) = ~u>, (16)
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Continuing with the analysis, in order to understand how the optimization
affects to the turbulence dissipation at the different wavenumbers, Figure [6]
shows the kinetic energy spectra of the optimized parameters compared with
d’Humieéres’ parameters at different grids and time steps. The Kolmogorov law
in spectral form E(k) ~ k=5 and the cut-off wavenumber, k., are used for the
comparison. The cut-off wavenumber is the maximum wavenumber for resolved
length scales.

Under-resolved resolutions (N = 32 and N = 64) have been selected to
test if the optimized approach provides a correct evolution tendency dissipating
the high wavenumbers. First, notice how the differences between both set of
parameters decrease when the grid resolution increases. Then, at ¢/¢t. = 6 and
8, before and after the dissipation peak (see Figure |5) the optimized values

are less dissipative enabling higher wavenumbers (smaller eddies). Moreover,

d’Humieres’ MRT-CM has an extra kinetic energy accumulation at high wavenumbers.

This results in a wrong decay of kinetic energy compared with the theoretical

slope of k=5. However, with our optimized MRT-CM, the energy is dissipated

correctly obtaining a correct energy decay. These results suggest that the optimization

strategy applied is able to solve correctly the dynamics of transition to turbulence,

giving an adequate trend in energy decay for isotropic turbulence.
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Figure 6: Kinetic energy spectra at ¢t /t. = 6, 8, 14, 20 for ’'Humieres’ MRT-CM:
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and k.
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0 4. Conclusions

In this paper, the free parameter (relaxation times) of the D3Q19 MRT-

CM are optimized to enhance robustness for under-resolved simulations. The
optimization strategy aims at maximizing the dissipation of the numerical scheme

for under-resolved flow features. The limit between well- and under-resolved

s waves is based on von Veumann linear stability analyses and the so called k-

1% dispersion-error rule. The D3Q19 optimized MRT-CM scheme is compared

with standard BGK and MRT-CM schemes by means of the Taylor-Green vortex

turbulent test. The three schemes perform similarly for well-resolved setups,

however the optimized MRT-CM provides significantly better results than BGK

s and MRT-CM for under-resolved setups. In particular, the optimized MRT-CM

is more accurate at capturing the three-dimensional kinetic energy evolution

and energy decay for under-resolved simulations; providing the basis for more

general Large Eddy Simulation models.
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s Appendix A. Moments matrix for D3Q19

Based on Geier et al. [[14] moments, the following set of moments is proposed:

Xmylzh =(X°v° XY, Z, XY, XZ,YZ,X?> - Y? X? - 72, X? +Y? + Z?,
XY?+XZ% XY +YZ2 X?Z+Y?Z XY? - X7 X?Y - Y 7% X*Z -Y?Z,
X2Y2 4 X272 4+ V222 X2Y2 4 X222 —v2 722 X2 - X229 T m, 1,k =0,1,2
(A1)
Applying the Gram-Schmidt orthogonalization procedure to Eq. the

matrix M (u) is obtained:

X0y0z0 pli
X Je li
Y Jy li
A Jz li
XY Pazy |z
XZ Pz |i
YZ Pyz l:
X2 Y2 DPuww |i
(X2 +Y?2+22) -322 3Dax |i
M(u) = (X2 4+Y2+22) -2 =1 el; (A.2)
3(XY?+ XZ?%) —4X i
3(YX24+YZ?%) -4y Qy i
3(ZX?2+2Y?) -4z Q- |i
(XY? - X27?) ma |i
(YX2-YZ?) my |;
(ZX? - ZY?) m. |;
3(X2Y2 4+ X272 - 2Y27%) — (2(2X2 - Y2 - Z?)) 3ea |i
3(X2Y? - X27%) - 2(Y? - Z?) Tww |i
3(X2Y2 4+ X222+ Y222 —4(X2+ Y2+ Z2%) +4 els

As can be seen, the selection of Geier moments has a physical foundation. p
is the density, e is the kinetic energy, ¢ is related to the kinetic energy square,

j = pu components correspond to components of momentum, q components
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correspond to the internal energy components, p components correspond to the
symmetric traceless viscous stress tensorsm, 7 is related with the kinetic energy
and the viscous stress tensor and m components are the asymmetric third-order
moments.

Hence the transformation matrix in raw moments is M (u = 0) with X = e,,

Y=¢,and Z =e..

111 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 -1 0 0 -1 -1 -1 -1 0 0 1 0 0 1 1 1 1 0 0
0 0o -1 0 -1 1 0 0O -1 -1 0 1 0 1 -1 0 0 1 1
0 0 0 -1 0 0 -1 1 -1 1 0 0 1 0 0 1 -1 1 -1
O 0 0 0 1 10 0 0 0 0 0 0 1 -1 0 0 0 0
O 0 0 0 0 0 1 -1 0 0 0 0 0 0 0 1 -1 0 0
O 00 0 0 0 0 0 1 10 0 0 0 0 0 0 1 -1
0 1 -1 0 0 0 1 1 -1 -1 1 -1 0 0 0 1 1 -1 -1
0 1 1 -2 2 2 -1 -1 -1 -1 1 1 -2 2 2 -1 -1 -1 -1
MO=| 2 -1 -1 -10 0 0 0 0 0 -1 -1-10 0 0o o o o | (A3)
0 4 0 0 1 1 1 1 0 0 -4 0 0 -1 -1 -1 -1 0 0
0O 0 4 0 1 -1 0 0 1 1 0 —4 0 -1 1 0 0 -1 -1
0 0 0 4 0 0 1 -1 1 -1 0 0 -4 0 0 -1 1 -1 1
O 0 0 0 -1 11 1 0 0 0 0 0 1 1 -1 -1 0 0
0 0 0 0 -1 1 0 0 1 1 0 0 0 1 -1 0 0 -1 -1
O 0 0 0 0 0 -1 1 1 10 0 0 0 0 1 -1 -1 1
0 —4 2 2 1 1 1 1 -2 -2 -4 2 2 1 1 1 1 -2 —2
0 0o -2 2 1 1 -1 -1 0 0 0o -2 2 1 1 -1 -1 0 0
4 0 0 0 -1 -1 -1 =1 =1 =1 0 0 0 -1 -1 -1 -1 -1 -1

Finally, as it was explained before, Sy; is a diagonal matrix. The entries
of this diagonal matrix account for the relaxation times, s;, of the different

moments. In particular, in the D3Q19 scheme this reads:

Sk = (30751,82753,84755, 86,587,858, 59, 5107311,51275137514751575167517a318)~
(A4
In the case of MRT collision model the hydrodynamic quantities (density and
momentum) can be imposed with any value of s, s1, s and s3, provided p =
p¢? and u = u®?. In what follows, they are set to zero.
Commonly in the literature, the rest of the relaxation times are set as the

d’Humieres’ parameters [41]]. To sum up, the d’'Humieres’ diagonal matrix of
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the collision matrix of the MRT collision operators reads:

Sii = (0,0,0,0, 4, S5, S6, S7, S8, S9, 1.2,1.2,1.2,1.98,1.98,1.98,1.4,1.4,1.4).
(A.5)
As for the BGK collision operator, the Chapman-Enskog expansion establishes
the relation between the relaxation times and the kinematic shear and bulk
viscosities of the macroscopic fluid [13]. In the MRT approach the kinematic
viscosity, v, and the bulk viscosity, 7, are related to the relaxations parameters
(s4, s5, S6, S7, S8, Sg9) associated to the second order moments. As a result,
this approach removes some of the constraints of the BGK collision operator. In

particular, the viscosities read:

1 A 2 1 A
AL oS withi=4,...8, n= 22 -5hH e

vEsl T D%\ 2

It is important to notice that, having identified the relations between the

kinematic and bulk viscosities with the relaxation times, the higher order moments

relaxation times, s1o_1s, remain as free parameters. Finally, it should be mentioned

that the relaxation values, s;, related with the viscosities must lie between 0 and
2 since the kinematic and bulk viscosity cannot be negative (see Eq. [A.6] with
At = 1).

Appendix B. BGK, MRT-RM and MRT-CM collision operators

In this appendix, the numerical modes of three different collision operators
(BGK, MRT-RM and MRT-CM) are compared. Following our previous work
[16] regarding an optimization of the D2Q9 MRT-CM, the bulk viscosity is
fixed in BGK and MRT approaches to the same value to permit the comparison
between both approaches. So, the relation 7®%X = 2u is also applied to the MRT
collision operator. In particular, the kinematic viscosity is fixed to 10‘3% and
consequently the bulk viscosity is fixed to 6.7 - 10‘4%. That means a value of

7 = 0.503 for the BGK collision operator and values s4_¢ = 1.988 for the MRT
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collision operators. The rest of relaxation times are fixed to the values proposed
by d’Humiéres et al. [41]] (see Eq. [A.5).

Figure shows the dispersion and dissipation of the three approaches
compared with the theoretical modes for Ma= 0.2. Notice that the dispersion
errors in Figure at low wavenumbers is negligible for the kinetic modes.
But for large wavenumbers we observe the development of non-negligible dispersion

errors, which should be dissipated correctly.

= Dissipation
U 00

3 “““:!.:::::330.

2t ull“” 1888550y

1F ,..--m-nﬁ:n..';.
3 cosess®®
£ ’ %““uo.“u
14 -1t setssnnans )

_2 'I“zn“:n:::nnn

-3 ’ull““!"

kx

(a) (b)

Figure B.7: Dispersion (a) and dissipation (b) for D3Q19 with BGK: e, d'Humieéres’ MRT-RM: M,
d’Humiéres’ MRT-CM:

Ma = 0.2 with v = 1073 % (Note that the dissipation theoretical modes are overlapped).

and theoretical modes (shear mode: ===, and acoustic modes: ==) at

Figure|7(b)|shows dissipation where the theoretical modes (shear and acoustic)
overlap, which is due the contribution of the kinematic and bulk viscosities in
Eq. Also as expected, the modes have a similar behaviour as in D2Q9 [[16]
regarding the dissipation of the shear mode. The MRT-CM approaches presents
a higher dissipation rate at high wavenumbers.

Besides, the MRT-RM seems more unstable compared with the D2Q9 lattice
scheme at the same fluid conditions (see Figure 3(b) in [16]). These differences
between D2Q9 and D3Q19 lattice schemes could come from the different values
used from the literature for the free parameters, Lallemand’s [13] and d’Humieres’

[41] values for D2Q9 and D3Q19 respectively. This assumption is clarified in

the Appendi O
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Appendix C. Comparison between Lallemand’s and d’Humieres’ parameters:

As mentioned before, initially Lallemand and Luo [[13] proposed values
for the free parameters of the MRT collision operator for the D2Q9 lattice
scheme. Later, dHumieres’ [41] suggested different values for the D3Q19 MRT
relaxation times. Both set of parameters were obtained through an optimization
process based on linear stability analysis.

In this section, both Lallemand’s and d’Humiéres’ parameters are compared
for the D3Q19. So, taking into account the geometrical relation between the
D2Q9 and D3Q19 lattice schemes, the Lallemand’s parameters for the D3Q19

discretization are:

Sii = (0,0,0,0, s4, 85, S6, S7, S8, S9,1.9,1.9,1.9,1.9,1.9, 1.9, 1.54, 1.54, 1.54).
(C.1)
Figure shows the dispersion and dissipation for D3Q19 with Lallemand’s
parameters with v = 10_3% andn =6.7- 10_4% (s4—9 = 1.9988) at Ma = 0.2.
Notice how the shear mode dissipation is identical compared with the D2Q9
lattice scheme (see Figure 3(b) in [[16] ), which uses the Lallemand’s parameters

(Eq. [C.1). These plots confirm the assumption done previously.

Dispersion
Sl B seattansaseace] 0.000
ol uuulu"“". -0.002
n R -0.004
3 ‘...gg”“""m‘ 3 _0.006
E 0 aale TSP .--"". \é e
-1F "‘::::::n-lﬂi::_:iun!__.- — -0.008
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2888
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Figure C.8: Dispersion (a) and dissipation (b) for with D3Q19 BGK: e, Lallemand’s MRT-RM: M,

Lallemand’s MRT-CM: A and theoretical modes (shear mode: === 6 and acoustic modes: ==)

with v = 10732 and 5 = 6.7- 1074 £L (5, g = 1.9988) at Ma = 0.2 (Note that the dissipation
ms ms

theoretical modes are overlapped).
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Figure compares both Lallemand’s and d’Humieres’ parameters for the
MRT-CM collision operator. Note how the dissipation of the shear mode is higher
with d’Humiéres’, because the second order moments are related with the shear
mode dissipation. In this work, d’Humiéres’ values are used due to the higher
dissipation at high wavenumbers. This will prove advantageous to dissipate

under-resolved waves.

Dispersion
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Figure C.9: Dispersion (a) and dissipation (b) for D3Q19 with Lallemand’s MRT-CM: (M),

d’Humiéres’ MRT-CM: (A), and theoretical modes (shear mode, ===, and acoustic mode, ==)

with v = 107322 and 5 = 6.7 - 1074 £% (s4_g = 1.994) at Ma = 0.2 (Note that the dissipation
ms ms

theoretical modes are overlapped).
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