
CISC 879 : Software Support for Multicore Architectures

Presentation by: Yuanyuan Ding
Dept of Computer & Information Sciences

University of Delaware

Optimizing the Fast Fourier Transform on
a Multi-core Architecture

Long Chen, Ziang Hu, Junmin Lin, Guang R. Gao

IEEE International Parallel and Distributed Processing Symposium, 2007.

CISC 879 : Software Support for Multicore Architectures

Outline

• FFT Introduction
• IBM Cyclops-64 (C64) Architecture
• 1D FFT Optimization: Step-by-Step
• 2D FFT Optimization
• Conclusion

CISC 879 : Software Support for Multicore Architectures

FFT Introduction

• Radix-2 Cooley-Tukey algorithm: divide and
conquer approach.

• Recursively defined

• wN
k - twiddle factors, Fi - the N/2-point DFTs of fi(n).

• Recursive overhead are not favored, iterative
implementation are used.

CISC 879 : Software Support for Multicore Architectures

FFT Introduction

Bit-reversal permutation before butterfly computations

CISC 879 : Software Support for Multicore Architectures

Cyclops-64 Architecture
• Consisting thousands of C64 chips connected by 3D

mesh network, with every C64 chip:
• 80 64-bit processors, each processor 1 floating point unit

(FPU) + 2 thread units (TUs).

• 64 64-bit registers and 32 KB SRAM.

• 16 shared instruction caches (ICs)

• 4 off-chip DRAM controllers,

• Crossbar network with 96*96 ports, 4GB/s bandwidth per port,
384GB/s in total.

• Memory: scratch-pad (SP) memory, on-chip global
interleaved memory (GM), and off-chip DRAM

• GigaBit Ethernet controller and other I/O devices

• Etc.

CISC 879 : Software Support for Multicore Architectures

Cyclops-64 Chip

CISC 879 : Software Support for Multicore Architectures

Optimization Analysis – 1D

• Base Parallel Implementation
• Optimal Work Unit
• Special Handling of the First Stages
• Unnecessary Memory Operations
• Loop Unrolling
• Register Renaming and Instruction Scheduling
• Memory Hierarchy Aware Compilation

CISC 879 : Software Support for Multicore Architectures

Base Parallel Implementation
• Work Unit: smallest unit of concurrency.
• Intuitive work unit considers a butterfly operation:

• Read 2 point data and the twiddle factor from GM

• Perform a butterfly operation upon them

• Write the 2 point results back to GM

• Work units are assigned in a round-robin way.
• 6.54 Gflops are achieved in this implementation

CISC 879 : Software Support for Multicore Architectures

Butterfly Work Unit
• 1 Butterfly Operation
• 4 Butterfly Operation

CISC 879 : Software Support for Multicore Architectures

Optimal Work Unit

• Fine-grained work units imply large synchronization
overhead.

• Number of floating point operations cannot be
reduced -- defined by the FFT algorithm itself.

• Using bigger – point work units:
• the number of load and store operations are

efficiently reduced.
• the number of stages (number of barriers) are

reduced.

CISC 879 : Software Support for Multicore Architectures

• Number of cycles per butterfly operation VS the the
size of work unit (8 point is the best)

• Register spilling for large WU (Need 112 for 16-point)

Optimal Work Unit

CISC 879 : Software Support for Multicore Architectures

Optimal Work Unit

• Theoretically, a work unit of N-point data can get rid
of (logN-1) barriers.

• Percentage of FP operations is

• For C64 architecture, 8-point work unit is the best
choice without serious register spilling

• Reach a performance 13.17 Gflops.

CISC 879 : Software Support for Multicore Architectures

216 1D FFT incremental Optimization

CISC 879 : Software Support for Multicore Architectures

Thinking about the twiddle factors

• In the first logM stages for M-point work units, all
points in the same work unit are consecutive.

• The i-th stage of a complete FFT computation, 2i-1

distinct twiddle factors are needed.
• Thus apply 16-point work unit for the first 4 stages,

reaching 16.94Gflops.

• Half twiddle factors used in a later stage are the same
as those twiddle factors in the previous stage.

• Thus reduce the computation for the indices of twiddle
factors and memory operations.

CISC 879 : Software Support for Multicore Architectures

216 1D FFT incremental Optimization

CISC 879 : Software Support for Multicore Architectures

Loop unrolling & renaming

• Focus on bit-reversal permutation part. (5.7% of
total execution time)

• C64 ISA bit gather instruction used to do fast
indices computation. Unroll kernel loop 4 times, o
hide the memory latency.

• 25% improvement for permutation part, 1.4%
improvement on the overall performance.

• Further apply manual renaming and re-scheduling,
achieve 13.7% improvement, 20.72 Gflops.

CISC 879 : Software Support for Multicore Architectures

216 1D FFT incremental Optimization

CISC 879 : Software Support for Multicore Architectures

Memory Hierarchy Aware Compilation

• Entire process is tedious and error-prone.
• Smart compiler: identify the segments where

variables reside, apply corresponding latencies
when scheduling the instructions.

• 19.84Gflops using tailored compiler on loop
unrolled code.

CISC 879 : Software Support for Multicore Architectures

2D FFT
• Perform 1D FFT alternatively on each dimension of the data

interleaved with data transpose steps.

• One row/column FFT as a work unit.

• Every row/column are independent to each other, work units
are distributed to threads in the round-robin way.

• 15.11Gflops achieved.

• Some threads remain idle (e.g. 180 rows, 160 threads)

CISC 879 : Software Support for Multicore Architectures

Load Balancing

• Base parallel implementation straightforward, but not
necessarily efficient.

• Not fine enough grained, using smaller work unit instead
• Small task: 8-point work unit. (8 input<-> 8 output)
• it needs more barriers to synchronize threads working

on the same row/column FFT

CISC 879 : Software Support for Multicore Architectures

Work Distribution and Data Reuse

• Exploit the nature of 2D FFT: exact the same
operations and twiddle factors are applied on each
row/column FFT.

• This character favours data reuse, which can
reduce indices computation and memory
operations.

• Major-reversal work distribution scheme to exploit
this opportunity, 19.37Gflops achieved.

CISC 879 : Software Support for Multicore Architectures

Speedup of optimized FFT

• 1D FFT 2^16 points and 2D FFT 256*256

CISC 879 : Software Support for Multicore Architectures

Conclusion
• Conclusion:

• Consider both the architecture features and application
characteristics.

• A set of optimization techniques are proposed. (Essentiality:
reduce memory operation)

• Challenges to multi-core system software: smart compiler.

• Achieve 20Gflops on both 1D and 2D FFT, which is about 4
times of Intel Xeon Pentium processor (about 5Gflops).

• Future work:

• Fast scratchpad memory on thread unit may be used as
larger register file. Larger point work unit may be exploited.

• Larger FFT problem size when data cannot be fully stored.

CISC 879 : Software Support for Multicore Architectures

Questions?
.
.
.
.
.
.
.
.
.
.

Thanks for your time…

