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Abstract

We study the pricing problem for a European call option when the volatility of the underlying

asset is random and follows the exponential Ornstein-Uhlenbeck model. The random diffusion

model proposed is a two-dimensional market process that takes a log-Brownian motion to describe

price dynamics and an Ornstein-Uhlenbeck subordinated process describing the randomness of the

log-volatility. We derive an approximate option price that is valid when (i) the fluctuations of the

volatility are larger than its normal level, (ii) the volatility presents a slow driving force toward

its normal level and, finally, (iii) the market price of risk is a linear function of the log-volatility.

We study the resulting European call price and its implied volatility for a range of parameters

consistent with daily Dow Jones Index data.
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I. INTRODUCTION

The picture that asset prices follow a simple diffusion process was first proposed by

Bachelier in 1900 and his main motivation was precisely to provide a fair price for the

European call option. The buyer of the call option has the right, but not the obligation, to

buy the underlying asset from the seller of the option at a certain time (the expiration date)

for a certain prestablished price (the strike price) [1].

After the introduction in 1959 of the geometric Brownian motion as a more refined market

model for which prices cannot be negative, the volatility can be viewed as the diffusion

coefficient of this random walk [2]. This simple assumption – the volatility being a constant

– lies at the heart of Black-Scholes (BS) option pricing method [3]. Within the BS theory,

the most direct technique constructs an equivalent martingale measure for the underlying

asset process. This change of the probability measure guarantees a fair price for the option.

The price of the European call is readily obtained: it simply consists of an average over the

final payoff evaluated under the martingale measure, and appropriate discounting.

However, and especially after the 1987 crash, the geometric Brownian motion model and

the BS formula were unable to reproduce the option price data of real markets. Several

studies have collected empirical option prices in order to derive their implied volatilities (the

volatility that agrees with the BS formula). These tests conclude that the implied volatility

is not constant and seems to be well-fitted to a U-shaped function of the ratio between the

price of the underlying asset and the strike price of the option (the so-called “moneyness”).

This phenomenon, known as the smile or smirk effect, the latter term due to the fact that

the U-shape is usually asymmetric, shows the inadequacy of the geometric Brownian model.

Nevertheless, the continuous-time framework provides several alternative models specially

designed to explain, at least qualitatively, this effect. Among them, we highlight on the

Stochastic Volatility (SV) models. These are two-dimensional diffusion processes in which

one dimension describes the asset price dynamics and the second one governs the volatility

evolution (see e.g. Refs. [4–12]).

The SV class of models have also been studied to check whether they are also able to

describe the dynamics of the asset itself. In this direction there are several interesting works

in the literature focusing on this and others similar issues (see e.g. Refs. [13–25]). It is

indeed worth noticing that the theoretical framework of SV modeling has many common

2



points with the research on random diffusion whose aim is to describe the dynamics of

particles in random media which can explain a large variety of phenomena in statistical

physics and condensed matter [26]. Going back to finance, there is a wide consensus that

volatility plays a key role in the dynamics of financial markets [27–33]. Among the most

relevant statistical properties of the financial markets, volatility seems to be responsible for

the observed clustering in price changes. That is, large fluctuations are commonly followed by

other large fluctuations and similarly for small changes [27]. Another feature is that, in clear

contrast with price changes which show negligible autocorrelations, volatility autocorrelation

is still significant for time lags longer than one year [11, 13, 27–29, 34]. Additionally, there

exists the so-called leverage effect, i.e., much shorter (few weeks) negative cross-correlation

between current price change and future volatility [14, 27, 31, 32]. Finally, several authors

have argued that a good approximation for the volatility distribution can be given by the

log-normal [20, 27, 30]. Another possible candidate to such distribution is provided by the

so-called inverse Gaussian distribution [33].

All these observations have led us to consider the exponential Ornstein-Uhlenbeck (ex-

pOU) model, since we have seen that, among the simplest and classic SV models, the expOU

model is able : (i) to describe simultaneously the observed long-range memory in volatility

and the short one in leverage [12, 16, 22], (ii) to provide a consistent stationary distribution

for the volatility with data [12, 20, 23], (iii) it shows the same mean first-passage time profiles

for the volatility as those of empirical daily data [24], and finally (iv) it fairly reproduces the

realized volatility having some degree of predictability in future return changes [23]. Our

aim in this research is to take advantage of all this knowledge to study the European option

price. We shall propose an approximate price for the option valid for realistic parameters

that guarantees the empirical observations just mentioned. We therefore study the influence

of these empirical observations in the price by designing an approximation procedure that

provides an alternative price which is appropriate for a different range of parameters to those

already published in Refs. [9] (see also the discussion at the end of Sect. III). Moreover, our

present study goes much further than the simulation analysis already performed by one of

us [25].

Before closing this introductory section, we should remark that the approximation proce-

dure we use has been specially designed to tackle this kind of financial problems. However,

the method is somewhat related to the Born-Oppenheimer approximation which, after its in-
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troduction in 1927 for the quantum mechanical treatment of molecules, has been widely used

for a great variety of physical applications. In statistical mechanics the Born-Oppenheimer

approximation is specially suited for the so-called “adiabatic elimination of fast variables”

(in our case the volatility) [35]. A simplified version of that approximation has been recently

used to address some financial problems [15, 19].

The paper is divided into five sections. Section II presents the expOU model and shows

its main statistical properties. In Section III we construct the equivalent martingale density

and afterward derive the European call option price. Section IV studies the price derived

and compare it with the classic BS price. Conclusions are drawn in Section V and some

technical details are left to the Appendices.

II. THE MARKET MODEL: A SUMMARY

As most SV models the correlated exponential Ornstein-Uhlenbeck (expOU) stochastic

volatility model is a special kind of a two-dimensional diffusion process. We have thoroughly

studied the statistical properties of the model in previous works with a quite satisfactory

agreement with empirical data of real markets [12, 21–24]. The model proposed by Scott [7]

in 1987 is furnished by a pair of Itô stochastic differential equations:

dS(t)

S(t)
= µdt + meY (t)dW1(t) (1)

dY (t) = −αY (t)dt + kdW2(t), (2)

where S(t) is a financial price or the value of an index. The parameters α, m, and k are

positive and nonrandom quantities and dWi(t) = ξi(t)dt (i = 1, 2) are correlated Wiener

processes, i.e., ξi(t) are zero-mean Gaussian white noise processes with cross correlations

given by

〈ξi(t)ξj(t
′)〉 = ρijδ(t− t′), (3)

where ρii = 1, ρij = ρ (i 6= j,−1 ≤ ρ ≤ 1). We remark that while the original Scott

model [7] had independent Brownian motions, it is important to allow for non-zero ρij to

explain some empirical observations [8, 9].

From Eq. (2) we see that

Y (t) = Y0e
−α(t−t0) + k

∫ t

t0
e−α(t−s)dW2(s), (4)
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where we assume that the volatility process Y (t) starts at certain initial time t0 (which

can be set equal to 0) with a known value Y (t0) = Y0. The process Y (t) is Gaussian with

conditional first moment and variance given by

E[Y (t)|Y0] = Y0e
−α(t−t0) and Var[Y (t)|Y0] =

k2

2α

(
1− e−2α(t−t0)

)
. (5)

In the stationary limit, (t− t0) →∞, we have

E[Y (t)] = 0 and Var[Y (t)] =
k2

2α
. (6)

In terms of the process Y (t), the volatility is given by

σ(t) = meY (t). (7)

Hence, the conditional probability density function (pdf) for the volatility is

p(σ, t|σ0, 0) =
1

σ
√

2πβ2(1− e−2αt)
exp

{
− [ln(σ/m)− e−αt ln(σ0/m)]2

2β2(1− e−2αt)

}
, (8)

and the stationary probability density reads

pst(σ) =
1

σ
√

2πβ2
exp

{
− ln2(σ/m)/2β2

}
, (9)

where

β2 =
k2

2α
. (10)

This lognormal curve for the volatility is consistent with real data as it has been reported

in several studies for different time lags [12, 20, 23, 27, 30].

Other interesting statistical properties of the model refer to the returns process given by

dR(t) = dS(t)/S(t)− E[dS(t)/S(t)].

We thus have the squared returns autocorrelation [12]

Corr
[
dR(t)2, dR(t + τ)2

]
=

exp[4β2e−ατ ]− 1

3e4β2 − 1
, (11)

and the leverage effect (or return-volatility asymmetric correlation) [12]

L(τ) =
E [dR(t)dR(t + τ)2]

E [dR(t)2]2
=

2ρk

m
exp

{
−ατ + 2β2(e−ατ − 3/4)

}
H(τ), (12)

where H(τ) is the Heaviside step function (H(τ)=1 when τ ≥ 0, and H(τ)=0 when τ < 0).
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Both the volatility and the squared returns process (11) show a decay in their autocorre-

lation described by the desired cascade of exponentials which goes from very fast time scales

to the slowest ones [34]. From Eq. (11), one can obtain [12]

Corr
[
dR(t)2, dR(t + τ)2

]
=

1

(3e4β2 − 1)

∞∑

n=1

(4β2)n

n!
e−nατ ,

which goes as

Corr
[
dR(t)2, dR(t + τ)2

]
' 4β2

(3e4β2 − 1)
e−ατ for ατ À 1. (13)

For α small enough, of the order of 10−3days−1, this may appear as a long range memory

up to few trading years [12].

The model is similarly able to explain the rather swift leverage effect –up to few weeks–

which is well observed in actual financial markets. From Eq. (12), one can now obtain [12]

L(τ) ' 2ρk

m
exp(β2/2)e−k2τH(τ) for ατ ¿ 1, (14)

and

L(τ) ' 2ρk

m
exp(−3β2/2)e−ατH(τ) for ατ À 1. (15)

Note that the leverage amplitude in the latter regime is smaller than that over the shorter

range (cf. Eqs. (14) and (15)). Hence, the leverage asymptotics given by Eq. (15) is negligible

compared to the one provided by Eq. (14). This result is consistent with real data showing

that the leverage only persists up until few weeks and thus has a smaller range than the

volatility autocorrelation. In this case, the model provides an exponential decay consistent

with data if one takes characteristic time scale (given by the k2 if we assume k2 > α)

between 10− 100 days and a moderate negative correlation between the two Wiener input

noises ρ ' −0.5 [12].

We remark that the range of parameters mentioned above is outside the values taken in

Ref. [8]. In that case, Fouque et al assume that β2 ∼ 1 (so that k2 ∼ α), thus implying that

leverage and volatility autocorrelation have a very similar decay with a characteristic time

of the same order (cf. Eqs. (11)–(12) and (13)–(14)). Herein we consider a broader range

for β2 [12] in order to get a leverage decay faster than the volatility autocorrelation k2 À α.

Empirical observations have led us to consider the range where β2 is much larger than one.

In addition, Fouque et al also take α such as to provide a fast reversion to the normal level

6



of volatility with a characteristic time scale 1/α between one day and few weeks [8]. Even

from this perspective their framework is far away from the one we here propose since we are

assuming that reverting force is quite slow with 1/α of the order of one or more years.

III. THE OPTION PRICING PROBLEM

In a previous paper [12] we have addressed the question of the distribution of returns

characterized by either the return probability density function (pdf) or by its characteristic

function with a rather satisfactory fit for 20 day price return changes. We have there derived

an approximate solution for the return pdf in terms of an expansion of Hermite polynomials

with prefactors related to the skewness and the kurtosis of the expOU model. We want now

to apply a similar analysis to the option pricing problem illustrated by the European call

C(S, T ). The payoff of this contract, that is, its final condition, is

C(S, 0) = max[S(T )−K, 0]. (16)

where S(T ) is the underlying asset price at expiration date T and K is the strike price.

A. The equivalent martingale measure

Following the standard approach to option pricing [1, 9], we pass to an equivalent mar-

tingale (or risk-neutral) pricing measure P ∗, under which the discounted price of traded

securities are martingales. In particular, assuming a constant risk-free interest rate r:

E∗ [S(t)|S] = Sert,

where S = S(0). Under P ∗, the dynamics (1)-(2) of the expOU model are given by the

following set of stochastic differential equations

dS(t)

S(t)
= r dt + meY (t)dW ∗

1 (t) (17)

dY (t) = −αY (t) dt− kΛ(X, Y, t) dt + k dW ∗
2 (t), (18)

where (W ∗
1 ,W ∗

2 ) are P ∗-Brownian motions with the same correlation structure as the original

Brownian motions (W1,W2).

In writing Eqs. (17)-(18) one has to include an arbitrary function Λ(·) called the log-

volatility’s market price of risk [1, 9]. This function quantifies the risk aversion sensitivity
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of the trader to the volatility uncertainty. Note that if there were no volatility fluctuations

(i.e., k = 0) the function Λ would vanish.

It does not seem possible to obtain the exact solution to this option problem and we will

therefore search for approximate expressions but using different methods than those already

proposed in the literature [8, 9]. In order to specify the risk aversion function Λ(X,Y, t)

we first suppose that it depends solely on the volatility level and not on the return or the

time. That is, Λ(X, Y, t) = Λ(Y ). Moreover, we further assume that this dependence is

weak which amounts to Λ(Y ) being approximated by a linear function of Y :

Λ(Y ) ≈ Λ0 + Λ1Y. (19)

We now define a new volatility-driving process

Z = Y +
kΛ0

ᾱ
, (20)

and the “log return” X(t) by

X(t) = ln[S(t)/S]. (21)

Then Eqs. (17) and (18) turn into

dX(t) =
[
r − 1

2
m̄2e2Z(t)

]
dt + m̄eZ(t)dW ∗

1 (t) (22)

dZ(t) = −ᾱZ(t)dt + kdW ∗
2 (t), (23)

where

m̄ = m exp (−kΛ0/ᾱ) , ᾱ = α + kΛ1. (24)

We analyze the consequences of the introduction of a risk aversion function in the equiva-

lent martingale process. Note first that the parameter ᾱ which quantifies the memory range

of the volatility (cf. Eq. (13) with α replaced by ᾱ) increases when Λ1 > 0. Secondly, when

Λ0 > 0 the normal level of volatility shifts to lower values and the stationary volatility pdf

has a smaller standard deviation (cf. Eqs. (9), (10) and (24)).

B. Approximate solution of the Fokker-Planck equation

Let us denote by p2(x, z, t|0, z0) the joint density of (Xt, Zt) under the equivalent martin-

gale measure. This density obeys the following Fokker-Planck equation

∂p2

∂t
= ᾱ

∂

∂z
(zp2) +

1

2
k2∂2p2

∂z2
−

(
r − 1

2
e2zm̄2

)
∂p2

∂x
+

1

2
e2z ∂2p2

∂x2
+ ρkm̄

∂2

∂x∂z
(ezp2) , (25)
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with initial condition

p2(x, z, 0|0, z0) = δ(x)δ(z − z0). (26)

Even when the risk aversion is a linear function of the log-volatility, as is our case, we

may only derive an approximate solution valid under particular values of the parameters of

the model for a given market [12]. Herein we will treat the case in which the “vol of vol” k

is much greater than the normal level of volatility m̄. In other words, we will assume that

the parameter

λ ≡ k

m̄
À 1 (27)

is large. Certainly this is at least the case of the Dow Jones Index daily data for which

λ ∼ 102 [12].

We define a dimensionless time t′ and two scaling variables u and v by

t′ = k2t, u = λx, v = λz. (28)

The FPE (25) then reads

∂p2

∂t′
= ν

∂

∂v
(vp2) +

λ2

2

∂2p2

∂v2
− 1

λ

(
r

m̄2
− 1

2
m̄2e2v/λ

)
∂p2

∂u

+
1

2
e2v/λ ∂2p2

∂u2
+ λρ

∂2

∂u∂v

(
ev/λp2

)
, (29)

and

p2(u, v, 0|0, v0) = δ(u)δ(v − v0), (30)

where

v0 = λz0, and ν = 1/(2β2) = ᾱ/k2. (31)

We can write a more convenient equation in terms of the characteristic function defined

as

ϕ(ω1, ω2, t
′|0, v0) =

∫ ∞

−∞
eiω1udu

∫ ∞

−∞
eiω2vp2(u, v, t′|0, v0)dv. (32)

This double Fourier transform turns the initial-value problem (29)-(30) into

∂

∂t′
ϕ(ω1, ω2, t

′) = −νω2
∂

∂ω2

ϕ(ω1, ω2, t
′)− 1

2
λ2ω2

2ϕ(ω1, ω2, t
′)

− i

2λ
ω1ϕ(ω1, ω2 − 2i/λ, t′) +

ir

λm2
ω1ϕ(ω1, ω2, t

′)

−1

2
ω2

1ϕ (ω1, ω2 − 2i/λ, t′)− λρω1ω2ϕ (ω1, ω2 − i/λ, t′) , (33)
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with

ϕ(ω1, ω2, 0|0, v0) = eiω2v0 . (34)

Since the payoff for the European option depends on the price but not on the volatility,

we only need to know the marginal characteristic function of the (martingale) return X(t).

This would imply solving Eq. (33) when ω2 = 0 and assume ω1 = ω/λ (see Eq. (28)).

Unfortunately, we cannot proceed in such a direct way and have to solve the two-dimensional

problem when ω2 is small and λ is large. This is done in Appendix A where we prove the

following approximate expression for the marginal characteristic function of the return:

ϕ(ω/λ, ω2 = 0, t′|0, v0) = exp
{
−C(ω/λ, t′) + O

(
1/λ5

)}
. (35)

where C(ω/λ, t′) is given in Eq. (A12) which, after recovering the original variables t and z0

(cf. Eq. (28)) and some reshuffling of terms, reads

C(ω/λ, ᾱt) = iµ(t)ω +
m̄2t

2
ω2 + ϑ(t, z0)ω

2 − iρς(t, z0)ω
3 − κ(t)ω4 + O(1/λ5). (36)

where

µ(t) = rt− 1

2
m̄2t, (37)

ϑ(t, z0) =
z0

λ2ν

(
1− e−ᾱt

)
, (38)

ς(t, z0) =
1

λ3ν2

[
ᾱt−

(
1− e−ᾱt

)]
− z0

λ3ν2

[
ᾱte−ᾱt −

(
1− e−ᾱt

)]
, (39)

κ(t) =
1

2λ4ν3

[
ᾱt +

1

2

(
1− e−2ᾱt

)
− 2

(
1− e−ᾱt

)]
+

ρ2

2λ4ν3

[
ᾱt− 2

(
1− e−ᾱt

)
+ ᾱte−ᾱt

]
.

(40)

The approximate expression for the marginal characteristic function of the return is thus

obtained by taking first terms of Taylor expansion of Eq. (35). We get

ϕ(ω/λ, ᾱt) = exp

{
−

[
iωµ(t) + m̄2ω2t/2

]}[
1− ϑ(t, z0)ω

2 + iρς(t, z0)ω
3

+
(
κ(t) + ϑ(t, z0)

2/2
)
ω4 + O(1/λ5)

]
. (41)

The inverse Fourier transform of this expression yields the following approximate solution

for the pdf of the (martingale) return:

p(x, t|z0) ' 1√
2πm̄2t

exp

[
−(x− µ)2

2m̄2t

] [
1 +

ϑ

2m̄2t
H2

(
x− µ√
2m̄2t

)

+
ρς

(2m̄2t)3/2
H3

(
x− µ√
2m̄2t

)
+

κ + ϑ2/2

(2m̄2t)2
H4

(
x− µ√
2m̄2t

)]
, (42)
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where µ, ϑ, ς, and κ are given by Eqs. (37)–(40), and Hn(·) are the Hermite polynomials:

∫ ∞

−∞
xne−(ax)2−iwxdx =

√
π

(−2ia)na
e−w2/4a2

Hn(w/2a). (43)

As shown in Eqs. (24), we note that both the rate of mean-reversion of the log-volatility

given by α and the normal level of volatility m are rescaled depending on the own risk

aversion of the agent. We also recall that the dependence on the original log-volatility

y0 = ln(σ0/m) is provided by (cf. Eq. (20))

z0 = y0 +
kΛ0

ᾱ
. (44)

Moreover, a further simplification can be achieved by averaging over the initial volatility

with the zero-mean stationary (and Gaussian) distribution of the process Z (cf. Eqs. (23)).

We can use same structure as given by Eq. (42) but replace some of the parameters involved

by

ϑ(t, z0) → 0 (45)

ς(t, z0) → ς̂(t) =
1

λ3ν2

[
ᾱt−

(
1− e−ᾱt

)]
. (46)

κ(t) +
1

2
ϑ(t, z0)

2 → κ̂(t) =
1

2λ4ν3

{
ᾱt−

(
1− e−ᾱt

)
+ ρ2

[
ᾱt− 2

(
1− e−ᾱt

)
+ ᾱte−ᾱt

]}
.

(47)

In Fig. 1 we represent the approximate expression of the equivalent martingale measure

as given by Eq. (42). The initial log-volatility is z0 = 0 and the linear market price of

risk is characterized by Λ0 = Λ1 = 0.001 (cf. Eq. (19)). We plot a set of distributions

where we provide three different values of each parameter (k,m, ρ, and α) defining the

expOU model. We observe that the vol-of-vol k mainly modifies the positive wing of the

distribution. The normal level of volatility m broadens the probability distribution with

no difference between the two tails. The correlation between Wiener noises ρ provide the

observed negative skewness only if ρ is negative so that this term should be taken into account

if we want to include this effect to the corresponding option price. And finally, the long-

range memory parameter α of the reverting force has little effect on the distribution profile.

Hence overestimating (or underestimating) this quantity does not have great consequences

in providing a good approximation of the risk-neutral distribution.
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FIG. 1: Risk-neutral return density (42) for t = 20 days and with terms provided by Eqs. (37)–

(40) when z0 = 0 and assuming Λ0 = 10−3 and Λ1 = 10−3 (cf. Eq. (19)). We depart from the

parameters m = 10−2 day−1/2, α = 8 × 10−3 day−1, ρ = −0.4 and k = 0.11 day−1/2 and slightly

modify them in each of these plots .

C. The European Call price

Our main goal is to study the European call option price. Once we have obtained our

approximate solution for the equivalent martingale measure, the price can be computed in

terms of the expected payoff (16) under our equivalent martingale measure [1]. That is:

C(S, T, z0) = e−rT E
[
max(SeX(T ) −K, 0)

∣∣∣ X(0) = 0, Z̄(0) = z0

]

= e−rT
∫ ∞

−∞
max(Sex −K, 0)p(x, T |z0)dx, (48)

where the price at the expiration date T is provided by the return path according to the

relation S(T ) = S exp(X(T )) and K is the strike price. As can be observed from the

expansion (42), the computation of the approximate option price implies evaluating four

integrals. The first one, CBS, corresponding to the classic Black-Scholes price (i.e., when
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the underlying process has a constant volatility given by m̄):

CBS(S, T ) = SN(d1)−Ke−rT N(d2), (49)

where

d1 =
ln S/K + (r + m̄2/2)T√

m̄2T
, and d2 =

ln S/K + (r − m̄2/2)T√
m̄2T

(50)

and N(d) is the normal distribution

N(d) =
1√
2π

∫ d

−∞
e−x2/2dx. (51)

In the Appendix B we evaluate the rest of terms. Summing them up, our approximate

price for the European call option when underlying follows an expOU stochastic volatility

process reads

C(S, T, z0) = CBS(S, T ) +

(
ϑ + ρς + κ +

ϑ2

2

)
SN(d1) +

Ke−rT

√
m̄2T

N ′(d2)

[
κ + ϑ2/2

2m̄2T
H2

(
d2√
2

)

−ρς + κ + ϑ2/2√
2m̄2T

H1

(
d2√
2

)
+ ϑ + ρς + κ + ϑ2/2

]
,

(52)

where CBS is given by Eq. (49), d1 and d2 are given by Eq. (50), N ′(x) = dN(x)/dx and

ϑ, ς, and κ are defined in Eqs. (38)–(40). It can be easily proven that the resulting price

satisfies the so-called put-call parity

C(S, T, z0) + Ke−rT = P(S, T, z0) + S

where P is the price of the put option which is a derivative contract whose payoff is max(K−
S, 0) [1]. This relationship guarantees the absence of arbitrage, that is: the practice of taking

advantage of a price differential between different assets without taking any risk. Finally

when the initial volatility z0 has been averaged out the price has same form as that of

Eq. (52) but using the parameters given by Eq. (45).

IV. SOME RESULTS

We will now analyze the call price given by Eq. (52). In Fig. 2 we show the effect of

changing the parameters of the model on the resulting option price. As we did in Fig. 1

each plot slightly modifies only one of the four parameters while the other three are kept

13
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FIG. 2: Normalized C/K call price (52) as a function of the moneyness S/K for T = 20 days

assuming Λ0 = 10−3 and Λ1 = 10−3 (cf. Eq. (19)) with terms provided by Eqs. (37)–(40) when

z0 = 0. We depart from the parameters m = 10−2 day−1/2, α = 8 × 10−3 day−1, ρ = −0.4 and

k = 0.11 day−1/2 and slightly modify them in each of these plots.

constant although taking realistic values. Looking at Fig. 2 we may say that the call price

is highly sensitive to the normal level m. This is, however, not surprising since an extreme

sensitivity to volatility –specially around moneyness S/K = 1– is a characteristic feature of

the classic BS price [1]. As an overall statement we may say that having large values of any

parameter implies (except for ρ) a more expensive option.

We also compare our price, Eq. (52), with the BS price, CBS, given by Eq. (49) in which

the volatility is constant. The insets in Fig. 2 represent the difference C − CBS and we there

observe a distinct behavior depending on whether we have moneyness smaller than one (in-

the-money option) or larger than one (out-the-money option). In general, our in-the-money

calls are cheaper than the BS ones while the out-the-money calls become more expensive

than the BS ones. This is however true as long as ρ is negative since otherwise we would
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FIG. 3: Implied volatility (in yearly units) as a function of the moneyness S/K for T = 20 days

assuming Λ0 = 10−3 and Λ1 = 10−3 (cf. Eq. (19)) with terms provided by Eqs. (37)–(40) when

z0 = 0. We depart from the parameters m = 10−2 day−1/2, α = 8 × 10−3 day−1, ρ = −0.4 and

k = 0.11 day−1/2 and slightly modify them in each of these plots.

have the opposite effect. Let us recall that ρ should be negative because of the negative

skewness in the return distribution and also due to the negative return-volatility asymmetric

correlation (leverage effect), both properties observed in actual markets. The profile of the

call difference C−CBS that we have obtained is indeed consistent with the observed one such

as in Ref. [36] where, although based on a different option pricing method and on a different

market model as well, the correlation coefficient, ρ, is studied with special attention. We

also note that the impact on the call price of changing the reverting force α is much smaller

than that of changing the vol-of-vol k or the normal level m.

We now go one step further and study the implied volatility σi. This is the volatility

that the classic BS formula should adopt if we require that CBS(σi) = C. We evaluate σi

numerically in terms of the moneyness and for an identical set of parameters than those
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FIG. 4: Delta hedging (53) divided by strike K as a function of the moneyness S/K for T = 20

days assuming Λ0 = 10−3 and Λ1 = 10−3 (cf. Eq. (19)) with terms provided by Eqs. (37)–(40)

when z0 = 0. We depart from the parameters m = 10−2 day−1/2, α = 8 × 10−3 day−1, ρ = −0.4

and k = 0.11 day−1/2 and slightly modify them in each of these plots.

presented in previous figures. We observe that the vol-of-vol, k, and the long range memory

parameter, α, have both a rather similar effect although the steepest profile corresponds in

one case to smaller values (the case of α) while in the other case it corresponds to larger

values (the case of k). In contrast, the normal level of volatility m simply shifts the implied

volatility profile to lower or higher volatility levels it keeps the same form of the profile. The

smile effect is smirked in one side or in the other depending on the sign of ρ. The rest of

the plots studying parameters k, m, and α are conditioned to this sign and for all of them

we take ρ = −0.4.

We can also provide an analytical expression for the delta hedging [1, 27]. This is a

crucial magnitude since it specifies the number of shares per call to hold in order to remove

risk of underlying asset price fluctuations (but not volatility fluctuations) from the portfolio.
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FIG. 5: Call price (48) and implied volatility (in yearly units) as a function of the moneyness

S/K for T = 20 days. Left column studies the effects of a non-zero initial volatility assuming

Λ0 = 10−3 and Λ1 = 10−3. Right column shows those caused by changing the constant involved

in the risk aversion function (19) when z0 = 0. The rest of parameters are m = 10−2 day−1/2,

α = 8× 10−3 day−1, ρ = −0.4 and k = 0.11 day−1/2.

From Eq. (52), it is straightforward to obtain

δ =
∂C
∂S

=
(
1 + ϑ + ρς + κ + ϑ2/2

)
N(d1) +

Ke−rT

S
√

m̄2T
N ′(d2)

[
− κ + ϑ2/2

(2m̄2T )3/2
H3

(
d2√
2

)

+
ρς + κ + ϑ2/2

2m̄2T
H2

(
d2√
2

)
− ϑ + ρς + κ + ϑ2/2√

2m̄2T
H1

(
d2√
2

)
+ ϑ + ρς + κ + ϑ2/2

]
.

(53)

Figure 4 thus provides the same set of plots as those of the previous cases. The long range

memory parameter α has little effect in the delta hedging although δ has a higher sensitivity

to the rest of parameters. Smaller values of the normal level of volatility m make steeper

the delta hedging profile. The correlation ρ and the vol-of-vol k have a non-trivial effect

depending on the moneyness.
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FIG. 6: Call price as a function of the moneyness S/K for T = 10 days. Points represent the

empirical call option prices on the Dow Jones Index (DJX) at a precise date (May 2, 2008) and

with maturity on May 16, 2008. Dashed line takes a call price (52) fit having fixed the model

parameters estimated from historical data and with the initial volatility assumed to be the CBOE

DJIA Volatility Index (VDX) and the current interest rate ratio r = 2%. The curve thus provides

a fit with proper risk aversion parameters Λ0 and Λ1.

In Fig. 5 we analyze the effects on the call price of the initial volatility and the risk

aversion. Until now we have taken z0 = 0 but now we can consider other possible values. As

expected, we observe in Fig. 5 that the call becomes more expensive if one takes an initial

volatility greater than the normal level and cheaper in the opposite case (see also discussion

in Section III A). We also look at the risk aversion terms provided by Eq. (19). Negative

terms would thus correspond to a more expensive call while positive terms imply having a

cheaper option since the agent is less risk averse.

Before concluding this section, we question ourselves whether the risk averse parameters

Λ0 and Λ1 can be in some way or another inferred from empirical data. These parameters
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give reason of the risk averse perception of the investors and depend on the situation of the

market at a particular time. Just as an illustrative example, we can look at the European

option contracts (DJX) on the Dow Jones Industrial Average index traded in the Chicago

Board Exchange (CBOE) at a given date (2nd of May 2008) and for a particular maturity

(16th of May 2008, 10 trading days ahead). We next assume that the call price is given by

Eq. (52) with model parameters to be those estimated historical data (m = 10−2 day−1/2,

α = 8 × 10−3 day−1, ρ = −0.4 and k = 0.11 day−1/2), take the US current risk-free interest

ratio (annual rate r = 2%), and finally consider initial volatility to be the CBOE Volatility

Index (VDX) on the 2nd of May 2008 (annual rate σ0 = 16.55% from which we get y0 =

ln(σ0/m)). The estimation on σ0 can be more or less sophisticated [23] but it is rather usual

to assume the VDX since this is designed to reflect investors’ consensus on current volatility

level. Figure 6 therefore presents a rather satisfactory fit on the empirical option contracts

over different moneyness S/K by solely modifying the risk parameters Λ0 and Λ1. The error

in the fitting is rather small being of the same order or even smaller than the tick size of

the traded option. In this way and thanks to the fact that the parameters of the model are

obtained from historical Dow Jones data, we can obtain the implied risk aversion parameters

which typically fluctuates in time as investors’ perception changes.

V. CONCLUDING REMARKS

The main goal of this paper has been to study the effects on option pricing of several

well-known properties of financial markets. These properties include the long-range memory

of the volatility, the short-range memory of the leverage effect, the negative skewness and

the kurtosis. The analysis is based on a market model that satisfies these properties which,

in turn, can be easily identified through the parameters of the model. In this way we provide

a different and more complete analysis on option pricing than that we had presented some

time ago in which the effects of non-ideal market conditions such as fat tails and a small

relaxation were taken into account [37, 38].

We have derived an approximated European call option prices when the volatility of

the underlying price is random and it is described by the exponential Ornstein-Uhlenbeck

process. The solution has been obtained by an approximation procedure based on a partial

expansion of the characteristic function under the risk-neutral pricing measure.
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The call price obtained is valid for a range of parameters different than those of a previous

study on the subject [8]. In that work Fouque et el assumed that the reversion toward the

normal level of volatility is fast. In other words, the parameter α is large and the character-

istic time scale for reversion, 1/α, is of the order of few days. Fouque et el also considered

that β2 = k2/2α ∼ 1 which implies that the return-volatility asymmetric correlation (i.e.,

the leverage effect) should have a characteristic time comparable to that of the volatility au-

tocorrelation. Mostly based on the Dow Jones daily index data [12, 23], we have considered

a rather different situation where the fast parameter is not the reverting force α but the

vol-of-vol k. In this way, we have singled out these two market memories thus allowing for

a leverage effect during a time-lapse of few weeks and a persistent volatility autocorrelation

larger than one year. These properties are consistent with empirical observations on the

Dow-Jones index [12].

Under these circumstances we have constructed an approximate option price where risk

aversion is assumed to be a linear function of the logarithm of the volatility. This approx-

imation contains corrections in the variance, the skewness and the kurtosis, all of these

corrections in terms of Hermite polynomials. This constitutes a tangible step forward with

respect to other approaches which use the Heston stochastic volatility model [15, 19] but

only consider zeroth-order corrections. Our approach to the martingale measure albeit be-

ing more complete than those taken in Refs. [15, 19] it is still able to provide an analytical

expression for the call price and the subsequent Greeks.

Summarizing, we have studied the call price and its implied volatility and observed that

the correlation ρ between the two Wiener input noises plays a crucial role. The behavior of

the call can greatly change depending on the sign of ρ which confirms the findings of the

previous work of Pochart and Bouchaud [36] and many others. We have therefore focused

on a negative value of ρ that is consistent with empirical observations of the leverage effect.

Keeping ρ constant, moderate values of risk aversion, and a maturity time of the order of

few weeks, we have also observed that the vol-of-vol, k, and the normal level of volatility,

m, have both an important impact to the option price. This appears in clear contrast with

the very little effect of not having a reliable estimation of the rate of mean-reversion of the

volatility quantified by the parameter α.
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APPENDIX A: APPROXIMATE SOLUTION OF THE CHARACTERISTIC

FUNCTION

We start from Eqs. (33)-(34) and look for an approximate expression of the joint distri-

bution ϕ(ω1, ω2, t
′) valid for large values of λ. We also note that the marginal characteristic

function of the (martingale) return can be obtained from the joint characteristic function

by setting ω2 = 0. Therefore, we will look for a solution to the problem (33)-(34) that for

small values of ω2 takes the form:

ϕ(ω1, ω2, t
′) = exp

{
−

[
A(ω1, t

′)ω2
2 + B(ω1, t

′)ω2 + C(ω1, t
′) + O(ω3

2, 1/λ
2)

]}
. (A1)

Substituting this into Eq. (33) yields

Ȧω2
2 + Ḃω2 + Ċ = −2νω2

2A− νω2B +
λ2

2
ω2

2 −
iω1

2λ
+

irω1

m2λ
+

1

2
ω2

1

(
1 + 4

iω2

λ
A +

2i

λ
B

)

+λρω1ω2

(
1 +

2iω2

λ
A +

i

λ
B

)
+ O(1/λ2), (A2)

where the dot denotes a time derivative.

Collecting the quadratic terms in ω2, we get

Ȧ = −2 (ν − iρω1) A +
λ2

2
.

The solution to this equation with the initial condition A(t′ = 0) = 0 is

A(ω1, t
′) =

λ2

4γ(ω1)

[
1− e−2γ(ω1)t′

]
(A3)

where

γ(ω1) = ν − iρω1. (A4)

We now take the linear terms in ω2:

Ḃ = −γB +
2iω2

1

λ
A + λρω1.

The solution to this equation with the initial condition B(t′ = 0) = −iv0 is

B(ω1, t
′) = −iv0e

−γt′ +
λρω1

γ

(
1− e−γt′

)
+

iλω2
1

2γ2

(
1− e−γt′

)2
(A5)

where γ = γ(ω1) given by Eq. (A4). Finally, the terms independent of ω2 yield

Ċ =
1

2
ω2

1 +
iω1

λ

(
r

m̄2
− 1

2

)
+

iω2
1

λ
B
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with C(t′ = 0) = 0. Therefore,

C(ω1, t
′) =

(
r

m̄2
− 1

2

)
iω1

λ
t′ +

1

2
ω2

1t
′ +

v0ω
2
1

λγ

(
1− e−γt′

)
+

iρω3
1

γ

[
t′ − 1

γ

(
1− e−γt′

)]

− ω4
1

2γ2

[
t′ +

1

2γ

(
1− e−2γt′

)
− 2

γ

(
1− e−γt′

)]
. (A6)

We have thus obtained all the terms in the two-dimensional characteristic function deter-

mined by Eq. (33).

However, that we only need to know the marginal characteristic function of the return

X(t) which implies that we only have to solve the equation when ω2 = 0 and assume

ω1 = ω/λ. From Eq. (A1) we have the approximation

ϕ(ω/λ, 0, t′) = exp {−C(ω/λ, t′)} , (A7)

where

C(ω/λ, t′) =
(

r

m̄2
− 1

2

)
iω

λ2
t′ +

ω2

2λ2
t′ +

v0ω
2

λ3γ

(
1− e−γt′

)
+

iω2η

λ3γ

[
t′ − 1

γ

(
1− e−γt′

)]

− ω4

2λ4γ2

[
t′ − 1

2γ

(
1− e−2γt′

)
− 2

γ

(
1− e−γt′

)]
. (A8)

Note that there is an extra parameter involved :

γ(ω1 = ω/λ) = ν − iρω

λ

that depends on λ and it leads us to write C(ω/λ, t′) in a somewhat more compact form (cf.

Eqs. (A4)). Indeed, the first term we have to reconsider is

1

λ3γ

(
1− e−γt′

)
=

1

λ3ν

[
(1− e−νt′)− iρω

λν

(
νt′e−νt′ − (1− e−νt′)

)]
+ O(1/λ5)

=
1

λ3ν
a(t′)− iρω

λ4ν2
(b(t′)− a(t′)) + O(1/λ5); (A9)

the second one reads

1

λ3γ

[
t′ − 1

γ

(
1− e−γt′

)]

=
1

λ3ν2

[
νt′ −

(
1− e−νt′

)
+

iρω

λν

(
νt′(1 + e−νt′)− 2(1− e−νt′)

)]
+ O(1/λ5)

=
1

λ3ν2

[(
1 +

iρω

λν

)
νt′ −

(
1 +

2iρω

λν

)
a(t′) +

iρω

λν
b(t′)

]
+ O(1/λ5); (A10)
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while the third one is

1

λ4γ2

[
t′ − 1

2γ

(
1− e−2γt′

)
− 2

γ

(
1− e−γt′

)]
=

1

λ4ν3

[
νt′ − 1

2

(
1− e−2νt′

)
− 2

(
1− e−νt′

)]

=
1

λ4ν3

[
νt′ − 1

2
a(2t′)− 2a(t′)

]
+ O(1/λ5),

(A11)

where

a(t′) = 1− e−νt′ , b(t′) = νt′e−νt′ .

All these expressions serve us to study the terms included in C(ω, t′) given by Eq. (A8) up

to order 1/λ4. We sum up the contributions (A9)–(A11) and obtain

C(ω/λ, t′) =
(

r

m̄2
− 1

2

)
iω

λ2
t′ +

ω2

2λ2
t′ +

v0ω
2

λ3ν
a(t′)− iρv0ω

3

λ4ν2
[b(t′)− a(t′)]

+
iρω3

λ3ν2

[(
1 +

iρω

λν

)
νt′ −

(
1 +

2iρω

λν

)
a(t′) +

iρω

λν
b(t′)

]

− ω4

2λ4ν3

[
νt′ +

1

2
a(2t′)− 2a(t′)

]
+ O(1/λ5). (A12)

We finally rearrange this expression taking into account the order of ω. The final result is

shown in Eq. (36) of the main text.

APPENDIX B: DERIVATION OF THE EUROPEAN CALL OPTION

We perform the average given by Eq. (48). Due to the fact that we have four contributions

in Eq. (42), we will also obtain four terms for the option price. We decompose them as follows

C(S, T, z0) = CBS(S, T )+ϑ(T, z0)C0(S, T )+ρς(T, z0)C1(S, T )+
[
κ(T ) +

1

2
ϑ(T, z0)

2
]
C2(S, T ),

(B1)

where first term CBS corresponds to the Black-Scholes price (i.e., when underlying process

has a constant volatility given by m̄). The following terms –containing several corrections

in the volatility, the skewness and kurtosis– can be easily derived if one considers

e−a2

Hn(−a) =
dn

dan
e−a2

, (B2)

where Hn(·) are the Hermite polynomials. The first term due to a non constant volatility is

C0(S, T ) =
e−rT

2m̄2t

∫ ∞

−∞
H2

(
x− µ√
2m̄2T

)
1√

2πm̄2T
exp

[
−(x− µ)2

2m̄2T

]
max(Sex −K, 0)dx
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and taking into account Eq. (B2) it becomes

C0(S, T ) =
e−rT

2m̄2t
√

π

∫ ∞
ln(K/S)−µ√

2m̄2T

(
Seµ+

√
m̄2Ta −K

) d2

da2
e−a2

da,

which, after some manipulations, finally reads

C0(S, T ) = SN(d1) +
Ke−rT

√
m̄2T

N ′(d2), (B3)

where N ′(x) = dN(x)/dx and d1 and d2 are defined in Eq. (50).

The second term of our calculation is

C1(S, T ) =
e−rT

(2m̄2t)3/2

∫ ∞

−∞
H3

(
x− µ√
2m̄2T

)
1√

2πm̄2T
exp

[
−(x− µ)2

2m̄2T

]
max(Sex −K, 0)dx.

Again taking into account Eq. (B2), we have

C1(S, T ) =
e−rT

(2m̄2T )3/2

∫ ∞
ln(K/S)−µ√

2m̄2T

(Seµ+
√

m̄2Ta −K)
d3

da3
e−a2

da,

which, after some simple algebra, yields

C1(S, T ) = SN(d1)− Ke−rT

√
m̄2T

N ′(d2)

[
1√

2m̄2T
H1

(
d2/
√

2
)
− 1

]
. (B4)

Note that correlation ρ between the two Brownian noise sources determines the sign and the

strength of this term. Obviously if there is no correlation this term disappears (cf. Eq. (B1)).

The third and last piece of our option price reads

C2(S, T ) =
e−rT

(2m̄2t)2

∫ ∞

−∞
H4

(
x− µ√
2m̄2T

)
1√

2πm̄2T
exp

[
−(x− µ)2

2m̄2T

]
max(Sex −K, 0)dx

and, after using Eq. (B2), we get

C2(S, T ) =
e−rT

(2m̄2T )2

∫ ∞
ln(K/S)−µ√

2m̄2T

(Seµ+
√

m̄2Ta −K)
d4

da4
e−a2

da,

which yields

C2(S, T ) = SN(d1) +
Ke−rT

√
m2T

N ′(d2)

[
1

2m̄2T
H2

(
d2/
√

2
)
− 1√

2m̄2T
H1

(
d2/
√

2
)

+ 1

]
. (B5)

We sum up all contributions given by Eqs. (B3)–(B5) and plugging them into Eq. (B1) we

finally obtain Eq. (52) of the main text.
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