

Oracle Advanced Compression with
Oracle Database 18c
O R A C L E W H I T E P A P E R | M A R C H 2 0 1 8

Disclaimer

The following is intended to outline our general product direction. It is intended for information purposes only, and

may not be incorporated into any contract. It is not a commitment to deliver any material, code, or functionality, and

should not be relied upon in making purchasing decisions. The development, release, and timing of any features or

functionality described for Oracle’s products remains at the sole discretion of Oracle.

1 | P a g e – A d v a n c e d C o m p r e s s i o n

Table of Contents

Disclaimer 0

Introduction 2

Oracle Advanced Compression 3

Data Compression 3

Advanced Row Compression 3

Advanced Row Compression Migration and Best Practices 5

Heat Map 7

Automatic Data Optimization 8

Compression for Unstructured Data 9

Compression for Backup Data 10

Advanced Index Compression 11

Advanced Network Compression 12

Data Guard Redo Transport Compression 12

Optimization for Flashback Data Archive History Tables 13

Storage Snapshot Optimization 13

Hybrid Columnar Compression Row Level Locking 13

Exadata Flash Cache Compression 14

Online Move Table/Partition/Subpartition (to a compressed format) 14

Other Compression Capabilities 14

Conclusion 15

2 | P a g e – A d v a n c e d C o m p r e s s i o n

Introduction

The amount of data that enterprises are storing, and managing, is growing rapidly - various industry estimates

indicate that data volume is doubling every 2-3 years.

This exponential growth of data presents daunting challenges for IT. First and foremost are storage costs: even

though the cost of storage has been declining dramatically, the enormous growth in the volume of data makes

storage one of the biggest cost elements of most IT budgets. In addition, as databases grow at accelerating rates,

it is difficult to continue to meet performance requirements while staying within budget.

In Oracle Database 18c, several features of Advanced Compression enhance the storage management capabilities

of Oracle Database. Heat Map automatically tracks modification and query timestamps, providing detailed insights

into how data is being accessed. Automatic Data Optimization (ADO) automatically moves and compresses data

based on the information collected by Heat Map. Together, these capabilities help to implement automated

Information Lifecycle Management (ILM) strategies.

Heat Map and ADO make it easy to use existing innovations in Oracle Database compression technologies, which

can help reduce the cost of managing large amounts of data, while also improving application and database

performance. Oracle Advanced Compression provides a comprehensive set of compression features designed to

reduce costs and improve performance by enabling compression for structured data, unstructured data, indexes,

database backups, network traffic and for Data Guard redo.

In addition to Heat Map and ADO, other features of Advanced Compression include: Advanced Network

Compression, Advanced Index Compression, Advanced LOB Compression/Deduplication, Optimization of

Flashback Data Archive History Tables, Storage Snapshot Optimization and Online Move Table/Partition to

compressed formats.

Each of these Advanced Compression features is described in this document.

3 | P a g e – A d v a n c e d C o m p r e s s i o n

Oracle Advanced Compression

Oracle Advanced Compression provides a comprehensive set of compression capabilities to help customers improve performance

while reducing storage costs. It allows IT administrators to significantly reduce their overall database storage footprint by enabling

compression for all types of data –relational (table), unstructured (file), index, network and backup data.

Although storage cost savings and optimization across servers (production, development, QA, Test, Backup and etc...) are often seen

as the most tangible benefits, all of the features of Advanced Compression are designed to improve performance for all components of

your IT infrastructure, including memory, network bandwidth and storage.

Data Compression

Oracle is a pioneer in database compression technology. More than a decade ago, Oracle Database 9i Release 2 introduced Basic

Table Compression which compresses data that is loaded using bulk load operations.

In 2007, Oracle Database 11g Release 1 introduced OLTP Table Compression, now called Advanced Row Compression, which

maintains compression during all types of data manipulation operations, including conventional DML such as INSERT and UPDATE. In

addition, Advanced Row Compression minimizes the overhead of write operations on compressed data, making it suitable for

transactional / OLTP environments as well as Data Warehouses, extending the benefits of compression to all application workloads.

Basic Table Compression is a feature of Oracle Database 18c Enterprise Edition (EE). Advanced Row Compression is a feature of

Advanced Compression.

Advanced Row Compression

Advanced Row Compression uses a unique compression algorithm specifically designed to work with OLTP/DW applications. The

algorithm works by eliminating duplicate values within a database block, even across multiple columns. Compressed blocks contain a

structure called a symbol table that maintains compression metadata. When a block is compressed, duplicate values are eliminated by

first adding a single copy of the duplicate value to the symbol table. Each duplicate value is then replaced by a short reference to the

appropriate entry in the symbol table.

Through this innovative design, compressed data is self-contained within the database block, as the metadata used to translate

compressed data into its original state is stored in the block header. When compared with competing compression algorithms that

maintain a global database symbol table, Oracle’s approach offers significant performance benefits by not introducing additional I/O

when accessing compressed data.

Benefits of Advanced Row Compression

The compression ratio achieved in a given environment depends on the data being compressed, specifically the cardinality of the data.

In general, organizations can expect to reduce their storage space consumption by a factor of 2x to 4x by using Advanced Row

Compression. That is, the amount of space consumed by uncompressed data will be two to four times larger than that of the

compressed data.

The benefits of Advanced Row Compression go beyond just on-disk storage savings. One significant advantage is Oracle’s ability to

read compressed blocks (data and indexes) directly, in memory, without uncompressing the blocks. This helps improve performance

due to the reduction in I/O, and the reduction in system calls related to the I/O operations. Further, the buffer cache becomes more

efficient by storing more data without having to add memory.

4 | P a g e – A d v a n c e d C o m p r e s s i o n

Minimal Performance Overhead

As described above, Advanced Row Compression has no adverse impact on read operations. There can be additional work performed

while writing data, making it impossible to completely eliminate performance overhead for write operations. There are several

optimizations which minimize this overhead for Advanced Row Compression. Oracle Database compresses blocks in batch mode

rather than compressing data every time a write operation takes place. A newly initialized block remains uncompressed until data in the

block reaches an internally controlled threshold. When a transaction causes the data in the block to reach this threshold, all contents of

the block are compressed. Subsequently, as more data is added to the block and the threshold is again reached, the entire block is

recompressed to achieve the highest level of compression.

This process repeats until Oracle determines that the block can no longer benefit from further compression. Only the transaction that

performs the compression of the block will experience the slight compression overhead – the majority of DML transactions on

compressed blocks will have the exact same performance as they would with uncompressed blocks.

Performance Enhancements with Oracle Compression

Partial Compression

With Advanced Row Compression, when the block is full, it is compressed. More rows are then added (since more rows

can now fit into the block), and the process of recompression is repeated several times until the rows in the block

cannot be compressed further. Blocks are usually compressed and reformatted in their entirety, but, starting with Oracle

Database 12c Release 2, in some cases the block can be partially compressed, hence resulting in CPU savings and

extra compression.

The partial compression feature is used on already compressed blocks (i.e. compressed with Advanced Row

Compression). It looks for uncompressed rows and transforms those into a compressed form, adding or reusing

symbols from the block dictionary - this is faster than recompressing the whole block again. Full block recompression

also requires that no rows are locked in the block or, that all the rows in the block are locked by the transaction inserting

rows into the block. In the first case, full block recompression is done as a recursive transaction, and in the second

case, full recompression is done as an inline transaction. Partial compression gets around these requirements by

locking and compressing only those rows that are uncompressed and unlocked - hence it can take place in the

presence of other uncommitted transactions in the block.

Consider a SQL update operation: When rows cannot be updated in place due to space constraints, the update is

broken up into lower level overwrite and insert sub-operations (the initial row piece is overwritten with a stub that points

to the new row image inserted into a new block). This is done to avoid ROWID changes to existing rows on update

operations. Assuming concurrent transactions, each transaction typically updates a few rows, and the rows inserted into

a new block are neither all locked by the same transaction (some rows from previously committed transactions are

unlocked) nor are they all unlocked (some transactions are yet to commit). In such a case, full block recompression is

not possible - this causes some blocks to be left uncompressed during an update (or, equivalently, during an insert

operation). Starting with Oracle Database 12c Release 2, with partial compression, these rows can be compressed. For

an in-depth treatment of updates to Advanced Row compressed tables, please see: this post). In simpler terms, partial

compression can now compress rows which could not be compressed before.

Background Compression

In Oracle Database 11g Release 2, block compression was only triggered using direct load operations or by DML

operations:

https://blogs.oracle.com/DBStorage/entry/updates_in_row_compressed_tables

5 | P a g e – A d v a n c e d C o m p r e s s i o n

 Direct Load: via import, create table as select, move (alter table, partition move [online]).

 DML: via inserts or updates which then trigger compression.

Starting with Database 12c Release 2, background space tasks can compress blocks if these find them as candidates.

A block can be marked as a candidate to be compressed based on previous DML operations or by other space tasks

evaluating the space usage of a block. Compression done in the background is the same as Advanced Row

Compression, but triggered by background processes instead of an active SQL session. Another example of

background triggered compression is with ADO (Automatic Data Optimization) that is defined based on policies

declaratively set by the user.

Array Inserts

Insert operations such as INSERT ... AS SELECT and PLSQL/OCI insert loops with bind variables, in many cases, go

through a special array insert code path. Typically, these operations generate one redo record containing hundreds of

rows to be inserted instead of hundreds of redo records each with a single row. This code path is used when the rows

being inserted conform to certain restrictions, such as not requiring to be chained.

Before Database 12c Release 2, array inserts caused multiple recompressions per block: A batch of rows is inserted

into a block and the block is compressed, the next batch is inserted and the block is recompressed and so on. Starting

with Database 12c Release 2, Oracle estimates the number of rows that would fit into a compressed block. All these

rows are then buffered, compressed, and a full block image is generated. Note that compression occurs only once or

twice (one compression to estimate compression ratio) per block, as opposed to occurring potentially many times as in

pre-Database 12c Release 2. This provides a big benefit in elapsed time. Oracle also obtains a much better

compression ratio because we compress many more rows together (hence being able to extract common symbols

more effectively). The algorithms also adaptively vary the number of rows to be buffered and increase the number of

rows buffered depending on running estimates of how many compressed rows would fit into a block. With this

enhancement, tables with Advanced Row Compression not only enable much faster scans, but also faster inserts than

uncompressed tables, because of reduced logical and physical block gets.

Advanced Row Compression Migration and Best Practices

For new tables and partitions, enabling Advanced Row Compression is easy: simply CREATE the table or partition and specify “ROW

STORE COMPRESS ADVANCED”. See the example below:

CREATE TABLE emp (emp_id NUMBER, first_name VARCHAR2(128), last_name VARCHAR2(128)) ROW

STORE COMPRESS ADVANCED;

For existing tables and partitions, there are a number of recommended approaches to enabling Advanced Row Compression:

1. ALTER TABLE … ROW STORE COMPRESS ADVANCED

 This approach will enable Advanced Row Compression for all future DML -- however, the existing data in

the table will remain uncompressed.

2. Online Redefinition (DBMS_REDEFINITION)

 This approach will enable Advanced Row Compression for future DML and also compress existing data.

Using DBMS_REDEFINITION keeps the table online for both read/write activity during the migration. Run

DBMS_REDEFINITION in parallel for best performance.

http://www.oracle.com/technetwork/database/automatic-data-optimization-wp-12c-1896120.pdf

6 | P a g e – A d v a n c e d C o m p r e s s i o n

 Online redefinition will clone the indexes to the interim table during the operation. All the cloned indexes

are incrementally maintained during the sync (refresh) operation so there is no interruption in the use of

the indexes during, or after, the online redefinition. The only exception is when online redefinition is used

for redefining a partition -- any global indexes are invalidated and need to be rebuilt after the online

redefinition.

3. ALTER TABLE … MOVE ROW STORE COMPRESS ADVANCED

 This approach will enable Advanced Row Compression for future DML and also compress

existing data. While the table is being moved it is online for read activity but has an exclusive (X)

lock – so all DML will be blocked until the move command completes. Run ALTER

TABLE…MOVE in parallel for best performance.

 ALTER TABLE… MOVE will invalidate any indexes on the partition or table; those indexes will

need to be rebuilt after the ALTER TABLE… MOVE. For partition moves, the use of ALTER

TABLE… MOVE PARTITION with the UPDATE INDEXES clause will maintain indexes (it places

an exclusive (X) lock so all DML will be blocked until the move command completes) – not

available for non-partitioned tables.

 The ALTER TABLE... MOVE statement allows you to relocate data of a non-partitioned table, or

of a partition of a partitioned table, into a new segment, and optionally into a different tablespace.

ALTER TABLE…MOVE ROW STORE COMPRESS ADVANCED compresses the data by

creating new extents for the compressed data in the tablespace being moved to -- it is important

to note that the positioning of the new segment can be anywhere within the data file, not

necessarily at the tail of the file or head of the file. When the original segment is released,

depending on the location of the extents, it may or may not be possible to shrink the data file.

4. ALTER TABLE … MOVE TABLE/PARTITION/SUBPARTITION … ONLINE ROW STORE COMPRESS

ADVANCED

This approach will enable Advanced Row Compression for future DML and also compress

existing data. ALTER TABLE ... MOVE TABLE/PARTITION/SUBPARTITION … ONLINE allows

DML operations to continue to run uninterrupted on the table/partition/subpartition that is being

moved. Indexes are maintained during the move operation, so a manual index rebuild is not

required. Starting with Oracle Database 12c Release 2, move tables online as well as

partitions/subpartitions.

Below are some best practices, and considerations, regarding the features of Advanced Compression:

 The general recommendation is to compress all the tables in the database with one exception: if the table is used as a queue,

i.e. rows are inserted into the table, then later most or all of the rows are deleted, then more rows are inserted then deleted,

then you shouldn't compress the table.

 The best test environment for each Advanced Compression capability is where you can most closely duplicate the production

environment– this will provide the most realistic (pre- and post- compression) performance and functionality comparisons.

 Space usage reduction with Advanced Row Compression gives the best results where the most duplicate data is stored (low

cardinality). This is especially true for backups -- greater compression will result in less data backed up and hence shorter

recovery time. Sorting data (on the columns with the most duplicates) prior to bulk loads may increase the compression ratio.

 Regarding whether or not to compress at the Tablespace level: For custom applications, we recommend compressing at the

Tablespace level, but users should consider turning off compression on very high traffic or very small tables, such as tables

used as queues. For commercial packaged applications, where typically the number of objects can be very large, the

recommended approach is object selection instead of exclusion. Often the top hundred largest tables and indexes consume

7 | P a g e – A d v a n c e d C o m p r e s s i o n

the majority of the database space. Compressing those objects, while excluding high traffic objects like tables used as

queues, will give the majority of the compression benefits. Other objects can be compressed over time as needed.

 Prefix compression (index) is included with Oracle Database Enterprise Edition.

 Although CPU overhead is typically minimal, implementing Advanced Row Compression is ideal on systems with available

CPU cycles, as compression will have additional, although minor overhead for some DML operations.

 Compression Advisor is a PL/SQL package that is used to estimate potential storage savings, for Advanced Row

Compression, based on analysis of a sample of data. It provides a good estimate of the actual compression ratio that will be

obtained after implementing Advanced Row Compression. A version of Compression Advisor, which supports Oracle

Database 9i Release 2 through 11g Release 1, is available for free on the Oracle Technology Network website. Compression

Advisor (DBMS_COMPRESSION) is built in to Oracle Database 11g Release 2 and above.

 Advanced Row Compression is NOT supported for use with tables that have LONG data types.

 Larger blocks don’t always ensure higher Advanced Row Compression ratios. Testing with your own data is suggested if you

want to determine if larger/smaller block sizes will have an impact on your Advanced Row Compression ratio.

 LOBs can be stored with SecureFiles. The Advanced LOB Compression and Deduplication features of Advanced

Compression are intended to reduce the amount of storage required for LOBs.

 Data Pump compression is completely independent of Advanced Row Compression. The Data Pump dumpfile is

uncompressed inline during the import process, and the data is then imported into the target table based on the compression

characteristics of the table.

 Before Oracle Database 12c Release 2, blocks containing many types of chained rows could not be compressed. This

limitation has been removed starting with Oracle Database 12c Release 2.

 Index-Organized Tables (IOT's) are essentially indexes, so they can't be compressed with Advanced Row or Basic

Compression. IOT’s can be compressed with Prefix Compression.

 If users need more flexibility in tailoring an ADO policy, they can do so with a custom ADO policy. Custom ADO policies utilize

a user provided function to evaluate each applicable segment.

 It is sometimes necessary to move data as quickly as possible from one tier to another and it is not possible to wait until the

next maintenance window. The ability to execute ADO policies immediately provides the ability to move or compress data on

demand, regardless of any existing policies.

Heat Map

Business requirements are not the same for all data in a database. Data goes through various stages in its lifecycle: It starts out as

active data, when the data is first inserted and then frequently queried and modified; this data is an ideal candidate for Advanced Row

Compression. After some period of time, data typically becomes less active – a time period when it is queried often, for example for

report generation, however it is modified rarely; this data is an ideal candidate for Hybrid Columnar Warehouse (Query) Compression.

In the final stage, data becomes more or less dormant – it is no longer updated and is queried very infrequently, if at all, but it must be

kept for compliance and regulatory purposes; this data can be compressed using Hybrid Columnar Archive Compression.

Heat Map is an Advanced Compression feature that collects usage information at the block and segment levels. By using Heat Map in

conjunction with Automatic Data Optimization - see the Automatic Data Optimization section below - Oracle Database 18c can

automate compression and storage policies based on the usage of the data, reducing storage costs, improving performance and

optimizing storage.

At the segment level, Heat Map tracks the timestamps of the most recent modification and query of each table and partition in the

database. At the block level, Heat Map tracks the most recent modification timestamp. These timestamps are used by Automatic Data

8 | P a g e – A d v a n c e d C o m p r e s s i o n

Optimization to define compression and storage policies which will be automatically maintained throughout the lifecycle of the data.

Heat Map skips internal operations done for system tasks -- automatically excluding Stats Gathering, DDLs, Table Redefinitions and

similar operations. In addition, Heat Map can be disabled at the session level, allowing DBA’s to exclude manual maintenance, avoiding

pollution of Heat Map data.

With the data collected by Heat Map, Oracle Database can automatically compress each partition of a table independently based on

Heat Map data, implementing compression tiering. This compression tiering can use all forms of Oracle data compression, including:

Advanced Row Compression and all levels of Hybrid Columnar Compression (HCC) if the underlying storage supports HCC. Oracle

Database can also compress individual database blocks based on Heat Map data.

Automatic Data Optimization

Automatic Data Optimization (ADO) allows organizations to create policies that implement data compression and storage tiering

automatically. ADO policies define conditions and corresponding actions to be applied to specific objects. Utilizing the information

maintained by Heat Map, Oracle Database 18c executes the registered ADO actions, for the requested objects, to move them to the

desired state transparently and automatically.

 ADO policies can be specified at the segment level, or the row level for tables and partitions.

 Segment and row level ADO policies are evaluated and executed automatically in the background during

maintenance windows, or they can be executed on demand.

 Storage tiering (Tier To) is specified at the segment level, and is triggered by space pressure in the

tablespace where the segment currently resides. The DBA can set or change the space pressure

threshold using administrative procedures. Storage tiering policies with the 'READ ONLY' clause are

triggered by a heat-map based condition.

An ADO policy includes specification of the following:

 Which condition will initiate compression -- such as no access or no modification. Custom conditions can

be created based upon specific business requirements.

 When the policy will take effect -- for example, after “x” days (or months or years) of no modification, or ”x”

days after table/partition creation, or when the tablespace containing the object meets the pre-defined

tablespace fullness threshold.

Example ADO Policies:

In this first example, a segment-level ADO policy is created to automatically compress the entire table after there have been no

modifications for at least 30 days, using Advanced Row Compression:

ALTER TABLE employee ILM ADD POLICY ROW STORE COMPRESS ADVANCED SEGMENT

AFTER 30 DAYS OF NO MODIFICATION;

In this next example, a row-level ADO policy is created to automatically compress blocks in the table, after no rows in the block have

been modified for at least 3 days, using Advanced Row Compression:

ALTER TABLE employee ILM ADD POLICY ROW STORE COMPRESS ADVANCED ROW AFTER 3 DAYS OF

NO MODIFICATION;

Other ADO policy actions can include data movement to other storage tiers (TIER TO), including lower cost storage tiers or storage tiers

with other compression capabilities such as Hybrid Columnar Compression (HCC). HCC requires the use of Oracle Storage – Exadata,

SuperCluster, Pillar Axiom, Sun ZFS Storage Appliance (ZFSSA) or FS1.

9 | P a g e – A d v a n c e d C o m p r e s s i o n

In this example, a tablespace-level ADO policy automatically moves the table to a different tablespace when the tablespace currently

containing the object meets a pre-defined tablespace fullness threshold:

ALTER TABLE employee ILM ADD POLICY tier to lowcost;

Another option when moving a segment to another tablespace is to set the target tablespace to READ ONLY after the object is

moved. This is useful for historical data during database backups, since subsequent full database backups will skip READ ONLY

tablespaces.

Compression for Unstructured Data

SecureFiles offers a ‘best-of-both-worlds’ architecture for storing unstructured content such as documents, images, spreadsheets and

XML files and is specifically engineered to deliver high performance for file data equal to or better than traditional file systems, while

retaining the advantages of Oracle Database.

SecureFiles is designed as a superset of the ANSI standard LOB data type and offers easy migration from existing BasicFiles LOBs,

the precursor to SecureFiles. With SecureFiles, organizations can manage all relational data and associated file data with Oracle

Database using a single security/audit model, a unified backup & recovery process and perform seamless retrievals across all

information.

Advanced Compression includes Advanced LOB Compression and Deduplication features that can dramatically reduce the storage

footprint of SecureFiles data, while also improving performance.

Advanced LOB Deduplication

It is extremely common for applications to store exact replicas of files. A typical example is an email

application where multiple users may receive the same attachment. Advanced LOB Deduplication

eliminates duplicate copies of SecureFiles data. Oracle Database stores one image of the SecureFiles

data and replaces the duplicate copies with references to this image.

Consider an email application where 10 users receive an email with the same 1MB attachment. Without

Advanced LOB Deduplication, the system would store one copy of the file for each of the 10 users –

requiring 10MB of storage. If the email application in our example uses Advanced LOB Deduplication, it will

store the 1MB attachment just once. That’s a 90% savings in storage requirements.

In addition to the storage savings, Advanced LOB Deduplication also increases application performance.

Specifically, write and copy operations are much more efficient since only references to the SecureFiles

data are written. Further, read operations may improve if duplicate SecureFiles data already exists in the

buffer cache.

Secure Hash

Figure 3 Advanced LOB De-

duplication

10 | P a g e – A d v a n c e d C o m p r e s s i o n

Advanced LOB Compression

Advanced Compression provides another mechanism to control the size of your SecureFiles data. Advanced LOB

Compression utilizes industry standard compression algorithms to further minimize the storage requirements of

SecureFiles data.

With Advanced LOB Compression, files such as documents or XML files experience a reduction of 2x to 3x times in

size. Advanced LOB Compression automatically avoids compressing data that would not benefit from compression

– for instance a document that was compressed via a 3rd party tool before being inserted into the database as a

SecureFiles file. Applications are still able to perform random reads and writes on compressed SecureFiles data

since the compressed data is internally broken down into small chunks of data. This can vastly improve performance

when compared with compressing entire files before inserting them into the database.

There are three levels of Advanced LOB Compression: LOW, MEDIUM, and HIGH. By default, Advanced LOB

Compression uses the MEDIUM level, which typically provides good compression with a modest CPU overhead of

3%-5%. Advanced LOB Compression LOW is optimized for high performance. Advanced LOB Compression LOW

maintains about 80% of the compression achieved through MEDIUM, while utilizing typically 3x less CPU. Finally,

Advanced LOB Compression HIGH achieves the highest storage savings but incurs the most CPU overhead.

For more information about SecureFiles and LOB storage, please see the Oracle® Database SecureFiles and Large

Objects Developer's Guide.

Compression for Backup Data

In addition to compressing data stored inside the database, Advanced Compression also includes the capability to compress backed up

data. Recovery Manager (RMAN) and Data Pump are the two most commonly used tools to backup the data stored inside an Oracle

Database.

RMAN makes a block-by-block backup of the database data, also known as a “physical” backup, which can be used to perform

database, tablespace or block level recovery. Data Pump is used to perform a “logical” backup by offloading data from one or more

tables into a flat file.

Advanced Compression includes the capability to compress the backup data generated by both of these tools.

Recovery Manager (RMAN) Compression

The continuous growth in enterprise databases creates an enormous challenge to database administrators. The storage requirements

for maintaining database backups and the performance of the backup procedures are directly impacted by database size. Advanced

Compression includes RMAN compression technology that can dramatically reduce the storage requirements for backup data.

Due to RMAN’s tight integration with Oracle Database, backup data is compressed before it is written to disk or tape and doesn’t need

to be uncompressed before recovery – providing an enormous reduction in storage costs and a potentially large reduction in backup

and restore times.

There are three levels of RMAN Compression: LOW, MEDIUM, and HIGH. Generally speaking, the three levels can be categorized as

such:

HIGH - Best suited for backups over slower networks where the limiting factor is network speed

MEDIUM -Recommended for most environments. Good combination of compression ratios and speed

LOW - Least impact on backup throughput and suited for environments where CPU resources are the limiting factor.

As indicated above, if you are I/O-limited but have idle CPU, then HIGH could work best, as it uses more CPU, but saves the most

space and thus gives the biggest decrease in the number of I/O's required to write the backup files. On the other hand, if you are

11 | P a g e – A d v a n c e d C o m p r e s s i o n

CPU-limited, then LOW or MEDIUM probably makes more sense - less CPU is used, and about 80% of the space savings will

typically be realized (compared to Basic).

Data Pump Compression

The ability to compress the metadata associated with a Data Pump job was first provided in Oracle Database 10g Release 2. In Oracle

Database 11g, this compression capability was extended so that table data can be compressed on export; this extended capability is a

feature of Advanced Compression.

Data Pump compression is an inline operation, so the reduced dump file size means a significant savings in disk space. Unlike

operating system or file system compression utilities, Data Pump compression is fully inline on the import side as well, so there is no

need to decompress a dump file before importing it. The compressed dump file sets are automatically decompressed during import

without any additional steps by the Database Administrator.

Full Data Pump functionality is available using a compressed file. Any command that is used on a regular file will also work on a

compressed file. The following options are used to determine which parts of a dump file set should be compressed:

ALL - Enables compression for the entire export operation.

DATA-ONLY - Results in all data being written to the dump file in compressed format.

METADATA-ONLY - Results in all metadata being written to the dump file in compressed format. This is the default.

NONE - Disables compression for the entire export operation.

An expdp command-line option for Oracle Data Pump Export can be used to control the degree of compression used (BASIC, LOW,

MEDIUM or HIGH) for an Oracle Data Pump dump file – the same options can also be specified to the PL/SQL DBMS_DATAPUMP

package.

The higher the degree of compression, the higher the latency incurred but the better compression ratio achieved. That is, the HIGH

option will likely incur more overhead, but should compress the data better. These options enable the DBA to trade off time spent

compressing data against the size of the Oracle Data Pump dump file.

The reduction in dump file size will vary based on data types and other factors. Note that when importing using Data Pump, the

CREATE TABLE statements will have compression clauses that match the definition in the export file. If a compression clause is

missing, then the table inherits the COMPRESSION attributes of the tablespace where the table is stored.

For more information about Oracle Data Pump, please visit http://www.oracle.com/technetwork/database/enterprise-edition/index-

093639.html

Advanced Index Compression

Indexes are used extensively inside OLTP databases since they are capable of efficiently supporting a wide variety of access paths to

the data stored in relational tables. It is very common to find a large number of indexes being created on a single table to support the

multitude of access paths for OLTP applications, this can cause indexes to contribute a greater share to the overall storage of a

database when compared to the size of the base tables alone.

Advanced Index Compression is a form of index block compression. Creating an index using Advanced Index Compression reduces the

size of all supported unique and non-unique indexes -- while still providing efficient access to the indexes. Advanced Index

Compression works well on all supported indexes, including those indexes that are not good candidates (indexes with no duplicate

values, or few duplicate values for given number of leading columns of the index) with the existing Prefix Compression feature (see

below).

Advanced Index Compression works at the block level to provide the best compression for each block, this means that users don’t need

knowledge of data characteristics – Advanced Index Compression automatically chooses the right compression per block.

12 | P a g e – A d v a n c e d C o m p r e s s i o n

Starting with Oracle Database 12c Release 2, the “HIGH” level of Advanced Index Compression provides significant space savings

while also improving performance for queries that are executed using indexes. High compression offers the following advantages over

LOW compression:

 Gives higher compression ratios in most cases.

 Employs more complex compression algorithms than advanced low compression.

 Stores data in a compression unit, which is a special on-disk format.

The following is an example of enabling Advanced Index Compression (high level):

CREATE INDEX hr.emp_mndp_ix ON hr.employees(manager_id, department_id) COMPRESS

ADVANCED HIGH;

For more information about Advanced Index Compression, please see this Oracle White Paper:

http://www.oracle.com/ocom/groups/public/@otn/documents/webcontent/2968746.pdf

Advanced Network Compression

Advanced Network Compression, also referred to as SQL Network Data Compression, can be used to compress the network data to be

transmitted at the sending side and then uncompress it at the receiving side to reduce the network traffic. Advanced Network

Compression reduces the size of the session data unit (SDU) transmitted over a data connection. Reducing the size of data reduces the

time required to transmit the SDU.

The benefits of Advanced Network Compression include:

Increased effective network throughput: Compression allows transmission of large data in less time. SQL query response

becomes faster due to the reduced transmission time. Constrained bandwidth environments can utilize this to reduce query

response time.

Reduced bandwidth utilization: Compression saves bandwidth by reducing the data to be transmitted, allowing other

applications to use the freed-up bandwidth. This also helps in reducing the cost of providing network bandwidth.

Advanced Network Compression not only makes SQL query responses faster but also saves bandwidth. On narrow bandwidth

connections, with faster CPU, it could significantly improve performance. The compression is transparent to client applications.

For more information about configuring Advanced Network Compression, please see this Oracle White Paper:

http://www.oracle.com/technetwork/database/enterprise-edition/advancednetworkcompression-2141325.pdf

Data Guard Redo Transport Compression

Oracle Data Guard provides the management, monitoring and automation software infrastructure to create, maintain, and monitor one

or more standby databases to protect enterprise data from failures, disasters, errors and data corruptions. Data Guard maintains

synchronization of primary and standby databases using redo data (the information required to recover a transaction). As transactions

occur in the primary database, redo data is generated and written to the local redo log files.

Data Guard Redo Transport Services are used to transfer this redo data to the standby site(s). With Advanced Compression, redo data

may be transmitted in a compressed format to reduce network bandwidth consumption and in some cases reduce transmission time of

redo data. Redo data can be transmitted in a compressed format when the Oracle Data Guard configuration uses either synchronous

redo transport (SYNC) or asynchronous redo transport (ASYNC).

For more information about Oracle Data Guard, please visit http://www.oracle.com/technetwork/database/options/active-data-

guard/overview/index.html

13 | P a g e – A d v a n c e d C o m p r e s s i o n

Optimization for Flashback Data Archive History Tables

Flashback Data Archive (FDA) was introduced in Oracle Database 11g Release 1; it automatically tracks changes to specified tables at

the row level, creating a row level history. It also automatically tracks schema changes to specified tables. A key feature of FDA is the

ability to do transaction time temporal SQL queries - using the simple and powerful Flashback Query feature of the database to perform

queries on historical data.

The volume of data that FDA generates as history can be large; to optimize the storage and performance of this data, Advanced

Compression enables FDA to utilize Advanced Row Compression, Advanced LOB Compression and Deduplication and Compression

Tiering -- which are not available by default for FDA history tables.

With Advanced Compression, FDA provides the ability to enable or disable optimized data at the flashback archive level, and is

available for both CREATE FLASHBACK ARCHIVE and ALTER FLASHBACK ARCHIVE.

Storage Snapshot Optimization

While Recovery Manager (RMAN) remains the most popular method to perform Oracle Database backups, another method for taking

database backups is to create a storage snapshot of all of the files in the database (data files, control files, and online redo logs), mount

that snapshot on a different system than the one that runs the production database, and copy the data to tertiary storage, such as tape,

from that second system.

Snapshots taken this way are “crash-consistent”, provided the storage product adheres to specific guidelines outlined in Oracle

documentation. If such a snapshot is restored, Oracle cannot distinguish between that and a database that crashed at the moment the

snapshot was taken. Crash-consistent backups can be opened and used after undergoing standard crash (i.e. instance) recovery.

However, they cannot be reliably used for point-in-time recovery, as the redo logs do not contain sufficient information for media

recovery to remove the data files' inconsistency (since the database was open for writes when snapshot was taken). To perform point-

in-time recovery, one must adhere to the requirements and strictly follow the manual procedures as outlined in Support Note 604683.1.

Alternatively, snapshots taken in backup mode, i.e. ALTER DATABASE [BEGIN | END] BACKUP, remove the point-in-time recovery

restriction, as additional information is written into the redo logs to remove the data files' inconsistency upon recovery. Since each

database needs to be placed in this mode before snapshot is taken and taken out of this mode when the snapshot completes - this

complexity is magnified when this procedure must be done for tens, hundreds, or thousands of databases. In addition, during this mode,

whole block images are written to redo logs as they are changed, inducing additional I/O activity - this overhead is magnified when you

have many databases running on the same array.

With the Oracle Database 18c RECOVER .. SNAPSHOT TIME command, available with Advanced Compression, storage snapshots

taken without the database in backup mode can be recovered in one step, whether to the current time or a specific point-in-time after

the snapshot was taken, without any additional procedures. By supporting all types of recovery operations using these snapshots, this

optimization effectively eliminates the need for backup mode and its associated complexity and overhead, freeing the DBA's time to

focus on more critical production tasks.

Hybrid Columnar Compression Row Level Locking

Hybrid Columnar Compression (HCC) technology is a method for organizing data within a set of database blocks. HCC utilizes a

combination of both row and columnar methods for storing data. A logical construct, called the Compression Unit (CU), is used to store

a set of HCC-compressed data. When data is loaded, groups of rows are stored in columnar format, with the values for a given column

stored and compressed together. After the column data for a set of rows has been compressed, it is fit into the compression unit.

Hybrid Columnar Compression uses one lock per CU. Optionally; users can choose to enable Row Level Locking for Compression

Units. The default with HCC is NO ROW LEVEL LOCKING, ROW LEVEL LOCKING is explicitly specified during a CREATE TABLE or

ALTER TABLE MOVE operation.

14 | P a g e – A d v a n c e d C o m p r e s s i o n

The following is an example of enabling HCC Row Level Locking:

… COMPRESS FOR [compression_type] [ROW LEVEL LOCKING | NO ROW LEVEL LOCKING]

For more information about HCC, please visit http://www.oracle.com/technetwork/database/database-technologies/hybrid-col-

compression/overview/hccoverviewpage-2403631.html

Exadata Flash Cache Compression

Exadata Flash Cache compression dynamically increases the logical capacity of the flash cache by transparently compressing user

data as it is loaded into the flash cache. This allows much more data to be kept in flash, and decreases the need to access data on disk

drives. The I/Os to data in flash are orders of magnitude faster than the I/Os to data on disk. The compression and decompression

operations are completely transparent to the application and database, and have no performance overhead, even when running at rates

of millions of I/Os per second.

Depending on the user data compressibility, Oracle Exadata Storage Server Software dynamically expands the flash cache size up to

two times. Compression benefits vary based on the redundancy in the data. Tables and indexes that are uncompressed have the

largest space reductions. Tables and indexes that are OLTP Table compressed have significant space reductions. Tables that use

Hybrid Columnar Compression have minimal space reductions.

Online Move Table/Partition/Subpartition (to a compressed format)

ALTER TABLE ... MOVE TABLE/PARTITION/SUBPARTITION … ONLINE enables tables, partitions and/or subpartitions to be moved

as an online operation without blocking any concurrent DML operations.

The /partition/subpartition move operation supports automatic index maintenance as part of the move, so no index rebuild is required.

Starting with Oracle Database 12c Release 2, move tables online as well as partitions/subpartitions.

Other Compression Capabilities

Oracle Database 18c Enterprise Edition includes a number of compression capabilities, these include:

Hybrid Columnar Compression with Oracle Storage (Pillar Axiom, ZFSSA or FS1)

Hybrid Columnar Compression (HCC) technology is a method for organizing data within a set of database

blocks. HCC utilizes a combination of both row and columnar methods for storing data.

A logical construct, called the compression unit, is used to store a set of HCC-compressed data. When

data is loaded, groups of rows are stored in columnar format, with the values for a given column stored

and compressed together. After the column data for a set of rows has been compressed, it is fit into the

compression unit.

Storing column data together, with the same data type and similar characteristics, dramatically increases

the storage savings achieved from compression, typical HCC compression ratios range from 6x to 15x,

depending the on the type of HCC compression used.

Hybrid Columnar Compression, initially only available on Exadata, has been extended to support Pillar

Axiom, Sun ZFS Storage Appliance (ZFSSA) and FS1 storage when used with Oracle Database

Enterprise Edition 11.2.0.3 and above.

For more information about HCC, please see here:

http://www.oracle.com/technetwork/database/database-technologies/hybrid-col-

compression/overview/hccoverviewpage-2403631.html

15 | P a g e – A d v a n c e d C o m p r e s s i o n

Basic Table Compression

Oracle Database 9i introduced Basic Table Compression more than a decade ago, which compresses

data that is loaded using bulk load operations. Basic Table Compression is a feature of Oracle Database

Enterprise Edition (EE).

Unlike Advanced Row Compression, Basic Compression does not apply compression to DML operations

(INSERT/UPDATE) performed on the table after the initial bulk load. The formats on disk for Basic

Compression and Advanced Row Compression are identical, so it is technically possible to convert from

Basic to Advanced Row Compression simply by changing the storage definition on the table/partition.

RMAN Basic Compression

Oracle Recovery Manager (RMAN) includes a Basic Compression capability which enables RMAN to

perform binary compression of backup sets.

Data Pump Metadata Compression

The COMPRESSION parameter can be used to decrease the size of metadata written during Data Pump

exports.

Prefix Compression

Prefix compression enables users to compress portions of the primary key column values in an index or

index-organized table (IOT), which reduces the storage overhead of repeated values. Prefix compression

breaks the index key into a prefix entry (the grouping piece) and a suffix entry (the unique piece).

Compression is achieved by sharing the prefix entries among the suffix entries in an index block. Only

keys in the leaf blocks of a B-tree index are compressed. Prefix compression is done within an index block

but not across multiple index blocks. Indexes can be compressed independently of whether the underlying

table data is compressed.

It is suggested that users run ANALYZE INDEX to obtain the optimal prefix column count, which produces

the optimal count for the index as a whole , when using Prefix Compression.

Conclusion

The massive growth in data volume, being experienced by enterprises, introduces significant challenges. Companies must quickly

adapt to the changing business landscape without impacting the bottom line. IT managers need to efficiently manage their existing

infrastructure to control costs, yet continue to deliver extraordinary application performance.

Advanced Compression, along with Oracle Database 18c, together provide a robust set of compression, performance and data storage

optimization capabilities that enable IT managers to succeed in this complex environment.

Using Advanced Compression, enterprises can efficiently manage their increasing data requirements throughout all components of their

data center – minimizing CapEx and OpEx costs while continuing to achieve the highest levels of application performance.

For more information about Advanced Compression features and usage examples, please see the Storage Optimization blog

here: https://blogs.oracle.com/DBStorage/

16 | P a g e – A d v a n c e d C o m p r e s s i o n

Oracle Corporation, World Headquarters Worldwide Inquiries

500 Oracle Parkway Phone: +1.650.506.7000

Redwood Shores, CA 94065, USA Fax: +1.650.506.7200

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. This document is provided for information purposes only, and the
contents hereof are subject to change without notice. This document is not warranted to be error-free, nor subject to any other
warranties or conditions, whether expressed orally or implied in law, including implied warranties and conditions of merchantability or
fitness for a particular purpose. We specifically disclaim any liability with respect to this document, and no contractual obligations are
formed either directly or indirectly by this document. This document may not be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without our prior written permission.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and
are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are
trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group. 0318

C O N N E C T W I T H U S

blogs.oracle.com/oracle

facebook.com/oracle

twitter.com/oracle

oracle.com

