

Oracle Applications Integration
Cookbook: A Developer’s Guide

An Oracle White Paper
August 2005

White Paper Title Page 2

Oracle Integration Cookbook: A Developer’s Guide

Introduction..4
Oracle BPEL Process Manager ...4
Integration Types...5
How To Use This Document..5

Chapter 1: Available TECHNOLOGY INTERFACES ...7
Oracle E-Business Suite ...7

Business Event System...7
XML Gateway ...7
Oracle e-Commerce / EDI Gateway...7
Concurrent Program / Interface Tables..8

PeopleSoft Integration Tools...8
Integration Broker ..8
PeopleTools ...8
Component / Service Interface – APIs...8
Application Message...9
File Layout ...9

JD Edwards Web Services Gateway Components ...9
Broker ...9
Integration Server ...9
Integration Point ...9
XBP...10
Canonical..10

Cross-Application Integration Using BPEL..11
Service Discovery: Business Service Repository ...12

Oracle Integration Repository...12
Oracle Interactive Services Repository ..13

Chapter 2: Process Oriented Integration: A PRACTICAL USE CASE ..14
Interface / Use Case 1: Item Availability...16
Interface / Use Case 2: Order Confirmation ..18
Interface / Use Case 3: Shipment Confirmation ..19
Interface / Use Case 4: Invoice Notification ..21

Chapter 3: How to Connect BPEL and Oracle E-Business..23
BES to BPEL...23

BPEL to BES..27
BPEL to Oracle E-Business API ..28

Chapter 4: How to Connect BPEL and Peoplesoft application ...32
BPEL Consuming Peoplesoft Web Service ..32

White Paper Title Page 3

PeopleSoft Providing Message Based Synchronous Web Services ...37
Web Service Enable Synchronous Messages: ...38

BPELconsuming AM..55
PeopleSoft Providing Message Based Aynchronous Web Services ..55

PeopleSoft consuming BPEL..64
PeopleSoft Consuming Web Services and Initiating a BPEL PM Process64

CHAPTER 5: How to Connect BPEL and JD Edwards application..96
BPEL Connecting to WSG SOAP/RPC...96

Selecting desired Integration Point:..96
Generating SOAP-RPC style WSDL: ..97
Generating BPEL PM process to consume the service ..98

BPEL Connecting to WSG SOAP/MSG..104
Generating SOAP/MSG compatible Flow service ...104
Generating SOAP-MSG style WSDL..115
Generating BPEL PM process to consume the service ..116

Notification invoking a BPEL Process ..120
Generating the web service interface ...121
Generating the WSG web service Connector...124
Create WSG Connector ...124
Updating the Notification flow to deliver the notification...126
Defining the Notification Trigger ..127

WSG initiating a BPEL Process ..129
Selecting desired BPEL Process ...129
Creating the WSG Service Connector ...129
Create WSG Connector ...129
Running the WSG Connector Service ...131

Conclusion ..132
Appendix A...133
Appendix B ...137

White Paper Title Page 4

Oracle Integration Cookbook: A Developer’s Guide

INTRODUCTION

Over the last 20 years, organizations invested heavily in automating specific business tasks and processes.
This proved to be a good investment increasing productivity across the board and improving productivity
exponentially. However, it did bring up some issues. How do you not just make your business process
automated, but optimized? How can I ensure that the data used by all systems is the same and of high
quality? How can I instrument my business processes to include relevant contextual information for key
decision makers? All at the same time improving the ability for my organization to react and keeping costs
low? While there is no one answer for all these questions, one technology helps to address all the points
outlined above – Integration. Integration is common requirement across all of these problems.

Oracle E-Business Suite, PeopleSoft and JD Edwards have recognized the importance of integration and
have opened up several key integration points into our applications at a business process level, the event
level and the API level. IT organizations utilize these efficient and flexible platform-neutral integration
points to seamlessly participate in business process orchestration environments, such as Oracle BPEL
Process Manager. Business process orchestration takes application integration to the next level by using an
application independent rules engine to manage business processes that span multiple applications.

Oracle BPEL Process Manager
Business Process Execution Language for Web Services (BPEL) provides enterprises with an industry
standard for business process orchestration and execution. As BPEL is fast emerging as the industry
standard for business process orchestration, there is a growing need for integration between Oracle BPEL
Process Manager, Oracle E-Business Suite, PeopleSoft and JD Edwards applications. Oracle BPEL

White Paper Title Page 5

Process Manager enables organizations to model and deploy business processes based on the Business
Process Execution Language for Web Services (BPEL) standard. As the cornerstone of process
orchestration and execution within a Service-Oriented Architecture platform, the BPEL standard provides
an enterprise blueprint for reducing the cost and complexity of integration projects by utilizing standards
to improve portability and reuse– while increasing their strategic value.

For more information please visit this web site:

http://www.oracle.com/appserver/bpel_home.html

Integration Types

To fully leverage the power of integration, its imperative that you understand the various types of
integration possible. Integrations can be broadly classified into the following categories:

� Synchronous: Synchronous Integration is a request response mode of operation between two
systems. In short, the calling application expects a response from the provider when a method on
the latter is invoked in the same thread. For example, a customer creates a Purchase Order in the
E-Business Suite by invoking a Purchase Order Service and the application generates the PO
number as a response in real time. This PO number is then used as a reference to complete other
related activities.

� Asynchronous Integrations: Asynchronous Integration solutions are helpful when enterprise
applications take an indeterminate amount of time to respond to a calling application. In this case,
the initiating application sends the request and proceeds with its own actions without having to
wait for the provider application to process in the same thread. The provider application picks up
the request at a later stage and processes the message. For example, in an Order to Cash flow the
buyer could put in a request for products and does not have to wait for the supplier to respond
right away to perform other steps in the process.

� Batch Integrations: Batch integrations allow you to import or export large batches of data that
are collected over a period of time into the system. Typical end-of-day transactions or scheduled
data synchronization routines utilize this technique. For example, updated customer data collected
through various applications in the IT ecosystem is consolidated into a single source as an end of
day process.

� Process Oriented Integrations: Process Orchestration takes application integration to the next
level by using an application independent state engine to manage business processes that span
multiple applications. Process Orchestration can involve system-to-system integration, system to
human task integration, or human task to human task integration. For example, automating an
Order-to-Cash or a new employee process flow. Such a process could involve orchestrating
integration across multiple enterprise applications.

How To Use This Document
This document exists to clarify Oracle’s recommended integration approach, and to provide application
developers with specific standards and guidelines for building Integrations using BPEL Process Manager.
This document assumes that you are using the following versions of the product

White Paper Title Page 6

• Oracle eBusiness Suite: 11.5.10 and above

• PeopleSoft: Tools Version: 8.46 and above

• JD Edwards: Tools version: 8.95 and above

• Oracle Application Server: 10.1.2

This technical white paper provides recommended methodology to customers and system integrators. It
describes the recommended best practices to show how customers can build process orchestration
solutions using the Oracle BPEL Process Manager by leveraging the available Integration technologies that
are Synchronous, Asynchronous and Batch-based across all the three application suites (Oracle EBS,
PeopleSoft Enterprise and JD Edwards EnterpriseOne). Here is a synopsis of what each chapter will
cover:

� Chapter 1 contains important background material on the available Integration options within each
Application Suite.

� Chapter 2 provides an overview of how BPEL can be used for implementing Business Process by
Orchestrating the Integration across all three Application Suites.

� Chapter 3 provides technical deep dive information on how Oracle E-Business Suite can be
integrated with BPEL.

� Chapter 4 provides technical deep dive information on how PeopleSoft Applications can be
integrated with BPEL.

� Chapter 5 provides technical deep dive information on JD Edwards Applications can be integrated
with BPEL.

� Appendix: Provides Code samples

White Paper Title Page 7

CHAPTER 1: AVAILABLE TECHNOLOGY INTERFACES

Oracle E-Business Suite

Business Event System

Business Event System (BES) provides the mechanism for customers to build integration with
other applications and systems such as Oracle BPEL Process Manager in an easy, non-invasive
manner. BES consists of the Event Manager, which lets you register subscriptions to significant
events, and event activities, which let you model business events within workflow processes.
Subscriptions can include custom logic in both Java and PL/SQL.

XML Gateway

Oracle XML Gateway is a set of services that allows easy integration with the Oracle E-Business
Suite to support XML messaging.

Oracle XML Gateway consumes events raised by the Oracle E-Business Suite and subscribes to
inbound events for processing. Oracle XML Gateway uses the message propagation feature of
Oracle Advanced Queuing to integrate with the Oracle Transport Agent to deliver messages to and
receive messages from business partners. Oracle XML Gateway supports both Business-to-
Business (B2B) and Application-to-Application (A2A) initiatives. B2B initiatives include
communicating business documents and participating in industry exchanges. An example of an
A2A initiative is data integration with legacy and disparate systems.

With Oracle XML Gateway services, you are assured consistent XML message implementation
when integrating with the Oracle E-Business Suite, thereby lowering integration costs and
expediting message implementation while supporting corporate e-business initiatives.

For more information please visit this web site:

http://download-west.oracle.com/docs/cd/B12190_11/current/acrobat/115ecxug.pdf

Oracle e-Commerce / EDI Gateway

Oracle Applications provides users with the ability to conduct business electronically between
trading partners based on Electronic Commerce standards and methodology. One form of
Electronic Commerce is Electronic Data Interchange (EDI). EDI is an electronic exchange of data
between trading partners. Interface data files are exchanged in a standard format to minimize
manual effort, speed data processing, and ensure accuracy. The Oracle e-Commerce Gateway
(formerly known as Oracle EDI Gateway) performs the following functions:

• Define trading partner groups and trading partner locations.

• Enable transactions for trading partners.

• Provide general code conversion between trading partner codes or standard codes and the
codes defined in Oracle Applications.

• Define interface data files so that application data can integrate with your trading partner’s
application or an EDI translator.

White Paper Title Page 8

• For inbound transactions, import data into application open interface tables so that
application program interfaces (API) can validate and update Oracle application tables.

• For outbound transactions, extract, format, and write application data to interface data files.

Oracle e-Commerce Gateway augments the existing standard paper document capabilities of
Oracle Applications, or adds functionality where no corresponding paper documents exist.

For more information please visit this web site:

http://download-west.oracle.com/docs/cd/B12190_11/current/acrobat/115eccug.pdf

Concurrent Program / Interface Tables

In Oracle Applications, concurrent processing simultaneously executes programs running in the
background with online operations to fully utilize your hardware capacity. You can write a program
(called a ”concurrent program”) that runs as a concurrent process. Typically, you create concurrent
programs for long-running, data- intensive tasks, such as posting a journal or generating a report.

PeopleSoft Integration Tools

Integration Broker

PeopleSoft Integration Broker is a middleware technology that facilitates synchronous and
asynchronous messaging among internal systems and trading partners, while managing message
structure, message format, and transport disparities.

PeopleSoft Integration Broker comprises two high-level subsystems: the Integration Engine and
the Integration Gateway. The Integration Engine runs on the PeopleSoft application server. It is
tied closely to PeopleSoft applications and produces or consumes messages for these applications.

The Integration Gateway is a platform that manages the actual receipt and delivery of messages
passed among systems through the PeopleSoft Integration Broker. It provides support for the
leading TCP/IP protocols used in the marketplace today, and more importantly, provides
extensible interfaces for the development of new connectors for communication with legacy, ERP,
and internet-based systems.

PeopleTools

PeopleTools refers to the collection of proprietary PeopleSoft tools for the development and
execution of applications.

Component / Service Interface – APIs

A component interface is a set of application programming interfaces (APIs) that you can use to
access and modify PeopleSoft database information using a program instead of the PeopleSoft
client. PeopleSoft Component Interfaces expose a PeopleSoft component (a set of pages grouped
for a business purpose) for synchronous access from another application (PeopleCode, Java,
C/C++, or Component Object Model [COM]). A PeopleCode program or an external program
(Java, C/C++, or COM) can view, enter, manipulate, and access PeopleSoft component data,
business logic, and functionality without being online.

White Paper Title Page 9

Application Message

Application Messages, or Message definitions, are the heart of PeopleSoft Integration Broker. They
are templates for the data that the application sends or receives. Message definitions are created in
PeopleSoft Application Designer. There are two types of PeopleSoft messages:

• Rowset-based (Structured) messages. For hierarchical data based on PeopleSoft records,
these messages are created by assembling records, organizing them into a hierarchy, and
selecting fields from those records to include in the message. The result is a rowset that
doesn’t need to match an existing rowset structure in the application. PeopleCode Rowset
and Message classes are used to generate, send, receive, and process these messages.

• Non-rowset-based (Unstructured) messages. These messages can have virtually any
structure and content. You create a message definition, but you do not insert any records.
The message definition serves as a placeholder for the actual message. PeopleCode
XmlDoc and Message classes are used to generate, send, receive and process these
messages. You can also use the PeopleCode SoapDoc class to generate and process these
messages for web services and SOAP messages.

File Layout

A File Layout object is a definitional map between a file (fixed format, comma separated values or
XML) and a PeopleSoft Record definition. Creating File Layout objects requires just a few mouse
clicks once you have a Record definition and sample file. Once you have created a File Layout
object in PeopleTools 8.42 and higher, you can click the AE button in the Application Designer to
have PeopleTools write the Application Engine PeopleCode for you that will load the file from the
file server into PeopleSoft Records. For more information and examples see the Enterprise
PeopleTools 8.46 PeopleBook: PeopleSoft Application Designer > Understanding File Layouts.

JD Edwards Web Services Gateway Components

Broker

The broker is a high-speed message router. It is the primary component of the platform’s
messaging facility. It uses a publish-and-subscribe model for asynchronous processing.

Integration Server

The integration server is the platform’s central runtime component and the primary engine for the
execution of the integration logic.

Integration Point

An Integration Point acts as the connection between the physical implementation and the logical
business function. One can say that a system exposes its business functionality as Integration
Points.

White Paper Title Page 10

XBP

An XBP is a PeopleSoft marketing term, denoting specific Integration Points in the PeopleSoft
EnterpriseOne product family applications that have been dubbed as such. Not all Integration
Points exposed by PeopleSoft EnterpriseOne applications are XBP’s.

Canonical

Canonical events are generic representations of data (both data structure and data content) created
and published by a source integration within XPI Enterprise Integrator and subscribed to by one or
more target integrations.

White Paper Title Page 11

Cross-Application Integration Using BPEL
The table below provides a mapping of technology choices available in each product for a given integration
pattern that can be orchestrated using BPEL PM.

Product Product/

Technology

Synchronous Asynchronous Batch Message

Payload

Supported
Protocols /
Required
Tools

Oracle E-
Business

Business
Event

NO YES NO XML Java

Oracle E-
Business

Service Beans YES NO NO Service
Data
Objects

Java

Oracle E-
Business

Web Service YES

YES NO XML /
Industry
Standard/
SOAP

JMS, AQ,
HTTP/

HTTPS

Oracle E-
Business

XML
Gateway

NO

YES NO XML /
Industry
Standard/
SOAP

JMS, AQ,
HTTP/

HTTPS

Oracle E-
Business

EDI
Gateway

NO

YES NO EDI File / FTP

Oracle E-
Business

Open
Interface /
Concurrent
Program

NO NO YES Document
Formats

PL/SQL /
Database
Connection

PeopleSoft Component
Interface

YES NO NO Msg or
SOAP

HTTP,
HTTPS,
SOAP

PeopleSoft Application
Messaging

YES YES

YES XML Message
Adapters

PeopleSoft File Layout NO NO YES Flat File File / FTP

JD Edwards WSG
Integration
Point

YES NO

NO SOAP Http/ Https

JD Edwards XBP YES YES NO XML

White Paper Title Page 12

Service Discovery: Business Service Repository

Oracle Integration Repository

Oracle® Integration Repository is an integral part of Oracle E-Business Suite. It provides a
complete catalog of Oracle E-Business Suite's Business Service interfaces. The tool aids users in
easily discovering and deploying the appropriate Business Service interface for integration with any
system, application, or business partner.

Oracle E-Business Suite 11i.10 components provide numerous programming interfaces that can be
used by in-house development teams, SIs and ISVs to integrate E-Business applications with other
applications in your environment.

Key Features of the Integration Repository

• Unified Repository from which all E-Business integration interface types are exposed

o PL/SQL API

o Java API

o Concurrent Program

o Open Interface

o EDI Message

o XML Message

Orchestration

Product Integration
Points
Synchronous

Integration Points

Asynchronous

BPEL PM Oracle
eBusiness
Suite

EBusiness
Adapter to
PL/SQL

Service Beans

XML Gateway

Business Events

BPEL PM PeopleSoft CI Web
Service

Application
Messaging
Web Service

Application Messaging Web Service

BPEL PM JD Edwards Integration
Points (XBP
Web Service)

NA

White Paper Title Page 13

o Java Service Bean

o Web Service

o Business Event

o Interface Tables

o Views

o Service Data Objects

• Repository updates are automated and documented

• Repository is the guaranteed single source of truth

The Repository is searchable on keywords and navigable either by interface type or product type.

Oracle Interactive Services Repository

The Interactive Services Repository (ISR) is a compilation of information about the numerous
service endpoints exposed by the PeopleSoft Enterprise, JD Edwards OneWorld and JD Edwards
World suites. PeopleSoft Integration Points, also known as EIPs or XPBs, are the web service
connections that allow these applications to work smoothly with third-party systems and software,
as well as other Oracle applications.

ISR works in conjunction with PeopleBooks to help users and implementation specialists fully
explore the integration capabilities of PeopleSoft and JD Edwards applications.

Developers use ISR to document the technical structure of an integration point, its design patterns,
and underlying technology. Analysts will use ISR to explore and understand integration points from
a business process context. This is especially useful when implementing an Oracle-supported
business process across multiple products and release versions.

Key Search Features of ISR

ISR contains high-level information about each integration point, including:

• Brief description

• Product family

• Product owner

• Business Process Association

• Data rules

• Setup rules

ISR enables you to quickly discover the integration points that are relevant to your specific needs.
You can search for integration points by name, product, business process, and technology type.
You can also discover point-to-point integrations between specific products.

White Paper Title Page 14

CHAPTER 2: PROCESS ORIENTED INTEGRATION: A PRACTICAL USE CASE

Enterprise customers use more than one application to manage their business. With information residing
in different applications it becomes difficult for customers to manage and plan their business activities.
Integration overcomes the difficulties by enabling information stored in one application to be synchronized
with information stored in another application.

This Use Case aims to integrate three different applications – Oracle E-Business Suite, PeopleSoft
Enterprise and J.D. Edwards EnterpriseOne. “Order to Receipt” is one of the most common business
processes that any company requires. As a result we have selected the Order to Receipt business flow to be
the basis of this Use Case. The PeopleSoft CRM application will be used to capture the order; the JDE
EnterpriseOne application will be used to fulfill (pick/ship) the order; and Oracle E-Business Suite will be
used to Invoice the customer. BPEL PM will be the key integration platform to orchestrate the Order to
Receipt business process between these three applications.

Below is the high level flow of the business process:

Use Case Assumptions

• Referential data will be manually created in all the three systems. Or, data from one of the systems
will be used to update the other two systems. Referential data includes Company information,
Branches, Customers, Items, etc.

White Paper Title Page 15

• The business process will be kept as simple as possible. Workflows involving manual
authorizations such as approvals for orders, approvals for shipment, etc., will be avoided.

Business Flow Breakdown

The Order to Receipt business process involves a number of activities. This use case assumes each
Order to Receipt activity occurs in a specific application. Below is the break down of the activities
and the applications where each occurs:

Order to Receipt Activity Application

Sales Order Entry PeopleSoft Enterprise

Item Availability Check J.D. Edwards EnterpriseOne

Pick, Pack and Ship J.D. Edwards EnterpriseOne

Invoicing and A/R Oracle E-Business Suite

White Paper Title Page 16

Interface / Use Case 1: Item Availability

Source Application: PeopleSoft Enterprise

Target Application: J.D. Edwards EnterpriseOne

Process Type: Synchronous

Products Involved: PeopleSoft Enterprise, J.D. Edwards EnterpriseOne, J.D. Edwards XPI,
Oracle BPEL PM

Note: The recommended practice is to look up the desired integration point in ISR.

http://www.peoplesoft.com/corp/en/products/dev_integration_portals/isr/index.jsp

Customer Relationship Management is handled in PeopleSoft Enterprise. PeopleSoft CRM is the
primary source of customer information. All quotes and sales orders are captured in PeopleSoft
CRM. Inventory Management on the other hand is handled in J.D. Edwards EnterpriseOne.
Information such as Item Master details, Item Availability, etc., are stored in J.D. Edwards
EnterpriseOne.

When an order is captured in PeopleSoft CRM it is necessary to check availability of the item in
J.D. Edwards EnterpriseOne. This integration occurs in real time. It involves triggering a BPEL
process that invokes a web service exposed by J.D. Edwards XPI. The web service executes a
business function on the J.D. Edwards Enterprise Sever. The web service returns the quantity
available in J.D. Edwards and PeopleSoft CRM should then decide if the order quantity can be
fulfilled or not.

White Paper Title Page 17

PeopleSoft
Enterprise

J.D. Edwards
EnterpriseOne

Interface 1: PeopleSoft Order Entry – Item Availability

BPEL

JDE
XPI

Sales Order Entry

3. ItemAvailabilityQuery

4. ItemAvailabilityResult

2.
 In

vo
ke

 W
eb

 S
er

vi
ce

 -
Ite

m
Av

ai
la

bi
lit

yQ
ue

ry
Ta

rg
et

HTTP Connector

HTTP Connector

5.
 W

eb
 S

er
vi

ce
 R

es
po

ns
e

SCM_GET_
PROD_AVAIL

SCM_GET_
PROD_AVAIL

EIP

IP

Business Function
B4101640

Flow Details:

Step Flow

1 Availability of an item is checked during order entry in
PeopleSoft. A BPEL process is invoked that takes the
request from PeopleSoft and sends it to JDE XPI.

2a BPEL Process invokes ItemAvailabilityQueryTarget IP which
is exposed by JDE as a web service.

2b ItemAvailabilityQueryTarget IP to be exposed as a web
service.

3 XPI EnterpriseOne adapter triggers the IP. EnterpriseOne
processes the item availability request.

4 The EnterpriseOne Adapter receives the result and passes it
on to the XPI Integration Server.

5 Result is passed to the BPEL PM .

6 BPEL PM receives the result, transforms it and sends it to
PeopleSoft

White Paper Title Page 18

Interface / Use Case 2: Order Confirmation

Source Application: PeopleSoft Enterprise

Target Application: J.D. Edwards EnterpriseOne

Process Type: Asynchronous

Products Involved: PeopleSoft Enterprise, J.D. Edwards EnterpriseOne, J.D. Edwards XPI,
Oracle BPEL PM

Note: The recommended practice is to look up the desired integration point in ISR.

http://www.peoplesoft.com/corp/en/products/dev_integration_portals/isr/index.jsp

PeopleSoft CRM is the Order Management System and J.D. Edwards is the Fulfillment system.
When a sales order is created in PeopleSoft CRM it is necessary to send the order details to J.D.
Edwards EnterpriseOne to initiate fulfillment.

It involves triggering a BPEL process that invokes a web service exposed by J.D. Edwards XPI.
The web service executes the Sales Order Master Business Function on the J.D. Edwards
Enterprise Sever. The web service returns the result of the business function to the BPEL process
that initiated it.

PeopleSoft
Enterprise

J.D. Edwards
EnterpriseOne

Interface 2: PeopleSoft Order Entry – Order Confirmation

BPEL

JDE
XPI

Sales Order Entry

SalesOrderManageNotify

SalesOrderManageResponse

In
vo

ke
 W

eb
 S

er
vi

ce
 -

S
al

es
O

rd
er

M
an

ag
eN

ot
ify

Ta
rg

et

HTTP Connector

W
eb

 S
er

vi
ce

 R
es

po
ns

e

CRM_SALES_
ORDER

EIP

IP

F4201 – Order
Detail

F4201 – Order
Header

Sales Order
Master Business

Function

Flow Details:

White Paper Title Page 19

Step Flow

1 When the sales order is created in PeopleSoft a notification is
sent to the BPEL PM.

2a BPEL Process invokes SalesOrderManageNotifyTarget IP
which is exposed by JDE as a web service.

2b SalesOrderManageNotifyTarget IP to be exposed as a web
service.

3 XPI EnterpriseOne adapter triggers the XBP.
EnterpriseOne processes the Sales Order Master Business
Function to generate the sales order in EnterpriseOne.

4 The EnterpriseOne Adapter receives the result and passes it
on to the XPI Integration Server.

5 Result is passed to the BPEL PM.

6 BPEL PM receives the result and sends it to PeopleSoft.

Interface / Use Case 3: Shipment Confirmation

Source Application: J.D. Edwards EnterpriseOne

Target Application: Oracle E-Business Suite

Process Type: Asynchronous

Products Involved: J.D. Edwards EnterpriseOne, Oracle E-Business Suite, J.D. Edwards XPI,
Oracle BPEL PM

Note: The recommended practice is to look up the desired integration point in ISR for PeopleSoft
/ JD Ewards APIs and IREP for Oracle E-Business Suite APIs.

http://www.peoplesoft.com/corp/en/products/dev_integration_portals/isr/index.jsp

Since J.D. Edwards EnterpriseOne is the Order Fulfillment system, it handles the pick, pack and
ship processes. The picking process is a standalone process within EnterpriseOne and no events
are triggered. When the sales order is Ship Confirmed, a real time shipment notification is sent to
the JDE Integration Server via the JDE EnterpriseOne adapter. In this POC, the shipment
notification is subscribed by a BPEL process, which will then trigger a process in Oracle E-
Business Suite.

White Paper Title Page 20

J.D. Edwards
EnterpriseOne

Oracle
E-Business Suite

Interface 3: J.D. Edwards Shipment Confirmation

JDE XPI

BPEL

Business
Function

Real Time Shipment
Notification

In
vo

ke
 B

PE
L

Pr
oc

es
s

Create/Process Order

Order Creation Response
Create Sales

Order

Pick/Pack/Ship

SOURCE:
SalesShipment
ManageNotice

Notify

TARGET:
SalesShipment
ManageNotice

Notify

Generate
Invoice

A/R

F4201 – Order
Detail

F4201 – Order
Header

Oracle
Adapter

Flow Details:

Step Flow

1 When the sales order is shipped in J.D. Edwards
EnterpriseOne, a real time notification is sent to the XPI
EnterpriseOne Adapter.

2a E1 processes the source message and converts it to a
common view.

2b A target IP will convert the common view to any desired
format.

3 A BPEL process processes the target message and invokes
the Oracle Application Adapter.

4 Oracle Application Adapter generates the order in E-
Business Suite.

5 Result is passed to the BPEL PM.

6 BPEL PM receives the result and completes the process.

White Paper Title Page 21

Note: Flow steps 3 to 6 are in one BPEL business process.

Interface / Use Case 4: Invoice Notification

Source Application: Oracle E-Business Suite

Target Application: J.D. Edwards EnterpriseOne

 PeopleSoft Enterprise

Process Type: Asynchronous

Products Involved: J.D. Edwards EnterpriseOne, Oracle E-Business Suite, PeopleSoft
Enterprise, J.D. Edwards XPI, Oracle BPEL PM

Note: The recommended practice is to look up the desired integration point in ISR for PeopleSoft
/ JD Ewards APIs and IREP for Oracle E-Business Suite APIs.

http://www.peoplesoft.com/corp/en/products/dev_integration_portals/isr/index.jsp

http://www.peoplesoft.com/corp/en/products/dev_integration_portals/isr/index.jsp

There are two events that will occur:

• Invoice Notification from Oracle E-Business Suite to PeopleSoft Enterprise

• Invoice Notification from Oracle E-Business Suite to J.D. Edwards EnterpriseOne

When the invoice is generated in Oracle E-Business Suite, the Oracle Application Adapter will
trigger a notification and the BPEL process will be initiated. The BPEL process will have two
partner links – one to invoke a PeopleSoft process and the other to invoke a J.D. Edwards web
service.

White Paper Title Page 22

Oracle
E-Business Suite

PeopleSoft
Enterprise

Interface 4: Invoice Notification – Oracle to PeopleSoft and JDE

BPEL

JDE XPI
Integration

Server

Generate
Invoice

Update Status (Request)

Update Status (Response)

In
vo

ke
 W

eb
 S

er
vi

ce
 -

U
pd

at
e

O
rd

er
 S

ta
tu

s

Invoke BPEL Process

W
eb

 S
er

vi
ce

 R
es

po
ns

e

J.D. Edwards
EnterpriseOne

Partner Link:
Update PSFT Invoice Info

Partner Link Response

Update
Order Status

CRM_SALES_
ORDER_STATUS

EIP

CRM

Update
Order
Status

Flow Details:

Step Flow

1 When an invoice is generated in Oracle E-Business
Suite, the notification is sent to the BPEL PM via the
Oracle Application Adapter.

2 The BPEL process triggered initiates a partner link to
PeopleSoft to update the invoice details.

3 PeopleSoft sends the response back to the BPEL PM.

4 The BPEL process also invokes a J.D. Edwards web
service to update the invoice information in
EnterpriseOne.

5 The “Order Status Update (?)” IP will be triggered to
update the invoice information in EnterpriseOne.

6 The result from JDE E1 is passed to the BPEL PM.

7 BPEL PM receives the result and completes the process.

White Paper Title Page 23

CHAPTER 3: HOW TO CONNECT BPEL AND ORACLE E-BUSINESS

BES to BPEL
The following sections document how a BPEL process can be launched from the Oracle E-Business Suite
using the Business Event System.

Flow

The following is the simple 3-step procedure to launch a BPEL process from the Oracle E-Business Suite:

1. Applications within the Oracle E-Business Suite raise Business Events.

2. A Java Subscription for the business event raised triggers the BPEL process in the Oracle
Application Server.

3. The BPEL Process is launched using the Java RMI interface in the Java Subscription.

Set up

The following set up steps are required before the BES – BPEL integration can be achieved.

Deploy Your BPEL Processes – Any BPEL process intended to be launched from the Oracle E-
Business Suite must first be deployed in the Oracle BPEL Process Manager. Use the deployment
tool, such as obant, provided with Oracle BPEL PM to deploy them.

Concurrent Processing Node Environment Settings – The Java deferred agent listeners are Java
processes running on the Concurrent Processing node of your Oracle E-Business Suite instance.
For the Java subscription to be executed correctly, you must copy the following jar files to the
Concurrent Processing node and update the Java class path (AF_CLASSPATH) environment
variable.

Note: Please use the standard procedures documented in the MetaLink Note 130091.1 to
update the AF_CLASSPATH variable.

1. Obtain the following BPEL libraries and place them in a location, for example:
/u01/app/apps11510/java/bpelbes/

• orabpel-common.jar

• orabpel-thirdparty.jar

The Concurrent Processing Tier
must be upgraded to JDK 1.3 or
the version of the Oracle E-
Business Suite must be 11.5.8 or
higher before performing this
step.

Your Oracle E-Business Suite
System Administrator must
perform this step.

White Paper Title Page 24

• orabpel.jar

2. Obtain the OC4J Client Side library, oc4jclient.zip and unzip
it in a location, for example:
/u01/app/apps11510/java/bpelbes/

3. Locate the oc4jclient.jar file. This is the only jar file you
need to include in the environment settings. Do not delete or change the directory structure
created when the oc4jclient.zip is unzipped.

4. Create a Jar file for your Java Subscriptions, for example:
/u01/app/apps11510/java/jbes/jar/mysubs.jar

For the above example, the following is the AF_CLASSPATH
setting:

/local/java/jdk1.4.2_04/lib/dt.jar:/local/java/jdk1.4.2_0
4/lib/tools.jar:/u01/app/apps11510/java/appsborg2.zip:
/u01/app/apps11510/java/apps.zip:/slot06/appmgr/atg
wfqa1ora/8.0.6/forms60/java:/u01/app/apps11510/java/u01/app/apps11510/java/bpel
bes/oc4j/oc4jclient.jar:/u01/app/apps11510/java/bpelbes/orabpel-
thirdparty.jar:/u01/app/apps11510/java/bpelbes/orabpel-
common.jar:/u01/app/apps11510/java/bpelbes/orabpel.jar:/u01/app/apps11510/java/b
pel-bes/mysubs.jar:

Deferred Agent Listeners

The Java Deferred Agent Listener must be running to process the asynchronous Java
subscriptions.

Log on to the Oracle Workflow Manager to monitor and manage the listener processes.

Oracle JDeveloper Environment Settings

To test the invocation of BPEL processes within the Oracle JDeveloper environment, the
following jar files must be added to the project libraries in addition to the BPEL and OC4J
jar files mentioned above:

• fndctx.jar

• wfbes.jar

• wfjava.jar

You must append the jar files only at the end of the AF_CLASSPATH variable. You can
find these jar files under $JAVA_TOP/oracle/apps/fnd/jar/ of your Oracle E-Business
Suite instance.

Identify Business Event

You must have Workflow
Administrator privileges to
complete the Business Event
System Registration

You can also create new
Business Events. However,
you will need to raise the
events within your application
using the APIs provided by
BES.

White Paper Title Page 25

You must first identify the business event that will be used to trigger a BPEL Process.
Please refer to the “Managing Business Events” section of the Oracle Workflow Developer’s
Guide to understand how to search for business events.

Register Java Subscription

You must register a Local Java subscription to the event used to invoke the BPEL process.
Please refer to the “Managing Business Events” section of the Oracle Workflow Developer’s
Guide to learn how to create subscriptions for business events. When defining a Java
subscription, choose source type to be “Local”, choose the “Custom” action type, and
enter the Java class name in the “Java Rule Function” field.

The following table summarizes the subscription definition.

Source Type Phase Action Type Java Rule Function

Local >100 Custom mypackage.myclass

RMI Interface

The Java class file in Appendix A, InvokeBPELSub.java provides you with a sample
Java subscription. The subscription class shows how the Java RMI interface provided by
Oracle BPEL Process Manager is used to invoke the CreditRatingService process.

Message Structure

The Java subscription is responsible for constructing the message structure required by the
BPEL process being launched. In the sample subscription, the input message to the
CreditRatingService process is constructed within the Java Subscription by obtaining the
SSN value from the event, and creating the XML string. You could also use the generate
function capability of BES to generate the message when the event is raised. Please refer to
BES documentation for using the generate function. However, please note that BES does
not perform any XML content verification of the generated message before processing the
Java subscription.

Security

The subscription sample hard codes the BPEL server information and any authentication
required when submitting the request. You must store the authentication information in
your own schema/tables in a secure manner. Tools such as the DBMS_OBFUSCATE
database package can be leveraged to encrypt and decrypt password values.

Limitations

This technical white paper is designed to work only with deferred Java subscriptions (phase
>100). Synchronous Java subscriptions for events raised in the Apache middle tier are not
supported.

White Paper Title Page 26

Known Issues

The version of the DeliveryService class that is used for compiling the Java Subscription
must match the version of the class in the BPEL runtime environment. If this does not
match, you may get the following error message:

Raising Business Events

Applications can leverage BES to raise events in both PL/SQL and Java. When events are
raised in PL/SQL, the invocation of BPEL processes is always asynchronous and handled
by the Java deferred agent listeners. When events are raised in Java, the invocation of BPEL
processes can be synchronous. However, the scope of this white paper is limited to
asynchronous subscriptions (phase > 100) only.

The Java class file in Appendix B, RaiseEvent.java provides you with a sample Java class
which shows how to raise a business event in Java. You can also choose to raise these
events within a workflow process using the “Raise” event activity.

White Paper Title Page 27

BPEL TO BES

The following sections document how a BPEL process can communicate asynchronously with Oracle E-
Business Suite using BES.

Flow

The following is the simple 3-step procedure to trigger business logic in Oracle E-Business Suite from
BPEL

1. The database adapter shipped with the Oracle BPEL Process Manager is used to connect to the
Oracle E-Business Suite.

2. The BPEL Process Manager raises a Business Event within an invoke activity, linked to the
database adapter service

3. The Event Manager within the Oracle E-Business Suite will then process subscriptions to this
event. The subscription can trigger application logic or a workflow process.

Set up

Register Business Event – Register the business event to the process interactions from BPEL.
Please refer to the “Managing Business Events” section of the Oracle Workflow Developer’s Guide to
learn how to create business events. If you already have an event, you can skip this step and
proceed to the next step.

Register Subscription – You must register a “Local” subscription to the event raised by the BPEL
process. Please refer to the “Managing Business Events” section of the Oracle Workflow Developer’s
Guide to learn how to create subscriptions for business events. You can leverage the entire range of
capabilities of BES when processing events raised by BPEL. You can choose any Action Type as
per your needs. You can send the event to a waiting workflow, execute custom PL/SQL logic, or
execute Java logic. When defining a Java subscription, choose source type to be “Local”, choose
the “Custom” action type, and enter the Java class name in the “Java Rule Function” field.

Source Type Phase Action Type

Local >100 Any

White Paper Title Page 28

BPEL invoke Activity

Database Adapter Service

The database adapter service of the Oracle BPEL Process Manager is used to connect to the
Oracle E-Business Suite instance and use the PL/SQL interface provided by BES to raise the
Business Event. You must create a new PartnerLink that uses the Database Adapter Service. When
creating the PartnerLink, choose “Call a Stored Procedure” as the operation type, select the “Apps”
schema, and enter “WF_EVENT.RAISE” as the stored procedure name.

Invoke Activity

The invoke activity in your BPEL process must be linked to the PartnerLink created in the
previous section. The EVENT_DATA must contain the XML string that the subscription to the
Event being raised (EVENT_NAME) expects.

Parameters and Message Structure

The BPEL process designer is responsible for constructing the message structure as required by the
subscription before the event is raised. The EVENT_DATA parameter must be mapped to the
message structure.

The EVENT_NAME parameter must contain the event name being raised.

The EVENT_KEY parameter must contain the event key.

BPEL to Oracle E-Business API
The Oracle AS Adapter for Oracle Applications is part of the BPEL PM 10.1.2 install and is available for
both standalone as well as middle-tier installations. The Oracle AS Adapter for Oracle Applications is a
pure JCA 1.5 Resource Adapter and is deployed in the OC4J container in managed mode. The Adapter
SDK, Framework and Toolkit are one and the same and are used for the bidirectional integration of the
JCA 1.5 resource adapters with BPEL Process Manager. Adapter SDK is based on open standards and
employs the Web Service Invocation Framework (WSIF) technology for exposing the underlying JCA
Interactions as Web Services.

Configuring the Oracle Applications Create Customer Service

Note: The recommended practice is to first discover the desired API in Integration Repository for version
11.5.10 available at URL. This guarantees backwards comptability because all the APIs in Integration
Repository are public APIs. Use the adapter to bind to the desired API.

The Jdeveloper-based design-time wizard is used for configuration of the Oracle AS Adapters and is
launched from the BPEL Partner Link activity. WSDL files are created for both JCA Outbound (Request-
Response service – BPEL invoke) and JCA Inbound (Event Notification – BPEL receive) Interactions.
The following set of figures illustrates the configuration of the create customer service using the Jdeveloper
tool.

Pick Oracle Applications from the list of Adapters.

White Paper Title Page 29

In the Service Name field, enter a service name.

Specify the connection parameters as shown in the below figure. The JNDI name refers to the runtime
connection and points to the logical deployment of the adapter.

White Paper Title Page 30

Use the browse option to select the Customer record. The syntax for browsing is based on SQL 92
standard.

White Paper Title Page 31

Choose the XXBPEL_CUSTOMER_CREATE_PERSON_PRIMITIVE API. This contains only
primitive data types. The current version of the Oracle AS Adapter for Oracle Applications does not
support PL/SQL boolean and PL/SQL Records. You need to implement wrapper code for the above type
support. The Adapter Service created can be deployed and invoked from a BPEL process.

White Paper Title Page 32

CHAPTER 4: HOW TO CONNECT BPEL AND PEOPLESOFT APPLICATION

BPEL Consuming Peoplesoft Web Service
The following section briefly outlines how to connect BPEL with a PeopleSoft Component Interface.

1. Generate the WSDL for a given Component Interface using Peopletools and save the definition in
the File system.

2. Create a BPEL Process using the designer and bind the partner link to the WSDL generated
through Peopletools.

3. Complete the BPEL Process specification compile and run the process.

PeopleSoft Providing Synchronous Web Services Using Component Interfaces (SOAPTOCI)

Component Interface (CI) based web services reuse existing business logic, do not require any additional
coding, leverage user and row-level application security, and are easy to set up and maintain. For
components with audit fields, the “last updated by” field will always show the user ID that was passed in
the SOAP or HTTP header to invoke the CI.

The following steps are one-time setup steps for each PeopleSoft environment that will be providing CI-
based synchronous web services:

• Verify that a default server is specified in the integrationGateway.Properties file on the PeopleSoft
web server.

• Each PeopleSoft system that will provide CI-based web services must have its own Integration
Broker and must have a default server specified.

Sample entry in integrationGateway.properties file:
ig.isc.serverURL=//<app server>:<jolt port number>
ig.isc.userid=<ID that starts app server - not VP1 or super
user>
ig.isc.password=<encrypted with PSCIPHER.bat or PSCIPHER.sh>
ig.isc.toolsRel=<PeopleTools release you see when you type CNTL
+J in PIA>

• Open SOAPTOCI message in the Application Designer and make sure the Active checkbox is
checked in the Properties page:

White Paper Title Page 33

In PIA or in the Application Designer, make sure the IB_CHNL channel is running and that you and/or
the administrator have the required permissions to see the channel in the Message Monitor.

Create a new Message Node in PIA that will represent all external systems that will invoke the CI-based
web services. The name of this node is arbitrary. Choose one that makes sense for your environment. In
the Node Info tab, specify Node Type: External, Routing Type: Explicit, and set the node to Active. For
Authentication, either choose “None” or “SSL,” depending on your corporate security policy. In the
example below, the node is called “THIRDPARTY.”

White Paper Title Page 34

Set the following properties in the Connectors tab:

White Paper Title Page 35

On the Transactions tab, add the SOAPTOCI message as both inbound synchronous and outbound
synchronous transactions for the node.

White Paper Title Page 36

When you have finished, you will have the following two transactions on the node:

The following steps must be performed for each CI that you want to web service enable:

• In the Application Designer, either verify the existence of, or create and test a component interface
based on the component you want to web service enable.
For more information on creating and testing CI’s, see the Enterprise PeopleTools 8.46
PeopleBook: PeopleSoft Component Interfaces
http://peoplebooks.peoplesoft.com:8900/PSOL/pt846/eng/psbooks/index.htm

• Create a permission list and role for the CI. The permission list and role should not have any menu
navigation privileges. If someone were to try to log in to the application in a web browser or
Application Designer using an ID with this role/permission list, they should be denied login or not
be able to access anything.

• Grant the permission list you created in the above step access to the SOAPTOCI web library.

• Grant the role you created above to the appropriate PeopleSoft user ID’s. If the user has only the
above role/permission list, then the user will not be able to do anything in the application other
than execute the named component interface.

• In the Integration Broker Web Services Menu, select the CI and click the WSDL link to generate
the WSDL that BPEL PM will consume. You must have permissions on each method of the CI
that you want to generate WSDL for.

White Paper Title Page 37

• Save the URL so that BPEL PM will be able to consume the WSDL as a PartnerLink

PeopleSoft Providing Message Based Synchronous Web Services

Synchronous messages can be exposed via web services, regardless if they are rowset-based (structured) or
nonrowset-based (unstructured). This section explains how to web service enable Application Messages as
synchronous web services.

Note: If an unstructured message does not have an associated schema, the schema section of the WSDL
document will be incomplete. You must either associate a schema with the message or modify the schema
section of the WSDL so that the WSDL document completely describes the message. If you are using a
delivered unstructured message where a schema has been associated, that schema will appear in the WSDL.

This functionality uses the basic PeopleSoft Integration Broker infrastructure with one exception: At
runtime SOAP request messages are sent to a specific listening connector on the gateway.

External parties send web service requests to the PeopleSoftServiceListeningConnector, which is
responsible for stripping the SOAP envelope and forwarding the request to the application server for
processing. The application server receives the request as it would any other message, and invokes the
appropriate message processing.

There are two primary differences between CI and message based web services:

• In a CI based web service, all of the logic already exists in the component. You do not have to add
any business logic to a CI. In Application message based web services, if there is no delivered logic
in a message event, you must code the logic yourself.

• To invoke a CI based web service, the invoking system must always supply a valid PeopleSoft
username and password, with the correct permissions, in order to invoke the specified service.

Application Message based web services never take a username and password. They can be
secured, however, using digital certificates, SSL, or a node password. For more information see
Enterprise PeopleTools 8.46 PeopleBook: Integration Broker > Setting Up Secure Messaging
Environments.

For synchronous message based web services, the request message must have an OnRequest event. See
below:

White Paper Title Page 38

The OnRequest event generally contains the code to send back to the requestor a response message. The
response message is generally a separate message that does not need to contain any code.

Web Service Enable Synchronous Messages:

In the Application Designer, make sure the request and response messages are Active. The Message
Channel does not matter as synchronous messages do not get queued in channels. If you are creating a
news message and need to assign a channel, either create a channel just for synchronous messages or use
the delivered IB_CHNL.

White Paper Title Page 39

In the Integration Broker Node Definitions, either verify the existence of or create a node definition for
the BPEL PM system.

White Paper Title Page 40

Click the Ping Node button on the Connectors tab to verify that Integration Broker can contact the BPEL
HTTP server. If the ping does not succeed, have your administrator verify that the BPEL HTTP server is
running and that you specified the correct URL and port in the node definition.

Use the Integration Point Wizard to configure the Inbound Synchronous Transaction. Advanced users can
configure the Inbound Synchronous Transaction manually on the BPEL node definition.

White Paper Title Page 41

You can use the Integration Point Viewer to verify that you created the transaction properly.

White Paper Title Page 42

In the example above, BPEL_PM will send a synchronous request to PeopleSoft’s PT_LOCAL node. The
request message is QE_STOCKQUOTE_REQ_MSG.VERSION_1 and the response message is
QE_STOCKQUOTE_RESP_MSG.VERSION_1. There are no transformations in this example. On your
site, you may end up transforming an inbound SOAP request to a rowset-based message and transforming
a rowset-based response to a nonrowset-based SOAP response. The Integration Point Wizard will walk
you through all the steps. See the example below.

With the transaction created, you are now ready to generate the WSDL for the web service. The WSDL
generator can be found under Integration Broker > Web Services > Published EIPs. Select Message and
then specify the node that represents your BPEL system and its request message. Then click Search.

White Paper Title Page 43

Click the WSDL link to generate the WSDL. A new browser will open with the WSDL. You can use either
just the URL in the new browser window for BPEL PM to consume the WSDL, or you can save the
WSDL as a file for BPEL PM to browse.

White Paper Title Page 44

The WSDL is now ready to be consumed by BPEL PM.

Generating BPEL PM process to consume the service

The following steps assume that BPEL PM server and designer are properly set up and that the
appropriate workspace and connections are created in the designer.

Start BPEL PM server.

Launch BPEL Designer. Right-click on the workspace and choose New Project.

From Project Items, choose BPEL Process Project and click OK.

White Paper Title Page 45

In the project properties dialog, select process name, and choose Synchronous service from Template
dropdown. Click OK.

The following sections appear. If this does not appear, click Diagram View and double click
CURRENCY.bpel in the Applications Navigator section. See the Oracle BPEL Process Manager Developer’s
Guide for a description of these sections.

White Paper Title Page 46

Browse to the project directory from explorer and copy the WSDL generated from WSG Developer to this
folder.

In Applications –Navigator, navigate to <processname>.WSDL file under Integration Content. Double-
click to open the file and view WSDL source.

Now double-click on “.bpel“ file to open it in the editor.

White Paper Title Page 47

Right-click on either side of the BPEL process (yellow area) and choose create partner link option.

Provide a partner link name. Click on the first icon in the WSDL Settings frame to select the WSDL file
from file system. Select the WSG WSDL you copied to the project directory.

The Designer will display the following message:

Click Yes to automatically create partner link types. Designer will create the partner link type and populate
it. Keep My Roles filed as Not specified and populate Partner Role with the value available in the drop
down. Click OK to close the partner link setting and save the bpel file.

Drag and drop an “invoke” BPEL activity to the Main scope and point it to the Partner Link configured in
the previous step. The Input and Output Variables to this “invoke” activity are Global variables and are
named as “FindInput” and “FindOutput” in the example. Please refer to the BPEL Developer’s Guide for
detailed steps. The CI WSDL contains many different operations – “Find”, “Get”, “Create” and “Update”.
This example uses the “Find” operation.

White Paper Title Page 48

<wsdl:operation name="Find__CompIntfc__CURRENCY_CD_CI">

 <soap:operation style="document"
soapAction="http://peoplesoft.com/SOAPTOCI/SOAP_NODE//QE_LOCAL"/>

 <wsdl:input>

 <soap:body use="literal" encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

<soap:header use="literal" part="parameter"

 message="wsdl_target:SecurityHeaders"

 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

 </wsdl:input>

 <wsdl:output>

 <soap:body use="literal" encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

 </wsdl:output>

 <wsdl:fault name="Fault">

 <soap:fault use="literal" name="Fault"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

 </wsdl:fault>

 </wsdl:operation>

The above operation takes on a <SecurityHeader> element in addition to the input. Create a Global Variable
to point to the <SecurityHeaders> element in the Partner WSDL as shown in the following steps:

White Paper Title Page 49

Go to the Variables folder on the BPEL Structure Pane and right-click it. Select the “Create” option and
point it to <SecurityHeaders> msg in the CI WSDL.

White Paper Title Page 50

The structure of the various variables created in the BPEL process are shown below:

White Paper Title Page 51

Drag and drop “assign” activities from the RHS menu to the main panel. Configure the <SecurityHeaders>
variable as shown below.

White Paper Title Page 52

Configure the <FindInput> variable by dragging and dropping an “assign” activity. Steps are captured
below:

White Paper Title Page 53

Configure the <FindOutput> variable by dragging and dropping a third assign activity as shown below:

White Paper Title Page 54

The entire BPEL process is captured below:

To compile and Deploy the BPEL process, right-click on the project in Application Navigator. Select
Deploy > connection name > Deploy to Default Domain. Click OK. This will compile and deploy the BPEL
process. Watch the bottom of the screen for any errors. Refer to the BPEL Developer’s Guide for more
information.

White Paper Title Page 55

BPELconsuming AM

PeopleSoft Providing Message Based Aynchronous Web Services

Asynchronous messages can be exposed via web services, regardless if they are rowset-based (structured)
or nonrowset-based (unstructured). This document explains how to web service enable Application
Messages as asynchronous web services. With asynchronous web services, either the consumer does not
require a response, or an acknowledgment message will be sent back at a later time.

Note: If an unstructured message does not have an associated schema, the schema section of the WSDL
document will be incomplete. You must either associate a schema with the message or modify the schema
section of the WSDL so that the WSDL document completely describes the message. If you are using a
delivered unstructured message where a schema has been associated, that schema will appear in the WSDL.

This functionality uses the basic PeopleSoft Integration Broker infrastructure with one exception: at
runtime SOAP request messages are sent to a specific listening connector on the gateway. External parties
send web service requests to the PeopleSoftServiceListeningConnector, which is responsible for stripping
the SOAP envelope and forwarding the request to the application server for processing. The application
server receives the request as it would any other message, and invokes the appropriate message processing.

The primary differences between CI and message based web services are:

• In a CI based web service, all of the logic already exists in the component. You do not have to add any
business logic to a CI.

• In Application message based web services, if there is no delivered logic in a message event, you must
code the logic yourself.

• To invoke a CI based web service, the invoking system must always supply a valid PeopleSoft
username and password, with the correct permissions, in order to invoke the specified service.

Application Message based web services never take a username and password. They can be secured,
however, using digital certificates, SSL, or a node password. For more information see Enterprise
PeopleTools 8.46 PeopleBook: Integration Broker > Setting Up Secure Messaging Environments.

White Paper Title Page 56

For asynchronous message based web services, the request message must have a Subscription event. See
below:

The Subscription event contains or calls the code to read and do something with the incoming XML
payload. The code may or may not send back a response message. You can have more than one
subscription active but there is no way to designate or determine which one will fire first.

White Paper Title Page 57

To Web Service Enable Asynchronous Messages
In the Application Designer, make sure the message is Active.

If message processing order is important, make sure the message is assigned to a channel that you can
partition by the appropriate process-order-determining field. If a channel is set to use ordered processing
(default) and you have not selected any partitioning fields (default), sever bottlenecking performance issues
can result.

In the example below, the DELETE_USER_PROFILE channel is partitioned on the OPRID (primary
key) field. If a message for a particular OPRID errors, messages for all other OPRIDs will continue to be
processed. If no field was selected for partitioning, then if any message would error then all processing
would be stopped for all new messages to enter the channel until the original error is resolved.

White Paper Title Page 58

In the Integration Broker Node Definitions, either verify the existence of or create a node definition for
the BPEL PM system.

White Paper Title Page 59

Click the Ping Node button on the Connectors tab to verify that Integration Broker can contact the BPEL
HTTP server. If the ping does not succeed, have your administrator verify that the BPEL HTTP server is
running and that you specified the correct URL and port in the node definition.

Use the Integration Point Wizard to configure the Inbound Asynchronous Transaction. Advanced users
can configure the Inbound Asynchronous Transaction manually on the BPEL node definition.

White Paper Title Page 60

You can use the Integration Point Viewer to verify that you created the transaction properly.

White Paper Title Page 61

In the example above, BPEL_PM will send an asynchronous message to PeopleSoft’s PT_LOCAL node.
The message is DELETE_USER_PROFILE.VERSION_1. Integration Broker will not send a response
message. However, the Integration Broker Gateway will automatically send back an HTTP
acknowledgment.

There are no transformations in this example. On your site, you may end up transforming an inbound
SOAP request to a rowset-based message and transforming a rowset-based response to a non-rowset-
based SOAP response. The Integration Point Wizard will walk you through all the steps. See the example
below.

White Paper Title Page 62

With the transaction created, you are now ready to generate the WSDL for the web service. The WSDL
generator can be found under Integration Broker > Web Services > Published EIPs. Select Message and
then specify the node that represents your BPEL system and its request message. Then click Search.

White Paper Title Page 63

Click the WSDL link to generate the WSDL. A new browser will open with the WSDL. You can use either
just the URL in the new browser window for BPEL PM to consume the WSDL, or you can save the
WSDL as a file for BPEL PM to browse.

White Paper Title Page 64

The WSDL is now ready to be consumed by BPEL PM.

PeopleSoft consuming BPEL

PeopleSoft Consuming Web Services and Initiating a BPEL PM Process

In order for a PeopleSoft application to initiate a BPEL PM process, either the PeopleSoft application
must consume a BPEL PM provided web service or BPEL PM must subscribe to a PeopleSoft notification
message. This section describes how to consume a BPEL PM (or any external 3rd party) web service.

You can consume both synchronous and asynchronous web services using the Import WSDL wizard. The
wizard guides you in creating the metadata required to invoke the web service (Node definition, messages
and Transaction).

After the wizard creates the metadata, you must either write an XSLT transformation to transform a
rowset-based (structured) message to the BPEL PM SOAP request or notification format, or you must
write a PeopleCode program using the XMLDoc and/or SOAPDoc classes to populate the SOAP
request/notification. You can create the XSLT transformation graphically using the XSLT graphical
mapper that comes with BPEL PM.

White Paper Title Page 65

Rowset-Based or Non-Rowset-Based Messages: Which Should I Use? When consuming an external web
service, you can code to it directly using XMLDoc PeopleCode (non-rowset-based) or you can transform a
delivered (or custom) rowset-based message to the required SOAP format. If there is a delivered message
in place that is similar in nature to the web service you are consuming, then use it (along with a
transformation program, if necessary). When the payload for the SOAP request to BPEL PM comes from
more than one scroll, it will be easier to use the CopyRowset PeopleCode functionality to populate rowset-
based messages and transform them using XSLT into the required SOAP format.

When the payload will be just a few fields from a single scroll level, you can use either rowset-based or
non-rowset based messages. For a POC or rapid development, coding XMLDoc PeopleCode to a non-
rowset-based message may take very little effort. However, if the message needs to be sent from more than
one place or if there is a chance that the message format will ever change, or just to be more production
worthy, the XMLDoc PeopleCode should be placed in an Application Class, where it can be called from
any Component. This way, you will need to update the XMLDoc PeopleCode in just one place, instead of
in several places. If you use rowset-based messages with transformations to the BPEL PM requested
format, should the format ever change, the only objects you will ever need to update are the XSLT
programs.

High level view of the steps to consume a synchronous BPEL PM web service:

• Import the WSDL into PeopleSoft using the WSDL Import Wizard.

• Use the wizard to create the metadata for each service operation you want to invoke.

• If you are using XMLDoc PeopleCode to invoke the service, add the code to an app class and/or a
component and you are done. If you are using XSLT to transform from structured messages to
unstructured messages, continue on to the following steps:

• Create the XSLT for the outbound request. A graphical mapper is included with BPEL PM if you do
not wan to write the code manually.

• Create the XSLT for the inbound response.

• Create an IB outbound transaction on the BPEL (3rd party node) for the structured messages.

• Create the IB Relationship and Transaction Modifier to apply the XSLT to transform structured
messages to/from SOAP messages.

• Optional: Use the Integration Point Viewer to review the configuration.

High level view of the steps to consume an asynchronous BPEL PM web service:

• Import the WSDL into PeopleSoft using the WSDL Import Wizard.

• Use the wizard to create the metadata for each service operation you want to invoke.

• If you are using XMLDoc PeopleCode to invoke the service, add the code to an app class and/or a
component and you are done. If you are using XSLT to transform from a structured message to an
unstructured message, continue on to the following steps:

• Create the XSLT for the outbound message. A graphical mapper is included with BPEL PM if you do
not wan to write the code manually.

White Paper Title Page 66

• If BPEL PM is going to send a response you can create XSLT for the inbound response. (You can also
mix and match, i.e. transform the request but don’t transform the response.)

• Create an IB outbound transaction on the BPEL (3rd party node) for the structured message.

• Create the IB Relationship and Transaction Modifier to apply the XSLT to transform structured
message to/from SOAP or the appropriate format.

• Optional: Use the Integration Point Viewer to review the configuration.

Consuming a BPEL PM or 3rd Party Web Service in PeopleSoft:

For this section, we will consume a synchronous web service that is readily available on the internet. The
principles and practices are the same whether the web service comes from BPEL PM or any other
provider. Identify the service to be consumed. In this example we are using the GetInfoByZip zip code
lookup service from www.webservicex.net/uszip.asmx.

Find the WSDL for the service you want to consume. The WSDL for this service is at
www.webservicex.net/uszip?WSDL
.

White Paper Title Page 67

Optional: If the service provider provides a test page, test the web service to understand how it behaves
before you consume and code to it.

White Paper Title Page 68

Optional but strongly recommended: Whether or not the provider provides a test page, you can and
should test the web service with the PeopleSoft provided tool, SendMaster. SendMaster is a stand-alone
test tool that is fully documented in the Integration Broker PeopleBooks.

In the example below, simply copy and past the URL and header information from the test page in to the
appropriate fields, then copy and past the sample SOAP request into the Input Information Section.
Finally, replace “string” in the SOAP message with your actual zip code. Then click POST. If you don’t get
a valid SOAP response, either you have connectivity issues or the provider is unavailable.

The bottom line is that if SendMaster can’t successfully invoke the web service, then don’t waste your time
trying to get PeopleSoft to do it.

White Paper Title Page 69

Navigate to the WSDL Import Wizard to consume the web service. The name you choose to assign the
WSDL is arbitrary. After you cut and paste the WSDL URL into the wizard, click the “Load from URL”
button. When the WSDL shows in the WSDL Content field, click the “Import” button.

White Paper Title Page 70

Once the WSDL is imported, click the “Service Detail” link.

White Paper Title Page 71

The “Create” links allow you to create the integration metadata to invoke any of the operations. Click the
first “Create” link for GetInfoByZip to launch the wizard that creates the metadata.

White Paper Title Page 72

If you have consumed a web service from the BPEL/3rd party system before, then Use Existing Node
Definition and specify the node name. If this is your first time importing WSDL from (or integrating with)
the BPEL/3rd party system then Create a New Node Definition. You can choose Authentication Option:
None and add authentication, such as SSL, later.

Click Next and specify the names of the request and response messages for consuming the service. These
are non-rowset-based (unstructured) messages. If you choose Create a New Message, the wizard will create
the messages in the application designer for you. Click Next.

White Paper Title Page 73

Channels, for synchronous messages only, are arbitrary. You can choose any channel you want but a
generic channel for all synchronous web services makes the most sense. For asynchronous services,
however, choosing the right channel for partitioning (and performance) is critical. Asynchronous messages
should be grouped into channels with other messages that are relevant to the business process and
partitioned by common keys.

In the example below, we are specifying the web services channel because it is a synchronous web service.
After you specify the channel, click Next.

White Paper Title Page 74

If the summary information looks correct, click Finish.

White Paper Title Page 75

Upon successful creation of the integration metadata, the following is displayed:

Notice that the Create link has been replaced with a delete link for deleting the integration metadata.

Note, if you want to delete and recreate the integration metadata for invoking the web service operation,
you must delete the transaction by clicking this Delete link. Deleting the transaction from the Node
Definition page is not enough.

White Paper Title Page 76

If you will be invoking the BPEL or 3rd party web service using XMLDoc PeopleCode, you are now ready
to write the code and insert it in the App Class or PeopleCode event that will call it. If you will be invoking
the web service by transforming structured messages into unstructured messages, continue following the
rest of the steps in this section.

Before we use the Integration Point Wizard to create the remaining integration metadata, we must first
verify the existence of, or create, the structured messages and the transformation programs. Create the
following two structured messages by dragging or inserting the ADDRESS_SBR record into the
VERSION_1 folder of the message. Notice that in the ADDRESS_ZIP_REQUEST message, only the
POSTAL field is checked in the Include column. Also notice that in the
ADDRESS_CITY_STATE_RESPONSE message has only the City and State fields checked in the
Include column.

White Paper Title Page 77

Create the ZIP_REQ_XSL Application Engine programs that will house the request transformation XSLT
code. Make sure to specify Transform Only in the Properties Page.

White Paper Title Page 78

The resulting Application Engine program should look like the following:

White Paper Title Page 79

Here is sample XSLT code that you can use:

<?xml version="1.0"?>
<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:template match="ZIP_REQUEST">
 <soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <soap:Body>
 <a:GetInfoByZIP xmlns:a="http://www.webserviceX.NET">
 <a:USZip><xsl:value-of
select="MsgData/Transaction/ADDRESS_SBR/POSTAL"/></a:USZip>
 </a:GetInfoByZIP>
 </soap:Body>
 </soap:Envelope>
 </xsl:template>
</xsl:stylesheet>

White Paper Title Page 80

Create the ZIP_RESP_XSL Application Engine programs that will house the response transformation
XSLT code. Make sure to specify Transform Only in the Properties Page.

Here is sample XSLT code that you can use. If you don’t know how to write XSLT code, you can use the
graphical XSLT mapper in JDeveloper and have it write the code for you

<?xml version="1.0"?>
<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:template match="//Table">
 <ZIP_RESP_XSL>
 <FieldTypes>
 <ADDRESS_SBR class="R">
 <CITY type="CHAR"/>

White Paper Title Page 81

 <STATE type="CHAR"/>
 </ADDRESS_SBR>
 <PSCAMA class="R">
 <LANGUAGE_CD type="CHAR"/>
 <AUDIT_ACTN type="CHAR"/>
 <BASE_LANGUAGE_CD type="CHAR"/>
 <MSG_SEQ_FLG type="CHAR"/>
 <PROCESS_INSTANCE type="NUMBER"/>
 <PUBLISH_RULE_ID type="CHAR"/>
 <MSGNODENAME type="CHAR"/>
 </PSCAMA>
 </FieldTypes>
 <MsgData>
 <Transaction>
 <ADDRESS_SBR class="R">
 <CITY><xsl:value-of select="CITY"/></CITY>
 <STATE><xsl:value-of select="STATE"/></STATE>
 </ADDRESS_SBR>
 <PSCAMA class="R">
 <LANGUAGE_CD>ENG</LANGUAGE_CD>
 <AUDIT_ACTN>C</AUDIT_ACTN>
 <BASE_LANGUAGE_CD>ENG</BASE_LANGUAGE_CD>
 <MSG_SEQ_FLG/>
 <PROCESS_INSTANCE>0</PROCESS_INSTANCE>
 <PUBLISH_RULE_ID/>
 <MSGNODENAME/>
 </PSCAMA>
 </Transaction>
 </MsgData>
 </ZIP_RESP_XSL>
 </xsl:template>

</xsl:stylesheet>

Navigate to Node definitions and select the web service provider node.

White Paper Title Page 82

If the WSDL Import Wizard created the BPEL / 3rd party node for you, change the Node Type to
External.

White Paper Title Page 83

Click the Transactions tab

Optional: Edit the transaction that the WSDL Import Wizard created for you to show full logging. This
will allow you to see the XML being sent between PeopleSoft and the web service provider.

White Paper Title Page 84

On the Transactions tab, click Add Transaction to add the integration metadata for the structured
messages. In this example, the transaction type is outbound synchronous. For consuming asynchronous
web services in PeopleSoft, specify outbound asynchronous. Also notice that you are creating the
transaction on the service provider node, not the PT_LOCAL or your local node.

White Paper Title Page 85

Click Add and select the Messages tab. Set the Synchronous Logging to Header and Detail so you can see
the XML that is exchanged between PeopleSoft and the web service provider. Add the response message
and version and then click Save.

White Paper Title Page 86

When you click the Return to Transaction List you will see two transactions on the page.

White Paper Title Page 87

You now must add the transaction modifier to transform the rowset-based ADDRESS_ZIP_REQUEST
message to the non-rowset based ZIP_REQUEST SOAP message and to transform the ZIP_RESPONSE
SOAP message into the ADDRESS_CITY_STATE_RESPONSE rowset-based message. To do so,
navigate to the Relationships page and create a new relationship for the BPEL PM / web service provider
node and click the Add a New Value tab. The Relationship name is completely arbitrary. It’s a good
practice to have it contain the node name. Note that you will need only one relationship for all
transformations on any single node.

White Paper Title Page 88

Specify the web service provider for both Node fields on the page, then click Save. The source node and
destination node are always the same node unless you are creating the relationship on an IB Hub system.

White Paper Title Page 89

Click Save and then click the Transaction Modifiers Tab.Click Add Transaction Modifier.
Enter the values as shown below:

White Paper Title Page 90

Both the initial and the resulting node are USZIP-BPEL. This is because the initial structured message
request, ADDRESS_ZIP_REQUEST, is being sent to this node and so is the transformed result,
ZIP_REQUEST. You can only choose OS, outbound synchronous, for the transaction type. Had this
been a transaction modifier for an asynchronous web service, you would choose OA, outbound
asynchronous.

Click Add and Set the Result Transaction Type to OS, outbound synchronous. It will be the only choice in
the list. Then specify the names of the request and response Application Engine transformation programs,
ZIP_REQ_XSL and ZIP_RESP_XSL. Click Save.

White Paper Title Page 91

Click Save and then click the Return to Transaction List link. You will see the following Transaction
Modifier:

White Paper Title Page 92

Optional: you can verify that you created all the integration metadata correctly using the Integration Point
Viewer:

White Paper Title Page 93

You are now ready to add the PeopleCode to your Component to invoke the web service. This particular
web service will be invoked on a FieldChange event of the postal field. Initiating an asynchronous BPEL
process is most likely to occur on the SavePostChange event of the Component or Record. The following
is sample code for invoking the GetInfoByZip web service operation:

White Paper Title Page 94

If ADDRESS_SBR.POSTAL <> "" Then

 /* Create the message and load in the zip code */
 Local Message &msgZipRequest = CreateMessage(Message.CSS_ZIP_REQUEST);
 &msgZipRequest.GetRowset().GetRow(1).GetRecord(1).GetField(Field.POSTAL).Value =
ADDRESS_SBR.POSTAL;

 /* Call the sync request */
 Local Message &msgZipResponse = &msgZipRequest.SyncRequest(Node.USZIP_BPEL);

 try

 /* Get the returned rowset */
 Local Rowset &rsRetData = &msgZipResponse.GetRowset();

 /* Get the city */
 Local string &sCity = &rsRetData.GetRow(1).GetRecord(1).GetField(Field.CITY).Value;

 /* Make sure a valid zip code came back */
 If &sCity = "" Then

White Paper Title Page 95

 throw CreateException(0, 0, "");
 End-If;

 /* Populate the values */
 ADDRESS_SBR.CITY = Proper(&sCity);
 ADDRESS_SBR.STATE = &rsRetData.GetRow(1).GetRecord(1).GetField(Field.STATE).Value;

 catch Exception &e

 /* Invalid zip code */
 MessageBox(0, "", 0, 0, "Please Enter a valid Zip Code");
 SetCursorPos(%Page, ADDRESS_SBR.POSTAL);
 end-try;
End-If;

You are now ready to consume an external web service or initiate a BPEL PM process from a PeopleSoft
application.

For more information on importing WSDL and consuming BPEL and other external web services see the
section, “Creating Third-Party Integrations Using WSDL” in Enterprise PeopleTools 8.46 PeopleBook:
Integration Broker. You may also want to look at the section, “Developing Transformations.” Other
sections in the same book worth reviewing are “Applying Transformations” and “Configuring
Relationships.”

White Paper Title Page 96

CHAPTER 5: HOW TO CONNECT BPEL AND JD EDWARDS APPLICATION

BPEL Connecting to WSG SOAP/RPC

Selecting desired Integration Point:

Assuming you have already installed the EnterpriseOne Integration Points packages, select the desired IP
Flow that you want to expose as a web service. For the purpose of illustrating this process we have
selected the Customer Credit Information Integration Point.

Verifying web service conformity for the Integration Point:

Using WSG Developer, verify all of the following properties by selecting the
getCustomerCreditInformation flow in the PSFT_EntepriseOne_Interfaces package
(PSFT_EnterpriseOne_Interfaces.PSFT_EnterpriseOne_Interfaces.Customer.getCustomerCreditInformati
on.getCustomerCreditInformation).

Verify that all the required properties for the Flow are set:

Property Group: Universal Name

Property Name: Namespace name – Verify that a globally unique namespace name like the name
of company. This is critical for creating a web service. This name will need to be used at various
places in the process.

Property Name: Local Name – Verify that a meaningful name to identify service locally was
provided.

Property: Execute ACL

Verify that the Execute ACL property is set to Anonymous

White Paper Title Page 97

Note: Whenever the package is deployed to a new IS, all permissions are changed back to default (doesn’t
retain anonymous). So a customer will need to manually set this to anonymous each time the package is
deployed on a new IS.

We will have to either pass authentication information from BPEL PM or create a new Java service that
automatically sets the permissions each time the service is loaded.

Generating SOAP-RPC style WSDL:

To generate the WSDL for the service, choose Tools – Generate WSDL

Set the values in the Generate dialog box as follows:

• Host name to machine name or IP. Do not use localhost.

• Set protocol to SOAP-RPC

• Directive should remain default.

• Set the value of Target namespace to the XML namespace used for the service.

• Click OK. Choose the destination folder to save the file. WSG Developer will display a message
that WSDL was successfully saved.

Afer generating the WSDL file, extract the schema definition of the WSDL to a separate .xsd file, for
better usability. Name the XSD CustomerCreditInformation.xsd. Then, reference the xsd file in the
WSDL as follows

White Paper Title Page 98

“ <?xml version="1.0" encoding="UTF-8"?>

 <wsdl:definitions
name="PSFT_EnterpriseOne_Interfaces_Customer_getCustomerCreditInformation"
targetNamespace="http://den-sa246967B/"

xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns:http="http://schemas.xmlsoap.org/wsdl/http/"

 xmlns:wsdns1="http://localhost/PSFT_EnterpriseOne_Interfaces/Customer/getCustomerCredit
Information/getCustomerCreditInformation"

 xmlns:mime="http://schemas.xmlsoap.org/wsdl/mime/"

 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

 xmlns:tns="http://den-sa246967B/">

 <wsdl:types>

 <xsd:import schemaLocation=" CustomerCreditInformation.xsd"/>

 </wsdl:types>

You are now ready to consume the EnterpriseOne Integration Point provided web service.

Generating BPEL PM process to consume the service

The following section assumes that BPEL PM server and designer are properly set up and that the
appropriate workspace and connections are created in the designer.

Start BPEL PM server. Launch BPEL Designer. Right-click on the workspace and choose New Project.
From Project Items choose BPEL Process Project and click OK.

White Paper Title Page 99

In the project properties dialog, select process name, and choose Synchronous service from the Template
dropdown. Click OK.

The following sections appear. If this does not appear, click Diagram View and double click
GetCustomerCreditInfo in the Applications Navigator section. See the Oracle BPEL Process Manager
Developer’s Guide for a description of these sections.

White Paper Title Page 100

Browse to the project directory from explorer and copy both the WSDL and XSD files that you created
using WSG Developer to this project folder.

Import the GetCustomerCreditInfo Schema into the project. In the Structure window, right-click on
Project Schemas and select Import Schemas. In the Import Schema window, browse the file system and
select the CustomerCreditInformation.xsd. Select ok, ok, and save all.

White Paper Title Page 101

Associate Schema to Request Message type. In the Structure window, select Message Types > Process
WSDL > GetCustomerCreditInformationRequestMessage > payload.

Right-click on payload and select Edit Message Part. Select the type radio button, and click the browse
types button. In the Type Chooser, select Project Schema Files > CustomerCreditInformation.xsd >
__getCustomerCreditInformationInput. Click ok, ok, and save all.

White Paper Title Page 102

Similarly, associate __getCustomerCreditInformationOutput with the Response Message to the Response
Message type payload. Open the BPEL Editor by double clicking in the
GetCustomerCreditInformation.bpel node in the Application Navigator. Drag and drop a partner link
task in the BPEL process (in yellow area).

White Paper Title Page 103

Provide partner link name. Click on the first icon in the WSDL Settings frame to select the WSDL file
from the file system. Select the WSG WSDL copied to the project directory. Designer will display the
following message:

Select Yes to automatically create partner link types.

Designer will create a partner link type and populate it. Keep My Roles filed as Not specified and populate
Partner Role with the value available in the drop down. Click OK to close the partner link setting and save
the BPEL file.

Next follow the BPEL developer guide to add the following items to the BPEL file.

• An Assign activity to load the service variables

• An Invoke activity to invoke the GetCustomerCreditInfo IP service

• An Assign activity to assign the output of the service call to the Response message

Follow the guide to validate the BPEL and save the file. To compile and deploy the BPEL process, right-
click on project in Application Navigator. Select Deploy > connection name > Deploy to Default Domain.
Click OK. This will compile and deploy the BPEL process. Watch the bottom of the screen for any errors.
Refer to the BPEL Developer’s Guide for more information.

White Paper Title Page 104

BPEL Connecting to WSG SOAP/MSG
This section describes the process to generate the SOAP/MSG compatible service in WSG Developer and
generating the WSDL for the same. It also describes the generation of BPEL PM Process for consuming
this service. This section uses BSFN as an example adapter service. However, the same process can be
followed for JDBJ as well as XAPI response service.

Generating SOAP/MSG compatible Flow service

Generate BSFN adapter service to call EnterpriseOne BSFN. Create this in the same way you would
develop any EnterpriseOne BSFN adapter service. For example, consider the GetPhone Adapter Service
which looks as follows:

White Paper Title Page 105

Next, create a flow service. From File > New, choose Flow Service option. Give a meaningful name to the
service, select destination folder and choose finish to create the flow service.

Double-click on the service just created in the navigation pane to open the editor for the service.

White Paper Title Page 106

Set the following service properties:

Property Group: Universal Name

Property Name: Namespace name – Give a globally unique namespace name like the company
name http://www.peoplesoft.com. This is critical for creating a web service. This name be used at
various places in the process.

Property Name: Local Name – Provide a meaningful name to identify the service locally.

Property: Execute ACL – Anonymous

Click on Input/Output tab in the service editor. From the list of available types, choose object to create
two input objects: soapRequestData and soapResponseData. Create and output object soapResponseData.

White Paper Title Page 107

Next, create the input and output document types. Click on File > New to invoke the New Object wizard.
Choose Document Type and click Next. Choose the document type name and location. Click Finish to
create the document type.

Double-click on document type in the navigation pane to open the editor. Create elements as follows:

White Paper Title Page 108

• From the variable list choose Document element. This top level element must be named in a
specific format. Choose any namespace name. This element has to be named as namespace name:
flow service local name e.g. wm:GetPhoneServiceMSG. Click on the element and change its XML
namespace property. This must have the same value as namespace name of service.

• Create another Document element as child of this root element. Name this element as document
identifier. E.g. GetPhone.

• Create Document element Request under second document element.

• Create required input variables under request.

To create output document type, select File > New to invoke the New Object wizard. Choose Document
Type and click Next. Choose the document type name and location. Click Finish to create the document
type. Double-click on output document type in the navigation pane to open the editor. Create elements as
follows:

• From the variable list choose Document element. This top level element has to be named in a
specific format. Choose any namespace name. This element must be named as namespace name:
flow service local name e.g wm:GetPhoneServiceMSG. Click on the element and change its XML
namespace property. This must have the same value as namespace name of service.

• Create another Document element as child of this root element. Name this element as document
identifier. E.g. GetPhone.

• Create Document element Request under second document element.

• Create same input variables under request as in 8.d.

• Create Dcoument element Response under second document element.

White Paper Title Page 109

• Create required output variables under this document element.

Next, create the service flow. Double-click on the flow service in the navigation pane to open the service
editor. Click on Insert and choose Browse. Locate WmPublic package. Navigate to Pub/Soap/Utils.
Choose getBody method. Click on inserted step. Choose Pipeline tab in lower frame and map
input/output as follows:

White Paper Title Page 110

• Map soapRequestData from Pipeline In to soapData in Service In

• Map body from Service Out to body in Pipeline Out.

• Drop soapData object from Pipeline Out.

To insert next step, click on Insert and Browse. Choose xmlNodeToDocument method from
WmPublic/Pub/xml.

Click on pub.xml:xmlNodeToDocument step in upper frame and click on Pipeline tab in lower frame to
map input/output parameters for the step. Map the parameters as follows:

Map body from Pipeline In to node in Service In. Choose makeArrays in ServiceIn and click on Set Value.
Set the value to False. Choose nsDecls and click on Set Value. In the set value dialog, click on Add Row
button on extreme right top corner. Put name as the namespace name you selected for document type. Put
Value as XML namespace value of the service. Both of these values come from step 8.a above.

Choose documentTypeName and click Set Value. Set the value as fully qualified name of the input
document type created as in the Example: PSFT_BPEL_PM_Tests.Docs:GetPhoneInput). Click on
Pipeline Out frame. Do the same setting for nsDecls.

Insert new Document Reference variable and choose Input Document type, created in step 8, in the dialog
box that appears. Give it your desired name.Map document from Service Out to Document Reference just
created in Pipeline Out. Drop node, makeArrays, body, documentTypeName and document objects from
Pipeline Out.
Insert the BSFN Adapter service that will call EnterpriseOne BSFN for this task. Click on the inserted step
and choose Pipeline tab from the lower frame to map input/output parameters as follows:

White Paper Title Page 111

• Map input parameters from Input Document reference in Pipeline In to appropriate input
parameters in Service In.

• Click on Pipeline Out frame. Add new Document reference and choose the output document type
created in step 9. Give it appropriate name.

• Map output parameters from Service Out to appropriate parameters under output document
reference in Pipeline Out.

• Drop Input and Output document type that are in Service In and Service out respectively and
appear in Pipeline Out (see screen shot above).

For reverse conversion, insert documentToXMLString method from WmPublic/pub/xml. Click on the
step and Pipeline tab in lower frame to set input/output parameters as follows:

White Paper Title Page 112

• Map the output document reference from Pipeline In to document element in Service In.

• Set the value for nsDecls as in step 15.c above.

• Set the value of documentTypeName element to the fully qualified output document type created
in step 9. Example: PSFT_BPEL_PM_Tests.Docs:GetPhoneOutput

• Set value of generateRequiredTags to True.

• Set value of enforceLegalXMl to True.

• Map xmldata from Service Out to xmldata element in Piepline Out.

• Drop document, documentTypeName, generateRequiredTagd and enforceLegalXML element
from Pipeline Out.

• Next insert xmlStringToXMLNode method from WmPublic/pub/xml. Set the pipeline parameters
as follows:

White Paper Title Page 113

• Map xmldata from Pipeline In to xmldata in Service In.

• Set value of is XML to True.

• Map node from Service Out to Pipeline Out.

Insert addBodyEntry method from WmPublic/pub/soap/utils. Map parameters as follows:

White Paper Title Page 114

• Map soapResponseData in Pipeline In to soapData in Service In.

• Map node in Pipeline In to bodyEntry in Service In.

• Map soapData in Service Out to soapResponseData in Pipeline Out.

• Drop soapData, bodyEntry and node from Pipeline Out.

Service is now ready. Save all the work.

White Paper Title Page 115

Generating SOAP-MSG style WSDL

To generate the WSDL for the service, choose Tools – Generate WSDL. Set the value in Generate dialog
box as follows:

Set Host name to machine name or IP. Do not use localhost.Set protocol to SOAP-MSG. Directive should
remain default. Click on folder icon next to Input to choose Input document type created for the service.
Similarly, choose output document style created for the service. Set the value of Target namespace to the
XML namespace used for the service. Click OK. Choose the destination folder to save the file. Designer
will display message that WSDL was successfully saved.

White Paper Title Page 116

Generating BPEL PM process to consume the service

The following steps assume that BPEL PM server and designer are properly set up and that the
appropriate workspace and connections are created in the designer.Start BPEL PM server.Launch BPEL
Designer. Right-click on the workspace and choose New Project. From Project Items in right frame
choose BPEL Process Project and click OK.

In the project properties dialog, select process name, and choose Synchronous service from Template
dropdown. Click OK.

White Paper Title Page 117

The following sections appear. If this does not appear, click Diagram View and double click
GetPhoneMsgStyle.bpel in the Applications Navigator section. See the Oracle BPEL Process Manager
Developer’s Guide for a description of these sections.

Browse to the project directory from explorer and copy the WSDL generated from WSG Developer to this
folder.

White Paper Title Page 118

In Applications –Navigator, navigate to <processname>.WSDL file under Integration Content. Double-
click to open the file and view WSDL source.

Locate the Request and Response elements in the schema. Modify the Request and Response element
schema as required for the service. As a reference for this, use elements under Request and Response
schema in the copied WSG WSDL file. These elements can be copied from WSG WSDL to process
WSDL with minor modification of namespace. Diagram above shows resulting WSDL for this example.

Now double-click on <processname>.bpel file to open it in editor. Right-click on either side of BPEL
process (in yellow area) and choose create partner link option.

White Paper Title Page 119

Provide partner link name. Click on first icon in WSDL Settings frame to select the WSDL file from file
system. Select the WSG WSDL copied to the project directory. Designer will display following message:

Click on Yes to automatically create partner link types. Designer will create partner link type and populate
it. Keep My Roles filed as Not specified and populate Partner Role with the value available in drop down.

Click OK to close the partner link setting and save bpel file.

Next follow the BPEL Developer’s Guide to add the following items to the BPEL file.

• Scope Activity

• Invoke construct

• Assign construct

Follow the guide to validate the BPEL file and save the file. To compile and Deploy BPEL process, right-
click on project in Application Navigator. Select Deploy > connection name > Deploy to Default Domain.
Click OK. This will compile and deploy the BPEL process. Watch the bottom of the screen for any errors.
Refer to the BPEL Developer’s Guide for more information.

White Paper Title Page 120

Notification invoking a BPEL Process

The following steps provide the high level view of how notifications can invoke a BPEL process.

1. Generate a Notification Flow Service using the WSG toolkit from
PSFT_EnterpriseOne_AdapterServices.AdatperServices.Notification. package and save the
flow.

2. Generate a WSDL for the newly created flow with a SOAP/RPC option and save it as both
WSDL and XSD.

3. Create a BPEL process and import the WSDL and the XSD from step 1. Save the process
definition.

4. Create WSG Connector.

Use the WSG connector from the toolkit and open the WSDL saved from step 3. The web
service connector will generate a flow service called “initiate”, and the corresponding request
document type and response document types.

5. Define the Notification trigger in the app designer.

Selecting the EnterpriseOne Notification

Assuming you have installed the latest release of EntepriseOne Integration Points and you have deployed
the PSFT_EnterpriseOne_AdapterServices package, you can select one of the already available
EnterpriseOne notifications to create your integration.

Prerequisites:

• EnterpriseOne Event/Subscriber setup

• Ensure Transaction Server is running

• Enable E1 Adapter Listener Notification for
AdapterServices.Notification.AddressBook:notifyAddressBook (Refer to E1 Adapter
Configuration section of WSG Install & Config guide).

• Enable following E1 Adapter Listener:
EnterpriseOne_AdapterServices_Listener:EnterpriseOne_Listener (Refer to E1 Adapter
Configuration section of WSG Install & Config guide on how to enable Listeners).

• For the purpose of this example we have selected the notifyAddressBook message. The document
type definition can be found under the folder AdapterServices.Notification.AddressBook.

Creating a WSG Notification Service

• The notification flow service is responsible for subscribing to the notification, and delivering the
notification to BPEL PM by invoking a web service. The flow will be developed in two parts: first
defining its interface and generating the web service, and second invoking the connector flow to
deliver the notification. Do the following:

Create a new flow service by selecting File > New , then select the Flow Service radio button and click
next. Name your new flow notifyAddressBook, select empty flow and click Finish. Assign the

White Paper Title Page 121

notifyAddressBookPublishDocument as the input to the flow.Click the New Variable icon inside the
Input/Output panel.

Select Document Reference

Select
PSFT_EnterpriseOne_AdapterServices.AdatperServices.Notification.AddressBook.notifyAddressBookPub
lishDocument. Click Ok. Give this new variable the following name
AdapterServices.Notification.AddressBook:notifyAddressBookPublishDocument and Save your flow.

Note: This name has to be exactly the same name as the selected Document Name. You can use
copy/paste functionality to ensure this.

Generating the web service interface

Perform the following steps to create the service interface that you will use for the BPEL PM
implementation that consumes this notification. Select the Flow you just created with WSG Developer and
select Tools > GenerateWSDL. Ensure you have the right host and namespace, select SOAP-RPC and
click Ok. Save the file in a known location.

Note: In this case, we have not assigned a universal name for this flow. Keep in mind that the only
purpose of this WSDL is to provide a schema definition that can be used when creating the BPEL PM
flow that will consume the notification. The WSG flow service we created will be triggered by the
notification from EnterpriseOne. This flow is not a web service provider.

After you have generated the WSDL, extract the schema definition from the WSDL into a separate XSD
file by copying all the contents inside the <wsdl:types> tags into a separate file. Name this file
AddressBook.xsd.

Edit the <xsd:import ..> tag and add the “schemaLocation” attribute. Assign “schemaLocation” attribute
the same value as in the “namespace” attribute.
Example: <xsd:import namespace="http://schemas.xmlsoap.org/soap/encoding/"
schemaLocation="http://schemas.xmlsoap.org/soap/encoding/" />

Creating the BPEL PM Flow

The following steps assume that BPEL PM server and designer are properly set up and that the
appropriate workspace and connections are created in the designer. Start BPEL PM server. Launch BPEL
Designer. Right-click on the workspace and choose New Project. From Project Items in right frame
choose BPEL Process Project and click OK.

White Paper Title Page 122

In the project properties dialog, enter the process name ‘EnterpriseOneAddressBookNotify’, and choose
Asynchronous BPEL Process service from Template dropdown. Click OK.

White Paper Title Page 123

Browse to the project directory from explorer and copy the XSD file that you created using WSG
Developer to this project folder.

Import the AdressBook Schema into the project. In the BPEL Structure window, right click on Project
Schemas and select Import Schemas, in the Import Schema window, browse the file system and select the
AdressBook.xsd. Select Open, ok, and save all.

Associate Schema to Request Message type. In the BPEL Structure window, select Message Types >
Process WSDL > EnterpriseOneAddressBookNotifyRequestMessage > payload, right click on payload
and select Edit Message Part. Select the type radio button, and click the browse types button. In the Type
Chooser window, select Project Schema Files > AddressBook.xsd >
__notifyAddressBookPublishDocument. Click ok, ok, and save all.

White Paper Title Page 124

Compile and Deploy the process. Right-click on EnterpriseOneAddressBookNotify.bpel node in the
Application Navigator. Select Deploy > LocalBPELServer > Deploy to default domain

Generating the WSG web service Connector

Follow these steps to create the WSG web service connector:

1. Copy WSDL from BPEL PM Server to a WSG developer location.

2. Open the BPEL Console for your active BPEL Server.

3. Select the EnterpriseOneAddressBookNotify link.

4. Copy the URL of the WSDL location.

Create WSG Connector

1. Start WSG Developer and connect to an active WSG Server.

2. Select File > New, choose the Web Service Connector, and click Next.

3. Select the WSG Folder under which to create the connector and click Next.

4. Paste the URL of WSDL (from step 1c) and Click Open.

5. Click Finish.

White Paper Title Page 125

A web service connector will be generated automatically with a flow service called “initiate”, and the
corresponding request document type.

White Paper Title Page 126

Updating the Notification flow to deliver the notification

Go through the following steps to update your notification flow so that it calls the new connector flow that
you created to deliver the notification message to the BPEL PM process:

1. In WSG Developer, select the notifyAddressBook flow service you created in the first part of
this exercise.

2. Insert an invoke step by clicking on the Insert icon and select Browse.

3. Within the Select window navigate to the web service connector flow and click ok.

4. Select the invoke step, and click on the Pipeline Tab. There is no document under payload.
Map the input document to the payload structure.

5. Save your work.

White Paper Title Page 127

Defining the Notification Trigger

Create a new Trigger by selecting File > New, and choosing the Trigger radio button. Click Next. Name
your Trigger AddressBookNotify_Trigger and click Finish. In the Service field in the bottom panel click on
Select a service and choose the notification service you just created. Click on Insert document types icon
and choose
PSFT_EnterpriseOne_AdapterServices.AdatperServices.Notification.AddressBook.notifyAddressBookPub
lishDocument and Save your work

White Paper Title Page 128

.

White Paper Title Page 129

WSG initiating a BPEL Process

Selecting desired BPEL Process

Create a BPEL Process and Copy WSDL from BPEL PM Server to a WSG developer location.

1. Open the BPEL Console for your active BPEL Server.

2. Click on the desired process link.

3. Click on WSDL and then on the WSDL Location link.

4. Save the WSDL in the WSG directory (make sure to change the extension to .wsdl).

You should be able to select any BPEL PM provided service to consume from WSG. For the purpose of
this example, we will take the process that was created in the section titled “BPEL Consuming
EnterpriseOne IP web service using SOAP/RPC.” This BPEL PM process invokes a service back in
WSG. We will call this BPEL PM process from a WSG connector for demonstrating this feature.

Creating the WSG Service Connector

Assuming you have created and deployed the GetCustomerCreditInfo project to the Oracle BPEL PM
Server, follow these steps:

1. Copy WSDL from BPEL PM Server to a WSG developer location.

2. Open the BPEL Console for your active BPEL Server.

3. Click on the GetCustomerCreditInformation link.

4. Click on WSDL and then on the WSDL Location link.

5. Go to File > Save As and save the WSDL in the WSG directory (make sure to change the
extension to .wsdl).

Create WSG Connector

1. Start WSG Developer and connect to an active WSG Server.

2. Select File > New, choose the Web Service Connector, and click Next.

3. Select the WSG Folder under which to create the connector and click Next.

4. Click the Pick icon to find the WSDL file you copied in step 1.

5. Click Finish.

A web service connector will be generated automatically with a flow service called “process”, the
corresponding request and response document types.

White Paper Title Page 130

White Paper Title Page 131

Running the WSG Connector Service

Select the “process” flow you just created and click the run icon. Enter a valid entityID, check the “Include
empty values for String Types, and click OK.

White Paper Title Page 132

CONCLUSION

Through the use of Service Oriented Architecture, Oracle provides companies the ability to find additional
value out of their independent applications. Oracle’s embracing of the concepts such as service discovery,
consumption, orchestration and standards support, all of which were discussed throughout this paper,
enable an enterprise-wide integration model that delivers a reusable suite of interoperable services in a
standard’s based environment.

• Products like Integration Repository can be used to discover over 2000+ Business Services that are
implemented in the Oracle Applications.

• Oracle Applications are service enabled and can interoperate in a web service based environment
through the use of standards such as SOAP and WSDL.

• With Oracle BPEL Process Manager, companies can orchestrate cross application business processes
leveraging such standards as BPEL.

Oracle Applications and Technology are your Strategic assets that bridge the fundamental gaps between
business requirements and IT capabilities. Companies can now realistically achieve their business goals by
implementing a best-practice service-oriented IT architecture as the foundation of their future success
based on Oracle Applications and Oracle Fusion Middleware.

White Paper Title Page 133

APPENDIX A

package oracle.apps.fnd.wf.bes.sample;
import com.oracle.bpel.client.delivery.DeliveryService;
import java.util.Properties;
import java.util.Map;

//JNDI library for looking up for remote RMI server
import javax.naming.InitialContext;

//BPEL client code
import com.oracle.bpel.client.ClientDefs;
import com.oracle.bpel.client.Locator;
import com.oracle.bpel.client.NormalizedMessage;

//BES library
import oracle.apps.fnd.wf.bes.BusinessEvent;
import oracle.apps.fnd.wf.bes.BusinessEventException;
import oracle.apps.fnd.wf.bes.SubscriptionInterface;
import oracle.apps.fnd.wf.bes.server.Subscription;
import oracle.apps.fnd.wf.common.WorkflowContext;

/**
 * This class demostrates how to invoke a BPEL process from a BES
subscription
 */
public class InvokeBPELSub implements SubscriptionInterface
{
 public void onBusinessEvent(Subscription eo, BusinessEvent event,
 WorkflowContext context) throws BusinessEventException
 {
 try{
 // properties in the classpath
 // You can also store these values as Profile options and
access them in the subscriptions
 // This way you can avoid hardcoding this information in
every subscription
 Properties props = new java.util.Properties();
 //sets target bpel platform, oracle installation, this will
be oc4j_10g
 props.setProperty("orabpel.platform","oc4j_10g");
 //sets jndi factory class, this is used to locate remote RMI
server

props.setProperty("java.naming.factory.initial","com.evermind.server.
rmi.RMIInitialContextFactory");
 //sets target url for target rmi server (oc4j

White Paper Title Page 134

props.setProperty("java.naming.provider.url","ormi://127.0.0.1/orabpe
l");
 //sets user name for the remote server
 //For security reasons, you must store this information in your
own tables. Make sure you store them encrypted and decrypt the value
in the subscription
 props.setProperty("java.naming.security.principal","admin");
 //sets password for the remote server

props.setProperty("java.naming.security.credentials","welcome");

 System.out.println(props);

 Locator locator = new Locator("default", "bpel", props);
 DeliveryService deliveryService =
(DeliveryService)locator.lookupService(DeliveryService.SERVICE_NAME);
 //Object deliveryService =
locator.lookupService(DeliveryService.SERVICE_NAME);
 //
 //Maps event data into input message for BPEL process.
 //
 //Here you need to map you event parameters into BPEL input
message if any
 //ssn property is given by the Event definition
 //when an event is raisen, application can associate any
number of parameters
 //to it. As to what parameters are available for a given
event, it is upto to
 //the owner of the event.
 //
 //In this example, we assume social security number is one of
the event parameter,
 //which will be used as input for BPEL process
"CreditRatingService"
 //
 String ssn = event.getStringProperty("ssn");

 // construct the normalized message and send to bpel server
 String xml = "<ssn xmlns=\"http://services.otn.com\">" + ssn
+ "</ssn>";
 NormalizedMessage nm = new NormalizedMessage();
 //payload is specific to the process you invoke, it is
defined in the WSDL used by your BPEL process

 nm.addPart("payload", xml);

 //Start the process

White Paper Title Page 135

 // First parameter(CreditRatingService) is the name of
portType as defined in the WSDL,
 // which is deployed to the BPEL Server
 // Second parameter (process) is the operation name that is
associated to a receive activity
 // The third parameter (nm) is the context properties for the
request.
 //
 //Depending on the process definition, if you expect a reply
from the process, you should
 //use request of the deliveryService else, use post with the
same arguments
 // e.g. NormalizedMessage res =
deliveryService.post("CreditRatingService", "process", nm);
 //

 NormalizedMessage res =
deliveryService.request("CreditRatingService", "process", nm);

 //Since we used request, we can retrieve the return message
 Map payload = res.getPayload();

 //you can store the result back from BPEL process into
business event if it is required
 // string value of payload should be something like
 // <rating xmlns="http://services.otn.com">560</rating>
 event.setStringProperty("creditRate", ""+
payload.get("payload"));

 System.out.println("Credit Rate:"+payload.get("payload"));
 }catch(Exception e)
 {
 //
 //propagate the exception to BES, the last flag indicate this
exception is
 //a true error so BES will invoke defined error handling logic
 //
 throw new BusinessEventException("Failed to start BPEL
process", e, true);
 }
 }
}

White Paper Title Page 136

White Paper Title Page 137

APPENDIX B

package oracle.apps.fnd.wf.bes.sample;

import java.sql.Connection;
import java.util.Date;
import javax.sql.DataSource;
import oracle.apps.fnd.wf.bes.BusinessEvent;
import oracle.jdbc.pool.OracleDataSource;

/**
 * Sample code to programmatically raise an event
 */
public class RaiseEvent
{
 static String mEvent = "oracle.apps.fnd.wf.bes.sample.bpel.invoke";
 public static void main(String[] args)
 {
 Connection conn=null;
 try
 {
 conn=getJDBCConnection();
 //takes event name and event key
 BusinessEvent businessEvent =
 new BusinessEvent(mEvent, ""+System.currentTimeMillis());

 businessEvent.setStringProperty("ssn","123-23-2331");

 Date date= new Date();
 businessEvent.setSendDate(date);
 businessEvent.raise(conn);
 }
 catch (Exception e)
 {
 e.printStackTrace();
 }finally
 {
 if(conn!=null)
 try
 {
 conn.close();
 }
 catch (Exception e)
 {
 }
 }

White Paper Title Page 138

 }
 private static Connection getJDBCConnection() throws Exception
 {
 OracleDataSource ods = new OracleDataSource();
 // Connection information to the Oracle E-Business Suite instance
 ods.setUser("apps");
 ods.setPassword("appspwd");
 ods.setURL("jdbc:oracle:thin:@host:port:sid");
 Connection sConn = ods.getConnection();
 sConn.setAutoCommit(false);
 return sConn;
 }
}

Oracle Applications Integration Cookbook: A Developer’s Guide
August 2005
Author: Sharath Dorbala, Rajan Modi, Sebastian Artigas, Doron Avizov, Aali Masood, Meera Srinivasan

Oracle Corporation
World Headquarters
500 Oracle Parkway
Redwood Shores, CA 94065
U.S.A.

Worldwide Inquiries:
Phone: +1.650.506.7000
Fax: +1.650.506.7200
oracle.com

Copyright © 2005, Oracle. All rights reserved.
This document is provided for information purposes only and the
contents hereof are subject to change without notice.
This document is not warranted to be error-free, nor subject to any
other warranties or conditions, whether expressed orally or implied
in law, including implied warranties and conditions of merchantability
or fitness for a particular purpose. We specifically disclaim any
liability with respect to this document and no contractual obligations
are formed either directly or indirectly by this document. This document
may not be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without our prior written permission.
Oracle, JD Edwards, PeopleSoft, and Retek are registered trademarks of
Oracle Corporation and/or its affiliates. Other names may be trademarks
of their respective owners.

