
Oracle Data Integrator
Best Practices for a Data Warehouse

An Oracle White Paper
August 2010

Oracle Data Integrator
Best Practices for a Data Warehouse

Oracle Data Integrator
Best Practices for a Data Warehouse

2

Preface .. 4

Purpose ... 4

Audience ... 4

Additional Information .. 4

Introduction to Oracle Data Integrator (ODI) .. 5

Objectives.. 5

Business-Rules Driven Approach .. 5

Traditional ETL versus E-LT Approach .. 6

Understanding Oracle Data Integrator Interfaces ... 7

A Business Problem Case Study ... 8

Implementation using Manual Coding .. 10

Implementation using Traditional ETL tools ... 12

Implementation using ODI’s E-LT and the Business-rule Driven Approach 14

Benefits of E-LT Combined with a Business-rule Driven Approach 17

Using ODI in your Data Warehouse Project ... 19

ODI and the Data Warehouse Project .. 19

Organizing the Teams ... 19

Reverse-engineering, Auditing and Profiling Source Applications 21

Designing and Implementing the Data Warehouse’s Schema.................... 23

Specifying and Designing Business Rules ... 24

Building a Data Quality Framework.. 27

Developing Additional Components ... 28

Packaging and Releasing Development .. 29

Versioning Development .. 29

Scheduling and Operating Scenarios ... 30

Monitoring the Data Quality of the Data Warehouse 30

Publishing Metadata to Business Users ... 30

Planning for Next Releases ... 31

Oracle Data Integrator for Oracle Best Practices ... 32

Architecture of ODI Repositories ... 32

Reverse-engineering an Oracle Schema ... 32

Oracle Loading Strategies ... 32

Using Changed Data Capture .. 34

Oracle Integration Strategies ... 35

Defining a Data Quality Strategy .. 36

Setting up Agents in an Oracle environment .. 37

Architecture Case Studies ... 38

Oracle Data Integrator
Best Practices for a Data Warehouse

3

Setting up Repositories.. 38

Using ODI Version Management ... 41

Going to Production ... 44

Setting up Agents .. 46

Backing up Repositories .. 48

Appendices ... 49

Appendix I. Oracle Data Integrator for Teradata Best Practices 49

Architecture of ODI Repositories ... 49

Reverse-engineering a Teradata Schema ... 49

Teradata Loading Strategies ... 50

Teradata Integration Strategies ... 51

Setting up Agents in a Teradata environment .. 52

Appendix II: Additional Information .. 53

Acronyms used in this document ... 53

Oracle Data Integrator
Best Practices for a Data Warehouse

4

Preface

Purpose

This document describes the best practices for implementing Oracle Data Integrator (ODI)

for a data warehouse solution. It is designed to help setup a successful environment for data

integration with Enterprise Data Warehouse projects and Active Data Warehouse projects.

This document applies to Oracle Data Integrator 11g.

Audience

This document is intended for Data Integration Professional Services, System Integrators and

IT teams that plan to use Oracle Data Integrator (ODI) as the Extract, Load and Transform

tool in their Enterprise or Active Data Warehouse projects.

Additional Information

The following resources contain additional information:

• Oracle website: http://www.oracle.com

• Oracle Data Integrator 11g on-line documentation:

http://download.oracle.com/docs/cd/E14571_01/odi.htm

• Java reference : http://www.oracle.com/technetwork/java/index.html

• Jython reference http://www.jython.org

Oracle Data Integrator
Best Practices for a Data Warehouse

5

Introduction to Oracle Data Integrator (ODI)

Objectives

The objective of this chapter is to

• Introduce the key concepts of a business-rule driven architecture

• Introduce the key concepts of E-LT

• Understand what an Oracle Data Integrator (ODI) interface is

• Through a business problem case study, understand and evaluate some different

development approaches including:

o Manual coding

o Traditional ETL

o ODI’s business-rule driven approach combined with E-LT

Business-Rules Driven Approach

Introduction to Business rules

Business rules specify mappings, filters, joins and constraints. They often apply to metadata to

transform data and are usually described in natural language by business users. In a typical

data integration project (such as a Data Warehouse project), these rules are defined during the

specification phase in documents written by business analysts in conjunction with project

managers.

Business Rules usually define “What” to do rather than “How” to do it.

They can very often be implemented using SQL expressions, provided that the metadata they

refer to is known and qualified in a metadata repository.

Examples of business rules are given in the table below:

BUSINESS RULE TYPE SQL EXPRESSION

Sum of all amounts of items

sold during May 2010 multiplied

by the item price

Mapping
SUM(
 CASE WHEN SALES.YEARMONTH=201005 THEN

 SALES.AMOUNT * PRODUCT.ITEM_PRICE

 ELSE
 0

 END
)

Products that start with ‘CPU’

and that belong to the

hardware category

Filter
Upper(PRODUCT.PRODUCT_NAME) like ‘CPU%’
And PRODUCT.CATEGORY = ‘HARDWARE’

Customers with their orders Join
CUSTOMER.CUSTOMER_ID = ORDER.ORDER_ID

And ORDER.ORDER_ID = ORDER_LINE.ORDER_ID

Oracle Data Integrator
Best Practices for a Data Warehouse

6

BUSINESS RULE TYPE SQL EXPRESSION

and order lines

Reject duplicate customer

names

Unique Key

Constraint

CONSTRAINT CUST_NAME_PK
PRIMARY KEY (CUSTOMER_NAME)

Reject orders with a link to an

non-existent customer

Reference Constraint
CONSTRAINT CUSTOMER_FK
FOREIGN KEY (CUSTOMER_ID)

REFERENCES CUSTOMER(CUSTOMER_ID)

Mappings

A mapping is a business rule implemented as a SQL expression. It is a transformation rule

that maps source columns (or fields) onto one of the target columns. It can be executed by a

relational database server at run-time. This server can be the source server (when possible), a

middle tier server or the target server.

Joins

A join operation links records in several data sets, such as tables or files. Joins are used to link

multiple sources. A join is implemented as a SQL expression linking the columns (fields) of

two or more data sets.

Joins can be defined regardless of the physical location of the source data sets involved. For

example, a JMS queue can be joined to a relational table.

Depending on the technology performing the join, it can be expressed as an inner join, right

outer join, left outer join and full outer join.

Filters

A filter is an expression applied to source data sets columns. Only the records matching this

filter are processed by the data flow.

Constraints

A constraint is an object that defines the rules enforced on data sets’ data. A constraint

ensures the validity of the data in a given data set and the integrity of the data of a model.

Constraints on the target are used to check the validity of the data before integration in the

target.

Traditional ETL versus E-LT Approach

Traditional ETL tools operate by first Extracting the data from various sources, Transforming

the data on a proprietary, middle-tier ETL engine, and then Loading the transformed data onto

the target data warehouse or integration server. Hence the term “ETL” represents both the

names and the order of the operations performed, as shown in Figure 1 below.

Oracle Data Integrator
Best Practices for a Data Warehouse

7

Figure 1: Traditional ETL approach compared to E-LT approach

In response to the issues raised by ETL architectures, a new architecture has emerged, which

in many ways incorporates the best aspects of manual coding and automated code-generation

approaches. Known as “E-LT”, this new approach changes where and how data

transformation takes place, and leverages existing developer skills, RDBMS engines and server

hardware to the greatest extent possible.

In essence, E-LT moves the data transformation step to the target RDBMS, changing the

order of operations to: Extract the data from the source tables, Load the tables into the

destination server, and then Transform the data on the target RDBMS using native SQL

operators. Note, with E-LT there is no need for a middle-tier engine or server as shown in

Figure 1 above.

Understanding Oracle Data Integrator Interfaces

An interface is an ODI object stored in the ODI Repository that enables the loading of one

target datastore with data transformed from one or more source datastores, based on

business rules implemented as mappings, joins, filters and constraints.

A datastore can be:

• a table stored in a relational database

• an ASCII or EBCDIC file (delimited, or fixed length)

• a node from a XML file

• a JMS topic or queue from a Message Oriented

• a node from a LDAP directory

• an API that returns data in the form of an array of records

Figure 2 shows a screenshot of an ODI interface that loads data into the FACT_SALES

target table. Source Data is defined as a heterogeneous query on the CORRECTIONS file,

the ORDERS and LINES tables.

Oracle Data Integrator
Best Practices for a Data Warehouse

8

Mappings, joins, filters and constraints are defined within this window.

Figure 2: Example of an ODI Interface

Wherever possible, ODI interfaces generate E-LT operations that relegate transformations to

the target RDBMS servers.

A Business Problem Case Study

Figure 3 describes an example of a business problem to extract, transform and load data from

a Microsoft SQL Server database and a file into a target Oracle table.

Data is coming from two Microsoft SQL Server tables (ORDERS joined to LINES) and is

combined with data from the CORRECTIONS file. The target SALES Oracle table must

match some constraints such as the uniqueness of the ID column and valid reference to the

SALES_REP table.

Data must be transformed and aggregated according to some mappings as shown in Figure 3.

Oracle Data Integrator
Best Practices for a Data Warehouse

9

Figure 3: Example of a business problem

Translating these business rules from natural language to SQL expressions is usually

straightforward. In our example, the rules that appear in the figure could be translated as

follows:

TYPE RULE SQL EXPRESSION / CONSTRAINT

Filter Only ORDERS marked as closed ORDERS.STATUS = ‘CLOSED’

Join A row from LINES has a matching ORDER_ID in

ORDERS

ORDERS.ORDER_ID = LINES.ORDER_ID

Mapping Target’s SALE is the sum of the order lines’

AMOUNT grouped by sales rep., with the

corrections applied.

SUM(LINES.AMOUNT + CORRECTIONS.VALUE)

Mapping Sales Rep = Sales Rep ID from ORDERS ORDERS.SALES_REP_ID

Constraint ID must not be null ID is set to “not null” in the data model

Constraint ID must be unique A Primary Key is added to the data model with (ID) as

set of columns

Constraint The Sales Rep. ID should exist in the Target sales

Rep table

A Reference (Foreign Key) is added in the data model

on SALES.SALES_REP =

SALES_REP.SALES_REP_ID

Oracle Data Integrator
Best Practices for a Data Warehouse

10

Implementation using Manual Coding

When implementing such a data flow using, manual coding, one would probably use several

steps, several languages, and several scripting tools or utilities.

Figure 4 gives an overview of the different steps needed to achieve such an extract, transform

and load process.

Figure 4: Sequence of Operations for the Process

There are, of course, several technical solutions for implementing such a process. One of

them (probably the most efficient, as it uses an Oracle data warehouse as a transformation

engine) is detailed in the following table:

STEP DESCRIPTION EXAMPLE OF CODE

1 Execute the join between ORDERS and LINES as well

as the filters on the source Microsoft SQL Server

database using a database view.

Extract the content of the view into a flat file using the

BCP utility.

Use the SQL*Loader utility to load the temporary BCP

file into the TEMP_1 Oracle table.

Create view C$_SALES

As select ... from ORDERS, LINES

where ORDERS.STATUS = ‘CLOSED’

and ORDERS.ORDER_ID = LINES.ORDER_ID

bcp C$_SALES out c$_sales_extract.bcp –c -S... -U... -P... –

t\b

sqlldr control=TEMP_1.ctl log=logfile.log userid=.../...

2 Use the SQL*Loader utility to load the CORRECTIONS

ASCII file into the TEMP_2 Oracle table.

sqlldr control=TEMP_2.ctl log=logfile.log userid=.../...

3 Join, transform and aggregate the 2 temporary tables

TEMP_1 and TEMP_2 and load the results into a 3rd

table (TEMP_SALES) using SQL

insert into TEMP_SALES (...)

select

 SUM(TEMP_1.AMOUNT+TEMP_2.VALUE),

 TEMP1.SALES_REP_ID,

 ...

from

 TEMP_1, TEMP_2

where TEMP_1.LINEID = TEMP_2.CORR_ID)

Oracle Data Integrator
Best Practices for a Data Warehouse

11

STEP DESCRIPTION EXAMPLE OF CODE

...

4 Check Unique constraints using SQL and insert the

errors into the Errors table

Check Reference constraints using SQL and insert the

errors into the Error table

insert into Errors(...)

select ... from TEMP_SALES

where ID in (select ID

 from TEMP_SALES

 group by ID

 having count(*) > 1)

insert into Errors(...)

select ... from TEMP_SALES

where SALES_REP not in

 (select SALES_REP_ID from SALES_REP)

5 Finally, use SQL logic to insert / update into the target

SALES table using a query on TEMP_SALES

update SALES set ...

from ...

where ID in

(select ID

from TEMP_SALES

where IND_UPDATE=’U’)

insert into SALES (...)

select ...

from TEMP_SALES

where IND_UPDATE=’I’

...

The benefits of this approach are:

• High performance:

o Uses pure set-oriented SQL to avoid row-by-row operations

o Uses Oracle as a transformation engine to leverage the power of the

RDBMS

o Uses in-place utilities such as External Tables

• Code flexibility:

o Leverages the latest features of Oracle such as the built-in transformation

functions

Oracle Data Integrator
Best Practices for a Data Warehouse

12

However, this approach raises several issues that become painful as the Enterprise Data

Warehouse projects grow, and more developers get involved. These issues are:

• Poor productivity

o Every load process needs to be developed as a set of scripts and programs,

within different environments and with several languages.

o Business rules (“what happens to the data” – SUM(AMOUNT + VALUE))

are mixed with technical logic (“how to move / load the data” –

SQL*Loader, External Table, insert etc.)

o Moving to production is often difficult when developers haven’t designed

environment variables, or variable qualified names for their objects.

• High cost of data quality implementation

o Data cleansing / data quality according to predefined constraints is usually

avoided due to the cost of its implementation

o Every project has its own definition of the data quality without any

centralized framework (default structure of the error tables, error recycling

etc.)

• Hard maintenance

o Even when project managers have set up a framework, every script may

“reinvent the wheel” and contain specific routines that make it hard to

understand

o Developments are spread in several machines and folders, without a central

repository

o Impact analysis is impossible as there is no metadata management and no

cross references mechanism

• No project flexibility

o The cost of a change to the data models or to the business rules becomes

such a constraint that IT teams refuse it, leading to frustration amongst the

business users.

Implementation using Traditional ETL tools

Traditional ETL tools perform all the transformations in a proprietary engine. They often

require additional hardware to stage the data for the transformations. None of them really

leverages the power of the RDBMS.

A typical ETL architecture is shown in Figure 5.

Oracle Data Integrator
Best Practices for a Data Warehouse

13

Figure 5: Implementation Using an ETL

Every transformation step requires a specific connector or transformer.

ETL tools are often known for the following advantages:

• Centralized development and administration

o Single graphical user interface

o Centralized repository

• Easier maintenance

o Impact analysis (for certain tools)

Unfortunately this ETL approach presents several drawbacks:

• Poor performance

o As the data needs to be processed in the engine, it is often processed row by

row

o When data from the target database is referenced - table lookups for

example - it needs to be extracted from the database, into the engine and

then moved back again to the target database.

o Very few mappings, joins, aggregations and filters are given to the powerful

engine of the RDBMS

• Bad productivity

o Every load process needs to be developed as a set of steps that mix business

rules (“what happens to the data” – SUM(AMOUNT + VALUE)) with

technical logic (“how to load the data” – connector 1, connector 2 etc.)

o Moving to production is often difficult when developers haven’t designed

environment variables, or variable qualified names within their queries

o Some of them still require the use of heavy manual coding to achieve certain

particular tasks, or to leverage the RDBMS’ powerful transformation

functions

Oracle Data Integrator
Best Practices for a Data Warehouse

14

• High Cost

o ETL tools require additional hardware

o ETL tools require specific skills

Implementation using ODI’s E-LT and the Business-rule Driven Approach

Implementing a business problem using ODI is a very easy and straightforward exercise. It is

done by simply translating the business rules into an interface. Every business rule remains

accessible from the Diagram panel of the interface’s window.

Specifying the Business Rules in the Interface

Figure 6 gives an overview of how the business problem is translated into an ODI interface:

• The ORDERS, LINES and CORRECTION datastores are dragged and dropped into

the “Source” panel of the interface

• The Target SALES datastore is dropped in the “Target Datastore” panel

• Joins and filters are defined by dragging and dropping columns in the “Source” panel

• Mappings are defined by selecting every target column and by dragging and dropping

columns or by using the advanced expression editor.

• Constraints are defined in the “Control” tab of the interface. They define how flow data

is going to be checked and rejected into the Errors table.

Figure 6: Implementation using Oracle Data Integrator

Oracle Data Integrator
Best Practices for a Data Warehouse

15

Business Rules are Converted into a Process

Business rules defined in the interface need to be split into a process that will carry out the

joins, filters, mappings and constraints from source data to target tables. Figure 7 defines the

problem to be solved.

Figure 7: How to convert business rules into a process?

By default, Oracle Data Integrator will use the RDBMS as a staging area for loading source

data into temporary tables and applying all the required mappings, staging filters, joins and

constraints.

The staging area is a separate area in the RDBMS (a user/database) where ODI creates its

temporary objects and executes some of the rules (mapping, joins, final filters, aggregations

etc). When performing the operations this way, ODI leverages the E-LT architecture as it first

extracts and loads the temporary tables and then finishes the transformations in the target

RDBMS.

In some particular cases, when source volumes are small (less than 500,000 records), this

staging area can be located in memory in ODI’S in-memory relational database – ODI

Memory Engine. ODI would then behave like a traditional ETL tool.

Figure 8 shows the process automatically generated by Oracle Data Integrator to load the

final SALES table. The business rules, as defined in Figure 7 will be transformed into code by

the Knowledge Modules (KM). The code produced will generate several steps. Some of

these steps will extract and load the data from the sources to the staging area (Loading

Knowledge Modules - LKM). Others will transform and integrate the data from the staging area

to the target table (Integration Knowledge Module - IKM). To ensure data quality, the Check

Knowledge Module (CKM) will apply the user defined constraints to the staging data to

isolate erroneous records in the Errors table.

Oracle Data Integrator
Best Practices for a Data Warehouse

16

Figure 8: ODI Knowledge Modules in action

ODI Knowledge Modules contain the actual code that will be executed by the various servers

of the infrastructure. Some of the code contained in the Knowledge Modules is generic. It

makes calls to the ODI Substitution API that will be bound at run-time to the business-rules

and generates the final code that will be executed. Figure 9 illustrates this mechanism.

During design time, rules are defined in the interfaces and Knowledge Modules are selected.

During run-time, code is generated and every API call in the Knowledge Modules (enclosed

by <% and %>) is replaced with its corresponding object name or expression, with respect to

the metadata provided in the Repository.

For example, a call to <%=odiRef.getTable(“TARG_NAME”)%> will return the name of the

target table of the interface with the appropriate qualifier according to context information,

topology setup etc.

A typical SQL INSERT statement would be coded in a Knowledge Module as follows:

INSERT INTO <%=odiRef.getTable(“TARG_NAME”)%> ...

This template of code will of course generate different SQL statements depending on the

target table (“INSERT INTO MyDB1.SALES... ” when the target is the SALES table, “INSERT

INTO DWH_DB.PRODUCT” when the target is the PRODUCT table etc.). This is also particularly

useful when migrating ODI processes from an environment to another (promoting processes

from Development to QA for example) as ODI will automatically substitute the correct

Oracle Data Integrator
Best Practices for a Data Warehouse

17

schema information based on the specified environment without requiring any code

modifications.

Figure 9: How Knowledge Modules generate native code

Once the code is generated, it is submitted to an ODI Agent, which will either redirect it to

the appropriate database engines and operating systems, or will execute it when needed

(memory engine transformation, java or jython code etc.)

In most cases, the agent is simply a conductor that does not touch the data.

Benefits of E-LT Combined with a Business-rule Driven Approach

Compared to other architectures (manual coding and traditional ETL), ODI mixes the best of

both worlds:

• Productivity / Maintenance

o The business-rules driven approach delivers greater productivity as

developers simply need to concentrate on the “What” without caring about

the “How”. They define SQL expressions for the business rules, and ODI

Knowledge Modules generate the entire set of SQL operations needed to

achieve these rules.

o When a change needs to be made in operational logic (such as “creating a

backup copy of every target table before loading the new records”), it is

Oracle Data Integrator
Best Practices for a Data Warehouse

18

simply applied in the appropriate Knowledge Module and it automatically

impacts the hundreds of interfaces already developed. With a traditional

ETL approach, such a change would have necessitated opening every job

and manually adding the new steps, increasing the risk of mistakes and

inconsistency.

o Flexibility and a shallow learning curve are ensured by leveraging the

RDBMS’ latest features.

o With a centralized repository that describes all the metadata of the sources

and targets and a single unified and comprehensive graphical interface,

maintenance is greatly optimized as cross-references between objects can be

queried at any time. This gives the developers and the business users a single

entry point for impact analysis and data lineage (“What is used where?”,

“Which sources populate which targets?” etc.)

o In the ODI repository, the topology of the infrastructure is defined in detail,

and moving objects between different execution contexts (Development,

Testing, QA, Production, etc.) is straightforward. With a powerful version

control repository, several teams can work on the same project within

different release stages, with guaranteed consistency of deliverables.

o With a centralized framework for Data Quality, developers spend less time

on defining technical steps, and more time on the specification of data

quality rules. This helps to build a consistent and standardized Data

Warehouse.

• High Performance:

o The E-LT architecture leverages the power of all the features of in-place

databases engines. ODI generates pure set-oriented SQL optimized for each

RDBMS which can take advantage of advanced features such as parallel

processing or other advanced features.

o Native database utilities can be invoked by the ODI Knowledge Modules

provided.

o When data from the target database is referenced - table lookups for

example, it doesn’t need to be extracted from the database, into an engine.

It remains where it is, and it is processed by database engine.

• Low Cost:

o Oracle Data Integrator doesn’t require a dedicated server. The loads and

transformations are carried out by the RDBMS.

In conclusion, with its business-rule driven E-LT architecture, Oracle Data Integrator is the

best solution for taking advantage of both manual coding and traditional ETL worlds.

Oracle Data Integrator
Best Practices for a Data Warehouse

19

Using ODI in your Data Warehouse Project

ODI and the Data Warehouse Project

The main goal of a Data Warehouse is to consolidate and deliver accurate indicators to

business users to help them make decisions regarding their everyday business. A typical

project is composed of several steps and milestones. Some of these are:

• Defining business needs (Key Indicators)

• Identifying source data that concerns key indicators; specifying business rules to

transform source information into key indicators

• Modeling the data structure of the target warehouse to store the key indicators

• Populating the indicators by implementing business rules

• Measuring the overall accuracy of the data by setting up data quality rules

• Developing reports on key indicators

• Making key indicators and metadata available to business users through ad-hoc query

tools or predefined reports

• Measuring business users’ satisfaction and adding/modifying key indicators

Oracle Data Integrator will help you cover most of these steps, from source data investigation

to metadata lineage and through loading and data quality audit. With its repository, ODI will

centralize the specification and development efforts and provide a unique architecture on

which the project can rely to succeed.

Organizing the Teams

As Oracle Data Integrator relies on a centralized repository, different types of users may need

to access it. The list below describes how ODI may be used by your teams.

PROFILE DESCRIPTION ODI MODULES USED

Business User Business users have access to the final calculated key indicators through reports

or ad-hoc queries. In some cases, they need to understand what the definition of

the indicators is, how they are calculated and when they were updated.

Alternatively, they need to be aware of any data quality issue regarding the

accuracy of their indicators.

ODI Console

Business Analyst Business Analysts define key indicators.

They know the source applications and specify business rules to transform

source data into meaningful target indicators.

They are in charge of maintaining translation data from operational semantics to

the unified data warehouse semantic.

Designer Navigator

(limited access)

ODI Console

Developer Developers are in charge of implementing the business rules in respect to the

specifications described by the Business Analysts. They release their work by

providing executable scenarios to the production team. Developers must have

Topology Navigator

(read only access)

Designer Navigator:

Oracle Data Integrator
Best Practices for a Data Warehouse

20

PROFILE DESCRIPTION ODI MODULES USED

both technical skills regarding the infrastructure and business knowledge of the

source applications.

Limited access to

Models

Full access to Projects

Operator Navigator

ODI Console

Metadata

Administrator

Metadata Administrators are in charge of reverse-engineering source and target

applications. They guarantee the overall consistency of Metadata in the ODI

Repository. They have an excellent knowledge of the structure of the sources and

targets and they have participated in the data modeling of key indicators. In

conjunction with Business Analysts, they enrich the metadata by adding

comments, descriptions and even integrity rules (such as constraints). Metadata

Administrators are responsible for version management.

Topology Navigator

(limited access)

Designer Navigator:

Full access to Models

Restore access to

Projects

ODI Console

Database

Administrator

Database Administrators are in charge of defining the technical database

infrastructure that supports ODI. They create the database profiles to let ODI

access the data. They create separate schemas and databases to store the

Staging Areas. They make the environments accessible by describing them in the

Topology

Topology Navigator

(full access)

Designer Navigator

(full access)

Operator Navigator

(full access)

ODI Console

System Administrator System Administrators are in charge of maintaining technical resources and

infrastructure for the project. For example, they may

install and monitor Scheduler Agents

backup / restore Repositories

install and monitor ODI Console

Setup environments (development, test, maintenance etc.)

Agents

Topology Navigator

(limited access)

ODI Console

Security Administrator The Security Administrator is in charge of defining the security policy for the ODI

Repository. He or she creates ODI users and grants them rights on models,

projects and contexts.

Security Navigator

(full access)

Designer Navigator

(read access)

Topology Navigator

(read access)

ODI Console

Operator Operators are in charge of importing released and tested scenarios into the

production environment. They schedule the execution of these scenarios. They

monitor execution logs and restart failed sessions when needed.

Operator Navigator

ODI Console

Oracle Enterprise

Manager Plug-in For

ODI

Oracle Data Integrator
Best Practices for a Data Warehouse

21

The ODI Master Repository contains built-in default profiles that can be assigned to users.

The following table suggests how to use these built-in profiles:

PROFILE BUILT-IN PROFILE IN ORACLE DATA INTEGRATOR

Business User CONNECT, NG REPOSITORY EXPLORER

Business Analyst CONNECT, NG REPOSITORY EXPLORER, NG DESIGNER

Developer CONNECT, DESIGNER

Metadata Administrator CONNECT, METDATA ADMIN, VERSION ADMIN

Database Administrator CONNECT, DESIGNER, METADATA ADMIN, TOPOLOGY ADMIN

System Administrator CONNECT, OPERATOR

Security Administrator CONNECT, SECURITY ADMIN

Operator CONNECT, OPERATOR

Reverse-engineering, Auditing and Profiling Source Applications

A good starting point for projects is to understand the contents and the structure of source

applications. Rather than having paper-based documentation on source applications, a good

practice is to connect to these source applications using ODI and to capture their metadata.

Once this is achieved, it is usually helpful to define some data quality business rules in ODI

Repository. This helps check the data consistency in the source and validate your

understanding of the data models. At this phase of the project it is important to start having

an answer to the following questions:

• How many different sources do we have to take in account to calculate our indicators?

• Is the data needed for our indicators present in the source systems?

• What data quality challenges will we have to address to ensure the accuracy of the target

warehouse?

• What source system(s) will provide the master data (dimensions) that will be referenced

by our indicators?

• What data volumes are we going to manipulate?

• And so forth.

In some cases, source applications are not accessible directly. Only ASCII or binary files

extracts from these applications are provided. Starting to work with these source files before

implementing the data warehouse model is recommended, as they represent the “vision of the

truth” that the production source systems want to give you. The metadata of these files

should typically be described in the repository. Samples of the files can also be initially loaded

into temporary target tables to validate their structure and content.

Oracle Data Integrator
Best Practices for a Data Warehouse

22

All this can be implemented in Oracle Data Integrator as follows:

• Connect source applications or files in Topology Navigator

• Define a logical architecture in Topology Navigator

• Create one model per logical schema in Designer Navigator

• Reverse Engineer models when possible or manually describe datastores

o Use standard JDBC Reverse-engineering to get database metadata

o Use Customized Reverse-engineering strategies (Reverse Knowledge

Modules) when standard JDBC reverse is not applicable (or not accurate)

o Use Cobol Copy Book import for ASCII or binary files if available

o Use Delimited File Reverse for ASCII delimited files

• Enrich the metadata by adding information when it is not available:

o Datastores and Columns descriptions and titles

o Unique keys information (Primary Keys, Alternate Keys)

o Referential Integrity assumptions between datastores (Foreign Keys)

o Check constraints (for example to check the domain of values for a column)

• When the source data is stored in files, develop simple interfaces to load these files into

a temporary area in the target database to better evaluate their level of data quality.

• Locate the important entities in the source data and use the following features to profile

the contents:

o View Data on a datastore

o View distribution of values for a column of a datastore

o Count the number of records

o Run ad-hoc SQL queries from Designer Navigator

• Validate the constraints that you have defined in the models by performing data quality

control:

o Schedule or interactively run data quality “static” control on the datastores

and models

o Access and understand the contents of the error tables

o Propose alternatives for handling data discrepancies in the future

o Define the “acceptable” level of data quality for the target warehouse

Of course, these action items should be done in conjunction with business analysts. Normally,

in parallel to this phase, you will be designing the data model of the target Data Warehouse.

Oracle Data Integrator
Best Practices for a Data Warehouse

23

Data quality audit errors and data profiling will help you refine your understanding of the

truth, and consequently, will lead you to a better modeling of the target warehouse.

Designing and Implementing the Data Warehouse’s Schema

This section could be a book on its own. The goal here is not to provide you with guidelines

in Data Warehouse modeling, but rather to give some general hints and tips that may affect

your ODI development.

It is always a good practice to have an Operational Data Store (ODS) to store raw operational

data. Usually, the data model of the ODS is very close to the OLTP source applications data

model. Any source data should be accepted in the ODS and almost no data quality rule

should be implemented. This ensures to have a store representing all the data-of-the-day from

the operational systems.

When designing the Data Warehouse schema, the following general tips may be helpful:

• Where possible, describe columns inside the data dictionary of the database (for

example use “COMMENT ON TABLE” and “COMMENT ON COLUMN” SQL

statements). By doing so, you allow ODI to retrieve these comments and descriptions

into its metadata repository.

• Design a storage space for the Staging Area where ODI will create its necessary

temporary tables and data quality error tables.

• Do not use primary keys of the source systems as primary key for your target tables.

Use counters or identity columns whenever it is possible. This makes a flexible data

model that will easily evolve over time.

• Design referential integrity (RI) and reverse engineer foreign keys in ODI models. Do

not implement these foreign keys in the target database as they may lead to

performance issues. With the automatic data quality checks, ODI will guarantee the

consistency of data according to these RI rules.

• Standardize your object naming conventions. For example, use three letters to prefix

table names by subject area. Avoid using very long names as ODI may add a prefix to

your table names when creating temporary objects (for example E$_Customer will be

the error table for table Customer).

• Use of either 3rd Normal Form modeling (3NF) or dimensional modeling (“Snow

Flakes” or “Star Schemas”) doesn’t have any impact on ODI, but rather on the way you

will design your future business rules development and business users’ reports.

Once the ODS and DW are designed, you will have to create the appropriate models in

Designer and perform reverse-engineering.

ODI comes with modeling capabilities in the form of a feature called Common Format

Designer. It can help you design the structure of the ODS and the DW from the existing

structures of the source systems by simply drag and dropping tables columns and constraints.

Oracle Data Integrator
Best Practices for a Data Warehouse

24

The generated Data Description Language statements (DDL) automatically include specific

features of the target database. It also keeps track of the origin of source columns to

automatically generate the interfaces for loading the target, thus resulting in significant time

savings. Best practices on the usage of Common Format Designer are out of the scope of this

document.

Specifying and Designing Business Rules

Usually this step starts almost at the same time as the design of the target schema.

Understanding the business needs is clearly a key factor in the success of the overall project.

This influences the key indicators selected for the warehouse as well as the rules used to

transform source to target data. The more accurate the specification of a business rule, the

easier the design of this rule in ODI. Several successful projects have used ODI Designer to

specify the business rules, thus avoiding having discrepancies between a Word document and

the final developed rules.

The following table summarizes what needs to be specified for every target table of the ODS

or the DW before designing business rules.

TARGET DATASTORE: Give the name of the target datastore, possibly preceded by a qualification prefix (such

as the database or schema name)

DESCRIPTION OF THE

TRANSFORMATION:

Give a short description of the purpose of the transformation

INTEGRATION STRATEGY: Define how data should be written to the target. Examples:

Replace content with new data from sources

Append incoming data onto the target

Update existing records and insert new ones according to an update key (specify the key

here)

Use a Slowly Changing Dimension strategy. Specify the surrogate key, the slowly

changing attributes, the updatable ones, the columns for start and end date etc.

A home-made strategy (for example: BASEL II compliance, SOX historical audit trail

etc.)

Every strategy specified here will correspond to an ODI Integration Knowledge Module.

REFRESH FREQUENCY: Specify when this datastore should be loaded (every night, every month, every 2 hours

etc)

DEPENDENCIES: Give all dependencies in the load process (e.g. what datastores have to be loaded prior

to the current one; what specific jobs need to be executed prior to this one etc.)

SOURCE DATASTORES:

Give the list of source datastores involved for loading the target table. This list should

include all the lookup tables as well. For each source datastore, include the following

information.

SOURCE ODI MODEL Give the name of the source model as it appears in Designer

DATASTORE NAME Give the name of the datastore

Oracle Data Integrator
Best Practices for a Data Warehouse

25

PURPOSE/DESCRIPTION Indicate whether it is the main source set or a lookup one. If Change Data Capture is to

be used, it should be indicated here.

FIELD MAPPINGS AND

TRANSFORMATIONS:

For every target field (or column), indicate what transformations need to be applied to

the source fields. These transformations should be written as expressions or formulas as

often as possible.

TARGET COLUMN Give the target column name

MAPPING DESCRIPTION Describe the purpose of the mapping

MAPPING EXPRESSION Give the expression using the source column names. Try to express it in pseudo code.

LINKS OR JOIN CRITERIA For every pair of source datastores, specify the criteria to lookup matching records. This

is often known as an SQL join.

DATASTORE 1 Name of the first datastore

DATASTORE 2 Name of the second datastore

LINK EXPRESSION Give the expression used to link the 2 datastores in pseudo code

DESCRIPTION Describe this link by specifying if it is a left, right or full outer join.

FILTERS: Give the list of filters that apply to source data. Filters should be expressed in natural

language and in pseudo code whenever possible.

FILTER DESCRIPTION Describe this Filter.

FILTER DESCRIPTION Give the expression used to implement the filter in pseudo code.

DATA QUALITY REQUIREMENTS: List here all the data quality requirements including error recycling if appropriate. The

requirements should be expressed as constraints whenever possible.

CONSTRAINT NAME Name or short description of the constraint to validate.

DESCRIPTION Purpose of the data quality check

CONSTRAINT EXPRESSION Expression in pseudo code required to control the data

To illustrate the use of such a form, the following table gives an example for the business

problem case study defined in the chapter “Introduction to Oracle Data Integrator (ODI)”.

TARGET DATASTORE: Oracle Warehouse.SALES

DESCRIPTION OF THE

TRANSFORMATION:

Aggregate orders and order lines from the Microsoft SQL Server source production system.

INTEGRATION STRATEGY: Append new records of the day

REFRESH FREQUENCY: Every night

DEPENDENCIES: The following tables need to be loaded prior to this one for referential integrity:

PRODUCT

SALES_REP

SOURCE DATASTORES:

Oracle Data Integrator
Best Practices for a Data Warehouse

26

SOURCE ODI MODEL DATASTORE NAME PURPOSE/DESCRIPTION

Microsoft SQL Server Source ORDERS Orders from the production system

Microsoft SQL Server Source LINES Order lines. Main source for aggregation

User Data Files CORRECTIONS File containing the value to add to the

amount sold if any manual correction has

occurred for a particular order line.

FIELD MAPPINGS AND

TRANSFORMATIONS:

TARGET COLUMN MAPPING DESCRIPTION MAPPING EXPRESSION

ID Order Id ORDERS.ORDER_ID

PRODUCT_PK Product Id as it appears in the order lines LINES.PRODUCT_ID

SALES_REP Sales Rep Id as it appears in the order ORDERS.SALES_REP_ID

SALE Amount sold. If a correction for this

amount exists in the “corrections” file, the

value should be added. The total value

needs to be summed.

SUM (LINES.AMOUNT +

(CORRECTIONS.VALUE when it exists))

QUANTITY Total quantity of product sold. SUM (LINES.QUANTITY)

LINKS OR JOIN CRITERIA

DATASTORE 1 DATASTORE 2 LINK EXPRESSION DESCRIPTION

ORDERS LINES Link orders and order lines

on the order ID. Every order

line must match an existing

order

ORDERS.ORDER_ID =

LINES.ORDER_ID

LINES CORRECTIONS Lookup a correction value

from the correction file if it

exists given the line item ID

(left join)

LINES.LINE_ITEM_ID =

CORRECTIONS.CORR_ID

Filters:

FILTER DESCRIPTION FILTER EXPRESSION

Orders of the day ORDER.ORDER_DATE between yesterday and now

Orders validated ORDER.STATUS = Closed

DATA QUALITY REQUIREMENTS:

CONSTRAINT DESCRIPTION CONSTRAINT EXPRESSION

Reference to SALES_REP Ensure that every SALES_REP ID exists in

the SALES_REP reference table

SALES_REP references SALES_REP(ID)

Reference to PRODUCT Ensure that every PRODUCT_PK exists in

the PRODUCT reference table

PRODUCT_PK references PRODUCT(ID)

ID Not null ID Column is mandatory Check ID not null

Quantity greater than 0 The quantity sold must always be positive QUANTITY > 0

Uniqueness of sale A sales rep can’t sell the same product twice

inside the same order

(PRODUCT_PK, SALES_REP) is unique

Oracle Data Integrator
Best Practices for a Data Warehouse

27

The next step is to design these business rules in the Designer Navigator. The translation

from the specification to the design is straightforward. Every specification of the loading of a

target table will be converted into an interface. This process is even faster if the specification

is made directly using the Designer Navigator.

The steps to implement the interface are typically as follows.

• Drag and drop the target datastore

• Drag and drop source datastores

• For every target field, translate the pseudo code of the transformation into SQL

expressions. When possible, decide where to execute the expression (source, staging

area, target)

• For every join, define the join in the source panel of the interface. Depending on the

specification, define the join as inner, left, right, natural or full outer join. When

possible, try to execute joins on the sources to minimize network traffic.

• For every filter, translate the pseudo code into an SQL expression. When the source

database accepts SQL filters, set it as “execute on source” to minimize network traffic.

• In the flow diagram of the interface, define the loading strategies (LKM) and specify the

integration strategy (IKM) to match the specification. Choose the appropriate options

for the Knowledge Module and activate the data quality control when appropriate.

• In the control tab of the interface, select the constraints to control. If the constraints

are not defined on the target datastore, define them in the Models view of the Designer

Navigator.

After the design of every interface, you should review the code generated using the

Simulation mode and then test it by executing it. The Operator Navigator allows you to easily

follow the execution of your interface to get the number of records processed and many

other useful indicators (such as the generated code, the elapsed time, the number of inserts,

updates, deletes etc.) After the interface completes, the resulting data and errors can be

directly selected from Designer to validate the accuracy of the business rules.

Thanks to ODI Contexts, the execution of the interface will happen on a “Development”

environment and will not affect production data.

Building a Data Quality Framework

With an approach based on business rules, ODI is certainly the most appropriate tool to help

you build a data quality framework to track data inconsistencies. Thanks to the Check

Knowledge Modules, you simply have to define the control business rules, and inconsistent

data is automatically isolated for you in error tables. However, isolating erroneous data is not

the only issue in Data Quality. Even if ODI automatically detects duplicated keys, mandatory

fields, missing references, and more complex constraints, you will need to involve business

users in the process of qualifying data discrepancies and make the appropriate decisions. You

Oracle Data Integrator
Best Practices for a Data Warehouse

28

should have an answer to each of the following questions before defining your data quality

strategy:

• What level of data quality is required for the Data Warehouse?

• Who are the business owners of source data?

• What should we do with rejected records?

• Do we need to define an error recycling strategy?

• Do we need to involve business owners of the data and report rejected records?

• How would business users modify erroneous source data?

• Do we provide a GUI to have them modify erroneous records in the error tables?

The document “Comprehensive Data Quality with Oracle Data Integrator” further discusses

Data Quality issues and the recommended best practices.

Developing Additional Components

Not all the typical tasks of the loading of the Data Warehouse can be achieved using ODI

Interfaces. It is usual to develop additional components or jobs that would carry on tasks

such as, for example:

• Receiving and sending e-mails

• Copying, moving, concatenating, renaming files in the file system

• Compressing, decompressing files

• Executing web services

• Writing and executing shell scripts for a specific operating system

• Writing and executing java programs

• And so on.

These components can be developed and tested within the Designer Navigator as Procedures,

Variables, User Functions, or Steps in a package. ODI Procedures offer a broad range of

possibilities for developing these components. They can include, for example:

• An ad-hoc SQL statement written for any database

• An Operating System call

• ODI built-in tools and APIs (Send Mail, Read Mail, Wait For File etc.)

• Code written in any of the scripting languages supported by the Jakarta Bean Scripting

Framework. This includes Java, Java Script, Python, Perl, NetRexx, Groovy, etc.

Of course, the risk here is to start developing transformation processes as Procedures by hand

coding shell and SQL scripts rather than using the powerful mechanism of ODI Interfaces

Oracle Data Integrator
Best Practices for a Data Warehouse

29

combined with Knowledge Modules. To avoid that, try as much as possible to specify your

transformations as business rules and not as a technical processes. ODI Procedures should

always be considered as technical steps that have to be achieved in the overall process, but

they shouldn’t have in-depth business logic that applies to the data. Typical Data Warehouse

projects would have less than 10% of development in the form of Procedures.

Packaging and Releasing Development

Now that the Interfaces, Procedures and Variables are developed and tested, they need to be

ordered as steps within Packages. Start thinking about what should happen in case of error in

any of these steps. By default, the ODI Agent will stop the execution of a package at the step

that has failed and it will rollback any open transaction on all the connected databases. Even

though errors are reported in ODI Logs, it is always a good practice to have an “on-error”

procedure that is triggered if some of the steps fail. This procedure can for example send an

email to an operator to warn them that the package has failed, reporting the session ID.

Particular attention has to be paid to the following step attributes:

• Next step on failure

• Number of attempts in case of failure

• Interval between attempts

Try to avoid heavy loops inside packages (more than 50 iterations). In most cases, a loop can

be avoided by simply adding a table as source to an interface!

When the package is successfully tested, you will have to release it as a Scenario. Think of a

scenario as a compiled version of your source objects such as interfaces, procedures,

packages, etc. This Scenario will then be imported in the Test environment before validation

for Production.

Versioning Development

Before going to production, you should record a stable version of all the objects involved in

the release of the Scenarios. Creating versions of objects will allow you to restore previous

released items for further maintenance in case of problem.

Starting from ODI 10g, versions of objects are stored in the Master Repository and the

dependencies between objects are maintained in objects called Solutions. To make sure all the

objects involved in the release are consistently versioned, it is thus recommended that you

create a Solution object and add the Project to this Solution. Designer calculates all the

dependencies between objects and automatically creates a new version for Projects, Models,

Scenarios and global objects used. Restoring these objects from a previous version can be

done when needed from the Designer Navigator by simply selecting the Restore menu.

Section “Using ODI Version Management” further discusses the best practices for version

control.

Oracle Data Integrator
Best Practices for a Data Warehouse

30

Scheduling and Operating Scenarios

Scheduling and operating scenarios is usually done in the Test and Production environments

in separate Work Repositories. The Operator Navigator provides a graphical interface to

perform these tasks. Any scenario can be scheduled by an ODI Agent or by any external

scheduler, as scenarios can be invoked by an operating system command.

When scenarios are running in production, agents generate execution logs in an ODI Work

Repository. These logs can be monitored either through the Operator Navigator, through any

web browser using the ODI Console or the Oracle Enterprise Manager Plug-in for ODI.

Operating teams need to be trained on the use of the Operator Navigator, ODI Console or

Oracle Enterprise Manager. They will have to monitor logs, restart failing jobs and submit ad-

hoc tasks for execution.

Monitoring the Data Quality of the Data Warehouse

Business users rely on the accuracy of key indicators of the Data Warehouse to make

decisions. If these indicators are wrong, the decisions are worthless.

Depending on the data quality strategy you have defined, business users will actively

participate in the monitoring of data discrepancies. They will have to help the IT team to

better refine the calculations of the indicators as well as the qualification of the erroneous

data. This generally leads to modifications of the business rules. These updates are done in the

development environment and follow the normal release cycle defined for the project.

Typical projects report data quality errors to business users through reports generated from

ODI’s error tables. These reports are pushed to the data owner in their email system or to any

workflow application used internally.

Publishing Metadata to Business Users

Business users usually need to have access to other data quality indicators based on metadata

such as:

• When was the last time my table was updated?

• How many records were added, removed or updated in my table?

• What are the rules that calculate a particular indicator?

• Where does the data come from, and how is it transformed?

• Where does the data go to, and how is it transformed?

• Etc.

All these questions can be answered if you give access to the ODI Console to business users.

This is done simply by assigning them a user ID in the Security Navigator. The web-based

interface allows them to see all the data models, and the interactions between them. This

includes:

Oracle Data Integrator
Best Practices for a Data Warehouse

31

• Flow Maps

• Data Lineage, which is usefully for understanding the path taken by data and the

transformations between applications

• Execution logs with accurate statistics on the number of records processed (number of

inserts, updates, delete and errors).

Planning for Next Releases

A Data Warehouse evolves as the business need of the enterprise change. This leads to

frequent updates of the data models. This constant changing has an impact on the

development of new components and the maintenance of existing ones. However it is

important to understand that it should always be a cycle driven by business requirements. The

general steps listed below give you a brief overview of how this could be planned:

1. Define or refine Business Rules specifications

2. Make sure previous releases of the objects are properly versioned and can be restored

safely in a new empty work repository before modifying anything in your current work

repository.

3. Define new sources or targets in Topology Navigator.

4. Reverse-engineer new and/or existing models. Use the ODI cross references to

evaluate the impact of the changes to the structure of source and target fields. Pay

special attention to fields that were removed from tables as they may still be used in

some transformations.

5. Develop new interfaces and update existing ones. Create or update additional

components. Test every item separately in the development environment.

6. Update existing packages or create new ones. Test every package, even those that

haven’t changed since the last release, as the underlying schema may have changed.

7. Regenerate the new scenarios for your next release.

8. Release the scenarios into each Test environment. Correct any bug that would be

reported from the Test process. Involve business users in the test process.

9. Create new Solutions and version every project and model. Use the change indicators

that appear on every object to detect which objects should be versioned.

10. When acceptance tests are successful, release your new scenarios into production.

Oracle Data Integrator
Best Practices for a Data Warehouse

32

Oracle Data Integrator for Oracle Best Practices

Architecture of ODI Repositories

It is recommended that you install the ODI Master and Work repositories in an OLTP

database distinct from the source or target applications.

Reverse-engineering an Oracle Schema

The Oracle JDBC driver implements most metadata APIs. You can therefore use the

standard JDBC reverse-engineering with ODI. Using this method, you can capture metadata

for:

• Tables, Views etc. including table comments,

• Columns including data types, length and scale, and comments

• Primary Keys

• Foreign Keys

• Check Constraints

In some cases a custom reverse-engineering approach using the RKM Oracle may be

necessary. For example ODI 11g natively supports database partitions which can only be

reverse-engineered using the RKM Oracle.

RKM DESCRIPTION

RKM Oracle Reverse-engineering Knowledge Module for Oracle

This RKM uses the Oracle system tables known as the Oracle Data Dictionary to extract the

metadata definition of a table and its related artifacts (columns, keys, partitions etc.).

Oracle Loading Strategies

When loading an Oracle data warehouse the goal is always to load the data into the database

in the most efficient manner and Oracle Data Integrator provides several Loading Knowledge

Modules optimized for Oracle that will help you achieve this. Choosing the right Knowledge

Module for each use case will greatly improve the efficiency of your data integration

processes.

Oracle Data Integrator
Best Practices for a Data Warehouse

33

You can refer to the following table for a list of the Loading Knowledge Modules optimized

for Oracle:

LKM DESCRIPTION

LKM File to Oracle (EXTERNAL TABLE) Loads data from a file to an Oracle staging area using the EXTERNAL

TABLE SQL Command.

LKM File to Oracle (SQLLDR) Loads data from a file to an Oracle staging area using the SQL*Loader

command line utility. The Oracle client must be installed on the machine

hosting the ODI Agent.

LKM SQL to Oracle Loads data through the agent from any SQL RDBMS to an Oracle

staging area.

LKM MSSQL to Oracle (BCP SQLLDR) Loads data from a Microsoft SQL Server database to an Oracle staging

area using the BCP and SQL*Loader utilities. The utilities must be

installed on the machine hosting the ODI Agent.

LKM Oracle to Oracle (DBLINK) Loads data from an Oracle source database to an Oracle staging area

database using database links.

LKM Oracle to Oracle (datapump) Loads data from an Oracle source database to an Oracle staging area

database using external tables in the datapump format.

There are also several additional Knowledge Modules which can be used to extract data from

SAP ERP, SAP BW or Oracle BI and load the records into an Oracle database.

Using Loaders for Flat Files

When your interface contains a flat file as a source, you may want to use a strategy that

leverages the most efficient loading utility available for your staging area technology rather

than the standard “LKM File to SQL” which uses the ODI Agent to load the flat file data.

The agent uses JDBC to write to the target, using this method would lead to significant

performance issues compared to loading into Oracle using the External Table SQL command

or SQL*Loader.

We advise against using the ODI Agent when loading large files and recommend the “LKM

File to Oracle (EXTERNAL TABLE)” to transfer large files into an Oracle database.

Using Unload/Load for Remote Servers

When the source result set is located on a remote database server, an alternative to using the

agent to transfer the data would be to unload the date into a file and then load it into the

staging area.

The “LKM MSSQL to Oracle (BCP SQLLDR)” is an example of a Knowledge Module that

follows these steps, it uses the BCP utility to bulk unload data from a Microsoft SQL Server

database into a file and SQL*Loader to load the data back into an Oracle staging area. This

Loading Knowledge Module provides the most optimal approach to extracting data out of

Microsoft SQL Server and loading it into an Oracle database.

Oracle Data Integrator
Best Practices for a Data Warehouse

34

Several Knowledge Modules use a similar approach including the SAP ERP and BW LKMs.

Oracle to Oracle

There are use cases in which there is a need to move data between Oracle systems and ODI

provides several ways to achieve this.

One of the best methods when it comes to loading data in such a scenario is to use Oracle

Data Pump and Oracle Data Integrator provides the “LKM Oracle to Oracle (datapump)”

which leverages Oracle Data Pump to export and load the data efficiently through the

creation of External Tables using Oracle Data Pump on both the source and the target

databases.

ODI also provides the “LKM Oracle to Oracle (DBLINK)” which has the ability to create a

database link between the source and the target Oracle database to load the data.

Using Changed Data Capture

Applying a Change Data Capture (CDC) approach can significantly improve the performance

of your ODI processes.

For example if you are loading your data warehouse nightly you only need to extract the data

that has changed in the past 24 hours, loading the entire source data sets will result in a

significant degradation of the efficiency of your ODI jobs.

Using CDC ensures that the extract from your various source systems is done incrementally.

This reduces the amount of data transferred from your source systems into your target

database as well as the amount of data transformed by ODI. The creation of the CDC

process can be challenging and ODI simplifies it by providing Knowledge Modules which

leverage many CDC mechanisms including the native database CDC capabilities.

Change Data Capture on Oracle

When it comes to detecting changes occurring in an Oracle database ODI offers several

options:

• CDC using Oracle GoldenGate

• CDC using Oracle Streams

• CDC using database triggers

The Oracle Journalization Knowledge Modules (JKMs) automatically create the underlying

infrastructure required by the ODI CDC framework so that end users do not have to worry

about it. For example, the Oracle JKMs have the ability to configure Oracle GoldenGate or

the Oracle Streams infrastructure when required.

Oracle Data Integrator
Best Practices for a Data Warehouse

35

You can refer to the following table for a list of the JKMs for Oracle provided with ODI:

JKM DESCRIPTION

JKM Oracle to Oracle Consistent (OGG) Creates and manages the ODI CDC framework infrastructure when using

Oracle GoldenGate for CDC.

JKM Oracle 10g Consistent (Streams) Creates the journalizing infrastructure for consistent set journalizing on Oracle

10g tables, using Oracle Streams.

JKM Oracle 11g Consistent (Streams) Creates the journalizing infrastructure for consistent set journalizing on Oracle

11g tables, using Oracle Streams.

JKM Oracle Consistent Creates the journalizing infrastructure for consistent set journalizing on Oracle

tables using triggers

JKM Oracle Consistent (Update Date) Creates the journalizing infrastructure for consistent set journalizing on Oracle

tables using triggers based on a Last Update Date column on the source

tables

JKM Oracle Simple Creates the journalizing infrastructure for simple journalizing on Oracle tables

using triggers

It is also possible to leverage other mechanism in ODI to detect changes like timestamps,
dates or sequence numbers.

There are many more JKMs provided with ODI, you can refer to the ODI Documentation
for a complete list of the JKMs.

Oracle Integration Strategies

The Integration Knowledge Modules optimized for the Oracle database are implementing

many of the best practices to insert data into an Oracle data warehouse:

- Direct Path loading is applied whenever possible using the /*+ APPEND */ hint

- Additional optimizer hints such as PARALLEL which specifies the degree of

parallelism for a given database operation can be specified via the

OPTIMIZER_HINT option of the IKMs

- The ODI Staging Area tables are created by default using NOLOGGING to ensure

best performance

- The MERGE SQL statement can be leveraged using the “IKM Oracle Incremental

Update (MERGE)”. MERGE combines an INSERT and an UPDATE in one single

optimized SQL command

- ODI gathers tables statistics to ensure that the Oracle database Cost Based

Optimizer (CBO) selects the most optimal execution plan over time

- Indexes are created to speed up the joins and filters execution. End users can choose

from several options including the creation of bitmap indexes which can greatly

Oracle Data Integrator
Best Practices for a Data Warehouse

36

improve the efficiency of joins between large fact tables and smaller dimension tables

in a star schema.

You can refer to the following table for a list of the IKMs that can be used with an Oracle

database:

IKM DESCRIPTION

IKM SQL Control Append Integrates data in any ISO-92 compliant database target table in

TRUNCATE/INSERT (append) mode.) Data quality can be checked. Invalid

data is rejected in the “E$” error table and can be recycled.

IKM Oracle Incremental Update Set-based incremental update for Oracle

IKM Oracle Slowly Changing Dimension Slowly Changing Dimension Type II for Oracle

IKM Oracle Incremental Update

(MERGE)

Integrates data in an Oracle target table in incremental update mode, using a

MERGE statement

IKM Oracle Multi Table Insert Integrates data from one source into one or many Oracle target tables in

append mode, using a multi-table insert statement (MTI).

IKM Oracle AW Incremental Update Integrates data in an Oracle target table in incremental update mode and is

able to refresh a Cube in an Analytical Workspace.

It is also possible to extend the ODI Knowledge Modules with your own best practices when

needed. Thanks to the reusability of the KMs it is simple to ensure that best practices are

enforced and utilized by each developer.

Defining a Data Quality Strategy

Loading data that is not clean in your data warehouse can have a major impact on the overall

performance of your ETL processes. Primary key or foreign key violations, business rules that

are not met, null values that are not expected can waste time and resources if the appropriate

Data Quality framework is not in place within your data integration process.

Oracle Data Integrator provides an out of the box framework to handle Data Quality errors

occurring while data is being loaded into a database. Business rules and constraints are

defined at the metadata level and those validation rules are checked against the data prior to

being integrated into the target tables. The constraints can be enabled or disabled when

required. The errors that are captured are routed into error tables managed by ODI that can

be reviewed through the Designer Navigator as well as the ODI Console.

 “CKM Oracle” is the recommended Check Knowledge Module for checking data integrity

constraints defined on a given Oracle table.

Oracle Data Integrator
Best Practices for a Data Warehouse

37

Setting up Agents in an Oracle environment

Where to Install the Agent(s)?

A typical data warehouse implementation can have one or more ODI agent in production. In

an Oracle environment, the agent is usually installed on the host machine that is used to load

data in the data warehouse. The agent requires a connection to the source databases or files,

and triggers the appropriate load utilities.

Starting from ODI 11g it is also possible to install the ODI agents in WebLogic Server to

achieve High-Availability (HA) through a clustered deployment.

Oracle Data Integrator
Best Practices for a Data Warehouse

38

Architecture Case Studies

Setting up Repositories

General Architecture for ODI Repositories

In a typical environment for a data warehouse project, you would create the following

repositories:

• A single master repository that holds all the topology and security information. All the

work repositories are registered in this master repository. This single master repository

contains all the versions of objects that are committed by the designers.

• A “Development” work repository shared by all ODI designers. This repository holds

all the projects and models under development.

• A “Testing” work repository shared by the IT testing team. This repository contains

all the projects and models being tested for future release.

• A “User Acceptance Tests” work repository shared by the IT testing team and the

business analysts. This repository contains all the projects and models about to be

released. Business analysts will use the ODI Console on top of this repository to

validate the scenarios and transformations before releasing them to production.

• A “Production” work repository shared by the production team, the operators and the

business analysts. This repository contains all the projects and models in read-only

mode for metadata lineage, as well as all the released scenarios.

• A “Hot fix” work repository shared by the maintenance team and the development

team. This work repository is usually empty. Whenever a critical error happens in

production, the maintenance team restores the corresponding projects and models in

this repository and performs the corrections with the help of the development team.

Once the problems are solved, the scenarios are released directly to the production

repository and the new models and projects are versioned in the master repository.

Oracle Data Integrator
Best Practices for a Data Warehouse

39

This recommended architecture is described in the figure below:

Figure 10: ODI Repositories and Teams Organization

The master repository and all work repositories are usually created in the same OLTP

database instance in separate schemas or catalogs.

When developers have finished working on a project and decide to release it, they create a

version for their projects and models and store it in the master repository. This version is

then restored by the IT testing team in the testing repository. After the technical tests have

completed, the testing team initializes the “user acceptance tests” repository for business

analysts. They restore the same version they were working on to have it tested by business

users. Once this version is functionally accepted, it is restored by the production team in the

production repository.

When a critical bug is discovered in production, the developers are usually already working on

the next release. Therefore they are usually not able to stop their development and restore the

previous version for corrections. The maintenance team is then in charge of restoring the

version used in production into a separate empty work repository called “Hot Fix” and

applying the appropriate fixes. Once done, the maintenance team releases its modified

projects, models and scenarios into the master repository so that the production team can

restore them as a patch in the production repository.

Creating a Separate Master Repository for Production

For some particular security requirements, you may not want to share the same master

repository between development and production. In this case, the solution is to duplicate the

master repository and to isolate the production environment from other environments as

shown below:

Master Repository

Work Repositories

Production Team

Business Analysts

IT Testing Team

Maintenance Team

Development Team

Master Repository

Work Repositories

Production Team

Business Analysts

IT Testing Team

Maintenance Team

Development Team

Master Repository

Topology

Security

Versions

Master Repository

Topology

Security

Versions

Development

Projects

Models

Scenarios and Logs

Development

Projects

Models

Scenarios and Logs

Testing

Projects

Models

Scenarios and Logs

Testing

Projects

Models

Scenarios and Logs

User Acceptance

Tests

Projects

Models

Scenarios and Logs

User Acceptance

Tests

Projects

Models

Scenarios and Logs

Hot Fix

Projects

Models

Scenarios and Logs

Hot Fix

Projects

Models

Scenarios and Logs

Production

Projects

Models

Scenarios and Logs

Production

Projects

Models

Scenarios and Logs

Create and archive versions

of models, projects and

scenarios

Import released versions of models, projects

and scenarios for testing

Import released and tested

versions of projects, models

and scenarios for production

Import versions for Hot Fix

and release scenario patches

Oracle Data Integrator
Best Practices for a Data Warehouse

40

Figure 11: Several Master Repositories

To create a new master repository for your production environment, it is recommended that

you use an export of your master repository from your Topology Navigator and then use the

Master Repository Import Wizard. You can find the Master Repository Import Wizard in the

ODI Studio. When creating the new master repository, you should assign a new ID to it,

different from the ID used by the development master repository.

Once created, do the following to set up the production environment:

• Create the production context

• Create all the production data servers and physical schemas in the physical architecture

of the Topology

• Link your production physical schemas to the existing logical schemas defined by the

designers in the production context.

• Do not change or remove existing contexts and logical schemas.

• Update the Security so that only production users and business analysts can access the

repository.

• Create the production work repository and give it an ID different from any of the IDs

used by the other work repositories (Development, Hot Fix, Testing and User

Acceptance Tests). See Understanding the Impact of Work Repository IDs.

• Every time the development master repository is updated, manually replicate the

changes in the production master repository.

Master Repository

Work Repositories

Production Team

Business Analysts

IT Testing Team

Maintenance Team

Development Team

Master Repository

Work Repositories

Production Team

Business Analysts

IT Testing Team

Maintenance Team

Development Team

Development Master

Topology

Security

Versions

Development Master

Topology

Security

Versions

Development

Projects

Models

Scenarios and Logs

Development

Projects

Models

Scenarios and Logs

Testing

Projects

Models

Scenarios and Logs

Testing

Projects

Models

Scenarios and Logs

User Acceptance

Tests

Projects

Models

Scenarios and Logs

User Acceptance

Tests

Projects

Models

Scenarios and Logs

Hot Fix

Projects

Models

Scenarios and Logs

Hot Fix

Projects

Models

Scenarios and Logs

Production

Projects

Models

Scenarios and Logs

Production

Projects

Models

Scenarios and Logs

Create and archive versions

of models, projects and

scenarios

Import released versions of models, projects

and scenarios for testing

Export/Import released versions for

production using XML export/import

Import versions for Hot Fix

and release scenario patches

Production Master

Topology

Security

Production Master

Topology

Security

Development

Environment

Production

Environment

XML
XML

XML
XML

Manually replicate the Topology

Oracle Data Integrator
Best Practices for a Data Warehouse

41

• Export projects, models and scenarios that are ready for production from the

development master repository into XML files. You can use the “Version Browser” to

do so. Alternatively, if using Solutions, export your solutions into compressed files

• Connect to the production work repository with Designer and import the XML files or

the solution’s compressed files.

Understanding the Impact of Work Repository IDs

When creating a master repository or a work repository, ODI asks you for a 3 digit ID for

this repository. You should select this ID by following the rules below:

• Every master repository created in your enterprise should have a unique ID.

• Every work repository created in your enterprise should have a unique ID even if it

belongs to a different master repository.

Every type of object in an ODI repository has a unique ID calculated according to the

following rule:

<auto number> concatenated with the 3 digits of the repository ID.

For example, if the internal ID of an interface is 1256023, you can automatically guess that it

was first created in the work repository ID 023.

The main goal of this rule is to enable export and import in “Synonym mode” of objects

across work repositories without any risk of ID collision.

If 2 work repositories have the same ID, there is a chance that 2 different objects within these

2 repositories have the same ID. Therefore, importing the first object from the first

repository to the second may overwrite the second object! The only way to avoid that is, of

course, to have 2 different work repository IDs.

Using ODI Version Management

How Version Management Works

Version management in ODI is designed to allow you to work on different versions of

objects across work repositories as shown below:

Oracle Data Integrator
Best Practices for a Data Warehouse

42

Figure 12: Version Management with ODI

Note: The user acceptance tests repository does not appear in this diagram as the mechanism

for populating it with new versions is similar to the one used for the testing repository.

The developers have already released versions 1.0, 2.0 and 2.1 of their development in the

master repository. Every time they have released a version they have used a Solution. See

Using Solutions for Configuration Management for details. They are now working on the next

release as they are about to release solution version 2.2. Meanwhile, the IT testing team is

testing version 2.1 in its work repository. The production team is still working on version 2.0

and it has discovered a critical bug in this version. Therefore, the maintenance team has

restored version 2.0 in the Hot Fix work repository and is working on a patch release, v2.0.5.

As soon as this patch release is committed to the master repository, the production team will

have to restore it into the production repository. Developers will have to manually update

versions 2.1 and 2.2 so they reflect the changes made by the maintenance team to version

2.0.5.

Note: Every work repository can only have a single version of an object.

Creating and Restoring Versions of Objects

To create a version of an object, users simply have to right-click on the object and select

“Version->Create Version”.

Several versions

Archived

Solution V1.0

Solution V2.0

Solution V2.1

Solution V2.0.5

Development Master

Topology

Security

Versions

Development Master

Topology

Security

Versions

Created

versions:

1.0, 2.0 and 2.1.

Is about to

release version

2.2

Open versions

Currently under

development

Development

Projects

Models

Scenarios and Logs

Solution V2.2

Open versions

Currently under

development

Open versions

Currently under

development

Development

Projects

Models

Scenarios and Logs

Development

Projects

Models

Scenarios and Logs

Solution V2.2Solution V2.2

Testing

Projects

Models

Scenarios and Logs

Versions being

tested

Solution V2.1

Testing

Projects

Models

Scenarios and Logs

Testing

Projects

Models

Scenarios and Logs

Versions being

tested

Versions being

tested

Solution V2.1Solution V2.1

Production

Projects

Models

Scenarios and Logs

Versions in

production

Solution V2.0

Production

Projects

Models

Scenarios and Logs

Production

Projects

Models

Scenarios and Logs

Versions in

production

Versions in

production

Solution V2.0Solution V2.0

Hot Fix

Projects

Models

Scenarios and Logs

Versions being

fixed for a critical

patch

Solution V2.0.5

Hot Fix

Projects

Models

Scenarios and Logs

Hot Fix

Projects

Models

Scenarios and Logs

Versions being

fixed for a critical

patch

Versions being

fixed for a critical

patch

Solution V2.0.5Solution V2.0.5

Imported

released version

2.1 for testing.

Imported validated

version 2.0 for

production.

Discovered a critical

bug in this version.

Imported validated

version 2.0 for critical

maintenance. Is about

to release version

2.0.5 that fixes the

critical bug.

Oracle Data Integrator
Best Practices for a Data Warehouse

43

When the version of the object is created, it becomes available in the “Version Browser” and

in the “Version” tab of the object. ODI also updates all the “I” and “U” flags relating to this

object to indicate that it is up to date with the version in the master repository. If you change

your object in the work repository after committing it in the master, you will notice that its

icon is changed and a small “U” appears besides it to indicate that its status is now

“Updated”. This feature is very helpful as it shows you all the differences between the current

version and the last version committed in the master repository.

When you create a version of an object, the object is exported to XML in memory,

compressed and stored in the master repository as a binary large object. Therefore, you

should consider creating a version of an object only when you are about to commit it

definitely for a release.

To restore an object to one of its previous versions, users simply have to right-click on the

object and select “Version->Restore ”. Then select from the list of available versions which

one to restore. You should use caution for the following reasons:

• All updates that you have done since the last time you have created a version of your

current object will be lost

• The object that you are about to restore may reference other objects that were removed

from your work repository. The typical situation is restoring an interface that references

a column that doesn’t exist anymore in your models. If this happens, the restored object

will be marked as “invalid” with a red exclamation mark and you will have to edit it to

correct all missing references.

Using Solutions for Configuration Management

During design time you will probably create versions of your objects for backup. For

example, you will create versions of your models, folders, interfaces, variables, Knowledge

Modules, etc. Most of these objects are designed to work together as they may depend on one

another. For example, interface version 2.1.0 requires tables from model 3.1.2 and Knowledge

Modules version 1.2 and 4.5. Maintaining the list of dependencies can be very tedious and

time consuming. Therefore, when you are about to release what has been developed for the

testing team, you would prefer to have a single object that manages these dependencies.

ODI solution objects are designed to manage these dependencies between a project and all

models, global objects and scenarios it references. When you are about to release your

development, you simply need to create a new solution and drag and drop your project into

this solution. ODI will then create a new version of your project (if required) and a new

version of every model, scenario, other project or global object referenced by this project.

Therefore, instead of releasing several objects, you simply release the solution.

Notes:

For performance reasons, you should consider having small projects to improve the efficiency

of the version creation mechanism. It is recommended that you split your development into

several small projects containing less than 300 objects.

Oracle Data Integrator
Best Practices for a Data Warehouse

44

When calculating the dependencies for a project in order to build the solution, ODI creates a

version of every model referenced by this project. Then it looks at every model to see what

Knowledge Modules it references (RKM, JKM and CKM). And finally it creates a new

version of every project to which these Knowledge Modules belong. So if your models

reference Knowledge Modules from 3 different projects, the solution will reference these 3

projects as well. A best practice to avoid this is to create a project called “Metadata

Knowledge Modules” and to have in this project all the RKMs, CKMs and JKMs that you

will reference in your models. Therefore every time you create a solution, this project will be

added as a dependency, instead of 3 or 4 different projects.

Going to Production

Releasing Scenarios

Section Using ODI Version Management gives an overview on how to handle versions of objects

to release them to the production environment. However, sometimes you will only want your

scenarios in the production work repository without their corresponding projects and models.

For that, you would create an “Execution” work repository rather than a “Development”

work repository. When your scenarios are released into the master repository or as simple

XML files, you would either restore them to your work repository or import them in

“synonym” or “duplication” mode from the Operator Navigator.

Executing Scenarios

Executing a Scenario Manually

You can execute your scenario manually from the Operator Navigator. In this case if your

scenario requires variables to be set, you would edit every variable used by the scenario and

update its default value. To execute the scenario, you also need to indicate the context for the

execution as well as the logical agent in charge of this execution.

An alternative way to execute a scenario is to use the ODI Console to start the scenario from

your web browser. This approach can be useful if you are considering having scenarios that

will be executed on-demand by your business users and analysts. Should your scenario require

variables, the user would be asked to fill in the variable values accordingly.

Executing a Scenario Using an Operating System Command

You can also start a scenario from an operating system command using the “startscen” shell

script. You would do that if you plan to use an external scheduler to schedule your jobs. Refer

to the ODI Documentation for details on this operating system command

When starting a scenario from the operating system, you do not need a running agent. The

“startscen” command has its own built-in agent that executes the scenario and stops at the

end of the session.

Oracle Data Integrator
Best Practices for a Data Warehouse

45

Assigning Session Keywords for a Scenario

You may occasionally find it difficult to browse the Operator Navigator log as it may contain

a large number of sessions. To overcome this limitation, ODI allows keywords to be assigned

to a session. This session will be stored automatically in the appropriate session folder created

in the Operator Navigator.

In the figure below, the folder “Product Dimensions” was created for the “PDIM” keyword.

When starting the LOAD_FAMILY_HIERARCHY and LOAD_PRODUCTS scenarios, the

“-KEWORDS” parameter was set to “-KEYWORDS=PDIM”. Therefore when using the

operator to access the executed sessions, they are automatically available under the “Product

Dimensions” folder.

Figure 13: Session Folders and Keywords

You can use this feature to distribute your sessions across your business areas.

Using the Operator Navigator in Production

The Operator Navigator in the ODI Studio is the module that is used the most in a

production environment. From this module, operators have the ability to:

• Import scenarios into the production work repository

• Execute scenarios manually and assign default values to scenario variables

• Follow execution logs with advanced statistics including the number of row processed

and the execution elapsed time

• Abort a currently-running session.

• Restart a session that has failed and possibly redefine the restart point by updating the

Oracle Data Integrator
Best Practices for a Data Warehouse

46

task statuses.

• Create session folders to hold sessions with pre-defined keywords

• Access and define scheduling information

Using the ODI Console in Production

The ODI Console can be used in production for 2 purposes:

• To give business users, analysts and operators access to metadata lineage, metadata

searching, scenario execution, and log monitoring. In this situation, the production

work repository should be a “development” repository, and all the released projects,

models and scenarios should be restored in this repository.

• To give operators access only to scenarios and logs. In this case, the production work

repository would only be an “execution” work repository, and would only contain the

released scenarios.

Setting up Agents

Where to Install the Agent(s)?

A typical data warehouse implementation usually requires one or more ODI agents in

production. In a data warehousing environment an ODI agent is usually installed on the host

machine that is used to load data in the data warehouse. The agent requires a connection to

source databases or files, and triggers the appropriate load utilities.

ODI 11g introduces Java EE agents which are deployed in a Java EE application server and

can leverage its features, such agents are recommended when one of your requirements is to

centralize the deployment and management of your agents or when there is a need for high

availability.

The network bandwidth between the machine hosting the agents and the data warehouse

should be large enough to handle the volume of data that will be loaded by the utilities in the

warehouse database. On the other hand, as the agents may need to access other source

servers, close attention should be paid to the network bandwidth to and from these source

servers.

If your Knowledge Modules generate operating-system-specific commands, these must match

the operating system on which the agent is installed.

In a normal environment, you will set up:

• 1 physical agent for the development team, preferably on the same operating system as

the production agent

• 1 physical agent shared by the testing team, the maintenance team and the user

acceptance team. Again, try to use the same operating system as the agent in

production.

Oracle Data Integrator
Best Practices for a Data Warehouse

47

• 1 physical agent for the production

Using Load Balancing

There are cases when a single agent can become a bottleneck, especially when it has to deal

with large numbers of sessions started in parallel. For example, suppose you want to retrieve

source data from 300 stores. If you attempt to do this in parallel on a single agent, it may lead

to excessive overhead as it will require opening 300 threads (1 for every session). A way to

avoid that is to set up load balancing across several agents.

To set up load balancing in ODI, you can follow these steps in the Topology Navigator:

• Define the agent that will be in charge of distributing the workload. In the following,

this agent will be referred to as the “master agent”. The master agent usually has only 2

concurrent sessions. All the scenarios will be executed by this single agent by using the

–AGENT parameter.

• Define several child agents that will be in charge of actually executing the scenarios. Set

the maximum number of sessions of each agent to a value between 2 and 20.

• Edit the master agent in the Topology Navigator, and in the “Load Balancing” tab,

select all your child agents.

The diagram below gives you an example of how you can setup this architecture:

Figure 15: Example of Load Balancing

In this example, 4 agents are installed on 2 different machines. Each of them accepts a

maximum of 3 sessions in parallel. The master agent is installed on another machine.

Machine 1

Machine 2

AGENT1

Port: 20900

Sessions: 3

AGENT2

Port: 20910

Sessions: 3

Master Agent

Port: 20910

Sessions: 2
Machine 3

AGENT3

Port: 20900

Sessions: 3

AGENT4

Port: 20910

Sessions: 3

14 incoming

sessions

4 sessions

4 sessions

3 sessions

3 sessions

3 Running Sessions

3 Running Sessions

3 Running Sessions

3 Running Sessions

1 Pending Session Queued

1 Pending Session Queued

Oracle Data Integrator
Best Practices for a Data Warehouse

48

The master agent receives 14 requests to start several scenarios in parallel. It distributes these

14 requests to the available agents. Each agent will start 3 scenarios in parallel, and the first 2

agents will simply queue the remaining sessions for future execution. As soon as one of the

agents becomes available, it will pick one of the queued sessions and begin executing it.

The master agent initially calculates the workload per agent according to the ratio given by the

number of sessions currently being executed versus the maximum number of sessions

allowed for this agent. It distributes incoming sessions one by one to every agent and then

recalculates the workload’s ratio. As the queued sessions for an agent can be picked up by

another agent, the entire system becomes balanced.

This flexible architecture allows you to add as many agents as needed to reach the maximum

scalability for your system. If you plan to start several scenarios in parallel, you can refer to

section Using ODI Version Management for a detailed example on how to achieve that

elegantly.

Notes: The number of agents required and the maximum number of sessions that they may

support will depend on your environment settings. It should be tested carefully before going

to production. The main bottleneck in this architecture is obviously the RDBMS hosting the

ODI repositories as all agents access the same database tables. It is recommended that you

dedicate a database server to the ODI repository if you plan to setup such architecture. You

would therefore have more flexibility to tune this server in the case of locks or performance

issues.

Backing up Repositories

ODI recommends that you backup your master and work repositories on a daily basis to

avoid any loss of your work.

To backup your repositories, you simply need to backup every schema on which you have

installed a master or work repository, using your standard database backup procedure.

Refer to your specific database documentation for information on how to backup a schema

or catalog.

Oracle Data Integrator
Best Practices for a Data Warehouse

49

Appendices

Appendix I. Oracle Data Integrator for Teradata Best
Practices

Architecture of ODI Repositories

It is recommended that you install the master and work repositories in an OLTP database

distinct from the source or target applications. The Teradata database is not recommended

for hosting ODI repositories.

Reverse-engineering a Teradata Schema

The Teradata JDBC driver implements most metadata APIs. You can therefore use the

standard JDBC reverse-engineering with ODI. Using this method, you can capture metadata

for:

• Tables and Views including table comments,

• Columns including data types, length and scale, and comments

• Primary Keys when they are defined using a PRIMARY KEY constraint statement in

the databases

However, you will probably face the following limitations:

• Foreign Key metadata is not implemented in the JDBC driver. Therefore ODI will not

retrieve foreign keys.

• Unique Primary Indexes (UPI) and Non Unique Primary Indexes (NUPI) are not

imported. To have a UPI imported as a primary key in ODI, you need to define it as a

PRIMARY KEY constraint at the database level.

• Other indexes are not imported

• Check constraints are not imported

You can bypass some of these limits by using the Reverse Knowledge Module for Teradata

provided with Oracle Data Integrator. This RKM is based on the DBC catalogue tables

(DBC.Tables, DBC.Columns etc). You may also enhance this Knowledge Module and adapt

it to your needs.

RKM DESCRIPTION

RKM Teradata Retrieves metadata from the Teradata database using the DBC system views.

This RKM supports UNICODE columns.

Oracle Data Integrator
Best Practices for a Data Warehouse

50

Teradata Loading Strategies

You can refer to the following table for Loading Knowledge Modules optimized for Teradata:

LKM DESCRIPTION

LKM SQL to SQL Loads data through the agent from any SQL RDBMS to any SQL

RDBMS staging area

LKM File to Teradata (TTU) Loads data from a File to a Teradata staging area database using the

Teradata bulk utilities. The utilities must be installed on the machine

hosting the ODI Agent.

LKM SQL to Teradata (TTU) Loads data from a SQL compliant source database to a Teradata

staging area database using a native Teradata bulk utility. The utilities

must be installed on the Unix machine hosting the ODI Agent.

Using Loaders for Flat Files

When your interface contains a flat file as a source, you may want to use a strategy that

leverages the most efficient loading utility available for the staging area technology, rather

than the standard “LKM File to SQL”.

The ODI Agent accepts binary files and supports several native binary data types such as

Binary Big and Little Endian, Ebcdic, Ebcdic zoned decimals, Packed decimals, etc. However,

we recommend against using ODI Agent to load large binary files into the Teradata staging

area.

As the agent uses JDBC to write to the target, using this method would lead to significant

performance issues compared to loading using the native Teradata Tools and Utilities (TTU)

which include FastLoad, MulitLoad, TPump, Teradata Parallel Transporter or FastExport.

You can refer to the TTU documentation for a way to load binary files in a Teradata table.

The “LKM File to Teradata (TTU)” should meet your needs for generating and executing the

appropriate TTU scripts.

Using Unload/Load for Remote Servers

When the source result set is on a remote database server, an alternative to using the agent to

transfer the data would be to unload it to a file and then load that into the staging area.

The “LKM SQL to Teradata (TTU)” follows these steps and uses the OdiSqlUnload tool to

unload data from any remote RDBMS. Of course, this KM can be optimized if the source

RDBMS is known to have a fast unload utility.

Using Piped Unload/Load

When using an unload/load strategy, data needs to be staged twice: once in the temporary file

and a second time in the “C$” table, resulting in extra disk space usage and potential

efficiency issues. A more efficient alternative would be to use pipelines between the “unload”

and the “load” utility. Unfortunately, not all the operating systems support file-based pipelines

(FIFOs).

Oracle Data Integrator
Best Practices for a Data Warehouse

51

ODI provides the “LKM SQL to Teradata (TTU)” that uses this strategy. To have a better

control on the behavior of every detached process (or thread), this KM was written using

Jython. The OdiSqlUnload tool is also available as a callable object in Jython.

Teradata Integration Strategies

The following table lists some of the Integration Knowledge Modules optimized for Teradata:

IKM DESCRIPTION

IKM Teradata Control Append Integrates data in a Teradata target table in replace/append mode.

IKM Teradata Incremental Update Integrates data in a Teradata target table in incremental update mode.

IKM Teradata Slowly Changing

Dimension

Integrates data in a Teradata target table used as a Type II Slowly Changing

Dimension in your Data Warehouse.

IKM File to Teradata (TTU) This IKM is designed to leverage the power of the Teradata utilities for loading

files directly to the target.

IKM SQL to SQL Append Integrates data into an ANSI-SQL92 target database from any remote ANSI-

SQL92 compliant staging area in replace or append mode.

IKM SQL to Teradata (TTU) Integrates data from a SQL compliant database to a Teradata database target

table using Teradata Utilities TPUMP, FASTLOAD OR MULTILOAD.

IKM Teradata Multi Statement Integrates data in Teradata database target table using multi statement

requests, managed in one SQL transaction.

IKM Teradata to File (TTU) Integrates data in a target file from a Teradata staging area in replace mode.

IKMs with Staging Area Different from Target

File to Server Append

There are some cases when your source is composed of a single file that you want to load

directly into the target table using the most efficient method. By default, ODI will suggest

putting the staging area on the target server and performing such a job using an LKM to stage

the file in a “C$” table and an IKM to apply the source data of the “C$” table to the target

table.

The recommended Knowledge Module when a file needs to loaded into Teradata without

staging the data is the “IKM File to Teradata (TTU)”, which allows the generation of

appropriate scripts for each of these Teradata utilities depending on your integration strategy.

Server to Server Append

When using a staging area different from the target and when setting this staging area to an

RDBMS, you can use an IKM that will move the transformed data from the staging area to

the remote target. This kind of IKM is very close to an LKM and follows almost the same

rules.

The IKM SQL to Teradata (TTU) uses this strategy.

Oracle Data Integrator
Best Practices for a Data Warehouse

52

Server to File or JMS Append

When the target datastore is a file or JMS queue or topic you will obviously need to set the

staging area to a different place than the target. Therefore, if you want to target a file or a

queue datastore you will have to use a specific “Multi-Connection” IKM that will export the

transformed data from your staging area to this target. The way that the data is exported to

the file or queue will depend on the IKM. For example, you can choose to use the agent to

have it select records from the staging area and write them to the file or queue using standard

ODI features. Or you can use specific unload utilities such as Teradata FastExport if the

target is not JMS based.

You can refer to the following IKMs for further details:

IKM DESCRIPTION

IKM Teradata to File (TTU) Integrates data in a target file from a Teradata staging area in

replace mode.

IKM SQL to File Append Exports data from any SQL compliant staging area to an ASCII or

BINARY file using the ODI File driver

Setting up Agents in a Teradata environment

Where to Install the Agent(s)?

A typical data warehouse implementation usually requires one or more ODI agents in

production. In a Teradata environment, the agent is usually installed on the host machine that

is used to load data in the data warehouse. The agent requires a connection to source

databases or files, and triggers the appropriate load utilities (fastload, multiload, tpump).

Starting from ODI 11g it is also possible to install the ODI agents in WebLogic Server to

achieve High-Availability (HA) through a clustered deployment.

Oracle Data Integrator
Best Practices for a Data Warehouse

53

Appendix II: Additional Information

Acronyms used in this document

3NF 3rd Normal Form

API Application Programming Interface

ASCII American Standard Code for Information Interchange

CKM Check Knowledge Module

DDL Data Description Language

DML Data Manipulation Language

DW Data Warehouse

EBCDIC Extended Binary-Coded Decimal Interchange Code

E-LT Extract, Load and Transform

ETL Extract, Transform and Load

GUI Graphical User Interface

HTTP Hypertext Transport Protocol

IKM Integration Knowledge Module

IT Information Technology

JEE Java Enterprise Edition

JDBC Java Database Connectivity

JKM Journalizing Knowledge Module

JMS Java Message Services

JNDI Java Naming Directory Interface

JVM Java Virtual Machine

KM Knowledge Module

LDAP Lightweight Directory Access Protocol

LKM Loading Knowledge Module

ODS Operational Data Store

OLTP Online Transactional Processing

Oracle Data Integrator
Best Practices for a Data Warehouse

54

RDBMS Relation Database Management System

RI Referential Integrity

RKM Reverse-engineering Knowledge Module

SOX Sarbanes-Oxley

SQL Simple Query Language

URL Unique Resource Locator

XML Extended Markup Language

Oracle Data Integrator Best Practices for a Data

Warehouse

August 2010

Author: ODI Product Management

Contributing Authors: ODI Product Development

Oracle Corporation

World Headquarters

500 Oracle Parkway

Redwood Shores, CA 94065

U.S.A.

Worldwide Inquiries:

Phone: +1.650.506.7000

Fax: +1.650.506.7200

oracle.com

Copyright © 2010, Oracle and/or its affiliates. All rights reserved. This document is provided for information purposes only and the

contents hereof are subject to change without notice. This document is not warranted to be error-free, nor subject to any other

warranties or conditions, whether expressed orally or implied in law, including implied warranties and conditions of merchantability or

fitness for a particular purpose. We specifically disclaim any liability with respect to this document and no contractual obligations are

formed either directly or indirectly by this document. This document may not be reproduced or transmitted in any form or by any

means, electronic or mechanical, for any purpose, without our prior written permission.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective

owners.

AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. Intel

and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are

trademarks or registered trademarks of SPARC International, Inc. UNIX is a registered trademark licensed through X/Open

Company, Ltd. 0410

