
Oracle Database 10g: Develop
PL/SQL Program Units

Electronic Presentation

D17169GC21
Production 2.1
December 2006
D48233

Copyright © 2006, Oracle. All rights reserved.

Disclaimer

This document contains proprietary information and is protected by copyright and other intellectual
property laws. You may copy and print this document solely for your own use in an Oracle training
course. The document may not be modified or altered in any way. Except where your use constitutes
"fair use" under copyright law, you may not use, share, download, upload, copy, print, display,
perform, reproduce, publish, license, post, transmit, or distribute this document in whole or in part
without the express authorization of Oracle.

The information contained in this document is subject to change without notice. If you find any
problems in the document, please report them in writing to: Oracle University, 500 Oracle Parkway,
Redwood Shores, California 94065 USA. This document is not warranted to be error-free.

Restricted Rights Notice

If this documentation is delivered to the United States Government or anyone using the
documentation on behalf of the United States Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS
The U.S. Government’s rights to use, modify, reproduce, release, perform, display, or disclose these
training materials are restricted by the terms of the applicable Oracle license agreement and/or the
applicable U.S. Government contract.

Trademark Notice

Oracle, JD Edwards, PeopleSoft, and Siebel are registered trademarks of Oracle Corporation and/or
its affiliates. Other names may be trademarks of their respective owners.

Authors

Tulika Srivastava
Glenn Stokol

Technical Contributors
and Reviewers

Chaitanya Koratamaddi
Dr. Christoph Burandt
Zarko Cesljas
Yanti Chang
Kathryn Cunningham
Burt Demchick
Laurent Dereac
Peter Driver
Bryan Roberts
Bryn Llewellyn
Nancy Greenberg
Craig Hollister
Thomas Hoogerwerf
Taj-Ul Islam
Inger Joergensen
Eric Lee
Malika Marghadi
Hildegard Mayr
Nagavalli Pataballa
Sunitha Patel
Srinivas Putrevu
Denis Raphaely
Helen Robertson
Grant Spencer
Glenn Stokol
Tone Thomas
Priya Vennapusa
Lex Van Der Werff

Graphic Designer

Satish Bettegowda

Editors
Nita Pavitran
Richard Wallis

Publisher

Sheryl Domingue

Copyright © 2006, Oracle. All rights reserved.

Introduction

Copyright © 2006, Oracle. All rights reserved.

Lesson Objectives

After completing this lesson, you should be able to do
the following:
• Discuss the goals of the course
• Identify the modular components of PL/SQL:

– Anonymous blocks
– Procedures and functions
– Packages

• Discuss the PL/SQL execution environment
• Describe the database schema and tables that are

used in the course
• List the PL/SQL development environments that

are available in the course

Copyright © 2006, Oracle. All rights reserved.

Course Objectives

After completing this course, you should be able to do
the following:
• Create, execute, and maintain:

– Procedures and functions with OUT parameters
– Package constructs
– Database triggers

• Manage PL/SQL subprograms and triggers
• Use a subset of Oracle-supplied packages to:

– Generate screen, file, and Web output
– Schedule PL/SQL jobs to run independently

• Build and execute dynamic SQL statements
• Manipulate large objects (LOBs)

Copyright © 2006, Oracle. All rights reserved.

Course Agenda

Lessons for day 1:
I. Introduction
1. Creating Stored Procedures
2. Creating Stored Functions
3. Creating Packages
4. Using More Package Concepts

Copyright © 2006, Oracle. All rights reserved.

Course Agenda

Lessons for day 2:
5. Using Oracle-Supplied Packages in Application

Development
6. Dynamic SQL and Metadata
7. Design Considerations for PL/SQL Code
8. Managing Dependencies

Copyright © 2006, Oracle. All rights reserved.

Course Agenda

Lessons for day 3:
9. Manipulating Large Objects
10. Creating Triggers
11. Applications for Triggers
12. Understanding and Influencing the PL/SQL

Compiler

Copyright © 2006, Oracle. All rights reserved.

Human Resources (HR) Schema

Copyright © 2006, Oracle. All rights reserved.

Creating a Modularized and Layered
Subprogram Design

• Modularize code into subprograms.
1. Locate code sequences repeated more than once.
2. Create subprogram P containing the repeated code.
3. Modify original code to invoke the new subprogram.

• Create subprogram layers for your application.
– Data access subprogram layer with SQL logic
– Business logic subprogram layer, which may or

may not use data access layer

xx xxx xxx
xx xxx xxx
----- --- ---
----- --- ---

xx xxx xxx
xx xxx xxx
----- --- ---

xx xxx xxx
xx xxx xxx

P
----- --- ---
----- --- ---

P
----- --- ---

1 2 3

P

Copyright © 2006, Oracle. All rights reserved.

Modularizing Development
with PL/SQL Blocks

• PL/SQL is a block-structured language. The
PL/SQL code block helps modularize code by
using:
– Anonymous blocks
– Procedures and functions
– Packages
– Database triggers

• The benefits of using modular program constructs
are:
– Easy maintenance
– Improved data security and integrity
– Improved performance
– Improved code clarity

Copyright © 2006, Oracle. All rights reserved.

Review of Anonymous Blocks

Anonymous blocks:
• Form the basic PL/SQL block structure
• Initiate PL/SQL processing tasks from applications
• Can be nested within the executable section of

any PL/SQL block

[DECLARE -- Declaration Section (Optional)
variable declarations; ...]

BEGIN -- Executable Section (Mandatory)
SQL or PL/SQL statements;

[EXCEPTION -- Exception Section (Optional)
WHEN exception THEN statements;]

END; -- End of Block (Mandatory)

Copyright © 2006, Oracle. All rights reserved.

Introduction to PL/SQL Procedures

Procedures are named PL/SQL blocks that perform a
sequence of actions.
CREATE PROCEDURE getemp IS -- header

emp_id employees.employee_id%type;
lname employees.last_name%type;

BEGIN
emp_id := 100;
SELECT last_name INTO lname
FROM EMPLOYEES
WHERE employee_id = emp_id;
DBMS_OUTPUT.PUT_LINE('Last name: '||lname);

END;
/

Copyright © 2006, Oracle. All rights reserved.

Introduction to PL/SQL Functions

Functions are named PL/SQL blocks that perform a
sequence of actions and return a value. A function can
be invoked from:
• Any PL/SQL block
• A SQL statement (subject to some restrictions)

CREATE FUNCTION avg_salary RETURN NUMBER IS
avg_sal employees.salary%type;

BEGIN
SELECT AVG(salary) INTO avg_sal
FROM EMPLOYEES;
RETURN avg_sal;

END;
/

Copyright © 2006, Oracle. All rights reserved.

Introduction to PL/SQL Packages

PL/SQL packages have a specification and an optional
body. Packages group related subprograms together.
CREATE PACKAGE emp_pkg IS

PROCEDURE getemp;
FUNCTION avg_salary RETURN NUMBER;

END emp_pkg;
/
CREATE PACKAGE BODY emp_pkg IS

PROCEDURE getemp IS ...
BEGIN ... END;

FUNCTION avg_salary RETURN NUMBER IS ...
BEGIN ... RETURN avg_sal; END;

END emp_pkg;
/

Copyright © 2006, Oracle. All rights reserved.

Introduction to PL/SQL Triggers

PL/SQL triggers are code blocks that execute when a
specified application, database, or table event occurs.
• Oracle Forms application triggers are standard

anonymous blocks.
• Oracle database triggers have a specific structure.
CREATE TRIGGER check_salary
BEFORE INSERT OR UPDATE ON employees
FOR EACH ROW
DECLARE
c_min constant number(8,2) := 1000.0;
c_max constant number(8,2) := 500000.0;

BEGIN
IF :new.salary > c_max OR

:new.salary < c_min THEN
RAISE_APPLICATION_ERROR(-20000,
'New salary is too small or large');

END IF;
END;
/

Copyright © 2006, Oracle. All rights reserved.

PL/SQL Execution Environment

The PL/SQL run-time architecture:

PL/SQL
block

PL/SQL engine
Procedural
statement
executor

PL/SQL
block

Oracle server

SQL statement executor

sql

procedural

Copyright © 2006, Oracle. All rights reserved.

PL/SQL Development Environments

This course provides the following tools for
developing PL/SQL code:
• Oracle SQL*Plus (GUI or command-line versions)
• Oracle iSQL*Plus (used from a browser)
• Oracle JDeveloper IDE

Copyright © 2006, Oracle. All rights reserved.

Coding PL/SQL in iSQL*Plus

Copyright © 2006, Oracle. All rights reserved.

Coding PL/SQL in SQL*Plus

Copyright © 2006, Oracle. All rights reserved.

Coding PL/SQL in Oracle JDeveloper

Edit

Run

Copyright © 2006, Oracle. All rights reserved.

Summary

In this lesson, you should have learned how to:
• Declare named PL/SQL blocks, including

procedures, functions, packages, and triggers
• Use anonymous (unnamed) PL/SQL blocks to invoke

stored procedures and functions
• Use iSQL*Plus or SQL*Plus to develop PL/SQL code
• Explain the PL/SQL execution environment:

– The client-side PL/SQL engine for executing PL/SQL
code in Oracle Forms and Oracle Reports

– The server-side PL/SQL engine for executing PL/SQL
code stored in an Oracle database

Copyright © 2006, Oracle. All rights reserved.

Practice I: Overview

This practice covers the following topics:
• Browsing the HR tables
• Creating a simple PL/SQL procedure
• Creating a simple PL/SQL function
• Using an anonymous block to execute the PL/SQL

procedure and function

Copyright © 2006, Oracle. All rights reserved.

Creating Stored Procedures

Copyright © 2006, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to do
the following:
• Describe and create a procedure
• Create procedures with parameters
• Differentiate between formal and actual

parameters
• Use different parameter-passing modes
• Invoke a procedure
• Handle exceptions in procedures
• Remove a procedure

Copyright © 2006, Oracle. All rights reserved.

What Is a Procedure?

A procedure:
• Is a type of subprogram that performs an action
• Can be stored in the database as a schema object
• Promotes reusability and maintainability

Copyright © 2006, Oracle. All rights reserved.

Syntax for Creating Procedures

• Use CREATE PROCEDURE followed by the name,
optional parameters, and keyword IS or AS.

• Add the OR REPLACE option to overwrite an
existing procedure.

• Write a PL/SQL block containing local variables,
a BEGIN statement, and an END statement (or END
procedure_name).

CREATE [OR REPLACE] PROCEDURE procedure_name
[(parameter1 [mode] datatype1,
parameter2 [mode] datatype2, ...)]

IS|AS
[local_variable_declarations; …]

BEGIN
-- actions;

END [procedure_name];

PL/SQL Block

Copyright © 2006, Oracle. All rights reserved.

Developing Procedures

file.sql

1 2

3

Edit Load

Create (compile and store)

Execute

Use SHOW ERRORS
for compilation errors

4

Copyright © 2006, Oracle. All rights reserved.

What Are Parameters?

Parameters:
• Are declared after the subprogram name in the

PL/SQL header
• Pass or communicate data between the caller and

the subprogram
• Are used like local variables but are dependent on

their parameter-passing mode:
– An IN parameter (the default) provides values for a

subprogram to process.
– An OUT parameter returns a value to the caller.
– An IN OUT parameter supplies an input value, which

may be returned (output) as a modified value.

Copyright © 2006, Oracle. All rights reserved.

Formal and Actual Parameters

• Formal parameters: Local variables declared in the
parameter list of a subprogram specification

Example:

• Actual parameters: Literal values, variables, and
expressions used in the parameter list of the
called subprogram
Example:

CREATE PROCEDURE raise_sal(id NUMBER,sal NUMBER) IS
BEGIN ...

END raise_sal;

emp_id := 100;

raise_sal(emp_id, 2000)

Copyright © 2006, Oracle. All rights reserved.

Procedural Parameter Modes

• Parameter modes are specified in the formal
parameter declaration, after the parameter name
and before its data type.

• The IN mode is the default if no mode is specified.

Modes

IN (default)

OUT

IN OUT

Calling
environment

CREATE PROCEDURE procedure(param [mode] datatype)
...

Procedure

Copyright © 2006, Oracle. All rights reserved.

Using IN Parameters: Example

CREATE OR REPLACE PROCEDURE raise_salary
(id IN employees.employee_id%TYPE,
percent IN NUMBER)

IS
BEGIN

UPDATE employees
SET salary = salary * (1 + percent/100)
WHERE employee_id = id;

END raise_salary;
/

EXECUTE raise_salary(176,10)

Copyright © 2006, Oracle. All rights reserved.

Using OUT Parameters: Example

CREATE OR REPLACE PROCEDURE query_emp
(id IN employees.employee_id%TYPE,
name OUT employees.last_name%TYPE,
salary OUT employees.salary%TYPE) IS

BEGIN
SELECT last_name, salary INTO name, salary
FROM employees
WHERE employee_id = id;

END query_emp;

DECLARE
emp_name employees.last_name%TYPE;
emp_sal employees.salary%TYPE;

BEGIN
query_emp(171, emp_name, emp_sal); ...

END;

Copyright © 2006, Oracle. All rights reserved.

Viewing OUT Parameters with iSQL*Plus

• Use PL/SQL variables that are printed with calls to
the DBMS_OUTPUT.PUT_LINE procedure.

• Use iSQL*Plus host variables, execute QUERY_EMP
using host variables, and print the host variables.

VARIABLE name VARCHAR2(25)
VARIABLE sal NUMBER
EXECUTE query_emp(171, :name, :sal)
PRINT name sal

SET SERVEROUTPUT ON
DECLARE
emp_name employees.last_name%TYPE;
emp_sal employees.salary%TYPE;

BEGIN
query_emp(171, emp_name, emp_sal);
DBMS_OUTPUT.PUT_LINE('Name: ' || emp_name);
DBMS_OUTPUT.PUT_LINE('Salary: ' || emp_sal);

END;

Copyright © 2006, Oracle. All rights reserved.

Calling PL/SQL Using Host Variables

A host variable (also known as a bind or a global
variable):
• Is declared and exists externally to the PL/SQL

subprogram. A host variable can be created in:
– iSQL*Plus by using the VARIABLE command
– Oracle Forms internal and UI variables
– Java variables

• Is preceded by a colon (:) when referenced in
PL/SQL code

• Can be referenced in an anonymous block but not
in a stored subprogram

• Provides a value to a PL/SQL block and receives a
value from a PL/SQL block

Copyright © 2006, Oracle. All rights reserved.

Using IN OUT Parameters: Example

Calling environment

'(800)633-0575''8006330575'

CREATE OR REPLACE PROCEDURE format_phone
(phone_no IN OUT VARCHAR2) IS

BEGIN
phone_no := '(' || SUBSTR(phone_no,1,3) ||

')' || SUBSTR(phone_no,4,3) ||
'-' || SUBSTR(phone_no,7);

END format_phone;
/

phone_no (before the call) phone_no (after the call)

Copyright © 2006, Oracle. All rights reserved.

Syntax for Passing Parameters

• Positional:
– Lists the actual parameters in the same order as the

formal parameters
• Named:

– Lists the actual parameters in arbitrary order and
uses the association operator (=>) to associate a
named formal parameter with its actual parameter

• Combination:
– Lists some of the actual parameters as positional

and some as named

Copyright © 2006, Oracle. All rights reserved.

Parameter Passing: Examples

• Passing by positional notation:

• Passing by named notation:

CREATE OR REPLACE PROCEDURE add_dept(
name IN departments.department_name%TYPE,
loc IN departments.location_id%TYPE) IS

BEGIN
INSERT INTO departments(department_id,

department_name, location_id)
VALUES (departments_seq.NEXTVAL, name, loc);

END add_dept;
/

EXECUTE add_dept ('TRAINING', 2500)

EXECUTE add_dept (loc=>2400, name=>'EDUCATION')

Copyright © 2006, Oracle. All rights reserved.

Using the DEFAULT Option for Parameters

• Defines default values for parameters:

• Provides flexibility by combining the positional
and named parameter-passing syntax:

CREATE OR REPLACE PROCEDURE add_dept(
name departments.department_name%TYPE:='Unknown',
loc departments.location_id%TYPE DEFAULT 1700)
IS
BEGIN
INSERT INTO departments (...)
VALUES (departments_seq.NEXTVAL, name, loc);

END add_dept;

EXECUTE add_dept
EXECUTE add_dept ('ADVERTISING', loc => 1200)
EXECUTE add_dept (loc => 1200)

Copyright © 2006, Oracle. All rights reserved.

Summary of Parameter Modes

Can be assigned a
default value

Cannot be
assigned
a default value

Cannot be assigned
a default value

Must be a variableActual parameter can
be a literal, expression,
constant, or initialized
variable

Must be a
variable

Initialized variableUninitialized
variable

Formal parameter acts
as a constant

Passed into
subprogram; returned
to calling environment

Returned to
calling
environment

Value is passed into
subprogram

Default mode Must be
specified

Must be specified
IN OUTOUTIN

Copyright © 2006, Oracle. All rights reserved.

CREATE OR REPLACE PROCEDURE process_employees
IS

CURSOR emp_cursor IS
SELECT employee_id
FROM employees;

BEGIN
FOR emp_rec IN emp_cursor
LOOP
raise_salary(emp_rec.employee_id, 10);

END LOOP;
COMMIT;

END process_employees;
/

Invoking Procedures
You can invoke procedures by:
• Using anonymous blocks
• Using another procedure, as in the following

example:

Copyright © 2006, Oracle. All rights reserved.

PROCEDURE
PROC1 ...
IS
...
BEGIN
...
PROC2(arg1);

...
EXCEPTION
...
END PROC1;

Calling procedure Called procedure
PROCEDURE
PROC2 ...
IS
...
BEGIN
...
EXCEPTION
...
END PROC2;

Exception raised

Exception handled

Handled Exceptions

Control returns
to calling procedure

Copyright © 2006, Oracle. All rights reserved.

CREATE PROCEDURE create_departments IS
BEGIN
add_department('Media', 100, 1800);
add_department('Editing', 99, 1800);
add_department('Advertising', 101, 1800);

END;

Handled Exceptions: Example

CREATE PROCEDURE add_department(
name VARCHAR2, mgr NUMBER, loc NUMBER) IS

BEGIN
INSERT INTO DEPARTMENTS (department_id,
department_name, manager_id, location_id)

VALUES (DEPARTMENTS_SEQ.NEXTVAL, name, mgr, loc);
DBMS_OUTPUT.PUT_LINE('Added Dept: '||name);

EXCEPTION
WHEN OTHERS THEN
DBMS_OUTPUT.PUT_LINE('Err: adding dept: '||name);

END;

Copyright © 2006, Oracle. All rights reserved.

Exceptions Not Handled

PROCEDURE
PROC1 ...
IS
...
BEGIN
...
PROC2(arg1);

...
EXCEPTION
...
END PROC1;

Calling procedure

Control returned
to exception section
of calling procedure

Called procedure
PROCEDURE
PROC2 ...
IS
...
BEGIN
...
EXCEPTION
...
END PROC2;

Exception raised

Exception not
handled

Copyright © 2006, Oracle. All rights reserved.

Exceptions Not Handled: Example

CREATE PROCEDURE create_departments_noex IS
BEGIN
add_department_noex('Media', 100, 1800);
add_department_noex('Editing', 99, 1800);
add_department_noex('Advertising', 101, 1800);

END;

SET SERVEROUTPUT ON
CREATE PROCEDURE add_department_noex(

name VARCHAR2, mgr NUMBER, loc NUMBER) IS
BEGIN
INSERT INTO DEPARTMENTS (department_id,
department_name, manager_id, location_id)

VALUES (DEPARTMENTS_SEQ.NEXTVAL, name, mgr, loc);
DBMS_OUTPUT.PUT_LINE('Added Dept: '||name);

END;

Copyright © 2006, Oracle. All rights reserved.

Removing Procedures

You can remove a procedure that is stored in the
database.
• Syntax:

• Example:

DROP PROCEDURE procedure_name

DROP PROCEDURE raise_salary;

Copyright © 2006, Oracle. All rights reserved.

Viewing Procedures in the Data Dictionary

Information for PL/SQL procedures is saved in the
following data dictionary views:
• View source code in the USER_SOURCE table to

view the subprograms that you own, or the
ALL_SOURCE table for procedures that are owned
by others who have granted you the EXECUTE
privilege.

• View the names of procedures in USER_OBJECTS.

SELECT text
FROM user_source
WHERE name='ADD_DEPARTMENT' and type='PROCEDURE'
ORDER BY line;

SELECT object_name
FROM user_objects
WHERE object_type = 'PROCEDURE';

Copyright © 2006, Oracle. All rights reserved.

Benefits of Subprograms

• Easy maintenance
• Improved data security and integrity
• Improved performance
• Improved code clarity

Copyright © 2006, Oracle. All rights reserved.

Summary

In this lesson, you should have learned how to:
• Write a procedure to perform a task or an action
• Create, compile, and save procedures in the

database by using the CREATE PROCEDURE SQL
command

• Use parameters to pass data from the calling
environment to the procedure by using three
different parameter modes: IN (the default), OUT,
and IN OUT

• Recognize the effect of handling and not handling
exceptions on transactions and calling
procedures

Copyright © 2006, Oracle. All rights reserved.

Summary

In this lesson, you should have learned how to:
• Remove procedures from the database by using

the DROP PROCEDURE SQL command
• Modularize your application code by using

procedures as building blocks

Copyright © 2006, Oracle. All rights reserved.

Practice 1: Overview

This practice covers the following topics:
• Creating stored procedures to:

– Insert new rows into a table using the supplied
parameter values

– Update data in a table for rows that match the
supplied parameter values

– Delete rows from a table that match the supplied
parameter values

– Query a table and retrieve data based on supplied
parameter values

• Handling exceptions in procedures
• Compiling and invoking procedures

Copyright © 2006, Oracle. All rights reserved.

Creating Stored Functions

Copyright © 2006, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to do
the following:
• Describe the uses of functions
• Create stored functions
• Invoke a function
• Remove a function
• Differentiate between a procedure and a function

Copyright © 2006, Oracle. All rights reserved.

Overview of Stored Functions

A function:
• Is a named PL/SQL block that returns a value
• Can be stored in the database as a schema object

for repeated execution
• Is called as part of an expression or is used to

provide a parameter value

Copyright © 2006, Oracle. All rights reserved.

CREATE [OR REPLACE] FUNCTION function_name
[(parameter1 [mode1] datatype1, ...)]
RETURN datatype IS|AS
[local_variable_declarations; …]
BEGIN
-- actions;
RETURN expression;

END [function_name];

Syntax for Creating Functions

The PL/SQL block must have at least one RETURN
statement.

PL/SQL Block

Copyright © 2006, Oracle. All rights reserved.

Developing Functions

func.sql

1 2

3

Edit Load

Create (compile and store)

Execute

Use SHOW ERRORS
for compilation errors.

4

Copyright © 2006, Oracle. All rights reserved.

Stored Function: Example

• Create the function:

• Invoke the function as an expression or as a
parameter value:

CREATE OR REPLACE FUNCTION get_sal
(id employees.employee_id%TYPE) RETURN NUMBER IS
sal employees.salary%TYPE := 0;

BEGIN
SELECT salary
INTO sal
FROM employees
WHERE employee_id = id;
RETURN sal;

END get_sal;
/

EXECUTE dbms_output.put_line(get_sal(100))

Copyright © 2006, Oracle. All rights reserved.

Ways to Execute Functions

• Invoke as part of a PL/SQL expression
– Using a host variable to obtain the result:

– Using a local variable to obtain the result:

• Use as a parameter to another subprogram

• Use in a SQL statement (subject to restrictions)
EXECUTE dbms_output.put_line(get_sal(100))

SELECT job_id, get_sal(employee_id) FROM employees;

VARIABLE salary NUMBER
EXECUTE :salary := get_sal(100)

DECLARE sal employees.salary%type;
BEGIN
sal := get_sal(100); ...

END;

Copyright © 2006, Oracle. All rights reserved.

Advantages of User-Defined Functions in
SQL Statements

• Can extend SQL where activities are too complex,
too awkward, or unavailable with SQL

• Can increase efficiency when used in the WHERE
clause to filter data, as opposed to filtering the
data in the application

• Can manipulate data values

Copyright © 2006, Oracle. All rights reserved.

Function in SQL Expressions: Example

CREATE OR REPLACE FUNCTION tax(value IN NUMBER)
RETURN NUMBER IS
BEGIN

RETURN (value * 0.08);
END tax;
/
SELECT employee_id, last_name, salary, tax(salary)
FROM employees
WHERE department_id = 100;

Function created.

6 rows selected.

Copyright © 2006, Oracle. All rights reserved.

Locations to Call User-Defined Functions

User-defined functions act like built-in single-row
functions and can be used in:
• The SELECT list or clause of a query
• Conditional expressions of the WHERE and HAVING

clauses
• The CONNECT BY, START WITH, ORDER BY, and

GROUP BY clauses of a query
• The VALUES clause of the INSERT statement
• The SET clause of the UPDATE statement

Copyright © 2006, Oracle. All rights reserved.

Restrictions on Calling Functions
from SQL Expressions

• User-defined functions that are callable from SQL
expressions must:
– Be stored in the database
– Accept only IN parameters with valid SQL data

types, not PL/SQL-specific types
– Return valid SQL data types, not PL/SQL-specific

types
• When calling functions in SQL statements:

– Parameters must be specified with positional
notation

– You must own the function or have the EXECUTE
privilege

Copyright © 2006, Oracle. All rights reserved.

Controlling Side Effects When Calling
Functions from SQL Expressions

Functions called from:
• A SELECT statement cannot contain DML

statements
• An UPDATE or DELETE statement on a table T

cannot query or contain DML on the same table T
• SQL statements cannot end transactions (that is,

cannot execute COMMIT or ROLLBACK operations)

Note: Calls to subprograms that break these
restrictions are also not allowed in the function.

Copyright © 2006, Oracle. All rights reserved.

Restrictions on Calling Functions from
SQL: Example

CREATE OR REPLACE FUNCTION dml_call_sql(sal NUMBER)
RETURN NUMBER IS

BEGIN
INSERT INTO employees(employee_id, last_name,

email, hire_date, job_id, salary)
VALUES(1, 'Frost', 'jfrost@company.com',

SYSDATE, 'SA_MAN', sal);
RETURN (sal + 100);

END;

UPDATE employees
SET salary = dml_call_sql(2000)

WHERE employee_id = 170;

UPDATE employees SET salary = dml_call_sql(2000)
*

ERROR at line 1:
ORA-04091: table PLSQL.EMPLOYEES is mutating,
trigger/function may not see it
ORA-06512: at "PLSQL.DML_CALL_SQL", line 4

Copyright © 2006, Oracle. All rights reserved.

Removing Functions

Removing a stored function:
• You can drop a stored function by using the

following syntax:

Example:

• All the privileges that are granted on a function are
revoked when the function is dropped.

• The CREATE OR REPLACE syntax is equivalent to
dropping a function and re-creating it. Privileges
granted on the function remain the same when
this syntax is used.

DROP FUNCTION function_name

DROP FUNCTION get_sal;

Copyright © 2006, Oracle. All rights reserved.

Viewing Functions in the Data Dictionary

Information for PL/SQL functions is stored in the
following Oracle data dictionary views:
• You can view source code in the USER_SOURCE

table for subprograms that you own, or the
ALL_SOURCE table for functions owned by others
who have granted you the EXECUTE privilege.

• You can view the names of functions by using
USER_OBJECTS.

SELECT text
FROM user_source
WHERE type = 'FUNCTION'
ORDER BY line;

SELECT object_name
FROM user_objects
WHERE object_type = 'FUNCTION';

Copyright © 2006, Oracle. All rights reserved.

Procedures Versus Functions

Procedures
Execute as a PL/SQL
statement
Do not contain RETURN
clause in the header
Can return values (if any)
in output parameters
Can contain a RETURN
statement without a value

Functions
Invoke as part of an
expression
Must contain a RETURN
clause in the header
Must return a single value

Must contain at least one
RETURN statement

Copyright © 2006, Oracle. All rights reserved.

Summary

In this lesson, you should have learned how to:
• Write a PL/SQL function to compute and return a

value by using the CREATE FUNCTION SQL
statement

• Invoke a function as part of a PL/SQL expression
• Use stored PL/SQL functions in SQL statements
• Remove a function from the database by using the

DROP FUNCTION SQL statement

Copyright © 2006, Oracle. All rights reserved.

Practice 2: Overview

This practice covers the following topics:
• Creating stored functions:

– To query a database table and return specific
values

– To be used in a SQL statement
– To insert a new row, with specified parameter

values, into a database table
– Using default parameter values

• Invoking a stored function from a SQL statement
• Invoking a stored function from a stored

procedure

Copyright © 2006, Oracle. All rights reserved.

Creating Packages

Copyright © 2006, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to do
the following:
• Describe packages and list their components
• Create a package to group together related

variables, cursors, constants, exceptions,
procedures, and functions

• Designate a package construct as either public or
private

• Invoke a package construct
• Describe the use of a bodiless package

Copyright © 2006, Oracle. All rights reserved.

PL/SQL Packages: Overview

PL/SQL packages:
• Group logically related components:

– PL/SQL types
– Variables, data structures, and exceptions
– Subprograms: Procedures and functions

• Consist of two parts:
– A specification
– A body

• Enable the Oracle server to read multiple objects
into memory at once

Copyright © 2006, Oracle. All rights reserved.

Components of a PL/SQL Package

Package
specification

Package
body

Procedure A declaration;

variable

Procedure A definition

BEGIN
…
END;

Procedure B definition …

variable

variable

Public

Private

Copyright © 2006, Oracle. All rights reserved.

Visibility of Package Components

Package
specification

Package
body

Procedure A;

public_var

Procedure A IS

BEGIN
…
END;

Procedure B IS
BEGIN … END;

local_var

private_var

External
code

Copyright © 2006, Oracle. All rights reserved.

Developing PL/SQL Packages

spec.sql
1 2

3

Edit Load

Create (compile and store)

Execute

Use SHOW ERRORS
for compilation errors.

4

body.sql

Body

Specification

Copyright © 2006, Oracle. All rights reserved.

Syntax:

• The OR REPLACE option drops and re-creates the
package specification.

• Variables declared in the package specification
are initialized to NULL by default.

• All the constructs declared in a package
specification are visible to users who are granted
privileges on the package.

CREATE [OR REPLACE] PACKAGE package_name IS|AS
public type and variable declarations
subprogram specifications

END [package_name];

Creating the Package Specification

Copyright © 2006, Oracle. All rights reserved.

Example of Package Specification:
comm_pkg

• STD_COMM is a global variable initialized to 0.10.
• RESET_COMM is a public procedure used to reset

the standard commission based on some
business rules. It is implemented in the package
body.

CREATE OR REPLACE PACKAGE comm_pkg IS
std_comm NUMBER := 0.10; --initialized to 0.10
PROCEDURE reset_comm(new_comm NUMBER);

END comm_pkg;
/

Copyright © 2006, Oracle. All rights reserved.

Creating the Package Body

Syntax:

• The OR REPLACE option drops and re-creates the
package body.

• Identifiers defined in the package body are private
and not visible outside the package body.

• All private constructs must be declared before
they are referenced.

• Public constructs are visible to the package body.

CREATE [OR REPLACE] PACKAGE BODY package_name IS|AS
private type and variable declarations
subprogram bodies

[BEGIN initialization statements]
END [package_name];

Copyright © 2006, Oracle. All rights reserved.

Example of Package Body: comm_pkg

CREATE OR REPLACE PACKAGE BODY comm_pkg IS
FUNCTION validate(comm NUMBER) RETURN BOOLEAN IS
max_comm employees.commission_pct%type;

BEGIN
SELECT MAX(commission_pct) INTO max_comm
FROM employees;
RETURN (comm BETWEEN 0.0 AND max_comm);

END validate;
PROCEDURE reset_comm (new_comm NUMBER) IS BEGIN
IF validate(new_comm) THEN
std_comm := new_comm; -- reset public var

ELSE RAISE_APPLICATION_ERROR(
-20210, 'Bad Commission');

END IF;
END reset_comm;

END comm_pkg;

Copyright © 2006, Oracle. All rights reserved.

Invoking Package Subprograms

• Invoke a function within the same package:

• Invoke a package procedure from iSQL*Plus:

• Invoke a package procedure in a different schema:

CREATE OR REPLACE PACKAGE BODY comm_pkg IS ...
PROCEDURE reset_comm(new_comm NUMBER) IS
BEGIN
IF validate(new_comm) THEN
std_comm := new_comm;

ELSE ...
END IF;

END reset_comm;
END comm_pkg;

EXECUTE comm_pkg.reset_comm(0.15)

EXECUTE scott.comm_pkg.reset_comm(0.15)

Copyright © 2006, Oracle. All rights reserved.

Creating and Using Bodiless Packages

CREATE OR REPLACE PACKAGE global_consts IS
mile_2_kilo CONSTANT NUMBER := 1.6093;
kilo_2_mile CONSTANT NUMBER := 0.6214;
yard_2_meter CONSTANT NUMBER := 0.9144;
meter_2_yard CONSTANT NUMBER := 1.0936;

END global_consts;

BEGIN DBMS_OUTPUT.PUT_LINE('20 miles = ' ||
20 * global_consts.mile_2_kilo || ' km');

END;

CREATE FUNCTION mtr2yrd(m NUMBER) RETURN NUMBER IS
BEGIN
RETURN (m * global_consts.meter_2_yard);

END mtr2yrd;
/
EXECUTE DBMS_OUTPUT.PUT_LINE(mtr2yrd(1))

Copyright © 2006, Oracle. All rights reserved.

• To remove the package specification and the
body, use the following syntax:

• To remove the package body, use the following
syntax:

DROP PACKAGE package_name;

Removing Packages

DROP PACKAGE BODY package_name;

Copyright © 2006, Oracle. All rights reserved.

Viewing Packages in the Data Dictionary

The source code for PL/SQL packages is maintained
and is viewable through the USER_SOURCE and
ALL_SOURCE tables in the data dictionary.
• To view the package specification, use:

• To view the package body, use:

SELECT text
FROM user_source
WHERE name = 'COMM_PKG' AND type = 'PACKAGE';

SELECT text
FROM user_source
WHERE name = 'COMM_PKG' AND type = 'PACKAGE BODY';

Copyright © 2006, Oracle. All rights reserved.

Guidelines for Writing Packages

• Construct packages for general use.
• Define the package specification before the body.
• The package specification should contain only

those constructs that you want to be public.
• Place items in the declaration part of the package

body when you must maintain them throughout
a session or across transactions.

• Changes to the package specification require
recompilation of each referencing subprogram.

• The package specification should contain as few
constructs as possible.

Copyright © 2006, Oracle. All rights reserved.

Advantages of Using Packages

• Modularity: Encapsulating related constructs
• Easier maintenance: Keeping logically related

functionality together
• Easier application design: Coding and compiling

the specification and body separately
• Hiding information:

– Only the declarations in the package specification
are visible and accessible to applications.

– Private constructs in the package body are hidden
and inaccessible.

– All coding is hidden in the package body.

Copyright © 2006, Oracle. All rights reserved.

Advantages of Using Packages

• Added functionality: Persistency of variables and
cursors

• Better performance:
– The entire package is loaded into memory when the

package is first referenced.
– There is only one copy in memory for all users.
– The dependency hierarchy is simplified.

• Overloading: Multiple subprograms of the same
name

Copyright © 2006, Oracle. All rights reserved.

Summary

In this lesson, you should have learned how to:
• Improve code organization, management, security,

and performance by using packages
• Create and remove package specifications and

bodies
• Group related procedures and functions together

in a package
• Encapsulate the code in a package body
• Define and use components in bodiless packages
• Change a package body without affecting a

package specification

Copyright © 2006, Oracle. All rights reserved.

Command

CREATE [OR REPLACE] PACKAGE

CREATE [OR REPLACE] PACKAGE
BODY

DROP PACKAGE

DROP PACKAGE BODY

Task

Create (or modify) an existing
package specification.

Create (or modify) an existing
package body.

Remove both the package
specification and package
body.

Remove only the package body.

Summary

Copyright © 2006, Oracle. All rights reserved.

Practice 3: Overview

This practice covers the following topics:
• Creating packages
• Invoking package program units

Copyright © 2006, Oracle. All rights reserved.

Using More Package Concepts

Copyright © 2006, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to do
the following:
• Overload package procedures and functions
• Use forward declarations
• Create an initialization block in a package body
• Manage persistent package data states for the life

of a session
• Use PL/SQL tables and records in packages
• Wrap source code stored in the data dictionary so

that it is not readable

Copyright © 2006, Oracle. All rights reserved.

Overloading Subprograms

The overloading feature in PL/SQL:
• Enables you to create two or more subprograms

with the same name
• Requires that the subprogram’s formal parameters

differ in number, order, or data type family
• Enables you to build flexible ways for invoking

subprograms with different data
• Provides a way to extend functionality without

loss of existing code
Note: Overloading can be done with local
subprograms, package subprograms, and type
methods, but not with stand-alone subprograms.

Copyright © 2006, Oracle. All rights reserved.

CREATE OR REPLACE PACKAGE dept_pkg IS

PROCEDURE add_department(deptno NUMBER,
name VARCHAR2 := 'unknown', loc NUMBER := 1700);

PROCEDURE add_department(

name VARCHAR2 := 'unknown', loc NUMBER := 1700);

END dept_pkg;

/

Overloading: Example

Copyright © 2006, Oracle. All rights reserved.

CREATE OR REPLACE PACKAGE BODY dept_pkg IS
PROCEDURE add_department (deptno NUMBER,

name VARCHAR2:='unknown', loc NUMBER:=1700) IS
BEGIN
INSERT INTO departments(department_id,
department_name, location_id)

VALUES (deptno, name, loc);
END add_department;

PROCEDURE add_department (
name VARCHAR2:='unknown', loc NUMBER:=1700) IS

BEGIN
INSERT INTO departments (department_id,
department_name, location_id)

VALUES (departments_seq.NEXTVAL, name, loc);
END add_department;

END dept_pkg;
/

Overloading: Example

Copyright © 2006, Oracle. All rights reserved.

Overloading and the STANDARD Package

• A package named STANDARD defines the PL/SQL
environment and built-in functions.

• Most built-in functions are overloaded. An
example is the TO_CHAR function:

• A PL/SQL subprogram with the same name as a
built-in subprogram overrides the standard
declaration in the local context, unless you qualify
the built-in subprogram with its package name.

FUNCTION TO_CHAR (p1 DATE) RETURN VARCHAR2;
FUNCTION TO_CHAR (p2 NUMBER) RETURN VARCHAR2;
FUNCTION TO_CHAR (p1 DATE, P2 VARCHAR2) RETURN
VARCHAR2;
FUNCTION TO_CHAR (p1 NUMBER, P2 VARCHAR2) RETURN
VARCHAR2;

Copyright © 2006, Oracle. All rights reserved.

CREATE OR REPLACE PACKAGE BODY forward_pkg IS
PROCEDURE award_bonus(. . .) IS
BEGIN

calc_rating (. . .); --illegal reference

END;

PROCEDURE calc_rating (. . .) IS
BEGIN
...

END;
END forward_pkg;
/

Using Forward Declarations

• Block-structured languages (such as PL/SQL)
must declare identifiers before referencing them.

• Example of a referencing problem:

Copyright © 2006, Oracle. All rights reserved.

CREATE OR REPLACE PACKAGE BODY forward_pkg IS
PROCEDURE calc_rating (...);-- forward declaration

-- Subprograms defined in alphabetical order

PROCEDURE award_bonus(...) IS
BEGIN
calc_rating (...); -- reference resolved!
. . .

END;

PROCEDURE calc_rating (...) IS -- implementation
BEGIN
. . .

END;
END forward_pkg;

Using Forward Declarations

In the package body, a forward declaration is a private
subprogram specification terminated by a semicolon.

Copyright © 2006, Oracle. All rights reserved.

CREATE OR REPLACE PACKAGE taxes IS
tax NUMBER;
... -- declare all public procedures/functions

END taxes;
/
CREATE OR REPLACE PACKAGE BODY taxes IS
... -- declare all private variables
... -- define public/private procedures/functions

BEGIN
SELECT rate_value INTO tax
FROM tax_rates
WHERE rate_name = 'TAX';

END taxes;
/

Package Initialization Block

The block at the end of the package body executes
once and is used to initialize public and private
package variables.

Copyright © 2006, Oracle. All rights reserved.

Using Package Functions in SQL
and Restrictions

• Package functions can be used in SQL
statements.

• Functions called from:
– A query or DML statement must not end the current

transaction, create or roll back to a savepoint, or
alter the system or session

– A query or a parallelized DML statement cannot
execute a DML statement or modify the database

– A DML statement cannot read or modify the table
being changed by that DML statement

Note: A function calling subprograms that break
the preceding restrictions is not allowed.

Copyright © 2006, Oracle. All rights reserved.

CREATE OR REPLACE PACKAGE taxes_pkg IS
FUNCTION tax (value IN NUMBER) RETURN NUMBER;

END taxes_pkg;
/
CREATE OR REPLACE PACKAGE BODY taxes_pkg IS
FUNCTION tax (value IN NUMBER) RETURN NUMBER IS
rate NUMBER := 0.08;

BEGIN
RETURN (value * rate);

END tax;
END taxes_pkg;
/

Package Function in SQL: Example

SELECT taxes_pkg.tax(salary), salary, last_name
FROM employees;

Copyright © 2006, Oracle. All rights reserved.

Persistent State of Packages

The collection of package variables and the values
define the package state. The package state is:
• Initialized when the package is first loaded
• Persistent (by default) for the life of the session

– Stored in the User Global Area (UGA)
– Unique to each session
– Subject to change when package subprograms are

called or public variables are modified
• Not persistent for the session but persistent for

the life of a subprogram call when using PRAGMA
SERIALLY_REUSABLE in the package specification

Copyright © 2006, Oracle. All rights reserved.

Persistent State of Package
Variables: Example

State for: -Scott- -Jones-
Time Events STD MAX STD MAX

Scott> EXECUTE
comm_pkg.reset_comm(0.25)

Jones> INSERT
INTO employees(
last_name,commission_pct)
VALUES('Madonna', 0.8);

Jones> EXECUTE
comm_pkg.reset_comm (0.5)
Scott> EXECUTE
comm_pkg.reset_comm(0.6)

Err –20210 'Bad Commission'
Jones> ROLLBACK;
EXIT ...
EXEC comm_pkg.reset_comm(0.2)

9:00

9:30

9:35

10:00

11:00
11:01
12:00

0.4

0.4

0.4

0.4
0.4
0.4
0.4

-

0.1
0.5

0.5
0.5
-
0.2

0.4

0.8

0.8

0.8
0.4
0.4
0.4

0.10
0.25

0.25

0.25

0.25
0.25
0.25
0.25

Copyright © 2006, Oracle. All rights reserved.

CREATE OR REPLACE PACKAGE BODY curs_pkg IS
CURSOR c IS SELECT employee_id FROM employees;
PROCEDURE open IS
BEGIN
IF NOT c%ISOPEN THEN OPEN c; END IF;

END open;
FUNCTION next(n NUMBER := 1) RETURN BOOLEAN IS
emp_id employees.employee_id%TYPE;

BEGIN
FOR count IN 1 .. n LOOP
FETCH c INTO emp_id;
EXIT WHEN c%NOTFOUND;
DBMS_OUTPUT.PUT_LINE('Id: ' ||(emp_id));

END LOOP;
RETURN c%FOUND;

END next;
PROCEDURE close IS BEGIN
IF c%ISOPEN THEN CLOSE c; END IF;

END close;
END curs_pkg;

Persistent State of a Package Cursor

Copyright © 2006, Oracle. All rights reserved.

Executing CURS_PKG

SET SERVEROUTPUT ON
EXECUTE curs_pkg.open
DECLARE
more BOOLEAN := curs_pkg.next(3);

BEGIN
IF NOT more THEN
curs_pkg.close;

END IF;
END;
/
RUN -- repeats execution on the anonymous block
EXECUTE curs_pkg.close

Copyright © 2006, Oracle. All rights reserved.

Using PL/SQL Tables
of Records in Packages

CREATE OR REPLACE PACKAGE BODY emp_pkg IS
PROCEDURE get_employees(emps OUT emp_table_type) IS

i BINARY_INTEGER := 0;
BEGIN

FOR emp_record IN (SELECT * FROM employees)
LOOP

emps(i) := emp_record;
i:= i+1;

END LOOP;
END get_employees;

END emp_pkg;
/

CREATE OR REPLACE PACKAGE emp_pkg IS
TYPE emp_table_type IS TABLE OF employees%ROWTYPE

INDEX BY BINARY_INTEGER;
PROCEDURE get_employees(emps OUT emp_table_type);

END emp_pkg;
/

Copyright © 2006, Oracle. All rights reserved.

PL/SQL Wrapper

• The PL/SQL wrapper is a stand-alone utility that
hides application internals by converting PL/SQL
source code into portable object code.

• Wrapping has the following features:
– Platform independence
– Dynamic loading
– Dynamic binding
– Dependency checking
– Normal importing and exporting when invoked

Copyright © 2006, Oracle. All rights reserved.

Running the Wrapper

The command-line syntax is:

• The INAME argument is required.
• The default extension for the input file is .sql,

unless it is specified with the name.
• The ONAME argument is optional.
• The default extension for output file is .plb,

unless specified with the ONAME argument.
Examples:

WRAP INAME=input_file_name [ONAME=output_file_name]

WRAP INAME=demo_04_hello.sql
WRAP INAME=demo_04_hello
WRAP INAME=demo_04_hello.sql ONAME=demo_04_hello.plb

Copyright © 2006, Oracle. All rights reserved.

Results of Wrapping

• Original PL/SQL source code in input file:

• Wrapped code in output file:

CREATE PACKAGE banking IS
min_bal := 100;
no_funds EXCEPTION;

...
END banking;
/

CREATE PACKAGE banking
wrapped

012abc463e ...

/

Copyright © 2006, Oracle. All rights reserved.

Guidelines for Wrapping

• You must wrap only the package body, not the
package specification.

• The wrapper can detect syntactic errors but
cannot detect semantic errors.

• The output file should not be edited. You maintain
the original source code and wrap again as
required.

Copyright © 2006, Oracle. All rights reserved.

Summary

In this lesson, you should have learned how to:
• Create and call overloaded subprograms
• Use forward declarations for subprograms
• Write package initialization blocks
• Maintain persistent package state
• Use the PL/SQL wrapper to wrap code

Copyright © 2006, Oracle. All rights reserved.

Practice 4: Overview

This practice covers the following topics:
• Using overloaded subprograms
• Creating a package initialization block
• Using a forward declaration
• Using the WRAP utility to prevent the source code

from being deciphered by humans

Copyright © 2006, Oracle. All rights reserved.

Using Oracle-Supplied Packages
in Application Development

Copyright © 2006, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to do
the following:
• Describe how the DBMS_OUTPUT package works
• Use UTL_FILE to direct output to operating

system files
• Use the HTP package to generate a simple Web

page
• Describe the main features of UTL_MAIL
• Call the DBMS_SCHEDULER package to schedule

PL/SQL code for execution

Copyright © 2006, Oracle. All rights reserved.

Using Oracle-Supplied Packages

The Oracle-supplied packages:
• Are provided with the Oracle server
• Extend the functionality of the database
• Enable access to certain SQL features that are

normally restricted for PL/SQL
For example, the DBMS_OUTPUT package was originally
designed to debug PL/SQL programs.

Copyright © 2006, Oracle. All rights reserved.

List of Some Oracle-Supplied Packages

Here is an abbreviated list of some Oracle-supplied
packages:
• DBMS_ALERT

• DBMS_LOCK

• DBMS_SESSION

• DBMS_OUTPUT

• HTP

• UTL_FILE

• UTL_MAIL

• DBMS_SCHEDULER

Copyright © 2006, Oracle. All rights reserved.

How the DBMS_OUTPUT Package Works

The DBMS_OUTPUT package enables you to send
messages from stored subprograms and triggers.
• PUT and PUT_LINE place text in the buffer.
• GET_LINE and GET_LINES read the buffer.
• Messages are not sent until the sender completes.
• Use SET SERVEROUTPUT ON to display messages in

iSQL*Plus.

PUT_LINE

GET_LINE

PUT
NEW_LINE

GET_LINES

SET SERVEROUT ON [SIZE n]
EXEC proc Buffer

Output

Copyright © 2006, Oracle. All rights reserved.

Interacting with Operating System Files

The UTL_FILE package extends PL/SQL programs to
read and write operating system text files. UTL_FILE:
• Provides a restricted version of operating system

stream file I/O for text files
• Can access files in operating system directories

defined by a CREATE DIRECTORY statement. You
can also use the utl_file_dir database
parameter.

EXEC proc

Operating system fileUTL_FILE

CREATE DIRECTORY
my_dir AS '/dir'

Copyright © 2006, Oracle. All rights reserved.

Yes

No

Close the
text file

File Processing Using the
UTL_FILE Package

• Reading a file:

• Writing or appending to a file:

Get lines from
the text file

Put lines into
the text file

Open for
reading

Open for
write/append

More to
read?

Yes

No
More to
write?

f:=FOPEN(dir,file,'r')

f:=FOPEN(dir,file,'w')

f:=FOPEN(dir,file,'a')

GET_LINE(f,buf,len)

PUT(f,buf)
PUT_LINE(f,buf) FCLOSE(f)

Copyright © 2006, Oracle. All rights reserved.

Exceptions in the UTL_FILE Package

You may have to handle one of these exceptions when
using UTL_FILE subprograms:
• INVALID_PATH

• INVALID_MODE

• INVALID_FILEHANDLE

• INVALID_OPERATION

• READ_ERROR

• WRITE_ERROR

• INTERNAL_ERROR

Other exceptions not in the UTL_FILE package are:
• NO_DATA_FOUND and VALUE_ERROR

Copyright © 2006, Oracle. All rights reserved.

FUNCTION FOPEN (location IN VARCHAR2,
filename IN VARCHAR2,
open_mode IN VARCHAR2)

RETURN UTL_FILE.FILE_TYPE;

FUNCTION IS_OPEN (file IN FILE_TYPE)
RETURN BOOLEAN;

FOPEN and IS_OPEN Function Parameters

Example:
CREATE PROCEDURE read_file(dir VARCHAR2, filename
VARCHAR2) IS file UTL_FILE.FILE_TYPE;
...
BEGIN
...
IF NOT UTL_FILE.IS_OPEN(file) THEN
file := UTL_FILE.FOPEN (dir, filename, 'R');
...
END IF;

END read_file;

Copyright © 2006, Oracle. All rights reserved.

CREATE OR REPLACE PROCEDURE sal_status(

dir IN VARCHAR2, filename IN VARCHAR2) IS

file UTL_FILE.FILE_TYPE;

CURSOR empc IS

SELECT last_name, salary, department_id

FROM employees ORDER BY department_id;

newdeptno employees.department_id%TYPE;

olddeptno employees.department_id%TYPE := 0;

BEGIN

file:= UTL_FILE.FOPEN (dir, filename, 'w');

UTL_FILE.PUT_LINE(file,

'REPORT: GENERATED ON ' || SYSDATE);

UTL_FILE.NEW_LINE (file); ...

Using UTL_FILE: Example

Copyright © 2006, Oracle. All rights reserved.

FOR emp_rec IN empc LOOP
IF emp_rec.department_id <> olddeptno THEN
UTL_FILE.PUT_LINE (file,
'DEPARTMENT: ' || emp_rec.department_id);

UTL_FILE.NEW_LINE (file);
END IF;
UTL_FILE.PUT_LINE (file,

' EMPLOYEE: ' || emp_rec.last_name ||
' earns: ' || emp_rec.salary);

olddeptno := emp_rec.department_id;
UTL_FILE.NEW_LINE (file);

END LOOP;
UTL_FILE.PUT_LINE(file,'*** END OF REPORT ***');
UTL_FILE.FCLOSE (file);

EXCEPTION
WHEN UTL_FILE.INVALID_FILEHANDLE THEN
RAISE_APPLICATION_ERROR(-20001,'Invalid File.');

WHEN UTL_FILE.WRITE_ERROR THEN
RAISE_APPLICATION_ERROR (-20002, 'Unable to

write to file');
END sal_status;
/

Using UTL_FILE: Example

Copyright © 2006, Oracle. All rights reserved.

Generating Web Pages with the HTP
Package

• The HTP package procedures generate HTML tags.
• The HTP package is used to generate HTML

documents dynamically and can be invoked from:
– A browser using Oracle HTTP Server and PL/SQL

Gateway (mod_plsql) services
– An iSQL*Plus script to display HTML output

Web client

Oracle HTTP
Server

Buffer

SQL script

Generated
HTML

mod_plsql

Oracle
database

BufferHTP

Copyright © 2006, Oracle. All rights reserved.

Using the HTP Package Procedures

• Generate one or more HTML tags. For example:

• Are used to create a well-formed HTML document:

htp.bold('Hello'); -- Hello
htp.print('Hi World'); -- Hi World

BEGIN -- Generates:
htp.htmlOpen; --------->
htp.headOpen; --------->
htp.title('Welcome'); -->
htp.headClose; --------->
htp.bodyOpen; --------->
htp.print('My home page');
htp.bodyClose; --------->
htp.htmlClose; --------->
END;

<HTML>
<HEAD>
<TITLE>Welcome</TITLE>
</HEAD>
<BODY>
My home page
</BODY>
</HTML>

Copyright © 2006, Oracle. All rights reserved.

Creating an HTML File with iSQL*Plus

To create an HTML file with iSQL*Plus, perform the
following steps:
1. Create a SQL script with the following commands:

2. Load and execute the script in iSQL*Plus,
supplying values for substitution variables.

3. Select, copy, and paste the HTML text that is
generated in the browser to an HTML file.

4. Open the HTML file in a browser.

SET SERVEROUTPUT ON
ACCEPT procname PROMPT "Procedure: "
EXECUTE &procname
EXECUTE owa_util.showpage
UNDEFINE proc

Copyright © 2006, Oracle. All rights reserved.

Using UTL_MAIL

The UTL_MAIL package:
• Is a utility for managing e-mail that includes such

commonly used e-mail features as attachments,
CC, BCC, and return receipt

• Requires the SMTP_OUT_SERVER database
initialization parameter to be set

• Provides the following procedures:
– SEND for messages without attachments
– SEND_ATTACH_RAW for messages with binary

attachments
– SEND_ATTACH_VARCHAR2 for messages with text

attachments

Copyright © 2006, Oracle. All rights reserved.

Installing and Using UTL_MAIL

• As SYSDBA, using iSQL*Plus:
– Set the SMTP_OUT_SERVER (requires DBMS restart).

– Install the UTL_MAIL package.

• As a developer, invoke a UTL_MAIL procedure:

ALTER SYSTEM SET SMTP_OUT_SERVER='smtp.server.com'
SCOPE=SPFILE

@?/rdbms/admin/utlmail.sql
@?/rdbms/admin/prvtmail.plb

BEGIN
UTL_MAIL.SEND('otn@oracle.com','user@oracle.com',
message => 'For latest downloads visit OTN',
subject => 'OTN Newsletter');

END;

Copyright © 2006, Oracle. All rights reserved.

Sending E-Mail with a Binary Attachment

Use the UTL_MAIL.SEND_ATTACH_RAW procedure:
CREATE OR REPLACE PROCEDURE send_mail_logo IS
BEGIN
UTL_MAIL.SEND_ATTACH_RAW(
sender => 'me@oracle.com',
recipients => 'you@somewhere.net',
message =>
'<HTML><BODY>See attachment</BODY></HTML>',

subject => 'Oracle Logo',
mime_type => 'text/html'
attachment => get_image('oracle.gif'),
att_inline => true,
att_mime_type => 'image/gif',
att_filename => 'oralogo.gif');

END;
/

Copyright © 2006, Oracle. All rights reserved.

Sending E-Mail with a Text Attachment

Use the UTL_MAIL.SEND_ATTACH_VARCHAR2
procedure:
CREATE OR REPLACE PROCEDURE send_mail_file IS
BEGIN
UTL_MAIL.SEND_ATTACH_VARCHAR2(
sender => 'me@oracle.com',
recipients => 'you@somewhere.net',
message =>
'<HTML><BODY>See attachment</BODY></HTML>',

subject => 'Oracle Notes',
mime_type => 'text/html'
attachment => get_file('notes.txt'),
att_inline => false,
att_mime_type => 'text/plain',
att_filename => 'notes.txt');

END;
/

Copyright © 2006, Oracle. All rights reserved.

DBMS_SCHEDULER Package

The database Scheduler comprises several
components to enable jobs to be run. Use the
DBMS_SCHEDULER package to create each job with:
• A unique job name
• A program (“what” should be executed)
• A schedule (“when” it should run)

Program

Window

Arguments Arguments

Job class

ScheduleJob

Copyright © 2006, Oracle. All rights reserved.

Creating a Job

A job can be created in several ways by using a
combination of in-line parameters, named Programs,
and named Schedules. You can create a job with the
CREATE_JOB procedure by:
• Using in-line information with the “what” and the

schedule specified as parameters
• Using a named (saved) program and specifying

the schedule in-line
• Specifying what should be done in-line and using

a named Schedule
• Using named Program and Schedule components

Note: Creating a job requires the CREATE JOB system
privilege.

Copyright © 2006, Oracle. All rights reserved.

Creating a Job with In-Line Parameters

Specify the type of code, code, start time, and
frequency of the job to be run in the arguments of the
CREATE_JOB procedure.
Here is an example that schedules a PL/SQL block
every hour:
BEGIN
DBMS_SCHEDULER.CREATE_JOB(
job_name => 'JOB_NAME',
job_type => 'PLSQL_BLOCK',
job_action => 'BEGIN ...; END;',
start_date => SYSTIMESTAMP,
repeat_interval=>'FREQUENCY=HOURLY;INTERVAL=1',
enabled => TRUE);

END;
/

Copyright © 2006, Oracle. All rights reserved.

Creating a Job Using a Program

• Use CREATE_PROGRAM to create a program:

• Use overloaded CREATE_JOB procedure with its
program_name parameter:

BEGIN
DBMS_SCHEDULER.CREATE_JOB('JOB_NAME',
program_name => 'PROG_NAME',
start_date => SYSTIMESTAMP,
repeat_interval => 'FREQ=DAILY',
enabled => TRUE);

END;

BEGIN
DBMS_SCHEDULER.CREATE_PROGRAM(
program_name => 'PROG_NAME',
program_type => 'PLSQL_BLOCK',
program_action => 'BEGIN ...; END;');

END;

Copyright © 2006, Oracle. All rights reserved.

Creating a Job for a Program with
Arguments

• Create a program:

• Define an argument:

• Create a job specifying the number of arguments:

DBMS_SCHEDULER.DEFINE_PROGRAM_ARGUMENT(
program_name => 'PROG_NAME',
argument_name => 'DEPT_ID',
argument_position=> 1, argument_type=> 'NUMBER',
default_value => '50');

DBMS_SCHEDULER.CREATE_PROGRAM(
program_name => 'PROG_NAME',
program_type => 'STORED_PROCEDURE',
program_action => 'EMP_REPORT');

DBMS_SCHEDULER.CREATE_JOB('JOB_NAME', program_name
=> 'PROG_NAME', start_date => SYSTIMESTAMP,
repeat_interval => 'FREQ=DAILY',
number_of_arguments => 1, enabled => TRUE);

Copyright © 2006, Oracle. All rights reserved.

Creating a Job Using a Schedule

• Use CREATE_SCHEDULE to create a schedule:

• Use CREATE_JOB by referencing the schedule in
the schedule_name parameter:

BEGIN
DBMS_SCHEDULER.CREATE_JOB('JOB_NAME',
schedule_name => 'SCHED_NAME',
job_type => 'PLSQL_BLOCK',
job_action => 'BEGIN ...; END;',
enabled => TRUE);

END;

BEGIN
DBMS_SCHEDULER.CREATE_SCHEDULE('SCHED_NAME',
start_date => SYSTIMESTAMP,
repeat_interval => 'FREQ=DAILY',
end_date => SYSTIMESTAMP +15);

END;

Copyright © 2006, Oracle. All rights reserved.

Setting the Repeat Interval for a Job

• Using a calendaring expression:

• Using a PL/SQL expression:

repeat_interval=> 'FREQ=HOURLY; INTERVAL=4'
repeat_interval=> 'FREQ=DAILY'
repeat_interval=> 'FREQ=MINUTELY;INTERVAL=15'
repeat_interval=> 'FREQ=YEARLY;

BYMONTH=MAR,JUN,SEP,DEC;
BYMONTHDAY=15'

repeat_interval=> 'SYSDATE + 36/24'
repeat_interval=> 'SYSDATE + 1'
repeat_interval=> 'SYSDATE + 15/(24*60)'

Copyright © 2006, Oracle. All rights reserved.

Creating a Job Using a Named Program
and Schedule

• Create a named program called PROG_NAME by
using the CREATE_PROGRAM procedure.

• Create a named schedule called SCHED_NAME by
using the CREATE_SCHEDULE procedure.

• Create a job referencing the named program and
schedule:

BEGIN
DBMS_SCHEDULER.CREATE_JOB('JOB_NAME',
program_name => 'PROG_NAME',
schedule_name => 'SCHED_NAME',
enabled => TRUE);

END;
/

Copyright © 2006, Oracle. All rights reserved.

Managing Jobs

• Run a job:

• Stop a job:

• Drop a job even if it is currently running:

DBMS_SCHEDULER.RUN_JOB('SCHEMA.JOB_NAME');

DBMS_SCHEDULER.STOP_JOB('SCHEMA.JOB_NAME');

DBMS_SCHEDULER.DROP_JOB('JOB_NAME', TRUE);

Copyright © 2006, Oracle. All rights reserved.

Data Dictionary Views

• [DBA | ALL | USER]_SCHEDULER_JOBS

• [DBA | ALL | USER]_SCHEDULER_RUNNING_JOBS

• [DBA | ALL]_SCHEDULER_JOB_CLASSES

• [DBA | ALL | USER]_SCHEDULER_JOB_LOG

• [DBA | ALL | USER]_SCHEDULER_JOB_RUN_DETAILS

• [DBA | ALL | USER]_SCHEDULER_PROGRAMS

Copyright © 2006, Oracle. All rights reserved.

Summary

In this lesson, you should have learned how to:
• Use various preinstalled packages that are

provided by the Oracle server
• Use the following packages:

– DBMS_OUTPUT to buffer and display text
– UTL_FILE to write operating system text files
– HTP to generate HTML documents
– UTL_MAIL to send messages with attachments
– DBMS_SCHEDULER to automate processing

• Create packages individually or by using the
catproc.sql script

Copyright © 2006, Oracle. All rights reserved.

Practice 5: Overview

This practice covers the following topics:
• Using UTL_FILE to generate a text report
• Using HTP to generate a Web page report
• Using DBMS_SCHEDULER to automate report

processing

Copyright © 2006, Oracle. All rights reserved.

Dynamic SQL and Metadata

Copyright © 2006, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to do
the following:
• Describe the execution flow of SQL statements
• Build and execute SQL statements dynamically

using Native Dynamic SQL (that is, with EXECUTE
IMMEDIATE statements)

• Compare Native Dynamic SQL with the DBMS_SQL
package approach

• Use the DBMS_METADATA package to obtain
metadata from the data dictionary as XML or
creation DDL that can be used to re-create the
objects

Copyright © 2006, Oracle. All rights reserved.

Execution Flow of SQL

• All SQL statements go through various stages:
– Parse
– Bind
– Execute
– Fetch

• Some stages may not be relevant for all
statements—for example, the fetch phase is
applicable to queries.

Note: For embedded SQL statements (SELECT, DML,
COMMIT, and ROLLBACK), the parse and bind phases
are done at compile time. For dynamic SQL
statements, all phases are performed at run time.

Copyright © 2006, Oracle. All rights reserved.

Dynamic SQL

Use dynamic SQL to create a SQL statement whose
structure may change during run time. Dynamic SQL:
• Is constructed and stored as a character string

within the application
• Is a SQL statement with varying column data, or

different conditions with or without placeholders
(bind variables)

• Enables data-definition, data-control, or session-
control statements to be written and executed
from PL/SQL

• Is executed with Native Dynamic SQL statements
or the DBMS_SQL package

Copyright © 2006, Oracle. All rights reserved.

Native Dynamic SQL

• Provides native support for dynamic SQL directly
in the PL/SQL language

• Provides the ability to execute SQL statements
whose structure is unknown until execution time

• Is supported by the following PL/SQL statements:
– EXECUTE IMMEDIATE

– OPEN-FOR

– FETCH

– CLOSE

Copyright © 2006, Oracle. All rights reserved.

Use the EXECUTE IMMEDIATE statement for Native
Dynamic SQL or PL/SQL anonymous blocks:

• INTO is used for single-row queries and specifies
the variables or records into which column values
are retrieved.

• USING is used to hold all bind arguments. The
default parameter mode is IN, if not specified.

EXECUTE IMMEDIATE dynamic_string
[INTO {define_variable

[, define_variable] ... | record}]
[USING [IN|OUT|IN OUT] bind_argument

[, [IN|OUT|IN OUT] bind_argument] ...];

Using the EXECUTE IMMEDIATE Statement

Copyright © 2006, Oracle. All rights reserved.

Dynamic SQL with a DDL Statement

• Create a table:

• Call example:

CREATE PROCEDURE create_table(
table_name VARCHAR2, col_specs VARCHAR2) IS

BEGIN
EXECUTE IMMEDIATE 'CREATE TABLE '||table_name||

' (' || col_specs || ')';
END;
/

BEGIN
create_table('EMPLOYEE_NAMES',
'id NUMBER(4) PRIMARY KEY, name VARCHAR2(40)');

END;
/

Copyright © 2006, Oracle. All rights reserved.

Dynamic SQL with DML Statements

• Delete rows from any table:

• Insert a row into a table with two columns:

CREATE FUNCTION del_rows(table_name VARCHAR2)
RETURN NUMBER IS
BEGIN
EXECUTE IMMEDIATE 'DELETE FROM '||table_name;
RETURN SQL%ROWCOUNT;

END;

BEGIN DBMS_OUTPUT.PUT_LINE(
del_rows('EMPLOYEE_NAMES')|| ' rows deleted.');

END;

CREATE PROCEDURE add_row(table_name VARCHAR2,
id NUMBER, name VARCHAR2) IS

BEGIN
EXECUTE IMMEDIATE 'INSERT INTO '||table_name||

' VALUES (:1, :2)' USING id, name;
END;

Copyright © 2006, Oracle. All rights reserved.

Dynamic SQL with a Single-Row Query

Example of a single-row query:
CREATE FUNCTION get_emp(emp_id NUMBER)
RETURN employees%ROWTYPE IS
stmt VARCHAR2(200);
emprec employees%ROWTYPE;

BEGIN
stmt := 'SELECT * FROM employees ' ||

'WHERE employee_id = :id';
EXECUTE IMMEDIATE stmt INTO emprec USING emp_id;
RETURN emprec;

END;
/

DECLARE
emprec employees%ROWTYPE := get_emp(100);

BEGIN
DBMS_OUTPUT.PUT_LINE('Emp: '||emprec.last_name);

END;
/

Copyright © 2006, Oracle. All rights reserved.

Dynamic SQL with a Multirow Query

Use OPEN-FOR, FETCH, and CLOSE processing:
CREATE PROCEDURE list_employees(deptid NUMBER) IS
TYPE emp_refcsr IS REF CURSOR;
emp_cv emp_refcsr;
emprec employees%ROWTYPE;
stmt varchar2(200) := 'SELECT * FROM employees';

BEGIN
IF deptid IS NULL THEN OPEN emp_cv FOR stmt;
ELSE
stmt := stmt || ' WHERE department_id = :id';
OPEN emp_cv FOR stmt USING deptid;

END IF;
LOOP
FETCH emp_cv INTO emprec;
EXIT WHEN emp_cv%NOTFOUND;
DBMS_OUTPUT.PUT_LINE(emprec.department_id||

' ' ||emprec.last_name);
END LOOP;
CLOSE emp_cv;

END;

Copyright © 2006, Oracle. All rights reserved.

Declaring Cursor Variables

• Declare a cursor type as REF CURSOR:

• Declare a cursor variable using the cursor type:

CREATE PROCEDURE process_data IS
TYPE ref_ctype IS REF CURSOR; -- weak ref cursor
TYPE emp_ref_ctype IS REF CURSOR -- strong

RETURN employees%ROWTYPE;
:

:
dept_csrvar ref_ctype;
emp_csrvar emp_ref_ctype;

BEGIN
OPEN emp_csrvar FOR SELECT * FROM employees;
OPEN dept_csrvar FOR SELECT * from departments;
-- Then use as normal cursors

END;

Copyright © 2006, Oracle. All rights reserved.

Dynamically Executing a PL/SQL Block

Execute a PL/SQL anonymous block dynamically:
CREATE FUNCTION annual_sal(emp_id NUMBER)
RETURN NUMBER IS
plsql varchar2(200) :=
'DECLARE '||
' emprec employees%ROWTYPE; '||
'BEGIN '||
' emprec := get_emp(:empid); ' ||
' :res := emprec.salary * 12; ' ||
'END;';

result NUMBER;
BEGIN
EXECUTE IMMEDIATE plsql

USING IN emp_id, OUT result;
RETURN result;

END;
/

EXECUTE DBMS_OUTPUT.PUT_LINE(annual_sal(100))

Copyright © 2006, Oracle. All rights reserved.

Using Native Dynamic SQL
to Compile PL/SQL Code

Compile PL/SQL code with the ALTER statement:
• ALTER PROCEDURE name COMPILE

• ALTER FUNCTION name COMPILE

• ALTER PACKAGE name COMPILE SPECIFICATION

• ALTER PACKAGE name COMPILE BODY
CREATE PROCEDURE compile_plsql(name VARCHAR2,
plsql_type VARCHAR2, options VARCHAR2 := NULL) IS
stmt varchar2(200) := 'ALTER '|| plsql_type ||

' '|| name || ' COMPILE';
BEGIN
IF options IS NOT NULL THEN
stmt := stmt || ' ' || options;

END IF;
EXECUTE IMMEDIATE stmt;
END;
/

Copyright © 2006, Oracle. All rights reserved.

Using the DBMS_SQL Package

The DBMS_SQL package is used to write dynamic SQL
in stored procedures and to parse DDL statements.
Some of the procedures and functions of the package
include:
• OPEN_CURSOR

• PARSE

• BIND_VARIABLE

• EXECUTE

• FETCH_ROWS

• CLOSE_CURSOR

Copyright © 2006, Oracle. All rights reserved.

CREATE table temp_emp as select * from employees;
BEGIN
DBMS_OUTPUT.PUT_LINE('Rows Deleted: ' ||
delete_all_rows('temp_emp'));
END;
/

CREATE OR REPLACE FUNCTION delete_all_rows
(table_name VARCHAR2) RETURN NUMBER IS
csr_id INTEGER;
rows_del NUMBER;

BEGIN
csr_id := DBMS_SQL.OPEN_CURSOR;
DBMS_SQL.PARSE(csr_id,
'DELETE FROM '||table_name, DBMS_SQL.NATIVE);

rows_del := DBMS_SQL.EXECUTE (csr_id);
DBMS_SQL.CLOSE_CURSOR(csr_id);
RETURN rows_del;

END;
/

Using DBMS_SQL with a DML Statement
Example of deleting rows:

Copyright © 2006, Oracle. All rights reserved.

Using DBMS_SQL with a
Parameterized DML Statement

CREATE PROCEDURE insert_row (table_name VARCHAR2,
id VARCHAR2, name VARCHAR2, region NUMBER) IS
csr_id INTEGER;
stmt VARCHAR2(200);
rows_added NUMBER;

BEGIN
stmt := 'INSERT INTO '||table_name||

' VALUES (:cid, :cname, :rid)';
csr_id := DBMS_SQL.OPEN_CURSOR;
DBMS_SQL.PARSE(csr_id, stmt, DBMS_SQL.NATIVE);
DBMS_SQL.BIND_VARIABLE(csr_id, ':cid', id);
DBMS_SQL.BIND_VARIABLE(csr_id, ':cname', name);
DBMS_SQL.BIND_VARIABLE(csr_id, ':rid', region);
rows_added := DBMS_SQL.EXECUTE(csr_id);
DBMS_SQL.CLOSE_CURSOR(csr_id);
DBMS_OUTPUT.PUT_LINE(rows_added||' row added');

END;
/

Copyright © 2006, Oracle. All rights reserved.

Comparison of Native Dynamic SQL and
the DBMS_SQL Package

Native Dynamic SQL:
• Is easier to use than DBMS_SQL
• Requires less code than DBMS_SQL
• Enhances performance because the PL/SQL

interpreter provides native support for it
• Supports all types supported by static SQL in

PL/SQL, including user-defined types
• Can fetch rows directly into PL/SQL records

Copyright © 2006, Oracle. All rights reserved.

DBMS_METADATA Package

The DBMS_METADATA package provides a centralized
facility for the extraction, manipulation, and
resubmission of dictionary metadata.

Copyright © 2006, Oracle. All rights reserved.

Metadata API

Processing involves the following steps:
1. Fetch an object’s metadata as XML.
2. Transform the XML in a variety of ways (including

transforming it into SQL DDL).
3. Submit the XML to re-create the object.

Copyright © 2006, Oracle. All rights reserved.

Subprograms in DBMS_METADATA

Returns the text of the queries that will be used by FETCH_xxxGET_QUERY

Enables output parsing and specifies an object attribute to be
parsed and returned

SET_PARSE_ITEM

Specifies a transform that FETCH_xxx applies to the XML
representation of the retrieved objects

ADD_TRANSFORM

Specifies parameters to the XSLT stylesheet identified by
transform_handle

SET_TRANSFORM_PARAM,
SET_REMAP_PARAM

Returns metadata for objects meeting the criteria established by
OPEN, SET_FILTER

FETCH_XXX

Specifies restrictions on the objects to be retrieved such as the
object name or schema

SET_FILTER

Specifies the maximum number of objects to be retrieved in a
single FETCH_xxx call

SET_COUNT

Invalidates the handle returned by OPEN and cleans up the
associated state

CLOSE

Specifies the type of object to be retrieved, the version of its
metadata, and the object model. The return value is an opaque
context handle for the set of objects.

OPEN

DescriptionName

Copyright © 2006, Oracle. All rights reserved.

FETCH_xxx Subprograms

This procedure returns the XML metadata for the
objects as a CLOB in an IN OUT NOCOPY
parameter to avoid expensive LOB copies.

FETCH_XML_CLOB

This function returns the DDL (either to create or to
drop the object) into a predefined nested table.

FETCH_DDL

This function returns the objects (transformed or
not) as a CLOB.

FETCH_CLOB

This function returns the XML metadata for an
object as an XMLType.

FETCH_XML

DescriptionName

Copyright © 2006, Oracle. All rights reserved.

SET_FILTER Procedure

• Syntax:

• Example:

PROCEDURE set_filter
(handle IN NUMBER,

name IN VARCHAR2,
value IN VARCHAR2|BOOLEAN|NUMBER,
object_type_path VARCHAR2

);

...
DBMS_METADATA.SET_FILTER (handle, 'NAME',
'HR');
...

Copyright © 2006, Oracle. All rights reserved.

Filters

There are over 70 filters, which are organized into
object type categories such as:
• Named objects
• Tables
• Objects dependent on tables
• Index
• Dependent objects
• Granted objects
• Table data
• Index statistics
• Constraints
• All object types
• Database export

Copyright © 2006, Oracle. All rights reserved.

Examples of Setting Filters

Set up the filter to fetch the HR schema objects
excluding the object types of functions, procedures,
and packages, as well as any views that contain
PAYROLL in the start of the view name:
DBMS_METADATA.SET_FILTER(handle, 'SCHEMA_EXPR',
'IN (''PAYROLL'', ''HR'')');

DBMS_METADATA.SET_FILTER(handle, 'EXCLUDE_PATH_EXPR',
'=''FUNCTION''');

DBMS_METADATA.SET_FILTER(handle, 'EXCLUDE_PATH_EXPR',
'=''PROCEDURE''');

DBMS_METADATA.SET_FILTER(handle, 'EXCLUDE_PATH_EXPR',
'=''PACKAGE''');

DBMS_METADATA.SET_FILTER(handle, 'EXCLUDE_NAME_EXPR',
'LIKE ''PAYROLL%''', 'VIEW');

Copyright © 2006, Oracle. All rights reserved.

CREATE PROCEDURE example_one IS
h NUMBER; th1 NUMBER; th2 NUMBER;
doc sys.ku$_ddls;

BEGIN
h := DBMS_METADATA.OPEN('SCHEMA_EXPORT');
DBMS_METADATA.SET_FILTER (h,'SCHEMA','HR');
th1 := DBMS_METADATA.ADD_TRANSFORM (h,
'MODIFY', NULL, 'TABLE');

DBMS_METADATA.SET_REMAP_PARAM(th1,
'REMAP_TABLESPACE', 'SYSTEM', 'TBS1');

th2 :=DBMS_METADATA.ADD_TRANSFORM(h, 'DDL');
DBMS_METADATA.SET_TRANSFORM_PARAM(th2,
'SQLTERMINATOR', TRUE);

DBMS_METADATA.SET_TRANSFORM_PARAM(th2,
'REF_CONSTRAINTS', FALSE, 'TABLE');

LOOP
doc := DBMS_METADATA.FETCH_DDL(h);
EXIT WHEN doc IS NULL;

END LOOP;
DBMS_METADATA.CLOSE(h);

END;

Programmatic Use: Example 1

1

3
4

5

6

7

8

2

Copyright © 2006, Oracle. All rights reserved.

Programmatic Use: Example 2

CREATE FUNCTION get_table_md RETURN CLOB IS
h NUMBER; -- returned by 'OPEN'
th NUMBER; -- returned by 'ADD_TRANSFORM'
doc CLOB;
BEGIN
-- specify the OBJECT TYPE
h := DBMS_METADATA.OPEN('TABLE');
-- use FILTERS to specify the objects desired
DBMS_METADATA.SET_FILTER(h,'SCHEMA','HR');
DBMS_METADATA.SET_FILTER(h,'NAME','EMPLOYEES');
-- request to be TRANSFORMED into creation DDL
th := DBMS_METADATA.ADD_TRANSFORM(h,'DDL');
-- FETCH the object
doc := DBMS_METADATA.FETCH_CLOB(h);
-- release resources
DBMS_METADATA.CLOSE(h);
RETURN doc;
END;
/

Copyright © 2006, Oracle. All rights reserved.

Browsing APIs

This function returns metadata for a
dependent object.

GET_DEPENDENT_XXX

This function returns metadata for a
granted object.

GET_GRANTED_XXX

The GET_XML and GET_DDL functions return
metadata for a single named object.

GET_XXX

DescriptionName

DDL or XMLWhere xxx is:

Copyright © 2006, Oracle. All rights reserved.

Browsing APIs: Examples

1. Get the XML representation of HR.EMPLOYEES:

2. Fetch the DDL for all object grants on
HR.EMPLOYEES:

3. Fetch the DDL for all system grants granted to HR:

SELECT DBMS_METADATA.GET_XML
('TABLE', 'EMPLOYEES', 'HR')

FROM dual;

SELECT DBMS_METADATA.GET_GRANTED_DDL
('SYSTEM_GRANT', 'HR')

FROM dual;

SELECT DBMS_METADATA.GET_DEPENDENT_DDL
('OBJECT_GRANT', 'EMPLOYEES', 'HR')

FROM dual;

Copyright © 2006, Oracle. All rights reserved.

BEGIN
DBMS_METADATA.SET_TRANSFORM_PARAM(
DBMS_METADATA.SESSION_TRANSFORM,
'STORAGE', false);

END;
/
SELECT DBMS_METADATA.GET_DDL('TABLE',u.table_name)
FROM user_all_tables u
WHERE u.nested = 'NO'
AND (u.iot_type IS NULL OR u.iot_type = 'IOT');

BEGIN
DBMS_METADATA.SET_TRANSFORM_PARAM(

DBMS_METADATA.SESSION_TRANSFORM, 'DEFAULT'):
END;
/

1

3

2

Browsing APIs: Examples

Copyright © 2006, Oracle. All rights reserved.

Summary

In this lesson, you should have learned how to:
• Explain the execution flow of SQL statements
• Create SQL statements dynamically and execute

them using either Native Dynamic SQL statements
or the DBMS_SQL package

• Recognize the advantages of using Native
Dynamic SQL compared to the DBMS_SQL package

• Use DBMS_METADATA subprograms to
programmatically obtain metadata from the data
dictionary

Copyright © 2006, Oracle. All rights reserved.

Practice 6: Overview

This practice covers the following topics:
• Creating a package that uses Native Dynamic SQL

to create or drop a table and to populate, modify,
and delete rows from a table

• Creating a package that compiles the PL/SQL code
in your schema

• Using DBMS_METADATA to display the statement to
regenerate a PL/SQL subprogram

Copyright © 2006, Oracle. All rights reserved.

Design Considerations for PL/SQL Code

Copyright © 2006, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to do
the following:
• Use package specifications to create standard

constants and exceptions
• Write and call local subprograms
• Set the AUTHID directive to control the run-time

privileges of a subprogram
• Execute subprograms to perform autonomous

transactions
• Use bulk binding and the RETURNING clause with

DML
• Pass parameters by reference using a NOCOPY hint
• Use the PARALLEL ENABLE hint for optimization

Copyright © 2006, Oracle. All rights reserved.

Standardizing Constants and Exceptions

Constants and exceptions are typically implemented
using a bodiless package (that is, in a package
specification).
• Standardizing helps to:

– Develop programs that are consistent
– Promote a higher degree of code reuse
– Ease code maintenance
– Implement company standards across entire

applications
• Start with standardization of:

– Exception names
– Constant definitions

Copyright © 2006, Oracle. All rights reserved.

Standardizing Exceptions

Create a standardized error-handling package that
includes all named and programmer-defined
exceptions to be used in the application.

CREATE OR REPLACE PACKAGE error_pkg IS

fk_err EXCEPTION;

seq_nbr_err EXCEPTION;

PRAGMA EXCEPTION_INIT (fk_err, -2292);

PRAGMA EXCEPTION_INIT (seq_nbr_err, -2277);

...

END error_pkg;

/

Copyright © 2006, Oracle. All rights reserved.

Standardizing Exception Handling

Consider writing a subprogram for common exception
handling to:
• Display errors based on SQLCODE and SQLERRM

values for exceptions
• Track run-time errors easily by using parameters

in your code to identify:
– The procedure in which the error occurred
– The location (line number) of the error
– RAISE_APPLICATION_ERROR using stack trace

capabilities, with the third argument set to TRUE

Copyright © 2006, Oracle. All rights reserved.

Standardizing Constants

For programs that use local variables whose values
should not change:
• Convert the variables to constants to reduce

maintenance and debugging
• Create one central package specification and

place all constants in it
CREATE OR REPLACE PACKAGE constant_pkg IS

c_order_received CONSTANT VARCHAR(2) := 'OR';

c_order_shipped CONSTANT VARCHAR(2) := 'OS';

c_min_sal CONSTANT NUMBER(3) := 900;

...

END constant_pkg;

Copyright © 2006, Oracle. All rights reserved.

Local Subprograms

• A local subprogram is a PROCEDURE or FUNCTION
defined in the declarative section.

• The local subprogram must be defined at the end
of the declarative section.

CREATE PROCEDURE employee_sal(id NUMBER) IS
emp employees%ROWTYPE;
FUNCTION tax(salary VARCHAR2) RETURN NUMBER IS
BEGIN
RETURN salary * 0.825;

END tax;
BEGIN

SELECT * INTO emp
FROM EMPLOYEES WHERE employee_id = id;
DBMS_OUTPUT.PUT_LINE('Tax: '||tax(emp.salary));

END;

Copyright © 2006, Oracle. All rights reserved.

Definer’s Rights Versus Invoker’s Rights

Definer’s rights:
• Used prior to Oracle8i
• Programs execute with

the privileges of the
creating user.

• User does not require
privileges on underlying
objects that the
procedure accesses.
User requires privilege
only to execute a
procedure.

Invoker’s rights:
• Introduced in Oracle8i
• Programs execute with

the privileges of the
calling user.

• User requires privileges
on the underlying
objects that the
procedure accesses.

Copyright © 2006, Oracle. All rights reserved.

Specifying Invoker’s Rights

Set AUTHID to CURRENT_USER:

When used with stand-alone functions, procedures, or
packages:
• Names used in queries, DML, Native Dynamic

SQL, and DBMS_SQL package are resolved in the
invoker’s schema

• Calls to other packages, functions, and
procedures are resolved in the definer’s schema

CREATE OR REPLACE PROCEDURE add_dept(
id NUMBER, name VARCHAR2) AUTHID CURRENT_USER IS

BEGIN
INSERT INTO departments
VALUES (id,name,NULL,NULL);

END;

Copyright © 2006, Oracle. All rights reserved.

PROCEDURE proc1 IS
emp_id NUMBER;

BEGIN
emp_id := 1234;
COMMIT;
INSERT ...
proc2;
DELETE ...
COMMIT;

END proc1;

PROCEDURE proc2 IS

PRAGMA

AUTONOMOUS_TRANSACTION;

dept_id NUMBER := 90;

BEGIN

UPDATE ...

INSERT ...

COMMIT; -- Required

END proc2;

Autonomous Transactions

• Are independent transactions started by another
main transaction.

• Are specified with PRAGMA
AUTONOMOUS_TRANSACTION

1

7

2
3
4

5

6

Copyright © 2006, Oracle. All rights reserved.

Features of Autonomous Transactions

Autonomous transactions:
• Are independent of the main transaction
• Suspend the calling transaction until it is

completed
• Are not nested transactions
• Do not roll back if the main transaction rolls back
• Enable the changes to become visible to other

transactions upon a commit
• Are demarcated (started and ended) by individual

subprograms and not by nested or anonymous
PL/SQL blocks

Copyright © 2006, Oracle. All rights reserved.

Using Autonomous Transactions

Example:
PROCEDURE bank_trans(cardnbr NUMBER,loc NUMBER) IS
BEGIN
log_usage (cardnbr, loc);
INSERT INTO txn VALUES (9001, 1000,...);

END bank_trans;

PROCEDURE log_usage (card_id NUMBER, loc NUMBER)
IS
PRAGMA AUTONOMOUS_TRANSACTION;

BEGIN
INSERT INTO usage
VALUES (card_id, loc);
COMMIT;

END log_usage;

Copyright © 2006, Oracle. All rights reserved.

CREATE PROCEDURE update_salary(emp_id NUMBER) IS
name employees.last_name%TYPE;
new_sal employees.salary%TYPE;

BEGIN
UPDATE employees
SET salary = salary * 1.1

WHERE employee_id = emp_id
RETURNING last_name, salary INTO name, new_sal;

END update_salary;
/

RETURNING Clause

The RETURNING clause:
• Improves performance by returning column values

with INSERT, UPDATE, and DELETE statements
• Eliminates the need for a SELECT statement

Copyright © 2006, Oracle. All rights reserved.

SQL engine

Bulk Binding

Binds whole arrays of values in a single operation,
rather than using a loop to perform a FETCH, INSERT,
UPDATE, and DELETE operation multiple times

PL/SQL run-time engine

SQL
statement
executor

Procedural
statement
executor

PL/SQL block

FORALL j IN 1..1000
INSERT (id,

dates)
VALUES (ids(j),

dates(j));
...

Copyright © 2006, Oracle. All rights reserved.

Using Bulk Binding

Keywords to support bulk binding:
• The FORALL keyword instructs the PL/SQL engine

to bulk bind input collections before sending them
to the SQL engine.

• The BULK COLLECT keyword instructs the SQL
engine to bulk bind output collections before
returning them to the PL/SQL engine.

FORALL index IN lower_bound .. upper_bound
[SAVE EXCEPTIONS]
sql_statement;

... BULK COLLECT INTO
collection_name[,collection_name] ...

Copyright © 2006, Oracle. All rights reserved.

Bulk Binding FORALL: Example

CREATE PROCEDURE raise_salary(percent NUMBER) IS
TYPE numlist IS TABLE OF NUMBER
INDEX BY BINARY_INTEGER;

id numlist;
BEGIN
id(1) := 100; id(2) := 102;
id(3) := 104; id(4) := 110;
-- bulk-bind the PL/SQL table
FORALL i IN id.FIRST .. id.LAST
UPDATE employees
SET salary = (1 + percent/100) * salary
WHERE manager_id = id(i);

END;
/

EXECUTE raise_salary(10)

Copyright © 2006, Oracle. All rights reserved.

CREATE PROCEDURE get_departments(loc NUMBER) IS
TYPE dept_tabtype IS
TABLE OF departments%ROWTYPE;

depts dept_tabtype;
BEGIN
SELECT * BULK COLLECT INTO depts
FROM departments
WHERE location_id = loc;
FOR I IN 1 .. depts.COUNT LOOP
DBMS_OUTPUT.PUT_LINE(depts(i).department_id
||' '||depts(i).department_name);

END LOOP;
END;

Using BULK COLLECT INTO with Queries

The SELECT statement has been enhanced to support
the BULK COLLECT INTO syntax.
Example:

Copyright © 2006, Oracle. All rights reserved.

Using BULK COLLECT INTO with Cursors

The FETCH statement has been enhanced to support
the BULK COLLECT INTO syntax.
Example:
CREATE PROCEDURE get_departments(loc NUMBER) IS
CURSOR dept_csr IS SELECT * FROM departments

WHERE location_id = loc;
TYPE dept_tabtype IS TABLE OF dept_csr%ROWTYPE;
depts dept_tabtype;

BEGIN
OPEN dept_csr;
FETCH dept_csr BULK COLLECT INTO depts;
CLOSE dept_csr;

FOR I IN 1 .. depts.COUNT LOOP
DBMS_OUTPUT.PUT_LINE(depts(i).department_id
||' '||depts(i).department_name);

END LOOP;
END;

Copyright © 2006, Oracle. All rights reserved.

CREATE PROCEDURE raise_salary(rate NUMBER) IS
TYPE emplist IS TABLE OF NUMBER;
TYPE numlist IS TABLE OF employees.salary%TYPE
INDEX BY BINARY_INTEGER;

emp_ids emplist := emplist(100,101,102,104);
new_sals numlist;

BEGIN
FORALL i IN emp_ids.FIRST .. emp_ids.LAST
UPDATE employees
SET commission_pct = rate * salary

WHERE employee_id = emp_ids(i)
RETURNING salary BULK COLLECT INTO new_sals;

FOR i IN 1 .. new_sals.COUNT LOOP ...
END;

Using BULK COLLECT INTO
with a RETURNING Clause

Example:

Copyright © 2006, Oracle. All rights reserved.

The NOCOPY hint:
• Is a request to the PL/SQL compiler to pass OUT

and IN OUT parameters by reference rather than by
value

• Enhances performance by reducing overhead
when passing parameters

Using the NOCOPY Hint

DECLARE
TYPE emptabtype IS TABLE OF employees%ROWTYPE;
emp_tab emptabtype;
PROCEDURE populate(tab IN OUT NOCOPY emptabtype)
IS BEGIN ... END;

BEGIN
populate(emp_tab);

END;
/

Copyright © 2006, Oracle. All rights reserved.

Effects of the NOCOPY Hint

• If the subprogram exits with an exception that is
not handled:
– You cannot rely on the values of the actual

parameters passed to a NOCOPY parameter
– Any incomplete modifications are not “rolled back”

• The remote procedure call (RPC) protocol enables
you to pass parameters only by value.

Copyright © 2006, Oracle. All rights reserved.

NOCOPY Hint Can Be Ignored

The NOCOPY hint has no effect if:
• The actual parameter:

– Is an element of an index-by table
– Is constrained (for example, by scale or NOT NULL)
– And formal parameter are records, where one or

both records were declared by using %ROWTYPE or
%TYPE, and constraints on corresponding fields in
the records differ

– Requires an implicit data type conversion
• The subprogram is involved in an external or

remote procedure call

Copyright © 2006, Oracle. All rights reserved.

PARALLEL_ENABLE Hint

The PARALLEL_ENABLE hint:
• Can be used in functions as an optimization hint

• Indicates that a function can be used in a
parallelized query or parallelized DML statement

CREATE OR REPLACE FUNCTION f2 (p1 NUMBER)
RETURN NUMBER PARALLEL_ENABLE IS

BEGIN
RETURN p1 * 2;

END f2;

Copyright © 2006, Oracle. All rights reserved.

Summary

In this lesson, you should have learned how to:
• Create standardized constants and exceptions

using packages
• Develop and invoke local subprograms
• Control the run-time privileges of a subprogram by

setting the AUTHID directive
• Execute autonomous transactions
• Use the RETURNING clause with DML statements,

and bulk binding collections with the FORALL and
BULK COLLECT INTO clauses

• Pass parameters by reference using a NOCOPY hint
• Enable optimization with PARALLEL ENABLE hints

Copyright © 2006, Oracle. All rights reserved.

Practice 7: Overview

This practice covers the following topics:
• Creating a package that uses bulk fetch

operations
• Creating a local subprogram to perform an

autonomous transaction to audit a business
operation

• Testing AUTHID functionality

Copyright © 2006, Oracle. All rights reserved.

Managing Dependencies

Copyright © 2006, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to do
the following:
• Track procedural dependencies
• Predict the effect of changing a database object

on stored procedures and functions
• Manage procedural dependencies

Copyright © 2006, Oracle. All rights reserved.

Understanding Dependencies

Database trigger

Function

Procedure

Package body

Package specification

User-defined object
and collection types

View

Function

Package specification

Procedure

Sequence

Synonym

Table

User-defined object
and collection types

View

Referenced objectsDependent objects

Copyright © 2006, Oracle. All rights reserved.

Dependencies

View or
procedure

Direct
dependency

Referenced

Indirect
dependency

Direct
dependency

Dependent

Table

Referenced

xxxxxxxxxxxxxx
vvvvvvvvvvvvvv
xxxxxxxxxxxxxx
vvvvvvvvvvvvvv
xxxxxxxxxxxxxx
vvvvvvvvvvvvvv
xxxxxxxxxxxxxx
vvvvvvvvvvvvvv
xxxxxxxxxxxxxx
vvvvvvvvvvvvvv

Procedure

Dependent

Copyright © 2006, Oracle. All rights reserved.

Local Dependencies

xxxxxxxxxxxxxx
vvvvvvvvvvvvvv
xxxxxxxxxxxxxx
vvvvvvvvvvvvvv
xxxxxxxxxxxxxx
vvvvvvvvvvvvvv
vvvvvvvvvvvvvv

Procedure View

Local references

Procedure Table
vvvvvvvvvvvvvv
xxxxxxxxxxxxxx
vvvvvvvvvvvvvv
xxxxxxxxxxxxxx
vvvvvvvvvvvvvv
xxxxxxxxxxxxxx
vvvvvvvvvvvvvv

Direct local
dependency

Copyright © 2006, Oracle. All rights reserved.

xxxxxxxxxxxxxx
vvvvvvvvvvvvvv
xxxxxxxxxxxxxx
vvvvvvvvvvvvvv
xxxxxxxxxxxxxx
vvvvvvvvvvvvvv
vvvvvvvvvvvvvv

Procedure View

Local references

Procedure Table
vvvvvvvvvvvvvv
xxxxxxxxxxxxxx
vvvvvvvvvvvvvv
xxxxxxxxxxxxxx
vvvvvvvvvvvvvv
xxxxxxxxxxxxxx
vvvvvvvvvvvvvv

Direct local
dependency

Local Dependencies

The Oracle server implicitly recompiles any INVALID
object when the object is next called.

Definition
change

INVALIDINVALIDINVALID

Copyright © 2006, Oracle. All rights reserved.

xxxxxxxxxxxxxxxxxxxxx
vvvvvvvvvvvvvvvvvvvvv
vvvvvvvvvvvvvvvvv
vvvvvvvvvvvvvvvvvvvvv
vvvvvvvvvvvvvvvvvvvvv
vvvvvvxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxx
vvvvvvvvvvvvvvvvvvvvv

xxxxxxxxxxxxxxxxxxxxx
vvvvvvvvvvvvvvvvvvvvv
vvvvvvvvvvvvvvvvv
vvvvvvvvvvvvvvvvvvvvv
vvvvvvvvvvvvvvvvvvvvv
vvvvvvxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxx
vvvvvvvvvvvvvvvvvvvvv

ADD_EMP
procedure

QUERY_EMP
procedure

EMPLOYEES table

EMP_VW view

A Scenario of Local Dependencies

…

…

Copyright © 2006, Oracle. All rights reserved.

Displaying Direct Dependencies by Using
USER_DEPENDENCIES

SELECT name, type, referenced_name, referenced_type
FROM user_dependencies
WHERE referenced_name IN ('EMPLOYEES','EMP_VW');

…
…

Copyright © 2006, Oracle. All rights reserved.

Displaying Direct and Indirect
Dependencies

1. Run the utldtree.sql script that creates the
objects that enable you to display the direct and
indirect dependencies.

2. Execute the DEPTREE_FILL procedure.
EXECUTE deptree_fill('TABLE','SCOTT','EMPLOYEES')

Copyright © 2006, Oracle. All rights reserved.

Displaying Dependencies

The DEPTREE view:

SELECT nested_level, type, name
FROM deptree
ORDER BY seq#;

…

…

Copyright © 2006, Oracle. All rights reserved.

EMPLOYEES table

REDUCE_SAL
procedure

RAISE_SAL
procedure

Another Scenario of Local Dependencies

xxxxxxxxxxxxxxxxxxxxx
vvvvvvvvvvvvvvvvvvvvv
vvvvvvvvvvvvvvvvv
vvvvvvvvvvvvvvvvvvvvv
vvvvvvvvvvvvvvvvvvvvv
vvvvvvxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxx
vvvvvvvvvvvvvvvvvvvvv

xxxxxxxxxxxxxxxxxxxxx
vvvvvvvvvvvvvvvvvvvvv
vvvvvvvvvvvvvvvvv
vvvvvvvvvvvvvvvvvvvvv
vvvvvvvvvvvvvvvvvvvvv
vvvvvvxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxx
vvvvvvvvvvvvvvvvvvvvv

…

Copyright © 2006, Oracle. All rights reserved.

QUERY_EMP
procedure EMPLOYEES public synonym

A Scenario of Local Naming Dependencies

EMPLOYEES
table

…

…

xxxxxxxxxxxxxxxxxxxxx
vvvvvvvvvvvvvvvvvvvvv
vvvvvvvvvvvvvvvvv
vvvvvvvvvvvvvvvvvvvvv
vvvvvvvvvvvvvvvvvvvvv
vvvvvvxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxx
vvvvvvvvvvvvvvvvvvvvv

Copyright © 2006, Oracle. All rights reserved.

Understanding Remote Dependencies

xxxxxxxxxxxxxx
vvvvvvvvvvvvvv
xxxxxxxxxxxxxx
vvvvvvvvvvvvvv
xxxxxxxxxxxxxx
vvvvvvvvvvvvvv
xxxxxxxxxxxxxx
vvvvvvvvvvvvvv
xxxxxxxxxxxxxx
vvvvvvvvvvvvvv

Procedure ViewProcedure Table

vvvvvvvvvvvvvv
xxxxxxxxxxxxxx
vvvvvvvvvvvvvv
xxxxxxxxxxxxxx
vvvvvvvvvvvvvv
xxxxxxxxxxxxxx
vvvvvvvvvvvvvv

Direct local
dependency

Direct remote
dependency

Local and remote references

Network

Copyright © 2006, Oracle. All rights reserved.

Understanding Remote Dependencies

xxxxxxxxxxxxxx
vvvvvvvvvvvvvv
xxxxxxxxxxxxxx
vvvvvvvvvvvvvv
xxxxxxxxxxxxxx
vvvvvvvvvvvvvv
xxxxxxxxxxxxxx
vvvvvvvvvvvvvv
xxxxxxxxxxxxxx
vvvvvvvvvvvvvv

Procedure ViewProcedure Table

vvvvvvvvvvvvvv
xxxxxxxxxxxxxx
vvvvvvvvvvvvvv
xxxxxxxxxxxxxx
vvvvvvvvvvvvvv
xxxxxxxxxxxxxx
vvvvvvvvvvvvvv

Direct local
dependency

Direct remote
dependency

Local and remote references

Network

Definition
change

INVALIDINVALIDVALID

Copyright © 2006, Oracle. All rights reserved.

Concepts of Remote Dependencies

Remote dependencies are governed by the mode that
is chosen by the user:
• TIMESTAMP checking
• SIGNATURE checking

Copyright © 2006, Oracle. All rights reserved.

REMOTE_DEPENDENCIES_MODE Parameter

Setting REMOTE_DEPENDENCIES_MODE:

• As an init.ora parameter
REMOTE_DEPENDENCIES_MODE = value

• At the system level
ALTER SYSTEM SET
REMOTE_DEPENDENCIES_MODE = value

• At the session level
ALTER SESSION SET
REMOTE_DEPENDENCIES_MODE = value

Copyright © 2006, Oracle. All rights reserved.

Remote Dependencies and
Time Stamp Mode

xxxxxxxxxxxxxx
vvvvvvvvvvvvvv
xxxxxxxxxxxxxx
vvvvvvvvvvvvvv
xxxxxxxxxxxxxx
vvvvvvvvvvvvvv
xxxxxxxxxxxxxx
vvvvvvvvvvvvvv
xxxxxxxxxxxxxx
vvvvvvvvvvvvvv

Procedure ViewProcedure Table

vvvvvvvvvvvvvv
xxxxxxxxxxxxxx
vvvvvvvvvvvvvv
xxxxxxxxxxxxxx
vvvvvvvvvvvvvv
xxxxxxxxxxxxxx
vvvvvvvvvvvvvv

Network

Network

Copyright © 2006, Oracle. All rights reserved.

xxxxxxxxxxxxxx
vvvvvvvvvvvvvv
xxxxxxxxxxxxxx
vvvvvvvvvvvvvv
xxxxxxxxxxxxxx
vvvvvvvvvvvvvv
xxxxxxxxxxxxxx
vvvvvvvvvvvvvv
xxxxxxxxxxxxxx
vvvvvvvvvvvvvv

Procedure ViewProcedure Table

vvvvvvvvvvvvvv
xxxxxxxxxxxxxx
vvvvvvvvvvvvvv
xxxxxxxxxxxxxx
vvvvvvvvvvvvvv
xxxxxxxxxxxxxx
vvvvvvvvvvvvvv

Network

Network

Remote Dependencies and
Time Stamp Mode

Definition
change

INVALIDINVALIDVALID

Copyright © 2006, Oracle. All rights reserved.

Remote Procedure B
Compiles at 8:00 a.m.

Remote procedure B

Valid

Compiles

Copyright © 2006, Oracle. All rights reserved.

Local Procedure A
Compiles at 9:00 a.m.

Local procedure A

Valid

Remote procedure B

Time stamp
of B

Valid

Time stamp
of A

Record time
stamp of B

Copyright © 2006, Oracle. All rights reserved.

Execute Procedure A

Local procedure A

Valid

Remote procedure B

Time stamp
of B

Valid

Time stamp
of A

Time stamp
of B

Time stamp
comparison

Execute B

Copyright © 2006, Oracle. All rights reserved.

Remote Procedure B
Recompiled at 11:00 a.m.

Valid

Compiles

Remote procedure B

Copyright © 2006, Oracle. All rights reserved.

Local procedure A

Valid

Remote procedure B

Time stamp
of B

Valid

Time stamp
of A

Time stamp
of B

Time stamp
comparison

ERROR

Invalid

Execute Procedure A

Copyright © 2006, Oracle. All rights reserved.

Signature Mode

• The signature of a procedure is:
– The name of the procedure
– The data types of the parameters
– The modes of the parameters

• The signature of the remote procedure is saved in
the local procedure.

• When executing a dependent procedure, the
signature of the referenced remote procedure is
compared.

Copyright © 2006, Oracle. All rights reserved.

Recompiling a PL/SQL
Program Unit

Recompilation:
• Is handled automatically through implicit run-time

recompilation
• Is handled through explicit recompilation with the

ALTER statement
ALTER PROCEDURE [SCHEMA.]procedure_name COMPILE;

ALTER FUNCTION [SCHEMA.]function_name COMPILE;

ALTER PACKAGE [SCHEMA.]package_name
COMPILE [PACKAGE | SPECIFICATION | BODY];

ALTER TRIGGER trigger_name [COMPILE[DEBUG]];

Copyright © 2006, Oracle. All rights reserved.

Unsuccessful Recompilation

Recompiling dependent procedures and functions is
unsuccessful when:
• The referenced object is dropped or renamed
• The data type of the referenced column is

changed
• The referenced column is dropped
• A referenced view is replaced by a view with

different columns
• The parameter list of a referenced procedure is

modified

Copyright © 2006, Oracle. All rights reserved.

Successful Recompilation

Recompiling dependent procedures and functions is
successful if:
• The referenced table has new columns
• The data type of referenced columns has not

changed
• A private table is dropped, but a public table that

has the same name and structure exists
• The PL/SQL body of a referenced procedure has

been modified and recompiled successfully

Copyright © 2006, Oracle. All rights reserved.

Recompilation of Procedures

Minimize dependency failures by:
• Declaring records with the %ROWTYPE attribute
• Declaring variables with the %TYPE attribute
• Querying with the SELECT * notation
• Including a column list with INSERT statements

Copyright © 2006, Oracle. All rights reserved.

Packages and Dependencies

Package body

Procedure A
definition

Definition changed

Procedure A
declaration

Package specification

ValidStand-alone
procedure

Valid

Copyright © 2006, Oracle. All rights reserved.

Package body

Procedure A
definition

Procedure A
declaration

Package specification

Valid

Packages and Dependencies

Stand-alone
procedure

Definition
changed

Invalid

Copyright © 2006, Oracle. All rights reserved.

Summary

In this lesson, you should have learned how to:
• Keep track of dependent procedures
• Recompile procedures manually as soon as

possible after the definition of a database object
changes

Copyright © 2006, Oracle. All rights reserved.

Practice 8: Overview

This practice covers the following topics:
• Using DEPTREE_FILL and IDEPTREE to view

dependencies
• Recompiling procedures, functions, and packages

Copyright © 2006, Oracle. All rights reserved.

Manipulating Large Objects

Copyright © 2006, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to do
the following:
• Compare and contrast LONG and LOB (large object)

data types
• Create and maintain LOB data types
• Differentiate between internal and external LOBs
• Use the DBMS_LOB PL/SQL package
• Describe the use of temporary LOBs

Copyright © 2006, Oracle. All rights reserved.

What Is a LOB?

LOBs are used to store large unstructured data such as
text, graphic images, films, and sound waveforms.

Photo (BLOB)

“Four score and seven years
ago, our forefathers brought
forth upon this continent, a
new nation, conceived in
LIBERTY, and dedicated to the
proposition that all men are
created equal.”

Text (CLOB)

Movie (BFILE)

Copyright © 2006, Oracle. All rights reserved.

Contrasting LONG and LOB Data Types

LONG and LONG RAW

Single LONG column per table

Up to 2 GB

SELECT returns data

Data stored in-line

Sequential access to data

LOB

Multiple LOB columns per table

Up to 4 GB

SELECT returns locator

Data stored in-line or out-of-line

Random access to data

Copyright © 2006, Oracle. All rights reserved.

Anatomy of a LOB

The LOB column stores a locator to the LOB’s value.

LOB locator

LOB column
of a table

LOB value

Copyright © 2006, Oracle. All rights reserved.

Internal LOBs

The LOB value is stored in the database.

“Four score and seven years ago,

our forefathers brought forth upon

this continent, a new nation,

conceived in LIBERTY, and dedicated

to the proposition that all men

are created equal.”

CLOB BLOB

Copyright © 2006, Oracle. All rights reserved.

Managing Internal LOBs

• To interact fully with LOB, file-like interfaces are
provided in:
– PL/SQL package DBMS_LOB
– Oracle Call Interface (OCI)
– Oracle Objects for object linking and embedding

(OLE)
– Pro*C/C++ and Pro*COBOL precompilers
– Java Database Connectivity (JDBC)

• The Oracle server provides some support for LOB
management through SQL.

Copyright © 2006, Oracle. All rights reserved.

What Are BFILEs?

The BFILE data type supports an external or file-based
large object as:
• Attributes in an object type
• Column values in a table

Movie (BFILE)

Copyright © 2006, Oracle. All rights reserved.

Securing BFILEs

Access
permissions

User

Movie (BFILE)

Copyright © 2006, Oracle. All rights reserved.

A New Database Object: DIRECTORY

DIRECTORY

LOB_PATH =
'/oracle/lob/'

User

Movie (BFILE)

Copyright © 2006, Oracle. All rights reserved.

Guidelines for Creating
DIRECTORY Objects

• Do not create DIRECTORY objects on paths with
database files.

• Limit the number of people who are given the
following system privileges:
– CREATE ANY DIRECTORY

– DROP ANY DIRECTORY

• All DIRECTORY objects are owned by SYS.
• Create directory paths and properly set

permissions before using the DIRECTORY object
so that the Oracle server can read the file.

Copyright © 2006, Oracle. All rights reserved.

Managing BFILEs

The DBA or the system administrator:
1. Creates an OS directory and supplies files
2. Creates a DIRECTORY object in the database
3. Grants the READ privilege on the DIRECTORY

object to appropriate database users
The developer or the user:
4. Creates an Oracle table with a column defined as a

BFILE data type
5. Inserts rows into the table using the BFILENAME

function to populate the BFILE column
6. Writes a PL/SQL subprogram that declares and

initializes a LOB locator, and reads BFILE

Copyright © 2006, Oracle. All rights reserved.

Preparing to Use BFILEs

1. Create an OS directory to store the physical data
files:

2. Create a DIRECTORY object by using the CREATE
DIRECTORY command:

3. Grant the READ privilege on the DIRECTORY object
to appropriate users:

mkdir /temp/data_files

CREATE DIRECTORY data_files
AS '/temp/data_files';

GRANT READ ON DIRECTORY data_files
TO SCOTT, MANAGER_ROLE, PUBLIC;

Copyright © 2006, Oracle. All rights reserved.

Populating BFILE Columns with SQL

• Use the BFILENAME function to initialize a BFILE
column. The function syntax is:

• Example:
– Add a BFILE column to a table:

– Update the column using the BFILENAME function:

FUNCTION BFILENAME(directory_alias IN VARCHAR2,
filename IN VARCHAR2)

RETURN BFILE;

UPDATE employees
SET video = BFILENAME('DATA_FILES', 'King.avi')

WHERE employee_id = 100;

ALTER TABLE employees ADD video BFILE;

Copyright © 2006, Oracle. All rights reserved.

CREATE PROCEDURE set_video(
dir_alias VARCHAR2, dept_id NUMBER) IS
filename VARCHAR2(40);
file_ptr BFILE;
CURSOR emp_csr IS
SELECT first_name FROM employees
WHERE department_id = dept_id FOR UPDATE;

BEGIN
FOR rec IN emp_csr LOOP
filename := rec.first_name || '.gif';
file_ptr := BFILENAME(dir_alias, filename);
DBMS_LOB.FILEOPEN(file_ptr);
UPDATE employees SET video = file_ptr
WHERE CURRENT OF emp_csr;

DBMS_OUTPUT.PUT_LINE('FILE: ' || filename ||
' SIZE: ' || DBMS_LOB.GETLENGTH(file_ptr));
DBMS_LOB.FILECLOSE(file_ptr);

END LOOP;
END set_video;

Populating a BFILE Column with PL/SQL

Copyright © 2006, Oracle. All rights reserved.

CREATE FUNCTION get_filesize(file_ptr IN OUT BFILE)
RETURN NUMBER IS
file_exists BOOLEAN;
length NUMBER:= -1;

BEGIN
file_exists := DBMS_LOB.FILEEXISTS(file_ptr)=1;
IF file_exists THEN
DBMS_LOB.FILEOPEN(file_ptr);
length := DBMS_LOB.GETLENGTH(file_ptr);
DBMS_LOB.FILECLOSE(file_ptr);

END IF;
RETURN length;

END;
/

Using DBMS_LOB Routines with BFILEs

The DBMS_LOB.FILEEXISTS function can check
whether the file exists in the OS. The function:
• Returns 0 if the file does not exist
• Returns 1 if the file does exist

Copyright © 2006, Oracle. All rights reserved.

Migrating from LONG to LOB

Oracle Database 10g enables the migration of LONG
columns to LOB columns.
• Data migration consists of the procedure to move

existing tables containing LONG columns to use
LOBs:

• Application migration consists of changing
existing LONG applications for using LOBs.

ALTER TABLE [<schema>.] <table_name>
MODIFY (<long_col_name> {CLOB | BLOB | NCLOB})

Copyright © 2006, Oracle. All rights reserved.

Migrating from LONG to LOB

• Implicit conversion: From LONG (LONG RAW) or a
VARCHAR2(RAW) variable to a CLOB (BLOB)
variable, and vice versa

• Explicit conversion:
– TO_CLOB() converts LONG, VARCHAR2, and CHAR to

CLOB.
– TO_BLOB() converts LONG RAW and RAW to BLOB.

• Function and procedure parameter passing:
– CLOBs and BLOBs are passed as actual parameters
– VARCHAR2, LONG, RAW, and LONG RAW are formal

parameters, and vice versa.
• LOB data is acceptable in most of the SQL and

PL/SQL operators and built-in functions.

Copyright © 2006, Oracle. All rights reserved.

DBMS_LOB Package

• Working with LOBs often requires the use of the
Oracle-supplied DBMS_LOB package.

• DBMS_LOB provides routines to access and
manipulate internal and external LOBs.

• Oracle Database 10g enables retrieving LOB data
directly using SQL without a special LOB API.

• In PL/SQL, you can define a VARCHAR2 for a CLOB
and a RAW for a BLOB.

Copyright © 2006, Oracle. All rights reserved.

DBMS_LOB Package

• Modify LOB values:
APPEND, COPY, ERASE, TRIM, WRITE,
LOADFROMFILE

• Read or examine LOB values:
GETLENGTH, INSTR, READ, SUBSTR

• Specific to BFILEs:
FILECLOSE, FILECLOSEALL, FILEEXISTS,
FILEGETNAME, FILEISOPEN, FILEOPEN

Copyright © 2006, Oracle. All rights reserved.

DBMS_LOB Package

• NULL parameters get NULL returns.
• Offsets:

– BLOB, BFILE: Measured in bytes
– CLOB, NCLOB: Measured in characters

• There are no negative values for parameters.

Copyright © 2006, Oracle. All rights reserved.

DBMS_LOB.READ and DBMS_LOB.WRITE

PROCEDURE READ (

lobsrc IN BFILE|BLOB|CLOB ,

amount IN OUT BINARY_INTEGER,

offset IN INTEGER,

buffer OUT RAW|VARCHAR2)

PROCEDURE WRITE (

lobdst IN OUT BLOB|CLOB,

amount IN OUT BINARY_INTEGER,

offset IN INTEGER := 1,

buffer IN RAW|VARCHAR2) -- RAW for BLOB

Copyright © 2006, Oracle. All rights reserved.

Initializing LOB Columns Added to a Table

• Create the table with columns using the LOB type,
or add the LOB columns using ALTER TABLE.

• Initialize the column LOB locator value with the
DEFAULT option or DML statements using:
– EMPTY_CLOB() function for a CLOB column
– EMPTY_BLOB() function for a BLOB column

ALTER TABLE employees
ADD (resume CLOB, picture BLOB);

CREATE TABLE emp_hiredata (
employee_id NUMBER(6),
full_name VARCHAR2(45),
resume CLOB DEFAULT EMPTY_CLOB(),
picture BLOB DEFAULT EMPTY_BLOB());

Copyright © 2006, Oracle. All rights reserved.

Populating LOB Columns

• Insert a row into a table with LOB columns:

• Initialize a LOB using the EMPTY_BLOB() function:

• Update a CLOB column:

INSERT INTO emp_hiredata
(employee_id, full_name, resume, picture)
VALUES (405, 'Marvin Ellis', EMPTY_CLOB(), NULL);

UPDATE emp_hiredata
SET resume = 'Date of Birth: 8 February 1951',

picture = EMPTY_BLOB()
WHERE employee_id = 405;

UPDATE emp_hiredata
SET resume = 'Date of Birth: 1 June 1956'
WHERE employee_id = 170;

Copyright © 2006, Oracle. All rights reserved.

DECLARE
lobloc CLOB; -- serves as the LOB locator
text VARCHAR2(50) := 'Resigned = 5 June 2000';
amount NUMBER ; -- amount to be written
offset INTEGER; -- where to start writing

BEGIN
SELECT resume INTO lobloc FROM emp_hiredata
WHERE employee_id = 405 FOR UPDATE;
offset := DBMS_LOB.GETLENGTH(lobloc) + 2;
amount := length(text);
DBMS_LOB.WRITE (lobloc, amount, offset, text);
text := ' Resigned = 30 September 2000';
SELECT resume INTO lobloc FROM emp_hiredata
WHERE employee_id = 170 FOR UPDATE;
amount := length(text);
DBMS_LOB.WRITEAPPEND(lobloc, amount, text);
COMMIT;

END;

Updating LOB by Using DBMS_LOB in
PL/SQL

Copyright © 2006, Oracle. All rights reserved.

Selecting CLOB Values by Using SQL

SELECT employee_id, full_name , resume -- CLOB
FROM emp_hiredata
WHERE employee_id IN (405, 170);

Copyright © 2006, Oracle. All rights reserved.

Selecting CLOB Values by Using DBMS_LOB

• DBMS_LOB.SUBSTR (lob, amount, start_pos)
• DBMS_LOB.INSTR (lob, pattern)

SELECT DBMS_LOB.SUBSTR (resume, 5, 18),
DBMS_LOB.INSTR (resume,' = ')

FROM emp_hiredata
WHERE employee_id IN (170, 405);

Copyright © 2006, Oracle. All rights reserved.

SET LINESIZE 50 SERVEROUTPUT ON FORMAT WORD_WRAP
DECLARE
text VARCHAR2(4001);

BEGIN
SELECT resume INTO text
FROM emp_hiredata
WHERE employee_id = 170;
DBMS_OUTPUT.PUT_LINE('text is: '|| text);
END;
/

Selecting CLOB Values in PL/SQL

text is: Date of Birth: 1 June 1956 Resigned = 30
September 2000

PL/SQL procedure successfully completed.

Copyright © 2006, Oracle. All rights reserved.

Removing LOBs

• Delete a row containing LOBs:

• Disassociate a LOB value from a row:

DELETE
FROM emp_hiredata
WHERE employee_id = 405;

UPDATE emp_hiredata
SET resume = EMPTY_CLOB()
WHERE employee_id = 170;

Copyright © 2006, Oracle. All rights reserved.

Temporary LOBs

• Temporary LOBs:
– Provide an interface to support creation of LOBs

that act like local variables
– Can be BLOBs, CLOBs, or NCLOBs
– Are not associated with a specific table
– Are created using the

DBMS_LOB.CREATETEMPORARY procedure
– Use DBMS_LOB routines

• The lifetime of a temporary LOB is a session.
• Temporary LOBs are useful for transforming data

in permanent internal LOBs.

Copyright © 2006, Oracle. All rights reserved.

Creating a Temporary LOB

PL/SQL procedure to create and test a temporary LOB:
CREATE OR REPLACE PROCEDURE is_templob_open(
lob IN OUT BLOB, retval OUT INTEGER) IS

BEGIN
-- create a temporary LOB
DBMS_LOB.CREATETEMPORARY (lob, TRUE);
-- see if the LOB is open: returns 1 if open
retval := DBMS_LOB.ISOPEN (lob);
DBMS_OUTPUT.PUT_LINE (
'The file returned a value...' || retval);

-- free the temporary LOB
DBMS_LOB.FREETEMPORARY (lob);

END;
/

Copyright © 2006, Oracle. All rights reserved.

Summary

In this lesson, you should have learned how to:
• Identify four built-in types for large objects: BLOB,

CLOB, NCLOB, and BFILE
• Describe how LOBs replace LONG and LONG RAW
• Describe two storage options for LOBs:

– Oracle server (internal LOBs)
– External host files (external LOBs)

• Use the DBMS_LOB PL/SQL package to provide
routines for LOB management

• Use temporary LOBs in a session

Copyright © 2006, Oracle. All rights reserved.

Practice 9: Overview

This practice covers the following topics:
• Creating object types using the CLOB and BLOB

data types
• Creating a table with LOB data types as columns
• Using the DBMS_LOB package to populate and

interact with the LOB data

Copyright © 2006, Oracle. All rights reserved.

Creating Triggers

Copyright © 2006, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to do
the following:
• Describe the different types of triggers
• Describe database triggers and their uses
• Create database triggers
• Describe database trigger-firing rules
• Remove database triggers

Copyright © 2006, Oracle. All rights reserved.

Types of Triggers

A trigger:
• Is a PL/SQL block or a PL/SQL procedure

associated with a table, view, schema, or database
• Executes implicitly whenever a particular event

takes place
• Can be either of the following:

– Application trigger: Fires whenever an event occurs
with a particular application

– Database trigger: Fires whenever a data event (such
as DML) or system event (such as logon or
shutdown) occurs on a schema or database

Copyright © 2006, Oracle. All rights reserved.

Guidelines for Designing Triggers

• You can design triggers to:
– Perform related actions
– Centralize global operations

• You must not design triggers:
– Where functionality is already built into the Oracle

server
– That duplicate other triggers

• You can create stored procedures and invoke
them in a trigger, if the PL/SQL code is very
lengthy.

• The excessive use of triggers can result in
complex interdependencies, which may be difficult
to maintain in large applications.

Copyright © 2006, Oracle. All rights reserved.

Creating DML Triggers

Create DML statement or row type triggers by using:

• A statement trigger fires once for a DML
statement.

• A row trigger fires once for each row affected.
Note: Trigger names must be unique with respect to
other triggers in the same schema.

CREATE [OR REPLACE] TRIGGER trigger_name
timing
event1 [OR event2 OR event3]
ON object_name
[[REFERENCING OLD AS old | NEW AS new]
FOR EACH ROW
[WHEN (condition)]]
trigger_body

Copyright © 2006, Oracle. All rights reserved.

Types of DML Triggers

The trigger type determines whether the body
executes for each row or only once for the triggering
statement.
• A statement trigger:

– Executes once for the triggering event
– Is the default type of trigger
– Fires once even if no rows are affected at all

• A row trigger:
– Executes once for each row affected by the

triggering event
– Is not executed if the triggering event does not

affect any rows
– Is indicated by specifying the FOR EACH ROW clause

Copyright © 2006, Oracle. All rights reserved.

Trigger Timing

When should the trigger fire?
• BEFORE: Execute the trigger body before the

triggering DML event on a table.
• AFTER: Execute the trigger body after the

triggering DML event on a table.
• INSTEAD OF: Execute the trigger body instead of

the triggering statement. This is used for views
that are not otherwise modifiable.

Note: If multiple triggers are defined for the same
object, then the order of firing triggers is arbitrary.

Copyright © 2006, Oracle. All rights reserved.

…

Trigger-Firing Sequence

Use the following firing sequence for a trigger on a
table when a single row is manipulated:

BEFORE statement
trigger

BEFORE row trigger
AFTER row trigger

AFTER statement trigger

DML statement
INSERT INTO departments

(department_id,department_name, location_id)
VALUES (400, 'CONSULTING', 2400);

Triggering action

Copyright © 2006, Oracle. All rights reserved.

UPDATE employees
SET salary = salary * 1.1
WHERE department_id = 30;

Trigger-Firing Sequence

Use the following firing sequence for a trigger on a
table when many rows are manipulated:

BEFORE statement trigger

BEFORE row trigger
AFTER row trigger...
BEFORE row trigger
AFTER row trigger...

AFTER statement trigger

Copyright © 2006, Oracle. All rights reserved.

Trigger Event Types and Body

A trigger event:
• Determines which DML statement causes the

trigger to execute
• Types are:

– INSERT

– UPDATE [OF column]

– DELETE

A trigger body:
• Determines what action is performed
• Is a PL/SQL block or a CALL to a procedure

Copyright © 2006, Oracle. All rights reserved.

Application

INSERT INTO EMPLOYEES...;
EMPLOYEES table

SECURE_EMP trigger

Creating a DML Statement Trigger

CREATE OR REPLACE TRIGGER secure_emp
BEFORE INSERT ON employees BEGIN
IF (TO_CHAR(SYSDATE,'DY') IN ('SAT','SUN')) OR

(TO_CHAR(SYSDATE,'HH24:MI')
NOT BETWEEN '08:00' AND '18:00') THEN

RAISE_APPLICATION_ERROR(-20500, 'You may insert'
||' into EMPLOYEES table only during '
||' business hours.');

END IF;
END;

Copyright © 2006, Oracle. All rights reserved.

Testing SECURE_EMP

INSERT INTO employees (employee_id, last_name,
first_name, email, hire_date,
job_id, salary, department_id)

VALUES (300, 'Smith', 'Rob', 'RSMITH', SYSDATE,
'IT_PROG', 4500, 60);

Copyright © 2006, Oracle. All rights reserved.

Using Conditional Predicates

CREATE OR REPLACE TRIGGER secure_emp BEFORE
INSERT OR UPDATE OR DELETE ON employees BEGIN
IF (TO_CHAR(SYSDATE,'DY') IN ('SAT','SUN')) OR
(TO_CHAR(SYSDATE,'HH24')

NOT BETWEEN '08' AND '18') THEN
IF DELETING THEN RAISE_APPLICATION_ERROR(
-20502,'You may delete from EMPLOYEES table'||

'only during business hours.');
ELSIF INSERTING THEN RAISE_APPLICATION_ERROR(
-20500,'You may insert into EMPLOYEES table'||

'only during business hours.');
ELSIF UPDATING('SALARY') THEN
RAISE_APPLICATION_ERROR(-20503, 'You may '||
'update SALARY only during business hours.');

ELSE RAISE_APPLICATION_ERROR(-20504,'You may'||
' update EMPLOYEES table only during'||
' normal hours.');

END IF;
END IF;
END;

Copyright © 2006, Oracle. All rights reserved.

Creating a DML Row Trigger

CREATE OR REPLACE TRIGGER restrict_salary
BEFORE INSERT OR UPDATE OF salary ON employees
FOR EACH ROW
BEGIN
IF NOT (:NEW.job_id IN ('AD_PRES', 'AD_VP'))

AND :NEW.salary > 15000 THEN
RAISE_APPLICATION_ERROR (-20202,
'Employee cannot earn more than $15,000.');

END IF;
END;
/

Copyright © 2006, Oracle. All rights reserved.

Using OLD and NEW Qualifiers

CREATE OR REPLACE TRIGGER audit_emp_values

AFTER DELETE OR INSERT OR UPDATE ON employees

FOR EACH ROW

BEGIN

INSERT INTO audit_emp(user_name, time_stamp, id,

old_last_name, new_last_name, old_title,

new_title, old_salary, new_salary)

VALUES (USER, SYSDATE, :OLD.employee_id,

:OLD.last_name, :NEW.last_name, :OLD.job_id,

:NEW.job_id, :OLD.salary, :NEW.salary);

END;

/

Copyright © 2006, Oracle. All rights reserved.

Using OLD and NEW Qualifiers:
Example Using AUDIT_EMP

INSERT INTO employees
(employee_id, last_name, job_id, salary, ...)
VALUES (999, 'Temp emp', 'SA_REP', 6000,...);

UPDATE employees
SET salary = 7000, last_name = 'Smith'
WHERE employee_id = 999;

SELECT user_name, timestamp, ...
FROM audit_emp;

Copyright © 2006, Oracle. All rights reserved.

Restricting a Row Trigger: Example

CREATE OR REPLACE TRIGGER derive_commission_pct
BEFORE INSERT OR UPDATE OF salary ON employees
FOR EACH ROW
WHEN (NEW.job_id = 'SA_REP')
BEGIN
IF INSERTING THEN
:NEW.commission_pct := 0;

ELSIF :OLD.commission_pct IS NULL THEN
:NEW.commission_pct := 0;

ELSE
:NEW.commission_pct := :OLD.commission_pct+0.05;

END IF;
END;
/

Copyright © 2006, Oracle. All rights reserved.

Summary of the Trigger Execution Model

1. Execute all BEFORE STATEMENT triggers.
2. Loop for each row affected:

a. Execute all BEFORE ROW triggers.
b. Execute the DML statement and perform integrity

constraint checking.
c. Execute all AFTER ROW triggers.

3. Execute all AFTER STATEMENT triggers.
Note: Integrity checking can be deferred until the
COMMIT operation is performed.

Copyright © 2006, Oracle. All rights reserved.

Implementing an Integrity Constraint
with a Trigger

CREATE OR REPLACE TRIGGER employee_dept_fk_trg
AFTER UPDATE OF department_id
ON employees FOR EACH ROW
BEGIN
INSERT INTO departments VALUES(:new.department_id,

'Dept '||:new.department_id, NULL, NULL);
EXCEPTION

WHEN DUP_VAL_ON_INDEX THEN
NULL; -- mask exception if department exists

END;
/

UPDATE employees SET department_id = 999
WHERE employee_id = 170;
-- Successful after trigger is fired

UPDATE employees SET department_id = 999
WHERE employee_id = 170;
-- Integrity constraint violation error

Copyright © 2006, Oracle. All rights reserved.

INSTEAD OF Triggers

Application

INSERT INTO my_view
. . .;

MY_VIEW

INSTEAD OF trigger
INSERT
TABLE1

UPDATE
TABLE2

Copyright © 2006, Oracle. All rights reserved.

Creating an INSTEAD OF Trigger

Perform the INSERT into EMP_DETAILS that is based
on EMPLOYEES and DEPARTMENTS tables:

INSTEAD OF INSERT
into EMP_DETAILS

INSERT into NEW_EMPS UPDATE NEW_DEPTS

……

1

2 3

INSERT INTO emp_details
VALUES (9001,'ABBOTT',3000, 10, 'Administration');

Copyright © 2006, Oracle. All rights reserved.

Creating an INSTEAD OF Trigger

Use INSTEAD OF to perform DML on complex views:
CREATE TABLE new_emps AS
SELECT employee_id,last_name,salary,department_id
FROM employees;

CREATE TABLE new_depts AS
SELECT d.department_id,d.department_name,

sum(e.salary) dept_sal
FROM employees e, departments d
WHERE e.department_id = d.department_id;

CREATE VIEW emp_details AS
SELECT e.employee_id, e.last_name, e.salary,

e.department_id, d.department_name
FROM employees e, departments d
WHERE e.department_id = d.department_id
GROUP BY d.department_id,d.department_name;

Copyright © 2006, Oracle. All rights reserved.

Comparison of Database Triggers and
Stored Procedures

Triggers

Defined with CREATE TRIGGER

Data dictionary contains source
code in USER_TRIGGERS.

Implicitly invoked by DML

COMMIT, SAVEPOINT, and
ROLLBACK are not allowed.

Procedures

Defined with CREATE PROCEDURE

Data dictionary contains source
code in USER_SOURCE.

Explicitly invoked

COMMIT, SAVEPOINT, and
ROLLBACK are allowed.

Copyright © 2006, Oracle. All rights reserved.

Comparison of Database Triggers
and Oracle Forms Triggers

INSERT INTO EMPLOYEES
. . .;

EMPLOYEES table CHECK_SAL trigger

BEFORE
INSERT

row…

Copyright © 2006, Oracle. All rights reserved.

Managing Triggers

• Disable or reenable a database trigger:

• Disable or reenable all triggers for a table:

• Recompile a trigger for a table:

ALTER TRIGGER trigger_name DISABLE | ENABLE

ALTER TABLE table_name DISABLE | ENABLE
ALL TRIGGERS

ALTER TRIGGER trigger_name COMPILE

Copyright © 2006, Oracle. All rights reserved.

Removing Triggers

To remove a trigger from the database, use the DROP
TRIGGER statement:

Example:

Note: All triggers on a table are removed when the
table is removed.

DROP TRIGGER secure_emp;

DROP TRIGGER trigger_name;

Copyright © 2006, Oracle. All rights reserved.

Testing Triggers

• Test each triggering data operation, as well as
nontriggering data operations.

• Test each case of the WHEN clause.
• Cause the trigger to fire directly from a basic data

operation, as well as indirectly from a procedure.
• Test the effect of the trigger on other triggers.
• Test the effect of other triggers on the trigger.

Copyright © 2006, Oracle. All rights reserved.

Summary

In this lesson, you should have learned how to:
• Create database triggers that are invoked by DML

operations
• Create statement and row trigger types
• Use database trigger-firing rules
• Enable, disable, and manage database triggers
• Develop a strategy for testing triggers
• Remove database triggers

Copyright © 2006, Oracle. All rights reserved.

Practice 10: Overview

This practice covers the following topics:
• Creating row triggers
• Creating a statement trigger
• Calling procedures from a trigger

Copyright © 2006, Oracle. All rights reserved.

Applications for Triggers

Copyright © 2006, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to do
the following:
• Create additional database triggers
• Explain the rules governing triggers
• Implement triggers

Copyright © 2006, Oracle. All rights reserved.

Creating Database Triggers

• Triggering a user event:
– CREATE, ALTER, or DROP
– Logging on or off

• Triggering database or system event:
– Shutting down or starting up the database
– A specific error (or any error) being raised

Copyright © 2006, Oracle. All rights reserved.

Creating Triggers on DDL Statements

Syntax:

CREATE [OR REPLACE] TRIGGER trigger_name
Timing
[ddl_event1 [OR ddl_event2 OR ...]]
ON {DATABASE|SCHEMA}
trigger_body

Copyright © 2006, Oracle. All rights reserved.

Creating Triggers on System Events

Syntax:

CREATE [OR REPLACE] TRIGGER trigger_name
timing
[database_event1 [OR database_event2 OR ...]]
ON {DATABASE|SCHEMA}
trigger_body

Copyright © 2006, Oracle. All rights reserved.

LOGON and LOGOFF Triggers: Example

CREATE OR REPLACE TRIGGER logon_trig
AFTER LOGON ON SCHEMA
BEGIN
INSERT INTO log_trig_table(user_id,log_date,action)
VALUES (USER, SYSDATE, 'Logging on');
END;
/

CREATE OR REPLACE TRIGGER logoff_trig
BEFORE LOGOFF ON SCHEMA
BEGIN
INSERT INTO log_trig_table(user_id,log_date,action)
VALUES (USER, SYSDATE, 'Logging off');
END;
/

Copyright © 2006, Oracle. All rights reserved.

CALL Statements

Note: There is no semicolon at the end of the CALL
statement.

CREATE OR REPLACE TRIGGER log_employee
BEFORE INSERT ON EMPLOYEES
CALL log_execution
/

CREATE [OR REPLACE] TRIGGER trigger_name
timing
event1 [OR event2 OR event3]
ON table_name
[REFERENCING OLD AS old | NEW AS new]
[FOR EACH ROW]
[WHEN condition]
CALL procedure_name
/

Copyright © 2006, Oracle. All rights reserved.

Trigger event

UPDATE employees
SET salary = 3400
WHERE last_name = 'Stiles';

EMPLOYEES table Failure

Triggered table/
mutating table

BEFORE UPDATE row

CHECK_SALARY
trigger

Reading Data from a Mutating Table

…
… 3400

Copyright © 2006, Oracle. All rights reserved.

Mutating Table: Example

CREATE OR REPLACE TRIGGER check_salary
BEFORE INSERT OR UPDATE OF salary, job_id
ON employees
FOR EACH ROW
WHEN (NEW.job_id <> 'AD_PRES')

DECLARE
minsalary employees.salary%TYPE;
maxsalary employees.salary%TYPE;

BEGIN
SELECT MIN(salary), MAX(salary)
INTO minsalary, maxsalary
FROM employees
WHERE job_id = :NEW.job_id;
IF :NEW.salary < minsalary OR

:NEW.salary > maxsalary THEN
RAISE_APPLICATION_ERROR(-20505,'Out of range');

END IF;
END;
/

Copyright © 2006, Oracle. All rights reserved.

Mutating Table: Example

UPDATE employees

SET salary = 3400

WHERE last_name = 'Stiles';

Copyright © 2006, Oracle. All rights reserved.

Benefits of Database Triggers

• Improved data security:
– Provide enhanced and complex security checks
– Provide enhanced and complex auditing

• Improved data integrity:
– Enforce dynamic data integrity constraints
– Enforce complex referential integrity constraints
– Ensure that related operations are performed

together implicitly

Copyright © 2006, Oracle. All rights reserved.

Managing Triggers

The following system privileges are required to
manage triggers:
• The CREATE/ALTER/DROP (ANY) TRIGGER privilege

that enables you to create a trigger in any schema
• The ADMINISTER DATABASE TRIGGER privilege that

enables you to create a trigger on DATABASE
• The EXECUTE privilege (if your trigger refers to any

objects that are not in your schema)
Note: Statements in the trigger body use the privileges
of the trigger owner, not the privileges of the user
executing the operation that fires the trigger.

Copyright © 2006, Oracle. All rights reserved.

Business Application Scenarios for
Implementing Triggers

You can use triggers for:
• Security
• Auditing
• Data integrity
• Referential integrity
• Table replication
• Computing derived data automatically
• Event logging

Note: Appendix C covers each of these examples in
more detail.

Copyright © 2006, Oracle. All rights reserved.

Viewing Trigger Information

You can view the following trigger information:
• USER_OBJECTS data dictionary view: Object

information
• USER_TRIGGERS data dictionary view: Text of the

trigger
• USER_ERRORS data dictionary view: PL/SQL syntax

errors (compilation errors) of the trigger

Copyright © 2006, Oracle. All rights reserved.

Column

TRIGGER_NAME

TRIGGER_TYPE

TRIGGERING_EVENT

TABLE_NAME

REFERENCING_NAMES

WHEN_CLAUSE

STATUS

TRIGGER_BODY

Column Description

Name of the trigger

The type is BEFORE, AFTER, INSTEAD OF

The DML operation firing the trigger

Name of the database table

Name used for :OLD and :NEW

The when_clause used

The status of the trigger

The action to take

Using USER_TRIGGERS

Abridged column list*

Copyright © 2006, Oracle. All rights reserved.

SELECT trigger_name, trigger_type, triggering_event,
table_name, referencing_names,
status, trigger_body

FROM user_triggers
WHERE trigger_name = 'RESTRICT_SALARY';

Listing the Code of Triggers

Copyright © 2006, Oracle. All rights reserved.

Summary

In this lesson, you should have learned how to:
• Use advanced database triggers
• List mutating and constraining rules for triggers
• Describe real-world applications of triggers
• Manage triggers
• View trigger information

Copyright © 2006, Oracle. All rights reserved.

Practice 11: Overview

This practice covers the following topics:
• Creating advanced triggers to manage data

integrity rules
• Creating triggers that cause a mutating table

exception
• Creating triggers that use package state to solve

the mutating table problem

Copyright © 2006, Oracle. All rights reserved.

Understanding and Influencing
the PL/SQL Compiler

Copyright © 2006, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to do
the following:
• Describe native and interpreted compilations
• List the features of native compilation
• Switch between native and interpreted

compilations
• Set parameters that influence PL/SQL compilation
• Query data dictionary views on how PL/SQL code

is compiled
• Use the compiler warning mechanism and the

DBMS_WARNING package to implement compiler
warnings

Copyright © 2006, Oracle. All rights reserved.

Native and Interpreted Compilation

Natively compiled code
• Translated C and compiled
• Copied to a code library

PL/SQL source

m-code Native code library in OS directory

C compiler
Translated
to C code

Interpreted code
• Compiled to m-code
• Stored in the database

Copyright © 2006, Oracle. All rights reserved.

Features and Benefits
of Native Compilation

Native compilation:
• Uses a generic makefile that uses the following

operating system software:
– C compiler
– Linker
– Make utility

• Generates shared libraries that are copied to the
file system and loaded at run time

• Provides better performance (up to 30% faster
than interpreted code) for computation-intensive
procedural operations

Copyright © 2006, Oracle. All rights reserved.

Considerations When Using
Native Compilation

Consider the following:
• Debugging tools for PL/SQL cannot debug

natively compiled code.
• Natively compiled code is slower to compile than

interpreted code.
• Large amounts of natively compiled subprograms

can affect performance due to operating system–
imposed limitations when handling shared
libraries. OS directory limitations can be managed
by setting database initialization parameters:
– PLSQL_NATIVE_LIBRARY_SUBDIR_COUNT and
– PLSQL_NATIVE_LIBRARY_DIR

Copyright © 2006, Oracle. All rights reserved.

Parameters Influencing Compilation

System parameters are set in the initSID.ora file or
by using the SPFILE:

System or session parameters

PLSQL_NATIVE_LIBRARY_DIR = full-directory-path-name
PLSQL_NATIVE_LIBRARY_SUBDIR_COUNT = count

PLSQL_COMPILER_FLAGS = 'NATIVE' or 'INTERPRETED'

Copyright © 2006, Oracle. All rights reserved.

Switching Between Native
and Interpreted Compilation

• Setting native compilation:
– For the system:

– For the session:

• Setting interpreted compilation:
– For the system level:

– For the session:

ALTER SYSTEM SET plsql_compiler_flags='NATIVE';

ALTER SESSION SET plsql_compiler_flags='NATIVE';

ALTER SYSTEM
SET plsql_compiler_flags='INTERPRETED';

ALTER SESSION
SET plsql_compiler_flags='INTERPRETED';

Copyright © 2006, Oracle. All rights reserved.

Viewing Compilation Information
in the Data Dictionary

Query information in the following views:
• USER_STORED_SETTINGS

• USER_PLSQL_OBJECTS

Example:

Note: The PARAM_VALUE column has a value of NATIVE
for procedures that are compiled for native execution;
otherwise, it has a value of INTERPRETED.

SELECT param_value
FROM user_stored_settings
WHERE param_name = 'plsql_compiler_flags'
AND object_name = 'GET_EMPLOYEES';

Copyright © 2006, Oracle. All rights reserved.

Using Native Compilation

To enable native compilation, perform the following
steps:
1. Edit the supplied makefile and enter appropriate

paths and other values for your system.
2. Set the PLSQL_COMPILER_FLAGS parameter (at

system or session level) to the value NATIVE. The
default is INTERPRETED.

3. Compile the procedures, functions, and packages.
4. Query the data dictionary to see that a procedure

is compiled for native execution.

Copyright © 2006, Oracle. All rights reserved.

Compiler Warning Infrastructure

The PL/SQL compiler in Oracle Database 10g has been
enhanced to produce warnings for subprograms. Warning
levels:
• Can be set:

– Declaratively with the PLSQL_WARNINGS initialization
parameter

– Programmatically using the DBMS_WARNINGS package
• Are arranged in three categories: severe, performance,

and informational
• Can be enabled and disabled by category or a specific

message
Examples of warning messages:

SP2-0804: Procedure created with compilation warnings
PLW-07203: Parameter 'IO_TBL' may benefit from use
of the NOCOPY compiler hint.

Copyright © 2006, Oracle. All rights reserved.

Setting Compiler Warning Levels

Set the PLSQL_WARNINGS initialization parameter to
enable the database to issue warning messages.

• The PLSQL_WARNINGS combine a qualifier value
(ENABLE, DISABLE, or ERROR) with a comma-
separated list of message numbers, or with one of
the following modifier values:
– ALL, SEVERE, INFORMATIONAL, or PERFORMANCE

• Warning messages use a PLW prefix.
PLW-07203: Parameter 'IO_TBL' may benefit from
use of the NOCOPY compiler hint.

ALTER SESSION SET PLSQL_WARNINGS = 'ENABLE:SEVERE',
'DISABLE:INFORMATIONAL';

Copyright © 2006, Oracle. All rights reserved.

Guidelines for Using PLSQL_WARNINGS

The PLSQL_WARNINGS setting:
• Can be set to DEFERRED at the system level
• Is stored with each compiled subprogram
• That is current for the session is used, by default,

when recompiling with:
– A CREATE OR REPLACE statement
– An ALTER...COMPILE statement

• That is stored with the compiled subprogram is
used when REUSE SETTINGS is specified when
recompiling with an ALTER...COMPILE statement

Copyright © 2006, Oracle. All rights reserved.

DBMS_WARNING Package

The DBMS_WARNING package provides a way to
programmatically manipulate the behavior of current
system or session PL/SQL warning settings. Using
DBMS_WARNING subprograms, you can:
• Query existing settings
• Modify the settings for specific requirements or

restore original settings
• Delete the settings

Example: Saving and restoring warning settings for a
development environment that calls your code that
compiles PL/SQL subprograms, and suppresses
warnings due to business requirements

Copyright © 2006, Oracle. All rights reserved.

Using DBMS_WARNING Procedures

• Package procedures change PL/SQL warnings:

– All parameters are IN parameters and have the
VARCHAR2 data type. However, the w_number
parameter is a NUMBER data type.

– Parameter string values are not case sensitive.
– The w_value parameters values are ENABLE,

DISABLE, and ERROR.
– The w_category values are ALL, INFORMATIONAL,

SEVERE, and PERFORMANCE.
– The scope value is either SESSION or SYSTEM.

Using SYSTEM requires the ALTER SYSTEM privilege.

ADD_WARNING_SETTING_CAT(w_category,w_value,scope)
ADD_WARNING_SETTING_NUM(w_number,w_value,scope)
SET_WARNING_SETTING_STRING(w_value, scope)

Copyright © 2006, Oracle. All rights reserved.

Using DBMS_WARNING Functions

• Package functions read PL/SQL warnings:

– GET_CATEGORY returns a value of ALL,
INFORMATIONAL, SEVERE, or PERFORMANCE for a
given message number.

– GET_WARNING_SETTING_CAT returns ENABLE,
DISABLE, or ERROR as the current warning value for
a category name, and GET_WARNING_SETTING_NUM
returns the value for a specific message number.

– GET_WARNING_SETTING_STRING returns the entire
warning string for the current session.

GET_CATEGORY(w_number) RETURN VARCHAR2
GET_WARNING_SETTING_CAT(w_category)RETURN VARCHAR2
GET_WARNING_SETTING_NUM(w_number) RETURN VARCHAR2
GET_WARNING_SETTING_STRING RETURN VARCHAR2

Copyright © 2006, Oracle. All rights reserved.

Using DBMS_WARNING: Example

Consider the following scenario:
Save current warning settings, disable warnings for
the PERFORMANCE category, compile a PL/SQL
package, and restore the original warning setting.
CREATE PROCEDURE compile(pkg_name VARCHAR2) IS
warn_value VARCHAR2(200);
compile_stmt VARCHAR2(200) :=
'ALTER PACKAGE '|| pkg_name ||' COMPILE';

BEGIN
warn_value := -- Save current settings

DBMS_WARNING.GET_WARNING_SETTING_STRING;
DBMS_WARNING.ADD_WARNING_SETTING_CAT(-- change

'PERFORMANCE', 'DISABLE', 'SESSION');
EXECUTE IMMEDIATE compile_stmt;
DBMS_WARNING.SET_WARNING_SETTING_STRING(--restore

warn_value, 'SESSION');
END;

Copyright © 2006, Oracle. All rights reserved.

Using DBMS_WARNING: Example

To test the compile procedure, you can use the
following script sequence in iSQL*Plus:
DECLARE
PROCEDURE print(s VARCHAR2) IS
BEGIN
DBMS_OUTPUT.PUT_LINE(s);

END;
BEGIN
print('Warning settings before: '||

DBMS_WARNING.GET_WARNING_SETTING_STRING);
compile('my_package');
print('Warning settings after: '||

DBMS_WARNING.GET_WARNING_SETTING_STRING);
END;
/
SHOW ERRORS PACKAGE MY_PACKAGE

Copyright © 2006, Oracle. All rights reserved.

Summary

In this lesson, you should have learned how to:
• Switch between native and interpreted

compilations
• Set parameters that influence native compilation

of PL/SQL programs
• Query data dictionary views that provide

information on PL/SQL compilation settings
• Use the PL/SQL compiler warning mechanism:

– Declaratively by setting the PLSQL_WARNINGS
parameter

– Programmatically using the DBMS_WARNING
package

Copyright © 2006, Oracle. All rights reserved.

Practice 12: Overview

This practice covers the following topics:
• Enabling native compilation for your session and

compiling a procedure
• Creating a subprogram to compile a PL/SQL

procedure, function, or a package; suppressing
warnings for the PERFORMANCE compiler warning
category; and restoring the original session
warning settings

• Executing the procedure to compile a PL/SQL
package containing a procedure that uses a
PL/SQL table as an IN OUT parameter without
specifying the NOCOPY hint

Copyright © 2006, Oracle. All rights reserved.

Studies for Implementing Triggers

Copyright © 2006, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to do
the following:
• Enhance database security with triggers
• Audit data changes using DML triggers
• Enforce data integrity with DML triggers
• Maintain referential integrity using triggers
• Use triggers to replicate data between tables
• Use triggers to automate computation of derived

data
• Provide event-logging capabilities using triggers

Copyright © 2006, Oracle. All rights reserved.

Controlling Security Within the Server

Using database security with the GRANT statement.
GRANT SELECT, INSERT, UPDATE, DELETE
ON employees
TO clerk; -- database role
GRANT clerk TO scott;

Copyright © 2006, Oracle. All rights reserved.

CREATE OR REPLACE TRIGGER secure_emp
BEFORE INSERT OR UPDATE OR DELETE ON employees

DECLARE
dummy PLS_INTEGER;
BEGIN
IF (TO_CHAR (SYSDATE, 'DY') IN ('SAT','SUN')) THEN
RAISE_APPLICATION_ERROR(-20506,'You may only
change data during normal business hours.');

END IF;
SELECT COUNT(*) INTO dummy FROM holiday
WHERE holiday_date = TRUNC (SYSDATE);
IF dummy > 0 THEN
RAISE_APPLICATION_ERROR(-20507,
'You may not change data on a holiday.');

END IF;
END;
/

Controlling Security
with a Database Trigger

Copyright © 2006, Oracle. All rights reserved.

AUDIT INSERT, UPDATE, DELETE
ON departments
BY ACCESS

WHENEVER SUCCESSFUL;

Using the Server Facility
to Audit Data Operations

The Oracle server stores the audit information in a
data dictionary table or an operating system file.

Audit succeeded.

Copyright © 2006, Oracle. All rights reserved.

CREATE OR REPLACE TRIGGER audit_emp_values
AFTER DELETE OR INSERT OR UPDATE
ON employees FOR EACH ROW
BEGIN
IF (audit_emp_pkg. reason IS NULL) THEN
RAISE_APPLICATION_ERROR (-20059, 'Specify a
reason for operation through the procedure
AUDIT_EMP_PKG.SET_REASON to proceed.');

ELSE
INSERT INTO audit_emp_table (user_name,
timestamp, id, old_last_name, new_last_name,
old_salary, new_salary, comments)

VALUES (USER, SYSDATE, :OLD.employee_id,
:OLD.last_name, :NEW.last_name,:OLD.salary,
:NEW.salary, audit_emp_pkg.reason);

END IF;
END;

CREATE OR REPLACE TRIGGER cleanup_audit_emp
AFTER INSERT OR UPDATE OR DELETE ON employees
BEGIN audit_emp_package.g_reason := NULL;
END;

Auditing by Using a Trigger

Copyright © 2006, Oracle. All rights reserved.

AUDIT_EMP_TRG
FOR EACH ROW
increments
package variables

Auditing Triggers by Using
Package Constructs

AUDIT_EMPDML_TRG
AFTER STATEMENT
invokes the AUDIT_EMP
procedure.

DML into the
EMPLOYEES table

AUDIT_TABLE

1

2

3

4
The AUDIT_EMP procedure
reads package variables,
updates AUDIT_TABLE, and
resets package variables.

AUDIT_EMP_PKG
with package
variables

Copyright © 2006, Oracle. All rights reserved.

Auditing Triggers by Using
Package Constructs

AFTER statement trigger:

AFTER row trigger:
CREATE OR REPLACE TRIGGER audit_emp_trg
AFTER UPDATE OR INSERT OR DELETE ON EMPLOYEES
FOR EACH ROW
-- Call Audit package to maintain counts
CALL audit_emp_pkg.set(INSERTING,UPDATING,DELETING);
/

CREATE OR REPLACE TRIGGER audit_empdml_trg
AFTER UPDATE OR INSERT OR DELETE on employees
BEGIN
audit_emp; -- write the audit data

END audit_emp_tab;
/

Copyright © 2006, Oracle. All rights reserved.

AUDIT_PKG Package

CREATE OR REPLACE PACKAGE audit_emp_pkg IS
delcnt PLS_INTEGER := 0;
inscnt PLS_INTEGER := 0;
updcnt PLS_INTEGER := 0;
PROCEDURE init;
PROCEDURE set(i BOOLEAN,u BOOLEAN,d BOOLEAN);

END audit_emp_pkg;
/
CREATE OR REPLACE PACKAGE BODY audit_emp_pkg IS
PROCEDURE init IS
BEGIN
inscnt := 0; updcnt := 0; delcnt := 0;

END;
PROCEDURE set(i BOOLEAN,u BOOLEAN,d BOOLEAN) IS
BEGIN
IF i THEN inscnt := inscnt + 1;
ELSIF d THEN delcnt := delcnt + 1;
ELSE upd := updcnt + 1;
END IF;

END;
END audit_emp_pkg;
/

Copyright © 2006, Oracle. All rights reserved.

CREATE TABLE audit_table (
USER_NAME VARCHAR2(30),
TABLE_NAME VARCHAR2(30),
INS NUMBER,
UPD NUMBER,
DEL NUMBER)
/
CREATE OR REPLACE PROCEDURE audit_emp IS
BEGIN
IF delcnt + inscnt + updcnt <> 0 THEN
UPDATE audit_table
SET del = del + audit_emp_pkg.delcnt,

ins = ins + audit_emp_pkg.inscnt,
upd = upd + audit_emp_pkg.updcnt

WHERE user_name = USER
AND table_name = 'EMPLOYEES';
audit_emp_pkg.init;

END IF;
END audit_emp;
/

AUDIT_TABLE Table and
AUDIT_EMP Procedure

Copyright © 2006, Oracle. All rights reserved.

ALTER TABLE employees ADD
CONSTRAINT ck_salary CHECK (salary >= 500);

Enforcing Data Integrity Within the Server

Table altered.

Copyright © 2006, Oracle. All rights reserved.

CREATE OR REPLACE TRIGGER check_salary
BEFORE UPDATE OF salary ON employees
FOR EACH ROW
WHEN (NEW.salary < OLD.salary)

BEGIN
RAISE_APPLICATION_ERROR (-20508,

'Do not decrease salary.');
END;
/

Protecting Data Integrity with a Trigger

Copyright © 2006, Oracle. All rights reserved.

ALTER TABLE employees
ADD CONSTRAINT emp_deptno_fk
FOREIGN KEY (department_id)

REFERENCES departments(department_id)
ON DELETE CASCADE;

Enforcing Referential Integrity
Within the Server

Copyright © 2006, Oracle. All rights reserved.

CREATE OR REPLACE TRIGGER cascade_updates

AFTER UPDATE OF department_id ON departments

FOR EACH ROW

BEGIN

UPDATE employees

SET employees.department_id=:NEW.department_id

WHERE employees.department_id=:OLD.department_id;

UPDATE job_history

SET department_id=:NEW.department_id

WHERE department_id=:OLD.department_id;

END;

/

Protecting Referential Integrity
with a Trigger

Copyright © 2006, Oracle. All rights reserved.

CREATE MATERIALIZED VIEW emp_copy
NEXT sysdate + 7
AS SELECT * FROM employees@ny;

Replicating a Table Within the Server

Copyright © 2006, Oracle. All rights reserved.

CREATE OR REPLACE TRIGGER emp_replica
BEFORE INSERT OR UPDATE ON employees FOR EACH ROW
BEGIN /* Proceed if user initiates data operation,

NOT through the cascading trigger.*/
IF INSERTING THEN
IF :NEW.flag IS NULL THEN
INSERT INTO employees@sf
VALUES(:new.employee_id,...,'B');
:NEW.flag := 'A';

END IF;
ELSE /* Updating. */
IF :NEW.flag = :OLD.flag THEN
UPDATE employees@sf
SET ename=:NEW.last_name,...,flag=:NEW.flag
WHERE employee_id = :NEW.employee_id;

END IF;
IF :OLD.flag = 'A' THEN :NEW.flag := 'B';

ELSE :NEW.flag := 'A';
END IF;
END IF;

END;

Replicating a Table with a Trigger

Copyright © 2006, Oracle. All rights reserved.

Computing Derived Data Within the Server

UPDATE departments
SET total_sal=(SELECT SUM(salary)

FROM employees
WHERE employees.department_id =

departments.department_id);

Copyright © 2006, Oracle. All rights reserved.

CREATE PROCEDURE increment_salary
(id NUMBER, new_sal NUMBER) IS

BEGIN
UPDATE departments
SET total_sal = NVL (total_sal, 0)+ new_sal
WHERE department_id = id;

END increment_salary;

CREATE OR REPLACE TRIGGER compute_salary
AFTER INSERT OR UPDATE OF salary OR DELETE
ON employees FOR EACH ROW
BEGIN
IF DELETING THEN increment_salary(

:OLD.department_id,(-1*:OLD.salary));
ELSIF UPDATING THEN increment_salary(

:NEW.department_id,(:NEW.salary-:OLD.salary));
ELSE increment_salary(

:NEW.department_id,:NEW.salary); --INSERT
END IF;
END;

Computing Derived Values with a Trigger

Copyright © 2006, Oracle. All rights reserved.

CREATE OR REPLACE TRIGGER notify_reorder_rep
BEFORE UPDATE OF quantity_on_hand, reorder_point
ON inventories FOR EACH ROW
DECLARE
dsc product_descriptions.product_description%TYPE;
msg_text VARCHAR2(2000);
BEGIN
IF :NEW.quantity_on_hand <=

:NEW.reorder_point THEN
SELECT product_description INTO dsc
FROM product_descriptions
WHERE product_id = :NEW.product_id;

_ msg_text := 'ALERT: INVENTORY LOW ORDER:'||
'Yours,' ||CHR(10) ||user || '.'|| CHR(10);

ELSIF :OLD.quantity_on_hand >=
:NEW.quantity_on_hand THEN

msg_text := 'Product #'||... CHR(10);
END IF;
UTL_MAIL.SEND('inv@oracle.com','ord@oracle.com',
message=>msg_text, subject=>'Inventory Notice');

END;

Logging Events with a Trigger

Copyright © 2006, Oracle. All rights reserved.

Summary

In this lesson, you should have learned how to:
• Use database triggers and database server

functionality to:
– Enhance database security
– Audit data changes
– Enforce data integrity
– Maintain referential integrity
– Replicate data between tables
– Automate computation of derived data
– Provide event-logging capabilities

• Recognize when to use triggers to database
functionality

Copyright © 2006, Oracle. All rights reserved.

Review of PL/SQL

Copyright © 2006, Oracle. All rights reserved.

Block Structure for Anonymous
PL/SQL Blocks

• DECLARE (optional)
– Declare PL/SQL objects to be used within this

block.
• BEGIN (mandatory)

– Define the executable statements.
• EXCEPTION (optional)

– Define the actions that take place if an error or
exception arises.

• END; (mandatory)

Copyright © 2006, Oracle. All rights reserved.

Declaring PL/SQL Variables

• Syntax:

• Examples:

identifier [CONSTANT] datatype [NOT NULL]
[:= | DEFAULT expr];

Declare
v_hiredate DATE;
v_deptno NUMBER(2) NOT NULL := 10;
v_location VARCHAR2(13) := 'Atlanta';
c_ comm CONSTANT NUMBER := 1400;
v_count BINARY_INTEGER := 0;
v_valid BOOLEAN NOT NULL := TRUE;

Copyright © 2006, Oracle. All rights reserved.

Declaring Variables with the
%TYPE Attribute

Examples:
...
v_ename employees.last_name%TYPE;
v_balance NUMBER(7,2);
v_min_balance v_balance%TYPE := 10;

...

Copyright © 2006, Oracle. All rights reserved.

Creating a PL/SQL Record

Declare variables to store the name, job, and salary of
a new employee.
Example:
...
TYPE emp_record_type IS RECORD
(ename VARCHAR2(25),
job VARCHAR2(10),
sal NUMBER(8,2));

emp_record emp_record_type;
...

Copyright © 2006, Oracle. All rights reserved.

%ROWTYPE Attribute

Examples:
• Declare a variable to store the same information

about a department as is stored in the
DEPARTMENTS table.

• Declare a variable to store the same information
about an employee as is stored in the EMPLOYEES
table.

dept_record departments%ROWTYPE;

emp_record employees%ROWTYPE;

Copyright © 2006, Oracle. All rights reserved.

Creating a PL/SQL Table

DECLARE
TYPE ename_table_type IS TABLE OF
employees.last_name%TYPE
INDEX BY BINARY_INTEGER;

TYPE hiredate_table_type IS TABLE OF DATE
INDEX BY BINARY_INTEGER;

ename_table ename_table_type;
hiredate_table hiredate_table_type;

BEGIN
ename_table(1) := 'CAMERON';
hiredate_table(8) := SYSDATE + 7;
IF ename_table.EXISTS(1) THEN
INSERT INTO ...

...

END;

Copyright © 2006, Oracle. All rights reserved.

SELECT Statements in PL/SQL

The INTO clause is mandatory.
Example:
DECLARE
v_deptid NUMBER(4);
v_loc NUMBER(4);

BEGIN
SELECT department_id, location_id
INTO v_deptno, v_loc
FROM departments
WHERE department_name = 'Sales';

...
END;

Copyright © 2006, Oracle. All rights reserved.

Inserting Data

Add new employee information to the EMPLOYEES
table.
Example:

DECLARE
v_empid employees.employee_id%TYPE;

BEGIN
SELECT employees_seq.NEXTVAL
INTO v_empno
FROM dual;
INSERT INTO employees(employee_id, last_name,

job_id, department_id)
VALUES(v_empno, 'HARDING', 'PU_CLERK', 30);

END;

Copyright © 2006, Oracle. All rights reserved.

Updating Data

Increase the salary of all employees in the EMPLOYEES
table who are purchasing clerks.
Example:
DECLARE
v_sal_increase employees.salary%TYPE := 2000;

BEGIN
UPDATE employees
SET salary = salary + v_sal_increase
WHERE job_id = 'PU_CLERK';

END;

Copyright © 2006, Oracle. All rights reserved.

Deleting Data

Delete rows that belong to department 190 from the
EMPLOYEES table.
Example:
DECLARE
v_deptid employees.department_id%TYPE := 190;

BEGIN
DELETE FROM employees
WHERE department_id = v_deptid;

END;

Copyright © 2006, Oracle. All rights reserved.

COMMIT and ROLLBACK Statements

• Initiate a transaction with the first DML command
to follow a COMMIT or ROLLBACK statement.

• Use COMMIT and ROLLBACK SQL statements to
terminate a transaction explicitly.

Copyright © 2006, Oracle. All rights reserved.

SQL Cursor Attributes

Using SQL cursor attributes, you can test the outcome
of your SQL statements.

Number of rows affected by the most recent
SQL statement (an integer value)
Boolean attribute that evaluates to TRUE if
the most recent SQL statement affects one
or more rows
Boolean attribute that evaluates to TRUE if
the most recent SQL statement does not
affect any rows
Boolean attribute that always evaluates to
FALSE because PL/SQL closes implicit
cursors immediately after they are executed

SQL%ROWCOUNT

SQL%FOUND

SQL%NOTFOUND

SQL%ISOPEN

Copyright © 2006, Oracle. All rights reserved.

IF, THEN, and ELSIF Statements

For a given value entered, return a calculated value.
Example:

. . .
IF v_start > 100 THEN
v_start := 2 * v_start;

ELSIF v_start >= 50 THEN
v_start := 0.5 * v_start;

ELSE
v_start := 0.1 * v_start;

END IF;
. . .

Copyright © 2006, Oracle. All rights reserved.

Basic Loop

Example:

DECLARE
v_ordid order_items.order_id%TYPE := 101;
v_counter NUMBER(2) := 1;

BEGIN
LOOP
INSERT INTO order_items(order_id,line_item_id)
VALUES(v_ordid, v_counter);
v_counter := v_counter + 1;
EXIT WHEN v_counter > 10;

END LOOP;
END;

Copyright © 2006, Oracle. All rights reserved.

FOR Loop

Insert the first 10 new line items for order number 101.
Example:

DECLARE
v_ordid order_items.order_id%TYPE := 101;

BEGIN
FOR i IN 1..10 LOOP
INSERT INTO order_items(order_id,line_item_id)
VALUES(v_ordid, i);

END LOOP;
END;

Copyright © 2006, Oracle. All rights reserved.

WHILE Loop

Example:

ACCEPT p_price PROMPT 'Enter the price of the item: '
ACCEPT p_itemtot -
PROMPT 'Enter the maximum total for purchase of item: '
DECLARE
...
v_qty NUMBER(8) := 1;
v_running_total NUMBER(7,2) := 0;
BEGIN
...
WHILE v_running_total < &p_itemtot LOOP

...
v_qty := v_qty + 1;
v_running_total := v_qty * &p_price;
END LOOP;

...

Copyright © 2006, Oracle. All rights reserved.

• Return to
FETCH if
rows are
found.

No

Controlling Explicit Cursors

DECLARE

• Create a
named
SQL area.

• Identify
the active
set.

OPEN

• Test for
existing
rows.

EMPTY?

• Release
the active
set.

CLOSE
Yes

• Load the
current
row into
variables.

FETCH

Copyright © 2006, Oracle. All rights reserved.

Declaring the Cursor

Example:
DECLARE

CURSOR c1 IS
SELECT employee_id, last_name
FROM employees;

CURSOR c2 IS
SELECT *
FROM departments
WHERE department_id = 10;

BEGIN
...

Copyright © 2006, Oracle. All rights reserved.

Opening the Cursor

Syntax:

• Open the cursor to execute the query and identify
the active set.

• If the query returns no rows, no exception is
raised.

• Use cursor attributes to test the outcome after a
fetch.

OPEN cursor_name;

Copyright © 2006, Oracle. All rights reserved.

Fetching Data from the Cursor

Examples:

FETCH c1 INTO v_empid, v_ename;

...
OPEN defined_cursor;
LOOP

FETCH defined_cursor INTO defined_variables
EXIT WHEN ...;
...

-- Process the retrieved data
...

END;

Copyright © 2006, Oracle. All rights reserved.

Closing the Cursor

Syntax:

• Close the cursor after completing the processing
of the rows.

• Reopen the cursor, if required.
• Do not attempt to fetch data from a cursor after it

has been closed.

CLOSE cursor_name;

Copyright © 2006, Oracle. All rights reserved.

Explicit Cursor Attributes

Obtain status information about a cursor.

Attribute Type Description

%ISOPEN BOOLEAN Evaluates to TRUE if the cursor
is open

%NOTFOUND BOOLEAN Evaluates to TRUE if the most recent
fetch does not return a row

%FOUND BOOLEAN Evaluates to TRUE if the most recent
fetch returns a row; complement
of %NOTFOUND

%ROWCOUNT NUMBER Evaluates to the total number of
rows returned so far

Copyright © 2006, Oracle. All rights reserved.

Cursor FOR Loops

Retrieve employees one by one until there are no more
left.
Example:
DECLARE
CURSOR c1 IS
SELECT employee_id, last_name
FROM employees;

BEGIN
FOR emp_record IN c1 LOOP

-- implicit open and implicit fetch occur
IF emp_record.employee_id = 134 THEN
...

END LOOP; -- implicit close occurs
END;

Copyright © 2006, Oracle. All rights reserved.

FOR UPDATE Clause

Retrieve the orders for amounts over $1,000 that were
processed today.
Example:
DECLARE

CURSOR c1 IS
SELECT customer_id, order_id
FROM orders
WHERE order_date = SYSDATE

AND order_total > 1000.00
ORDER BY customer_id
FOR UPDATE NOWAIT;

Copyright © 2006, Oracle. All rights reserved.

WHERE CURRENT OF Clause

DECLARE
CURSOR c1 IS

SELECT salary FROM employees
FOR UPDATE OF salary NOWAIT;

BEGIN
...
FOR emp_record IN c1 LOOP

UPDATE ...
WHERE CURRENT OF c1;

...
END LOOP;
COMMIT;

END;

Example:

Copyright © 2006, Oracle. All rights reserved.

Trapping Predefined
Oracle Server Errors

• Reference the standard name in the exception-
handling routine.

• Sample predefined exceptions:
– NO_DATA_FOUND

– TOO_MANY_ROWS

– INVALID_CURSOR

– ZERO_DIVIDE

– DUP_VAL_ON_INDEX

Copyright © 2006, Oracle. All rights reserved.

Trapping Predefined
Oracle Server Errors: Example

Syntax:
BEGIN SELECT ... COMMIT;
EXCEPTION

WHEN NO_DATA_FOUND THEN
statement1;
statement2;

WHEN TOO_MANY_ROWS THEN
statement1;

WHEN OTHERS THEN
statement1;
statement2;
statement3;

END;

Copyright © 2006, Oracle. All rights reserved.

DECLARE
e_products_invalid EXCEPTION;
PRAGMA EXCEPTION_INIT (

e_products_invalid, -2292);
v_message VARCHAR2(50);

BEGIN
. . .
EXCEPTION
WHEN e_products_invalid THEN
:g_message := 'Product ID

specified is not valid.';
. . .
END;

Non-Predefined Error

Trap for Oracle server error number –2292, which is an
integrity constraint violation.

2

1

3

Copyright © 2006, Oracle. All rights reserved.

User-Defined Exceptions

Example:
[DECLARE]

e_amount_remaining EXCEPTION;
. . .
BEGIN
. . .

RAISE e_amount_remaining;
. . .
EXCEPTION

WHEN e_amount_remaining THEN
:g_message := 'There is still an amount

in stock.';
. . .
END;

1

2

3

Copyright © 2006, Oracle. All rights reserved.

RAISE_APPLICATION_ERROR Procedure

Syntax:

• Enables you to issue user-defined error messages
from stored subprograms

• Is called from an executing stored subprogram
only

raise_application_error (error_number,
message[, {TRUE | FALSE}]);

Copyright © 2006, Oracle. All rights reserved.

RAISE_APPLICATION_ERROR Procedure

• Is used in two different places:
– Executable section
– Exception section

• Returns error conditions to the user in a manner
consistent with other Oracle server errors

Copyright © 2006, Oracle. All rights reserved.

JDeveloper

Copyright © 2006, Oracle. All rights reserved.

JDeveloper

Copyright © 2006, Oracle. All rights reserved.

Connection Navigator

Copyright © 2006, Oracle. All rights reserved.

Application Navigator

Copyright © 2006, Oracle. All rights reserved.

Structure Window

Copyright © 2006, Oracle. All rights reserved.

Editor Window

Copyright © 2006, Oracle. All rights reserved.

Deploying Java Stored Procedures

Before deploying Java stored procedures, perform the
following steps:
1. Create a database connection.
2. Create a deployment profile.
3. Deploy the objects.

1 2 3

Copyright © 2006, Oracle. All rights reserved.

Publishing Java to PL/SQL

Copyright © 2006, Oracle. All rights reserved.

Creating Program Units

Skeleton of the function

Copyright © 2006, Oracle. All rights reserved.

Compiling

Compilation with errors

Compilation without errors

Copyright © 2006, Oracle. All rights reserved.

Running a Program Unit

Copyright © 2006, Oracle. All rights reserved.

Dropping a Program Unit

Copyright © 2006, Oracle. All rights reserved.

Debugging PL/SQL Programs

• JDeveloper support two types of debugging:
– Local
– Remote

• You need the following privileges to perform
PL/SQL debugging:
– DEBUG ANY PROCEDURE

– DEBUG CONNECT SESSION

Copyright © 2006, Oracle. All rights reserved.

Debugging PL/SQL Programs

Copyright © 2006, Oracle. All rights reserved.

Setting Breakpoints

Copyright © 2006, Oracle. All rights reserved.

Stepping Through Code

Debug Resume

Copyright © 2006, Oracle. All rights reserved.

Examining and Modifying Variables

Data window

Copyright © 2006, Oracle. All rights reserved.

Examining and Modifying Variables

Smart Data window

Copyright © 2006, Oracle. All rights reserved.

Examining and Modifying Variables

Watches window

Copyright © 2006, Oracle. All rights reserved.

Examining and Modifying Variables

Stack window

Copyright © 2006, Oracle. All rights reserved.

Examining and Modifying Variables

Classes window

Copyright © 2006, Oracle. All rights reserved.

Using SQL Developer

Copyright © 2006, Oracle. All rights reserved.

Objectives

After completing this appendix, you should be able to do
the following:
• List the key features of Oracle SQL Developer
• Install Oracle SQL Developer
• Identify menu items of Oracle SQL Developer
• Create a database connection
• Manage database objects
• Use the SQL Worksheet
• Execute SQL statements and SQL scripts
• Edit and debug PL/SQL statements
• Create and save reports

Copyright © 2006, Oracle. All rights reserved.

What Is Oracle SQL Developer?

• Oracle SQL Developer is a graphical tool that
enhances productivity and simplifies database
development tasks.

• You can connect to any target Oracle database
schema by using standard Oracle database
authentication.

SQL Developer

Copyright © 2006, Oracle. All rights reserved.

Key Features

• Developed in Java
• Supports Windows, Linux, and Mac OS X platforms
• Default connectivity by using the JDBC Thin driver
• Does not require an installer
• Connects to any Oracle Database version 9.2.0.1 and

later
• Bundled with JRE 1.5

Copyright © 2006, Oracle. All rights reserved.

Installing SQL Developer

Download the Oracle SQL Developer kit and unzip it
into any directory on your machine.

Copyright © 2006, Oracle. All rights reserved.

Menus for SQL Developer

1

2

3

4

5

6

Copyright © 2006, Oracle. All rights reserved.

Creating a Database Connection

• You must have at least one database connection to
use SQL Developer.

• You can create and test connections:
– For multiple databases
– For multiple schemas

• SQL Developer automatically imports any connections
defined in the tnsnames.ora file on your system.

• You can export connections to an XML file.
• Each additional database connection created is listed

in the Connections Navigator hierarchy.

Copyright © 2006, Oracle. All rights reserved.

Creating a Database Connection

Copyright © 2006, Oracle. All rights reserved.

Browsing Database Objects

Use the Database Navigator to:
• Browse through many objects in a database

schema
• Review the definitions of objects at a glance

Copyright © 2006, Oracle. All rights reserved.

Creating a Schema Object

• SQL Developer supports the creation of any schema
object by:
– Executing a SQL statement in the SQL Worksheet
– Using the context menu

• Edit the objects using an edit dialog box or one of the
many context-sensitive menus.

• View the DDL for adjustments such as creating a new
object or editing an existing schema object.

Copyright © 2006, Oracle. All rights reserved.

Creating a New Table: Example

Copyright © 2006, Oracle. All rights reserved.

Using the SQL Worksheet

• Use the SQL Worksheet to enter and execute SQL,
PL/SQL, and SQL *Plus statements.

• Specify any actions that can be processed by the
database connection associated with the worksheet.

Copyright © 2006, Oracle. All rights reserved.

Using the SQL Worksheet

1

2

3

4

5

6

7 8

Copyright © 2006, Oracle. All rights reserved.

Executing SQL Statements

Use the Enter SQL Statement box to enter single or
multiple SQL statements.

Copyright © 2006, Oracle. All rights reserved.

Viewing the Execution Plan

Copyright © 2006, Oracle. All rights reserved.

Formatting the SQL Code

Before
formatting

After
formatting

Copyright © 2006, Oracle. All rights reserved.

Using Snippets

Snippets are code fragments that may be just syntax
or examples.

Copyright © 2006, Oracle. All rights reserved.

Using Snippets: Example

Inserting a
snippet

Editing the
snippet

Copyright © 2006, Oracle. All rights reserved.

Using SQL*Plus

• The SQL Worksheet does not support all SQL*Plus
statements.

• You can invoke the SQL*Plus command-line interface
from SQL Developer.

Copyright © 2006, Oracle. All rights reserved.

Creating an Anonymous Block

Create an anonymous block and display the output of
the DBMS_OUTPUT package statements.

Copyright © 2006, Oracle. All rights reserved.

Editing the PL/SQL Code

Use the full-featured editor for PL/SQL program units.

Copyright © 2006, Oracle. All rights reserved.

Creating a PL/SQL Procedure

1

2

Copyright © 2006, Oracle. All rights reserved.

Compiling a PL/SQL Procedure

Copyright © 2006, Oracle. All rights reserved.

Running a PL/SQL Procedure

Copyright © 2006, Oracle. All rights reserved.

Debugging PL/SQL

Copyright © 2006, Oracle. All rights reserved.

Database Reporting

SQL Developer provides a number of predefined
reports about the database and its objects.

Copyright © 2006, Oracle. All rights reserved.

Creating a User-Defined Report

Create and save user-defined reports for repeated use.

Copyright © 2006, Oracle. All rights reserved.

Summary

In this appendix, you should have learned how to use SQL
Developer to do the following:
• Browse, create, and edit database objects
• Execute SQL statements and scripts in the SQL

Worksheet
• Edit and debug PL/SQL statements
• Create and save custom reports

	cover
	Introduction
	Lesson 1:Creating Stored Procedures
	Lesson 2: Creating Stores Functions
	Lesson 3: Creating Packages
	Lesson 4: Using More Package Concepts
	Lesson 5: Using Oracle-Supplied Packages in Applications Development
	Lesson 6: Dynamic SQL and Metadata
	Lesson 7: Design Considerations for PL/SQL Code
	Lesson 8: Managing Dependencies
	Lesson 9: Manipulating Large Objects
	Lesson 10: Creating Triggers
	Lesson 11: Applications for Triggers
	Lesson 12: Understanding and Influencing the PL/SQL Compiler
	Appendix C: Studies for Implementing Triggers
	Appendix D: Review of PL/SQL
	Appendix E: JDeveloper
	Appdendix F: Using SQL Developer

