

Oracle Database 10g
PL/SQL Programming

This page intentionally left blank

Oracle Database 10g
PL/SQL Programming

Scott Urman
Ron Hardman
Michael McLaughlin

McGraw-Hill/Osborne

New York Chicago San Francisco
Lisbon London Madrid Mexico City Milan
New Delhi San Juan Seoul Singapore Sydney Toronto

Copyright © 2004 by The McGraw-Hill Companies, Inc. All rights reserved. Manufactured in the United States
of America. Except as permitted under the United States Copyright Act of 1976, no part of this publication may
be reproduced or distributed in any form or by any means, or stored in a database or retrieval system, without the
prior written permission of the publisher.

0-07-150228-9

The material in this eBook also appears in the print version of this title: 0-07-223066-5.

All trademarks are trademarks of their respective owners. Rather than put a trademark symbol after every occur-
rence of a trademarked name, we use names in an editorial fashion only, and to the benefit of the trademark owner,
with no intention of infringement of the trademark. Where such designations appear in this book, they have been
printed with initial caps.

McGraw-Hill eBooks are available at special quantity discounts to use as premiums and sales promotions, or for
use incorporate training programs. For more information, please contact George Hoare, Special Sales, at
george_hoare@mcgraw-hill.com or (212) 904-4069.

TERMS OF USE

This is a copyrighted work and The McGraw-Hill Companies, Inc. (“McGraw-Hill”) and its licensors reserve all
rights in and to the work. Use of this work is subject to these terms. Except as permitted under the Copyright Act
of 1976 and the right to store and retrieve one copy of the work, you may not decompile, disassemble, reverse
engineer, reproduce, modify, create derivative works based upon, transmit, distribute, disseminate, sell, publish or
sublicense the work or any part of it without McGraw-Hill’s prior consent. You may use the work for your own
noncommercial and personal use; any other use of the work is strictly prohibited. Your right to use the work may
be terminated if you fail to comply with these terms.

THE WORK IS PROVIDED “AS IS.” McGRAW-HILL AND ITS LICENSORS MAKE NO GUARANTEES OR
WARRANTIES AS TO THE ACCURACY, ADEQUACY OR COMPLETENESS OF OR RESULTS TO BE
OBTAINED FROM USING THE WORK, INCLUDING ANY INFORMATION THAT CAN BE ACCESSED
THROUGH THE WORK VIA HYPERLINK OR OTHERWISE, AND EXPRESSLY DISCLAIM ANY WAR-
RANTY, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MER-
CHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. McGraw-Hill and its licensors do not war-
rant or guarantee that the functions contained in the work will meet your requirements or that its operation will be
uninterrupted or error free. Neither McGraw-Hill nor its licensors shall be liable to you or anyone else for any inac-
curacy, error or omission, regardless of cause, in the work or for any damages resulting therefrom. McGraw-Hill
has no responsibility for the content of any information accessed through the work. Under no circumstances shall
McGraw-Hill and/or its licensors be liable for any indirect, incidental, special, punitive, consequential or similar
damages that result from the use of or inability to use the work, even if any of them has been advised of the pos-
sibility of such damages. This limitation of liability shall apply to any claim or cause whatsoever whether such
claim or cause arises in contract, tort or otherwise.

DOI: 10.1036/0072230665

About the Authors
Scott Urman is a Principal Member of Technical Staff in the Diagnostics and Defect
Resolution (DDR) team in Oracle’s Server Technology division. He currently focuses
on the internals of Oracle Text and Oracle Ultrasearch, and has worked with JSP,
JDBC, PL/SQL, and OCI. Prior to joining DDR, he was a Senior Analyst in the
Languages division of Oracle Worldwide Technical Support, focusing on all of
Oracle’s language tools. He has been with Oracle since 1989. He is also the best-
selling author of Oracle8i Advanced PL/SQL Programming, Oracle8 PL/SQL
Programming, and Oracle9i PL/SQL Programming.

Ron Hardman, OCP, is a Senior Technical Specialist with Oracle Worldwide
Technical Support. Prior to joining Oracle Corporation, he was an Oracle Database
Developer and Consultant. He is a frequent presenter on the topics of Oracle Text
and Ultrasearch at Oracle User Group conferences, teaches classes on SQL and PL/
SQL, and has published articles with Oracle Magazine and other online magazines
on subjects related to information retrieval.

Michael McLaughlin, D. CS., is the Senior Application Upgrade Manager for
Oracle Applications Release Engineering. He is currently working on the upgrade
architecture for the next release of Oracle Applications. He has worked with PL/SQL
since its first version in Oracle 6, and has authored customer support notes on
customizing Oracle Applications with Pro*C and PL/SQL. He has taught computer
science and information technology at Regis University and Colorado Technical
University, including courses in database development, SQL, PL/SQL, and Java.

About the Technical Editor
Cheryl Riniker is a Senior Technical Specialist with Oracle Worldwide Support in
Oracle’s Bug Diagnosis and Escalation division. She currently works with Oracle
Applications’ Financials Suite of products. She has used PL/SQL in development
projects since 1997, and received her DBA OCP in 2001. She graduated magna
cum laude with an M.A. in English/ESL from Utah State University.

Copyright © 2004 by The McGraw-Hill Companies, Inc. Click here for terms of use.

This page intentionally left blank

This book is dedicated to our
daughter Almarah Rose Urman,

born May 1st, 2004.

—Scott Urman

To my wife Susan, you inspire me.
Thank you for your patience and encouragement.

To my daughter Jessica, and son Joshua, thank you for
your hugs and kisses. They never ran out.

To my parents, thank you for your example.

—Ron Hardman

To my wife Lisa, who is my constant,
and our children Sarah, Joseph, Elise,

Ian, Ariel, Callie, Nathan, and Spencer.
Thank you for your inspiration, patience,

and sacrifice that made my efforts
on this book possible.

—Michael McLaughlin

This page intentionally left blank

Contents at a Glance

PART I
Introduction

1 Introduction to PL/SQL . 3

2 Using SQL*Plus and JDeveloper . 23

3 PL/SQL Basics . 45

4 Using SQL with PL/SQL . 117

5 Records . 181

6 Collections . 213

7 Error Handling . 303

8 Creating Procedures, Functions, and Packages . 335

9 Using Procedures, Functions, and Packages . 381

10 Database Triggers . 443

PART II
Advanced PL/SQL Features

11 Intersession Communication . 499

12 External Routines . 543

13 Dynamic SQL . 583

14 Introduction to Objects . 635

15 Objects in the Database . 673

16 Large Objects . 711

17 Scheduling Tasks . 767

ix

PART III
Appendixes

A PL/SQL Reserved Words . 791

B Guide to Supplied Packages . 795

Index . 839

x Oracle Database 10g PL/SQL Programming

Contents

PART I
Introduction

1 Introduction to PL/SQL . 3
Introduction to Programming Languages . 4

Note to Beginning Programmers . 5
PL/What? . 6

Structured Query Language (SQL) . 6
Relational Database Overview . 7
PL/SQL vs. SQL . 9
PL/SQL vs. Java . 11
PL/SQL History and Features . 12

Language Fundamentals . 15
Anonymous Blocks . 15
Procedures . 16
Functions . 16
Packages . 16
Object Types . 16

PL/SQL Statement Processing . 17
Interpreted . 17
Native Compilation . 17

Getting the Most from This Book . 18
Audience . 18
Objective . 18
Scope . 18
Assumptions . 19
Conventions . 20
Examples . 20

Summary . 21

xi

For more information about this title, click here

2 Using SQL*Plus and JDeveloper . 23
SQL*Plus . 24

Connecting to the Instance . 25
Testing the Connection . 26
Using SQL*Plus . 28
Changing SQL*Plus Session Settings . 31
Running a Script from a File . 31
Output to the Screen Using SQL*Plus and PL/SQL 33

JDeveloper . 34
Installing JDeveloper . 34
Working with PL/SQL in JDeveloper . 36

Summary . 43

3 PL/SQL Basics . 45
The PL/SQL Block . 46

The Basic Structure . 46
Anonymous Blocks . 49
Named Blocks . 52
Nested Blocks . 62
Triggers . 63
Object Types . 64

Language Rules and Conventions . 64
Lexical Units . 64

PL/SQL Data Types . 77
Scalar . 77
Character/String . 77
NUMBER Data Type . 81
Boolean . 83
Date/Time . 84
Composite . 87
Reference . 87
LOB . 89

Using Variables . 89
%TYPE . 90
%ROWTYPE . 90
Variable Scope . 91
Bind Variables . 93

Hiding Code . 97
Expressions . 100

Assignment Operator . 101
Concatenation Operator . 102

Controlling Program Flow . 102
Conditional Evaluation . 103
Circular Execution . 110
Sequential Navigation using GOTO . 113

Summary . 115

xii Oracle Database 10g PL/SQL Programming

4 Using SQL with PL/SQL . 117
Transaction Processing . 118

Transactions and Locking . 119
Autonomous Transactions . 125
Set Transaction . 128

Retrieving Data . 130
SQL SELECT Statement . 130
Pattern Matching . 134
Information Retrieval . 138

Cursors . 142
How Cursors Work . 143
Explicit Cursors . 146
Implicit Cursors . 153
Cursor Variables . 154
Cursor Subqueries . 156
Open Cursors . 157

DML and DDL . 158
Pre-Compilation . 159
Manipulating Data with DML . 160
DELETE . 163
Introduction to Dynamic SQL . 164

Using ROWID and ROWNUM . 165
ROWID . 165
ROWNUM . 169

Built-in SQL Functions . 172
Character Functions . 172
Numeric Functions . 172
Date Functions . 174
Conversion Functions . 175
Error Functions . 176
Other Functions . 178

Summary . 179

5 Records . 181
Introducing Records . 182

What Is a Record? . 182
Working with Records . 182
Defining Record Types . 183
Defining and Using Record Types as Formal Parameters 198
Defining and Using Object Types as Parameters 202
Returning Record Types from Functions . 205
Defining and Using Record Types as Return Values 205
Defining and Using Object Types as Return Values 207
Verifying Work with Record Types . 210

Summary . 212

Contents xiii

6 Collections . 213
Introducing Collections . 214

What Is a Collection? . 214
Working with Collections . 214

Working with Varrays . 217
Working with Nested Tables . 237
Working with Associative Arrays . 261

Oracle 10g Collection API . 282
COUNT Method . 287
DELETE Method . 288
EXISTS Method . 290
EXTEND Method . 293
FIRST Method . 295
LAST Method . 297
LIMIT Method . 297
NEXT Method . 299
PRIOR Method . 299
TRIM Method . 300

Summary . 302

7 Error Handling . 303
What Is an Exception? . 304

Declaring Exceptions . 306
Raising Exceptions . 309
Handling Exceptions . 310
The EXCEPTION_INIT Pragma . 318
Using RAISE_APPLICATION_ERROR . 319

Exception Propagation . 323
Exceptions Raised in the Executable Section 323
Exceptions Raised in the Declarative Section 326
Exceptions Raised in the Exception Section . 327

Exception Guidelines . 329
Scope of Exceptions . 330
Avoiding Unhandled Exceptions . 331
Masking Location of the Error . 332
Exceptions and Transactions . 333

Summary . 334

8 Creating Procedures, Functions, and Packages . 335
Procedures and Functions . 336

Subprogram Creation . 337
Subprogram Parameters . 342
The CALL Statement . 364
Procedures vs. Functions . 367

Packages . 367
Package Specification . 367
Package Body . 369
Packages and Scope . 371

xiv Oracle Database 10g PL/SQL Programming

Overloading Packaged Subprograms . 374
Package Initialization . 378

Summary . 380

9 Using Procedures, Functions, and Packages . 381
Subprogram Locations . 382

Stored Subprograms and the Data Dictionary 382
Local Subprograms . 385
Stored vs. Local Subprograms . 392

Considerations of Stored Subprograms and Packages 393
Subprogram Dependencies . 394
Package Run-Time State . 406
Privileges and Stored Subprograms . 412

Stored Functions and SQL Statements . 424
Single-Valued Functions . 424
Multiple-Valued Functions . 435

Native Compilation . 439
Pinning in the Shared Pool . 440

KEEP . 440
UNKEEP . 440
SIZES . 441
ABORTED_REQUEST_THRESHOLD . 441
The PL/SQL Wrapper . 442

Summary . 442

10 Database Triggers . 443
Types of Triggers . 444

DML Triggers . 445
Instead-of Triggers . 446
System Triggers . 448

Creating Triggers . 449
Creating DML Triggers . 449
Creating Instead-of Triggers . 461
Creating System Triggers . 469
Other Trigger Issues . 479
Triggers and the Data Dictionary . 486

Mutating Tables . 488
Mutating Table Example . 491
Workaround for the Mutating Table Error . 492

Summary . 495

PART II
Advanced PL/SQL Features

11 Intersession Communication . 499
Introducing Intersession Communication . 500

Requiring Permanent or Semipermanent Structures 500
Not Requiring Permanent or Semipermanent Structures 501

Contents xv

The DBMS_PIPE Built-in Package . 502
Introducing the DBMS_PIPE Package . 502
Defining the DBMS_PIPE Package . 505
Working with the DBMS_PIPE Package . 509

DBMS_ALERT Built-in Package . 530
Introducing the DBMS_ALERT Package . 530
Defining the DBMS_ALERT Package . 531
Working with the DBMS_ALERT Package . 534

Summary . 542

12 External Routines . 543
Introducing External Procedures . 544
Working with External Procedures . 545

Defining the extproc Architecture . 545
Defining extproc Oracle Net Services Configuration 548
Defining the Multithreaded External Procedure Agent 556
Working with a C Shared Library . 560
Working with a Java Shared Library . 568

Troubleshooting the Shared Library . 575
Configuration of the Listener or Environment 576
Configuration of the Shared Library or PL/SQL Library Wrapper 580

Summary . 581

13 Dynamic SQL . 583
Introducing Dynamic SQL . 585
Working with Native Dynamic SQL . 586

Working with DDL and DML Without Bind Variables 588
Working with DML and a Known List of Bind Variables 598
Working with DQL . 601

Working with the Oracle
DBMS_SQL Built-in Package . 609

Working with DDL and DML Without Bind Variables 618
Working with DML and a Known List of Bind Variables 622
Working with DQL . 631

Summary . 634

14 Introduction to Objects . 635
Introduction to Object-Oriented Programming . 636

Data and Procedural Abstraction . 636
Object Type Overview . 637
Creating Object Types . 638

Object Type Specification . 638
Object Type Body . 645

Object Type Inheritance . 652
Dynamic Method Dispatch . 660

Attribute Chaining . 663

xvi Oracle Database 10g PL/SQL Programming

Making Changes . 666
Type Evolution . 666

Summary . 672

15 Objects in the Database . 673
Introduction to Objects in the Database . 674

Object Tables . 674
Column Objects . 682
Object Views . 683

Accessing Persistent Objects Using SQL and PL/SQL 685
Object Tables . 685
Accessing Column Objects . 689
Accessing Object Views . 691
Object Related Functions and Operators . 693

Maintaining Persistent Objects . 705
Type Evolution . 705

Summary . 709

16 Large Objects . 711
Introduction to Large Objects . 712

Features Comparison . 713
Types of LOBs . 713
LOB Structure . 717
Internal LOB Storage . 718
External LOB Storage . 722
Temporary LOB Storage . 723
Migrating from LONGs to LOBs . 724

LOBs and SQL . 725
SQL for Internal Persistent LOBs . 725
External LOB – BFILE . 729

LOBs and PL/SQL . 730
DBMS_LOB . 730

Performance Considerations . 758
Returning Clause . 758

Summary . 765

17 Scheduling Tasks . 767
Introducing DBMS_JOB . 768

SUBMIT . 770
BROKEN . 774
RUN . 776
CHANGE . 777
REMOVE . 779

Oracle Scheduler . 780
Terminology . 780
Using DBMS_SCHEDULER . 780

Contents xvii

Migrating from DBMS_JOB . 785
Removing a Job . 788

Summary . 788

PART III
Appendixes

A PL/SQL Reserved Words . 791
Table of Reserved Words . 792

B Guide to Supplied Packages . 795
SYS-Owned Built-in Packages . 796

DBMS_ADVANCED_REWRITE . 797
DBMS_ADVISOR . 797
DBMS_ALERT . 798
DBMS_APPLICATION_INFO . 798
DBMS_APPLY_ADM . 799
DBMS_AQ . 799
DBMS_BACKUP_RESTORE . 799
DBMS_CAPTURE_ADM . 800
DBMS_CRYPTO . 800
DBMS_DATA_MINING,

DBMS_DATA_MINING_TRANSFORM . 801
DBMS_DATAPUMP . 801
DBMS_DDL . 801
DBMS_DEBUG . 802
DBMS_DEFER . 802
DBMS_DESCRIBE . 802
DBMS_DIMENSION . 803
DBMS_DISTRIBUTED_TRUST_ADMIN . 803
DBMS_FGA . 803
DBMS_FILE_TRANSFER . 804
DBMS_FLASHBACK . 804
DBMS_HS . 805
DBMS_HS_PASSTHROUGH . 805
DBMS_JAVA . 805
DBMS_JOB . 806
DBMS_LDAP . 806
DBMS_LOB . 806
DBMS_LOCK . 807
DBMS_LOGMNR . 807
DBMS_METADATA . 807
DBMS_MONITOR . 808
DBMS_OBFUSCATION_TOOLKIT . 808
DBMS_ODCI . 808

xviii Oracle Database 10g PL/SQL Programming

DBMS_OFFLINE_OG . 809
DBMS_OLAP . 809
DBMS_OUTLN . 809
DBMS_OUTLN_EDIT . 810
DBMS_OUTPUT . 810
DBMS_PIPE . 811
DBMS_PROFILER . 811
DBMS_PROPAGATION_ADM . 811
DBMS_RANDOM . 812
DBMS_REDEFINITION . 812
DBMS_REFRESH . 812
DBMS_REPAIR . 813
DBMS_REPCAT . 813
DBMS_RESOURCE_MANAGER/

DBMS_RESOURCE_MANAGER_PRIVS . 813
DBMS_RESUMABLE . 814
DBMS_ROWID . 814
DBMS_RULE, DBMS_RULE_ADM . 815
DBMS_SCHEDULER . 815
DBMS_SCHEMA_COPY . 815
DBMS_SERVER_ALERT . 816
DBMS_SERVICE . 816
DBMS_SESSION . 816
DBMS_SHARED_POOL . 816
DBMS_SPACE . 817
DBMS_SQL . 817
DBMS_SQLTUNE . 817
DBMS_STANDARD, STANDARD . 818
DBMS_STAT_FUNCS . 818
DBMS_STATS . 818
DBMS_SUMMARY . 819
DBMS_TRACE . 819
DBMS_TRANSACTION . 819
DBMS_TRANSFORM . 820
DBMS_TYPES . 820
DBMS_UTILITY . 820
DBMS_WARNING . 820
DBMS_WORKLOAD_REPOSITORY . 821
DBMS_XMLGEN, DBMS_XMLQUERY . 821
DBMS_XPLAN . 821
UTL_COLL . 822
UTL_COMPRESS . 822
UTL_DBWS . 822
UTL_ENCODE . 823

Contents xix

UTL_FILE . 823
UTL_HTTP . 823
UTL_I18N . 824
UTL_INADDR . 824
UTL_LMS . 824
UTL_MAIL . 825
UTL_RAW . 825
UTL_RECOMP . 825
UTL_REF . 825
UTL_SMTP . 826
UTL_TCP . 826
UTL_URL . 826

CTXSYS-Owned Built-in Packages . 827
CTX_ADM . 828
CTX_CLS . 828
CTX_DDL . 829
CTX_DOC . 831
CTX_OUTPUT . 833
CTX_QUERY . 834
CTX_REPORT . 835
CTX_THES . 836

Index . 839

xx Oracle Database 10g PL/SQL Programming

Acknowledgments

A
book like this takes quite a lot of work. Many thanks go to Lisa
McClain at McGraw-Hill/Osborne for keeping the book moving
forward and for providing guidance throughout the publishing
process; Cheryl Riniker, our wonderful technical editor, whose input
was invaluable; and project editor Carolyn Welch and copy editor

Robert Campbell, whose work is greatly appreciated. Special mention goes to Craig
Hollister for his contribution to this book. Thanks also to Athena Honore for running
us down and keeping us on schedule until she went off to work in politics. Finally,
to McGraw-Hill/Osborne’s production department, your efforts to pull the book
together have not gone unnoticed. Thank you all so much for your hard work.

We welcome any comments about this book, or suggestions for topics to
include in the next release. Please e-mail us at Feedback@PLSQLBook.com.
Let us know what you think!

xxi
Copyright © 2004 by The McGraw-Hill Companies, Inc. Click here for terms of use.

This page intentionally left blank

Introduction

O
racle is an extremely powerful and flexible relational database
system. Along with this power and flexibility comes complexity,
however. In order to design useful applications that are based on
Oracle, it is necessary to understand how Oracle manipulates the
data stored within the system. PL/SQL is an important tool that is

designed for data manipulation, both internally within Oracle and externally in your
own applications. PL/SQL is available in a variety of environments, each of which
has different advantages.

The first PL/SQL book in this series was Oracle PL/SQL Programming, published
in 1996. This first edition covered releases up to PL/SQL version 2.3 with Oracle7
Release 7.3—at the time the most recent version of the database and PL/SQL. The
second edition, Oracle8 PL/SQL Programming, published in 1997, expanded on the
material in the first edition and included information up to Oracle8 Release 8.0.
The third edition, Oracle8i Advanced PL/SQL Programming, was published in 2000.
That edition focused on advanced features, up to and including Oracle8i. The fourth
edition, Oracle 9i PL/SQL Programming, was published in 2002, and served as an
introduction to PL/SQL up to and including Oracle9i.

This fifth edition is principally rewritten, and includes all new examples and
coverage of advanced topics like object oriented programming with PL/SQL,
external routines, job scheduling, and more. This book covers both introductory
and advanced material, and provides complete coverage of the PL/SQL language
including new 10g features.

What’s New
This fifth release adds not only new features for Oracle 10g, but includes content
we believe will make you a more efficient PL/SQL programmer. The following list
highlights some of the changes:

■ Oracle JDeveloper supports PL/SQL development, and we walk you
through examples developing and debugging code through this IDE.

xxiii
Copyright © 2004 by The McGraw-Hill Companies, Inc. Click here for terms of use.

■ Completely new and expanded coverage of PL/SQL Records and
Collections provides the most complete coverage of the topics you
will find in any book.

■ Advanced features such as External Routines, Dynamic SQL, Object Types,
and LOBs take you beyond the basics of the language.

■ Job scheduling using DBMS_JOB and the new Oracle 10g Scheduler are
demonstrated.

New features of the book are not restricted to just the advanced topics, however.
Sections covering basic PL/SQL topics answer the why and how questions that are
most often overlooked in technical documentation. We don’t just discuss transactions.
We teach you how transaction processing works and demonstrate what the database
is doing behind the scenes. We don’t just discuss how to create a cursor. We teach
you what happens in the database when the cursor is used, and how to avoid problems
when they are used improperly. Data retrieval is not limited to basic SELECT statements
in PL/SQL. We demonstrate the use of hierarchical queries, Regular Expressions, and
Oracle Text for advanced methods of retrieval.

How to Use This Book
There are 17 chapters and two appendixes in this book. Chapters 1 through 10
include topics that are absolutely critical for all PL/SQL programmers to understand.
Chapters 11 through 17 cover advanced topics. We recommend that you read the
first ten chapters thoroughly before jumping into the advanced topics.

The chapters are as follows:

Chapter 1: Introduction to PL/SQL
In this chapter you are introduced to programming, and how PL/SQL compares
to some of the other languages you may be used to like Java and Perl. It provides
a release-by-release recap of major PL/SQL enhancements through the years and
highlights some of the new 10g features that are discussed in greater detail in
later chapters.

Chapter 2: Using SQL*Plus and JDeveloper
Chapter 2 discusses the most commonly used interface to the database, SQL*Plus.
We also introduce JDeveloper as a PL/SQL development environment, and walk
you through examples editing and debugging PL/SQL.

xxiv Oracle Database 10g PL/SQL Programming

Chapter 3: PL/SQL Basics
In Chapter 3 we introduce the basic concepts of the language including block
structure, anonymous and named blocks, error messages and compile time
warnings, language rules and conventions, variables, and more.

Chapter 4: Using SQL with PL/SQL
In this chapter we discuss transaction processing, data retrieval including the use
of hierarchical queries, Oracle Text, and Regular Expressions. We discuss how
DML can be used, and how restrictions on the use of DDL inside PL/SQL can be
overcome. We cover how to use cursors, and how cursors work in Oracle. Built-in
SQL functions are covered, as well as how to use ROWID and ROWNUM in your
PL/SQL.

Chapter 5: Records
In Chapter 5 we discuss records by covering their use as structures and types within
the database. We illustrate these by comparing and contrasting development methods
using traditional PL/SQL program record structures and object types.

Chapter 6: Collections
In Chapter 6 we compare and contrast varrays, nested tables, and associative arrays.
We illustrate how to use base types, PL/SQL record structures, and object types. We
supplement the PL/SQL details by providing key DML access methods. We demonstrate
how to use the Collections API and teach you how to navigate the new Oracle 10g
unique string indexed associative arrays.

Chapter 7: Error Handling
Chapter 7 discusses what an exception is, and how exception handlers can be
declared. We show how the EXCEPTION_INIT pragma can be used, and discuss
exception propagation in detail.

Chapter 8: Creating Procedures,
Functions, and Packages
In Chapter 8 we show you how to create procedures, functions, and packages,
paying particular attention to various types of parameter passing. Differences
between these types of objects are discussed. Package overloading is demonstrated.

Introduction xxv

Chapter 9: Using Procedures,
Functions, and Packages
In Chapter 9 we show you how to use subprograms and stored packages. These are
well-paced examples of the fundamentals required for effective PL/SQL coding.

Chapter 10: Database Triggers
In Chapter 10 we delve into how to write triggers. We cover how you can use them
for local and remote instance management. We also include how to leverage stored
Java libraries with the necessary setup steps to compile and load your first Java
library.

Chapter 11: Intersession Communication
In Chapter 11 we show you how to use DBMS_PIPE and DBMS_ALERT to manage
intersession communications. We discuss the benefits and pitfalls of each and give
you working examples so that you can begin using these Oracle built-in packages.

Chapter 12: External Routines
In Chapter 12 we demonstrate how to use external procedures. We include the
details necessary to configure your environment to take advantages of these,
including how to configure the Oracle Heterongeneous Server to support
multithreaded external procedures. We compare and contrast external
procedures with stored Java libraries.

Chapter 13: Dynamic SQL
In Chapter 13 we provide examples of leveraging the features of Native Dynamic
SQL (NDS) and the traditional DBMS_SQL package. The examples illustrate work
with standard Oracle data types and collections.

Chapter 14: Introduction to Objects
Chapter 14 introduces the concept of object oriented programming, and how PL/
SQL has changed over the last few releases to support it. This chapter describes the
basic concepts of Objects and Object Types, and discusses where you might take
advantage of these great features. Inheritance, dynamic method dispatch, and type
evolution are shown.

xxvi Oracle Database 10g PL/SQL Programming

Chapter 15: Objects in the Database
This chapter extends Chapter 14 by discussing how Objects can be stored in the
database. Object views, object tables, and column objects are just a few of the
topics discussed.

Chapter 16: Large Objects
Chapter 16 discusses the different types of LOBs and how they work with PL/SQL.
We show you how they can be used, under what circumstances they should be
used over other datatypes, and how LOB storage works in Oracle.

Chapter 17: Scheduling Tasks
In Chapter 17 we show how tasks can be scheduled using the built-in package
DBMS_JOB, and demonstrate the UTL_SMTP supplied package in the process.
Oracle 10g introduced job scheduling using the DBMS_SCHEDULER package. We
show how jobs created with DBMS_JOB can be created using DBMS_SCHEDULER,
and demonstrate the UTL_MAIL supplied package as well.

Appendix A
This appendix contains a list of reserved words. These words have a special meaning
to Oracle; therefore, they cannot be used by developers as identifiers in code.

Appendix B
Appendix B provides a list of Oracle supplied packages, with creation script names
and descriptions of each. In addition to SYS owned packages, Oracle Text supplied
packages are included.

Introduction xxvii

This page intentionally left blank

PART
I

Introduction

Copyright © 2004 by The McGraw-Hill Companies, Inc. Click here for terms of use.

This page intentionally left blank

CHAPTER
1

Introduction to
PL/SQL

Copyright © 2004 by The McGraw-Hill Companies, Inc. Click here for terms of use.

W
e’ve seen some really well-written code make some really lousy
applications. Look at some of the beautifully written viruses that
are out there, or some of the now-defunct software companies
that turned out flashy but useless applications! Programming is
more than just syntax. It is a profession where knowledge can

be combined with ingenuity, communication, attitude, and discipline to build a
successful career and world-class applications.

Throughout this book, we focus on more than syntax and rules. We answer the
“Why would I use that?” question we all ask when shown new capabilities. Our
discussions go beyond the fact that Oracle can do something. We show how and
why it does it.

In this first chapter we set the stage for the rest of the book. The following points
are discussed:

■ SQL and its interaction with the relational database

■ How PL/SQL uses SQL to increase capabilities

■ Programming concepts, comparing procedural languages to object-oriented
programming

■ PL/SQL history and features

■ The benefits (and drawbacks) of the language

■ How to approach the remainder of this book and get the most out of this
fully revised text

Introduction to Programming Languages
Java, C++, PL/SQL, and Visual Basic are some of the most popular programming
languages in use today. Each one is quite different from the next, having its own
unique characteristics. Even though they are distinct languages, some of them
share common traits. Programming languages can be categorized according to
these commonalities. The languages just listed fit into two categories: procedural
and object-oriented.

Procedural languages, such as PL/SQL and Visual Basic, are linear. They begin
at the beginning, and end at the end. This is a simplistic definition, but nevertheless
a primary differentiator between procedural and object-oriented languages. Each
statement must wait for the preceding statement to complete before it can run. For
many beginning programmers, cutting their teeth on a procedural language is the
best way to learn. You have a series of steps your program must perform, and that
is exactly how the code works—step-by-step.

Object-oriented programming (OOP) languages such as Java and C++ are more
abstract in nature. OOP languages work with structures called objects. For example,

4 Oracle Database 10g PL/SQL Programming

Chapter 1: Introduction to PL/SQL 5

instead of writing code to pull together information about a book directly from the
data structures, we can create an object called BOOK. Each object has attributes:
number of pages, price, title, etc. Attributes describe the object. Methods are more
action oriented. They operate on the data, retrieving it or modifying it. Should you
want to change the price, for example, you call a method to perform this task. This
differs from a procedural language, where you would execute a series of steps to
produce the same effect.

In a rare dual-category listing, PL/SQL can now be considered both procedural
and object-oriented. Oracle 8 introduced objects, though in the initial releases the
support for advanced features such as inheritance, type evolution, and dynamic
method dispatch were not provided. With Oracle 9iR1, Oracle began a major push
to fully support object-oriented programming with PL/SQL. As of Oracle 10g, most
major OO features are fully supported.

NOTE
The object-oriented features mentioned here
are explained in detail in Chapters 14 and 15.

Note to Beginning Programmers
Like many developers, I cut my teeth on Basic. The syntax was easily learned, yet
the programming “truths” that applied to Basic applied to most other languages. I
believe you will find the same true with PL/SQL.

My favorite feature of PL/SQL is not its tight integration with the database (though
it is tightly integrated), advanced language concepts and capabilities (by the end of
this book, you will be amazed at what can be done), or any other type of functionality
it provides. My favorite feature is its structured approach to programming. For every
BEGIN, there is an END. For every IF, there is an END IF.

As an instructor teaching PL/SQL to many students new to programming (not
just new to PL/SQL), I know that you can learn this language. It is structured, linear,
and not very forgiving. This is a good thing! You will learn structure and rules. If you
do not follow the rules, you get instant feedback when trying to run your code.

Warning: Procedure created with compilation errors.

TIP
Obviously, structure does not guarantee good code.
It simply makes the language easier to learn. Take
caution to use good form, adopt proper naming
conventions, document your actions, and practice,
practice, practice. Do not allow yourself to take
shortcuts that make your code inefficient and difficult
to maintain. As with any language, you can write
terrible code that compiles.

You may have noticed that the best programmers are not necessarily the most
technically gifted. The best programmers are good communicators who have the
ability to put themselves in the shoes of their users and customers. The design phase
is where this is especially critical. You meet with project managers, other developers,
DBAs, end users, QA engineers, and management. Each group of people has different
objectives during the systems development life cycle, and each group will place
different demands on you. Your attitude and ability to communicate spells the
success or failure of the project and ultimately determines how far you can go
in this industry.

PL/What?
So, what is PL/SQL? It is the procedural (and sometimes object-oriented) programming
extension to SQL, provided by Oracle, exclusively for Oracle. If you are familiar
with another programming language called Ada, you will find striking similarities in
PL/SQL. The reason they are so similar is that PL/SQL grew from Ada, borrowing
many of its concepts from it.

The PL in PL/SQL stands for procedural language. PL/SQL is a proprietary language
not available outside the Oracle Database. It is a third-generation language (3GL)
that provides programming constructs similar to other 3GL languages, including
variable declarations, loops, error handling, etc. Historically, PL/SQL was procedural
only. As discussed in the preceding section, however, PL/SQL can now be considered
part of the object-oriented category of languages. Should we change the name to
PL/OO/SQL?

Structured Query Language (SQL)
The SQL in PL/SQL stands for structured query language. We use SQL to SELECT,
INSERT, UPDATE, or DELETE data. We use it to create and maintain objects and
users, and to control access rights to our instances.

SQL (pronounced as sequel or by its letter abbreviation) is the entrance, or
window, to the database. It is a fourth-generation language (4GL) that is intended
to be easy to use and quick to learn. The basic SQL syntax is not the creation of
Oracle. It actually grew out of the work done by Dr. E.F. Codd and IBM in the
early 1970s. The American National Standards Institute (ANSI) recognizes SQL
and publishes standards for the language.

Oracle supports ANSI-standard SQL but also adds its own twist in its SQL*Plus
utility. Through SQL*Plus, Oracle supports additional commands and capabilities
that are not part of the standard. SQL*Plus is a utility available in multiple forms:

■ Command line From the Unix prompt or DOS prompt

6 Oracle Database 10g PL/SQL Programming

■ GUI SQL*Plus Client, SQL Worksheet, Enterprise Manager

■ Web Page iSQL*Plus, Enterprise Manager in 10g

With just a client installed, we can configure a network connection to remote
databases. Oracle 10g makes configuration even easier with a browser-based
Enterprise Manager and iSQL*Plus, both configured at install time.

Relational Database Overview
SQL is the window to the database, but what is the database? A database in general
terms is anything that stores data. Electronic databases can be as simple as a
spreadsheet or word processing document.

As you might imagine, storing large amounts of data in a spreadsheet or word
processing document can become overwhelming very quickly. These one-
dimensional databases have no efficient way of filtering redundant data, ensuring
consistent data entry, or handling information retrieval.

Oracle is a relational database management system, or RDBMS. Relational
databases store data in tables. Tables are made up of columns that define the type of
data that can be stored in them (character, number, etc.). A table has a minimum
of one column. When data is placed in the table, it is stored in rows. This holds
true for all relational database vendors (see Figure 1-1).

In Oracle, tables are owned by a user, or schema. The schema is a collection of
objects, like tables, that the database user owns. It is possible to have two tables in
one database that have the same name as long as they are owned by different users.

Chapter 1: Introduction to PL/SQL 7

FIGURE 1-1. Table structure

8 Oracle Database 10g PL/SQL Programming

Other vendors do not necessarily follow this approach. SQL Server, for example,
applies different terminology. The SQL Server database is more like an Oracle
schema, and the SQL Server server more resembles the Oracle database. The result
is the same, however. Objects, such as tables, always have an owner.

It is possible to store all of our data in a single table, just like the spreadsheet,
but that does not take advantage of Oracle’s relational features. For example,
a table containing data about Oracle Press books is incomplete without author
information. It is possible that an author has written multiple titles. In a flat-file,
or single-table, model, the author is listed multiple times. This redundancy can be
avoided by splitting the data into two tables with a column that links related data
together. Figure 1-2 illustrates how we can break this into two separate tables.

In Figure 1-2 there are two tables, AUTHORS and BOOKS. Author information
stores the first and last names of authors one time. Each row of data is given an
ID that is guaranteed unique and not null (null means empty, so not null means
not empty).

Since we have the AUTHORS table, we don’t have to repeat author information
over and over for every title each person writes. We add a single AUTHOR1 column
in the BOOKS table and insert the appropriate ID value from the AUTHORS table
for each title in the BOOKS table. Using a FOREIGN KEY on the BOOKS.AUTHOR1
column, we can relate the two tables together using SQL. Let’s take a look at
an example:

NOTE
You may wish to use the CreateUser.sql script
located in this chapter’s directory on the web site.
It creates a user called plsql and grants required
permissions to the user.

FIGURE 1-2. ERD for Books and Authors

-- Available online as part of PlsqlBlock.sql
CREATE TABLE authors (
id NUMBER PRIMARY KEY,
first_name VARCHAR2(50),
last_name VARCHAR2(50)

);

CREATE TABLE books (
isbn CHAR(10) PRIMARY KEY,
category VARCHAR2(20),
title VARCHAR2(100),
num_pages NUMBER,
price NUMBER,
copyright NUMBER(4),
author1 NUMBER CONSTRAINT books_author1

REFERENCES authors(id)
);

After inserting a few records into the tables, we can perform a SELECT, joining
the tables according to their relationship.

SELECT b.title, a.first_name, a.last_name
FROM authors a, books b
WHERE b.author1 = a.id;

This joins the two tables together and retrieves data just as you would have
seen it had it been stored in a flat file. The differences are less redundancy, fewer
opportunities for error, and greater flexibility. To add publisher information, all I
would need to do is create a table called PUBLISHER that contains an ID, then
add a column to the BOOKS table with a FOREIGN KEY pointing back to the
PUBLISHER.ID column.

NOTE
For expanded coverage of SQL, refer to the
online documentation at http://otn.oracle.com.

PL/SQL vs. SQL
SQL gives us complete access to our data. By complete, I mean we can get to
everything. . . eventually. . . in less than ideal ways in many cases. There is no

Chapter 1: Introduction to PL/SQL 9

guarantee of efficiency, and few actual programming capabilities found in most
languages are possible. SQL provides no ability to

■ Loop through records, manipulating them one at a time.

■ Keep code secure by offering encryption, and storing code permanently
on the server rather than the client.

■ Handle exceptions.

■ Work with variables, parameters, collections, records, arrays, objects,
cursors, exceptions, BFILEs, etc.

While SQL is powerful, and SQL*Plus (Oracle’s proprietary SQL interface)
includes commands and built-in functions not found in the ANSI standard, SQL
remains more of a method of access to the database than a programming language.
PL/SQL takes over where SQL leaves off by adding the features mentioned here
and more.

NOTE
Do not worry if you do not know what all of the
programming features mentioned here are! That is
what this book is for. They are explained in detail
in later chapters.

Virtually all SQL capabilities are possible with PL/SQL. In fact, as of Oracle 9iR1,
the PL/SQL parser is the same as the SQL parser, ensuring that commands are treated
the same regardless of where they are executed. Prior to Oracle 9iR1, you would find
some cases where a SQL statement was treated completely differently. Not so anymore.

Let’s take the query of the BOOKS and AUTHORS tables that we did earlier and
use it in a PL/SQL example.

-- Available online as part of PlsqlBlock.sql
SET SERVEROUTPUT ON
DECLARE

v_title books.title%TYPE;
v_first_name authors.first_name%TYPE;
v_last_name authors.last_name%TYPE;

CURSOR book_cur IS
SELECT b.title, a.first_name, a.last_name
FROM authors a, books b
WHERE a.id = b.author1;

BEGIN

10 Oracle Database 10g PL/SQL Programming

DBMS_OUTPUT.ENABLE(1000000);
OPEN book_cur;
LOOP

FETCH book_cur INTO v_title, v_first_name, v_last_name;
EXIT WHEN book_cur%NOTFOUND;

IF v_last_name = 'Hardman'
THEN

DBMS_OUTPUT.PUT_LINE('Ron Hardman co-authored '||v_title);
ELSE

DBMS_OUTPUT.PUT_LINE('Ron Hardman did not write '||v_title);
END IF;

END LOOP;

CLOSE book_cur;

EXCEPTION
WHEN OTHERS

THEN
DBMS_OUTPUT.PUT_LINE(SQLERRM);

END;
/

This example includes the select statement we used earlier, but it loops through
all of the query results, determines if ‘Hardman’ is the last name of the author,
and formats the output accordingly. The power of SQL 4GL is combined with the
features of a procedural 3GL language.

NOTE
Take note of the structure in the last block.
For every begin, there is an end.

PL/SQL vs. Java
Oracle 8i introduced support for Java, and Java Stored Procedures, in the database.
Why not just use Java, then?

PL/SQL is, and has always been, tightly integrated with the Oracle database.
Oracle continues to improve PL/SQL performance by adding integration features
such as native compilation of PL/SQL code. This means that when the code is
compiled, it is converted to C (the language Oracle is written in). At run time, no
interpretation between PL/SQL syntax and C is required. Performance is greatly
improved—up to 30 percent over interpreted mode (the default).

Another advantage of PL/SQL is that it is very compact. You can turn a SQL
statement into a PL/SQL block (blocks are discussed in Chapter 3) by simply

Chapter 1: Introduction to PL/SQL 11

12 Oracle Database 10g PL/SQL Programming

adding a BEGIN before the statement, and an END after it. The same cannot be said
for Java. The following block of code is the most basic you can create with PL/SQL:

BEGIN
NULL;

END;
/

Try it—it works. It does absolutely nothing, but it runs.
Here are some other distinctive features of PL/SQL:

■ PL/SQL now shares the same parser as SQL, so there is guaranteed
consistency between interfaces.

■ PL/SQL can be executed from SQL.

■ OO features are constantly being added to PL/SQL, removing many
of the reasons to switch to Java.

This is not to say that you should always use PL/SQL and never use Java.
Java includes a whole host of features not yet available in PL/SQL. Java is not
a replacement for PL/SQL, though. It is simply an alternative.

NOTE
Since Java’s introduction to the database, I have
repeatedly heard a rumor that PL/SQL was on the
way out and Java is taking over—not true.

PL/SQL History and Features
What you see as a rich feature set in the most recent releases of PL/SQL is actually 13
years (as of the time of this writing) of constant development and improvement of
the language by Oracle. PL/SQL is a language developed out of need, both internal
and external to Oracle. Though many of the features were created to satisfy the
demands of database developers in the user community, a large number were also
prompted by Oracle’s need for functionality in their own application development
and consulting efforts. As a developer, I find it encouraging to know that Oracle is
heavily using the same technologies I rely on in my career.

It is hard to imagine the Oracle database without PL/SQL, but it was not that
long ago when it was first introduced.

Version 1.x
PL/SQL 1.0 was introduced in 1991 with the 6.0 release of the data server. As you
might expect with a new programming language, it was lacking in most features

you might expect from a more mature release. The Oracle development community,
however, appreciated it because it gave capabilities such as IF-THEN logic that were
not possible with SQL at the time.

Version 2.x
By PL/SQL version 2.3 (released with version 7.3 of the database), Oracle added
support for stored procedures and functions, and added numerous built-in packages.
PL/SQL was key to the success of Oracle’s developer tools, and Oracle Applications
relied heavily on tight integration of PL/SQL to the data server.

Version 8.0
Oracle 8.0 included support for objects. Though object support was not exactly
feature-rich in this introductory release, it gave us an indication of where Oracle
was taking the language. OO enhancements continue through the most recent
release of 10gR1. One other change in 8.0 is the versioning for PL/SQL and the
data server. PL/SQL began following the same version sequence as the data server
it was integrated with.

Version 8.1
With Oracle 8i, marketing of PL/SQL features took a back seat to Java integration
in the “Database for the Internet.” This did not mean that there was nothing new
with PL/SQL, though. One of my favorite enhancements: Native Dynamic SQL
(NDS) gave us EXECUTE IMMEDIATE! I love this command—in fact, you will see
it in nearly every schema creation script in the examples for this book.

Version 9.0
Oracle 9iR1 was a huge release for PL/SQL. The following list summarizes some of
the major improvements:

■ SQL and PL/SQL now share the same parser, ensuring consistency. Prior
to this improvement, a statement that succeeded in the SQL*Plus window
would not be guaranteed to work in PL/SQL.

■ Character semantics, which allows us to define our variable or column
precision in characters or bytes, was added in 9iR1. Unicode characters
are not all created equal. They can differ in byte size. Precision in Oracle
is actually in bytes, not characters! A variable declaration specifying
VARCHAR2(2) means that the variable can hold two bytes, not two
characters. Some Asian characters are up to three bytes, which means that
an assignment of a single Chinese character may not fit into a variable with
a precision of two. Now that is annoying!

Chapter 1: Introduction to PL/SQL 13

14 Oracle Database 10g PL/SQL Programming

■ Support for objects now includes inheritance and type evolution. These
were glaring weaknesses in PL/SQL’s OO support.

■ Native compilation allows PL/SQL code to be compiled as C code (Oracle
is written in C), reducing time to execute, since no interpretation is required
at run time.

Version 9.2
Many of the Oracle 9iR2 features were improvements of 9iR1 enhancements.
Object features were improved, adding built-in functions and support for user-
defined constructors. Oracle Text introduced the CTXXPATH, providing improved
PL/SQL access to XML documents stored in the XMLTYPE datatype.

Version 10.0
PL/SQL 10.0 added a number of new features:

■ Arguably the most important addition to 10gR1 PL/SQL is support for
regular expressions. Regular expressions have long been a staple of Unix
and Perl scripting, and they are now available with Oracle and supported
in PL/SQL. The short definition: Regular expressions find, retrieve, and
manipulate patterns in text.

■ Another great feature added in 10gR1 is the ability to receive warnings
when code is compiled. I don’t mean errors—we get these already. We
can get warnings now using the plsql_warnings parameter, or the
DBMS_WARNING package. They give us hints about potential performance
problems and minor problems that do not result in errors at compile time.

■ New datatypes—BINARY_FLOAT and BINARY_DOUBLE—are native
floating-point datatypes that are an alternative to using the NUMBER type.

■ DBMS_LOB offers support of large LOBs—between 8 and 128 terabytes
(depending on block size). See Chapter 16 for more information.

■ String literal customization. If you get tired of having to put two single
quotes inside of a string literal, you can use q’!…!’, with the string
placed inside the exclamation points. This lets you use one single quote
in your string rather than requiring two. Here’s a quick example using
an anonymous block:

SET SERVEROUTPUT ON

BEGIN

DBMS_OUTPUT.PUT_LINE('Ron's');

END;

/

This returns the following error:

ORA-01756: quoted string not properly terminated

To fix it, we used to have to use two single quotes in place of the
apostrophe, as in ‘Ron’’s’. 10gR1 provides another alternative:

BEGIN

DBMS_OUTPUT.PUT_LINE(q'!Ron's!');

END;

/

This completes successfully and displays Ron’s as intended.

Language Fundamentals
In this section we look at some of the basic features of PL/SQL, such as the ability
to execute code without storing it, storing code for later use, and the differences
between various types of stored objects. We discuss them at a high level, just to
introduce the concepts. They are discussed in much greater detail in Chapters 3,
4, 8, and 9.

Anonymous Blocks
Anonymous blocks of code are not stored, and not named. They are executed in-
session and cannot be called from another session. To execute the same code again,
you must save the anonymous block to an OS file and run it, type it in again, or
include it in a program that executes the block when needed.

You will find throughout the examples that anonymous blocks are used extensively.
Anonymous blocks are perfect for scripting, or activities that you do not wish to
repeat frequently. The following example is an anonymous block:

SET SERVEROUTPUT ON
DECLARE

v_Date TIMESTAMP;
BEGIN

SELECT systimestamp - 1/24
INTO v_Date
FROM dual;
DBMS_OUTPUT.PUT_LINE('One hour ago: '||v_Date);

END;
/

The block begins with DECLARE or BEGIN and is not stored anywhere once
executed.

Chapter 1: Introduction to PL/SQL 15

16 Oracle Database 10g PL/SQL Programming

NOTE
A PL/SQL block is a complete section of PL/SQL
code. A PL/SQL program is made up of one or more
blocks that logically divide the work. Blocks can
even be nested within other blocks. Chapter 3
includes a full discussion on block structure.

Procedures
Procedures are named and stored. They can return a value when executed, but
they do not have to. The only thing that must be returned is the success or failure
of the execution.

Stored procedures, or named procedures, are given a unique name at creation
time. They are owned by the user that created them unless otherwise stated in the
creation script.

You can execute procedures from the SQL*Plus prompt, from within a SQL
script, or from another PL/SQL block of code.

Functions
Functions differ from procedures in that they must return a value. Their structure is
very similar to procedures, with the mandatory RETURN clause being the biggest
difference. Functions are named and can be called from the SQL*Plus prompt, from
within a SQL script, or from another PL/SQL block of code. When executing a function,
you must have the ability to handle the value returned, though.

Packages
Packages are logical groupings of procedures and functions. They have two parts:
the specification and the body.

The specification, or spec, is public and shows the structure of the package.
When a package is described in SQL*Plus, it is the spec that is shown. The spec
is always created or compiled before the body. In fact, it is possible to create the
spec without ever creating the body.

Object Types
Oracle’s object types allow you to write object-oriented code using PL/SQL. Object
types are similar in structure to packages, having both a specification and a body.
They provide a level of abstraction to your underlying data structure.

Object types may include attributes and methods. Attributes are defining
characteristics of your object. A book, for example, might have attributes of title,
number of pages, etc.

Methods act upon the underlying data structures for the object. All interaction
between the application and object data should be done using methods.

Some of the advantages of using object types include

■ Abstraction The application developer is removed from the relational
data structures and thinks in terms of real-world structures.

■ Consistency If all application interaction is done through objects rather
than directly against the data structures, data corruption becomes much
less likely to be introduced.

■ Simplicity Instead of taking a real-world model and converting it to code,
the model stays in the real world. If I want to know something about a book
object, I look to the book object.

Features introduced since Oracle 9iR1 include inheritance, dynamic method
dispatch, and type evolution. They make object-oriented programming using
PL/SQL much more robust.

PL/SQL Statement Processing
When you execute a PL/SQL block, the code is passed to the PL/SQL engine. The
engine may be in the data server itself or in one of the tools (like Oracle Reports)
that bundles the PL/SQL engine with it. Next, the code is parsed, and the SQL is
passed to the SQL engine, or SQL Statement Executor. The procedural statements
are passed to the Procedural Statement Executor for processing.

Interpreted
Interpreted is the default mode for Oracle. This means that stored procedures,
functions, and packages are compiled and stored as PL/SQL and are interpreted
by Oracle (written in C) at run time. In interpreted mode, PL/SQL compilation is
quicker, but code execution may be slower than if native compilation was used.

Native Compilation
Native compilation, first introduced in Oracle 9iR1 and improved in 10gR1, converts
PL/SQL to C at compile time. This makes execution up to 30 percent faster, since
no interpretation is required at run time.

Chapter 1: Introduction to PL/SQL 17

Getting the Most from This Book
This book is fully revised and includes beginning, intermediate, and advanced
topics. Sample code is used throughout to demonstrate features, and all of it is
available online for download. The web site includes chapter directories, where all
code referenced in the book is stored. The code for each chapter is intended to run
independent of other chapters—no cross-chapter dependencies. Schema creation
scripts are included for ease of testing. You will need to modify them as appropriate
for your environment and database access.

There are some topics that require more space than we could possibly allocate
inside the book. Instead of reducing coverage to fit the book, we have created
supplemental papers for download that are extensions to chapter topics. We hope
you will find this added coverage useful.

Audience
This book is written for new and experienced PL/SQL application developers,
as well as for DBAs who would like to take advantage of all PL/SQL has to offer.
Advanced chapters (11–17) require that you understand Chapters 1–10. If you are
an experienced PL/SQL programmer, you may still want to peruse the first few
chapters. We include discussions on new features, and example code that may
generate some new ideas for your applications.

Regardless of your level of experience, we are confident that you will find
something you had not yet discovered in each chapter.

Objective
PL/SQL is a mature, robust language that continues to improve with every release.
As complexity increases, keeping up with new features becomes a daunting task.
We aim to help you

■ Learn PL/SQL if you are new to the language.

■ Develop good form and efficient code.

■ Understand features only referenced in passing in other texts, or not
covered at all.

■ Discover how powerful this language is!

Scope
Every book includes limitations. Ours are as follows:

18 Oracle Database 10g PL/SQL Programming

■ There is only limited coverage of database administration topics. If you
wish to learn more about database administration, I will refer you to
http://otn.oracle.com, or one of the excellent database administration
books by Oracle Press.

■ Performance tuning coverage is limited to making your PL/SQL efficient.
It does not cover database performance tuning.

■ We can only provide you with information, advice, and examples. It is up
to you to take advantage of them, and write good code.

Assumptions
The base release for this book is Oracle 8.1.7.4, the terminal release of the Oracle 8i
database. Coverage includes 8.1.7, 9iR1, 9iR2, and 10gR1. To take full advantage
of this book, and the new features in Oracle, we recommend you download and
install Oracle 10gR1 from OTN (http://otn.oracle.com). You can download the data
server for free as long as you register (registration is also free).

TIP
10gR1 is a single-disk install, so the download
will be much quicker than for any version of 9i.

At a minimum, it is recommended that you have access to an Oracle instance,
and that you have the necessary permissions to create a user and the required
objects. It is important that you are aware of your version of PL/SQL, since it
impacts feature availability.

Since Oracle 8, PL/SQL versions have coincided with the database versions. In
texts that cover releases prior to Oracle 8, you will see versioning like PL/SQL 1.1,
2.X, etc. To find the version you are running, query the V$VERSION view.

SELECT banner
FROM v$version;

The select returns the following in my current environment:

BANNER
––––––––––––––––––––––––––––––––
Oracle Database 10g Enterprise Edition Release 10.1.0.2.0 - Prod
PL/SQL Release 10.1.0.2.0 - Production
CORE 10.1.0.2.0 Production
TNS for 32-bit Windows: Version 10.1.0.2.0 - Production
NLSRTL Version 10.1.0.2.0 - Production

Chapter 1: Introduction to PL/SQL 19

So I am using version 10.1.0.2.0 of the database, and PL/SQL version 10.1.0.2
as well.

Conventions
We use different fonts through the book to highlight and differentiate certain text.
Code examples, and external references to database objects in the text, are in
COURIER. References to variables in the text are also in COURIER. Items of particular
interest in a code example are placed in bold letters. Take special note of the Note
and Tip sections in the book.

Examples
User creation scripts are included in each chapter that grant permissions required
by the examples in that chapter alone. Do not use a schema creation script from
one chapter for the examples in another.

Most chapters use example objects related to a bookstore. The base tables
for most examples are BOOKS and AUTHORS, as shown earlier in this chapter in
Figure 1-1. There are slight differences in the schema design between chapters
in order to demonstrate different features.

The BOOKS table structure is

DESC books
Name Null? Type
––– –––––––– ––––––––––––
ISBN NOT NULL CHAR(10)
CATEGORY VARCHAR2(20)
TITLE VARCHAR2(100)
NUM_PAGES NUMBER
PRICE NUMBER
COPYRIGHT NUMBER(4)
AUTHOR1 NUMBER
AUTHOR2 NUMBER
AUTHOR3 NUMBER

The AUTHORS table structure is as follows:

DESC authors
Name Null? Type
––– –––––––– ––––––––––––
ID NOT NULL NUMBER
FIRST_NAME VARCHAR2(50)
LAST_NAME VARCHAR2(50)

20 Oracle Database 10g PL/SQL Programming

The schema creation script in Chapter 16, called CreateLOBUser.sql, creates
two tablespaces to use for the storage parameter on a create table statement.
The tablespace names and datafile names and locations can be modified as needed
for your environment.

Finally, take time to review the different methods used to create the schemas
and examples. We tried to employ different techniques throughout the book in order
to demonstrate there is more than one way to accomplish the same task. As you
look through the examples, think about how you can employ some of the same
techniques, naming conventions, and strategies in your application design. Ingenuity,
communication, attitude, discipline, and knowledge will propel you in your career
using Oracle PL/SQL and aid in whatever task you apply yourself to.

Summary
In this chapter we introduced programming concepts, described how PL/SQL fits in
both object-oriented and procedural programming categories, and previewed some
of PL/SQL’s features that are covered in this book. We reviewed the basics of
relational databases and SQL, and looked at how PL/SQL compares with SQL and
Java. Finally, we discussed this book, and how you can get the most out of it.

We hope you find this book helpful and discover things you never thought
possible with PL/SQL.

Chapter 1: Introduction to PL/SQL 21

This page intentionally left blank

CHAPTER
2

Using SQL*Plus
and JDeveloper

Copyright © 2004 by The McGraw-Hill Companies, Inc. Click here for terms of use.

K
nowing how to develop and run PL/SQL doesn’t do much good unless
you have a place to run it. Oracle provides GUI and command-
line utilities to create and debug PL/SQL code, and then run and
maintain it.

In this chapter we discuss PL/SQL execution and development
using SQL*Plus and JDeveloper. SQL*Plus, the most widely used utility shipped
with the data server, provides an interface to the database that is flexible and
always available. JDeveloper, once strictly a Java development tool, now includes
features for managing database objects and developing PL/SQL.

The section on SQL*Plus covers

■ Connecting to the instance

■ Using SQL*Plus from the command line, GUI client, SQL Worksheet,
and iSQL*Plus

■ Changing SQL*Plus settings

■ Running scripts from files

■ Displaying output to the screen using DBMS_OUTPUT

The section on JDeveloper covers

■ Installation and configuration

■ Loading a program

■ Creating a program

■ Compiling code

■ Stepping through code to debug

To run the examples in this chapter, you should first run the CreateUser.sql
script included in the online files for this chapter. This script provides all necessary
permissions to successfully complete the examples.

SQL*Plus
SQL*Plus is the main interface to the database regardless of release. It is included
with all versions of the data server and is available from the server or client via
command line, GUI, or browser. Oracle extends ANSI standard SQL with built-in
packages (see Appendix B for a list of supplied packages) and additional commands.

24 Oracle Database 10g PL/SQL Programming

Connecting to the Instance
To connect to the instance from the client, configure your tnsnames.ora file in
your $ORACLE_HOME/network/admin directory. This file can be modified with
any text editor or configured using the Net Assistant or Net Manager (the same
utility, the name is different depending on release). To configure the connection,
you will need the name or IP address of the host machine, the port the data server
is using for connections, and the name of the service name (instance name). For an
example string, see the tnsnames.ora entry for our instance in Figure 2-1.

NOTE
You must have installed the Oracle client, data
server, or other Oracle development tool on the
machine you are connecting from in order to
configure your tnsnames.ora file. Depending
on your release, the tnsnames.ora file may be
located in your $ORACLE_HOME/net80/admin
directory.

The first highlighted entry in Figure 2-1 is called the net service name. This is an
alias and is the name we refer to when connecting to our instance. We could have
called this entry “ron,” and if all other information in the entry remained the same,
we could still connect to the same instance (ORCL) by referring to the instance as
“ron.” In the following example we do just that:

Chapter 2: Using SQL*Plus and JDeveloper 25

FIGURE 2-1. TNSNAMES.ORA configuration

26 Oracle Database 10g PL/SQL Programming

sqlplus plsql/oracle@ron

SQL*Plus: Release 10.1.0.2.0 - Production on Sun Jul 4 15:09:15 2004
Copyright (c) 1982, 2004, Oracle. All rights reserved.
Connected to:

Oracle Database 10g Enterprise Edition Release 10.1.0.2.0 - Production
With the Partitioning, OLAP and Data Mining options

SQL>

We are still connected to the orcl instance, though. As a general rule, we
keep our net service name the same name as our instance. We would be unable
to reference the “ron” instance in communications between developers if it were
called that name only from our client. The Keep It Simple principle applies here.

The host computer name or IP address is the second entry highlighted in
Figure 2-1. We can’t very well connect to a location on our network without first
identifying where that computer resides. On most work networks this is a no-
brainer. Simply put the name given to the server here. For some networks and
remote connections there is no DNS server to translate the computer name into the
IP address. In these cases, put the IP address as the host, or make an entry in
the client’s hosts file. The hosts file maps aliases to IP addresses like the DNS server,
but it does so just for the client where the file resides. On a Windows machine you
will find this file at C:\[Windows|WINNT]\system32\drivers\etc. The
following entry in our hosts file allows me to refer to rh-server rather than the IP
address or localhost to connect to 127.0.0.1:

127.0.0.1 rh-server

The third highlighted entry in Figure 2-1 is for the port number the data server is
listening on. Port 1521 is the default, but when configuring the listener on the host
server, the entry can be set to any valid port that is not already taken. If you do not
know the port for your listener, please contact your database administrator, or check
for an existing entry in the host server’s tnsnames.ora or listener.ora file.

Finally, the service name, or SID, is entered in our tnsnames.ora entry. This
is the name of our instance. In order to connect, this service name must be included
in the list of instances the data server is listening for on the port specified. If we enter
the correct host and service name, but the port for a different listener that is not
configured for our instance, the connection will be refused.

Testing the Connection
If you are using the Net Manager to create your tnsnames.ora connection string,
there is a Test button at the end of the configuration. By default, the test uses the
username of “scott” and password of “tiger.” We actually do not have this sample

Chapter 2: Using SQL*Plus and JDeveloper 27

schema in our instance, so when testing the connection, we receive the following
exception:

The test did not succeed.
ORA-01017: invalid username/password; logon denied

While it is possible to change the login and retest, is it really necessary? How could
our client have determined that a username or password was invalid if it didn’t at
least make the connection? Even with this failure, we consider the test successful,
since the goal was to reach the instance and verify a connection could be made.

If we modify the tnsnames.ora file directly, we can run a simple test from
the command line by logging into SQL*Plus. The following tests our connection:

c:\>sqlplus system@orcl
SQL*Plus: Release 10.1.0.2.0 - Production on Mon Jun 21 22:46:22 2004
Copyright (c) 1982, 2004, Oracle. All rights reserved.

Enter password:

Connected to:
Oracle Database 10g Enterprise Edition Release 10.1.0.2.0 - Production
With the Partitioning, OLAP and Data Mining options

SQL>

Our client connection to Net Service Name orcl on host rh-server with a
Service Name of orcl is successful.

Another quick way to verify the connection is to use TNSPING to ping the
instance. Here is an example testing our ability to connect to the orcl instance:

tnsping orcl

Used TNSNAMES adapter to resolve the alias
Attempting to contact (DESCRIPTION = (ADDRESS = (PROTOCOL = TCP)
(HOST = rh-laptop)(PORT = 1521)) (CONNECT_DATA =
(SERVER = DEDICATED) (SERVICE_NAME = orcl)))
OK (40 msec)

The connection is successful. If it were not successful, it would show

tnsping notaninstancename

TNS Ping Utility for 32-bit Windows: Version 10.1.0.2.0 -
Production on 04-JUL-2004 14:42:12
Copyright (c) 1997, 2003, Oracle. All rights reserved.

Used parameter files:

sqlnet.ora
TNS-03505: Failed to resolve name

We passed an invalid instance name resulting in a failure.

Using SQL*Plus
When we use SQL*Plus, we prefer to use the command-line version of the utility in
most cases. The command-line version has the advantage of not changing, and it is
always available. When we work on different machines at various locations around
the country, we see different utilities and configurations from site to site, but SQL*Plus
from the command line is always present. SQL*Plus has the following types of
implementations, all included with the purchase of the data server:

■ Command-line SQL*Plus

■ SQL*Plus GUI Client

■ SQL Worksheet

■ iSQL*Plus

Additional third-party utilities offer interfaces to SQL*Plus as well, but they are
beyond the scope of this book.

Command Line
By command line, we are referring to a Unix or DOS prompt. To connect to an
instance, type sqlplus at the prompt, then type the username and password separated
by a forward slash (/), and follow that immediately with an @ and the net service
name you are connecting to. The following example shows a connection to our
instance with all connection information shown on a single line:

sqlplus system/oracle@orcl

While this connects, it is not the best way to type your connection because your
password is displayed. A better way to connect is to type the username followed by
an @ and the net service name as follows:

sqlplus system@orcl

SQL*Plus: Release 10.1.0.2.0 - Production on Wed Jun 23 18:44:13 2004
Copyright (c) 1982, 2004, Oracle. All rights reserved.
Enter password:

Oracle prompts for the password and then connects to the instance.

28 Oracle Database 10g PL/SQL Programming

To change to a different schema or another instance, it is not necessary to
disconnect from the current session. CONNECT allows a new connection from
the current session.

SQL> connect ctxsys@orcl
Enter password:
Connected.

TIP
Instead of typing CONNECT, use the abbreviation
CONN. It does the same thing.

The sqlplus binary is located in the $ORACLE_HOME/bin directory. This
directory is included in the PATH environment variable. If you receive an error that
the sqlplus program cannot be found, check your PATH settings to ensure the
$ORACLE_HOME/bin directory is there.

SQL*Plus provides editing commands to modify the contents of the buffer
without requiring the full text to be re-entered. The following example selects a
value, but there is a typo:

SELECT systimestamp
FROM duall;

This results in the following exception:

FROM duall
*

ERROR at line 2:
ORA-00942: table or view does not exist

To correct this mistake, we can either retype the text in its entirety or edit only
the value that needs to be changed. We’ll demonstrate the latter here:

c /ll/l

We used c to change the last line in the buffer. If we needed to change a different
line, we just type the number of the line to edit, and it moves to that line in the
buffer. Our change modifies duall to dual and reprints the altered line.

FROM dual

To rerun the contents of the buffer, use a forward-slash, /.

Chapter 2: Using SQL*Plus and JDeveloper 29

/
SYSTIMESTAMP
–––––––––––––––––––
04-JUN-04 06.08.57.102000 PM -07:00

As you might imagine, this approach can come in very handy when working
with larger blocks of code and PL/SQL. Some other useful editing commands
include a, which appends whatever follows to the end of the line currently in the
buffer, and l, which reprints the contents of the buffer. Typing ed at the SQL prompt
opens the default editor with the text from the buffer loaded. You can edit and save
the contents, and rerun by typing a forward-slash, /, at the SQL prompt.

SQL*Plus GUI
The SQL*Plus GUI does not include any advanced features not offered by the
command-line version, but it does provide a look and feel that is more comfortable
for some users. To launch it in a Windows environment, navigate to Start | All
Programs | YourOraHome| Application Development || SQL Plus.

SQL Worksheet
The SQL*Plus Worksheet adds features that are not included in either command-
line or GUI versions. One of the biggest differences is the ability to recall past
statements from history and reload them into the buffer for execution. Another
great feature is that it displays the explain plan for SQL statements that it runs.

NOTE
Explain plans, or execution plans, are the methods
of access chosen by Oracle to most efficiently run
a SQL statement. Oracle generates multiple explain
plans for every statement and assigns a cost to each
of them based on statistics in the database. The cost
measures how expensive each execution plan is,
so the lowest-cost plan can be chosen. This is how
Oracle optimizes SQL execution.

iSQL*Plus
Though we are still partial to the command line, we have been using iSQL*Plus
more and more, especially when working with applications that support multiple
languages (globalization). DOS (and most other applications for that matter)
does not render Asian characters without loading extra fonts and going through
configuration changes.

iSQL*Plus provides the means to display multibyte characters, like Japanese,
with very little modification. To modify the encoding for Internet Explorer, navigate

30 Oracle Database 10g PL/SQL Programming

to View | Encoding | Unicode(UTF-8). Log into iSQL*Plus using the URL provided
during instance creation, and any UTF-8 supported font can be rendered.

Changing SQL*Plus Session Settings
SQL*Plus runs a script called glogin.sql at login. This script, found at
$ORACLE_HOME/sqlplus/admin, sets the environment for the session. While
it is possible to change the settings once logged into SQL*Plus, we find it much
easier to add the most common settings to the glogin.sql script so that they
are set automatically. For example, the following SHOW command lists the current
settings for long, pages, feedback, and echo:

SQL> show long pages feedback echo

This results in the following in our environment:

long 80
pagesize 14
echo OFF

We change these settings frequently when logging in, so changing the
glogin.sql script to automate these changes makes sense. Here are the changed
settings as they appear in our glogin.sql script:

-- Custom settings
SET pages 9999 – pages is short for pagesize
SET echo OFF
SET long 64000

Checking our settings again after reconnecting to SQL*Plus, we see the altered settings
without explicitly making the changes in our session:

SQL> show long pages echo
long 64000
pagesize 9999
echo OFF

These are just a few of the changes that can be made. If you wish, modify other
settings the SQL prompt, run a script, or print a message to the screen at each login.

Running a Script from a File
SQL*Plus provides the ability to run scripts stored in external files. To execute the
contents of a file, log in to SQL*Plus as the user you need and type an @ followed
by the name of the file (provide the full path if you are not currently in the
correct directory).

Chapter 2: Using SQL*Plus and JDeveloper 31

32 Oracle Database 10g PL/SQL Programming

We’ll demonstrate this using the CreateUser.sql script that is available
online for this chapter. This script creates the user PLSQL with a password of ORACLE.
After modifying the script header for our environment, we are ready to run it. Follow
these steps to run the script:

1. Assuming you are using a Windows machine, open a command prompt
(Start | Run and type cmd).

2. When the command window opens, cd to the directory where the chapter
scripts are stored.

cd C:\book\Chapter2\Examples

3. Log in to SQL*Plus as SYS or SYSTEM.

C:\book\Chapter2\Examples>sqlplus system@orcl

SQL*Plus: Release 10.1.0.2.0 - Production on Sat Jun 26 11:47:12 2004

Copyright (c) 1982, 2004, Oracle. All rights reserved.

Enter password:

Connected to:

Oracle Database 10g Enterprise Edition Release 10.1.0.2.0 - Production

With the Partitioning, OLAP and Data Mining options

SQL>

4. At the SQL prompt, run the script.

SQL> @CreateUser.sql

The same steps are followed for Unix, with the exception of the file structure
for the directory storage, of course.

If you have forgotten the filename, or the file’s case when using Unix, it is
possible to view the host machine’s directory contents without leaving the SQL
prompt. For Unix, type the following:

SQL> !ls

The exclamation point, or bang, allows Unix commands to be used from the
SQL prompt. Once the command is complete, control will be passed back to
the SQL prompt once again without requiring you to log in again. The same
can be done from a Windows machine using the host command:

SQL> host dir

The directory contents are displayed, and then control is returned to the SQL prompt
once again.

Output to the Screen Using SQL*Plus and PL/SQL
We won’t put you through the standard “Hello, World” example first program, but
we will tell you how it can be done. Oracle provides a built-in package called
DBMS_OUTPUT. This package includes a number of subprograms, including a
procedure called PUT_LINE. Using DBMS_OUTPUT.PUT_LINE, we can write
a simple program that displays text when running a program from SQL*Plus.

Let’s take a look at a simple example. The following PL/SQL code prints a line
of text to the screen:

-- Available online as part of DbmsOutput.sql
BEGIN

DBMS_OUTPUT.PUT_LINE('Oh Beautiful for Spacious Skies...');
END;
/

This doesn’t have the intended effect, however. The following is all that is shown
when the code is run from the SQL prompt:

PL/SQL procedure successfully completed.

So, the text wasn’t printed to the screen. This is because of another setting
called SERVEROUTPUT. By default, this is set to OFF. We can set it to ON by
typing the following:

SET SERVEROUTPUT ON

Now, when we run the same code, we get a different result:

/
Oh Beautiful for Spacious Skies...
PL/SQL procedure successfully completed.

The text is displayed to the screen.

NOTE
The / in the preceding code block executes the
code already in the buffer. If you have run any
other statement in this session, you will need to
rerun the complete block.

Chapter 2: Using SQL*Plus and JDeveloper 33

JDeveloper
SQL*Plus is handy because it is built into every current version of the database
and is the primary interface to the data server. It isn’t considered a development
environment, though. Since the 9i release, Oracle JDeveloper added the ability to
develop, debug, and maintain PL/SQL. It is not just for Java anymore. Features in
JDeveloper 10g include

■ Framed display of all database objects

■ The ability to edit PL/SQL in the database with JDeveloper

■ Code templates for faster code generation

■ SQL tuning advice

■ Debug capabilities, including stepping through code

JDeveloper does require an additional license to own as part of a corporate
solution, but developers can download complete versions of the tool from http://
otn.oracle.com for noncommercial use.

Installing JDeveloper
As mentioned, JDeveloper can be downloaded from http://otn.oracle.com. In order
to download software from Oracle Technology Network (OTN), users must first
register and create a username and password. OTN membership costs nothing.
Once registered, users are free to download all downloadable software, courses,
sample code, and labs posted on the site.

Oracle has three ways to download the software. Unless you are familiar with
Java and have the correct version of JDK on your system according to the web site,
we recommend users get the full download. This includes the correct version of
all files in a single Zip file. The Zip file can be downloaded to any directory on
the system.

JDeveloper does not include an installer. Instead, all files are stored in the Zip
file and are placed in the correct directories when uncompressed. Unzipping the file
installs the application. Once files are unzipped to a local directory, navigate to

$ cd JDEVELOPER_HOME/jdev

This directory includes the readme.html and install.html files. Refer to these
documents for any additional steps required by your version of JDeveloper.

34 Oracle Database 10g PL/SQL Programming

To start JDeveloper, execute jdevw.exe on Windows, or jdev on other
platforms, in the JDEVELOPER_HOME/jdev/bin directory. If there are any
problems launching JDeveloper, make certain the size of the Zip file on your
system matches the number of bytes shown on the OTN site, and double-check
the install.html and readme.html files for version-specific requirements.

Connecting to the Database
Many PL/SQL developers consider vi and Notepad development environments. If
you are in that camp, JDeveloper might be a little overwhelming at first. The good
news is that PL/SQL developers who are not going to jump right into Java can ignore
many of the buttons and menu items in JDeveloper. Figure 2-2 shows the integrated
development environment (IDE) for JDeveloper 10g (9.0.5.2).

In order to use the examples in this section, run the CreateUser.sql script
available online with this book.

Chapter 2: Using SQL*Plus and JDeveloper 35

FIGURE 2-2. The JDeveloper IDE

Open JDeveloper and do the following to establish a connection to the database:

1. In the Connections – Navigator window (shown on the top-left side of the
page in Figure 2-2), right-click the Database menu item, and click New
Database Connection.

2. The first step of the connection wizard prompts for the Connection Name.
Enter PLSQL and leave the Connection Type as Oracle (jdbc). Click Next.

3. The next screen prompts for the Username, Password, and Role. Enter plsql
for the username and oracle for the password. Leave Role empty, and click
Deploy Password. With Deploy Password checked, you will not need to
reauthenticate when running PL/SQL against this instance.

4. The third step requires much of the same information as the tnsnames.ora
entry we created earlier. Use the following settings and click Next.

■ Driver Thin

■ Host The machine name or IP address where the instance resides

■ JDBC Port The port name for the connection. The default is 1521

■ SID The name of the instance

5. The final step of the wizard tests the connection. Click the Test Connection
button, and if it shows Success! in the Status window, the connection is
good. If the connection fails, correct the settings and retest.

Working with PL/SQL in JDeveloper
JDeveloper provides the ability to create new code and step through existing
code to debug. When provided with a valid database connection, we can execute
the code in debug mode directly against the data server, so even the results can
be verified.

Throughout this section we use the objects created by the Debug.sql script
located in the online examples for this chapter. Run this script as the plsql user
created by the CreateUser.sql script, also included online. All database objects

36 Oracle Database 10g PL/SQL Programming

Chapter 2: Using SQL*Plus and JDeveloper 37

created by Debug.sql can be seen in JDeveloper. Figure 2-3 shows the procedure
AUTHOR_BOOKS_SEL.

Edit Stored Code
The procedure AUTHOR_BOOKS_SEL, as created by the Debug.sql script, does
not successfully compile. Double-click the procedure name in the JDeveloper
Connections window to load the procedure from the database. As shown in
Figure 2-4, navigate to Run | Compile to compile the code.

FIGURE 2-3. The AUTHOR_BOOKS_SEL procedure

38 Oracle Database 10g PL/SQL Programming

Compiling the procedure opens a Compile window that shows success or failure.
In our case, the code failed to compile and line numbers are given as follows:

PROCEDURE.PLSQL.AUTHOR_BOOKS_SEL.pls
Error(22,7): PL/SQL: SQL Statement ignored
Error(22,27): PLS-00201: identifier 'FIRST_NAME' must be declared

By default, JDeveloper does not display line numbers, but we can modify the
preferences so that the line numbers are displayed. To set the line numbers, do
the following:

1. From the main menu (top of the screen), select Tools | Preferences.

2. In the Preferences window, navigate to Code Editor | Line Gutter and
select Show Line Numbers.

3. Click OK to save the settings and return to the main window.

FIGURE 2-4. Figure 4: Compile PL/SQL

Chapter 2: Using SQL*Plus and JDeveloper 39

4. Verify that your screen looks like Figure 2-5.

The compile error shows line 22 is the problem, and the column numbers point
to the variable named first_name. Change the variable name first_name to
v_first_name and recompile. This should now result in the following message
in the Compile window at the bottom of the screen:

Compiling...
[12:37:54 PM] Successful compilation: 0 errors, 0 warnings.

The change is saved to the database.

FIGURE 2-5. Compile error with line numbers

40 Oracle Database 10g PL/SQL Programming

Step Through PL/SQL Code
To debug PL/SQL, the user you are connected as must have the DEBUG CONNECT
SESSION and DEBUG ANY PROCEDURE user privileges. These privileges were
granted to the plsql user in the CreateUser.sql script for these examples.

Follow these steps to debug the AUTHOR_BOOKS_SEL procedure:

1. In the Connections Navigator, double-click the AUTHOR_BOOKS_SEL
procedure.

2. Click directly on the number 22 to set a break point on the FETCH
(see Figure 2-6).

FIGURE 2-6. A break point

Chapter 2: Using SQL*Plus and JDeveloper 41

3. In the Connections Navigator window, right-click the AUTHOR_BOOKS_
SEL procedure and click Debug from the menu (see Figure 2-7).

4. When the Debug PL/SQL window opens, click OK. If any parameters were
required for this procedure, you would be able to enter them here to fully
test the code.

5. JDeveloper returns control back to the main window, and a new View is
shown. The Smart Data window at the bottom right of Figure 2-8 displays
the results of the fetch into variables. The main code window shows a blue
line over the break point, indicating the code has completed up to that
point but has not gone past it.

FIGURE 2-7. The Debug menu

42 Oracle Database 10g PL/SQL Programming

6. Since the break point is inside the loop, if we resume (click the green arrow
in the top menu or project window), execution of the code will break on
its next turn through the loop and display the next record fetched into the
variables. Compare Figures 2-8 and 2-9 to see the difference in the Smart
Data view.

7. As you continue to step through code to completion, the final results of the
code are displayed in the Project window at the bottom of the IDE.

FIGURE 2-8. Smart Data view

Summary
In this chapter we reviewed SQL*Plus, including connecting to an instance, different
implementations of SQL*Plus, running scripts from files, and displaying output using
the DBMS_OUTPUT package.

We also covered how to use JDeveloper with PL/SQL, including installation and
configuration, editing code, and debugging features.

The next chapter covers PL/SQL Basics, including block structure, datatypes,
PL/SQL expressions, and recommended programming styles.

Chapter 2: Using SQL*Plus and JDeveloper 43

FIGURE 2-9. Step through code

This page intentionally left blank

CHAPTER
3

PL/SQL Basics

Copyright © 2004 by The McGraw-Hill Companies, Inc. Click here for terms of use.

S
yntax and rules govern what you can and cannot do in PL/SQL. While
following syntax and programming standards alone do not make a
program good, failure to understand the rules of the language can
certainly make a program bad. In this chapter, we discuss the basic
principles of the language, including

■ PL/SQL block structure

■ Variable declarations

■ Literals, characters, and reserved words

■ Data types available for PL/SQL

■ Wrapper utility to hide code

TIP
If you are new to PL/SQL, learn the contents of this chapter
well before moving on to more advanced chapters.

The PL/SQL Block
The basic program unit in PL/SQL is called a block. Blocks contain sets of instructions
for Oracle to execute, display information to the screen, write to files, call other
programs, manipulate data, and more. All PL/SQL programs are made of at least
one block. Methods of implementation range from programs that executed one time
only and are not stored anywhere, to blocks that are stored in the database for later
use. Blocks support all DML statements, and using Native Dynamic SQL (NDS) or
the built-in DBMS_SQL (see Appendix B for more information on DBMS_SQL), they
can run DDL statements.

NOTE
DML stands for Data Manipulation Language and
includes INSERT, UPDATE, and DELETE commands.
DDL stands for Data Definition Language and
includes ALTER, CREATE, DROP, TRUNCATE,
GRANT, and REVOKE commands.

The Basic Structure
The minimum structure for a PL/SQL block is a BEGIN and an END with at least one
executable command in between. The following block successfully compiles and
runs, and is the most basic statement you can create:

46 Oracle Database 10g PL/SQL Programming

BEGIN
NULL;

END;
/

If we were to omit the NULL from the preceding statement, it would generate the
following exception:

BEGIN
END;
/
END;
*
ERROR at line 2:
ORA-06550: line 2, column 1:
PLS-00103: Encountered the symbol "END" when expecting one of the following:
begin case declare exit for goto if loop mod null pragma
raise return select update while with <an identifier>
...

So, a block must contain some set of instructions, even if those instructions say
to do nothing, or NULL. As shown in Figure 3-1, the section between the BEGIN
and END commands is called the EXECUTION section. All types of PL/SQL blocks
support two other optional sections; the DECLARATION and EXCEPTION sections.
All three are discussed in detail next.

The Declaration Section
The DECLARATION section is optional. It is used to list the variables used in the
block along with the types of data they support. Cursors (discussed in Chapter 4)
are also declared in this section. This is the place where all local variables used
in the program are defined and documented.

Chapter 3: PL/SQL Basics 47

FIGURE 3-1. Basic block

The following declaration section lists variables that will be used later in the
block, defines the type of data that will be stored in each variable, and in one case,
initializes the variable:

-- Available online as part of BlockStructure.sql
DECLARE

v_date_time TIMESTAMP;
...

The block begins with DECLARE, telling the PL/SQL compiler the type of code
that comes next. The variable V_DATE_TIME is of type TIMESTAMP, so only
compatible data can be stored in it.

The Execution Section
This section is the only one required. The contents must be complete to allow the
block to compile. By complete, we mean that a complete set of instructions for the
PL/SQL engine must be between the BEGIN and END keywords. As you saw earlier
with an execution section of NULL, compiled code does not mean it must actually
perform an action.

The execution section supports all DML commands and SQL*Plus built-in functions.
It supports DDL commands using Native Dynamic SQL (NDS) and/or the DBMS_SQL
built-in package.

The following example shows just the EXECUTION section of a block:

-- Available online as part of BlockStructure.sql
...
BEGIN

-- Retrieve the timestamp into a variable
SELECT systimestamp
INTO v_date_time
FROM dual;

-- Display the current time to the screen
DBMS_OUTPUT.PUT_LINE(v_date_time);

...

The EXECUTION section starts with BEGIN. In this example, the system time is
retrieved and stored in the variable declared in the DECLARATION section. It is then
displayed on the screen using the built-in package DBMS_OUTPUT.

The Exception Section
The EXCEPTION section is optional and traps errors generated during program
execution. This section can trap for specific errors using functions provided in the
STANDARD or DBMS_STANDARD packages or using EXCEPTION_INIT pragma

48 Oracle Database 10g PL/SQL Programming

statements (for an example of using the EXCEPTION_INIT pragma, see the
CreateUser.sql script included online with this chapter). Chapter 7 covers
exceptions in detail.

The following exception section uses WHEN OTHERS to trap any error and
perform an action:

-- Available online as part of BlockStructure.sql
...
EXCEPTION

WHEN OTHERS
THEN

DBMS_OUTPUT.PUT_LINE(sqlerrm);
END;
/

The action in this case was to display the error message to the screen.

Anonymous Blocks
Anonymous blocks are not given a name and are not stored in the database. They
can call other programs, but they cannot be called themselves (how do you call
something without a name!). Anonymous blocks use the basic structure shown
in Figure 3-1. The next example is an anonymous block that performs a row
count of the number of books each author has written, and displays the output
to the screen.

NOTE
All chapters in the book have user creation scripts and
example files available online. The CreateUser.sql
script in this chapter must be run as SYS or SYSTEM.
Modify the script to set the tablespace values
appropriately for your environment. Each example
file can be run without dropping and re-creating
the user. It cleans up after itself!

-- Available online as part of AnonymousBlock.sql
SET SERVEROUTPUT ON

DECLARE

-- variable declaration
v_first_name authors.first_name%TYPE;
v_last_name authors.last_name%TYPE;

Chapter 3: PL/SQL Basics 49

v_row_count PLS_INTEGER := 0;

-- cursor declaration
CURSOR auth_cur IS

SELECT a.first_name, a.last_name, count(b.title)
FROM authors a, books b
WHERE a.id = b.author1
OR a.id = b.author2
OR a.id = b.author3

GROUP BY a.first_name, a.last_name
HAVING count(b.title) > 0
ORDER BY a.last_name;

BEGIN

-- start mandatory execution section
DBMS_OUTPUT.ENABLE(1000000);

-- open the cursor from the declaration section
OPEN auth_cur;

-- loop through all records retrieved by the cursor
-- passing the values into the variables declared earlier
LOOP

FETCH auth_cur INTO v_first_name, v_last_name, v_row_count;
EXIT WHEN auth_cur%NOTFOUND;

-- send results from each record retrieved to the screen
DBMS_OUTPUT.PUT_LINE(v_last_name

||', '
||v_first_name
||' wrote '
||v_row_count
||' book(s).');

END LOOP;

-- close the cursor
CLOSE auth_cur;

EXCEPTION

-- start optional exception section
WHEN OTHERS

THEN
-- print any errors to the screen
DBMS_OUTPUT.PUT_LINE(SQLERRM);

END;
/

50 Oracle Database 10g PL/SQL Programming

NOTE
The ‘--’ preceding some of the text indicate inline
comments. The text following the dashes is not used
in the execution of the code. Comments are used to
document the code. They are discussed later in this
chapter, in the section titled “Documenting Code
Using Comments.”

This block does the following:

■ It declares three variables for use in the execution section.

■ It declares a cursor for use in the execution section (more about cursors
in Chapter 4).

■ It executes the cursor SELECT statement when it is opened and loops
through the results one line at a time.

■ It traps any errors that are thrown and prints the resulting error message
to the screen.

This block used all three sections. While we could have removed the exception
section with no ill effects on the code execution, any error messages that occurred
during the execution of the block would have been a mystery. Unless we are just
running an ad hoc block of code, we always prefer to include the exception section.

Running Anonymous Blocks
Anonymous blocks are not named and are not stored for execution. So, how is
the code executed? An anonymous block of code can be run either from a file or
by typing the code at the SQL> prompt. To run the last example from the file, do
the following:

■ Save the script from its online location to your client or server (wherever
you are connecting to SQL*Plus).

■ From the command prompt, cd to the directory where you saved the script.

■ Log in to SQL*Plus as the plsql user.

sqlplus plsql/oracle@<<your SID>>

■ Run the AnonymousBlock.sql script.

SQL> @AnonymousBlock.sql

Chapter 3: PL/SQL Basics 51

The following is abbreviated output from the execution of the script:

Abbey, Michael wrote 3 book(s).
Abramson, Ian wrote 2 book(s).
Adkoli, Anand wrote 2 book(s).
Allen, Christopher wrote 1 book(s).
Armstrong-Smith, Darlene wrote 1 book(s).
Armstrong-Smith, Michael wrote 1 book(s).
Bo, Lars wrote 1 book(s).
Brown, Brad wrote 2 book(s).
Burleson, Donald wrote 2 book(s).
Carmichael, Rachel wrote 2 book(s).
Chang, Ben wrote 1 book(s).
Coekaerts, Wim wrote 1 book(s).
Corey, Michael wrote 3 book(s).
Cox, Kelly wrote 1 book(s).
Deshpande, Kirtikumar wrote 1 book(s).
Devraj, Venkat wrote 1 book(s).
Dorsey, Paul wrote 2 book(s).
Freeman, Robert wrote 3 book(s).
Gerald, Bastin wrote 1 book(s).
Haisley, Stephan wrote 1 book(s).
Hardman, Ron wrote 1 book(s).
Hart, Matthew wrote 2 book(s).
...

For additional examples of anonymous blocks, refer to the CreateUser.sql
script included online with this chapter.

Named Blocks
Named blocks differ from anonymous blocks in the most obvious of ways: they are
given a name. There are some other differences as well, of course, chief of which is
the structure. The basic structure for a block shown earlier in the chapter provides
no way to name the block or to distinguish a procedure from a function.

NOTE
Functions are named blocks that always return a
value, while procedures may or may not return a
value. Procedures and functions are covered in
detail in Chapters 8 and 9.

Named blocks add a fourth section to the structure referred to as the HEADER
section. The HEADER section tells Oracle the name of the block and whether the
block is a procedure or a function; if it is a function, it declares the type of value it

52 Oracle Database 10g PL/SQL Programming

will be returning. When the block is run, it does not execute immediately. Instead, it
is compiled and stored in the database for later use.

NOTE
Procedures and Functions are covered in detail
in Chapter 8.

Here we modified the first part of the anonymous block shown earlier to be a
named block:

-- Available online as part of NamedBlock.sql
CREATE OR REPLACE PROCEDURE Named_Block
AS

v_first_name authors.first_name%TYPE;
v_last_name authors.last_name%TYPE;
v_row_count PLS_INTEGER := 0;

...

The header begins with PROCEDURE or FUNCTION and is followed by the object
name. The DECLARATION section follows the AS keyword. The remainder of the
block is the same as the anonymous block.

To execute the procedure, run it as follows:

-- Available online as part of NamedBlock.sql
exec named_block

This returns the same result set as the anonymous block.

Compile Errors
One big advantage of named blocks is that syntax-, dependency-, and permission-
related errors are caught when the procedure or function is compiled instead of at
execution time. The first time Oracle sees an anonymous block is at execution, so it
cannot provide advanced warning of a problem. When a procedure or function is
created, Oracle compiles the code and checks for dependencies and proper syntax.
If there is a violation, it returns a message and the named block is marked as invalid.

The following example creates a stored procedure that references a table that
does not exist:

-- Available online as part of CompileError.sql
CREATE OR REPLACE PROCEDURE Compile_Error

AS
v_timestamp timestamp;

BEGIN
SELECT systimestamp

Chapter 3: PL/SQL Basics 53

54 Oracle Database 10g PL/SQL Programming

INTO v_timestamp
FROM duall;

DBMS_OUTPUT.PUT_LINE(v_timestamp);
EXCEPTION

WHEN OTHERS
THEN

DBMS_OUTPUT.PUT_LINE(SQLERRM);
END;
/

When this procedure creation is compiled, it returns the following message:

Warning: Procedure created with compilation errors.

To see the complete error message, type SHOW ERRORS at the SQL prompt.

SHOW ERRORS

The output shows the problem that was found, as well as the line and column that
needs to be corrected.

-- Available online as part of CompileError.sql
Errors for PROCEDURE COMPILE_ERROR:
LINE/COL ERROR
-------- --
5/4 PL/SQL: SQL Statement ignored
7/11 PL/SQL: ORA-00942: table or view does not exist

To see the line of text that is causing the problem (line 7 in this case), we can
query the USER|DBA|ALL_SOURCE view and retrieve the line number and text
for that line.

-- Available online as part of CompileError.sql
SELECT line||' '||text PROCEDURE
FROM user_source
WHERE name = 'COMPILE_ERROR';

This returns the following:

PROCEDURE

1 PROCEDURE Compile_Error
2 AS
3 v_timestamp timestamp;
4 BEGIN
5 SELECT systimestamp
6 INTO v_timestamp

Chapter 3: PL/SQL Basics 55

7 FROM duall;
8
9 DBMS_OUTPUT.PUT_LINE(v_timestamp);
10 EXCEPTION
11 WHEN OTHERS
12 THEN
13 DBMS_OUTPUT.PUT_LINE(SQLERRM);
14 END;

From this we can see that line 7 (referred to in the output of SHOW ERRORS) has a
typo with the table name, and we know what needs to be corrected.

The data dictionary view USER|DBA|ALL_OBJECTS shows that the procedure
is marked as invalid.

-- Available online as part of CompileError.sql
COL object_name FORMAT A15
COL status FORMAT A10
SELECT object_name, status
FROM user_objects
WHERE object_name = 'COMPILE_ERROR';

OBJECT_NAME STATUS
--------------- ----------
COMPILE_ERROR INVALID

If we try to execute the procedure in this state, we get the following exception:

-- Available online as part of CompileError.sql
EXEC compile_error
BEGIN compile_error; END;

*
ERROR at line 1:
ORA-06550: line 1, column 7:
PLS-00905: object PLSQL.COMPILE_ERROR is invalid
ORA-06550: line 1, column 7:
PL/SQL: Statement ignored

To fix the problem, correct the table name in the procedure creation script
and rerun.

-- Available online as part of CompileError.sql
CREATE OR REPLACE PROCEDURE Compile_Error

AS
v_timestamp timestamp;

BEGIN
SELECT systimestamp

INTO v_timestamp
FROM dual;

EXCEPTION
WHEN OTHERS
THEN

DBMS_OUTPUT.PUT_LINE(SQLERRM);
END;
/

This time the procedure compiles.

Procedure created.

If we execute the procedure, it returns the correct results:

-- Available online as part of CompileError.sql
EXEC compile_error

04-JUN-04 09.16.52.206000 PM
PL/SQL procedure successfully completed.

The compile-time error saved us the trouble of diagnosing the problem when
people needed to use the procedure, and provided some assurance that the procedure
will work when used. Anonymous blocks do not provide this kind of assurance.

Compile-Time Warnings
A named block that compiles provides some level of comfort that our syntax does
not violate any rules, and that dependent objects exist and are valid. It does not
guarantee that the execution will go smoothly, or that our code is efficient.

Compile-time warnings provide additional feedback when named blocks are
compiled (warnings are not available for anonymous blocks). They do not cause a
named block to be marked invalid if a potential problem is identified, but they do
provide feedback indicating a runtime problem may exist.

Warning Messages Warning messages can be any of the following:

■ ALL This includes all available warning conditions and messages.

■ PERFORMANCE Only performance-related warnings are returned.

■ INFORMATIONAL This flags code that may not be useful to the program
that can be moved or corrected. The condition is not performance related
and will not generate an error. It is intended to assist developers in making
code more maintainable.

■ SEVERE Problems identified as severe indicate there may be a problem
with code logic.

■ Specific Error The warning can be specific to an error message.

56 Oracle Database 10g PL/SQL Programming

It is possible to enable warnings by these categories for the compilation of a
single named block, for all named blocks that are compiled in the current session,
or for the entire instance. Individual warnings can also be configured to generate
an error. This might be helpful during the development cycle in particular, to
differentiate between warnings that you do not care about and messages that are
more critical to the application. If a warning is treated as an error, the problem
must be corrected before it can be compiled successfully.

PLSQL_WARNINGS Parameter PLSQL_WARNINGS is an init.ora parameter
used to set warning levels. The parameter can be set in the init.ora file, or at
the SQL> prompt for each subprogram, the session, or the entire system. To see
the current setting, log in as SYS or SYSTEM and type

SHOW PARAMETER PLSQL_WARNINGS

This displays the current setting for your system.

NAME TYPE VALUE
------------------------------------ ----------- ----------------
plsql_warnings string DISABLE:ALL

In the following example, we set the parameter in the init.ora file and
bounced our instance:

PLSQL_WARNINGS='ENABLE:PERFORMANCE'

If we wanted to list multiple settings for PLSQL_WARNINGS, we simply provide a
comma-delimited list:

PLSQL_WARNINGS='ENABLE:PERFORMANCE', 'ENABLE:SEVERE'

To set the parameter from the SQL> prompt for the system, type the following:

ALTER SYSTEM SET PLSQL_WARNINGS='ENABLE:PERFORMANCE', 'ENABLE:SEVERE';

After altering the system, we can type SHOW PARAMETER PLSQL_WARNINGS again
and see the change reflected.

SQL> show parameter plsql_warnings
NAME TYPE VALUE
------------------------------------ ----------- --------------------------
plsql_warnings string DISABLE:INFORMATIONAL,

ENABLE:PERFORMANCE,
ENABLE:SEVERE

Chapter 3: PL/SQL Basics 57

58 Oracle Database 10g PL/SQL Programming

We are going to run a quick test to see if the warning message is generated
on compilation. In this example, we create a procedure (a procedure is a form of
named block discussed in Chapter 8) that inserts a record into the BOOKS table:

-- Available online as part of PLSQL_Warnings.sql
CREATE OR REPLACE PROCEDURE BOOK_INS (

i_ISBN VARCHAR2,
i_Category VARCHAR2,
i_Title VARCHAR2,
i_Num_Pages NUMBER,
i_Price VARCHAR2,
i_Copyright NUMBER,
i_Author1 NUMBER,
i_Author2 NUMBER,
i_Author3 NUMBER)

IS
BEGIN

INSERT INTO BOOKS (
isbn, category, title, num_pages,
price, copyright, author1, author2, author3)

VALUES (
i_ISBN, i_Category, i_Title, i_Num_Pages,
i_Price, i_Copyright, i_Author1, i_Author2, i_Author3);

EXCEPTION
WHEN OTHERS
THEN

DBMS_OUTPUT.PUT_LINE('Error: '||sqlerrm);
END;
/

The i_Price variable is of type VARCHAR2, and the PRICE column in the
BOOKS table is of type NUMBER. While Oracle does an implicit conversion on
INSERT, it is not optimal and takes additional processing. When this procedure
is created in the PLSQL schema after PLSQL_WARNINGS has been set to
'ENABLE:PERFORMANCE', it generates a PERFORMANCE warning.

NOTE
If the same procedure creation script is rerun, no
warning is delivered the second time. If the ALTER
command is used to compile the procedure, the
warning is given each time it is run.

-- Available online as part of PLSQL_Warnings.sql
SP2-0804: Procedure created with compilation warnings

Chapter 3: PL/SQL Basics 59

Errors for PROCEDURE BOOK_INS:
LINE/COL ERROR
-------- ---
14/4 PLW-07202: bind type would result in conversion away

from column type

Even though the compilation shows there is a warning, the procedure is valid in
the database, as can be seen with the following query:

-- Available online as part of PLSQL_Warnings.sql
COL object_name FORMAT A30
COL status FORMAT A10
SELECT object_name, status
FROM user_objects
WHERE object_name = 'BOOK_INS';

OBJECT_NAME STATUS
------------------------------ ----------
BOOK_INS VALID

If we determine that this warning should prevent our procedure from compiling,
we can set the message number so that it is treated as an error rather than a warning.
The following example includes the PLSQL_WARNINGS setting in the ALTER
command and establishes that warning 07202 should be treated as an error:

ALTER PROCEDURE book_ins COMPILE PLSQL_WARNINGS='ERROR:07202';

Now instead of returning a warning, the compilation shows an error.

Warning: Procedure altered with compilation errors.

Now the procedure is marked as invalid until we fix the problem.

-- Available online as part of PLSQL_Warnings.sql
COL object_name FORMAT A30
COL status FORMAT A10
SELECT object_name, status
FROM user_objects
WHERE object_name = 'BOOK_INS';

OBJECT_NAME STATUS
------------------------------ ----------
BOOK_INS INVALID

DBMS_WARNING Package Oracle 10gR1 introduced the DBMS_WARNING
package that modifies the PLSQL_WARNINGS init.ora parameter. All of the
settings available with PLSQL_WARNINGS can be used with the DBMS_WARNING
package.

By modifying the PLSQL_WARNINGS parameter using the DBMS_WARNING
package, we can control the level of debug and warning messages made available
for our compiled code. The following example procedure compiles with no errors
if DBMS_WARNING is set to DISABLE:ALL:

-- Available online as part of CompileWarning.sql
CALL DBMS_WARNING.SET_WARNING_SETTING_STRING('DISABLE:ALL', 'SESSION');

CREATE OR REPLACE PROCEDURE compile_warning
AS

v_title VARCHAR2(100);
CURSOR dbms_warning_cur
IS
SELECT title
FROM books;

BEGIN
OPEN dbms_warning_cur;
LOOP
FETCH dbms_warning_cur INTO v_title;
-- there should be a line to exit here
-- like: EXIT WHEN dbms_warning_cur%NOTFOUND;

DBMS_OUTPUT.PUT_LINE('Titles Available: '||v_title);
END LOOP;
CLOSE dbms_warning_cur;

END;
/

This produces no errors when compiled even though it does have a problem.
To get warnings for the procedure that may only be seen on execution, we can set
the warning level as follows:

-- Available online as part of CompileWarning.sql
CALL DBMS_WARNING.SET_WARNING_SETTING_STRING('ENABLE:ALL', 'SESSION');

To see the warning level, we can call the GET_WARNING_SETTING_STRING
function.

-- Available online as part of CompileWarning.sql
SELECT DBMS_WARNING.GET_WARNING_SETTING_STRING() WARNING_LEVEL
FROM dual;

60 Oracle Database 10g PL/SQL Programming

This returns the correct results based on our setting:

-- Available online as part of CompileWarning.sql
WARNING_LEVEL

ENABLE:ALL

To test out the warning messages, recompile the same procedure.

-- Available online as part of CompileWarning.sql
ALTER PROCEDURE compile_warning COMPILE;

SP2-0805: Procedure altered with compilation warnings

Type SHOW ERRORS to see what the problem is.

-- Available online as part of CompileWarning.sql
SHOW ERRORS

Errors for PROCEDURE COMPILE_WARNING:
LINE/COL ERROR
-------- ---
24/4 PLW-06002: Unreachable code

If not for the warning message, we would not be aware of this problem until the
procedure is executed.

Why would DBMS_WARNING be used instead of just changing the PLSQL_
WARNINGS parameter? We have started to use DBMS_WARNING in our build script,
for example. There are times during the execution of the build where modifying
system settings is not feasible, and session settings are lost on disconnect. We also do
not want to turn the warning messages on for the entire build. Using DBMS_WARNING,
we can easily toggle the parameter to whatever value we need as our scripts run.

Before moving on to the next section, we recommend you disable warnings again.
If this step is missed, you will be wondering why code that previously compiled without
any messages is now returning warning messages. To disable, run the following:

CALL DBMS_WARNING.SET_WARNING_SETTING_STRING('DISABLE:ALL', 'SESSION');

Also, make sure to disable the settings for the PLSQL_WARNINGS init.ora
parameter.

TIP
Consider this part of your unit testing (everyone
does unit testing, right?), and it will save time and
aggravation for yourself and your testers.

Chapter 3: PL/SQL Basics 61

Nested Blocks
Blocks can contain other sub-blocks. This is referred to as nesting and is allowed
in the EXECUTION and EXCEPTION sections of the block. Nested blocks are not
allowed in the DECLARATION section.

For the following example, we are creating an anonymous block with two
nested blocks that are one level deep. The purpose of nesting in this case is to
provide feedback regarding an exception should it occur, but continue to the
second nested block even if the first SELECT statement causes an exception.

-- Available online as part of NestedBlock.sql
DECLARE

v_author AUTHORS.FIRST_NAME%TYPE;
BEGIN

-- the first nested block
BEGIN

SELECT first_name
INTO v_author
FROM authors
WHERE UPPER(last_name) = 'HARTMAN';

EXCEPTION
WHEN NO_DATA_FOUND
THEN

DBMS_OUTPUT.PUT_LINE('EXCEPTION HANDLER for nested block 1');
DBMS_OUTPUT.PUT_LINE('====================================');
NULL;

END;

-- the second nested block
BEGIN

SELECT first_name
INTO v_author
FROM authors
WHERE UPPER(last_name) = 'HARDMAN';

EXCEPTION
WHEN TOO_MANY_ROWS
THEN

DBMS_OUTPUT.PUT_LINE('====================================');
DBMS_OUTPUT.PUT_LINE('EXCEPTION HANDLER for nested block 2');
DBMS_OUTPUT.PUT_LINE('If this is printing, then the both nested');
DBMS_OUTPUT.PUT_LINE('blocks'' exception handlers worked!');

END;
END;
/

Let’s take a closer look at what this example does, and how nesting benefits us
in this scenario.

62 Oracle Database 10g PL/SQL Programming

Both nested blocks have exception handlers. For the first nested block, we select
an author name into a variable where the last_name for the author does not exist
in the table. This results in no data being returned. When selecting into a variable,
passing a null result set to the variable causes an ORA-1403 no data found
exception. The built-in exception NO_DATA_FOUND helps us here, and we can
trap that exception should it occur.

NOTE
Variables are discussed in more detail later in this
chapter in the section titled “Using Variables.”

For this code, we want to continue with the second statement should the first
one fail. The exception section concludes with a NULL indicating that the exception
should be ignored. Oracle continues to process the second statement as if nothing
happened. If this were one big block instead, the failure would have happened on
the first statement, causing all other code to be skipped.

Triggers
Triggers offer a unique implementation of PL/SQL. They are stored in the database
but are not stored procedures or functions. Triggers are event driven and are attached
to certain actions performed in the database.

For example, if an AFTER UPDATE trigger is created on the AUTHORS table and
there is an update performed, the trigger will fire. PL/SQL that is written for that trigger
will be executed. The following example is on the AUTHORS table and fires whenever
the FIRST_NAME column is updated.

-- Available online as part of Trigger.sql
CREATE OR REPLACE TRIGGER author_trig

AFTER UPDATE OF first_name
ON authors
FOR EACH ROW

WHEN (OLD.first_name != NEW.first_name)
BEGIN

DBMS_OUTPUT.PUT_LINE('First Name '
||:OLD.first_name
||' has change to '
||:NEW.first_name);

END;
/

Notice the BEGIN and END showing where the PL/SQL block is in relation to the
trigger creation. This trigger sends a message to the screen using the built-in package

Chapter 3: PL/SQL Basics 63

64 Oracle Database 10g PL/SQL Programming

DBMS_OUTPUT whenever the FIRST_NAME column is updated in the AUTHORS
table. To test the trigger, simply update the first name of one of the authors.

-- Available online as part of Trigger.sql
SET SERVEROUTPUT ON
UPDATE authors
SET first_name = 'Ronald'
WHERE first_name = 'Ron';

The trigger immediately fires and displays the following on the screen:

First Name Ron has change to Ronald

The trigger fired as expected, and the PL/SQL was executed.

NOTE
Triggers are discussed in detail in Chapter 10.

Object Types
PL/SQL began support for object-oriented programming (OOP) in version 8 of PL/SQL.
Since then, a number of enhancements have been made that make PL/SQL a true
object-oriented language. For a detailed discussion of OOP, see Chapters 14–16.

The essence of OOP is to make code abstract. In the model of a bookstore, a
book is considered an object. Instead of writing application code to work directly
against the data structures to find and manipulate information about books, it works
through a predefined object called BOOKS. ATTRIBUTES to define what a book is,
and METHODS perform actions on the book objects.

Methods
Methods work directly against the object’s underlying data structures. Since object
methods do the work, application developers simply pick and choose the methods
they need for their application design and call the appropriate methods to do the job.

Language Rules and Conventions
PL/SQL includes rules and conventions just like any other languages. In this section,
we take a look at lexical units (including identifiers, literals, special characters,
reserved words, delimiters, white space, and comments) and using variables.

Lexical Units
Lexical units are the characters that make up PL/SQL text. Table 3-1 shows a valid
string of characters and its lexical units.

We discuss the main components of PL/SQL Lexical Units in the following sections.

Identifiers
Identifiers provide a named reference to PL/SQL objects such as variables and
cursors, and to database objects, including procedures, functions, and packages.
The identifier allows the object to be referenced by name rather than by some
Oracle internal reference.

Restrictions on identifier names include:

■ Names must be 30 characters or less.

■ Names must start with a letter.

■ Names can contain the following characters as long as they are not the first
character in the name: $, #, _, and any number.

■ Names cannot contain punctuation, spaces, or hyphens.

TIP
PL/SQL is not case sensitive. Two identifiers with the
same name but different case are the same, so use
unique names, or unique prefixes for identifiers to
avoid reusing the same name.

The following identifier names are valid:

My_Procedure
Variable1
cursor_#1
Function_4_$

Chapter 3: PL/SQL Basics 65

Lexical Unit Characters

Arithmetic symbols + - * / > < = **

ASCII letters A–Z, a–z

Numbers 0–9

White space Tab, Space, Carriage Return

Special characters . ? ~ ! @ { } [] # $ % ^ & () _ , | : ; ‘ “

TABLE 3-1. Lexical Units

66 Oracle Database 10g PL/SQL Programming

The following identifiers are not valid:

My-Procedure
1Variable
cursor #1
Function_@_name

Identifier names should be self-explanatory. There are 30 characters to work
with, leaving plenty of space to create a descriptive name.

Quoted Identifiers Identifiers can include nonstandard characters and spaces when
they are enclosed in double quotes. The following quoted identifiers are supported:

"Susan's Procedure"
"Mine/Yours"
"Begin"

Quoted identifiers are case sensitive and can even include reserved words that
are not otherwise allowed. We highly recommend against using these nonstandard
identifiers. Unless working with an extreme situation where they are somehow
required, they will only cause problems.

Special Characters Special characters are identifiers that PL/SQL interprets as a
command or that have some other special purpose. Using these characters in PL/SQL
in a way that is contrary to their purpose will result in an error or incorrect processing
of code.

To see a list of reserved characters for your version, run the following SELECT
statement:

-- Available online as part of Reserved.sql
SET PAGES 9999

SELECT keyword
FROM v_$reserved_words
WHERE length = 1
AND keyword != 'A'
OR keyword = '<<';

You must run this script as SYSDBA or SYSOPER, as access to the view is not
granted to PUBLIC.

Reserved Words Reserved words are identifiers that Oracle sets aside for internal
use. If they are used in application development, Oracle will interpret them as defined

Chapter 3: PL/SQL Basics 67

by Oracle, not according to your definition. This can cause some serious problems if
the reserved words are used for purposes such as variable names.

We find the best way to avoid using a reserved word in variable declaration is
to use naming conventions similar to those outlined at the end of this chapter. This
way, even if a reserved word is used, it includes a prefix that allows Oracle to
differentiate variable name from reserved word.

Just like the rest of Oracle and PL/SQL, reserved words change from release
to release. Rather than reading a huge laundry list of words and characters in this
section, run the following script in your database to get a list of all reserved words:

-- Available online as part of Reserved.sql
SET PAGES 9999
COL keyword FORMAT A30

SELECT keyword, length
FROM v_$reserved_words
WHERE (length > 1
OR keyword = 'A')
AND keyword != '<<'
ORDER BY keyword;

You must run this script as SYSDBA or SYSOPER, as access to the view is not granted
to PUBLIC. A list of reserved words for Oracle 10gR1 is available in Appendix A.

Delimiters
Delimiters are symbols used by Oracle for a special purpose. They act as separators,
database link indicators, mathematical operators, and concatenation operators.
Table 3-2 lists the delimiters available.

Delimiters are used in every example script created for this book, so to see them
in action, look to any online script.

Delimiter Description

+, –, *, /, ** Mathematical operators

.. Range operator, frequently used in for-loops

<, >, <>, =, !=,
~=, ^=, <=, >=

Relational operators (greater than, less than, etc.)

--, /*, */ Comment indicators (single line and multiline)

<<, >> Label delimiters

TABLE 3-2. Delimiters

Literals
Literals are Character, String, Number, Boolean, and Date/Time values not represented
by an identifier. The following sections detail the differences between each type
of literal.

Character Character literals are single characters in quotes. They are case
sensitive and include any alphanumeric character or special character. Numbers
that are treated as character literals (whenever they are in quotes) are not treated as
numbers unless used in arithmetic and converted. Examples of character literals are

68 Oracle Database 10g PL/SQL Programming

Delimiter Description

% Attribute indicator, used with TYPE, ROWTYPE, NOTFOUND, and
other attributes

(,) Expression delimiters, often used in the WHERE clause with AND
and OR operators

: Bind variable indicator—bind variables are used for performance
reasons in PL/SQL to reduce the number of parses required for
SQL where only the values of the variables change and not the
structure of the SQL itself

, Item separator—a comma separates lists whenever present in
PL/SQL

‘ Character string delimiter—strings or character literals between
two single quotes are case sensitive

“ Quoted identifier delimiter—quoted identifiers are case sensitive
and can contain spaces and special characters

@ Database link delimiter—in a SQL statement the string following
this symbol is the database name that is linked to the current
instance

; Statement terminator, used at the completion of every statement or
declaration in PL/SQL to signify the completion of the command

:= Assignment delimiter—this delimiter initializes variables (to the
left of the operator) with values (to the right of the operator)

=> Association operator, used when calling a procedure or function,
passing values to the parameters

|| Concatenation operator, combines the string on the left with the
string on the right of the operator

TABLE 3-2. Delimiters (continued)

Chapter 3: PL/SQL Basics 69

'C' 'c' '1' '%' '~'

Character literals are similar to string literals except they are single-character.

String String literals include all alphanumeric characters, special characters, and
punctuation. One of the biggest areas of confusion we have witnessed teaching
classes on PL/SQL is in the handling of apostrophes in a string literal. For example,
the following string includes an apostrophe in one of the words:

-- Available online as part of StringLiteral.sql
SET SERVEROUTPUT ON
BEGIN

DBMS_OUTPUT.PUT_LINE('Colorado's National Parks are BEAUTIFUL');
END;
/

This results in the following error:

ERROR:
ORA-01756: quoted string not properly terminated

The reason this fails is the handling of the apostrophe and the confusion
regarding where the end of the string is. For all versions, a valid work-around
for this is to use two single quotes (not a double quote), as follows:

-- Available online as part of StringLiteral.sql
BEGIN

DBMS_OUTPUT.PUT_LINE('Colorado''s National Parks are BEAUTIFUL');
END;
/

This time the string successfully prints, and does so with a single apostrophe.

Colorado's National Parks are BEAUTIFUL

Oracle 10gR1 introduces a new way to handle the single-quote/double-quote
problem when working with apostrophes. The new quoting syntax is q'[...]',
where the brackets are the user-defined delimiters. The [] can be any character not
present in the string literal. The string literal is placed between the user-defined
delimiters. The following example shows a few ways to handle the apostrophe:

-- Available online as part of StringLiteral.sql
BEGIN

DBMS_OUTPUT.PUT_LINE('Colorado''s National Parks are BEAUTIFUL');
DBMS_OUTPUT.PUT_LINE(q'!Colorado's National Parks are BEAUTIFUL!');
DBMS_OUTPUT.PUT_LINE(q'[Colorado's National Parks are BEAUTIFUL]');

70 Oracle Database 10g PL/SQL Programming

DBMS_OUTPUT.PUT_LINE(q'<Colorado's National Parks are BEAUTIFUL>');
DBMS_OUTPUT.PUT_LINE(q'%Colorado's National Parks are BEAUTIFUL%');

END;
/

The output is shown here:

Colorado's National Parks are BEAUTIFUL
Colorado's National Parks are BEAUTIFUL
Colorado's National Parks are BEAUTIFUL
Colorado's National Parks are BEAUTIFUL
Colorado's National Parks are BEAUTIFUL

All of these are handled correctly.

Number Numeric literals can be divided into integer values and real values.
Integer values are whole numbers with no decimals. Real values are numbers with
one decimal point. Both integer and real values can use scientific notation to
represent the number.

Integer value examples:

1000
-5
+3

Integers can include signs indicating plus (+) or minus (–).
Real value examples:

1000.0
-5.
+3.1

Real values can also include signs indicating plus (+) or minus(–).
Scientific notation examples:

1.125E3
3.24e-4
-2.32E+5

The E (or e) in this type of notation indicates ten to the power of the number that
follows. The preceding examples can be interpreted as follows:

1.125E3 = 1.125 times 10 to the 3rd power
= 1.125 times 1000

Chapter 3: PL/SQL Basics 71

= 1125

3.24e-4 = 3.24 times 10 to the -4th power
= 3.24 times .0001
= 0.000324

-2.32E+5 = -2.32 times 10 to the 5th power
= -2.32 times 100000
= -232000

Globalization may require changes to the preceding examples. Reference
the Globalization documentation at http://otn.oracle.com for detailed National
Language Support (NLS) requirements for numeric literals.

Boolean TRUE, FALSE, and NULL are the Boolean values available in PL/SQL.
We can declare a variable of type Boolean and assign the literal value to it. The
following block demonstrates the use of Boolean literals:

-- Available online as part of BooleanLiteral.sql
SET SERVEROUTPUT ON
DECLARE

v_true BOOLEAN := TRUE;
v_false BOOLEAN := FALSE;
v_null BOOLEAN := NULL;

BEGIN
IF v_true
THEN

DBMS_OUTPUT.PUT_LINE('true');
END IF;

IF v_false
THEN

DBMS_OUTPUT.PUT_LINE('false');
END IF;

IF v_null
THEN

DBMS_OUTPUT.PUT_LINE('null');
END IF;

END;
/

This returns the following to the screen:

true

72 Oracle Database 10g PL/SQL Programming

This example shows a few important aspects of Boolean literals and variables:

■ The Boolean literals are not in quotes. They are not strings. In fact, if the
assignment of the value to the Boolean variable had strings, it would result
in the following exception:

PLS-00382: expression is of wrong type

■ Boolean variables, when combined with an IF-THEN block, do not need
to be provided with a comparison value if only comparing to TRUE. If
they are comparing to FALSE or NULL, a value must be provided in the
comparison. For example, the following two IF-THEN statements are
identical:

IF v_true = TRUE
THEN
...

IF v_true
THEN
...

NOTE
IF-THEN procedural constructs are discussed in
detail later in this chapter in the section titled “IF-
THEN-ELSE.”

Date/Time Date/Time literals include four different data types:

■ DATE

■ TIMESTAMP

■ TIMESTAMP WITH TIMEZONE

■ TIMESTAMP WITH LOCAL TIMEZONE

The following example demonstrates the Date/Time literals:

-- Available online as part of DateTimeLiteral.sql
SET SERVEROUTPUT ON
DECLARE

v_date DATE := DATE '2004-06-05';
v_timestamp TIMESTAMP := TIMESTAMP '2004-06-05 22:14:01';
v_timestamp_tz TIMESTAMP WITH TIME ZONE :=

TIMESTAMP '2004-06-05 22:14:01 +06:00';

Chapter 3: PL/SQL Basics 73

v_timestamp_ltz TIMESTAMP WITH LOCAL TIME ZONE :=
TIMESTAMP '2004-06-05 22:14:01';

BEGIN
DBMS_OUTPUT.PUT_LINE(v_date);
DBMS_OUTPUT.PUT_LINE(v_timestamp);
DBMS_OUTPUT.PUT_LINE(v_timestamp_tz);
DBMS_OUTPUT.PUT_LINE(v_timestamp_ltz);

END;
/

This example prints the following:

05-JUN-04
05-JUN-04 10.14.01.000000 PM
05-JUN-04 10.14.01.000000 PM +06:00
05-JUN-04 10.14.01.000000 PM

DATE and TIMESTAMP types are discussed in greater detail in the section titled
“PL/SQL Data Types.”

Documenting Code Using Comments
Documentation is not just for technical writers. Good programming requires two
kinds of code documentation with every program written.

The first and easiest type of documentation is referred to as self-documentation.
Self-documentation means that, just by looking at the code, anyone should be able
to determine what is being done by the identifier names chosen. For example, a
procedure that updates book prices might be called BOOK_PRICE_UPD. This leaves
very little doubt as to what that procedure does.

The second type of documentation is a comment that describes the program or
statement. The comments are written in the program either as single-line or multiline
documentation. Single-line and multiline comments are set apart from the rest of the
program by delimiters, so the PL/SQL engine effectively ignores them.

In Line Comments Inline comments begin with a double-hyphen (single-line
comment delimiter). The comment begins after the hyphens and includes a single
line of text only. If a second line is required, the next line must also include the
delimiter at the beginning. The following example shows two single-line comments
in an anonymous block:

-- Available online as part of SingleLineComment.sql
DECLARE

v_price BOOKS.PRICE%TYPE;
BEGIN

-- Retrieve the price of a book into a local variable
SELECT price
INTO v_price
FROM books
WHERE isbn = '72230665';

DBMS_OUTPUT.PUT_LINE('The original price for isbn 72230665 was: '
||v_price);

-- Discount the price by 10 percent
v_price := v_price * .9;

-- Update the price in the books table to reflect the discount
UPDATE books
SET price = v_price
WHERE isbn = '72230665';

DBMS_OUTPUT.PUT_LINE(CHR(0)); -- This outputs a blank line
DBMS_OUTPUT.PUT_LINE('The discounted price for isbn 72230665 is: '

||v_price);

EXCEPTION
WHEN OTHERS

THEN DBMS_OUTPUT.PUT_LINE (SQLERRM);
END;
/

Take note of the comment placed after the statement. Single-line comments do
not require their own line. The comment begins with the double-hyphen delimiter,
even if that is part way through the line, and extends to the end of the line.

TIP
Single-line hyphens are great for commenting out
lines of code for testing.

Multiline Comments Multiline comments use ‘/*’ as a beginning comment
delimiter and ‘*/’ as an ending comment delimiter. The comments span multiple
lines or paragraphs. Multiline comments are great for including headers or version
control notes in the PL/SQL directly. Multiline comments can be used for

■ Header information in the PL/SQL object

■ Header information for scripts (see the headers in the example scripts for
this chapter)

74 Oracle Database 10g PL/SQL Programming

Chapter 3: PL/SQL Basics 75

■ Commenting out blocks of code. This is useful for test purposes, or to effectively
remove the code while still leaving it for future use should it be required

■ Code documentation, especially comments that extend beyond single lines

The following example comments out a block of code that is not needed and
includes a reference to the date it was removed:

-- Available online as part of MultiLineComment.sql
SET SERVEROUTPUT ON
DECLARE

v_price BOOKS.PRICE%TYPE;
BEGIN

SELECT price
INTO v_price
FROM books
WHERE isbn = '72230665';
DBMS_OUTPUT.PUT_LINE('The original price for isbn 72230665 was: '

||v_price);

/*
v_price := v_price * .9;

UPDATE books
SET price = v_price
WHERE isbn = '72230665';

DBMS_OUTPUT.PUT_LINE(CHR(0));
DBMS_OUTPUT.PUT_LINE('The discounted price for isbn 72230665 is: '

||v_price);
*/

EXCEPTION
WHEN OTHERS

THEN DBMS_OUTPUT.PUT_LINE (SQLERRM);
END;
/

This is great for debugging or for adding comments when it is known that the text
will exceed one line.

Character Spacing and White Space
Do not skimp on the white space! We’re not saying to double-space all of your
code, but use a reasonable amount of space (lines, tabs, spaces, and so on) to

separate code. Nested blocks, IF-THEN blocks, LOOPs, and other types of
programming constructs that are logically separate from other code should
be physically separated in the code for clarity.

Spacing and indentation is another separator that makes code much more
readable. Take the following example:

-- Available online as part of WhiteSpace.sql
DECLARE
v_first_name authors.first_name%TYPE;
v_last_name authors.last_name%TYPE;
v_row_count PLS_INTEGER := 0;
CURSOR auth_cur IS
SELECT a.first_name, a.last_name, count(b.title)
FROM authors a, books b
WHERE a.id = b.author1
OR a.id = b.author2
OR a.id = b.author3
GROUP BY a.first_name, a.last_name
HAVING count(b.title) > 0
ORDER BY a.last_name;
BEGIN
DBMS_OUTPUT.ENABLE(1000000);
OPEN auth_cur;
LOOP
FETCH auth_cur INTO v_first_name, v_last_name, v_row_count;
EXIT WHEN auth_cur%NOTFOUND;
DBMS_OUTPUT.PUT_LINE(v_last_name||', '||v_first_name||' wrote '||v_row_
count||' book(s).');
END LOOP;
CLOSE auth_cur;
EXCEPTION
WHEN OTHERS
THEN
DBMS_OUTPUT.PUT_LINE(SQLERRM);
END;
/

Now, multiply the number of lines of code by ten and imagine maintaining this.
Making code readable does not need to be a difficult task. There are tools like
Formatter Plus and PL/Formatter that provide automated indentation and line spacing.
These tools can format entire projects so that there is consistency from one file to
the next, and they can do it much quicker than you can by hand.

Even if automated formatting tools are not possible, it is still important to make
code readable and consistent with the use of white space. Put yourself in the shoes
of the person that will eventually maintain your code, because it just might be you!

76 Oracle Database 10g PL/SQL Programming

PL/SQL Data Types
In this section, we discuss data types used with PL/SQL. These types should not be
confused with database types. In most cases, capabilities and limitations between
database and PL/SQL types are identical, but some have dramatically different
storage capabilities that can pop up to bite you.

PL/SQL data types can be broken down into the following categories:

■ Scalar

■ Reference

■ Composite

■ LOB

The Scalar category is broken down further into subcategories, or families of types.
The next few sections discuss each category, subcategory, and PL/SQL data type.

Scalar
A Scalar type is a data type that holds a single value. Scalar types can be broken
down into subcategories, or families, that include

■ Character/String

■ Number

■ Boolean

■ Date/Time

We’ll review each of these in detail in the following sections.

Character/String
PL/SQL character or string types include everything from single character values to
large strings up to 32K in size. These types can store letters, numbers, and binary
data, and they can store any character supported by the database character set.
They all define their precision as an integer with units in bytes (the default setting of
bytes can be changed, as you will see in the next section on “Character Semantics”)
at the time the variable is declared.

Character Semantics
Character/string types define precision, or storage, with an integer. The number
provided actually specifies the number of bytes allowed rather than the number of

Chapter 3: PL/SQL Basics 77

characters. Prior to Oracle 9i, this was a real problem when working with multibyte
characters. It was possible that a variable precision of 2 could not even handle a
single three-byte Asian character. Oracle introduced character semantics in 9i to
solve this problem.

Character semantics can be specified for the system using the NLS_LENGTH_
SEMANTICS init.ora parameter, or for each variable in the declaration. The
following example shows a normal declaration of a variable of type VARCHAR2:

DECLARE
v_string VARCHAR2(10);

By default, this declaration means that the variable v_string can store up to ten
bytes. Here we modified the declaration to use character semantics:

DECLARE
v_string VARCHAR2(10 CHAR);

The addition of the CHAR to the precision means that the v_string variable will
now store up to ten characters, regardless of the number of bytes per character.

Character/String Types
Table 3-3 lists scalar types and offers a description of each type.

78 Oracle Database 10g PL/SQL Programming

Type Description

CHAR Fixed-length character data type. The precision is specified as
an integer. Storage is in bytes rather than characters by default.
Use character semantics to override.

LONG The LONG PL/SQL type is different than the LONG database type.
It is a variable-length type with a limit of 32K (32,760 bytes). It
is possible for a column of type LONG to not fit in a variable of
type LONG. Because of the difference between the PL/SQL and
database types, use of the LONG PL/SQL type is limited.

LONG RAW LONG RAW holds binary data up to 32K (32,760 bytes). Just
like the LONG type, the LONG RAW differs in size restriction
between PL/SQL type and database type. It is possible for a
column of type LONG RAW to not fit in a variable of type
LONG RAW. Because of the difference between the PL/SQL and
database types, use of the LONG RAW PL/SQL type is limited.

TABLE 3-3. Character Types

Chapter 3: PL/SQL Basics 79

TIP
LONG and LONG RAW types, while still supported,
are not advantageous to use. Instead, migrate legacy
applications to a LOB type. LONG types can be
converted to CLOBs, while LONG RAW types can
be converted to BLOBs. For more information on
how to migrate LONG and LONG RAW data to
CLOBs and BLOBs, see Chapter 16.

Type Description

NCHAR NCHAR holds fixed-length national character data. It is identical
to the CHAR type but takes on the character set specified by the
National Character Set.

NVARCHAR2 NVARCHAR2 holds variable-length character data. It is identical
to the VARCHAR2 type, but takes on the character set specified
by the National Character Set.

RAW The RAW type stores fixed-length binary data and can hold up to
32K (32,760 bytes). The RAW type for the database can hold only
2K, so the problem is the opposite of that experienced with the
LONG and LONG RAW types. If a RAW variable holds more than
2K, it cannot insert it into the database column of the same type.

ROWID Every record in a table contains a unique binary value called a
ROWID. The rowid is an identifier of the row in the table. The
PL/SQL type is the same and stores the ROWID of a database
record without conversion to a character type. The ROWID
type supports physical rowids, but not logical rowids.

UROWID UROWID supports both physical and logical rowids. Oracle
recommends using the UROWID PL/SQL type when possible.

VARCHAR VARCHAR is an ANSI-standard SQL type, synonymous with
VARCHAR2. Oracle recommends VARCHAR2 be used to
protect against future modifications to VARCHAR impacting code.

VARCHAR2 The VARCHAR2 PL/SQL data type can store up to 32K (32,767)
bytes in Oracle 10g. The database VARCHAR2 type can store
only 4K. This can be a problem, of course, when a variable of
type VARCHAR2 holds data that exceeds 4K and attempts to
insert the contents into a database column of type VARCHAR2.

TABLE 3-3. Character Types (continued)

Number Types
Number types include basic integer data types that hold whole numbers, the new-to-10g
BINARY_FLOAT and BINARY_DOUBLE types that are intended primarily for complex
calculations, and basic number data types that support real numbers. Table 3-4 shows
the most common number types and provides a description of each.

80 Oracle Database 10g PL/SQL Programming

Type Description

BINARY_DOUBLE New to 10gR1, BINARY_DOUBLE is an IEEE-754 double-
precision floating-point type. This type is generally used
for scientific calculations where its performance gains can
be seen.

BINARY_FLOAT Also new to 10gR1, the BINARY_FLOAT type is a single-
precision floating-point type. Like BINARY_DOUBLE, this
type is generally used for scientific calculations where its
performance gains can be seen.

BINARY_INTEGER This type has a range of –2147483647 to +2147483647.
Storage is in a two’s complement binary format (hence
the binary in the name). This type is used when a whole
number will not be stored in the database but will be used
in arithmetic operations.

NUMBER The NUMBER PL/SQL type is identical to the database
NUMBER type. This type can hold floating-point values
or integers. Total maximum precision is 38, which is its
default if no precision is declared. Since NUMBER accepts
floating-point values as well, the declaration can include a
scale, or number of digits to the right of the decimal. The
scale can range from –84 to 127. NUMBER is discussed in
greater detail later in this section.

PLS_INTEGER PLS_INTEGER supports values from –2147483647 to
+2147483647. Subtypes include NATURAL, NATURALN,
POSITIVE, POSITIVEN, and SIGNTYPE. For new
application development, Oracle recommends the use
of PLS_INTEGER over BINARY_INTEGER. Just as with
the BINARY_INTEGER type, use PLS_INTEGER when the
value stored in it will be used within the context of the
block but will not be stored in the database.

TABLE 3-4. Number Types

Chapter 3: PL/SQL Basics 81

Aside from the new BINARY_DOUBLE and BINARY_FLOAT types, number
types have not changed since before Oracle 8i. This consistency will make
converting applications to 10g much easier.

NUMBER Data Type
The NUMBER data type supports both integer and floating-point values. The precision
for integers is easily defined, but setting precision and scale is often a point of confusion
when working with floating-point values. Let’s take a look at how to handle decimal
places when defining precision and scale for floating-point values. Precision and scale
are defined as

■ Precision—The number of total digits allowed for the value. The maximum
precision for the NUMBER type is 38.

■ Scale—The number of digits allowed to the right of the decimal place (if
scale is positive), or number of digits to round to the left of the decimal
place (if scale is negative). Scale can range from –84 to 127.

In this example, we have an anonymous block that pulls values from a table
called PRECISION and prints how each variable handles the assignment. If you
wish to test other assignments, simply insert the records into the precision table
and modify the following block of code:

-- Available online as part of Number.sql
SET SERVEROUTPUT ON
DECLARE

v_integer NUMBER(5);
v_scale_2 NUMBER(5,2);
v_real NUMBER;

CURSOR scale_0_cur
IS

SELECT value
FROM precision
WHERE scale = 0;

CURSOR scale_2_cur
IS

SELECT value
FROM precision
WHERE scale = 2;

BEGIN
DBMS_OUTPUT.PUT_LINE('====== PRECISION 5 SCALE 0 =====');
OPEN scale_0_cur;

-- Loop through all records that have a scale of zero
LOOP
FETCH scale_0_cur INTO v_real;
EXIT WHEN scale_0_cur%NOTFOUND;

-- Assign different values to the v_integer variable
-- to see how it handles it
BEGIN

DBMS_OUTPUT.PUT_LINE('===================');
DBMS_OUTPUT.PUT_LINE('Assigned: '||v_real);

v_integer := v_real;
DBMS_OUTPUT.PUT_LINE('Stored: '||v_integer);

EXCEPTION
WHEN OTHERS
THEN

DBMS_OUTPUT.PUT_LINE('Exception: '||sqlerrm);
END;
END LOOP;
CLOSE scale_0_cur;

DBMS_OUTPUT.PUT_LINE('================================');
DBMS_OUTPUT.PUT_LINE('====== PRECISION 5 SCALE 2 =====');
OPEN scale_2_cur;

-- Loop through all records that have a scale of 2
LOOP
FETCH scale_2_cur INTO v_real;
EXIT WHEN scale_2_cur%NOTFOUND;

-- Assign different values to the v_scale_2 variable
-- to see how it handles it
BEGIN

DBMS_OUTPUT.PUT_LINE('====================');
DBMS_OUTPUT.PUT_LINE('Assigned: '||v_real);

v_scale_2 := v_real;
DBMS_OUTPUT.PUT_LINE('Stored: '||v_scale_2);

EXCEPTION
WHEN OTHERS
THEN

DBMS_OUTPUT.PUT_LINE('Exception: '||sqlerrm);
END;
END LOOP;
CLOSE scale_2_cur;

END;
/

82 Oracle Database 10g PL/SQL Programming

This block shows the following results given current seeded values in the
PRECISION table:

====== PRECISION 5 SCALE 0 =====
Assigned: 12345
Stored: 12345

Assigned: 123456
Exception: ORA-06502: PL/SQL: numeric or value error:

number precision too large

Assigned: 123.45
Stored: 123

====== PRECISION 5 SCALE 2 =====
Assigned: 12345
Exception: ORA-06502: PL/SQL: numeric or value error:

number precision too large

Assigned: 123.45
Stored: 123.45

Assigned: 12.345
Stored: 12.35

Assigned: 1234.5
Exception: ORA-06502: PL/SQL: numeric or value error:

number precision too large

Notice the assigned value of 12.345 to a variable of precision 5 and scale 2 is
rounded, not truncated. If scale were negative, the number would be rounded
to the left of the decimal by the number of digits specified by scale.

Boolean
The Boolean Scalar category includes a single type called BOOLEAN. Boolean
accepts values of TRUE, FALSE, and NULL. When assigning one of these three
values to a variable of type BOOLEAN, do not use quotes. If quotes are used,
they cause an error condition:

-- Available online as part of Boolean.sql
DECLARE

v_boolean BOOLEAN;
BEGIN

v_boolean := 'TRUE';
END;

Chapter 3: PL/SQL Basics 83

/
v_boolean := 'TRUE';

*
ERROR at line 4:
ORA-06550: line 4, column 17:
PLS-00382: expression is of wrong type
ORA-06550: line 4, column 4:
PL/SQL: Statement ignored

BOOLEAN types are discussed later in this chapter in the section titled
“IF-THEN-ELSE.”

Date/Time
Date/Time PL/SQL types include the DATE, TIMESTAMP, and INTERVAL types.
They are identical to the database data types of the same names. The next few
sections discuss them in much greater detail.

DATE
The DATE PL/SQL type stores the century, year, month, day, hour, minute, and
second. No fractional seconds are available. Dates can be converted between
Character types and the DATE type using TO_DATE and TO_CHAR built-in
functions. Using these functions, date formatting can be adjusted to include
or exclude relevant date/time details and to show the time in either 12-hour or
24-hour increments.

TIMESTAMP Types
There are three PL/SQL types that fall under the heading of TIMESTAMP:

■ TIMESTAMP

■ TIMESTAMP WITH TIMEZONE

■ TIMESTAMP WITH LOCAL TIMEZONE

TIMESTAMP The TIMESTAMP type provides for date/time storage much like
the DATE type, except that TIMESTAMP provides subsecond times up to nine
digits (the default is six). If we were accessing a database in New York at 17:00 EST,
TIMESTAMP would show us the value retrieved from the database server, or 17:00.
The following example illustrates the use of TIMESTAMP:

-- Available online as part of Timestamp.sql
SET SERVEROUTPUT ON

84 Oracle Database 10g PL/SQL Programming

DECLARE
v_datetime TIMESTAMP (9) := SYSTIMESTAMP;

BEGIN
DBMS_OUTPUT.PUT_LINE(v_datetime);

END;
/

This returns the following result:

05-JUN-04 06.51.47.051000000 PM

There are nine digits beyond the second because we set precision to the maximum
value of 9.

TIMESTAMP WITH TIME ZONE This PL/SQL type returns the date/time in the
same format as TIMESTAMP, but it includes the local timestamp relative to UTC
(formerly GMT). We can determine the local time relative to UTC this way. In this
example, TIMESTAMP WITH TIME ZONE is used:

-- Available online as part of Timestamp.sql
SET SERVEROUTPUT ON
DECLARE

v_datetime TIMESTAMP (3) WITH TIME ZONE := SYSTIMESTAMP;
BEGIN

DBMS_OUTPUT.PUT_LINE(v_datetime);
END;
/

This returns a slightly different result than TIMESTAMP:

05-JUN-04 07.03.46.926 PM -07:00

Only three digits to the right of the second spot are shown. In addition, a –07.00 is
returned, indicating our machine is seven hours behind UTC.

TIMESTAMP WITH LOCAL TIME ZONE The last date/time PL/SQL type also
returns data in the same format as the TIMEZONE type, but it returns the time
corresponding to the location of the client accessing the data server. For example,
if we were accessing a database server in New York from Denver at 17:00 EST,
TIMESTAMP WITH LOCAL TIME ZONE would show us the time as 15:00, matching
the time zone setting of our client.

The following example illustrates TIMESTAMP WITH LOCAL TIME ZONE:

-- Available online as part of Timestamp.sql
SET SERVEROUTPUT ON

Chapter 3: PL/SQL Basics 85

DECLARE
v_datetime TIMESTAMP (0) WITH LOCAL TIME ZONE := SYSTIMESTAMP;

BEGIN
DBMS_OUTPUT.PUT_LINE(v_datetime);

END;
/

This results in:

05-JUN-04 07.15.48 PM

Note that precision was set to zero, so there are no digits to the right of the second.

Interval
An INTERVAL type comes in two varieties: INTERVAL YEAR TO MONTH and
INTERVAL DAY TO SECOND. Both types provide the difference between two
dates, but do so in years/months or days/seconds.

The following example uses INTERVAL YEAR TO MONTH to calculate the
amount of time I have before my daughter leaves for college:

-- Available online as part of Interval.sql
DECLARE

v_college_deadline TIMESTAMP;
BEGIN

v_college_deadline := TO_TIMESTAMP('06/06/2004', 'DD/MM/YYYY')
+ INTERVAL '12-3' YEAR TO MONTH;

DBMS_OUTPUT.PUT_LINE('My daughter leaves for college in '
||v_college_deadline);

END;
/

This returns the following result:

My daughter leaves for college in 06-SEP-16 12.00.00.000000

In this example, I added ’12-3’, or 12 years 3 months to today’s date. I was only
able to be accurate within a month using the INTERVAL YEAR TO MONTH. I can use
the INTERVAL DAY TO SECOND type to get it a bit more accurate.

-- Available online as part of Interval.sql
DECLARE

v_college_deadline TIMESTAMP;
BEGIN

v_college_deadline := TO_TIMESTAMP('06/06/2004', 'DD/MM/YYYY')
+ INTERVAL '12-3' YEAR TO MONTH

86 Oracle Database 10g PL/SQL Programming

+ INTERVAL '19 9:0:0.0' DAY TO SECOND;

DBMS_OUTPUT.PUT_LINE('My daughter leaves for college in '
||v_college_deadline);

END;
/

I added 19 days and 9 hours to the time shown previously, and it displays
as follows:

My daughter leaves for college in 25-SEP-16 09.00.00.000000 AM

TIP
Would I use INTERVAL instead of other ways to
calculate dates? Yes, especially if I need precision
down to subsecond times. I probably would not use
this all of the time, however. There are still occasions
where using MONTHS_BETWEEN and the TO_DATE
function is just quicker to write than using INTERVAL.

Composite
Composite types differ from Scalar types in that they have internal components. They
can contain multiple scalar variables that are referred to as attributes. Composite
types include records, nested tables, index-by tables, and varrays. These are
covered in detail in the following chapters:

■ Records Chapter 5

■ Nested Tables, Index-By Tables, Varrays Chapter 6

Object Types
Object types are a unique composite type. While they can contain multiple scalar
variables like other composite types, they also include subprograms referred to as
methods. For more information on Object types, refer to Chapters 14–16.

Reference
Oracle includes two PL/SQL types in the Reference category, called REF CURSOR
and REF. Reference types differ from other types primarily in the way they handle
memory and storage. Reference types provide memory structures, but unlike Scalar
and Composite types, they can point to different storage locations throughout the
program.

Chapter 3: PL/SQL Basics 87

88 Oracle Database 10g PL/SQL Programming

REF CURSOR
A variable of type REF CURSOR is referred to as a cursor variable. We can define a
cursor variable as type SYS_REFCURSOR and retrieve a record set from a procedure
or function. SYS_REFCURSOR is a weakly typed REF CURSOR type that was provided
with PL/SQL beginning with Oracle 9iR1.

The following example is a simple procedure that returns a record set from the
AUTHORS table:

Available as part of Ref_Cursor.sql
CREATE OR REPLACE PROCEDURE authors_sel (

cv_results IN OUT SYS_REFCURSOR)
IS
BEGIN

OPEN cv_results FOR
SELECT id, first_name, last_name
FROM authors;

END;
/

To test the procedure, run it as follows:

-- Available online as part of Ref_Cursor.sql
VARIABLE x REFCURSOR
EXEC authors_sel(:x)
PRINT x

This returns the contents of the AUTHORS table.

ID FIRST_NAME
---------- ------------
LAST_NAME

1 Marlene
Theriault

2 Rachel
Carmichael

3 James
Viscusi
...

Chapter 4 expands on the coverage of cursor variables in the section titled
“Cursors.”

REF
REFs are used with Object types. Think of a REF value simply as a pointer to an
object instance in an object table or object view. For a detailed explanation of REFs,
refer to Chapter 15.

Chapter 3: PL/SQL Basics 89

LOB
Oracle provides LOB (large object) data types to work with binary and character
data up to 4 gigabytes in database releases prior to Oracle 10g. In 10gR1, LOBs can
store from 8 to 128 terabytes, depending on the block size of the database and its
use. Aside from storage capabilities, LOBs provide another great advantage over
LONG and LONG RAW types: the data stored in LOBs can be manipulated piecewise,
where LONG and LONG RAW must be manipulated in their entirety. Chapter 16
addresses LOBs in much greater detail.

Using Variables
Variables are memory regions used in a PL/SQL block to hold data. They are
defined in the DECLARATION section of the block, where they are assigned a
specific data type and are often initialized with a value. The syntax for declaring
a variable is

variable_name [CONSTANT] type [NOT NULL] [:= value];

Variable_name is the name you give to the variable. Type is the data type the variable
needs to support. Value is used to initialize a variable.

The following example shows some different ways to declare variables:

DECLARE
v_first_name VARCHAR2(50);
v_author_count PLS_INTEGER := 0;
v_date DATE NOT NULL DEFAULT SYSDATE;

...

The declaration of type ‘AUTHORS.LAST_NAME%TYPE’ is an anchored type that
takes on whatever data type is assigned to the AUTHORS.LAST_NAME column.

A variable can also be made constant, or unchanging from its initial value, as
defined in the DECLARATION section. The following example creates a variable
as a constant and then tries to change the value in the EXECUTION section:

-- Available online as part of Variables.sql
DECLARE

v_first_name CONSTANT VARCHAR2(50) := 'Ron';
BEGIN

v_first_name := 'Ronald';
EXCEPTION

WHEN OTHERS
THEN

90 Oracle Database 10g PL/SQL Programming

DBMS_OUTPUT.PUT_LINE(SQLERRM);
END;
/

This fails on execution with the following:

v_first_name := 'Ronald';
*

ERROR at line 4:
ORA-06550: line 4, column 4:
PLS-00363: expression 'V_FIRST_NAME' cannot be used as an assignment target
ORA-06550: line 4, column 4:
PL/SQL: Statement ignored

Variable names can be any identifier. See the section titled “Identifiers” for the
name restrictions of variables.

%TYPE
If the variable we are declaring maps directly to a column in the database, we can
anchor our variable type to the database type given to that column with %TYPE. The
declaration look like this:

DECLARE
v_last_name AUTHORS.LAST_NAME%TYPE;

...

AUTHORS is the table name, and LAST_NAME is the column name. If the
AUTHORS.LAST_NAME column is VARCHAR2(50), then our v_last_name
variable is of the same type.

This is especially handy when data types change. If we have to make a change to
the column precision, all variables anchored to that column automatically change with
it. If the declaration were not anchored and the variables were of type VARCHAR2(50),
we would have to make the same change to all objects individually. Using anchored
types, the adjustment is automatic.

%ROWTYPE
%ROWTYPE is similar to %TYPE in that it anchors a variable to the table it is tied
to. %ROWTYPE anchors the variable to all columns in the table, though, not just
one. The following example declares a variable as AUTHORS.%ROWTYPE, declaring
that the record should take on the attributes of a row in the AUTHORS table.

Chapter 3: PL/SQL Basics 91

DECLARE
v_author AUTHORS%ROWTYPE;

...

The variable v_author has the following definition based on this declaration:

id NUMBER(38)
first_name VARCHAR2(50)
last_name VARCHAR2(50)

When any of the column data types are modified, the change will be reflected
in the structure of the variable the next time it is run or compiled.

Variable Scope
Scope refers to accessibility and availability of a variable within a block. Variables
are available only as long as they are in scope. A variable declared in a block, for
example, is local to that block only. It is a local variable. When variables are no
longer in scope, the memory used for them is released, and they can no longer be
used until they are once again declared and initialized.

Figure 3-2 shows that a variable declared in a nested block is not available in
the outer block. Its scope is limited to the nested block. The variables declared in the
outer block, however, are available for use in the nested block.

FIGURE 3-2. Variable scope

Variable Visibility
It is possible for a variable that is in scope to not be visible in the current block. This
happens when a nested block declares a variable by the same name, causing the new
definition to be visible and the old one to be hidden. Take the following example:

-- Available online as part of Visibility.sql
SET SERVEROUTPUT ON
DECLARE

v_visible VARCHAR2(30);
v_hidden VARCHAR2(30);

BEGIN
v_visible := 'v_visible in the outer block';
v_hidden := 'v_hidden in the outer block';

DBMS_OUTPUT.PUT_LINE('*** OUTER BLOCK ***');
DBMS_OUTPUT.PUT_LINE(v_visible);
DBMS_OUTPUT.PUT_LINE(v_hidden);
DBMS_OUTPUT.PUT_LINE('================');

DECLARE
v_hidden NUMBER(10);

BEGIN
DBMS_OUTPUT.PUT_LINE('*** INNER BLOCK ***');
v_hidden := 'v_hidden in the inner block';
DBMS_OUTPUT.PUT_LINE(v_hidden);

EXCEPTION
WHEN OTHERS
THEN

DBMS_OUTPUT.PUT_LINE('v_hidden of type VARCHAR2 was...hidden');
END;

END;
/

Executing this anonymous block returns the following result:

*** OUTER BLOCK ***
v_visible in the outer block
v_hidden in the outer block

*** INNER BLOCK ***
v_hidden of type VARCHAR2 was...hidden

The v_hidden variable of type VARCHAR2 was hidden in the inner block. Oracle
provides a way around this by using a label. Labels are markers, allowing us to refer
to an outer block in this case, or to use a GOTO statement should we require. They
use the << and >> delimiters and can be used inside programs, or just before them,
as you will see in our next example. Here we add a label just before the DECLARE:

92 Oracle Database 10g PL/SQL Programming

Chapter 3: PL/SQL Basics 93

-- Available online as part of Visibility.sql
SET SERVEROUTPUT ON
<<l_outer_block>>
DECLARE

v_visible VARCHAR2(30);
v_hidden VARCHAR2(30);

BEGIN
v_visible := 'v_visible in the outer block';
v_hidden := 'v_hidden in the outer block';

DBMS_OUTPUT.PUT_LINE('*** OUTER BLOCK ***');
DBMS_OUTPUT.PUT_LINE(v_visible);
DBMS_OUTPUT.PUT_LINE(v_hidden);
DBMS_OUTPUT.PUT_LINE('==============');

DECLARE
v_hidden NUMBER(10);

BEGIN
DBMS_OUTPUT.PUT_LINE('*** INNER BLOCK ***');
l_outer_block.v_hidden := 'v_hidden in the inner block';
DBMS_OUTPUT.PUT_LINE(l_outer_block.v_hidden);

EXCEPTION
WHEN OTHERS
THEN

DBMS_OUTPUT.PUT_LINE('v_hidden of type VARCHAR2 was...hidden');
END;

END;
/

This time, we used a label to qualify our variable name so that the PL/SQL engine
knew we were trying to use the variable in the outer block.

Bind Variables
Queries go through three main phases when they are run: PARSE, EXECUTE, and
FETCH. In the PARSE phase, a statement is broken down into a hash value, and
both the query itself (letter-for-letter syntax) and the hash value of the statement
are compared with other recently run queries to determine if the statement matches
any of them. If it does, Oracle skips the process of generating an execution (explain)
plan because it has already done the work. If it does not match any of them, Oracle
creates a new set of execution plans, determines the cost of each, and chooses what
it believes to be the lowest-cost plan for accessing the required data.

The following queries are treated as different queries by Oracle:

-- Available online as part of BindVariables.sql
ALTER SESSION SET SQL_TRACE = TRUE;
SELECT last_name

94 Oracle Database 10g PL/SQL Programming

FROM authors
WHERE first_name = 'Ron';

SELECT last_name
FROM authors
WHERE first_name = 'Mike';
ALTER SESSION SET SQL_TRACE = FALSE;

The difference can be seen in the tkprof:

SELECT last_name
FROM authors
WHERE last_name = 'Ron'

call count cpu elapsed
------- ------ -------- ----------
Parse 1 0.00 0.00
Execute 1 0.00 0.00
Fetch 1 0.00 0.00
------- ------ -------- ----------
total 3 0.00 0.00

SELECT last_name
FROM authors
WHERE last_name = 'Mike'

call count cpu elapsed
------- ------ -------- ----------
Parse 1 0.00 0.00
Execute 1 0.00 0.00
Fetch 1 0.00 0.00
------- ------ -------- ----------
total 3 0.00 0.00

NOTE
The tkprof utility is shipped with the data server. It
can be found in the $ORACLE_HOME/bin directory.
To generate the tkprof file, locate the trace file created
in the udump directory on your machine, and tkprof
as follows:

tkprof trace_name.trc tkprof_
filename.txt explain=system

where trace_name.trc is the name of the trace file
that was generated, and tkprof_filename.txt is
what you want to call the tkprof file.

The queries are identical, except for the value being used in the WHERE clause.
The solution? We can use bind variables in place of hard-coded values so that
Oracle sees the statements as identical during the PARSE phase. With bind variables,
the preceding queries might be written as

SELECT last_name
FROM authors
WHERE first_name = :v;

When a value is assigned to variable ‘v’, it is done so after the execution plan is
already generated, and we have saved time. To run the preceding query, do the
following:

-- Available online as part of BindVariables.sql
ALTER SESSION SET SQL_TRACE = TRUE;
VARIABLE v VARCHAR2(10)
BEGIN

:v := 'Ron';
END;
/

SELECT last_name
FROM authors
WHERE first_name = :v;

Without logging out of our session, if we change the value assigned to the variable
and rerun the select, we get a new result.

-- Available online as part of BindVariables.sql
BEGIN

:v := 'Mike';
END;
/

SELECT last_name
FROM plsql.authors
WHERE first_name = :v;

ALTER SESSION SET SQL_TRACE = FALSE;

The tkprof output shows the query once even though it was run twice.

SELECT last_name
FROM authors
WHERE first_name = :v

Chapter 3: PL/SQL Basics 95

call count cpu elapsed
------- ------ -------- ----------
Parse 1 0.00 0.00
Execute 1 0.00 0.00
Fetch 2 0.00 0.00
------- ------ -------- ----------
total 4 0.00 0.00

Take notice of the count values: 1 Parse, 1 Execute, and 2 Fetches. Also note the
bind variable represented in the query shown in the trace.

Local Variables and Binds
When a block assigns a value to a variable and that variable is used in the query,
it is treated as a bind variable. Take the following example using a named block:

-- Available online as part of BindVariables.sql
CREATE OR REPLACE PROCEDURE bind_test (

i_author_first_name IN AUTHORS.FIRST_NAME%TYPE)
IS

v_author_last_name AUTHORS.LAST_NAME%TYPE;
BEGIN

SELECT last_name
INTO v_author_last_name
FROM authors
WHERE first_name = i_author_first_name;

DBMS_OUTPUT.PUT_LINE(i_author_first_name
||' has a last name of '
||v_author_last_name);

EXCEPTION
WHEN OTHERS
THEN

DBMS_OUTPUT.PUT_LINE(sqlerrm);
END;
/

This named block takes a first name in as a parameter and uses that in the
WHERE clause. Let’s take a look at what happens when it is run multiple times
with different names.

-- Available online as part of BindVariables.sql
ALTER SESSION SET SQL_TRACE = TRUE;
EXEC bind_test('Ron')
EXEC bind_test('Mike')
ALTER SESSION SET SQL_TRACE = FALSE;

96 Oracle Database 10g PL/SQL Programming

The tkprof shows the following result:

SELECT last_name
FROM authors
WHERE first_name = :b1

call count cpu elapsed
------- ------ -------- ----------
Parse 1 0.00 0.00
Execute 2 0.00 0.00
Fetch 2 0.00 0.00
------- ------ -------- ----------
total 4 0.00 0.00

The local variable is shown as :b1, a bind variable. The statement is present only
one time in the tkprof, so on the second execution Oracle recognized that it was
the same statement, even though the value passed to the parameter was different.

Cursor Sharing
Oracle 8i introduced the init.ora parameter CURSOR_SHARING. This setting
determines how exact a query needs to be in order to be treated as identical to a
previously parsed query. The available settings are

■ EXACT The default setting, this requires that the syntax (including literals)
be identical.

■ SIMILAR Provides for some differences in SQL statement literals, but the
differences cannot be enough to modify the statement’s purpose or the
execution plan.

■ FORCE This setting is like the SIMILAR setting, but it is a bit more lax in
that it allows the differences between statements to impact the execution
plan or optimization. Using this setting, our first two statements with literals
would only show up once in a tkprof.

While this sounds great, keep in mind that it adds overhead to the processing of
queries. Anytime Oracle must rewrite a query, it takes away from other processing
that can be taking place. If you plan to use this setting, we recommend you only do
so until the code can be changed to use binds.

Hiding Code
One thing you may have noticed with all of the examples is that they are viewable
and can be easily modified. This suits our needs perfectly for this book, but as

Chapter 3: PL/SQL Basics 97

application developers we do not always want our code displayed to the world
when writing an application. In some cases, the features are proprietary and we
need to protect the intellectual capital that is invested in them. In other cases, we
simply want to prevent the code from being modified by the user in order to avoid
problems down the road.

Oracle provides a way to hide code with the PL/SQL Wrapper utility. When
source code has been wrapped, not only is the file unreadable, but also when it
is loaded into the database, the code cannot be read in the data dictionary.

The wrapper utility does not encrypt the code. Instead, it converts it to
hexadecimal digits so that it cannot be read or edited. To run the utility, use
the following syntax:

wrap iname=input_file.sql oname=output_file.plb

where wrap is the name of the utility found at ORACLE_HOME/bin, input_
file.sql is the source file, and output_file.plb is the destination file.
The following example is the source file:

-- Available online as part of WrapBefore.sql
CREATE OR REPLACE PROCEDURE author_book_count
AS

v_first_name authors.first_name%TYPE;
v_last_name authors.last_name%TYPE;
v_row_count PLS_INTEGER := 0;

CURSOR auth_cur IS
SELECT a.first_name, a.last_name, count(b.title)
FROM authors a, books b
WHERE a.id = b.author1
OR a.id = b.author2
OR a.id = b.author3
GROUP BY a.first_name, a.last_name
HAVING count(b.title) > 0
ORDER BY a.last_name;

BEGIN
DBMS_OUTPUT.ENABLE(1000000);

OPEN auth_cur;
LOOP

FETCH auth_cur INTO v_first_name, v_last_name, v_row_count;
EXIT WHEN auth_cur%NOTFOUND;

DBMS_OUTPUT.PUT_LINE(v_last_name
||', '
||v_first_name

98 Oracle Database 10g PL/SQL Programming

||' wrote '
||v_row_count
||' book(s).');

END LOOP;
CLOSE auth_cur;

EXCEPTION
WHEN OTHERS

THEN
DBMS_OUTPUT.PUT_LINE(SQLERRM);

END;
/

To hide this code, cd to the directory where the source file resides and type
the following:

wrap iname=WrapBefore.sql oname=WrapAfter.plb

The following is displayed on execution:

PL/SQL Wrapper: Release 10.1.0.2.0- Production on Tue Jul 06 22:37:34 2004
Copyright (c) 1993, 2004, Oracle. All rights reserved.
Processing WrapBefore.sql to WrapAfter.plb

The converted file appears here:

-- Available online as part of WrapAfter.plb
CREATE OR REPLACE PROCEDURE author_book_count wrapped
a000000
b2
abcd
abcd
abcd
abcd
abcd
abcd
abcd
abcd
abcd
abcd
abcd
abcd
abcd
abcd
abcd
7
3bc 21b
aobxOtpNeS7l6UcMqnjDRDT7FFIwgwIJ2SdqfC+KMQ8tnC/9X6GDui6eP35+zJMK8sAcSYRr

Chapter 3: PL/SQL Basics 99

100 Oracle Database 10g PL/SQL Programming

sBzheWucz88BOvNJIfRnyt6Agoyz8umIiw3mWide8ScJUbEbjKMElrMcpn7sKl6DIWYmOchK
3ICCA5wEv2dBcQbUtz5Zs2Fepvoyakav4ZR6ZHDzEmJmCo0bQ1ermDmLz7Rr9wvJyliFB594
GEaPEXMhZUe4dJL29uk9j+fxL4NJJ1r4/GHbM4Hz2ThE3nfupxAtDVKHQjSjQvzVAlGj5kWd
uQNbp/pA9AYVgjTd4ImFedFKETQntvItcBVEjbCNSE3fwt/zGBRDfZYfSDZM8RTMX61F0q33
duA1t423iQJrA3LLsCSr3LViuYi4xlkTmqELG4XYYhS70pZ6gzG4G1BPL/5LqsYIVyg4P/1/
Ms8HmT+dyyQs/r3GvxmGEiR2InO7yuxb0fOOvtmxeXHvxyVX+ppqTEAlfNOHsTDhhbQz/ZIF
4pU7tNL9gGPFCsljBgckntJVaw==

/

To test the converted file, first run the seed script.

SQL>@WrapSeed.sql

Next, run the wrapped file.

SQL> @wrapafter.plb

Procedure created.

Even though the code is unreadable, it compiles without error.

Expressions
Expressions are a composite of operators and operands. In the case of a mathematical
expression, the operand is the number and the operator is the symbol such as + or –
that acts on the operand. The expression value is the evaluated total of the operands
using the operators.

Here is a simple expression:

1 + 2

The operands are the values 1 and 2, and the operator is the +. The evaluated total of 3
is the value of the expression. An expression always returns one, and only one, value.

To extend this to PL/SQL, operands can be numbers just as in the last example
or any combination of literals, constants, or variables. Operators are divided into
categories that describe the way they act upon operands.

■ Comparison operators are binary, meaning they work with two operands.
Examples of comparison operators are the greater than (>), less than (<),
and equal (=) signs, among others.

■ Logical operators include AND, OR, and NOT.

■ Arithmetic operators include addition/positive (+), subtraction/negative (–),
multiplication (*), and division (/).

■ The assignment operator is specific to PL/SQL and is written as colon-equal (:=).
This is discussed in greater detail in the text that follows.

■ The lone character operator is a double pipe (||) that joins two strings
together, concatenating the operands. This is discussed in greater detail
in the text that follows.

■ Other basic SQL operators include IS NULL, IN, and BETWEEN.

Two of these categories warrant additional coverage in the context of this book
because they are of particular use to PL/SQL.

Assignment Operator
The assignment operator is specific to PL/SQL. Its primary function is to set a
variable equal to the value or expression on the other side of the operator. If we
wanted to set the variable v_price equal to 54.95 * .90, we would write it as
follows:

v_price := 54.95 * .9;

An assignment can take place in the declaration section when a variable is
first declared, or in the execution or exception sections at any time. For example,
to declare the variable v_price, we would write

DECLARE
v_price books.price%TYPE;

...

The variable is not yet initialized, and its value is NULL. To initialize the variable
to zero, we can use the assignment operator in the declaration section as follows:

DECLARE
v_price books.price%TYPE := 0;

...

In the execution section, the assignment operator is used for assigning constants,
literals, other variables, or expressions to a variable. Another use is to assign a function
call to a variable where the return value of the function is ultimately stored. With the
introduction of Native Dynamic SQL (NDS), we often use an assignment operator to
store the command we will execute to a variable, and then pass the variable to the
EXECUTE IMMEDIATE command. This improves the readability of the code.

...

BEGIN

EXECUTE IMMEDIATE ('CREATE TABLE authors(id NUMBER PRIMARY KEY, first_name

Chapter 3: PL/SQL Basics 101

102 Oracle Database 10g PL/SQL Programming

VARCHAR2(50), last_name VARCHAR2(50))');

...

Using the assignment operator, we can rewrite this as

...
BEGIN

v_string := 'CREATE TABLE authors(id NUMBER PRIMARY KEY, first_name
VARCHAR2(50), last_name VARCHAR2(50))';

EXECUTE IMMEDIATE (v_string);
...

This becomes even more of an issue as the statements become larger and more
NDS commands are used. NDS is discussed in detail in Chapter 13.

Concatenation Operator
To further improve the readability of the last example, we can combine the assignment
operator with a character operator that concatenates two strings, values, or expressions
together. The earlier example can be rewritten as

...
BEGIN

v_string := 'CREATE TABLE authors('
||'id NUMBER PRIMARY KEY, '
||'first_name VARCHAR2(50), '
||'last_name VARCHAR2(50))';

EXECUTE IMMEDIATE (v_string);
...

Ultimately, Oracle sees no difference between this example and the one shown
earlier, but it does improve the readability of the code.

Concatenation goes beyond this example, of course, to include all of its uses with
SQL. For more information on the concatenation operator, or any other operator,
and how they work with SQL, please see the Oracle Database SQL Reference on
the OTN web site.

Controlling Program Flow
PL/SQL programs run sequentially, from the top of the block to the bottom, unless
acted upon by a control structure. Like many other third-generation languages, PL/SQL
provides the ability to divert code execution in accordance with certain conditions,

Chapter 3: PL/SQL Basics 103

execute code repeatedly until a condition is met, or jump to various sections of the
block as needed.

The control structures described in this section are divided into three categories.

■ Conditional evaluation Run code only if certain conditions are met.

■ Circular execution Run code repeatedly until some end-point is reached.

■ Sequential navigation Jump to different sections of the block.

These control structures give PL/SQL much of its power and flexibility. In the
remainder of this section we will demonstrate each control structure and discuss
scenarios where each is used.

Conditional Evaluation
Conditional evaluation refers to the ability to process a portion of code depending
on whether certain criteria are met. We use conditional evaluation for activities
every day. IF it is raining outside, THEN get an umbrella, ELSIF it is sunny outside,
get sunscreen, ELSE get outside ASAP and enjoy the day.

Using this type of logic in PL/SQL gives the programmer control over what code
gets run and under what conditions it is run. In the CreateUser.sql script for this
chapter we use conditional evaluation to test whether the PLSQL user exists or not.
If it does exist, then drop it. If it does not exist, continue with the user creation.

IF-THEN
The most basic conditional evaluation is an IF-THEN statement. IF a condition is
met, THEN do something. Implicit with this logic is IF a condition is not met, skip
the code that follows and continue with the rest of the program.

The syntax for an IF-THEN statement is

IF condition
THEN
action;

END IF;

The condition can be any expression, variable, constant, or identifier compared to
any other expression, variable, constant, or identifier. The condition must evaluate
to TRUE, FALSE, or NULL.

If a condition is met (evaluates to TRUE), an action is performed. The action
can be any valid statement, or even another nested IF-THEN statement. If separate

exception handling is required inside the IF-THEN section, a nested block can be
used. If a condition is not met (evaluates to FALSE or NULL), the action is skipped.

The following example demonstrates the use of the basic IF-THEN logic:

-- Available online as part of If.sql
DECLARE

v_count NUMBER(10) := 0;
BEGIN

SELECT count(1)
INTO v_count
FROM authors
WHERE id = 54;

IF v_count = 0
THEN

INSERT INTO authors
VALUES (54, 'Randy', 'Stauffacher');

END IF;
COMMIT;

EXCEPTION
WHEN OTHERS
THEN

DBMS_OUTPUT.PUT_LINE(SQLERRM);
END;
/

The condition being tested here is whether a record exists in the AUTHORS table
with an ID of 54. If one does not exist, INSERT the record. If the condition in this
case evaluates to FALSE, then do nothing.

IF-THEN-ELSE
Using IF-THEN logic, a condition that evaluates to FALSE or NULL does nothing.
The program is skipped. IF-THEN-ELSE adds another layer to the logic, allowing us
to specify what to do if the condition evaluates to FALSE or NULL. The syntax is

IF condition
THEN
action;

ELSE
action

END IF;

Modifying the last example to use ELSE, we can write

-- Available online as part of If.sql
SET SERVEROUTPUT ON

104 Oracle Database 10g PL/SQL Programming

DECLARE
v_count PLS_INTEGER := 0;

BEGIN
SELECT COUNT(1)
INTO v_count
FROM authors
WHERE id = 55;

IF v_count = 0
THEN

INSERT INTO authors
VALUES (54, 'Roger', 'Wootten');
DBMS_OUTPUT.PUT_LINE('Added author');

ELSE
DBMS_OUTPUT.PUT_LINE('Author already exists');

END IF;
COMMIT;

EXCEPTION
WHEN OTHERS
THEN

DBMS_OUTPUT.PUT_LINE(SQLERRM);
END;
/

Now, if the record does exist and the condition evaluates to FALSE, a message
is printed to the screen letting us know that the author already exists in the table.

IF-THEN-ELSIF
The previous two examples are great for single-condition statements, but not all logic
falls into such concise terms. For example, if we wanted to modify a book’s price,
but the percentage discount depends on the price of the book, we might require
multiple IF-THEN statements. This is highly inefficient, since all IF statements must
be evaluated even if one of them has already evaluated to TRUE.

Oracle provides a way to chain IF conditions together so that if one is met, the
rest are assumed to be false and are skipped. The syntax is as follows:

IF condition
THEN
action

ELSIF condition
THEN
action

[ELSE
action]

END IF;

Chapter 3: PL/SQL Basics 105

Take special note that the term is ELSIF, not ELSEIF. Also, ELSE can optionally be
included at the end to handle all conditions not met by the prior evaluations.

In this example, we query the books table, retrieving the price of the book into
a variable. We will then use the price in an IF-THEN-ELSIF evaluation to determine
the discount to apply:

-- Available online as part of If.sql
SET SERVEROUTPUT ON
DECLARE

v_price books.price%TYPE;
v_isbn books.isbn%TYPE := '72230665';

BEGIN
SELECT price
INTO v_price
FROM books
WHERE isbn = v_isbn;

DBMS_OUTPUT.PUT_LINE('Starting price: '||v_price);

IF v_price < 40
THEN

DBMS_OUTPUT.PUT_LINE('This book is already discounted');
ELSIF v_price BETWEEN 40 AND 50
THEN

v_price := v_price - (v_price * .10);

UPDATE books
SET price = v_price
WHERE isbn = v_isbn;

ELSIF v_price > 50
THEN

v_price := v_price - (v_price * .15);

UPDATE books
SET price = v_price
WHERE isbn = v_isbn;

END IF;

DBMS_OUTPUT.PUT_LINE('Ending price: '||v_price);
ROLLBACK;

EXCEPTION
WHEN OTHERS
THEN

DBMS_OUTPUT.PUT_LINE(SQLERRM);
ROLLBACK;

END;
/

106 Oracle Database 10g PL/SQL Programming

Since the price is more than 50.00, the first two conditions evaluate to FALSE, and
the price is updated in the final ELSIF section to have a 15 percent discount.

CASE
CASE, introduced in Oracle 9i, provides a different approach to conditional evaluation.
It simplifies the syntax a bit by requiring the condition to be passed only one time.
The syntax is

CASE expression
WHEN test1 THEN action;
WHEN test2 THEN action;
...

END CASE;

In this example, we determine the discount to apply by testing the category
of a book:

-- Available online as part of Case.sql
SET SERVEROUTPUT ON
DECLARE

v_category books.category%TYPE;
v_discount NUMBER(10,2);
v_isbn books.isbn%TYPE := '72230665';

BEGIN
SELECT category
INTO v_category
FROM books
WHERE isbn = v_isbn;

-- Determine discount based on category
CASE v_category
WHEN 'Oracle Basics'

THEN v_discount := .15;
WHEN 'Oracle Server'

THEN v_discount := .10;
END CASE;

DBMS_OUTPUT.PUT_LINE('The discount is '
||v_discount*100
||' percent');

EXCEPTION
WHEN OTHERS
THEN

DBMS_OUTPUT.PUT_LINE(SQLERRM);
END;
/

Chapter 3: PL/SQL Basics 107

This works just like an IF-THEN-ELSIF statement as long as only the book falls
into those two categories. Unlike an IF-THEN-ELSIF statement, however, CASE
throws an exception if unable to evaluate the condition to TRUE. For example, If
we update ISBN 72230665 to be in a category called 'Oracle Programming',
the code would return an error.

-- Available online as part of Case.sql
UPDATE books
SET category = 'Oracle Programming'
WHERE isbn = '72230665';
COMMIT;

Now rerun the CASE statement and the following error is returned:

ORA-06592: CASE not found while executing CASE statement

This is resolved by adding ELSE to handle all cases that are not evaluated explicitly.
For example, the prior CASE statement can be rewritten as

...
CASE v_category
WHEN 'Oracle Basics'

THEN v_discount := .15;
WHEN 'Oracle Server'

THEN v_discount := .10;
ELSE v_discount := .5;
END CASE;

...

Now the code completes without error.

Searched CASE
Searched CASE statements differ from traditional test CASE statements in that the
expression is not passed at the beginning. Instead, each WHEN clause can accept
an expression to evaluate. In the context of a single case statement, either a single
expression can be repeated in each WHEN clause or different expressions can be
evaluated.

We’ll first rewrite the IF-THEN-ELSIF example used earlier to use CASE syntax
instead. The output that follows shows only the CASE statement itself, since the rest of
the block has not changed. The complete example is available in the online script.

-- Available online as part of Case.sql
...
CASE -- Notice that there is no expression here...

WHEN v_price < 40 THEN
DBMS_OUTPUT.PUT_LINE('This book is already discounted');

108 Oracle Database 10g PL/SQL Programming

Chapter 3: PL/SQL Basics 109

WHEN v_price BETWEEN 40 AND 50 THEN
v_price := v_price - (v_price * .10);

UPDATE books
SET price = v_price
WHERE isbn = v_isbn;

WHEN v_price > 50 THEN
v_price := v_price - (v_price * .10);

UPDATE books
SET price = v_price
WHERE isbn = v_isbn;

ELSE
DBMS_OUTPUT.PUT_LINE('Price not found');

END CASE;

...

In this case, the same variable is used for each condition. We can also use CASE
to evaluate different variables or expressions in each WHEN clause. For example,

-- Available online as part of Case.sql
SET SERVEROUTPUT ON
DECLARE

v_name1 VARCHAR2(30) := 'Steve';
v_name2 VARCHAR2(30) := 'Jim';
v_name3 VARCHAR2(30) := 'Kathy';
v_name4 VARCHAR2(30) := 'Ron';

BEGIN

CASE
WHEN v_name1 = 'Steve' THEN

DBMS_OUTPUT.PUT_LINE('Steve');
WHEN v_name2 = 'Jim' THEN

DBMS_OUTPUT.PUT_LINE('Jim');
WHEN v_name3 = 'Kathy' THEN

DBMS_OUTPUT.PUT_LINE('Kathy');
WHEN v_name4 = 'Ron' THEN

DBMS_OUTPUT.PUT_LINE('Ron');
END CASE;

EXCEPTION
WHEN OTHERS
THEN

DBMS_OUTPUT.PUT_LINE(SQLERRM);
ROLLBACK;

END;
/

110 Oracle Database 10g PL/SQL Programming

Four different variables were used in this CASE statement. The syntax makes
evaluating this statement easy for the developer, in turn making the code easier
to maintain and troubleshoot.

TIP
When should CASE be used in place of IF-THEN
style syntax? While there is no “rule”, we find CASE
statements easier to read when the logic gets
complex.

Circular Execution
Circular execution refers to the ability to repeatedly execute code until some condition
is met. PL/SQL uses loops to accomplish this, and we cover three different types here.

■ Simple loops The most basic kind of loop, they include LOOP, END
LOOP, and some method of EXIT.

■ Numeric FOR loops With this loop structure we can define the number of
times the loop will cycle before exiting.

■ While loops This type of loop executes only while a certain condition is
met. When it no longer meets the condition, the loop ends.

These categories are discussed in greater detail in the following sections.

Simple Loops
Simple loops provide a simple interface for circular execution. The basic syntax is

LOOP
action;

END LOOP;

Action is any valid statement. In theory, we can run the following loop (DO NOT
RUN THIS):

-- DO NOT RUN
SET SERVEROUTPUT ON
BEGIN

LOOP
DBMS_OUTPUT.PUT_LINE('I WARNED YOU!');

END LOOP;
END;
/

If our warning was ignored, and you ran this code, expect your DBA to stop by
your desk in a few minutes. The reason? This is an infinite loop. At no point did we
tell the loop if/when/how to exit. While the syntax is valid, the logic is not.

To resolve this dilemma, PL/SQL uses the following syntax:

EXIT [WHEN condition]

We can rewrite the last example with a few modifications to allow a specific
number of iterations.

-- Available online as part of Loop.sql
SET SERVEROUTPUT ON
DECLARE

v_count PLS_INTEGER := 0;
BEGIN

LOOP
DBMS_OUTPUT.PUT_LINE('Ah -- Much better');
v_count := v_count + 1;
EXIT WHEN v_count = 20;

END LOOP;
END;
/

Now this runs for 20 iterations.
An alternative to EXIT WHEN condition is the use of EXIT. EXIT steps out of

the loop without requiring any condition be met. It is typically seen in the context
of CASE or IF-THEN statements where a condition is evaluated in some other way.

Numeric FOR Loop
Numeric for-loops have a predefined number of iterations built into the syntax.

FOR counter IN low_number .. high_number
LOOP
action;

END LOOP;

This makes specifying the number of iterations more natural than the way we
showed you in the example for simple loops. To rewrite the simple loop example,
we can do the following:

-- Available online as part of Loop.sql
SET SERVEROUTPUT ON
BEGIN

FOR v_count IN 1 .. 20
LOOP

Chapter 3: PL/SQL Basics 111

112 Oracle Database 10g PL/SQL Programming

DBMS_OUTPUT.PUT_LINE('Iteration: '||v_count);
END LOOP;

END;
/

There are no variables to declare, counters to increment, or exits to worry about.
We use the numeric FOR loop whenever we need to load mass amounts of data. If
there is a primary key or unique constraint, use the counter V_COUNT to increment
the data. For an example, look at the output of this statement:

Iteration: 1
Iteration: 2
Iteration: 3
Iteration: 4
Iteration: 5
...

The number is incrementing as the counter does. This same concept can be applied
to the insertion of unique numbers or values into a table.

WHILE Loop
The WHILE loop executes as long as the stated expression evaluates to TRUE. The
syntax is as follows:

WHILE condition
LOOP
action;

END LOOP;

Every iteration of the loop revisits the Boolean condition to determine if it evaluates
to TRUE. If it does, the action is performed again. If it evaluates to FALSE or NULL,
the loop is ended.

The example using the counter variable can be rewritten as

-- Available online as part of Loop.sql
SET SERVEROUTPUT ON
DECLARE

v_count PLS_INTEGER := 1;
BEGIN

WHILE v_count <= 20
LOOP

DBMS_OUTPUT.PUT_LINE('While loop iteration: '||v_count);
v_count := v_count + 1;

END LOOP;
END;
/

In this example, we are back to using the counter variable and incrementing the
counter. We do not need to specify an EXIT point though. This is taken care of
as soon as the WHILE condition evaluates to FALSE.

Loops and Labels
Labels provide a marker of sorts; a way to name the unnamable in PL/SQL. Loops
cannot be explicitly named, but they can be given a label that allows them to be
referenced as if they were named. For example,

-- Available online as part of Loop.sql
SET SERVEROUTPUT ON
BEGIN
<<l_For_Loop>>

FOR v_count IN 1 .. 20
LOOP

DBMS_OUTPUT.PUT_LINE('Iteration: '||v_count);
END LOOP l_For_Loop;

END;
/

The double-angle brackets are label delimiters, and l_For_Loop is the label name.
Ending the loop with the label name is optional.

Sequential Navigation using GOTO
So far, we have demonstrated conditional evaluation using IF-THEN and CASE
syntax and circular execution using three types of loops. PL/SQL also provides
the ability to jump through a program using GOTO.

In my very first programming class (Basic), I was told to never use GOTO. My
instructor believed any use of GOTO turned code into a “meandering jumble of
code snippits prone to err and fraught with danger.”

Besides being a bit melodramatic, he was also not entirely correct. I still avoid
using GOTO when not necessary (which is most of the time), but in certain
circumstances GOTO is the correct solution.

For example, I used GOTO when working with complex exception handlers in
nested blocks to make the execution section more readable. In that case, creating a
separate procedure or function to handle the exceptions was not the best choice (its
use would have been limited to a single procedure and would not have been consistent
with the rest of the code in the system). Keeping all of the code in each exception
section of each nested block cluttered the code. I instead used a GOTO, pointing to
the appropriate label at the end of the block. This is truly a rare circumstance where
GOTO is ultimately the best choice, but it provides an example of why it should not
be removed from consideration completely.

Chapter 3: PL/SQL Basics 113

114 Oracle Database 10g PL/SQL Programming

GOTO syntax is as follows:

GOTO label_name;

Label_name is the name of the label created with the syntax

<<label_name>>

Labels are created for use with GOTOs just as they were with loops in the last
section. The double-angle brackets are label delimiters, and the label_name acts
as a pointer available during program execution.

The following example shows how a GOTO is used in an anonymous block:

-- Available online as part of Goto.sql
SET SERVEROUTPUT ON
BEGIN

DBMS_OUTPUT.PUT_LINE('BEGINNING OF BLOCK');
GOTO l_Last_Line;

DBMS_OUTPUT.PUT_LINE('GOTO didn''t work!');
RETURN;

<<l_Last_Line>>
DBMS_OUTPUT.PUT_LINE('Last Line');

END;
/

In this example, the section between the GOTO and the label is skipped.
There are a few rules to remember regarding GOTOs:

■ GOTO cannot reference a label in a nested block.

■ GOTO cannot be executed outside an IF clause to a label inside the IF clause.

■ GOTO cannot be executed from inside an IF clause to a label inside
another IF clause.

■ GOTO cannot navigate from the EXCEPTION section to any other section
of the block.

Summary
In this chapter we reviewed PL/SQL basics, including

■ Block structure

■ Variables including bind variables

■ Literals, characters, and reserved words

■ Data types

■ The PL/SQL Wrapper utility

Chapter 4 continues the introduction to PL/SQL by reviewing transaction processing,
data retrieval options, data manipulation, built-in SQL functions, and cursors.

Chapter 3: PL/SQL Basics 115

This page intentionally left blank

CHAPTER
4

Using SQL with
PL/SQL

Copyright © 2004 by The McGraw-Hill Companies, Inc. Click here for terms of use.

P
L/SQL is Oracle’s procedural language extension to the Structured
Query Language (SQL). SQL is used to select data from the database,
manipulate that data, and return the results to the end user and/or
write it to the data source. As was mentioned in Chapter 1, SQL is the
window to the database, and PL/SQL helps us exploit what it can do.

This chapter focuses on how SQL can be used in PL/SQL and presents some
advanced features that improve application performance and design. In this chapter,
we discuss the following:

■ Transaction processing

■ Retrieving data with basic select statements, Oracle Text information retrieval,
regular expressions, and cursors.

■ Advanced data retrieval techniques using hints, ROWID, and ROWNUM.

■ Manipulating data using SQL

■ Built-in SQL functions

As these features are demonstrated, think about how they can be used to improve
the functionality, performance, and design of your applications.

Transaction Processing
Imagine that you are entering an order into an online catalog. You add the items
to the shopping cart, you enter your credit card number into the form, and when
the button to submit the order is pressed, the site crashes. Were you charged for the
items? Was only a portion of the information saved before the crash?

In business, transactions involve multiple dependent operations that all must be
complete for the entire transaction to be successful. If one part fails and another is
allowed to succeed, the entire transaction is corrupt. In Oracle, a transaction is a
complete unit of work. It can be a single DML statement or multiple DML statements
that are not yet made permanent. If successful, the entire transaction is recorded to
the database. If there is a failure, the entire transaction is reverted or rolled back.
Even though a transaction may have completed its work, the changes are not reflected
in the database until the commit is complete.

Transactions provide read consistency for the database. A set of properties that
describe how transactions should work in a database are described by the acronym
ACID. ACID stands for

■ Atomicity Transactions either succeed or fail as a unit.

118 Oracle Database 10g PL/SQL Programming

■ Consistency The database is always kept in a consistent state. No partial
transactions.

■ Isolation Changes made by the transaction can be seen only by the
session making the change until they are committed.

■ Durability When the transaction is complete, it cannot be undone.

ACID properties prevent transactional data corruption. They ensure each session
has a complete view of the data.

Transactions and Locking
Transactions are not tied to PL/SQL blocks, or PL/SQL for that matter. Transactions
involve any DML change to the database. There is no specific statement that starts
a transaction in Oracle. Instead, a transaction begins whenever a DML command
locks an object. Whenever DML is used, Oracle locks the objects being modified
until the transaction is complete. This can be seen with a simple UPDATE statement
against the AUTHORS table, and a query of the data dictionary.

–– Available online as part of LockSession1.sql
–– SESSION 1
UPDATE authors
SET first_name = 'Ronald'
WHERE id = 44;

1 row updated

We have yet to commit this, so the transaction is waiting for an action on our part to
either commit or rollback the statement. We can see the transaction lock by querying
either the DBA_LOCKS or V$LOCK views.

–– Available online as part of LockSession1.sql
–– SESSION 1
SELECT d.session_id sid, d.lock_type, d.mode_requested,

d.mode_held, d.blocking_others
FROM dba_locks d, v$session v
WHERE v.username = 'PLSQL'
AND d.session_id = v.sid;

This returns the following result:

SID LOCK_TYPE MODE_REQUESTED MODE_HELD BLOCKING_
OTHERS
––––– –––––––- –––––––- –––––––- –––––––-

Chapter 4: Using SQL with PL/SQL 119

204 Transaction None Exclusive Not Blocking
204 DML None Row-X (SX) Not Blocking

Two locks are held for our session. The first record displayed is a Transaction lock,
which is held in Exclusive mode. It is not currently blocking any other users from
their tasks. The transaction lock will prevent other sessions from modifying the row.

NOTE
Your SID value will be different,
since it is session specific.

The second record returned is a lock on the object being modified. In this case,
the AUTHORS table has a row lock against it, as can be seen by the MODE_HELD
value of Row-X (row exclusive). It is not blocking anyone either. This lock prevents
modifications to the structure of the object it is locking. To see the object held, run
the following query:

–– Available online as part of LockSession1.sql
–– SESSION 1
SELECT dbl.lock_type, dbl.mode_held, dbl.blocking_others,

dbo.object_name object_locked, dbo.object_type
FROM dba_locks dbl, v$session v, dba_objects dbo
WHERE v.username = 'PLSQL'
AND dbl.session_id = v.sid
AND dbo.object_id = dbl.lock_id1;

The results of the query contain the name and type of the object being held, along
with the lock information shown earlier.

LOCK_TYPE MODE_HELD BLOCKING_OTHERS OBJECT_LOCKED OBJECT_TYPE
–––––––- –––––––- –––––––- ––––––- ––––––
DML Row-X (SX) Not Blocking AUTHORS TABLE

These locks are held for the duration of the transaction. While held, they prevent
another user from updating the same record from a different session.

Here, we start another SQL*Plus session while leaving the first open. We can
query the AUTHORS table and see that the change is not yet viewable to other sessions:

–– Available online as part of LockSession2.sql
–– SESSION 2
SELECT first_name
FROM authors
WHERE id = 44;

120 Oracle Database 10g PL/SQL Programming

This returns the FIRST_NAME value showing no change.

FIRST_NAME
–––––-
Ron

When we attempt to run the same SQL statement, it simply hangs.

–– Available online as part of LockSession2.sql
–– SESSION 2
UPDATE authors
SET first_name = 'Ronald'
WHERE id = 44;

There is no error, and no messages are shown to let us know what is happening.
We can run the following query to see what is happening:

–– Available online as part of LockSession1.sql
–– SESSION 1
SELECT d.session_id sid, d.lock_type, d.mode_requested,

d.mode_held, d.blocking_others
FROM dba_locks d, v$session v
WHERE v.username = 'PLSQL'
AND d.session_id = v.sid;

TIP
Do this from the first session, since
the second one is hanging.

This shows a lock that was previously not blocking others as a blocking lock now.

SID LOCK_TYPE MODE_REQUESTED MODE_HELD BLOCKING_OTHERS
––––– –––––––- –––––––- –––––––- –––––––-

202 Transaction Exclusive None Not Blocking
202 DML None Row-X (SX) Not Blocking
204 Transaction None Exclusive Blocking
204 DML None Row-X (SX) Not Blocking

The first two records are the new locks obtained. The new Transaction lock is
unable to obtain the lock, so it is in queue. It shows it has requested an exclusive
lock but is not currently holding one. Another change can be seen in the third
record. It was previously not blocking others, but now it is blocking. The second
transaction cannot complete until the first one does.

Chapter 4: Using SQL with PL/SQL 121

COMMIT
The number one purpose for a commit is to write all redo log buffer information to
the online redo logs. It does not force a write of data from the database buffer cache
to the physical data files—a common misconception. Other operations performed
during a commit include SCN generation and writing of the SCN to online redo logs.

NOTE
If you are unfamiliar with what an SCN is, or the
way redo log buffers, database buffer cache, redo
log files, and data files work and are curious, see
the Oracle Concepts guide on the OTN web site
(http://otn.oracle.com).

The syntax for commit is

COMMIT [WORK]

WORK is optional and is not typically used.
To continue with our last example, we type the following to commit the transaction

in session 204:

–– SESSION 1
commit;

Once we commit the transaction, we can re-query the DBA_LOCKS view. Here
we can see that the locks for SESSION_ID 204 are gone and that session 202 is now
able to obtain an Exclusive lock.

SID LOCK_TYPE MODE_REQUESTED MODE_HELD BLOCKING_OTHERS
––––– –––––––- –––––––- –––––––- –––––––-

202 Transaction None Exclusive Not Blocking
202 DML None Row-X (SX) Not Blocking

The first transaction is now complete, and the second session is now able to process
the request.

ROLLBACK
Where committing a transaction makes changes permanent, issuing a ROLLBACK
reverts the modifications. The syntax for rollback is

ROLLBACK [WORK]

122 Oracle Database 10g PL/SQL Programming

Chapter 4: Using SQL with PL/SQL 123

WORK is an optional term and adds nothing to the command beyond readability.
To illustrate, the following example issues a rollback:

–– SESSION 2
rollback;

This ends the transaction, just like the COMMIT, but no change is made to the data.
We can see that the locks are no longer held on re-query of the DBA_LOCKS view.

–– Available online as part of LockSession1.sql
–– SESSION 2
SELECT d.session_id sid, d.lock_type, d.mode_requested,

d.mode_held, d.blocking_others
FROM dba_locks d, v$session v
WHERE v.username = 'PLSQL'
AND d.session_id = v.sid;

no rows selected

Both locks are released.

Partial ROLLBACK Using SAVEPOINT As demonstrated, a rollback reverts
entire transactions. Using a command called savepoint, rollback is able to revert
partial transactions, too. Savepoint provides a marker for rollback, enabling
rollback to revert only to a particular point in the transaction. Work completed
in the transaction before the savepoint is left intact. DML after the savepoint is
reverted. Savepoint syntax is

SAVEPOINT name;

Name can be any valid identifier (see Chapter 3 for identifier naming rules). To use
rollback with a savepoint, modify the rollback syntax as follows:

ROLLBACK [WORK] TO SAVEPOINT name;

The following example performs two INSERTs and an UPDATE; it includes two
savepoints:

–– Available online as part of Savepoint.sql
BEGIN

INSERT INTO books (ISBN, CATEGORY,
TITLE, NUM_PAGES,
PRICE, COPYRIGHT, AUTHOR1)

VALUES ('12345678', 'Oracle Server',
'Oracle Information Retrieval with Oracle Text', 440,
35.99, 2005, 44);

SAVEPOINT A;

INSERT INTO inventory (isbn, status, status_date, amount)
VALUES ('12345678', 'BACKORDERED', null, 1100);

SAVEPOINT B;

UPDATE inventory
SET status = 'IN STOCK'
WHERE isbn = '12345678';

ROLLBACK TO SAVEPOINT B;

COMMIT;
END;
/

NOTE
If you have been following along with the examples,
you may need to issue a commit in your sessions
prior to proceeding. This releases the locks held
from the earlier examples.

We can see the impact of the ROLLBACK TO SAVEPOINT command with the
following select:

–– Available online as part of Savepoint.sql
SELECT b.title, i.status
FROM books b, inventory we
WHERE b.isbn = '12345678'
AND b.isbn = i.isbn;

This returns the name of the book, as well as the status.

TITLE STATUS
––––––––––––––––––––––– ––––––
Oracle Information Retrieval with Oracle Text BACKORDERED

From the SELECT, we can see that the rollback worked. The first two SQL
statements completed and are committed. The third, which updated the STATUS
column to IN-STOCK, was rolled back.

124 Oracle Database 10g PL/SQL Programming

Autonomous Transactions
Autonomous transactions are started by a parent, or main, transaction but operate
independently of the parent for transaction control. If a commit or rollback is used
in the autonomous or main transaction, or if a failure occurs for any reason, it does
not impact the other transaction.

Our favorite use of this feature is for logging application events. If the need is to
log activity, regardless of the outcome, but the logging success or failure should not
impact the application, autonomous transactions are the perfect solution.

To create an autonomous transaction, use a pragma called AUTONOMOUS_
TRANSACTION. The pragma is placed in the declaration section of the block. When
the code is executed, the PL/SQL compiler sees the pragma (instructions for the
compiler), and handles the block as autonomous.

We tend to group our code for event logging and auditing in a package, but the
autonomous transaction code can be created in procedures, functions, triggers, and
object types. All of these program types are discussed in detail later in this book.

In this example, we create a procedure using the pragma AUTONOMOUS_
TRANSACTION:

–– Available online as part of Autonomous.sql
CREATE OR REPLACE PROCEDURE logging_ins (

i_username IN VARCHAR2,
i_datetime IN TIMESTAMP)

IS
PRAGMA AUTONOMOUS_TRANSACTION;

BEGIN

INSERT INTO logging (username, datetime)
VALUES (i_username, i_datetime);

commit;
END;
/

This procedure, when called, will operate independently of the parent transaction
calling it. Here we create a procedure that inserts a record into the books table, calls
the LOGGING_INS procedure we just created, and then performs a rollback.

–– Available online as part of Autonomous.sql
CREATE OR REPLACE PROCEDURE book_ins (

i_isbn IN BOOKS.ISBN%TYPE,
i_category IN BOOKS.CATEGORY%TYPE,
i_title IN BOOKS.TITLE%TYPE,
i_num_pages IN BOOKS.NUM_PAGES%TYPE,

Chapter 4: Using SQL with PL/SQL 125

i_price IN BOOKS.PRICE%TYPE,
i_copyright IN BOOKS.COPYRIGHT%TYPE,
i_author1 IN BOOKS.AUTHOR1%TYPE,
i_author2 IN BOOKS.AUTHOR1%TYPE,
i_author3 IN BOOKS.AUTHOR1%TYPE)

IS
BEGIN

–– Parent transaction begins
INSERT INTO books (ISBN, CATEGORY,

TITLE, NUM_PAGES,
PRICE, COPYRIGHT, AUTHOR1,
AUTHOR2, AUTHOR3)

VALUES (i_isbn, i_category,
i_title, i_num_pages,
i_price, i_copyright, i_author1,
i_author2, i_author3);

–– Call is made to procedure to begin autonomous transaction
LOGGING_INS('PLSQL', systimestamp);

–– The rollback is for the parent transaction only
ROLLBACK;

EXCEPTION
WHEN OTHERS
THEN

DBMS_OUTPUT.PUT_LINE(sqlerrm);
END;
/

To test this out, we execute the BOOK_INS procedure as follows:

–– Available online as part of Autonomous.sql
BEGIN
BOOK_INS('12345678',
'Oracle Server', 'Oracle Information Retrieval with Oracle Text',
440, 35.99, 2005, 44, NULL, NULL);
END;
/

The BOOK_INS procedure inserted a record into the BOOKS table with an ISBN
value of 12345678. Next, it logged the event in the LOGGING table by calling an
autonomous transaction in the form of the LOGGING_INS procedure. Finally, back
in the parent procedure, it performed a ROLLBACK. This is illustrated in Figure 4-1.

To test how well the autonomous transaction worked, we can select the records
from the BOOKS and LOGGING tables.

126 Oracle Database 10g PL/SQL Programming

Chapter 4: Using SQL with PL/SQL 127

–– Available online as part of Autonomous.sql
COL username FORMAT A10
COL datetime FORMAT A30
SELECT *
FROM logging;

This returns

USERNAME DATETIME
––––– –––––––––––––––
PLSQL 13-JUL-04 09.58.13.050000 PM

The record inserted from the autonomous transaction is in the LOGGING table,
so the commit was successful. We can run the following select to check the
BOOKS table:

–– Available online as part of Autonomous.sql
SELECT *
FROM books
WHERE isbn = '12345678';

no rows selected

This returns no rows, so the rollback was successful.
Be careful to always terminate autonomous transactions with a commit or rollback!

Neglecting transaction control statements in basic PL/SQL objects is sloppy. Doing

FIGURE 4-1. Autonomous transaction

128 Oracle Database 10g PL/SQL Programming

so in objects declared as autonomous transactions will lead to errors. Next we
create a procedure identical to the LOGGING_INS procedure used earlier, except
we have no commit or rollback:

–– Available online as part of Autonomous.sql
CREATE OR REPLACE PROCEDURE logging_ins_error (

i_username IN VARCHAR2,
i_datetime IN TIMESTAMP)

IS
PRAGMA AUTONOMOUS_TRANSACTION;

BEGIN

INSERT INTO logging (username, datetime)
VALUES (i_username, i_datetime);

–– NO COMMIT OR ROLLBACK

END;
/

There is no error when compiling this code. We will try running it and see what
happens.

–– Available online as part of Autonomous.sql
EXEC LOGGING_INS_ERROR('PLSQL', systimestamp)

Executing this procedure results in the following error:

BEGIN LOGGING_INS_ERROR('PLSQL', systimestamp); END;
*
ERROR at line 1:
ORA-06519: active autonomous transaction detected and rolled back
ORA-06512: at "PLSQL.LOGGING_INS_ERROR", line 13
ORA-06512: at line 1

Use transaction control statements COMMIT and ROLLBACK appropriately, and
avoid this error.

Set Transaction
While most transaction processing properties cannot be modified, Oracle does
provide some level of control. Table 4-1 lists the commands available, and a
description of what each does.

TIP
The SET TRANSACTION command must be the
first statement in a transaction, and it is terminated
by a semicolon. If you try this and get an exception,
place a commit prior to the SET command to ensure
you are not already in a transaction.

Chapter 4: Using SQL with PL/SQL 129

Command Description

SET TRANSACTION
READ ONLY

When set, the transaction that follows operates on
essentially a snapshot of the database at the time the
command was issued. This is especially useful when
multiple select statements are executed over the course
of a transaction, and data must be consistent.

SET TRANSACTION
READ WRITE

This changes the transaction to a writable state. This is
the default state of a transaction.

SET TRANSACTION
ISOLATION LEVEL
READ COMMITTED

As in the example in the section “Transactions and
Locking” earlier, if we try to modify a record that
already has a DML Row Exclusive lock on that record,
the attempt to update will wait until the locks are
released.

SET TRANSACTION
ISOLATION LEVEL
SERIALIZABLE

Identical to READ COMMITTED, except the second
session fails with errors instead of waiting for the locks
to be released.

SET TRANSACTION
USE ROLLBACK
SEGMENT

Prior to Oracle 9i, all DML statements use rollback
segments to provide read consistency for the database.
They must be sized large enough to accommodate an
entire transaction, since space used in a rollback segment
is not released until the transaction is committed or
rolled back. This command provides the ability to
specify which rollback segment will be used for a given
transaction. Oracle 9i introduced Automatic Undo
Management. If that is used, this setting is not generally
necessary.

TABLE 4-1. SET TRANSACTION

Retrieving Data
Data retrieval options range from basic SELECT statements to pattern matching with
regular expressions, and Information Retrieval (IR) using Oracle Text. While we do
cover the basic SELECT statement in this section, it is assumed that you have a working
knowledge of SQL. We will quickly move into advanced features that may be difficult
to understand otherwise.

We begin this section by looking at a basic SELECT statement. Next, we examine
the use of LEVEL, a pseudo-column that gives the ability to retrieve a hierarchical
data set, providing the appropriate position of each row in the relationship. We
introduce a feature new to Oracle 10g called Regular Expressions that provides
advanced pattern-matching capabilities. Finally, we explore Information Retrieval
(IR) using Oracle Text. As you read through this section, think of the ways these
different data/information retrieval options can help you.

SQL SELECT Statement
ANSI-standard SQL requires that a SELECT statement be made of two parts—the
SELECT and FROM clauses. Additional clauses are available but are optional.
The following is the basic syntax for a select statement:

SELECT select_list
[INTO variable_list]
FROM table_list
[WHERE where_clause]
[ORDER BY column_list]

The select_list can be columns, strings, built-in SQL functions, or a * to retrieve
the entire record. Arithmetic operations are allowed in the select_list. Aliases can
be used to display a name other than what is specified in the list, but they do not
change the values that are returned.

The variable_list in the INTO clause is a variable, or set of variables, that match
the number and data types of values in the select_list. Variables can be declared as
a single data type, such as VARCHAR2 or NUMBER, or as an anchored type using
%TYPE. They can also be declared as entire records, so a single variable can
accommodate a SELECT * select clause.

The table_list can be one or more tables, views, or in-line views (subqueries in
the FROM clause). If column names are supplied in the select_list, they must exist
in the objects represented in the table_list.

The where_clause restricts the result set and provides a way to link, or relate,
objects in the table_list together. Comparison operators used in the WHERE clause
are discussed later in this chapter.

130 Oracle Database 10g PL/SQL Programming

Chapter 4: Using SQL with PL/SQL 131

NOTE
This is only a partial list of available clauses for
SQL. Refer to the Oracle Database SQL Reference
at http://otn.oracle.com for a complete list.

In the following example, we SELECT the title of a book INTO a variable and
display it to the screen using the built-in package DBMS_OUTPUT:

–– Available online as part of BasicSelect.sql
SET SERVEROUTPUT ON
DECLARE

v_title BOOKS.TITLE%TYPE;
BEGIN

SELECT title
INTO v_title
FROM books
WHERE isbn = '72230665';

–– display the results to the screen
DBMS_OUTPUT.PUT_LINE(v_title);

EXCEPTION
WHEN OTHERS
THEN

–– display any exception to the screen
DBMS_OUTPUT.PUT_LINE(sqlerrm);

END;
/

This anonymous block returns the following output:

Oracle Database 10g PL/SQL Programming

When selecting a value into a variable, be sure one and only one value is returned.
If no rows are returned, the following exception is returned:

ORA-01403: no data found

If more than one record is returned for a SELECT...INTO statement, the following
is error is returned:

ORA-01422: exact fetch returns more than requested number of rows

For methods of trapping these errors using predefined exceptions, refer to Chapter 7.

132 Oracle Database 10g PL/SQL Programming

Hierarchical Data Retrieval
The data in the prior example was a simple table and required nothing special to
retrieve the record we wanted. Some data is stored in a hierarchical fashion, though.
For example, your family tree is hierarchical. It begins at a root, or starting point,
you specify and branches out, with each branch dependent on the one before it.
Data that is used every day, such as manager/employee or company organizational
units, has this same hierarchical structure.

How can we represent a hierarchical data set in a select statement so that each
level is known and displayed? Using a pseudo-column called LEVEL, we can see
where each record fits into the tree.

In this example, we added a column to the books table called PARENT_ISBN.
This column references the book that preceded it in the series. The table is structured
as follows:

DESC books
Name Null? Type
––––––––- –––– –––––––
ISBN NOT NULL VARCHAR2(10)
PARENT_ISBN VARCHAR2(10)
SERIES VARCHAR2(20)
CATEGORY VARCHAR2(20)
TITLE VARCHAR2(100)
NUM_PAGES NUMBER
PRICE NUMBER
COPYRIGHT NUMBER(4)

The first book in the series has a NULL PARENT_ISBN because it has no
predecessor. Subsequent books in the series contain the ISBN of the book released
before them in the series. The seed data contains two book series. The first series
of books is for Oracle PL/SQL, and contains three titles. The second book series
contains only one book. The records are inserted into the table in random order
to how demonstrate data order does not come into play.

For this example, we want to retrieve each book in the table, showing its
position in the hierarchy. Notice that the table does not contain a column showing a
release order, date released, or position in the tree. We want to determine the position
solely based on the parent/child hierarchy established by the PARENT_ISBN
number. In this example, we do just that using the LEVEL pseudocolumn along with
the START WITH and CONNECT BY PRIOR clauses:

–– Available online as part of Level.sql
SET SERVEROUTPUT ON
DECLARE

v_level PLS_INTEGER;
v_title BOOKS.TITLE%TYPE;

–– use a cursor to point to the data I wish to use in my query
CURSOR cur_tree
IS

SELECT isbn, title, series
FROM books;

BEGIN

–– Loop through the cursor, one record at a time
FOR l IN cur_tree
LOOP

–– Retrieve the level of each record relative to the tree
–– and store it in the v_level variable
SELECT max(LEVEL)
INTO v_level
FROM books
START WITH isbn = l.isbn
CONNECT BY PRIOR parent_isbn = isbn;

–– display the title and level to the screen
DBMS_OUTPUT.PUT_LINE(l.title||' is book '

||v_level||' in the '||l.series||' series');

–– stop looping through the cursor when no more records exist
END LOOP;

EXCEPTION
WHEN OTHERS
THEN

DBMS_OUTPUT.PUT_LINE(sqlerrm);
END;
/

NOTE
For this section, focus on the text in bold that
demonstrates the use of LEVEL. We will use the
same example when showing cursors and cursor
for-loops later in this chapter.

Execution of this anonymous block results in the following:

Oracle9i PL/SQL Programming is book 2 in the Oracle PL/SQL series
Oracle8i Advanced PL/SQL Programming is book 1 in the Oracle PL/SQL series
Oracle Database 10g PL/SQL Programming is book 3 in the Oracle PL/SQL series
Oracle E-Business Suite Financials Handbook is book 1 in the Oracle

Ebusiness series

Chapter 4: Using SQL with PL/SQL 133

134 Oracle Database 10g PL/SQL Programming

The LEVEL is shown in bold, as is the correct placement of each title with respect
to its hierarchy.

If the LEVEL is needed as a hard-coded value, simply add a position/level
column to the table. The preceding example block can be modified to include an
insert or update statement that sets the correct level in terms of current data in the
system. This allows for data changes while maintaining a current hard-coded value
for each record’s position in the hierarchy. There is a complete example of this
provided online in LevelUpdate.sql.

Pattern Matching
Any SELECT statement whose WHERE clause compares a text column to a string
is performing pattern matching. It may match an exact string when performing an
equijoin, or just part of the string by using the LIKE operator. Pattern matching
differs from information retrieval in that there is no interpretation of the data’s
meaning or relevance. Either a pattern of text is found in the data, or it is not.

LIKE
The LIKE operator makes pattern matching a much more forgiving task by allowing
for unknown characters (using an underscore, _) and partial strings (using a wildcard,
%). The LIKE operator is used in the WHERE clause. It takes as input any string
or partial string and attempts to find a match in the data being searched. Pattern
matching using LIKE is great for small strings—names, cities, countries, etc.

Here we create a procedure to search the AUTHORS table:

–– Available online as part of Like.sql
CREATE OR REPLACE PROCEDURE author_sel (

i_last_name IN AUTHORS.LAST_NAME%TYPE,
cv_author IN OUT SYS_REFCURSOR)

IS
v_last_name AUTHORS.LAST_NAME%TYPE;

BEGIN

/* Place wildcards on either side of the string provided
and convert it to uppercase */

v_last_name := '%'||UPPER(i_last_name)||'%';

OPEN cv_author FOR
SELECT id, first_name, last_name
FROM authors
WHERE UPPER(last_name) LIKE v_last_name;

EXCEPTION
WHEN OTHERS

THEN
DBMS_OUTPUT.PUT_LINE(sqlerrm);

END;
/

This procedure takes a string as input and attempts to match the value to any last
name in the AUTHORS table. To test, enter a partial value for a name:

–– Available online as part of Like.sql
COL first_name FORMAT A20
COL last_name FORMAT A20

VARIABLE x REFCURSOR
EXEC author_sel('rin', :x)

print x

The result is as follows:

ID FIRST_NAME LAST_NAME
––––– –––––––––– –––––––––

28 Sumit Sarin
54 Cheryl Riniker

The string occurs in a different position in the name, but both match the string
‘rin’ that was passed to the procedure.

Regular Expressions
Oracle 10g introduced a new pattern-matching feature called Regular Expressions
(RE). If you have a Unix or Perl background, you may already be familiar with it.
RE has long been a part of Perl and Unix scripting languages, and now Oracle
supports the IEEE POSIX (Portable Operating System Interface) ERE (Extended
Regular Expression) standard as well.

The basic concept is surprisingly similar to that of the LIKE operator. Strings, or
characters, are matched against the data source looking for the same text pattern.
Metacharacters and built-in functions provide a boost to RE capabilities that far
exceeds anything available with LIKE, though. The metacharacters have special
meaning to Oracle, similar to the reserved words discussed in Chapter 3. They
determine how Oracle parses the strings and matches or replaces patterns of text.
Built-in functions include

■ REGEXP_LIKE

■ REGEXP_INSTR

■ REGEXP_REPLACE

Chapter 4: Using SQL with PL/SQL 135

■ REGEXP_SUBSTR

The tasks these functions perform map closely to their root functions/operators of
LIKE, INSTR, REPLACE, and SUBSTR.

RE works with the following data types:

■ CHAR

■ VARCHAR2

■ NCHAR

■ NVARCHAR

■ CLOB

■ NCLOB

Any of these types can be searched using RE.

Metacharacters Table 4-2 includes a list of commonly used metacharacters and
their descriptions. A call to a regular expression function can be a bit intimidating if
never seen before. Remember, they are simply a sum of their individual components.
Break down the command into each literal and/or metacharacter, and apply the
meaning of each until the whole string makes sense.

136 Oracle Database 10g PL/SQL Programming

Character Description

* Matches zero or more values.

. A valid character.

^ Pattern-matches at the beginning of the line.

[] Groups characters. Individual characters are treated as if separated
by an OR.

$ Pattern-matches at the end of the line.

\ Escape character. Used when a metacharacter should be treated
as a literal.

() Groups strings. Frequently used with |.

| Separates expressions that are part of a group. Equal to OR.

TABLE 4-2. Regular Expression Metacharacters (subset)

TIP
When I (Ron Hardman) first started working with
Regular Expressions (using Perl), I found it much
easier when I wrote out the meaning of each
command—in longhand, not code. This reduced
the complexity of the commands until they began
flowing naturally.

For this chapter, we am going to focus our attention on the REGEXP_LIKE function.
This function is similar to the LIKE operator. You may see this referred to as an
operator, and different than the other functions, but that is done primarily for SQL.
For PL/SQL, REGEXP_LIKE works like a function.

Syntax for using REGEXP_LIKE is

REGEXP_LIKE(column, string [,parameter])

Column is the database column being searched. String is the expression, including
literals and metacharacters, that we are searching for, and parameter is an optional
parameter.

The following example performs a search on the AUTHORS.LAST_NAME column:

–– Available online as part of RegexpLike.sql
CREATE OR REPLACE PROCEDURE author_sel_regexp_like (

cv_author IN OUT SYS_REFCURSOR)
IS
BEGIN

–– Search for hardman or hartman
OPEN cv_author FOR
SELECT id, first_name, last_name
FROM authors
WHERE REGEXP_LIKE(last_name, '^har(d|t)man$', 'i');

EXCEPTION
WHEN OTHERS
THEN

DBMS_OUTPUT.PUT_LINE(sqlerrm);
END;
/

The search string indicates the value returned should match the string ‘hartman’
or ‘hardman’, have no text before the name and no text after it, and perform a
case-insensitive search. Refer to Figure 4-2 for the breakdown of the REGEXP_LIKE
command.

Chapter 4: Using SQL with PL/SQL 137

138 Oracle Database 10g PL/SQL Programming

To test the procedure, run it as follows:

–– Available online as part of RegexpLike.sql
COL first_name FORMAT A20
COL last_name FORMAT A20

VARIABLE x REFCURSOR
EXEC author_sel_regexp_like(:x)

PRINT x

This returns the following result:

ID FIRST_NAME LAST_NAME
––––– –––––––––– ––––––-

44 Ron Hardman
55 Robert Hartman

The search was successful, and did what we wanted it to do. Both Hardman
and Hartman were returned, and the search was case-insensitive.

Information Retrieval
Information retrieval (IR) technologies aim to return the data that is needed, while
weeding out the data that will not be of benefit. The following definitions may
help distinguish the differences between data and information:

FIGURE 4-2. REGEXP_LIKE

■ Data Characters, strings, or numbers stored in the database. Simple
SELECT statements return data.

■ Information Data that is filtered according to meaning and reliably
and accurately represents the search criteria. It is immediately useful
in business. Some level of intelligence can be applied to the filtration
process to determine “meaning” of the user and/or the data.

The core component of Oracle’s IR solution is Oracle Text. Oracle Text, called
interMedia in 8i and ConText in 8.0, is a full-featured IR solution.

Oracle Text
Oracle Text is a document/text indexing solution. It can index over 150 different
document formats and provides full-text search capabilities. It also indexes the
contents of all LOB types. See Chapter 16 for an example of Oracle Text indexing
of LOBs. These are some of the search features:

■ Relevance ranking

■ Fuzzy searches

■ Stemming

■ Wildcard searches

■ Case-insensitive searches by default

■ Support for multiple languages, stored and indexed in the same table,
enabling multiple language search capabilities against a single table

■ Plus many more!

Oracle Text is useful for PL/SQL developers working on data warehouse
applications, catalogs, knowledge repositories, and any application that requires
a user search. It can index text stored in the database, documents stored in the
database, or documents on the file system when links to the files are provided.

This is advantageous for developers because it provides access to data not
otherwise available via traditional retrieval methods. In addition, it provides case-
insensitive queries by default, and the index is always used.

Oracle Text has four different types of indexes that are specifically targeted to
different applications. Table 4-3 lists the four index types available from Oracle 9i
Release 1 on. Oracle 8i included all but the CTXXPATH index.

Chapter 4: Using SQL with PL/SQL 139

The next section demonstrates the use of the CONTEXT index in PL/SQL
development. For more information on Oracle Text and its features, refer to the
Oracle Text Application Developer’s Guide available on OTN.

CONTAINS To use the CONTEXT index, we must use the CONTAINS operator in
our queries. CONTAINS signals Oracle that there is an Oracle Text index available
for the data. For this example, we have a seed table called BOOK_DESCRIPTIONS.
We created an Oracle Text index on the DESCRIPTIONS column and will test
search functionality against that column.

The syntax for using the CONTAINS operator is as follows:

SELECT [score(label),]column_list
[INTO variable_list]
FROM table_list
WHERE CONTAINS (column_name, ‘search_string’[, label]) > 0;

The portions in bold are what differentiate this syntax from a basic SELECT
statement. These differences are defined as follows:

■ The score(label) is related to relevance ranking. Label must match the label
provided in the WHERE clause. This is required only if relevance ranking is
desired. The value provided as the label has no bearing on the score returned.

140 Oracle Database 10g PL/SQL Programming

Index Type Description

CONTEXT Traditional full-text retrieval. Best for static catalog and warehouse
applications where data change is infrequent but search
requirements are high.

CTXCAT Specifically designed for e-business catalogs, this index is best for
more applications whose data is frequently updated. Search
functions are restricted more than the CONTEXT index.

CTXRULE Best index for knowledge repositories, or other classification-style
applications. Document routing based on predefined rules can
be done.

CTXXPATH The first full-text index designed for XML, this index improves
performance and search features when searching XML documents.

TABLE 4-3. Oracle Text Indexes

■ The CONTAINS operator requires a column_name that must have a CONTEXT
index on it that is valid. It also requires a search_string to use in its search.
If provided, label must match the label in the SELECT clause. Finally, a
comparison operator is required to complete the query. The > 0 means that
the result is returned as long as the score is greater than zero. The score is
determined regardless of whether it is provided in the SELECT clause.

In this first example, we will demonstrate a case-insensitive query using the
CONTAINS operator:

–– Available online as part of TextIndex.sql
SET SERVEROUTPUT ON
DECLARE

v_isbn BOOK_DESCRIPTIONS.ISBN%TYPE;
v_score NUMBER(10);

BEGIN
SELECT score(1), isbn
INTO v_score, v_isbn
FROM book_descriptions
WHERE CONTAINS (description, '10G or oracle', 1) > 0;

DBMS_OUTPUT.PUT_LINE('Score: '||v_score||' and ISBN: '||v_isbn);

EXCEPTION
WHEN OTHERS
THEN

DBMS_OUTPUT.PUT_LINE(sqlerrm);
END;
/

The string ‘10G’ is stored in the database with a lowercase g, but the preceding
query includes uppercase. Also, the string ‘oracle’ has a lowercase o in the search
string, but is stored with an uppercase O in the database. The query returns the
record as expected.

Score: 3 and ISBN: 72230665

This next example tests proximity searches where one term is NEAR another in
the text:

–– Available online as part of TextIndex.sql
SET SERVEROUTPUT ON
DECLARE

v_isbn BOOK_DESCRIPTIONS.ISBN%TYPE;
v_score NUMBER(10);

Chapter 4: Using SQL with PL/SQL 141

BEGIN
SELECT score(1), isbn
INTO v_score, v_isbn
FROM book_descriptions
WHERE CONTAINS (description, '10g near Oracle', 1) > 0;

DBMS_OUTPUT.PUT_LINE('Score: '||v_score||' and ISBN: '||v_isbn);
EXCEPTION

WHEN OTHERS
THEN

DBMS_OUTPUT.PUT_LINE(sqlerrm);
END;
/

Even though the search string contains the same terms as the prior example,
the score is noticeably different.

Score: 14 and ISBN: 72230665

The reason for the difference is the addition of the proximity term NEAR. 10g is
close to the term Oracle, and therefore it has a high degree of relevance.

TIP
We have just touched the tip of the Oracle Text
iceberg. Play around with the examples, and look
for ways to use this powerful technology in your
application design. You may have already noticed
that Oracle itself is relying more on Oracle Text in
recent years, building UltraSearch, IFS, XML DB,
and Oracle Applications with Oracle Text as a
core component.

Cursors
I am directionally challenged when it comes to driving. Drop me off in a strange
city and I can get lost just going around the block. If I have to drive, I refuse to leave
the airport without a detailed map of the area.

Imagine yourself getting dropped off in a new city with a map where every street
was included. The map is not just for that city, though. It is a map of the entire country.
Every highway, every back street and alley, 99.9999 percent of which you don’t care
about because you just want to find your hotel! How long would it take you to find your
destination? How efficient would your search be? This map of the entire country is like
SQL to the Oracle database, and the world of information contained in it.

142 Oracle Database 10g PL/SQL Programming

Detailed city maps provide a much more focused data set. They provide details
relevant to your situation and exclude details that are not. They direct you to the
areas within the city and provide an efficient way to process the information. In the
same way, the cursor reduces the data a transaction has to process, while providing
direct access to that information for improved efficiency.

How Cursors Work
A cursor provides a subset of data, defined by a query, retrieved into memory when
opened, and stored in memory until the cursor is closed. When I first began learning
PL/SQL, my instructor described a cursor as a pointer to records in the database.
This description to me was confusing as I began to use PL/SQL more and more.
To me, a pointer that is directly against the data in the tables is nothing more than
an index. If it were like an index where changes to data would be reflected in the
cursor result set during processing, database read consistency would be thrown
out the window.

A cursor is not just a pointer to the data in the table. It points to a memory region
in the Process Global Area (PGA) called the context area that holds the following:

■ Rows returned by the query

■ Number of rows processed by the query

■ A pointer to the parsed query in the Shared Pool

So, the pointer is to memory, not to the data directly. Since records are retrieved
into memory at the time the cursor is opened, we are guaranteed a consistent view
of data throughout the transaction.

Chapter 4: Using SQL with PL/SQL 143

If data is added, deleted, or modified after the cursor is opened, the new or
changed data is not reflected in the cursor result set. Opening the cursor is literally
like taking a snapshot of the data as it currently exists. Take the following example:

–– Available online as part of ContextArea1.sql
SET SERVEROUTPUT ON
DECLARE

v_rowid ROWID;
v_rowcount NUMBER := 0;

CURSOR author_cur1
IS

SELECT rowid
FROM authors
WHERE id > 50;

CURSOR author_cur2
IS

SELECT rowid
FROM authors
WHERE id > 50;

BEGIN
OPEN author_cur1;

DELETE FROM authors
WHERE id > 50;

OPEN author_cur2;

–– Check cursor #1
FETCH author_cur1 INTO v_rowid;
IF author_cur1%ROWCOUNT > 0
THEN

DBMS_OUTPUT.PUT_LINE('Cursor 1 includes the deleted rows');
ELSE

DBMS_OUTPUT.PUT_LINE('Cursor 1 does not include the deleted rows');
END IF;

v_rowcount := 0;
–– Check cursor #2
FETCH author_cur2 INTO v_rowid;
IF author_cur2%ROWCOUNT > 0
THEN

DBMS_OUTPUT.PUT_LINE('Cursor 2 includes the deleted rows');

144 Oracle Database 10g PL/SQL Programming

Chapter 4: Using SQL with PL/SQL 145

ELSE
DBMS_OUTPUT.PUT_LINE('Cursor 2 does not include the deleted rows');

END IF;

CLOSE author_cur1;
CLOSE author_cur2;

ROLLBACK;
EXCEPTION

WHEN OTHERS
THEN

DBMS_OUTPUT.PUT_LINE(sqlerrm);
END;
/

The following steps are taken through the block:

■ We create two identical cursors. Each cursor selects the rowid of any record
with an ID greater than 50.

■ The first cursor is opened, retrieving the rowid for authors 51, 52, and 53
into memory.

■ Next, all records with an ID greater than 50 are deleted from the physical
table.

■ The second cursor is opened, retrieving any records into memory where
the ID is greater than 50.

■ An attempt is made to fetch a record from each cursor, and the %ROWCOUNT
attribute is used to determine if any records are retrieved.

■ A message is displayed stating whether records were available for each cursor.

This block returns the following output on execution:

Cursor 1 includes the deleted rows
Cursor 2 does not include the deleted rows

This demonstrates that once opened, cursors maintain an image of the data the way
it was, and do not simply act as a dynamic pointer to live data. Cursors opened
after a change to the data do reflect the change, even when part of the same block.
Another example is available online that provides an even more drastic example,
where a cursor is opened, the table is dropped, and still we are able to loop through
the records in the table. The file is called ContextArea2.sql.

146 Oracle Database 10g PL/SQL Programming

In this section we demonstrate the following four different kinds of cursors, and
discuss cursor attributes, loops, and the OPEN_CURSORS parameter:

■ Explicit cursors The cursor is declared, using a SELECT statement, in
the declaration section of any block. The developer controls almost all
operations involving the cursor.

■ Implicit cursors Implicit cursors are controlled by PL/SQL, and are
created whenever any DML or SELECT...INTO statement is run.

■ Cursor variables A cursor variable is a declared type that can be
associated with multiple queries in the same PL/SQL block.

■ Cursor subqueries Cursor subqueries, sometimes called nested cursor
expressions, provide the ability to embed cursors in SQL statements.

Explicit Cursors
Explicit cursors provide control over cursor processing that is not possible with other
types of cursors. They are meant to work with SELECT statements that return more
than one record at a time. While providing more control than implicit cursors, they
require additional steps to operate. We compare the use of implicit vs. explicit
cursors in the section titled “Implicit Cursors.”

To use an explicit cursor, it must be declared, opened, fetched from, and closed.

Declare the Cursor
Name the cursor, and provide the SELECT statement to use for the cursor, in the
DECLARATION section of the block. The following syntax is used:

CURSOR cursor_name [parameter_list]
[RETURN return_type]
IS query
[FOR UPDATE [OF (column_list)][NOWAIT]];

The cursor_name can be any valid identifier, though we recommend following
a standard naming convention for consistency. Parameter_list is optional and can
be any valid parameter used for query execution. The optional RETURN clause
specifies the type of data to be returned as defined by return_type. The query can be
any SELECT statement. Finally, the optional FOR UPDATE clause locks the records
when the cursor is opened. These records are still available to other sessions as
READ ONLY. FOR UPDATE ensures these things:

■ As the program loops through the cursor’s records, they are available for
update and are not locked by any other session.

■ The data is consistent with what is in the context area.

■ If NOWAIT is specified, the program will exit immediately on open if
an exclusive lock cannot be obtained.

The cursor declaration from the “How Cursors Work” section is

CURSOR author_cur1
IS

SELECT rowid
FROM authors
WHERE id > 50;

If we wanted to create the cursor to accept the ID value as a parameter, we
could rewrite this declaration as

CURSOR author_cur1 (i_id IN NUMBER)
IS

SELECT rowid
FROM authors
WHERE id > i_id;

Open the Cursor
Cursors are opened in the EXECUTION or EXCEPTION sections of the block. The
syntax is

OPEN cursor_name [(parameter_values)];

The OPEN command prepares the cursor for use. When executed, the query is
parsed, the bind values are evaluated, the rows are recorded in the context area,
and the result set is made ready.

There can be only one active record in a cursor at a time. On OPEN, the active
record is the first one returned by the cursor’s query. See Figure 4-3 for a visual
example of what happens on an OPEN.

The following line opens the AUTHOR_CUR1 cursor without a parameter list:

OPEN author_cur1;

That’s it! If we were to use the same cursor with a parameter list as shown in the
Declare the Cursor section, the OPEN would appear as

OPEN author_cur1(50);

Chapter 4: Using SQL with PL/SQL 147

148 Oracle Database 10g PL/SQL Programming

In this case, the value is passed on OPEN and the bind value is determined. This
value will not change, so neither will the result set, unless the cursor is closed and
then reopened.

Fetch Records from the Cursor
FETCH is what retrieves records from the context area into a variable so that it can
be used. The FETCH command operates on the current record only and proceeds
through the result set one record at a time. The exception to this is the use of the
BULK COLLECT clause that can retrieve all cursor records at once. For more
information on this feature, refer to Chapter 6.

The syntax for FETCH is

FETCH cursor_name INTO variable_name(s) | PL/SQL_record;

Cursor_name is the name of the open cursor, and variable_name(s) can be one or
more comma-delimited variables that match the number and type of columns included
in the result set. PL/SQL_record can be used as an alternative to the variable list if
each row of the result set includes a complete record.

A fetch of a single-column result set into a single variable might look like this:

FETCH author_cur1 INTO v_rowid;

A fetch where the cursor returns multiple rows and requires multiple variables
might look like the following:

FETCH author_cur INTO v_first_name, v_last_name;

FIGURE 4-3. OPEN process

Chapter 4: Using SQL with PL/SQL 149

In this case, the SELECT statement for AUTHOR_CUR must include the first_name
and last_name columns in that order. The cursor cannot include any other columns.

If the cursor includes a complete record, a PL/SQL record can be used as an
alternative to individual variables.

DECLARE
v_author authors%ROWTYPE;

BEGIN
...

FETCH author_cur INTO v_author;
...

The v_author variable includes a complete record. To reference values, use the
following syntax:

variable_name.column_name

To reference the ID, for example, type the following:

v_author.id

Close the Cursor
Always, always close your explicit cursors! The comparison that is most frequently
used is to equate forgetting to close a cursor to intentionally introducing a memory
leak into code. I love this analogy. Remember, the context area is memory (part of
the PGA) used for the cursor. Until the cursor is closed, the memory is not released.

Oracle does check for abandoned cursors when the last block is finished, and it
does automatically close the cursors when the outermost block completes. Do not
rely on this to close your cursors, however.

To close a cursor, use the following syntax:

CLOSE cursor_name;

Cursor_name is the name of the opened cursor. If a CLOSE is used on a cursor that
is not currently open, the following exception is raised:

ORA-01001: invalid cursor

The next section demonstrates how to test whether a cursor is currently open
so that this error can be avoided.

Cursor Attributes
Oracle provides six attributes that are used with cursors. They are listed in Table 4-4
along with their descriptions.

NOTE
The attributes related to bulk collect
are covered in Chapter 6.

The following example demonstrates the use of the %FOUND, %ISOPEN,
%NOTFOUND, and %ROWCOUNT attributes:

–– Available online as part of ExplicitAttribute.sql
SET SERVEROUTPUT ON
DECLARE

v_first_name AUTHORS.FIRST_NAME%TYPE;
v_last_name AUTHORS.LAST_NAME%TYPE;
v_row_count PLS_INTEGER := 0;
v_book_count PLS_INTEGER := 0;

CURSOR auth_cur IS
SELECT a.first_name, a.last_name, count(b.title)

150 Oracle Database 10g PL/SQL Programming

Attribute Name Description

%BULK_EXCEPTIONS This attribute is used for array or Bulk Collect
operations. It provides information regarding
exceptions encountered during such operations.

%BULK_ROWCOUNT Also used for Bulk Collect operations, this attribute
provides information regarding the number of rows
changed during the operation.

%FOUND The %FOUND attribute tests whether a FETCH
returned a record. The return value is of Boolean
type. If TRUE, a row was returned by the FETCH.
If FALSE, a row was not returned.

%ISOPEN This attribute tests to see if a cursor is already open.
If TRUE, the cursor is open. If FALSE, it is not open.

%NOTFOUND %NOTFOUND is the opposite of %FOUND. It
returns TRUE if a row was not returned by the
FETCH and FALSE if one was returned.

%ROWCOUNT This tests for the number of rows fetched from the
cursor at any given time and returns a number.

TABLE 4-4. Cursor Attributes

FROM authors a, books b
WHERE a.id = b.author1
OR a.id = b.author2
OR a.id = b.author3
GROUP BY a.first_name, a.last_name
HAVING count(b.title) > 0
ORDER BY a.last_name;

BEGIN
DBMS_OUTPUT.ENABLE(1000000);

OPEN auth_cur;
LOOP

FETCH auth_cur INTO v_first_name, v_last_name, v_book_count;
EXIT WHEN auth_cur%NOTFOUND;
–– Alternatively use EXIT WHEN NOT auth_cur%FOUND;

v_row_count := auth_cur%ROWCOUNT;
DBMS_OUTPUT.PUT_LINE(v_row_count||' rows processed so far');

DBMS_OUTPUT.PUT_LINE(v_last_name
||', '
||v_first_name
||' wrote '
||v_book_count
||' book(s).');

END LOOP;
CLOSE auth_cur;

IF auth_cur%ISOPEN = FALSE
THEN

DBMS_OUTPUT.PUT_LINE('Cursor closed');
ELSE

DBMS_OUTPUT.PUT_LINE('The cursor is still open');
END IF;

EXCEPTION
WHEN OTHERS

THEN
DBMS_OUTPUT.PUT_LINE(SQLERRM);

END;
/

Navigate Cursors with Loops
Cursors are most often used with LOOPS (as you may have noticed in the last
example) to provide a way to navigate through the active record set. As you will
see later, this is unnecessary with implicit cursors but very useful for all other
kinds of cursors.

Chapter 4: Using SQL with PL/SQL 151

152 Oracle Database 10g PL/SQL Programming

Simple Loop The simple loop has the following syntax:

LOOP ... END LOOP;

Inside the loop, each record in the active set is retrieved and used. If not using Bulk
Collect as described in Chapter 6, each loop iteration advances the pointer by one
record in the active set.

The following example demonstrates how a simple loop works:

–– Available online as part of SimpleLoop.sql
SET SERVEROUTPUT ON
DECLARE

v_author AUTHORS%ROWTYPE;

CURSOR auth_cur IS
SELECT *
FROM authors;

BEGIN
OPEN auth_cur;
LOOP

FETCH auth_cur INTO v_author;
EXIT WHEN auth_cur%NOTFOUND;

DBMS_OUTPUT.PUT_LINE(v_author.last_name);
END LOOP;
CLOSE auth_cur;

END;
/

The EXIT WHEN statement is necessary inside the loop to ensure the loop completes
when the last record has been fetched.

While Loop The WHILE loop is similar to the simple loop in function, though
the method of execution is slightly different. Here we rewrote the last example to
use the WHILE loop instead of the simple loop:

–– Available online as part of WhileLoop.sql
SET SERVEROUTPUT ON
DECLARE

v_author AUTHORS%ROWTYPE;
CURSOR auth_cur IS

SELECT *
FROM authors;

BEGIN
OPEN auth_cur;

FETCH auth_cur INTO v_author;
WHILE auth_cur%FOUND LOOP

DBMS_OUTPUT.PUT_LINE(v_author.last_name);
FETCH auth_cur INTO v_author;

END LOOP;

CLOSE auth_cur;
END;
/

This block, though using different syntax, returns the same results as the
SimpleLoop.sql example. There is also no need to include an EXIT WHEN
statement, since %FOUND is integrated into the WHILE loop syntax.

Cursor For-Loop The cursor for-loop is unique in that it does not require an
explicit OPEN, FETCH, or CLOSE. Although the cursor is declared as an explicit
cursor, PL/SQL handles its processing. In addition, the for-loop uses a variable that
is never declared in the DECLARATION section of the block. Using the same example
as the other loops, we have rewritten the query to use the cursor for-loop instead.

–– Available online as part of CursorForLoop.sql
SET SERVEROUTPUT ON
DECLARE

CURSOR auth_cur IS
SELECT *
FROM authors;

BEGIN
FOR v_author IN auth_cur
LOOP

DBMS_OUTPUT.PUT_LINE(v_author.last_name);
END LOOP;

END;
/

As you can see, this type of loop is by far the most compact. This returns the
same results as the last two anonymous blocks, but it does so without an explicit
OPEN, FETCH, or CLOSE.

Implicit Cursors
Implicit cursors are opened and closed automatically by Oracle. In fact, every DML
SQL statement executed is provided a context area in the PGA and in turn has a
cursor. No interaction is required on the part of the developer to use implicit cursors.
OPEN, FETCH, and CLOSE commands are not used, but the same six attributes

Chapter 4: Using SQL with PL/SQL 153

154 Oracle Database 10g PL/SQL Programming

available for explicit cursors can be used for implicit cursors as well (see earlier
Table 4-4).

This example performs an update and uses cursor attributes to test the outcome:

–– Available online as part of ImplicitAttribute.sql
SET SERVEROUTPUT ON
BEGIN

DBMS_OUTPUT.ENABLE(1000000);

UPDATE books
SET price = price * .90
WHERE isbn = '78824389';

DBMS_OUTPUT.PUT_LINE(SQL%ROWCOUNT||' rows updated');

IF SQL%NOTFOUND
THEN

DBMS_OUTPUT.PUT_LINE('Unable to update isbn 78824389');
END IF;

COMMIT;
EXCEPTION

WHEN OTHERS
THEN
DBMS_OUTPUT.PUT_LINE(SQLERRM);

END;
/

NOTE
Using %ISOPEN with implicit cursors always
return a value of FALSE, since they are closed
automatically. While there is no error, using
%ISOPEN is not useful with implicit cursors.

Cursor Variables
Cursor variables offer a dynamic and persistent cursor alternative to the static
explicit cursors we demonstrated earlier. Cursor variables are evaluated at run
time instead of compile time and can be opened for multiple SELECT statements
in the same block.

Cursor variables can be implemented in different ways, depending on the need.
For the most part, they share the same level of control as explicit cursors. That said,
they do not always need to be explicitly closed, and FETCH is not required to
retrieve records, though it can be used. One more great feature of cursor variables is
that they provide a way for procedures (discussed in Chapter 8) to return a result set.

The following anonymous block declares a cursor variable and then opens, fetches
from, and closes the cursor:

–– Available online as part of CursorVariable1.sql
SET SERVEROUTPUT ON
DECLARE

TYPE book_typ IS REF CURSOR RETURN BOOKS%ROWTYPE;
cv_books book_typ;
v_books BOOKS%ROWTYPE;

BEGIN

DBMS_OUTPUT.ENABLE(1000000);

OPEN cv_books FOR
SELECT *
FROM books
WHERE isbn = '78824389';

FETCH cv_books INTO v_books;

DBMS_OUTPUT.PUT_LINE(v_books.title||' is '||v_books.price);

CLOSE cv_books;
END;
/

For this example, we declared a type named book_typ as a REF CURSOR. We then
declared a cursor variable of that type and declared a local variable to receive
the record during the FETCH. Finally, the cursor is closed.

This example does not show some of my favorite features of cursor variables,
though. The following example is a stored procedure that returns a result set to the
SQL*Plus prompt. In the example, the cursor variable declaration uses the built-in
SYS_REFCURSOR type (available in Oracle 9i):

–– Available online as part of CursorVariable2.sql
SET SERVEROUTPUT ON
CREATE OR REPLACE PROCEDURE authors_sel (

cv_results IN OUT SYS_REFCURSOR)
IS
BEGIN

OPEN cv_results FOR
SELECT id, first_name, last_name
FROM authors;

END;
/

Chapter 4: Using SQL with PL/SQL 155

156 Oracle Database 10g PL/SQL Programming

In the procedure, we declared the cursor variable and associated it with a SELECT
statement when it was opened. We did not FETCH from the cursor, nor did we close
it, because we want the result set available to our client application even after the
program is complete. To run this, we type

–– Available online as part of CursorVariable2.sql
COL first_name FORMAT A12
VARIABLE x REFCURSOR
EXEC authors_sel(:x)
PRINT x

This returns the results as expected:

ID FIRST_NAME LAST_NAME
––––– –––––– ––––––

1 Marlene Theriault
2 Rachel Carmichael
3 James Viscusi

Had we closed the cursor variable inside the procedure, it would have compiled
just fine. We would have been unable to retrieve the output from the SQL*Plus
prompt, however.

Cursor Subqueries
Cursor subqueries, sometimes called nested cursor expressions, were made available
in Oracle 9i with the integration of SQL*Plus and PL/SQL parsers. They were a
feature first introduced to SQL in Oracle 8i, but without integration to PL/SQL, their
use was severely limited.

Cursor subqueries use a cursor expression inside a SQL SELECT statement. They
can be used with all types of cursors defined thus far, except implicit cursors.
The return type is always of type REF CURSOR.

This example uses a cursor subquery in an explicit cursor:

–– Available online as part of CursorSubquery.sql
SET SERVEROUTPUT ON
DECLARE

cv_author SYS_REFCURSOR;
v_title BOOKS.TITLE%TYPE;
v_author AUTHORS%ROWTYPE;
v_counter PLS_INTEGER := 0;

CURSOR book_cur
IS

SELECT b.title,

CURSOR (SELECT *
FROM authors a
WHERE a.id = b.author1
OR a.id = b.author2
OR a.id = b.author3)

FROM books b
WHERE isbn = '78824389';

BEGIN
OPEN book_cur;
LOOP

FETCH book_cur INTO v_title, cv_author;
EXIT WHEN book_cur%NOTFOUND;

DBMS_OUTPUT.PUT_LINE('Title from the main cursor: '||v_title);
LOOP

FETCH cv_author INTO v_author;
EXIT WHEN cv_author%NOTFOUND;

v_counter := v_counter + 1;
DBMS_OUTPUT.PUT_LINE('Author'||v_counter||': '

||v_author.first_name||' '
||v_author.last_name);

END LOOP;
END LOOP;

CLOSE book_cur;

END;
/

When executed, this block returns the following:

Title from the main cursor: Oracle PL/SQL Tips and Techniques
Author1: Brad Brown
Author2: Rich Niemic
Author3: Joe Trezzo

Open Cursors
The number of open cursors allowed at any given time is controlled by the
init.ora parameter called OPEN_CURSORS. To determine the maximum
number, run the following query:

SELECT value
FROM v$parameter
WHERE name = 'open_cursors';

Chapter 4: Using SQL with PL/SQL 157

158 Oracle Database 10g PL/SQL Programming

We have ours set to a very low value of 20 to show what happens when this number
is exceeded. To test this, we will modify the example we used for the cursor subquery
so that it returns all records. The cursor is modified as follows:

–– Available online as part of OpenCursor.sql
CURSOR book_cur
IS

SELECT b.title,
CURSOR (SELECT *

FROM authors a
WHERE a.id = b.author1
OR a.id = b.author2
OR a.id = b.author3)

FROM books b;

All we removed is the WHERE clause. Running this anonymous block again, it loops
through each book and prints all authors associated with it, but it ends with the
following error:

DECLARE
*
ERROR at line 1:
ORA-01000: maximum open cursors exceeded
ORA-06512: at line 25

DML and DDL
Data Manipulation Language (DML) includes INSERT, UPDATE, and DELETE
statements that modify data. PL/SQL supports DML commands directly. The
following example is an anonymous block that does an update to the dual table
(well, not really...notice the WHERE clause).

–– Available online as part of UpdateDual.sql
BEGIN

UPDATE dual
SET dummy = 'x'
WHERE 1=2;

END;
/

TIP
Never, ever really update the dual table! This is a
common method to initiate a transaction without
doing anything. The WHERE clause never evaluates
to TRUE because 1 cannot equal 2.

This block compiles without error. Now consider another simple example using
DDL. This example creates a table with a single column:

–– Available online as part of DDL.sql
BEGIN

CREATE TABLE ddl_table (
id NUMBER(10));

EXCEPTION
WHEN OTHERS
THEN

DBMS_OUTPUT.PUT_LINE(sqlerrm);
END;
/

This fails!

CREATE TABLE ddl_table (
*

ERROR at line 2:
ORA-06550: line 2, column 4:
PLS-00103: Encountered the symbol "CREATE" when expecting one of the following:
begin case declare exit for goto if loop mod null pragma
raise return select update while with <an identifier>
...

Why did it fail?

Pre-Compilation
PL/SQL objects are precompiled. All dependencies are checked prior to execution,
making program execution much faster. Dependencies are not related to data.
They are on other database objects, such as tables, views, synonyms, and other
program structures. As such, DML that is run in a PL/SQL block stands no chance
of changing a dependency that would cause a program failure. DDL, on the other
hand, which supports CREATE, DROP, and ALTER commands, as well as permission
control statements GRANT and REVOKE, can change the dependencies during
execution, if allowed.

For example, if we have a block that first drops a table and then attempts to
update that same table, it would of course fail to execute properly. That dependency
cannot be checked ahead of time, though. Until the time of execution, the UPDATE
would look as if it would be successful, since the table currently exists. It fails only
when the block is run because of the dropped object.

DDL statements are therefore not allowed directly in PL/SQL. As we will discuss
later in this section, and in Chapter 13 as well, Oracle provides a way around this
restriction.

Chapter 4: Using SQL with PL/SQL 159

Manipulating Data with DML
As discussed at the beginning of this chapter in the section titled “Transaction
Processing,” DML statements require an explicit COMMIT before changes become
permanent. DML also supports ROLLBACK and SAVEPOINT to revert changes prior
to commit when they should not be permanent.

NOTE
Not all clauses available for these DML statements
are presented. For a complete list of available
clauses, refer to the Oracle Database SQL reference
at http://otn.oracle.com.

INSERT
INSERT statements add records to tables. The basic syntax for an INSERT is

INSERT INTO table_name [(column_list)]
VALUES select_statement | (value_list);

The table_name can be a table, a synonym, or an updatable view. The column_list
is optional, but we highly recommend including it to prevent problems with values
being inserted into the wrong columns. It also helps readability and maintenance.
The VALUES clause can include a SELECT statement that retrieves the same number
of columns of the same type as the destination table, or a list of values. If a value_
list is used, it must be in parentheses, and it can include literals or variables. A
value_list can be any valid expression (as defined in Chapter 3).

The following example includes both literals and variables in its list of VALUES:

–– Available online as part of Insert.sql
SET SERVEROUTPUT ON
DECLARE

v_isbn BOOKS.ISBN%TYPE := '12345678';
v_category BOOKS.CATEGORY%TYPE := 'Oracle Server';
v_title BOOKS.TITLE%TYPE := 'Oracle Information Retrieval';

BEGIN
INSERT INTO books (ISBN,CATEGORY,TITLE,NUM_PAGES,PRICE,

COPYRIGHT,AUTHOR1)
VALUES (v_isbn, v_category, v_title, 450, 39.95,

2005, 44);

COMMIT;
EXCEPTION

WHEN OTHERS

160 Oracle Database 10g PL/SQL Programming

THEN
DBMS_OUTPUT.PUT_LINE(SQLERRM);
ROLLBACK;

END;
/

Take special note of the transaction control (COMMIT and ROLLBACK) used
with all of the DML examples. This will be covered to a greater extent in Chapter 7.

UPDATE
An UPDATE statement modifies existing data, following the same transaction control
rules as INSERT. The syntax for UPDATE is

UPDATE table_name
SET column_name = select_statement | value [, column_name = value]
[WHERE where_clause | WHERE CURRENT OF cursor];

The table_name can be any table, synonym, or updatable view. Column_name is
any column in the table_name specified. The SET clause can include more than one
column_name in a comma-delimited list. Columns can be set equal to an integer,
a variable, or any valid expression. They can also be set equal to the result of a
subselect. The optional WHERE CURRENT OF clause is useful when working with
a cursor that is declared with a FOR UPDATE clause. The where_clause can be any
column in the table compared to any expression. The WHERE CURRENT OF clause
works with UPDATEs and DELETEs, and says to operate against the current record
from the cursor.

The first example performs an update against a table, with its value derived from
a variable of the same type as the column.

–– Available online as part of Update.sql
SET SERVEROUTPUT ON
DECLARE

v_num_pages BOOKS.NUM_PAGES%TYPE;
v_isbn BOOKS.ISBN%TYPE := ‘72230665’;

BEGIN
SELECT num_pages
INTO v_num_pages
FROM books
WHERE isbn = v_isbn;

DBMS_OUTPUT.PUT_LINE(‘Number of pages before: ‘||v_num_pages);

v_num_pages := v_num_pages + 200;

Chapter 4: Using SQL with PL/SQL 161

UPDATE books
SET num_pages = v_num_pages
WHERE isbn = v_isbn;

DBMS_OUTPUT.PUT_LINE(‘Number of pages after: ‘||v_num_pages);

COMMIT;
EXCEPTION

WHEN OTHERS
THEN

DBMS_OUTPUT.PUT_LINE(SQLERRM);
ROLLBACK;

END;
/

This second example uses a WHERE CURRENT OF clause.

–– Available online as part of WhereCurrentOf.sql
SET SERVEROUTPUT ON
DECLARE

v_isbn INVENTORY.ISBN%TYPE;
v_amount INVENTORY.AMOUNT%TYPE;

CURSOR inventory_cur
IS

SELECT isbn, amount
FROM inventory
WHERE status = ‘IN STOCK’
AND isbn IN (SELECT isbn

FROM books
WHERE price > 40)

FOR UPDATE OF amount;

BEGIN
FOR y IN inventory_cur
LOOP

FETCH inventory_cur INTO v_isbn, v_amount;
EXIT WHEN inventory_cur%NOTFOUND;

DBMS_OUTPUT.PUT_LINE(v_isbn||’Amount IN STOCK before: ‘||v_amount);

v_amount := v_amount + 250;

UPDATE inventory
SET amount = v_amount
WHERE CURRENT OF inventory_cur;

162 Oracle Database 10g PL/SQL Programming

DBMS_OUTPUT.PUT_LINE(v_isbn||’Amount IN STOCK after: ‘||v_amount);

END LOOP;
COMMIT;

EXCEPTION
WHEN OTHERS
THEN

DBMS_OUTPUT.PUT_LINE(SQLERRM);
ROLLBACK;

END;
/

The UPDATE statement modifies only the current record of the cursor.

DELETE
DELETE statements remove data, following the same transaction rules as INSERTs
and UPDATEs. Syntax for a DELETE statement is

DELETE FROM table_name
[WHERE where_clause | WHERE CURRENT OF cursor]

The table_name can be any table, synonym, or updatable view where the user has
DELETE permissions. If no WHERE clause is provided, all records will be deleted.
The where_clause can be any column in the table compared to any expression. The
WHERE CURRENT OF clause works with UPDATEs and DELETEs, and says to operate
against the current record from the cursor.

The following example performs a DELETE from the AUTHORS table:

–– Available online as part of Delete.sql
SET SERVEROUTPUT ON
DECLARE

v_author AUTHORS%ROWTYPE;
BEGIN

SELECT *
INTO v_author
FROM authors
WHERE id = 54;

DELETE FROM authors
WHERE id = v_author.id;

DBMS_OUTPUT.PUT_LINE('Author '||v_author.first_name

Chapter 4: Using SQL with PL/SQL 163

164 Oracle Database 10g PL/SQL Programming

||' '||v_author.last_name
||' has been deleted');

COMMIT;

EXCEPTION
WHEN OTHERS
THEN

DBMS_OUTPUT.PUT_LINE(SQLERRM);
ROLLBACK;

END;
/

The delete is successful:

Author Charles Moffett has been deleted

Introduction to Dynamic SQL
So far, the SQL statements we have shown you have been static. They are
precompiled with the code and are inflexible. Dynamic SQL is built and run during
the execution of the block. It does this using either the built-in package called
DBMS_SQL or Native Dynamic SQL (NDS).

We mentioned earlier that DDL is not directly supported in PL/SQL. The built-in
package DBMS_SQL provides a few dozen procedures and functions that enable
the use of dynamic SQL, including DDL. Though not terribly efficient, it has been
available since Oracle 7.1 and includes a few features not available with NDS
(though not many).

Newer development is likely taking advantage of Native Dynamic SQL (NDS).
NDS was introduced in Oracle 8i and requires far fewer steps to execute. The next
section provides an overview of NDS. Chapter 13 provides full coverage of both
DBMS_SQL and NDS.

Native Dynamic SQL
NDS uses a single command, EXECUTE IMMEDIATE, to run statements dynamically
within the PL/SQL block. I cannot tell you how excited I was to see this feature come
in Oracle 8i. While DBMS_SQL is a useful package, it just cannot compare to the
simplicity and performance of NDS for most operations.

This example shows how to build a statement dynamically and use the EXECUTE
IMMEDIATE command to run it in PL/SQL.

–– Available online as part of NDS.sql
SET SERVEROUTPUT ON
DECLARE

v_statement VARCHAR2(500);

CURSOR trigger_cur
IS

SELECT trigger_name
FROM user_triggers;

BEGIN
FOR y IN trigger_cur
LOOP

–– Build the statement
v_statement := 'ALTER TRIGGER '||y.trigger_name||' DISABLE';

–– Run the statement
EXECUTE IMMEDIATE v_statement;

END LOOP;
END;
/

This block does the following:

■ It loops through a trigger with all trigger names in the current schema.

■ It builds a DDL statement to alter each trigger retrieved by the cursor to
disable it.

■ It executes the statement inside the loop, once for each record in the cursor.

For another example, refer to the CreateUser.sql script available online.

Using ROWID and ROWNUM
Similar to the LEVEL column discussed earlier, ROWID and ROWNUM are
pseudocolumns that can be used in application development. Just from the
names it is easy to tell that both are related to individual rows, or records, in
a table. They have very distinct purposes and structures, however.

ROWID
A ROWID is a system-generated unique identifier that is created for every record in
the database. This binary value is the address, or location of the data in the system.
A ROWID can be physical, as is the case with records in a standard database table.
As discussed in Chapter 3, ROWIDs can be logical as well, as is the case with rows
in an index-organized table.

Chapter 4: Using SQL with PL/SQL 165

In my system, the ROWID for the record in the AUTHORS table with my name
returns the following result:

SELECT rowid
FROM authors
WHERE first_name = 'Ron';

This returns the following result:

ROWID
–––––––––
AAAMZzAAEAAAAB/Aau

NOTE
Your rowid will differ from mine. It is a system-
generated number and cannot be predicted.

That is the physical location for the record containing my name in the AUTHORS
table. It is unique to that record in the database. The structure is broken down in
Figure 4-4.

ROWIDs use base-64 encoding and return the ten-byte value as a string when
selected from SQL*Plus. Although the structure of the ROWID is fairly easy to
understand, deciphering the actual location of the row with the human eye is akin
to recognizing a person after seeing their DNA pattern.

Fortunately, we do not have to understand the value as long as Oracle does. We
just get to take advantage of the performance edge it provides when accessing data.

166 Oracle Database 10g PL/SQL Programming

FIGURE 4-4. ROWID DNA

Chapter 4: Using SQL with PL/SQL 167

ROWID and Performance
One of the biggest benefits of ROWID is the performance improvement it provides
when using it to reference a record. No index is necessary, no determination needs
to be made whether a full scan of the table is better, and there is no question of
cardinality. ROWID provides the address to the record, so no interpretation is required
at all.

The following example illustrates how ROWID can be used in an UPDATE. First,
we will select the records based on the cursor used later to show the current state
of the data:

–– Available online as part of RowID.sql
COL first_name FORMAT A10
COL last_name FORMAT A10
SELECT a.rowid, a.first_name, a.last_name
FROM authors a, books b
WHERE b.isbn = '72230665'
AND (

a.id = b.author1 OR
a.id = b.author2 OR
a.id = b.author3);

This returns the ROWID, FIRST_NAME, and LAST_NAME of the authors on this
book, as follows:

ROWID FIRST_NAME LAST_NAME
––––––––– ––––– –––––
AAAMaHAAEAAAAIHAAZ Scott Urman
AAAMaHAAEAAAAIHAAu Ron Hardman
AAAMaHAAEAAAAIHAAv Mike McLaughlin

The names are stored in initcap, but we want to convert them to uppercase.
Running the following anonymous block does exactly that:

–– Available online as part of RowID.sql
SET SERVEROUTPUT ON
DECLARE
/* Retrieve the rowid of the authors

of this book into the cursor */

CURSOR author_rowid_cur
IS

SELECT a.rowid
FROM authors a, books b
WHERE b.isbn = '72230665'
AND (

168 Oracle Database 10g PL/SQL Programming

a.id = b.author1
OR
a.id = b.author2
OR
a.id = b.author3);

BEGIN
/* Loop through the records retrieved by the cursor and convert

the first and last names to uppercase */

FOR y IN author_rowid_cur
LOOP

UPDATE authors
SET first_name = UPPER(first_name),

last_name = UPPER(last_name)
WHERE rowid = y.rowid;

END LOOP;

COMMIT;
EXCEPTION

WHEN OTHERS
THEN

DBMS_OUTPUT.PUT_LINE(sqlerrm);
END;
/

This block does the following:

■ It retrieves the ROWID of the three authors on this book in the AUTHOR_
ROWID_CUR.

■ It loops through the cursor (pointer to the three rows that match).

■ It runs an update that uses the ROWID of each record to restrict the update.

This is a small data set to work with, and we could have used the AUTHORS.ID
column without any noticeable performance degradation. However, in a larger
application using the same logic, the performance gain would be noticeable, especially
if there were no unique key created in the table that could be used as an alternative.

Checking the data one more time, the results are as expected.

ROWID FIRST_NAME LAST_NAME
––––––––– ––––– –––––
AAAMaHAAEAAAAIHAAZ SCOTT URMAN
AAAMaHAAEAAAAIHAAu RON HARDMAN
AAAMaHAAEAAAAIHAAv MIKE MCLAUGHLIN

Chapter 4: Using SQL with PL/SQL 169

To confirm only these records were updated, we will check the first record in the table.

SELECT rowid, first_name, last_name
FROM authors
WHERE rownum = 1;

This returns

ROWID FIRST_NAME LAST_NAME
––––––––– ––––– –––––
AAAMaHAAEAAAAIHAAA Marlene Theriault

Since this name is not all uppercase, we can be certain our update did restrict
according to ROWID. As for the use of ROWNUM in that last query, we address it next.

ROWNUM
The ROWNUM pseudocolumn returns the row number of the record. In the last
example in the ROWID section, we used ROWNUM to retrieve the very first record
in the AUTHORS table. This is a logical number, determined at the time a query
is run. As such, a delete or insert can cause a different ROWNUM assignment. Row
numbers do not stick to a particular record, so never rely on them as you would a
physical ROWID.

One common use of ROWNUM is to restrict the number of records returned. We
can run the following SELECT so that it returns only the top ten records in the table:

SELECT title
FROM books
WHERE ROWNUM <= 10;

This type of query might be used in a function or procedure (using a REFCURSOR)
to limit a possible large result set.

NOTE
See Chapter 9 for more information on how
to use procedures and functions.

Using ROWNUM with ORDER BY
Using ROWNUM with an ordered result set does not yield the results you might
expect. For example, if we want to pull the author names in alphabetical order,
but retrieve only the top ten of the ordered list, we cannot use a basic ORDER BY
and ROWNUM query.

Here, procedure AUTHOR_SEL performs a select of author names, ordering
them by last name, and restricting by ROWNUM:

CREATE OR REPLACE PROCEDURE author_sel (
cv_authors IN OUT SYS_REFCURSOR)

IS
BEGIN

OPEN cv_authors FOR
SELECT id, last_name||', '||first_name NAME
FROM authors
WHERE rownum <= 10
ORDER BY last_name;

EXCEPTION
WHEN OTHERS
THEN

DBMS_OUTPUT.PUT_LINE(sqlerrm);
END;
/

You may think that this would sort all results and return the first ten ordered by
last name in ascending order, but that is not what happens. To run the procedure,
we type

VARIABLE x REFCURSOR
EXEC author_sel(:x)

The result set is now stored in x, so to print it to the screen we type

COL name FORMAT A30
PRINT x

Notice the results return the top ten rows in the table, then order them by last name
instead of sorting the rows, and then restrict them by the top ten.

ID NAME
––––– ––––––––––––

4 Abbey, Michael
9 Abramson, Ian
2 Carmichael, Rachel
5 Corey, Michael
7 Deshpande, Kirtikumar
8 Kostelac, John
10 Smith, Kenny
1 Theriault, Marlene
6 Vaidyanatha, Gaja
3 Viscusi, James

170 Oracle Database 10g PL/SQL Programming

This does not return what we wanted. Think of this in terms of other business
applications, where maybe orders are displayed by date, but only the ten most recent
are displayed. The results would contain the first ten rows in the table ordered by
date, but never date ordered, with the ten most recent orders.

Inline View The problem with using ROWNUM and ORDER BY can be solved by
using an inline view. Inline views are subselects in the FROM clause that act as a
view at execution time. They are not named views, stored in the database.

The following alteration to the procedure AUTHOR_SEL handles the problem:

CREATE OR REPLACE PROCEDURE author_ordered_sel (
cv_authors IN OUT SYS_REFCURSOR)

IS
BEGIN

OPEN cv_authors FOR
SELECT *
FROM (

SELECT id, last_name||', '||first_name NAME
FROM authors
ORDER BY last_name) SORTED_AUTHORS

WHERE rownum <= 10;
EXCEPTION

WHEN OTHERS
THEN

DBMS_OUTPUT.PUT_LINE(sqlerrm);
END;
/

We run the procedure just as before, supplying the new procedure name.

VARIABLE x REFCURSOR
EXEC author_ordered_sel(:x)
COL name FORMAT A30
PRINT x

This procedure delivers exactly what we wanted; an ordered set of data, restricted
to the top ten of the ordered list.

ID NAME
––––– –––––––––––––

4 Abbey, Michael
9 Abramson, Ian

33 Adkoli, Anand
14 Allen, Christopher
30 Armstrong-Smith, Michael
31 Armstrong-Smith, Darlene

Chapter 4: Using SQL with PL/SQL 171

12 Bo, Lars
51 Boudreaux, Scott
36 Brown, Brad
35 Burleson, Donald

The ordered inline view solved the problem and allows us to use ROWNUM to
achieve the intended result.

Built-in SQL Functions
In addition to SQL commands, PL/SQL supports most SQL built-in functions. Though
complete coverage of the functions is out of the scope of this book, we have divided
the most used functions into categories.

These built-in functions are actually part of a PL/SQL package called STANDARD.
This package, owned by the user SYS, groups the functions together for easier
maintenance and use. If the structure of the function is ever needed, simply do a
DESC STANDARD and all parameter names and data types are displayed. Packages
are discussed in detail in Chapters 8 and 9.

NOTE
For additional information on each SQL function,
see the Oracle Database SQL reference available
on the OTN web site (http://otn.oracle.com).

Character Functions
Character functions take VARCHAR2 or CHAR values as input and return
either characters or numbers. An example of a character function is the LOWER
function, which takes a string as input and returns a string in lowercase in return.

–– Available online as part of Lower.sql
SET SERVEROUTPUT ON
BEGIN

DBMS_OUTPUT.PUT_LINE(LOWER('CaSe Is nOt AlWAyS ImpoRtaNt'));
END;
/

Refer to Table 4-5 for a list of character functions.

Numeric Functions
Numeric functions take a number as an argument and return a number as a
result. The ROUND function, for example, takes a number as an input, and

172 Oracle Database 10g PL/SQL Programming

Chapter 4: Using SQL with PL/SQL 173

rounds to the number of digits specified. The syntax is as follows:

ROUND (a [, b])

where a is the number to be rounded and b is the number of decimal places to
round to. The following example shows how the function works:

–– Available online as part of Round.sql
SET SERVEROUTPUT ON
DECLARE

v_round NUMBER (10,4) := 12345.6789;
BEGIN

DBMS_OUTPUT.PUT_LINE('Default: '||ROUND(v_round));
DBMS_OUTPUT.PUT_LINE('+2: '||ROUND(v_round, 2));
DBMS_OUTPUT.PUT_LINE('-2: '||ROUND(v_round, -2));

END;
/

This results in the following:

Default: 12346
+2: 12345.68
-2: 12300

Other numeric functions are listed in Table 4-6.

ASCII INSTRC NLS_LOWER SUBSTR

ASCIISTR LENGTH NLS_UPPER SUBSTR2

CHR LENGTH2 NLSSORT SUBSTR4

COMPOSE LENGTH4 REGEXP_LIKE SUBSTRB

CONCAT LENGTHB REGEXP_INSTR SUBSTRC

DECOMPOSE LENGTHC REGEXP_REPLACE TRANSLATE

INITCAP LOWER REGEXP_SUBSTR TRIM

INSTR LPAD REPLACE UNISTR

INSTR2 LTRIM RPAD UPPER

INSTR4 NCHR RTRIM

INSTRB NLS_INITCAP SOUNDEX

TABLE 4-5. Character Functions

174 Oracle Database 10g PL/SQL Programming

Date Functions
Date functions take dates as arguments and return either a date or a number. The
functions in this category range from SYSDATE and SYSTIMESTAMP, which return
the current date/time value from the instance, to arithmetic functions like ADD_
MONTHS that calculate date/time.

This example shows the use of SYSDATE, SYSTIMESTAMP, MONTHS_BETWEEN,
and LAST_DAY:

–– Available online as part of DateTime.sql
DECLARE

v_sysdate DATE := SYSDATE;
v_systimestamp TIMESTAMP := SYSTIMESTAMP;
v_date DATE;
v_number NUMBER(10);

BEGIN

–– Print the current date
DBMS_OUTPUT.PUT_LINE('Today''s Date: '||v_sysdate);

–– Print the current date and timestamp
DBMS_OUTPUT.PUT_LINE('Today''s Date: '||v_systimestamp);

–– Calculate the months between two dates
v_number := MONTHS_BETWEEN('13-JUN-1973', '23-JAN-1973');
DBMS_OUTPUT.PUT_LINE('Months Between Dates: '||v_number);

–– Determine the number of days left in the month from today
v_date := LAST_DAY(v_sysdate);

ABS CEIL LOG SIN

ACOS COS MOD SINH

ASIN COSH POWER SQRT

ATAN EXP REMAINDER TAN

ATAN2 FLOOR ROUND TANH

BITAND LN SIGN TRUNC

TABLE 4-6. Numeric Functions

DBMS_OUTPUT.PUT_LINE('Last Day Of This Month: '||v_date);

END;
/

This returns the following result:

Today's Date: 15-JUN-04
Today's Date: 15-JUN-04 11.57.42.637000 PM
Months Between Dates: 5
Last Day Of This Month: 30-JUN-04

Refer to Table 4-7 for additional functions.

Conversion Functions
Conversion functions are divided into two categories: implicit and explicit. Most
PL/SQL data types are converted implicitly, or automatically, by Oracle when
required. In cases where the output requires a specific format, the default is used.
Explicit conversion requires a specific call to one of these functions, but the format
of the output is controllable.

Two of the most commonly used conversion functions, TO_DATE and TO_
CHAR, work with dates. TO_DATE takes a string as input and returns output as a
DATE data type. When working with dates, TO_CHAR takes a date as input and
returns the output in a VARCHAR2 format.

Chapter 4: Using SQL with PL/SQL 175

ADD_MONTHS MONTHS_BETWEEN SYSTIMESTAMP

CURRENT_DATE NEW_TIME TO_DSINTERVAL

CURRENT_TIME NEXT_DAY TO_TIME

CURRENT_TIMESTAMP NUMTODSINTERVAL TO_TIME_TZ

DBTIMEZONE NUMTOYMINTERVAL TO_TIMESTAMP

EXTRACT ROUND TO_TIMESTAMP_TZ

FROM_TZ SESSIONTIMEZONE TO_YMINTERVAL

LAST_DAY SYS_EXTRACT_UTC TRUNC

LOCALTIMESTAMP SYSDATE TZ_OFFSET

TABLE 4-7. Date Functions

176 Oracle Database 10g PL/SQL Programming

The following example converts between TO_DATE and TO_CHAR, modifying
the format along the way:

–– Available online as part of Conversion.sql
SET SERVEROUTPUT ON
DECLARE

v_sysdate DATE := SYSDATE;
v_date DATE;
v_char VARCHAR2(20);

BEGIN

–– Print the current date
DBMS_OUTPUT.PUT_LINE('Today''s Date: '||v_sysdate);

–– Print the current date/time as a character string
–– and modifies the format
v_char := TO_CHAR(v_sysdate, 'DD:MM:YYYY HH24:MI:SS');
DBMS_OUTPUT.PUT_LINE('Display as CHARACTER DD:MM:YYYY HH24:MI:SS: '||

v_char);

–– Convert the character string back to date format
v_date := TO_DATE(v_char, 'DD:MM:YYYY HH24:MI:SS');
DBMS_OUTPUT.PUT_LINE('Convert back to DATE format: '||v_date);

END;
/

This returns the following output:

Today's Date: 16-JUN-04
Display as CHARACTER DD:MM:YYYY HH24:MI:SS: 16:06:2004 07:42:33
Convert back to DATE format: 16-JUN-04

Table 4-8 includes a listing of additional conversion functions.

Error Functions
Error functions are unique in that they cannot be used in SQL. They provide PL/SQL
developers with a way to display any errors that are received during program

Chapter 4: Using SQL with PL/SQL 177

execution. SQLERRM returns the error message text received, and SQLCODE
returns the error code. The following block illustrates this:

–– Available online as part of Error.sql
SET SERVEROUTPUT ON
DECLARE

v_error VARCHAR2(10);
BEGIN

SELECT dummy
INTO v_error
FROM dual
WHERE 1=2;

EXCEPTION
WHEN OTHERS
THEN

DBMS_OUTPUT.PUT_LINE('SQLERRM: '||SQLERRM);
DBMS_OUTPUT.PUT_LINE('SQLCODE: '||SQLCODE);

END;
/

The results of the block show the difference between these two functions:

SQLERRM: ORA-01403: no data found
SQLCODE: 100

These error functions are discussed in more detail in Chapter 7.

CASE RAWTONHEX TO_CHAR TO_NCLOB

CHARTOROWID ROWIDTOCHAR TO_CLOB TO_NUMBER

CONVERT TO_BINARY_
DOUBLE

TO_DATE TO_SINGLE_BYTE

HEXTORAW TO_BLOB TO_MULTI_BYTE

RAWTOHEX TO_BINARY_FLOAT TO_NCHAR

TABLE 4-8. Conversion Functions

178 Oracle Database 10g PL/SQL Programming

Other Functions
The functions in this section don’t fit into a nice category listing. Many of them are
discussed in detail in other chapters of this book because of their relationship to
specific technologies. For example, DEREF, REF, TREAT, and VALUE are all related
to object types and are discussed in Chapters 14 and 15. BFILENAME, EMPTY_
BLOB, and EMPTY_CLOB are all LOB related and are demonstrated in Chapter 16.

This example shows the use of the GREATEST and LEAST functions in a
PL/SQL block:

–– Available online as part of GreatestLeast.sql
SET SERVEROUTPUT ON
DECLARE

v_char VARCHAR2(10);
v_number NUMBER(10);

BEGIN

v_char := GREATEST('A', 'B', 'C');
v_number := GREATEST(1,2,3);

DBMS_OUTPUT.PUT_LINE('Greatest Character: '||v_char);
DBMS_OUTPUT.PUT_LINE('Greatest Number: '||v_number);

v_char := LEAST('A', 'B', 'C');
v_number := LEAST(1,2,3);

DBMS_OUTPUT.PUT_LINE('Least Character: '||v_char);
DBMS_OUTPUT.PUT_LINE('Least Number: '||v_number);

END;
/

The output for GREATEST character returns ‘C’, or the greatest letter provided to
the function, while the GREATEST number returns ‘3’, or the highest value. LEAST
provides the exact opposite.

Greatest Character: C
Greatest Number: 3
Least Character: A
Least Number: 1

Table 4-9 displays a complete list of SQL functions not included in the
other tables.

Summary
In this chapter we demonstrated how to use SQL in PL/SQL, including

■ Data retrieval with SELECT, Regular Expressions, and Oracle Text

■ Cursor use

■ Manipulating data with DML

■ Built-in functions

■ The use of ROWID and ROWNUM

■ Dynamic SQL

The next chapter focuses on PL/SQL records.

Chapter 4: Using SQL with PL/SQL 179

BFILENAME EMPTY_CLOB NLS_CHARSET_NAME TREAT

COALESCE GREATEST NULLIF UID

DECODE LEAST NVL USER

DEREF NANVL REF USERENV

DUMP NLS_CHARSET_
DECL_LEN

SYS_CONTEXT VALUE

EMPTY_BLOB NLS_CHARSET_ID SYS_GUID VSIZE

TABLE 4-9. Other Functions

This page intentionally left blank

CHAPTER
5

Records

Copyright © 2004 by The McGraw-Hill Companies, Inc. Click here for terms of use.

R
ecords and collections are powerful structures that enable you to
develop programs that manage large sets of data. Records let you
manage sets of variable types; collections let you manage groups
of a variable type. You need to have a command of records to use
collections. In this chapter, we will explain records and show you

how to use them in your PL/SQL programming code. Collections will be covered
in Chapter 6.

We will cover topics as follows. The chapter assumes you read it sequentially. If
you feel comfortable with an area, please feel free to move to the section of interest.
However, the chapter assumes you have mastery of earlier sections.

■ Introducing records

■ Working with records

Introducing Records
Records were introduced in the Oracle 7 database. They have grown in utility with
each release of the Oracle database. Oracle 8 provided object types, but they were
feature limited. Oracle 10g changed that. Object types now have user-defined
constructors. The constructors enable object types to mimic record types. Record
and object types are compared and contrasted in their roles as types.

What Is a Record?
A record provides the means of defining a programming structure. A programming
structure is a set of variable types. They are grouped together and managed as a
unit. Record types map to a stored definition of the structure.

For example, a database table or view contains rows of information. The table’s
columns define each row. A record type is a programming structure that mirrors a
single row in a table. Since there is only a single row in any record, a record contains
fields rather than columns. Field types may be any Oracle 10g data type or user-
defined data type. As you will see in Chapter 6, the data types can be collections.
Collections become multiple row fields in record types.

Working with Records
Oracle 9i and Oracle 10g increase the flexibility and complexity of records. Most of
the change is due to enhancements to the two collection types introduced in Oracle 8,
varrays and nested tables.

As discussed, records are structures. Structures are sets of variable types that
are grouped together. The grouping of variable types and naming of variables is

182 Oracle Database 10g PL/SQL Programming

meaningful in the context of a programming problem. Often record structures
are created to mimic the structure of tables in a database. We will examine this
approach first.

We will use the ERD diagram (see Figure 5-1) to define our case study for
the chapter. It defines three tables. One contains individual records; the others
contain an address and phone numbers, respectively. The small ERD model
has the following relationships. The code for the tables is found in the create_
addressbook1.sql script.

■ An individual may have one to many addresses or telephone numbers.

■ One or more telephone numbers may be related to an address.

Defining Record Types
There are three ways to define records in PL/SQL. One uses the %ROWTYPE
attribute. Another uses explicit definition in the declaration section of a PL/SQL
program. Last, a record type may be defined as a database structure or object type.

Chapter 5: Records 183

FIGURE 5-1. Address book entity relationship diagram

184 Oracle Database 10g PL/SQL Programming

A record type is like a single row in a table. You know one or more columns
define tables. Since record types have only one row, fields define them. One or
more fields define a record type.

Defining Implicity with the %ROWTYPE Attribute
The %ROWTYPE attribute may be applied to or reference a PL/SQL cursor, table, object,
or view in the database. It inherits the definition of a row for any of those objects.
Within the row all fields are implicitly defined as the column data types of the
table being referenced. The field names are likewise those of the columns defined
in the table. The following program shows the use of the %ROWTYPE attribute. The
individuals%ROWTYPE defines the record variable individual. Using the
variable and field name separated by a dot, you can access record variable types.
That syntax is shown in this example:

-- Available online as part of create_record1.sql
DECLARE

-- Define a variable with an implicit record type.
individual individuals%ROWTYPE;

BEGIN

-- Initialize the field values for the record.
individual.individual_id := 1;
individual.first_name := 'John';
individual.middle_initial := 'D';
individual.last_name := 'Rockefeller';

-- Insert into the table.

INSERT

INTO individuals
VALUES
(individual.individual_id
,individual.first_name
,individual.middle_initial
,individual.last_name);

-- Commit the work.
COMMIT;

Chapter 5: Records 185

END;
/

The sample program does the following:

■ It defines and declares a variable individual using the %ROWTYPE
attribute. The %ROWTYPE attribute maps the individuals table structure
for a record type.

■ It initializes the field values for the individual variable.

■ It uses an insert statement to populate a row in the individuals table.

■ It commits the work.

The column definitions for the table are the field definitions for the record type.
A dot notation references the field values. The generalized assignment syntax is

RECORD_TYPE.FIELD_TYPE := VALUE;

It then uses the dot notation of record and field type to insert a row into the
individuals table.

Defining Record Types Explicitly as PL/SQL Structures
You may build a record explicitly by defining a record type in the declaration
section of a PL/SQL program. You may use explicit variable typing or the %TYPE
attribute to define variables. Both styles are used in the example. The following
program shows how to define a record type.

Unlike when using the implicit definition technique illustrated in the prior
example, you must define a record type. You then define the variable as a record
type. You can then use it in the execution section of a PL/SQL program as shown
in the following sample program.

-- Available online as part of create_record2.sql

DECLARE

-- Define a record type.
TYPE individual_record IS RECORD
(individual_id INTEGER
,first_name VARCHAR2(30 CHAR)

186 Oracle Database 10g PL/SQL Programming

,middle_initial individuals.middle_initial%TYPE
,last_name VARCHAR2(30 CHAR));

-- Define a variable of the record type.
individual INDIVIDUAL_RECORD;

BEGIN

-- Initialize the field values for the record.
individual.individual_id := 2;
individual.first_name := 'John';
individual.middle_initial := 'P';
individual.last_name := 'Morgan';

-- Insert into the table.
INSERT
INTO individuals
VALUES
(individual.individual_id
,individual.first_name
,individual.middle_initial
,individual.last_name);

-- Commit the work.
COMMIT;

END;
/

The sample program does the following:

■ It defines a record-type variable, individual_record. This is an explicitly
defined record type. It explicitly defines data types for three of the fields.
The data type definitions mirror the equivalent column definitions in the
individuals table. The middle_initial field data type is implicitly
assigned. It uses the %TYPE style. The %TYPE inherits the data type of a
column in a table. The variable is defined by the generalized syntax (and
the details may be found in Chapter 3):

VARIABLE TABLE.COLUMN%TYPE;

Chapter 5: Records 187

■ It defines an individual variable that uses the individual_record
record type.

■ It initializes the field values for the individual variable.

■ It uses an insert statement to populate a row in the individuals table.

■ It commits the work.

The column definition becomes the field definition with a %TYPE. As the column
definitions for the table change, so does the field definition of the record type. The
same cannot be said for those columns defined explicitly in PL/SQL programs.

You need to define a variable of the record type to use it. This was not required
in the prior example when defining a variable of an object with the %ROWTYPE
attribute. Otherwise, the code using the explicit technique is a mirror of the prior
example file.

You may build on the techniques of explicitly defined record types. You can
create a compound record type. Using your two defined record types, you can create
a compound record type. Your two record types will then become subtypes of the
compound record type. Compound record types are most useful when combined
with collections, as will be seen in Chapter 6. Figure 5-2 shows the hierarchy of the
compound record types used in the example.

When you build compound record types, you can use only record types that
are explicitly defined. You cannot use the %ROWTYPE attribute to define either of
the base record types. They must be explicitly defined.

Compound record types nest record types. When you nest record types, you
increase the complexity of the syntax to access record type elements. Adding a
layer to the dot notation enables this.

FIGURE 5-2. Compound record type hierarchy

The following example program demonstrates the definition and referencing of
nested record types in a compound record type:

-- Available online as part of create_record3.sql
DECLARE

-- Define a record type.
TYPE individual_record IS RECORD
(individual_id INTEGER
,first_name VARCHAR2(30 CHAR)
,middle_initial VARCHAR2(1 CHAR)
,last_name VARCHAR2(30 CHAR));

-- Define a record type.
TYPE address_record IS RECORD
(address_id INTEGER
,individual_id INTEGER
,street_address1 VARCHAR2(30 CHAR)
,street_address2 VARCHAR2(30 CHAR)
,street_address3 VARCHAR2(30 CHAR)
,city VARCHAR2(20 CHAR)
,state VARCHAR2(20 CHAR)
,postal_code VARCHAR2(20 CHAR)
,country_code VARCHAR2(10 CHAR));

-- Define a record type of two user-defined record types.
TYPE individual_address_record IS RECORD
(individual INDIVIDUAL_RECORD
,address ADDRESS_RECORD);

-- Define a user-defined compound record type.
individual_address INDIVIDUAL_ADDRESS_RECORD;

BEGIN

-- Initialize the field values for the record.
individual_address.individual.individual_id := 3;
individual_address.individual.first_name := 'Ulysses';
individual_address.individual.middle_initial := 'S';
individual_address.individual.last_name := 'Grant';

-- Initialize the field values for the record.
individual_address.address.address_id := 1;
individual_address.address.individual_id := 3;
individual_address.address.street_address1 :=
'Riverside Park';

individual_address.address.street_address2 := '';

188 Oracle Database 10g PL/SQL Programming

individual_address.address.street_address3 := '';
individual_address.address.city := 'New York City';
individual_address.address.state := 'New York';
individual_address.address.postal_code := '10027-3914';
individual_address.address.country_code := 'USA';

-- Insert the values into the target object.
INSERT
INTO individuals
VALUES
(individual_address.individual.individual_id
,individual_address.individual.first_name
,individual_address.individual.middle_initial
,individual_address.individual.last_name);

-- Insert the values into the target object.
INSERT
INTO addresses
VALUES
(individual_address.address.address_id
(individual_address.address.individual_id
,individual_address.address.street_address1
,individual_address.address.street_address2
,individual_address.address.street_address2
,individual_address.address.city
,individual_address.address.state
,individual_address.address.postal_code
,individual_address.address.country_code);

-- Commit the record.
COMMIT;

END;
/

The sample program does the following:

■ It defines a record-type variable, individual_record. All fields are
explicitly defined in the PL/SQL program equivalent to the related table.

■ It defines a record-type variable, address_record. All fields are
explicitly defined in the PL/SQL program equivalent to the related table.

■ It defines a record-type variable, individual_address_record. This
new record type is a compound record type. It has two fields, which are
the earlier individual_record and address_record record types.
Each of the record types becomes a subtype of the compound record type.

Chapter 5: Records 189

190 Oracle Database 10g PL/SQL Programming

■ It defines an individual_address variable using the individual_
address_record compound record type as the data type.

■ It initializes the individual_address variable field values for the
individual subtype. Initialization is carried out by assigning values to
the field-level elements in the record type. You initialize by using a two-
dot notation. On the left side of the assignment operator, the two-dot
notation separates the variable from subtype record and the subtype record
from the field values as shown here:

RECORD_TYPE.NESTED_RECORD_TYPE.FIELD_TYPE := VALUE;

■ It initializes the field values for the address subtype. Initialization is
accomplished by assigning values to the field-level elements in the
record type.

■ It inserts a row into the individuals table, which is a parent table in the
ERD model. The table is a parent table because of a referential integrity
constraint found in the addresses table.

■ It inserts a row into the addresses table, which is a child table in the
ERD model.

■ It commits the work.

While PL/SQL does not impose a limit that constrains nesting, you should carefully
consider when it is appropriate to do it. Ideal situations for nesting involve nested
record sets that have two or more database tables related to the record set. For
example, in the prior example, the subsets belong to two tables. After initializing the
set, the two subsets are inserted into their respective tables.

Defining Record Types Explicitly as Object Types
You may construct a record explicitly by defining an object type within the database.
Your object type will be referenced in your program’s declaration section. The
techniques of working with Oracle 10g objects are covered in Chapters 14–16.
The programs that follow leverage database object types and use the Oracle 10g
user-defined constructor feature.

The following program illustrates defining the object type and a variable that
uses it. The syntax can be counterintuitive to programmers who have not done
object-oriented programming. It is recommended that you look at Chapter 14 for
generalized syntax and coverage of object construction.

-- Available online as part of create_record4.sql

-- Create a database object type.
CREATE OR REPLACE TYPE individual_record AS OBJECT

(individual_id INTEGER
,first_name VARCHAR2(30 CHAR)
,middle_initial VARCHAR2(1 CHAR)
,last_name VARCHAR2(30 CHAR)
,CONSTRUCTOR FUNCTION individual_record
(individual_id INTEGER
,first_name VARCHAR2
,middle_initial VARCHAR2
,last_name VARCHAR2)
RETURN SELF AS RESULT)
INSTANTIABLE NOT FINAL;

/

-- Create a database object body.
CREATE OR REPLACE TYPE BODY individual_record AS
CONSTRUCTOR FUNCTION individual_record
(individual_id INTEGER
,first_name VARCHAR2
,middle_initial VARCHAR2
,last_name VARCHAR2)
RETURN SELF AS RESULT IS
BEGIN
self.individual_id := individual_id;
self.first_name := first_name;
self.middle_initial := middle_initial;
self.last_name := last_name;
RETURN;

END;
END;
/

DECLARE

-- Define a variable of the record type.
individual INDIVIDUAL_RECORD;

BEGIN

-- Construct an instance of the object type.
individual :=
individual_record(4,'Klaes','M','van Roosevelt');

-- Insert the values into the table.
INSERT
INTO individuals
VALUES
(individual.individual_id
,individual.first_name

Chapter 5: Records 191

,individual.middle_initial
,individual.last_name);

-- Commit the work.
COMMIT;

END;
/

The sample program does the following:

■ It defines an object-type variable, individual_record. All fields are
explicitly defined in the database object type and are equivalent to the
related table. It also contains a user-defined constructor. You can see the
structure of the object by issuing a DESCRIBE command at the SQL*Plus
prompt. Also, you can query the object by using the USER_OBJECTS view.

■ It defines an object body for the individual_record object type. The
constructor acts like a function with a parameterized list of formal parameters
that match the object type. The return value for the constructor is an instance,
or copy, of the object type. The constructor function assigns the formal
parameters to variables of the same name. They are prefaced with the
keyword SELF. The SELF keyword references what is termed an instance
variable of an object type. You can read more on the SELF keyword in
Chapter 14.

■ In the PL/SQL anonymous block, it defines an individual_address
variable using the individual_address_record compound object
type as the data type.

■ Also in the PL/SQL anonymous block, it initializes the individual
variable by constructing an instance of an individual_record object
type. Using a special syntax initializes it. On the left side of the assignment
operator, you have the variable name. The right side uses the object
construction process, which uses the object body constructor function to
initialize the field-level values. The generalized syntax uses the object type
name and a comma-delimited set of actual parameters. It is shown here:

OBJECT_CONSTRUCTOR([attr1, … attr(n+1)]);

■ It inserts a row into the individuals table, which is a parent table in the
ERD model. The table is a parent table because of a referential integrity
constraint found in the addresses table.

■ It commits the work.

192 Oracle Database 10g PL/SQL Programming

A DESCRIBE of the individual_record object will provide the following
output:

-- Available in the database after running create_record4.sql

individual_record is NOT FINAL
Name Null? Type
---------------------------------- -------- -----------------
INDIVIDUAL_ID NUMBER(38)
FIRST_NAME VARCHAR2(30 CHAR)
MIDDLE_INITIAL VARCHAR2(1 CHAR)
LAST_NAME VARCHAR2(30 CHAR)

METHOD

FINAL CONSTRUCTOR FUNCTION INDIVIDUAL_RECORD RETURNS SELF AS RESULT
Argument Name Type In/Out Default?
------------------------- -------------------- ------ --------
INDIVIDUAL_ID NUMBER IN
FIRST_NAME VARCHAR2 IN
MIDDLE_INITIAL VARCHAR2 IN
LAST_NAME VARCHAR2 IN

Building on the techniques of compound record types, you can now examine
how one works using compound object types. The example illustrates extending an
object by constructing nested object types in the constructor of a compound object
type. These features are introduced here to help you understand the new flexibility
of object types as record types, and they are explained in Chapters 4–16.

You may recall that the base record types need to be explicitly defined. These
can be defined in a number of ways. For example, they can be defined in the
declaration section, as done earlier in this chapter. Alternatively, they can be defined
in a package specification, which you can check in Chapter 8. Finally, they can be
defined as object types in the database.

As seen in the last example, the syntax for leveraging object types to build records
is less than intuitive. It is just a bit less intuitive for compound objects. This is why
the syntax coverage is incorporated here and in Chapter 14. If you have done object-
oriented programming, you will notice this is a form of composition. Composition is
the process by which a program structure or unit contains another program structure
or unit.

In the next example, you will build another base object type for the addresses
table. You will then build a compound object. In it, the object types for individuals
and addresses become subtypes. The individual object type is included in the
prior example but is not repeated here.

Chapter 5: Records 193

You gain reusability and access by leveraging object types. The alternative is
defining record types in package specifications. Object types stand on their own
merits in the database and are generally more intuitive to access and use, while
declaring record types in package specifications may limit reuse to application
programming interfaces. However, if you want to hide a record type, doing so in
a package specification is an excellent choice.

The following program demonstrates using a compound object type as a record
structure. While create_record5.sql has a dependency on the prior example,
it can be run independently. If you compare this against the example of compound
record types earlier in the chapter, you should find it simpler. At least, you should
find it simpler once the newness of constructor syntax has worn away. As we move
through the collection section in Chapter 6, you will see how object features
become more helpful in building effective solutions.

-- Available online as part of create_record5.sql
-- Create a database object type.
CREATE OR REPLACE TYPE address_record AS OBJECT
(address_id INTEGER
,individual_id INTEGER
,street_address1 VARCHAR2(30 CHAR)
,street_address2 VARCHAR2(30 CHAR)
,street_address3 VARCHAR2(30 CHAR)
,city VARCHAR2(20 CHAR)
,state VARCHAR2(20 CHAR)
,postal_code VARCHAR2(20 CHAR)
,country_code VARCHAR2(10 CHAR)
,CONSTRUCTOR FUNCTION address_record
(address_id INTEGER
,individual_id INTEGER
,street_address1 VARCHAR2
,street_address2 VARCHAR2
,street_address3 VARCHAR2
,city VARCHAR2
,state VARCHAR2
,postal_code VARCHAR2
,country_code VARCHAR2)
RETURN SELF AS RESULT)
INSTANTIABLE NOT FINAL;

/

-- Create a database object body.
CREATE OR REPLACE TYPE BODY address_record AS
CONSTRUCTOR FUNCTION address_record
(address_id INTEGER
,individual_id INTEGER
,street_address1 VARCHAR2

194 Oracle Database 10g PL/SQL Programming

Chapter 5: Records 195

,street_address2 VARCHAR2
,street_address3 VARCHAR2
,city VARCHAR2
,state VARCHAR2
,postal_code VARCHAR2
,country_code VARCHAR2)
RETURN SELF AS RESULT IS
BEGIN

-- Instantiate object attributes.
self.address_id := address_id;
self.individual_id := individual_id;
self.street_address1 := street_address1;
self.street_address2 := street_address2;
self.street_address3 := street_address3;
self.city := city;
self.state := state;
self.postal_code := postal_code;
self.country_code := country_code;
RETURN;

END;
END;
/

-- Create a database object type.
CREATE OR REPLACE TYPE individual_address_record AS OBJECT
(individual INDIVIDUAL_RECORD
,address ADDRESS_RECORD
,CONSTRUCTOR FUNCTION individual_address_record
(individual INDIVIDUAL_RECORD
,address ADDRESS_RECORD)
RETURN SELF AS RESULT)
INSTANTIABLE NOT FINAL;

/

-- Create a database object body.
CREATE OR REPLACE TYPE BODY individual_address_record AS
CONSTRUCTOR FUNCTION individual_address_record
(individual INDIVIDUAL_RECORD
,address ADDRESS_RECORD)
RETURN SELF AS RESULT IS
BEGIN

-- Assign an instance of INDIVIDUAL_RECORD.
self.individual := individual;

-- Assign an instance of ADDRESS_RECORD.
self.address := address;
RETURN;

END;
END;
/

DECLARE

-- Define a variable of the record type.
individual_address INDIVIDUAL_ADDRESS_RECORD;

BEGIN

-- Construct an instance of the object type.
-- It uses two nested constructors in the constructor.
individual_address :=
individual_address_record(
individual_record(5,'Kermit','','Roosevelt'),
address_record(2,5,'20 Sagamore Hill','',''

,'Oyster Bay','NY'
,'11771-1899','USA'));

-- Insert the values into the table.
INSERT
INTO individuals
VALUES
(individual_address.individual.individual_id
,individual_address.individual.first_name
,individual_address.individual.middle_initial
,individual_address.individual.last_name);

-- Insert the values into the target object.
INSERT
INTO addresses
VALUES
(individual_address.address.address_id
,individual_address.individual.individual_id
,individual_address.address.street_address1
,individual_address.address.street_address2
,individual_address.address.street_address3
,individual_address.address.city
,individual_address.address.state
,individual_address.address.postal_code
,individual_address.address.country_code);

-- Commit the record.
COMMIT;

END;
/

196 Oracle Database 10g PL/SQL Programming

The sample program does the following:

■ It defines an object-type variable, address_record. All fields are
explicitly defined in the database object type and are equivalent to the
related table. It also contains a user-defined constructor.

■ It defines an object body for the address_record object type. The
constructor acts like a function with a parameterized list of formal
parameters that match the object type. The return value for the constructor
is an instance, or copy, of the object type. The constructor function assigns
the formal parameters to variables of the same name. They are prefaced
with the keyword SELF. The SELF keyword references what is termed
an instance variable of an object type. You will read more on the SELF
keyword in Chapter 14.

■ It defines an object-type variable, individual_record. All fields are
explicitly defined in the database object type and are equivalent to the
related table.

■ It defines an object body for the individual_record object type.

■ It defines a record-type variable, individual_address_record. This
new record type is a compound record type. It has two fields, which are
the earlier individual_record and address_record record types.
Each of the record types becomes a subtype of the compound record type.

■ It defines an object body for the individual_address_record object
type. Its constructor function assigns an instance of address_record
and individual_record to self-contained instances.

■ In the PL/SQL anonymous block, it defines an individual_address
variable using the individual_address_record compound object
type as the data type.

■ Also in the anonymous block, it initializes the individual_address
variable fields of the objects. You initialize by using a nesting syntax. On
the left side of the assignment operator, you have the variable name. The
right side uses a nested object construction process. The nesting construction
process is often called run-time construction. Run-time construction
leverages the subtype object body constructors to initialize field-level values.
The generalized syntax uses a comma-delimited set of object constructors.
Each object constructor uses the object type name and a comma-delimited
set of actual parameters. It is shown here:

OBJECT_CONSTRUCTOR(

[OBJECT_CONSTRUCTOR([attr1, … attr(n+1)]),

OBJECT_CONSTRUCTOR([attr1, … attr(n+1)])]);

Chapter 5: Records 197

■ It inserts a row into the individuals table, which is a parent table in the
ERD model. The table is a parent table because of a referential integrity
constraint found in the addresses table.

■ It inserts a row into the addresses table, which is a child table in the
ERD model.

■ It commits the work.

An alternative to the nested construction used in the example exists. You can
first define and initialize the two independent object-type variables. Then you
can use those variables to construct an instance of the compound object type.

The two inserts based on the new compound object type use a more complex
dot notation, which includes the object type, the nested object type, and then the
attribute or field. You see that more than one or two levels of nesting can become
very complex. You should consider your business model when working with
nesting. As a rule of thumb, one or two levels of nesting are generally manageable.

The compound object type mimics a record type. As the syntax becomes more
familiar, you will appreciate how object types simplify syntax in your declaration
sections.

These object-type examples have illustrated key concepts that you should consider.
You have seen the basics of record and object types. Now, the chapter will show you
how they can be used in the context of function parameter and return types.

Defining and Using Record
Types as Formal Parameters
Record types and object types are defined as formal parameters in much the same
way. You must define a record or object type before using it as a formal parameter
in cursors, functions, or procedures. You define the physical size of the object
externally to the cursor, function, or procedure. The size is implicitly inherited
when you pass it as actual parameter(s). If the concept of subprograms is new to
you, please refer to Chapters 8 and 9. Likewise, if formal and actual parameters
are new, please refer to same chapters. The following example uses a subprogram
within an anonymous-block PL/SQL program. If you do not understand how
functions are used in PL/SQL, you should read Chapters 8 and 9 first.

You will examine the method with record types first. The example that follows
extends the solution demonstrated in create_record3.sql earlier in the chapter.
It uses two local procedures to do inserts. One inserts into the addresses table.
Another inserts into the individuals table. You will see a compound record type
in the example. Subtypes of the compound record type are passed as the actual
parameter to the local procedures. A two-dot notation does this. The first element
is the compound record type, and the second is the record subtype.

198 Oracle Database 10g PL/SQL Programming

Chapter 5: Records 199

-- Available online as part of create_record6.sql
DECLARE

-- Define a record type.
TYPE individual_record IS RECORD
(individual_id INTEGER
,first_name VARCHAR2(30 CHAR)
,middle_initial VARCHAR2(1 CHAR)
,last_name VARCHAR2(30 CHAR));

-- Define a record type.
TYPE address_record IS RECORD
(address_id INTEGER
,individual_id INTEGER
,street_address1 VARCHAR2(30 CHAR)
,street_address2 VARCHAR2(30 CHAR)
,street_address3 VARCHAR2(30 CHAR)
,city VARCHAR2(20 CHAR)
,state VARCHAR2(20 CHAR)
,postal_code VARCHAR2(20 CHAR)
,country_code VARCHAR2(10 CHAR));

-- Define a record type of two user-defined record types.
TYPE individual_address_record IS RECORD
(individual INDIVIDUAL_RECORD
,address ADDRESS_RECORD);

-- Define a user-defined compound record type.
individual_address INDIVIDUAL_ADDRESS_RECORD;

-- Define a local procedure to manage addresses inserts.
PROCEDURE insert_address
(address_in ADDRESS_RECORD) IS

BEGIN

-- Insert the values into the target object.
INSERT
INTO addresses
VALUES
(address_in.address_id
,address_in.individual_id
,address_in.street_address1
,address_in.street_address2
,address_in.street_address3
,address_in.city
,address_in.state
,address_in.postal_code

,address_in.country_code);

END insert_address;

-- Define a local procedure to manage addresses inserts.
PROCEDURE insert_individual
(individual_in INDIVIDUAL_RECORD) IS

BEGIN

-- Insert the values into the table.
INSERT
INTO individuals
VALUES
(individual_in.individual_id
,individual_in.first_name
,individual_in.middle_initial
,individual_in.last_name);

END insert_individual;

BEGIN

-- Initialize the field values for the record.
individual_address.individual.individual_id := 6;
individual_address.individual.first_name := 'Ruldolph';
individual_address.individual.middle_initial := '';
individual_address.individual.last_name := 'Gulianni';

-- Initialize the field values for the record.
individual_address.address.address_id := 3;
individual_address.address.individual_id := 6;
individual_address.address.street_address1 := '89th St';
individual_address.address.street_address2 := '';
individual_address.address.street_address3 := '';
individual_address.address.city := 'New York City';
individual_address.address.state := 'NY';
individual_address.address.postal_code := '10028';
individual_address.address.country_code := 'USA';

-- Create a savepoint.
SAVEPOINT addressbook;

-- Process object subtypes.
insert_individual(individual_address.individual);
insert_address(individual_address.address);

–– Commit the record.

200 Oracle Database 10g PL/SQL Programming

COMMIT;

EXCEPTION

-- Rollback to savepoint on error.
WHEN OTHERS THEN
ROLLBACK to addressbook;
RETURN;

END;
/

The sample program does the following:

■ It defines a record-type variable, individual_record. All fields are
explicitly defined in the PL/SQL program equivalent to the related table.

■ It defines a record-type variable, address_record. All fields are
explicitly defined in the PL/SQL program equivalent to the related table.

■ It defines a record-type variable, individual_address_record. This
new record type is a compound record type. It has two fields, which are
the previously defined individual_record and address_record
record types. Each of the record types becomes a subtype of the
compound record type.

■ It defines an individual_address variable that uses the compound
record type individual_address_record.

■ It defines a local procedure, insert_address. The procedure takes
a single formal parameter, a variable of the address_record record
type. The local insert_address procedure inserts a row into the
addresses table.

■ It defines a local procedure, insert_individual. The procedure takes
a single formal parameter, a variable of the individual_record record
type. The local insert_individual procedure inserts a row into the
addresses table.

■ It initializes the individual_address variable field values for the
individual subtype. Initialization is performed by assigning values
to the field-level elements in the record type.

■ It initializes the field values for the address subtype. Initialization is
performed by assigning values to the field-level elements in the record type.

■ It sets a save point for transaction control.

Chapter 5: Records 201

■ It calls the local insert_individual procedure and passes an actual
parameter of the individual subtype.

■ It calls the local insert_address procedure and passes an actual
parameter of the address subtype.

■ It commits the work.

You can read more about transaction control management in Chapter 2. An
exception handler is also added to illustrate a rollback if either of the table inserts
failed. When we use two or more insert statements, transaction controls are required
for an all-or-nothing process. You can read more about exception handlers in
Chapter 7.

You have now seen how record types can be used as parameters to local
program units. While you have seen only an example of using local procedures,
the process does not differ much in stored functions, procedures, or packages.

Defining and Using Object Types as Parameters
The method changes very little with the use of objects. However, the declaration
block becomes much smaller because the object types are defined in the database.
They need not be redefined with each program. Next is an example extending the
solution presented in create_record5.sql. Leveraging object types previously
defined, we have avoided reprinting the object type definitions. The example
demonstrates passing variables with user-defined object types. You will notice that
they also use the two-dot notation to pass subtypes to the local procedures.

-- Available online as part of create_record7.sql
DECLARE

-- Define a variable of the record type.
individual_address INDIVIDUAL_ADDRESS_RECORD;

-- Define a local procedure to manage addresses inserts.
PROCEDURE insert_address
(address_in ADDRESS_RECORD) IS

BEGIN

-- Insert the values into the target object.
INSERT
INTO addresses
VALUES
(address_in.address_id
,address_in.individual_id

202 Oracle Database 10g PL/SQL Programming

,address_in.street_address1
,address_in.street_address2
,address_in.street_address3
,address_in.city
,address_in.state
,address_in.postal_code
,address_in.country_code);

END insert_address;

-- Define a local procedure to manage addresses inserts.
PROCEDURE insert_individual
(individual_in INDIVIDUAL_RECORD) IS

BEGIN

-- Insert the values into the table.
INSERT
INTO individuals
VALUES
(individual_in.individual_id
,individual_in.first_name
,individual_in.middle_initial
,individual_in.last_name);

END insert_individual;

BEGIN

-- Construct an instance of the object type.
-- It uses two nested constructors in the constructor.
individual_address :=
individual_address_record(
individual_record(7,'Quentin','','Roosevelt'),
address_record(4,7,'20 Sagamore Hill','',''

,'Oyster Bay','NY'
,'11771-1899','USA'));

-- Create a savepoint.
SAVEPOINT addressbook;

-- Process object subtypes.
insert_individual(individual_address.individual);
insert_address(individual_address.address);

–– Commit the record.
COMMIT;

Chapter 5: Records 203

EXCEPTION

-- Rollback to savepoint on error.
WHEN OTHERS THEN
ROLLBACK to addressbook;
RETURN;

END;
/

While the sample program does more than is displayed, it uses the same object
types as earlier in the chapter. Please refer to the prior examples if you would like
to review their structure or explanation. The sample program does the following:

■ It defines an object-type variable, individual_address_record, in the
anonymous block program. The object type is a compound object type and
can be used as an alternative implementation to a record type.

■ It defines a local procedure, insert_address. The procedure takes a single
formal parameter, a variable of the address_record object type. The
local insert_address procedure inserts a row into the addresses table.

■ It defines a local procedure, insert_individual. The procedure takes
a single formal parameter, a variable of the individual_record object
type. The local insert_individual procedure inserts a row into the
addresses table.

■ It initializes the individual_address variable field values for the
individual subtype. Initialization is performed by assigning values to
the field-level elements in the record type.

■ It initializes the field values for the address subtype. Initialization is
performed by assigning values to the field-level elements in the record type.

■ It sets a save point for transaction control.

■ It calls the local insert_individual procedure and passes an actual
parameter of the individual subtype.

■ It calls the local insert_address procedure and passes an actual
parameter of the address subtype.

■ It commits the work.

You have now seen how object types can be used as parameters to local program
units. You can see that object types and record types are interchangeable as formal
parameter types. While you have seen only an example of using local procedures,
the process will not differ much in stored functions, procedures, or packages.

204 Oracle Database 10g PL/SQL Programming

Chapter 5: Records 205

The choice of implementing one or the other depends on several factors. Record
types have been the traditional approach, but object types in Oracle 10g have
become very powerful. As Chapters 14–16 cover objects, all that needs to be said
here is that objects can encapsulate and localize access methods. Prior to Oracle 10g,
many developers built record structures within packages to support their user-
defined application programming interfaces (APIs). Some of these record structures
were duplicated or propagated to other APIs. When multiple versions of record
types proliferate to support APIs, they present version control and maintenance
programming problems. Using object types can eliminate this risk and extra work.

Returning Record Types from Functions
The following example uses subprograms within an anonymous block PL/SQL program.
Like the prior discussion on using record types as return values, the discussion
assumes that you understand subprograms. If you do not understand how functions
are used in PL/SQL, you should read Chapters 8 and 9 first.

Formal and actual parameters will be discussed in the respective contexts of
defining and using function return types. The examples in this section use anonymous
block programs with functions as subprograms. You should note that there are other
possible implementations. Please refer to Chapter 8 and 9 for greater detail on potential
implementation methods.

As done previously in the chapter, you will be presented with traditional handling
of record types and then object types. In Oracle 10g, you now have a better choice
between record- and object-type implementations. While these methods are very
similar, you will benefit from clear examples of both.

Defining and Using Record Types as Return Values
When defining record types as function return values, you have only one choice
of implementation. You must define an explicit record type before the function
definition. You cannot use the %ROWTYPE definition method.

The following example program uses an explicit record type before the function
in the declaration section. (As mentioned, functions are covered in Chapters 8 and 9.)
You can see that a variable of the same record type is also defined. In the execution
section, you see the assignment of the return type to the variable of the same type.
The attributes of the record type are then printed to the console with the built-in
DBMS_OUTPUT utility and dot notation.

-- Available online as part of create_function1.sql
DECLARE

-- Define a record type.
TYPE individual_record IS RECORD
(individual_id INTEGER

206 Oracle Database 10g PL/SQL Programming

,first_name VARCHAR2(30 CHAR)
,middle_initial individuals.middle_initial%TYPE
,last_name VARCHAR2(30 CHAR));

-- Define a variable of the record type.
individual INDIVIDUAL_RECORD;

-- Define a local function to return a record type.
FUNCTION get_row
(individual_id_in INTEGER)

RETURN INDIVIDUAL_RECORD IS

-- Define a cursor to return a row of individuals.
CURSOR c (individual_id_cursor INTEGER) IS
SELECT *
FROM individuals
WHERE individual_id = individual_id_cursor;

BEGIN

-- Loop through the cursor for a single row.
FOR i IN c(individual_id_in) LOOP

-- Return a %ROWTYPE from the INDIVIDUALS table.
RETURN i;

END LOOP;

END get_row;

BEGIN

-- Demonstrate function return variable assignment.
individual := get_row(1);

-- Display results.
dbms_output.put_line(CHR(10));
dbms_output.put_line('INDIVIDUAL_ID : '
|| individual.individual_id);
dbms_output.put_line('FIRST_NAME : '
|| individual.first_name);
dbms_output.put_line('MIDDLE_INITIAL : '
|| individual.middle_initial);
dbms_output.put_line('LAST_NAME : '
|| individual.last_name);

END;
/

The sample program does the following:

■ It defines a record type, individual_record.

■ It defines a variable individual of the individual_record record type.

■ It defines a local get_row function. The function takes a single formal
parameter of an integer and returns a variable of the individual_
record record type. In the local get_row function, there is a cursor
that takes a single formal parameter and returns a %ROWTYPE from the
individuals table.

■ It uses a cursor for-loop to retrieve a single row from the individuals
table. It then returns the %ROWTYPE selected by the cursor.

■ It assigns the return value from the local get_row function to an individual
variable that uses the same record-type variable.

■ It uses DBMS_OUTPUT utility to print the data.

The program will generate the following output to console:

-- Available as output from online create_function1.sql

INDIVIDUAL_ID : 1
FIRST_NAME : John
MIDDLE_INITIAL : D
LAST_NAME : Rockefeller
/

The local function returns a %ROWTYPE from the individuals table. The
return type of the local function is the same as the individual variable record
type. The conversion of the cursor data type is implicitly managed in the local
function because they are mutually assignable when they share equivalent
row structures.

NOTE
You must enable SERVEROUTPUT to see the
results printed by the DBMS_OUTPUT utility.

Defining and Using Object Types as Return Values
Object types also perform as function return values. They work like record types.
You must define an explicit object type before the function definition.

Chapter 5: Records 207

The following example program uses an explicit object type. It was introduced
in the create_record4.sql example earlier in this chapter. The function in
the declaration section defines its formal return parameter as an object type. As
in the record-type example earlier, you will find a variable of the same object type
defined in the declaration section. The execution section has the same assignment
of the function return type to a variable of the equivalent type.

-- Available online as part of create_function2.sql

DECLARE

-- Define a variable of the record type.
individual INDIVIDUAL_RECORD;

-- Define a local function to return a record type.
FUNCTION get_row
(individual_id_in INTEGER)

RETURN INDIVIDUAL_RECORD IS

-- Define a cursor to return a row of individuals.
CURSOR c (individual_id_cursor INTEGER) IS
SELECT *
FROM individuals
WHERE individual_id = individual_id_cursor;

BEGIN

-- Loop through the cursor for a single row.
FOR i IN c(individual_id_in) LOOP

-- Return a constructed object from a %ROWTYPE.
RETURN individual_record(i.individual_id

,i.first_name
,i.middle_initial
,i.last_name);

END LOOP;

END get_row;

BEGIN

-- Demonstrate function return variable assignment.
individual := get_row(1);

-- Display results.
dbms_output.put_line(CHR(10));
dbms_output.put_line('INDIVIDUAL_ID : '

208 Oracle Database 10g PL/SQL Programming

|| individual.individual_id);
dbms_output.put_line('FIRST_NAME : '
|| individual.first_name);
dbms_output.put_line('MIDDLE_INITIAL : '
|| individual.middle_initial);
dbms_output.put_line('LAST_NAME : '
|| individual.last_name);

END;
/

The sample program uses an object type defined in a prior example that is not
reprinted. The program does the following:

■ It defines a variable individual of the individual_record object type.

■ It defines a local get_row function. The function takes a single formal
parameter of an integer and returns a variable of the individual_
record object type. In the local get_row function, there is a cursor
that takes a single formal parameter and returns a %ROWTYPE from the
individuals table.

■ It uses a cursor for-loop to retrieve a single row from the individuals
table. It constructs an instance of the individual_record object type
from the %ROWTYPE field values. It then assigns that as the return value.

■ It assigns the return object instance to the individual variable of the
same object type.

■ It uses DBMS_OUTPUT utility to print the data.

In the local get_row function, there is a syntax difference between handling
an object type and a record type. While both programs have the same structure
for the local function, the return statements are different. The return types of the
functions drive the difference.

If you examine the preceding row-type example, you will see that it returns a row
from the cursor. When the cursor returns a row, it implicitly returns a %ROWTYPE
structure. In the create_function1.sql example, the %ROWTYPE structure
matches the defined record type. When the cursor row is returned, PL/SQL manages
the run-time conversion implicitly. This simplifies coding but can introduce
problems. For example, if the underlying table structure changes and the record
structure remains unchanged, the program will generally fail. It will succeed only if
the changes leave a record called a signature that contains the same count of fields
with the same data types or subtypes. Another caveat is that the columns must be
physically large enough to handle the run-time data.

Chapter 5: Records 209

If you examine the object-type example, you will see it returns a row from the
cursor. When the cursor returns a row, it implicitly returns a %ROWTYPE structure,
as did the record-type example. Unfortunately, the PL/SQL engine does not implicitly
cast a %ROWTYPE to an object type. Therefore, you must explicitly use an object
constructor in the for-loop. There are advantages and disadvantages to both
approaches. You need to examine when one approach is superior to the other.

This behavior is the expected behavior. Prior to Oracle 10g, the PL/SQL engine
saw %ROWTYPE and object types as mutually assignable when they shared
equivalent row structures. Explicit construction is now required when moving
from record types to object types. It does not matter whether they are explicitly or
implicitly defined (the latter by using %ROWTYPE). You can use online create_
function2e.sql to raise an ORA-00382 error by attempting to assign a
%ROWTYPE.

-- Available as output from online create_function2e.sql

individual_type := i;
*

ERROR at line 24:
ORA-06550: line 24, column 26:
PLS-00382: expression is of wrong type
ORA-06550: line 24, column 7:
PL/SQL: Statement ignored

The successful output of create_function2.sql is a mirror of what you saw
for the prior record-type example, so it is not redisplayed in the text.

You have learned how to use record and object types as function return
variables. While they are similar, you should also know when and where one is
more appropriate than the other. The next section will demonstrate verifying the
record- and object-type examples used.

Verifying Work with Record Types
The following query will enable us to see the success of the three record type methods
and their variations. If you have not run the individual scripts along the way, you
can run runset1.sql to obtain the full results. The SQL*Plus formatting is useful
to avoid line wrapping.

-- Available online as part of query_records1.sql
COL individual_id FORMAT 9,999
COL first_name FORMAT A14

210 Oracle Database 10g PL/SQL Programming

Chapter 5: Records 211

COL middle_initial FORMAT A1
COL last_name FORMAT A14

SELECT individual_id
, first_name
, middle_initial
, last_name
FROM individuals
ORDER BY 1;

COL address_id FORMAT 9,999
COL individual_id FORMAT 9,999
COL street_address1 FORMAT A16
COL city FORMAT A14
COL state FORMAT A2
COL country_code FORMAT A3

SELECT address_id
, individual_id
, street_address1
, city
, state
, country_code
FROM addresses
ORDER BY 1;

The query_record1.sql generates the following output to console:

INDIVIDUAL_ID FIRST_NAME M LAST_NAME
------------- -------------- - --------------

1 John D Rockefeller
2 John P Morgan
3 Ulysses S Grant
4 Klaes M van Roosevelt
5 Kermit Roosevelt
6 Ruldolph Gulianni
7 Quentin Roosevelt

ADDRESS_ID INDIVID STREET_ADDRESS1 CITY ST COU
---------- ------- ---------------- -------------- -- ---

1 3 Riverside Park New York City NY USA
2 5 20 Sagamore Hill Oyster Bay NY USA
3 6 89th Street New York City NY USA
4 7 20 Sagamore Hill Oyster Bay NY USA

Summary
You now have a working knowledge of record and object types. You have seen that
they are powerful utilities in Oracle 10g and how to use them. Hopefully, you know
when and why to use one or the other.

The skills you have developed studying record and object types will help you
leverage the collection features of Oracle 10g. Collections are covered in Chapter 6.

212 Oracle Database 10g PL/SQL Programming

CHAPTER
6

Collections

Copyright © 2004 by The McGraw-Hill Companies, Inc. Click here for terms of use.

A
s discussed in Chapter 5, records and collections are powerful
structures. They enable you to develop programs that manage
large sets of data. Records let you manage sets of variable types.
Collections let you manage groups of a variable type. Collections
also avoid the complexity of indirect reference by pointers in C/C++.

Since you have developed a working understanding of records, we will now build
on that knowledge base. We will explain collections and show you how to use
them in your PL/SQL programming code.

We will cover topics as follows. The chapter assumes you read it sequentially.
If you feel comfortable with an area, please feel free to move to the section of
interest. However, the chapter assumes you have mastery of earlier sections.

■ Introducing collections

■ Working with collections

■ Oracle 10g Collection API

Introducing Collections
Records are necessary structures to manage single rows of data. Collections are
necessary structures to manage multiple rows of data.

The first collections were PL/SQL tables, introduced in the Oracle 7 database.
Oracle 8 added two new types, both known as collections. PL/SQL tables were
renamed index-by tables. Collections let you store data sets in a row within a
table. Oracle 8i improved the access and management of collections. Oracle 9i
introduced multilevel collections.

Oracle 10g improves collections by adding ANSI functionality, globalization,
multiset operations, and unique string indexes for associative arrays. Index-by
tables were again renamed; now they are known as associative arrays.

What Is a Collection?
Collections are lists, which may be ordered or unordered. Ordered lists are indexed
by unique subscripts; unordered lists are indexed by unique identifiers, which may be
numbers, hash values, or string names.

Working with Collections
Oracle 10g provides three types of collections. None of these are technically new
to Oracle 10g. However, you might argue that associative arrays are new because of

214 Oracle Database 10g PL/SQL Programming

the significant subscript changes. Instead of unique number subscripts, Oracle 10g
allows you to use either a unique number or a string.

These are key structures that you will use frequently in PL/SQL programming.
You should take time to develop a clear understanding of what they are, when to
use them, and how to use them.

Each of the collection types will be explained and demonstrated. If you have
read the discussion in Chapter 5 on record and object types, you will have a solid
foundation for the discussion of collections. If you skipped the record and object
type discussion, it is assumed you have command of those topics. The three Oracle 10g
collection types and their descriptions are shown in Table 6-1.

Chapter 6: Collections 215

Collection
Type Description Subscript Size

Associative
arrays
(index-by
tables)

Associative array is the new name for a familiar
structure. You may have known these as index-by
tables in Oracle 8 to Oracle 9i and possibly as PL/
SQL tables in Oracle 7. They have mutated forward
in Oracle 10g and deserve a new name. They are
still sparsely populated arrays, which means the
numbering does not have to be sequential, only
unique. They now support subscripts that are
unique numbers or strings. This change moves a
familiar and powerful structure from a sparsely
populated array to a standard structured
programming language data type, known as
lists or maps.

Sequential
numbers or
unique
strings

Dynamic

Nested
tables

Nested tables were introduced in Oracle 8. They
are initially defined as densely populated arrays
but may become sparsely populated as records are
deleted. They may be stored in permanent tables
and accessed by SQL. They also may be
dynamically extended and act more like traditional
programming bags and sets than arrays.

Sequential
numbers

Dynamic

Varrays Varrays were introduced in Oracle 8. They are
densely populated arrays and behave like traditional
programming arrays. They may be stored in
permanent tables and accessed by SQL. At creation,
they have a fixed size that cannot change.

Sequential
numbers

Fixed

TABLE 6-1. Collection Type Comparison

All of the collections are single dimensional, which means that they are a list
of like data types. Data types may be standard Oracle 10g data types, subtypes, or
user-defined types. You may think of a list of like data types as a column of data,
like numbers or strings. A single column of like data types is a dimension of data.

You may define single-dimensional user collections by using standard data
types. Alternatively, you may create user-defined record or object types. While record
and object types act like multiple-dimensional collections, they are treated as single-
dimensional collections by the Oracle database. Record and object types are also
called data structures. Qualifying this helps explain why you worked through record
and object types before dealing with collection types.

Oracle 10g collections deliver set operators. These act and function like SQL set
operators in select statements. The difference is that they are used in assignments
between collections of matching signature types. Table 6-2 describes the multiset
operators.

216 Oracle Database 10g PL/SQL Programming

Multiset Operator Description

MULTISET EXCEPT The MULTISET EXCEPT operator removes one
set from another. It works like the SQL MINUS
set operator.

MULTISET INTERSECT The MULTISET INTERSECT operator evaluates two
sets and returns one set. The return set contains
elements that were found in both original sets. It
works like the SQL INTERSECT set operator.

MULTISET UNION The MULTISET UNION operator evaluates two sets
and returns one set. The return set contains all
elements of both sets. Where duplicate elements are
found, they are returned. It functions like the UNION
ALL set operator.
You may use the DISTINCT operator to eliminate
duplicates. The DISTINCT operator follows the
MULTISET UNION operator rule. It functions like
the SQL UNION operator.

SET The SET operator removes duplicates from a
collection. It acts like a DISTINCT operator in
a SQL statement.

TABLE 6-2. Set Operators for Collections

TIP
The SET operator can be used to eliminate
DISTINCT operators from your DQL select
statements. Using BULK COLLECT (covered in the
later section “Working with Associative Arrays”)
in a nested table or associative array, you can
then do the following assignment:

collection_variable := SET(collection_variable);

It will eliminate duplicate records from the set in
memory.

Deciding on the collection type that best meets your programming need is critical.
You should carefully consider the strengths and weaknesses of each collection type.
Here is a thumbnail guide to selecting the right collection:

■ Use a varray when the physical size of the collection is static and the
collection may be used in tables. Varrays are the closest thing to arrays
in other programming languages, such as Java, C, C++, or C#.

■ Use nested tables when the physical size is unknown due to run-time
variations and when the type may be used in tables. Nested tables are
like lists and bags in other programming languages.

■ Use associative arrays when the physical size is unknown due to run-time
variations and when the type will not be used in tables. Associative arrays
are ideal for standard programming solutions, such as using maps and sets.

While Table 6-1 introduced collections in alphabetical order, you will cover
them in descending alphabetical order. The discussion will start with varrays and
end with associative arrays. Coverage will include access methods in both SQL and
PL/SQL. It is hard to imagine how you would use them in PL/SQL without knowing
how to leverage these methods in your tables.

Working with Varrays
Varrays are single-dimensional structures of an Oracle 10g data type or a user-
defined record/object type. This section focuses on single-dimensional structures
of an Oracle 10g data type.

Varrays may be used in table, record, and object definitions and may be accessed
in SQL and PL/SQL. They are arrays in the traditional sense of programming languages
such as Java, C, C++, and C#. They use sequential index values to reference elements
in the structure.

Chapter 6: Collections 217

218 Oracle Database 10g PL/SQL Programming

Defining and Using Varrays as PL/SQL Program Constructs
The syntax to define a varray in a PL/SQL program unit is

TYPE type_name IS {VARRAY | VARYING ARRAY} (size_limit)
OF element_type [NOT NULL];

The type name is often a string followed by an underscore and the word varray.
Many programmers and configuration management people find it a useful pattern
to improve code readability. It is also the convention used in the chapter.

Either VARRAY or VARYING ARRAY syntax may be used, but the former is much
more common. The size limit is a required value. It is a positive integer giving the
maximum number of elements in the varray. Element type may be any Oracle 10g
data type or a user-defined data type. Allowing null values in varrays is the default.
If null values should be disallowed, the fact must be specified when they are defined.

The following example program demonstrates defining, declaring, and initializing
a varray of integers in a PL/SQL program unit. An integer is a subtype of the Oracle 10g
number data type.

Subscript index values begin at 1, not zero. This is consistent with the long-
standing behavior of index-by tables in Oracle 8 to Oracle 9i and PL/SQL tables
in Oracle 7. Most programming languages, including Java, C, C++, and C#, use
subscript index values that begin with zero.

–– Available online as part of create_varray1.sql

DECLARE
–– Define a varray of integer with 3 rows.
TYPE integer_varray IS VARRAY(3) OF INTEGER;

–– Declare and initialize a varray that allows nulls.
varray_integer INTEGER_VARRAY :=
integer_varray(NULL,NULL,NULL);

BEGIN

–– Print title.
dbms_output.put_line('Varray initialized as nulls.');
dbms_output.put_line('––––––––––––––');

–– Loop through the three records.
FOR i IN 1..3 LOOP

–– Print the contents.
dbms_output.put ('Integer Varray ['||i||'] ');
dbms_output.put_line('['||varray_integer(i)||']');

END LOOP;

Chapter 6: Collections 219

–– Assign values to subscripted members of the varray.
varray_integer(1) := 11;
varray_integer(2) := 12;
varray_integer(3) := 13;

–– Print title.
dbms_output.put (CHR(10)); – Visual line break.
dbms_output.put_line('Varray initialized as values.');
dbms_output.put_line('––––––––––––––-');

–– Loop through the three records.
FOR i IN 1..3 LOOP

–– Print the contents.
dbms_output.put_line('Integer Varray ['||i||'] '
|| '['||varray_integer(i)||']');

END LOOP;

END;
/

As shown in the preceding example, three steps are required to enable a varray
for use by your PL/SQL program. The steps are defining, declaring, and initializing
the varray data type.

■ It defines a varray data type. The varray is named integer_varray. It
has a maximum size of 3 and a data type of an integer. An integer is a
subtype of the number data type.

■ It declares and initializes a variable varray_integer. The variable is
an integer_varray varray data type. It is initialized as a three-element
collection with null values in each element.

■ It prints a title with the DBMS_OUTPUT utility.

■ It uses a range for-loop and the DBMS_OUTPUT utility to print the null
values initialized when the varray_integer variable was declared.

■ It assigns elements the numeric values of 1 to 3, respectively.

■ It uses a range for-loop and the DBMS_OUTPUT utility to print the values.

■ It uses a range for-loop and the DBMS_OUTPUT utility to print the newly
assigned values.

Here is the output from create_varray1.sql program:

–– Available online as output from create_varray1.sql

Varray initialized as nulls.
––––––––––––––
Integer Varray [1] []
Integer Varray [2] []
Integer Varray [3] []

Varray initialized as values.
––––––––––––––-
Integer Varray [1] [11]
Integer Varray [2] [12]
Integer Varray [3] [13]

If you skip any of the steps, you will encounter exceptions. The one that most
new developers encounter is an uninitialized collection, as shown here:

DECLARE
*
ERROR at line 1:
ORA-06531: Reference to uninitialized collection
ORA-06512: at line 11

It is raised when you forget to initialize the varray. The example program initializes the
varray with null values because nulls are allowed. It is also possible to initialize
the variable with values. You initialize the variable by using the varray type name
and parentheses around the values. When you initialize a varray, you set the actual
number of initialized rows. Using the Collection API COUNT method returns the number
of elements with allotted space. Use of this method will be shown in the next
example program.

If you fail to initialize all values in varray, you initially constrain your variable
to a smaller row size. You can test this by editing create_varray1.sql and
changing the initialization from three null values to two. (Please consider making a
copy of create_varray1.sql to test the changes.) When you run the program,
you will raise the following exception:

DECLARE
*
ERROR at line 1:
ORA-06533: Subscript beyond count
ORA-06512: at line 13

220 Oracle Database 10g PL/SQL Programming

Chapter 6: Collections 221

The exception means that subscript 3 is unavailable. It does not exist. While you
defined the varray as three elements in size, you initialized it as only two elements
in size. Therefore, the variable has only two valid subscripts, one and two.

If you encountered the error, you might check the Oracle 10g documentation.
You would find that there is a Collection API EXTEND method for collections and
that it is overloaded. The Collections API requires us to initialize a row and then
assign a value.

You add a row using the Collection API EXTEND method without an actual
parameter or with a single actual parameter. If you use the single parameter, it is
the number of elements to initialize. It cannot exceed the difference between the
number of possible and actual elements defined by the varray. You will read more
on using these methods in the section “Oracle 10g Collection API” at the end of
this chapter.

The following program illustrates initialization with zero rows in the declaration
section. Then, it demonstrates dynamic initialization and assignment in the
execution section:

–– Available online as part of create_varray2.sql

DECLARE

–– Define a varray of integer with 3 rows.
TYPE integer_varray IS VARRAY(3) OF INTEGER;

–– Declare and initialize a null set of rows.
varray_integer INTEGER_VARRAY := integer_varray();

BEGIN

–– Loop through the three records.
FOR i IN 1..3 LOOP

–– Initialize row.
varray_integer.EXTEND;

–– Assign values to subscripted members of the varray.
varray_integer(i) := 10 + i;

END LOOP;

–– Print title.
dbms_output.put_line('Varray initialized as values.');
dbms_output.put_line('––––––––––––––-');

–– Loop through the records to print the varrays.
FOR i IN 1..3 LOOP

–– Print the contents.
dbms_output.put ('Integer Varray ['||i||'] ');
dbms_output.put_line('['||varray_integer(i)||']');

END LOOP;

END;
/

The example program does the following:

■ It defines a varray data type. The varray is named integer_varray.
It has a maximum size of 3 and a data type of integer.

■ It declares and initializes a variable varray_integer. The variable is
an integer_varray varray data type. It is initialized as a null element
collection. A null element collection has not allocated space to any elements.

■ It uses a range for-loop and the Collection API EXTEND method to allocate
space. Then, it allocates space to the maximum number of possible
elements in the varray. After each space allocation with the EXTEND method,
it assigns a value to each element in the varray.

■ It prints a title with the DBMS_OUTPUT utility.

■ It uses a range for-loop and the DBMS_OUTPUT utility to print the newly
assigned values.

The output is shown here:

–– Available online as output from create_varray2.sql

Varray initialized as values.
––––––––––––––-
Integer Varray [1] [11]
Integer Varray [2] [12]
Integer Varray [3] [13]

You now have the fundamentals to build varray structures within PL/SQL
program units. The power and management utilities of the collection methods will
enhance your ability to use these. While this section has touched on the Collection
API methods to illustrate initialization issues, they are covered in depth later in the

222 Oracle Database 10g PL/SQL Programming

chapter. By doing so, you will be able to see how you can apply these methods
across collection types.

Defining and Using Varrays as Object Types in PL/SQL
The syntax to define an object type of varray in the database is

CREATE OR REPLACE TYPE type_name
AS {VARRAY | VARYING ARRAY} (size_limit)
OF element_type [NOT NULL];

As discussed, the type name is often a string followed by an underscore and the
word varray. Many programmers and configuration management people find this a
useful pattern to improve code readability. It is also the convention used in the chapter
for PL/SQL structure and object types.

As with a PL/SQL type structure, either VARRAY or VARYING ARRAY syntax may
be used. The former is much more common. The size limit is a required value. It is a
positive integer, the maximum number of elements in the varray. The element type
may be any Oracle 10g data type or a user-defined data type. Allowing null values
in varrays is the default. If null values should be disallowed, that fact must be
specified when they are defined.

The following example program demonstrates defining an object type of varray
with a limit of three elements. The anonymous-block PL/SQL program then uses the
varray object type by declaring and initializing a variable:

–– Available online as part of create_varray3.sql

CREATE OR REPLACE TYPE integer_varray
AS VARRAY(3) OF INTEGER;

/

DECLARE

–– Declare and initialize a null set of rows.
varray_integer INTEGER_VARRAY :=
integer_varray(NULL,NULL,NULL);

BEGIN

–– Loop through the three records.
FOR i IN 1..3 LOOP

–– Assign values to subscripted members of the varray.
varray_integer(i) := 10 + i;

END LOOP;

Chapter 6: Collections 223

224 Oracle Database 10g PL/SQL Programming

–– Print title.
dbms_output.put_line('Varray initialized as values.');
dbms_output.put_line('––––––––––––––-');

–– Loop through the three records.
FOR i IN 1..3 LOOP

–– Print contents.
dbms_output.put ('Integer Varray ['||i||'] ');
dbms_output.put_line('['||varray_integer(i)||']');

END LOOP;

END;
/

The example program does the following things:

■ It defines a varray data type in SQL as an object type in the database.
The varray is named integer_varray. It has a maximum size of 3
and a data type of integer.

■ It declares and initializes in PL/SQL a variable varray_integer. The
variable is an integer_varray varray object type. It is initialized as
a three-element collection with null values in each element.

■ It uses a range for-loop to assign elements the numeric values of 1 to 3,
respectively.

■ It prints a title with the DBMS_OUTPUT utility.

■ It uses a range for-loop and the DBMS_OUTPUT utility to print the newly
assigned values.

The output is shown here:

–– Available online as output from create_varray3.sql

Varray initialized as values.
––––––––––––––-
Integer Varray [1] [11]
Integer Varray [2] [12]
Integer Varray [3] [13]

The benefit of defining the varray object type is that it may be referenced
from any programs that have permission to use it, whereas a PL/SQL varray type
structure is limited to the program unit. Program units may be anonymous-block
programs like the example or stored procedures or packages in the database. Only

Chapter 6: Collections 225

the latter enables reference by other PL/SQL programs that have permissions to the
package. Please refer to Chapter 8 for details on creating packages and Chapter 9
for using them.

All the varrays to this point leverage the default behavior that allows null values.
It is always a bit clearer to start with the default behavior. After you master the
basic syntax and default for defining, declaring, and initializing varrays, there is a
question that needs to be resolved: When, why, and how do you allow or disallow
null rows?

This is a good question. In the small example programs in the book, it seems
that it may not matter too much. In fact, it does matter a great deal. Varrays are
the closest structure related to standard programming language arrays. Arrays are
structures that require attentive management. As a rule of thumb, arrays should
always be dense. Dense means that there should not be any gaps in the sequencing
of index values. It also means you should not have gaps in data. You should not
allow nulls when you want a varray to act like a standard array structure.

Allowing nulls in varrays ensures that you may encounter them in the data stream.
Oracle 10g does not allow you to create gaps in index values. If you do not want to
write a host of error handling routines for arrays with missing data, you should consider
overriding the default behavior. Disallow null values in varrays. Simplifying data
access and error handling is why you should disallow null values in varrays.

You will now learn how to disallow null values in varrays. The main impact of
disallowing null values in varrays is felt when you initialize them. For example, if
you redefined the varray object type used in the previous program to disallow null
values, the program would fail. You would see the following errors when attempting
to initialize the varray object type:

varray_integer INTEGER_VARRAY :=
integer_varray(NULL,NULL,NULL);

*
ERROR at line 4:
ORA-06550: line 4, column 51:
PLS-00567: cannot pass NULL to a NOT NULL constrained

formal parameter
ORA-06550: line 4, column 56:
PLS-00567: cannot pass NULL to a NOT NULL constrained

formal parameter
ORA-06550: line 4, column 61:
PLS-00567: cannot pass NULL to a NOT NULL constrained

formal parameter

A problem with programming books is that concepts need to be illustrated with
an economy of space. To do so, they are limited to small, workable examples. Small
workable arrays seldom illustrate the real world and the high demands placed on
these structures.

226 Oracle Database 10g PL/SQL Programming

When you use varrays as arrays, it will be to do large transaction processing in
memory because the I/O costs are too high. You will define varrays that contain
hundreds of elements. Some may be dynamically defined by counting rows in a
table before being built as dynamic structures.

When you initialize varrays that contain 100 percent of the data, doing so is
straightforward because the constructor can do that. However, when you initialize
varrays that contain less than all the data, adding elements requires additional
programming.

The following example allocates the 100 possible records. It does so without
initializing the data as null values by leveraging the Collection API. You will find
the Collection API covered later in the chapter.

–– Available online as part of create_varray4.sql

CREATE OR REPLACE TYPE integer_varray
AS VARRAY(100) OF INTEGER NOT NULL;

/

DECLARE

–– Declare and initialize a null set of rows.
varray_integer INTEGER_VARRAY := integer_varray();

BEGIN

–– Loop through all records.
FOR i IN 1..varray_integer.LIMIT LOOP

–– Initialize row.
varray_integer.EXTEND;

END LOOP;

–– Print to console how many rows are initialized.
dbms_output.put ('Integer Varray Initialized ');
dbms_output.put_line('['||varray_integer.COUNT||']');

END;
/

The example program creates an object type as a varray with three members or
rows. It then uses an anonymous-block PL/SQL program to test the varray object
type. The example program’s declaration defines and initializes a varray.

The example program does the following:

Chapter 6: Collections 227

■ It defines a varray data type in SQL as an object type in the database. The
varray is named integer_varray. It has a maximum size of 100 and a
data type of integer.

■ It declares and initializes a variable varray_integer. The variable is an
integer_varray varray object type. It is initialized as a null element
collection. A null element object collection mirrors the varray data type
you worked with earlier in the chapter.

■ It uses a range for-loop and the Collection API LIMIT method to set the
upward range value. Within the for-loop, it uses the Collection API EXTEND
method to allocate space to the maximum size defined by the integer_
varray varray object type.

■ It prints the number of elements for which space has been allocated with the
DBMS_OUTPUT utility. Using the Collection API COUNT method does this.

The output is shown here:

–– Available online as output from create_varray4.sql

Integer Varray Initialized [100]

You have developed skills with using varrray object types. The next section will
use those varray object types to define tables that use them as column data types.

Defining and Using Varrays as Column Data Types in Tables
The power of varrays is not limited to procedural programming. Varrays provide
Oracle 8 through Oracle 10g with unique capabilities for representing data. This is
why Oracle’s database became known as an object relational database management
system (ORDBMS). It is a standard that many have moved to adopt.

Relational databases work on a principal of normalization. Normalization is
the process of grouping related data into sets that are unique. It relies on two basic
premises. One is that data may be positioned by semantic evaluation into third
normal form or higher. Another is that data may be positioned by domain normal
key. For the purposes of the discussion on Oracle 10g collections, the book will
advocate only that each table should possess a primary key that uniquely identifies
each row.

The book uses a pseudokey as the primary key. A pseudokey is an artificial key,
that is, a key or column that it is not part of the data in the row.

In the first figure in Chapter 5, an ERD was introduced. It presented the three
principal tables for the chapter. At this point, one of the tables needs to change to
take advantage of collections. If you compare Figure 5-1 in Chapter 5 with Figure 6-1,
you will notice that the three street addresses have now become a single list.

228 Oracle Database 10g PL/SQL Programming

In a very rigid definition of third normal form, the three columns of street address
should have been in another table. That table would consist of three or more columns:
a primary key, a foreign key, and data columns. An instantiated row would contain
the following:

■ A unique pseudokey in the primary key column

■ A copy of a valid primary key from the base table, which is addresses

■ A string value for the street address

The ability to include the list in the base table reduces the complexity of physical
implementation. It eliminates the need to join the base table and the subordinate
table. This changes because the latter becomes a list within a row of the base table.

Defining Varrays in Database Tables
The create_addressbook2.sql script changes the table definition to the new
model. The following varray object type definition is provided, which supports
globalization by using a Unicode standard.

FIGURE 6-1. List-enabled ERD

–- Available online as part of create_addressbook2.sql

CREATE OR REPLACE TYPE address_varray
AS VARRAY(3) OF VARCHAR2(30 CHAR);

/

After creating the object type, the addresses table is redefined to conform to
the new ERD model. As you can see, the ERD list is implemented as a varray of a
known type. The table is also maintaining referential integrity through database
constraints. This was also done in the base case.

–– Available online as part of create_addressbook2.sql

CREATE TABLE addresses
(address_id INTEGER NOT NULL
,individual_id INTEGER NOT NULL
,street_address ADDRESS_VARRAY NOT NULL
,city VARCHAR2(20 CHAR) NOT NULL
,state VARCHAR2(20 CHAR) NOT NULL
,postal_code VARCHAR2(20 CHAR) NOT NULL
,country_code VARCHAR2(10 CHAR) NOT NULL
,CONSTRAINT address_pk PRIMARY KEY (address_id)
,CONSTRAINT addr_indiv_fk FOREIGN KEY (individual_id)
REFERENCES individuals (individual_id));

You will notice that the street_address column uses the address_varray
object type. The varray is a single-dimensioned array of three variable-length
strings. The variable-length strings are defined as noted to support Unicode.

Using Varrays in Database Tables
After creating a table with a column of a varray data type, you need to know how
to use it. Using it requires understanding data manipulation language (DML) access
methods to varrays. Varrays present no unique conditions for deleting, since deletion
is at the row level. However, there are substantive differences when it comes to
using insert and update statements.

NOTE
DML access involves inserting, updating,
and deleting data from tables.

Insert statements have one type of access. It is an all-or-nothing approach to
the data type. Insert statements allocate space necessary to the construction of the
varray. For example, in the three-element array for street_address, it is possible

Chapter 6: Collections 229

to insert one to three rows of data. When the insert is made to the row, an instance
of the collection type is built with the number of rows used.

–– Available online as part of varray_dml1.sql

INSERT
INTO addresses
VALUES
(11
,11
,address_varray
('Office of Senator McCain'
,'450 West Paseo Redondo'
,'Suite 200')

,'Tucson'
,'AZ'
,'85701'
,'USA');

The example program inserts a full set of three rows into the varray data type. It
is important to note that in the values clause, the varray data type name is used as
the constructor name. The constructor uses the syntax previously presented with a
list of comma-delimited actual parameters in a set of parentheses.

If you were to query the street_address column from the table, you would
see a return set of the constructor with its actual parameters. This is illustrated by
running a query like the following:

–– Available online as part of varray_dml1.sql

SELECT street_address
FROM addresses;

The shortened output from the query is noted.

–– Available online as output from varray_dml1.sql

STREET_ADDRESS
–––––––––––––––––––––––––––––-
ADDRESS_VARRAY('Office of Senator McCain','450 West Paseo ...

This type of output is not very useful. It is also very different than what you might
expect. Using data query language (DQL) to select a result from a varray data type
requires specialized syntax. You need to define a nested table collection structure
to actually access the varray data meaningfully.

230 Oracle Database 10g PL/SQL Programming

Chapter 6: Collections 231

NOTE
DQL is a new acronym to some. Select statements
were previously classified as DML statements.

The following example illustrates how you build a nested table collection for
the immediate problem at hand. Later in the chapter you will cover this in more
detail when studying nested tables. Here, it illustrates a rather unintuitive syntax
for querying the data.

–– Available online as part of varray_dml1.sql

–– Create a PL/SQL table data type.
CREATE OR REPLACE TYPE varray_nested_table
IS TABLE OF VARCHAR2(30 CHAR);
/

–– Use SQL*Plus to format the output.
COL column_value FORMAT A30

–– Print a list of the varray elements.
SELECT column_value
FROM THE (SELECT CAST(street_address AS

varray_nested_table)
FROM addresses
WHERE address_id = 11);

In the example program, a nested table collection is built to mirror the element
definition for the varray. Nested tables are not upwardly bound as are varrays but
can be used to temporarily hold the contents of varrays. Using a nested table is the
only way to meaningfully display the contents of a varray using a select statement.

There is a quick formatting line to dress up the output. The select statement is
a bit complex. It will be covered in more detail later in this chapter. Here, however,
are the basics of the select statement:

■ The reserved word column_value is an access method for rows in a nested
table. (You should know there is also a hidden column, nested_table_
id, which is a foreign key that maps to the row in the parent table.)

■ THE is a reserved word in SQL that enables a column_value to be selected
from a query of a nested table.

■ In the query of the addresses table, an object method CAST explicitly converts
the street_address varray to the nested table. The nested table was

232 Oracle Database 10g PL/SQL Programming

defined as a collection type in the database. It is the casting that enables the
nested table syntax to work against the varray collection type. Please check
Chapter 4 for coverage of the CAST function.

The formatted output from the query is

–– Available online as output from varray_dml1.sql

COLUMN_VALUE
–––––––––––––––
Office of Senator McCain
450 West Paseo Redondo
Suite 200

You must ensure that your varray is a mirror of your nested table structure. If they are
not data type mirrors, you will encounter an ORA-00932 error. The error complains
that the source for the CAST is the wrong type to convert to a nested table.

You can create this error by running create_addressbook2e.sql and
varray_dml1.sql. The first script will create a varray of integers. It then uses
that type to define the street_address column of the addresses table. The
second script attempts the cast to a nested table of variable strings, which raises
the inconsistent data types exception.

–– Available online as output from varray_dml1.sql

FROM THE (SELECT CAST(street_address AS
*

ERROR at line 2:
ORA-00932: inconsistent datatypes: expected – got

PLSQL.ADDRESS_VARRAY

After constructing a varray collection, allocating new elements requires
specialized syntax. As you have seen earlier in the chapter, this is done in PL/SQL
and uses the Collection API. Unfortunately, this is also the case with update
statements to varray data types in database tables. The only exception is when you
are replacing the entire set of contents.

After restoring the now-invalid data structures, you use the following example
program to replace the entire content of the street_address varray data type.
You restore the environment by running create_addressbook2.sql script
before varray_dml2.sql.

–– Available online as part of varray_dml2.sql

–– Insert into address using the varray structure.
UPDATE addresses

Chapter 6: Collections 233

SET street_address =
address_varray('Office of Senator McCain'

,'2400 E. Arizona Biltmore Cir.'
,'Suite 1150')

WHERE address_id = 11;

The update statement assigns the value of a newly constructed address_varray
collection type. Using the same complex select statement to query the new data,
you will see the following output:

–– Available online as output from varray_dml2.sql

COLUMN_VALUE
–––––––––––––––
Office of Senator McCain
2400 E. Arizona Biltmore Cir.
Suite 1150

You cannot update a portion of a varray column by any direct or indirect
method in SQL. You must update portions of varray collections by using PL/SQL
programs. The following anonyomous-block program enables the update of first
element of the varray collection:

–– Available online as part of varray_dml3.sql

DECLARE

–– Define a record type for a row of the addresses table.
TYPE address_type IS RECORD
(address_id INTEGER
,individual_id INTEGER
,street_address ADDRESS_VARRAY
,city VARCHAR2(20 CHAR)
,state VARCHAR2(20 CHAR)
,postal_code VARCHAR2(20 CHAR)
,country_code VARCHAR2(10 CHAR));

–– Define a variable of the addresses table record type.
address ADDRESS_TYPE;

–– Define a cursor to return the %ROWTYPE value.
CURSOR get_street_address
(address_id_in INTEGER) IS
SELECT *
FROM addresses
WHERE address_id = address_id_in;

BEGIN

–– Open the cursor.
OPEN get_street_address(11);

–– Fetch a into the record type variable.
FETCH get_street_address
INTO address;

–– Close the cursor.
CLOSE get_street_address;

–– Reset the first element of the varray type variable.
address.street_address(1) :=
'Office of Senator John McCain';

–– Update the varray column value.
UPDATE addresses
SET street_address = address.street_address
WHERE address_id = 11;

END;
/

The example program does the following:

■ It defines an address_type record type.

■ It defines a variable named address of the address_type record type.

■ It defines a cursor that takes one formal parameter and returns a %ROWTYPE
from the addresses table.

■ It opens the cursor by passing an actual address_id value.

■ It fetches the %ROWTYPE value into the address variable.

■ It closes the open cursor.

■ It assigns a new variable-length string to the first indexed row of the
street_address varray data type.

■ It updates the street_address varray in the addresses table with the
address.street_address varray.

You can see that it has only changed the first element of the varray collection
column. This is done using our nested table syntax, which was discussed in a prior
example. The results are in the following output file:

234 Oracle Database 10g PL/SQL Programming

–– Available online as output from varray_dml3.sql

COLUMN_VALUE
–––––––––––––––
Office of Senator John McCain
2400 E. Arizona Biltmore Cir.
Suite 1150

Another update scenario remains for you to examine. This example shows
how a varray collection column may be grown from one element to two or more
elements. Adding elements to a varray collection column requires PL/SQL. This is
like the case of updating a single element of the varray collection column. You
should recall from the prior discussion that an insert statement constructs a varray
collection column.

The insert statement for this example inserts only one element into the street_
address column, initializing only one element in the varray collection for the row.
The following example shows the insert statement:

–– Available online as part of varray_dml4.sql

–– Insert into address using the varray structure.
INSERT
INTO addresses
VALUES
(12
,12
,address_varray('Office of Senator Kennedy')
,'Boston'
,'MA'
,'02203'
,'USA');

You can use the following solution to add the missing elements to the varray
collection column:

–– Available online as part of varray_dml4.sql

DECLARE

–– Define a record type for a row of the addresses table.
TYPE address_type IS RECORD
(address_id INTEGER
,individual_id INTEGER
,street_address ADDRESS_VARRAY
,city VARCHAR2(20 CHAR)
,state VARCHAR2(20 CHAR)

Chapter 6: Collections 235

,postal_code VARCHAR2(20 CHAR)
,country_code VARCHAR2(10 CHAR));

–– Define a variable of the addresses table record type.
address ADDRESS_TYPE;

–– Define a cursor to return the %ROWTYPE value.
CURSOR get_street_address
(address_id_in INTEGER) IS
SELECT *
FROM addresses
WHERE address_id = address_id_in;

BEGIN

–– Open the cursor.
OPEN get_street_address(12);

–– Fetch a into the record type variable.
FETCH get_street_address
INTO address;

–– Close the cursor.
CLOSE get_street_address;

–– Add element space.
FOR i IN 2..3 LOOP
address.street_address.EXTEND;

END LOOP;

–– Reset the first element of the varray type variable.
address.street_address(2) := 'JFK Building';
address.street_address(3) := 'Suite 2400';

–– Update the varray column value.
UPDATE addresses
SET street_address = address.street_address
WHERE address_id = 12;

END;
/

The program does the following:

■ It defines a record type that mirrors the addresses table.

■ It defines a variable of the record type.

236 Oracle Database 10g PL/SQL Programming

■ It defines a cursor that takes a single formal parameter for the primary key
of the addresses table.

■ It opens a cursor, passing the required actual parameter.

■ It fetches the %ROWTYPE value into the defined variable.

■ It closes the open cursor.

■ It uses a range for-loop and the Collection API to create space for two
additional rows.

■ It assigns values to the second and third elements in the nested table.

■ It finally uses a DML update statement to replace the entire contents of
the street_address varray data type column.

You can see that the column now has three elements, using our nested table
syntax again. The following output file shows the results:

–– Available online as output from varray_dml4.sql

COLUMN_VALUE
–––––––––––––––
Office of Senator Kennedy
JFK Building
Suite 2400

You have now covered the features of varrays in Oracle 10g. You have seen
that varrays are highly structured collection types. The advantages and disadvantages
of varrays have been covered. Moreover, you will now know when and how to use
this collection type.

The discussion on varrays has set a foundation for moving to the next collection
type, nested tables. You saw in the select statements that varrays depend on nested
table structures in some cases. While varrays have a place in database design, they
do present challenges that can be avoided by using unbounded nested tables. You
may conclude that varrays are better suited to PL/SQL processing than they are to
defining tables.

Working with Nested Tables
Nested tables are single-dimensional structures of an Oracle 10g data type or a user-
defined record/object type. This section focuses on single-dimensional structures of
an Oracle 10g data type.

Nested tables may be used in table, record, and object definitions. They may be
accessed in SQL and PL/SQL. They are different than arrays in the traditional sense

Chapter 6: Collections 237

238 Oracle Database 10g PL/SQL Programming

of programming languages such as Java, C, C++, and C#. While they use sequential
index values to reference elements in the structure, their size is unconstrained. The
closest corollaries to standard programming languages are bags and sets.

Defining Nested Tables as Object Types
as PL/SQL Program Constructs
The syntax to define an object type of nested tables in the database is

CREATE OR REPLACE TYPE type_name
AS TABLE OF element_type [NOT NULL];

As discussed, the type name is often a string followed by an underscore and the
word table. Some programming traditions prefer the suffix of tab to that of table. It
does not matter what you choose to do. It does matter that you do it consistently.

The following example program demonstrates defining, declaring, and initializing
a nested table of cards in a PL/SQL program unit. The cards will be limited to a single
suit. They will be defined as variable-length strings:

–– Available online as part of create_nestedtable1.sql

DECLARE

–– Define a nested table of variable-length strings.
TYPE card_table IS TABLE OF VARCHAR2(5 CHAR);

–– Declare and initialize a nested table with three rows.
cards CARD_TABLE := card_table(NULL,NULL,NULL);

BEGIN

–– Print title.
dbms_output.put_line(
'Nested table initialized as null values.');

dbms_output.put_line(
'––––––––––––––––––––');

–– Loop through the three records.
FOR i IN 1..3 LOOP

–– Print the contents.
dbms_output.put ('Cards Varray ['||i||'] ');
dbms_output.put_line('['||cards(i)||']');

END LOOP;

–– Assign values to subscripted members of the varray.
cards(1) := 'Ace';

cards(2) := 'Two';
cards(3) := 'Three';

–– Print title.
dbms_output.put (CHR(10)); – Visual line break.
dbms_output.put_line(
'Nested table initialized as 11, 12 and 13.');

dbms_output.put_line(
'–––––––––––––––––––––');

–– Loop through the records to print the varrays.
FOR i IN 1..3 LOOP

dbms_output.put_line('Cards ['||i||'] '
|| '['||cards(i)||']');

END LOOP;

END;
/

As shown in the preceding example, three steps are required to enable a nested
table for use by your PL/SQL program: you must define, declare, and initialize a
nested table data type.

■ It defines a nested table data type. The nested table is named card_table.
It has no maximum size and a data type of a globalized variable string that
is five characters in length.

■ It declares and initializes a variable cards as a card_table nested
table type.

■ It prints a title with the DBMS_OUTPUT utility.

■ It uses a range for-loop and the DBMS_OUTPUT utility to print the null
values initialized when the cards variable was declared.

■ It assigns elements 1 to 3 values Ace, Two, and Three, respectively.

■ It prints a title with the DBMS_OUTPUT utility.

■ It uses a range for-loop and the DBMS_OUTPUT utility to print the newly
assigned values.

The execution section uses a for-loop to check and print the contents of the
nested table structure. Then it individually assigns values according to the subscript

Chapter 6: Collections 239

index. Finally, it uses another for-loop to check and print the modified contents of
the varray. Here is the output from create_nestedtable1.sql program:

–– Available online as output from create_nestedtable1.sql

Nested table initialized as nulls.
–––––––––––––––––
Cards Varray [1] []
Cards Varray [2] []
Cards Varray [3] []

Nested table initialized as Ace, Two and Three.
–––––––––––––––––––––––-
Cards [1] [Ace]
Cards [2] [Two]
Cards [3] [Three]

If you skip any of the steps, you will encounter exceptions. The one that most
new developers encounter is an unitialized collection, as shown next. You should
notice that the behavior of nested tables is very much like that of varrays, as covered
earlier.

DECLARE
*
ERROR at line 1:
ORA-06531: Reference to uninitialized collection
ORA-06512: at line 11

It is raised when you forget to initialize the nested table. The example program
initializes the nested table with null values because nulls are allowed. It is also
possible to initialize the variable with actual values. You initialize the variable by
using the nested table type name and parentheses around the values. When you
initialize a varray, you set the actual number of initialized rows. You can use the
Collection API COUNT method to see how many rows have been initialized.

Since nested tables are unbounded structures, when you initialize a variable,
you set the initial size. If you attempt to access an element beyond the number of
initialized rows, you will encounter the following error message. This behavior is
a mirrored behavior to the varray type covered earlier.

DECLARE
*
ERROR at line 1:
ORA-06533: Subscript beyond count
ORA-06512: at line 13

240 Oracle Database 10g PL/SQL Programming

Chapter 6: Collections 241

The exception means that subscript is unavailable. It does not exist. When you
defined the nested table as three rows in size, you set its size. Therefore, the
variable has three valid subscripts, 1, 2, and 3.

If you encountered the error, you might check the Oracle 10g documentation.
You would find that there is the Collection API EXTEND method to allocate space,
and that it is overloaded. It is also covered later in this chapter in the section
“Oracle 10g Collection API.”

As discussed in the varrays section, use of the Collection API EXTEND(n,i)
method to insert a row beyond the subscripted range will fail. It will raise the
subscript beyond count error.

You add a row using the Collection API EXTEND method without an actual
parameter or with a single actual parameter. If you use the single parameter, it
is the number of rows to initialize. It cannot exceed the difference between the
number of possible and actual rows for the varray. More on using these methods
is in the section “Oracle 10g Collection API.”

The following program illustrates initialization with zero rows in the declaration
section. Then it demonstrates dynamic initialization and assignment in the
execution section.

–– Available online as part of create_nestedtable2.sql

DECLARE

–– Define a nested table of variable-length strings.
TYPE card_suit IS TABLE OF VARCHAR2(5 CHAR);

–– Declare and initialize a null set of rows.
cards CARD_SUIT := card_suit();

BEGIN

–– Loop through the three records.
FOR i IN 1..3 LOOP

–– Initialize row.
cards.EXTEND;

–– Assign values to subscripted members of the varray.
IF i = 1 THEN
cards(i) := 'Ace';

ELSIF i = 2 THEN
cards(i) := 'Two';

ELSIF i = 3 THEN
cards(i) := 'Three';

END IF;

END LOOP;

–– Print title.
dbms_output.put_line(
'Nested table initialized as Ace, Two and Three.');

dbms_output.put_line(
'––––––––––––––––––––-');

–– Loop through the records to print the nested tables.
FOR i IN 1..3 LOOP

–– Print the contents.
dbms_output.put ('Cards ['||i||'] ');
dbms_output.put_line('['||cards(i)||']');

END LOOP;

END;
/

The example program does the following:

■ It defines the nested table type of variable-length strings that are five
characters in length.

■ It defines a variable cards using the nested table type and initializes
it as a null collection.

■ It uses a range for-loop to allocate space and assign values. Space allocation
is done by using the Oracle 10g Collection API extend method. Values are
assigned in an if-then-else block.

■ It prints a title with the DBMS_OUTPUT utility.

■ It uses a range for-loop and the DBMS_OUTPUT utility to print the newly
assigned values.

The output is shown here:

–– Available online as output from create_nestedtable2.sql

Nested table initialized as Ace, Two and Three.
–––––––––––––––––––––––-
Cards [1] [Ace]
Cards [2] [Two]
Cards [3] [Three]

242 Oracle Database 10g PL/SQL Programming

Chapter 6: Collections 243

You now have the fundamentals to build nested table structures within PL/SQL
program units. The power and management utilities of the collection methods will
enhance your ability to use these. This section has further touched on the same
Collection API methods used in the varray discussion. They help illustrate initialization
issues and are covered in depth later in the chapter. By using these in simple examples,
you will be able to see opportunities to apply the methods across collection types.

Defining and Using Nested Tables as Object Types in PL/SQL
The syntax to define an object type of varray in the database is

CREATE OR REPLACE TYPE type_name
AS TABLE OF element_type [NOT NULL];

The type name is often a string followed by an underscore and the word table. As
discussed, many programmers and configuration management people find it a
useful pattern to improve code readability. It is also the convention used in the
chapter for PL/SQL structure and object types.

The element type may be any Oracle 10g data type or a user-defined data type.
Allowing null values in varrays is the default. If null values should be disallowed,
it must be specified when they are defined.

The following example program demonstrates defining a nested table object
type. The anonymous-block PL/SQL program then uses it by declaring and initializing
a variable.

–– Available online as part of create_nestedtable3.sql

CREATE OR REPLACE TYPE card_table
AS TABLE OF VARCHAR2(5 CHAR);

/

DECLARE

–– Declare and initialize a nested table with three rows.
cards CARD_TABLE := card_table(NULL,NULL,NULL);

BEGIN

–– Print title.
dbms_output.put_line(
'Nested table initialized as nulls.');

dbms_output.put_line(
'––––––––––––––––––––');

–– Loop through the three records.
FOR i IN 1..3 LOOP

244 Oracle Database 10g PL/SQL Programming

–– Print the contents.
dbms_output.put ('Cards Varray ['||i||'] ');
dbms_output.put_line('['||cards(i)||']');

END LOOP;

–– Assign values to subscripted members of the table.
cards(1) := 'Ace';
cards(2) := 'Two';
cards(3) := 'Three';

–– Print title.
dbms_output.put (CHR(10)); – Visual line break.
dbms_output.put_line(
'Nested table initialized as Ace, Two and Three.');

dbms_output.put_line(
'–––––––––––––––––––––––-');

–– Loop through the records to print the nested table.
FOR i IN 1..3 LOOP

dbms_output.put_line('Cards ['||i||'] '
|| '['||cards(i)||']');

END LOOP;

END;
/

The example program does the following:

■ It defines a nested table object type of variable-length strings that are five
characters in length.

■ It defines a cards variable using the card_table object type.

■ It defines a variable cards using the nested table type and initializes it
as a collection of three null-value elements.

■ It prints a title with the DBMS_OUTPUT utility.

■ It uses a range for-loop to print the null values with the DBMS_OUTPUT
utility.

■ It assigns values to the cards variable elements, using the indexes 1 to 3
and the values Ace, Two, and, Three, respectively.

■ It uses a range for-loop and the DBMS_OUTPUT utility to print the newly
assigned values.

The output is shown here:

–– Available online as output from create_nestedtable3.sql

Nested table initialized as null values.
––––––––––––––––––––
Cards Varray [1] []
Cards Varray [2] []
Cards Varray [3] []

Nested table initialized as Ace, Two and Three.
–––––––––––––––––––––––-
Cards [1] [Ace]
Cards [2] [Two]
Cards [3] [Three]

The benefit of defining the nested table object type is that it may be referenced
from any programs that have permission to use it, whereas a PL/SQL nested table
type structure is limited to the program unit. Program units may be anonymous-
block programs like the example or stored procedures or packages in the database.
Only the latter enables reference by other PL/SQL programs that have permissions to
the package. Please refer to Chapter 8 for details on creating packages and Chapter 9
for using them.

The nested table type uses the default behavior that allows null values. After you
master the basic syntax and defaults for defining, declaring, and initializing varrays,
there is a question that needs to be resolved. When, why, and how do you allow or
disallow null rows?

This is a good question and one that you initially covered in the varray section.
In these small example programs, it seems that it may not matter too much, though
it will matter when you implement nested table collections. Nested tables start as
dense arrays, like varrays. However, it is possible to remove elements from nested
tables. As elements are removed, nested tables become sparse. Sparse means that
there are gaps in the sequencing of index values.

While index sequencing has gaps, logically there should not be any data gaps. If
your application design allows nulls in nested tables, you should carefully review it.
You should consider why you want to allow nulls in a nested table, because there
should never be data gaps in nested tables.

Allowing nulls in nested tables guarantees you will encounter them in the data
stream. Combined with index sequence gaps, allowing null values will increase
the amount of required error handling. You should consider overriding the default
behavior and disallowing null values in nested tables. Essentially, nested tables and
varrays are ill-suited to fill the traditional programming role of lists or maps. If you
need the functionality of a list or map, you should use an associative array.

Chapter 6: Collections 245

You will now learn how to disallow null values in nested tables. The main impact
of disallowing null values in nested tables comes when initializing them. This is a
mirror of the issue you saw in varrays earlier. For example, if you redefined the
nested table object type used in the previous program to disallow null values,
the program would fail. You would see the following errors when attempting to
initialize the varray object type:

cards CARD_TABLE := card_table(NULL,NULL,NULL);
*

ERROR at line 4:
ORA-06550: line 4, column 34:
PLS-00567: cannot pass NULL to a NOT NULL constrained

formal parameter
ORA-06550: line 4, column 39:
PLS-00567: cannot pass NULL to a NOT NULL constrained

formal parameter
ORA-06550: line 4, column 44:
PLS-00567: cannot pass NULL to a NOT NULL constrained

formal parameter

When you use nested tables as bags or sets, you will define structures that contain
hundreds of rows. Some may be dynamically defined by counting rows in a table
before being built as dynamic structures.

When you initialize nested tables that contain 100 percent of the data, doing
so is straightforward because the constructor can do that. However, when you
initialize nested tables that contain less than all the data, adding rows will require
some additional programming techniques. These are more or less equivalent to
what you worked through with varrays.

The following example allocates a full playing deck of cards. To do so, you
will work with varrays that contain the value sets. You will use varrays because
the problem is a natural fit to traditional structured arrays. There are thirteen cards
in a suit and there are four suits. We will see the use of these structures as in the
following program along with nested loops. If you are not comfortable with loop
structures, you can review them in Chapter 3.

–– Available online as part of create_nestedtable4.sql

–– Define a varray of four rows of variable-length strings.
CREATE OR REPLACE TYPE card_unit_varray
AS VARRAY(13) OF VARCHAR2(5 CHAR);

/

–– Define a varray of four rows of variable-length strings.
CREATE OR REPLACE TYPE card_suit_varray

246 Oracle Database 10g PL/SQL Programming

Chapter 6: Collections 247

AS VARRAY(4) OF VARCHAR2(8 CHAR);
/

–– Define a table of variable-length strings.
CREATE OR REPLACE TYPE card_deck_table
AS TABLE OF VARCHAR2(17 CHAR);

/

DECLARE

–– Define a counter to manage 1 to 52 cards in a deck.
counter INTEGER := 0;

–– Declare and initialize a varray of card suits.
suits CARD_SUIT_VARRAY :=
card_suit_varray('Clubs'

,'Diamonds'
,'Hearts'
,'Spades');

–– Declare and initialize a varray of card units.
units CARD_UNIT_VARRAY :=
card_unit_varray('Ace','Two','Three','Four'

,'Five','Six','Seven','Eight'
,'Nine','Ten','Jack','Queen'
,'King');

–– Declare and initialize a null nested table.
deck CARD_DECK_TABLE := card_deck_table();

BEGIN

–– Loop through the four suits of cards.
FOR i IN 1..suits.COUNT LOOP

–– Loop through the thirteen units of cards.
FOR j IN 1..units.COUNT LOOP

–– Increment counter.
counter := counter + 1;

–– Initialize row.
deck.EXTEND;

–– Assign a value to the element.
deck(counter) := units(j)||' of '||suits(i);

END LOOP;

END LOOP;

–– Print title.
dbms_output.put_line('Deck of cards by suit.');
dbms_output.put_line('–––––––––––');

–– Loop through the deck of cards.
FOR i IN 1..counter LOOP

–– Print the contents.
dbms_output.put_line('['||deck(i)||']');

END LOOP;

END;
/

The example program creates three object types. Two are varrays, which we
covered in the prior section. The third is a nested table. While you can see that a
deck of cards may be better defined as a varray, what if you are building a solution
for the casinos in Nevada or Atlantic City? They may have more than one traditional
deck of cards in their gaming deck of cards to discourage card counters.

The example program then uses an anonymous-block PL/SQL program to test the
dynamic construction of the nested table. The anonymous-block program does
the following:

■ It defines and initializes a counter variable.

■ It defines the suits variable as a card_suit_varray varray. Then,
it initializes the suits variable with clubs, diamonds, hearts, and spades.

■ It defines the units variable as a card_unit_varray varray. It then
initializes the units variable with the unit values of the possible cards.

■ It defines and initializes the card_deck_table as a null nested table
collection.

■ It uses a range for-loop to iterate through the suits variable. The upward
range limit is established by using the Collection API COUNT method. It
returns the number of elements that contain a null or data.

■ It uses a nested range for-loop to iterate through the units variable. The
nested loop manages the incrementing of the counter value. Then, it uses
the Collection API EXTEND method to allocate space to the deck nested
table variable, assigning values to the deck variable using the counter
value as the index.

248 Oracle Database 10g PL/SQL Programming

■ It prints a title with the DBMS_OUTPUT utility.

■ It uses a range for-loop and the DBMS_OUTPUT utility to print the newly
assigned values. The upward range limit is set by the count method
described previously.

The redacted output is shown here:

–– Available online as output from create_nestedtable4.sql

Deck of cards by suit.
–––––––––––
[Ace of Clubs]
[Two of Clubs]
[Three of Clubs]
...
The remainder is redacted to conserve space.
...
[Jack of Spades]
[Queen of Spades]
[King of Spades]

You have developed skills using nested table collections as object types. The
next section will use nested table collections and define tables that use them as
column data types.

Defining and Using Nested Tables as Column Data Types in Tables
After creating a table with a column of a nested table data type, you need to know
how to use it. Using it requires understanding DML access methods and how they
work with nested tables. Nested tables, like varrays, present no unique conditions
for deleting, since deletion is at the row level. However, there are substantive
differences when it comes to using insert and update statements.

The differences are less than those encountered with varrays on updates. Nested
tables provide a more intuitive access set for DML. Since the ERD represents
street_address as a list, there is no need to redefine it. A varray or nested table
is an implementation of a list.

While DML is more intuitive, you do lose some flexibility on database constraints.
When you worked with varrays earlier in the chapter, you were able to define a
collection column and set the constraint to disallow null values. This is a new feature
in Oracle 10g. Varrays are now stored as inline structures, enabling a NOT NULL
constraint. By contrast, nested tables as column values do not let you use a NOT
NULL constraint. This is true when you define the table type with the default or
override the default to disallow nulls. When you attempt to use a table type in a

Chapter 6: Collections 249

table definition and set the column constraint to NOT NULL, it will raise an ORA-
02331 error.

NOTE
If you use the oerr tool to check an ORA-02331
error, it will tell you that it applies to varrays.
This is no longer true.

You can test the limitation on database constraints easily. Create a nested table
data type like the following:

–– Available online as part of create_addressbook3e.sql

CREATE OR REPLACE TYPE address_varray
AS TABLE OF VARCHAR2(30 CHAR) NOT NULL;

/

Then, you can attempt to use it as a column data type in a table with the NOT
NULL constraint. The create_addressbook3e.sql demonstrates this. You
will see the following error raised if you run the script:

–– Available online as output from create_addressbook3e.sql

,street_address ADDRESS_VARRAY NOT NULL
*

ERROR at line 4:
ORA-02331: cannot create constraint on column of datatype

Named Table Type

The table creation fails because the nested table type disallows using the NOT NULL
constraint. Nested tables are not constrainable by definition. You should consider
this when you use a nested table. You are storing a table that is only referenced
through the parent table. Placing a NOT NULL column constraint is inconsistent with
a nested table type.

A NOT NULL constraint on a nested table column is equivalent to mandating
a row be inserted in the nested table before defining it. This is impossible. A NOT
NULL constraint in this case acts like a database referential integrity constraint and
is therefore disallowed. NOT NULL constraints for nested tables become application
design considerations when inserting or updating rows.

After reading this section, you want to consider why you would use a varray
in table definitions. You will see that nested tables provide a more natural access
method to elements within DML update statements.

250 Oracle Database 10g PL/SQL Programming

Chapter 6: Collections 251

The create_addressbook3.sql script builds the environment for this
section. You should run it before attempting to use any of the following scripts.

Like varrays covered earlier, insert statements have one type of access. It is an
all-or-nothing approach to the data type. Insert statements allocate space necessary
to the construction of the nested table. For example, in a nested table
implementation of street_address, it is possible to insert one to any number of
rows of data. When the insert is made to the row, an instance of the collection type
is constructed with the number of rows chosen. As you see, the syntax to insert a
nested table is a mirror to that used for a varray. The single exception is the name
of the collection type used in the constructor.

–– Available online as part of nestedtable_dml1.sql

INSERT
INTO addresses
VALUES
(21
,21
,address_table
('Office of Senator McCain'
,'450 West Paseo Redondo'
,'Suite 200')

,'Tucson'
,'AZ'
,'85701'
,'USA');

The example program inserts a full set of three rows into the nested table data type.
It is important to note that in the values clause, the nested table data type name is
used as the constructor name. The constructor uses the syntax previously presented
with a list of comma-delimited actual parameters in a set of parentheses.

If you were to query the street_address column from the table, you would
see a return set of the constructor with its actual parameters. This is illustrated by
running a query like the following:

–– Available online as part of nestedtable_dml1.sql

SELECT street_address
FROM addresses;

The shortened output from the query is noted.

–– Available online as output from nestedtable_dml1.sql

STREET_ADDRESS
–––––––––––––––––––––––––––––-
ADDRESS_TABLE('Office of Senator McCain', '450 West Paseo ...

This type of output is not very useful. It is also very different than what you
might expect. Using data query language (DQL) to select a result from a nested table
data type requires specialized syntax. Fortunately, unlike the varray you implemented
by casting to a nested table, you can directly access nested tables in DQL.

The following example formats the output with SQL*Plus. It then selects the
column values from the nested table one row at a time. A bit more intuitive than
the varray DQL covered, it is still complex.

–– Available online as part of nestedtable_dml1.sql

–– Use SQL*Plus to format the output.
COL column_value FORMAT A30

–– Print a list of the varray elements.
SELECT column_value
FROM THE (SELECT street_address

FROM addresses
WHERE address_id = 21);

The select statement does the following:

■ The reserved word column_value is an access method for rows in a
nested table. (As mention earlier, there is also a hidden column, nested_
table_id, which is a foreign key that maps to the row in the parent table.)

■ THE is a reserved word in SQL that enables a column_value to be
selected from a query of a nested table.

The formatted output from the query is

–– Available online as output from nestedtable_dml1.sql

COLUMN_VALUE
–––––––––––––––
Office of Senator McCain
450 West Paseo Redondo
Suite 200

The DQL to access the values in a nested table returns a row set. A problem
with a row set is merging the row set with other data in SQL. Since other elements
returned in a normal selection will have one occurrence per row, representing the

252 Oracle Database 10g PL/SQL Programming

data is difficult. As you review the following query, it becomes clear that using SQL
to manage nested table returns is not effective:

–– Available online as output from nestedtable_dml1.sql

–– Use SQL*Plus to format the output.
COL data FORMAT A30

SELECT s.data
FROM (SELECT 1 ordering

, rownum roworder
, individual_id
, first_name
|| ' '
|| middle_initial
|| ' '
|| last_name data
FROM individuals i2
UNION ALL
SELECT 2 ordering
, rownum roworder
, individual_id
, column_value data
FROM THE (SELECT street_address

FROM addresses)
, addresses
UNION ALL
SELECT 3 ordering
, rownum roworder
, individual_id
, city
|| ', '
|| state
|| ' '
|| postal_code data
FROM addresses a
ORDER BY 1,2) s

, individuals i
WHERE s.individual_id = i.individual_id
AND i.individual_id = 21;

The select statement does the following:

■ It returns the data column only for all rows that have an individual_id
equal to 21.

Chapter 6: Collections 253

254 Oracle Database 10g PL/SQL Programming

■ It builds an inline table, sometimes called a run-time view. The inline table
is three queries joined by the UNION ALL operator. The operator simply
returns all rows from each of the joined queries, assuming there are no
duplicates.

■ The inline table query would return in a random row order without an
ORDER BY clause. Unfortunately, there is no natural data to use that will
let you order the return values correctly. Each of the queries returns two
pseudocolumns to enable the rows to be ordered. The first column is a
numeric literal 1, 2, or 3, which is then used to group return sets. The
second column is a numeric value derived by using the internal rownum
value. The rownum value is assigned to each row returned from the query
in the retrieval sequence. The rownum value preserves the ordering of the
nested table.

■ The inline table individual_id return value is then joined to the rows
returned from the individuals table.

The formatted output from the query is

–– Available online as output from nestedtable_dml1.sql

DATA
–––––––––––––––
John McCain
Office of Senator McCain
450 West Paseo Redondo
Suite 200
Tucson, AZ 85701

You see that SQL presents some limitations. PL/SQL can help you erase those
limitations. You will build a function to return a single variable-length string with
row breaks. If you need to review the details of building stored functions, please
check Chapter 8. Likewise, you should check the Collection API later in this chapter
for details on the count method. Then, you can use that to write an efficient DQL
select statement.

The following function takes the row returns and creates a single variable-length
string. You will find it a useful example, especially in the case of building mailing
addresses:

–– Available online as output from nestedtable_dml1.sql

CREATE OR REPLACE FUNCTION many_to_one
(street_address_in ADDRESS_TABLE)

RETURN VARCHAR2 IS

–– Define a return variable and initial it.
retval VARCHAR2(4000) := '';

BEGIN

–– Loop from the beginning to end of the nested table.
FOR i IN 1..street_address_in.COUNT LOOP

–– Append the next value and a line break.
retval := retval || street_address_in(i) || CHR(10);

END LOOP;

RETURN retval;

END many_to_one;
/

The stored function does the following:

■ It takes a single formal parameter of a nested table. The nested table defined
type is the one used throughout the example.

■ It defines and initializes a variable-length string as return variable in the
declaration section.

■ It has a for-loop in the execution section that iterates through all the rows
in the nested table passed into the function. In the for-loop it appends the
value of all prior rows, the new row, and a line return.

■ It returns a variable-length string after the for-loop.

SQL*Plus again formats the column. As you see, the query is much simpler than
the one used previously:

–– Available online as output from nestedtable_dml1.sql

–– Use SQL*Plus to format the output.
COL address_label FORMAT A30

–– Print a list of the joined elements.
SELECT i.first_name || ' '
|| i.middle_initial || ' '
|| i.last_name || CHR(10)
|| many_to_one(a.street_address)
|| city || ', '
|| state || ' '

Chapter 6: Collections 255

|| postal_code address_label
FROM addresses a
, individuals i
WHERE a.individual_id = i.individual_id
AND i.individual_id = 21;

The select statement is shorter, easier to read, and more effective. The select
statement does the following:

■ It returns the data column only for all rows that have an individual_id
equal to 21.

■ It passes the nested table data type to a stored function that returns a
variable string.

■ It joins the primary key of the individuals table with the foreign key of
the addresses table.

The formatted output from the query is

–– Available online as output from nestedtable_dml1.sql

ADDRESS_LABEL
–––––––––––––––
John McCain
Office of Senator McCain
450 West Paseo Redondo
Suite 200
Tucson, AZ 85701

As you have seen earlier in the chapter, PL/SQL is the only way to update varrays
unless changing the entire content. This is not the case with nested tables. A key
advantage of nested tables is that you can update individual row elements. These
updates can be done directly in DML update statements.

You use the following example program to replace the entire content of the
street_address nested table data type:

–– Available online as part of nestedtable_dml2.sql

–– Insert into address using the varray structure.
UPDATE addresses
SET street_address =

address_table('Office of Senator McCain'
,'2400 E. Arizona Biltmore Cir.'
,'Suite 1150')

WHERE address_id = 21;

256 Oracle Database 10g PL/SQL Programming

The update statement assigns the value of a newly constructed address_
table collection type. It does so by constructing an instance of a nested table.
This is done through a construction process, where actual parameters are passed
inside parentheses and delimited by commas.

Using the same complex select statement to query the new data, you will see
the following output:

–– Available online as output from nestedtable_dml2.sql

COLUMN_VALUE
–––––––––––––––
Office of Senator McCain
2400 E. Arizona Biltmore Cir.
Suite 1150

You can update a portion of a nested table column directly in SQL. Alternatively,
you may use two approaches in PL/SQL. This is an improvement over the lack of
direct update capability for the varray column.

The following program will update the first row in the street_address
nested table. It will add the senator’s first name to the variable-length string:

–– Available online as part of nestedtable_dml3.sql

–– Update the column value directly in SQL.
UPDATE THE (SELECT street_address

FROM addresses
WHERE address_id = 21)

SET column_value = 'Office of Senator John McCain'
WHERE column_value = 'Office of Senator McCain';

The formatted output from the query is

–– Available online as output from nestedtable_dml3.sql

COLUMN_VALUE
–––––––––––––––
Office of Senator John McCain
450 West Paseo Redondo
Suite 200

Alternatively, you can use PL/SQL to do the update. Two approaches you can
choose from in PL/SQL are

■ A direct update of a row in the nested table

■ An update of all the row contents for a nested table column

Chapter 6: Collections 257

The update of all row contents is a mirror to the approach used earlier for varrays.
You should check the example provided earlier in the chapter for that approach.
Next you will see how to update a row in a nested table column directly. The
example uses dynamic SQL and bind variables. Both are covered in Chapter 13.

–– Available online as part of nestedtable_dml3.sql

–– Anonymous block using PL/SQL nested table update.
DECLARE

–– Define old and new values.
new_value VARCHAR2(30 CHAR) :=
'Office of Senator John McCain';

old_value VARCHAR2(30 CHAR) :=
'Office of Senator McCain';

–– Build SQL statement to support bind variables.
sql_statement VARCHAR2(100 CHAR)
:= 'UPDATE THE (SELECT street_address '
|| ' FROM addresses '
|| ' WHERE address_id = 21) '
|| 'SET column_value = :1 '
|| 'WHERE column_value = :2';

BEGIN

–– Use dynamic SQL to run the update statement.
EXECUTE IMMEDIATE sql_statement
USING new_value, old_value;

END;
/

The PL/SQL program leverages bind variables and dynamic SQL to manage the
update. You can see a more generic solution to this problem in Chapter 13. It will
show you how to implement an API to hide the update syntax requirements from
application developers. The PL/SQL program does the following:

■ It defines and declares a variable with the new data to put in the row of
the nested table data type.

■ It defines and declares a variable with the old data to find the row in the
nested table data type.

■ It defines a SQL update statement with two bind variables.

258 Oracle Database 10g PL/SQL Programming

Chapter 6: Collections 259

■ It executes a dynamic SQL execution of the update statement with the old
and new data variables as bind variables.

NOTE
The bind variables are numerically numbered
placeholders. Position-specific variables or strings
reference them with the USING clause.

The formatted output from the query is the same as shown in the last example. It
is not redisplayed to save space.

Updates can only be done for elements within a nested table. If you want to add
an element to a nested table column value, you must use PL/SQL. The following
program shows you how to add two rows of data.

The insert statement is the same except for type definition to the one you used in
the varray update discussion. It inserts only one element into the street_address
column, initializing only one element in the nested table collection for the row. The
following example shows the insert statement:

–– Available online as part of nestedtable_dml4.sql

–– Insert into address using the varray structure.
INSERT
INTO addresses
VALUES
(12
,12
,address_table('Office of Senator Kennedy')
,'Boston'
,'MA'
,'02203'
,'USA');

You can use the following solution to add the missing elements to the nested
table collection column. You should note there is only one difference between a
varray and nested table. That difference is the data type.

–– Available online as part of nestedtable_dml4.sql

DECLARE

–– Define a record type for a row of the addresses table.
TYPE address_type IS RECORD
(address_id INTEGER

,individual_id INTEGER
,street_address ADDRESS_TABLE
,city VARCHAR2(20 CHAR)
,state VARCHAR2(20 CHAR)
,postal_code VARCHAR2(20 CHAR)
,country_code VARCHAR2(10 CHAR));

–– Define a variable of the addresses table record type.
address ADDRESS_TYPE;

–– Define a cursor to return the %ROWTYPE value.
CURSOR get_street_address
(address_id_in INTEGER) IS
SELECT *
FROM addresses
WHERE address_id = address_id_in;

BEGIN

–– Open the cursor.
OPEN get_street_address(22);

–– Fetch a into the record type variable.
FETCH get_street_address
INTO address;

–– Close the cursor.
CLOSE get_street_address;

–– Add element space.
FOR i IN 2..3 LOOP
address.street_address.EXTEND;

END LOOP;

–– Reset the first element of the varray type variable.
address.street_address(2) := 'JFK Building';
address.street_address(3) := 'Suite 2400';

–– Update the varray column value.
UPDATE addresses
SET street_address = address.street_address
WHERE address_id = 22;

END;
/

The program does the following:

260 Oracle Database 10g PL/SQL Programming

■ It defines a record type that mirrors the addresses table.

■ It defines a variable of the record type.

■ It defines a cursor that takes a single formal parameter for the primary
key of the addresses table.

■ It opens a cursor, passing the required actual parameter.

■ It fetches the %ROWTYPE value into the defined variable.

■ It closes the open cursor.

■ It uses a range for-loop and the Collection API to create space for two
additional rows.

■ It assigns values to the second and third elements in the nested table.

■ It finally uses a DML update statement to replace the entire contents of
the street_address nested table data type column.

You can see that the column now has three elements, using our nested table
syntax again. The following output file shows the results:

–– Available online as output from varray_dml4.sql

COLUMN_VALUE
–––––––––––––––
Office of Senator Kennedy
JFK Building
Suite 2400

You have now covered the features of nested tables in Oracle 10g. You have
seen that nested tables are structured collection types. The advantages and
disadvantages of nested tables have been covered and contrasted against varrays.
Moreover, you will now know when and how to use this collection type.

Working with Associative Arrays
Associative arrays are single-dimensional structures of an Oracle 10g data type
or a user-defined record/object type. As discussed at the beginning of the section,
they were previously known as PL/SQL tables. This section focuses on single-
dimensional structures of the associative array.

Associative arrays cannot be used in tables. They may be used only as
programming structures. They can be accessed only in PL/SQL. They are like
the other collection types and different than arrays in the traditional sense of
programming languages such as Java, C, C++, and C#. They are close cousins

Chapter 6: Collections 261

to lists and maps. They do not have the capability of linked lists but may be made to
act that way through a user-defined programming interface.

It is important to note some key issues presented by associative arrays. These
issues drive a slightly different approach to illustrating their use. Associative arrays

■ Do not require initialization and have no constructor syntax. They do not
need to allocate space before assigning values, which eliminates using the
Collection API EXTEND method.

■ Can be indexed numerically up to and including Oracle 10g. In Oracle
10g, they can also use unique variable-length strings.

■ Can use any integer as the index value, which means any negative, positive,
or zero whole numbers.

■ Are implicitly converted from equivalent %ROWTYPE, record type, and object
type return values to associative array structures.

■ Are the key to using the FORALL statement or BULK COLLECT clause,
which enables bulk transfers from the database to a programming unit.

■ Require special treatment when using a character string as an index value
in any database using globalized settings, such as NLS_COMP or NLS_SORT
initialization parameters.

You will start by seeing the expanded definition techniques provided in Oracle
10g. Then examine their principle uses as PL/SQL programming structures.

Defining and Using Associative Arrays
as PL/SQL Program Constructs
The syntax to define an associative array in PL/SQL has two possibilities. One is

CREATE OR REPLACE TYPE type_name
AS TABLE OF element_type [NOT NULL]
INDEX BY [PLS_INTEGER |

BINARY_INTEGER |
VARCHAR2(size)];

The same issues around enabling or disabling null values in nested tables apply
to associative arrays. As a rule, you should ensure that data in an array is not null.
You can do that by enabling the constraint when defining an associative array or
programmatically. It is a decision that you will need to make on a case-by-case basis.

You can use a negative, positive, or zero number as the index value for associative
arrays. Both PLS_INTEGER and BINARY_INTEGER types are unconstrained types
that map to call specifications in C/C++, C#, and Java in Oracle 10g.

262 Oracle Database 10g PL/SQL Programming

You can use variable-length strings up to four thousand characters in length. The
VARCHAR2 type supports the convention physical size or a size of CHAR for globalized
implementation.

The other possible syntax to define an associate array is

CREATE OR REPLACE TYPE type_name
AS TABLE OF element_type [NOT NULL]
INDEX BY key_type;

The key_type alternative enables you to use VARCHAR2, STRING, or LONG
data types. Both VARCHAR2 and STRING require a size definition. The LONG data
type does not, because it is by definition a VARCHAR2(32760). You should refer
to Chapter 16 for coverage of LONG data types.

As discussed, associative arrays do not require initialization and do not have
a constructor syntax. This is a substantive difference between the other two
collection types, varrays and nested tables. It is a tremendous advantage to using
associative arrays in PL/SQL. This is especially true because the basic structure
of associative arrays with an integer index has not changed much since their
implementation in Oracle 7, release 7.3.

If you attempt to construct an associative array, you will raise a PLS-00222
exception. The following program attempts to construct an associative array:

–– Available online as part of create_assocarray1.sql

DECLARE

–– Define an associative array of strings.
TYPE card_table IS TABLE OF VARCHAR2(5 CHAR)
INDEX BY BINARY_INTEGER;

–– Declare and attempt to construct an associative array.
cards CARD_TABLE := card_table('A','B','C');

BEGIN
NULL;

END;
/

It will raise the following error messages:

–– Available online as output from create_assocarray1.sql

cards CARD_TABLE := card_table('A','B','C');
*

ERROR at line 8:
ORA-06550: line 8, column 23:

Chapter 6: Collections 263

PLS-00222: no function with name 'CARD_TABLE' exists in
this scope

ORA-06550: line 8, column 9:
PL/SQL: Item ignored

The failure occurs because the INDEX BY clause has built an associative array, not
a nested table. While a nested table type definition implicitly defines a constructor,
an associative array does not.

In our previous discussion, the object constructor was qualified as a function.
Other collection types, varrays and nested tables, are object types that implicitly
define constructor functions. An associative array is a structure, not an object type.
Therefore, it does not have an implicitly built constructor function and fails when
you attempt to call the function.

Likewise, you cannot navigate an associative array until it contains elements.
The following example program demonstrates the failure:

–– Available online as part of create_assocarray2.sql

DECLARE

–– Define an associative array of strings.
TYPE card_table IS TABLE OF VARCHAR2(5 CHAR)
INDEX BY BINARY_INTEGER;

–– Define an associative array variable.
cards CARD_TABLE;

BEGIN

–– Print an element of the cards associative array.
DBMS_OUTPUT.PUT_LINE(cards(1));

END;
/

It will raise the following exception, which is quite different from those of other
collection types. As qualified previously, you get an uninitialized collection error
from varrays and nested tables. Associative arrays raise a no data found exception.
The no data found error occurs because associative array elements are built through
direct element assignment.

–– Available online as output from create_assocarray2.sql

DECLARE
*
ERROR at line 1:

264 Oracle Database 10g PL/SQL Programming

Chapter 6: Collections 265

ORA-01403: no data found
ORA-06512: at line 13

As a rule of thumb, you want to avoid the possibility of this error. The following
program provides a mechanism to avoid encountering the error:

–– Available online as part of create_assocarray3.sql

DECLARE

–– Define an associative array of strings.
TYPE card_table IS TABLE OF VARCHAR2(5 CHAR)
INDEX BY BINARY_INTEGER;

–– Define an associative array variable.
cards CARD_TABLE;

BEGIN

IF cards.COUNT <> 0 THEN

–– Print an element of the cards associative array.
DBMS_OUTPUT.PUT_LINE(cards(1));

ELSE

–– Print an element of the cards associative array.
DBMS_OUTPUT.PUT_LINE('The cards collection is empty.');

END IF;

END;
/

The Collection API COUNT method returns a zero value under only two conditions:

■ When a varray or nested table collection is initialized and no space
is allocated to elements.

■ When an associative array has no assigned elements.

Since the second condition is met, the program returns the message from the
else statement. The output follows:

–– Available online as output from create_assocarray3.sql

The cards collection is empty.

The Collection API EXTEND method will fail to allocate space to an associative
array. The following program illustrates the attempt:

–– Available online as part of create_assocarray4.sql

DECLARE

–– Define an associative array of strings.
TYPE card_table IS TABLE OF VARCHAR2(5 CHAR)
INDEX BY BINARY_INTEGER;

–– Define an associative array variable.
cards CARD_TABLE;

BEGIN

IF cards.COUNT <> 0 THEN

–– Print an element of the cards associative array.
DBMS_OUTPUT.PUT_LINE(cards(1));

ELSE

–– Allocate space like varray and nested tables do.
cards.EXTEND;

END IF;

END;
/

The attempt to extend an associative array raises the following error:

–– Available online as output from create_assocarray4.sql

cards.EXTEND;
*

ERROR at line 20:
ORA-06550: line 20, column 5:
PLS-00306: wrong number or types of arguments in call to

'EXTEND'
ORA-06550: line 20, column 5:
PL/SQL: Statement ignored

The wrong number or types of arguments error is raised because the Collection API
EXTEND method can only operate on varrays and nested tables. You see the type
argument because an associative array is a structure, not an object type.

266 Oracle Database 10g PL/SQL Programming

Chapter 6: Collections 267

You have developed an appreciation of why associative arrays cannot be
constructed like varrays and nested tables. You will now experiment with defining
and initializing associative arrays.

Initializing Associative Arrays
As discussed, you can build associative arrays with a number index or a unique
variable-length string. Number indexes must be integers, which are positive,
negative, and zero numbers. Unique variable-length strings can be VARCHAR2,
STRING, or LONG data types.

You see how to assign elements to a numerically indexed associative array in
the following example:

–– Available online as part of create_assocarray5.sql

DECLARE

–– Define a varray of twelve strings.
TYPE months_varray IS VARRAY(12) OF STRING(9 CHAR);

–– Define an associative array of strings.
TYPE calendar_table IS TABLE OF VARCHAR2(9 CHAR)
INDEX BY BINARY_INTEGER;

–– Declare and construct a varray.
month MONTHS_VARRAY :=
months_varray('January','February','March'

,'April','May','June'
,'July','August','September'
,'October','November','December');

–– Declare an associative array variable.
calendar CALENDAR_TABLE;

BEGIN

–– Check if calendar has no elements.
IF calendar.COUNT = 0 THEN

–– Print a title
DBMS_OUTPUT.PUT_LINE('Assignment loop:');
DBMS_OUTPUT.PUT_LINE('––––––––');

–– Loop through all the varray elements.
FOR i IN month.FIRST..month.LAST LOOP

–– Initialize a null associative array element.
calendar(i) := '';

–– Print an indexed element from the array.
DBMS_OUTPUT.PUT_LINE(
'Index ['||i||'] is ['||calendar(i)||']');

–– Assign the numeric index valued varray element
–– to an equal index valued array element.
calendar(i) := month(i);

END LOOP;

–– Print a title
DBMS_OUTPUT.PUT(CHR(10));
DBMS_OUTPUT.PUT_LINE('Post-assignment loop:');
DBMS_OUTPUT.PUT_LINE('––––––––––-');

–– Loop through all the associative array elements.
FOR i IN calendar.FIRST..calendar.LAST LOOP

–– Print an indexed element from the array.
DBMS_OUTPUT.PUT_LINE(
'Index ['||i||'] is ['||calendar(i)||']');

END LOOP;

END IF;

END;
/

The preceding example illustrates moving the contents of a varray to an
associative array. In this example, both structures have a numeric index value.

■ It defines a varray data type. The varray is named months_varray. It
has a maximum size of twelve and a data type of string. The string is nine
characters in length.

■ It defines an associative array data type. The associative array is named
calendar_table. It has no maximum size. The associative array uses
a VARCHAR2 data type. The VARCHAR2 is nine characters in length. The
associative array uses an integer as an index value.

■ It declares and initializes a variable month. The variable is a varray data
type, named months_varray. It is initialized as a twelve-element
collection with month names as the values in each element.

268 Oracle Database 10g PL/SQL Programming

■ It checks that the associative array variable calendar has no elements. It
checks for a zero value by comparing the Collection API COUNT method
return.

■ It uses a range for-loop to move from the first element to the last in the
month varray. The range is established by using the Collection API FIRST
and LAST methods.

■ In the range for-loop, it assigns a null value using an index value equal
to the month varray index. This is the only way to allocate space to an
associative array. It effectively creates a numerically indexed null element.

■ In the range for-loop, it assigns a value from the month varray to the
calendar associative array. Using an index value equal to both the calendar
and month collections, it effects the assignment. If the null assignment were
skipped in the first loop, the assignment would do two things: the assignment
would create an element with the equal numeric index value and then assign
it the value held by the varray. Finally, it prints the assignment to the calendar
associative array.

■ It uses a range for-loop to move from the first element to the last in the
calendar associative array. The range is established by using the
Collection API FIRST and LAST methods.

■ It prints the indexes and values from calendar associative array with
the DBMS_OUTPUT utility.

Its output prints a line for each month for both collection types. The following is
a shortened copy of the output:

–– Available online as output from create_assocarray5.sql

Assignment loop:
––––––––
Index [1] is []
Index [2] is []
...
Index [11] is []
Index [12] is []

Post-assignment loop:
–––––––––––
Index [1] is [January]
Index [2] is [February]
...
Index [11] is [November]
Index [12] is [December]

Chapter 6: Collections 269

270 Oracle Database 10g PL/SQL Programming

If you decide, in Oracle 10g, to use a variable-length string as an index value,
the process changes. The standard range for-loop works to assign values from the
varray to the associative array. However, the same type of range for-loop will fail to
read the associative array. The following example program shows you the failure:

–– Available online as part of create_assocarray5e.sql

DECLARE

–– Define a varray of twelve strings.
TYPE months_varray IS VARRAY(12) OF STRING(9 CHAR);

–– Define an associative array of strings.
TYPE calendar_table IS TABLE OF VARCHAR2(9 CHAR)
INDEX BY VARCHAR2(9 CHAR);

–– Declare and construct a varray.
month MONTHS_VARRAY :=
months_varray('January','February','March'

,'April','May','June'
,'July','August','September'
,'October','November','December');

–– Declare an associative array variable.
calendar CALENDAR_TABLE;

BEGIN

–– Check if calendar has no elements.
IF calendar.COUNT = 0 THEN

–– Print a title
DBMS_OUTPUT.PUT_LINE('Assignment loop:');
DBMS_OUTPUT.PUT_LINE('––––––––');

–– Loop through all the varray elements.
FOR i IN month.FIRST..month.LAST LOOP

–– Assign the numeric index-valued varray element
–– to an equal index-valued array element.
calendar(month(i)) := i;

–– Print an indexed element from the array.
DBMS_OUTPUT.PUT_LINE(
'Index ['||month(i)||'] is ['||i||']');

END LOOP;

–– Print a title
DBMS_OUTPUT.PUT(CHR(10));
DBMS_OUTPUT.PUT_LINE('Post-assignment loop:');
DBMS_OUTPUT.PUT_LINE('––––––––––-');

–– Loop through all the associative array elements.
FOR i IN calendar.FIRST..calendar.LAST LOOP

–– Print an indexed element from the array.
DBMS_OUTPUT.PUT_LINE(
'Index ['||i||'] is ['||calendar(i)||']');

END LOOP;

END IF;

END;
/

The preceding example illustrates an attempt to navigate an associative array
using string names as the index values in a range for-loop. There is one line that
changes between the create_assocarray5.sql and create_
assocarray5e.sql programs. The line follows:

create_assocarray5.sql create_assocarray5e.sql

–– Assign a numeric index.

calendar(i) := '';
–– Assign a numeric index.

Calendar(month(i)) := '';

The initialization in this line works. However, the next range for-loop attempts
to use the range loop counter as the index value for the associative array. When
attempting to use a range for-loop with start and end positions set by the Collection
API FIRST and LAST functions, it raises the following exception:

–– Available online as output from create_assocarray5e.sql

Assignment loop:
––––––––
Index [January] is [1]
Index [February] is [2]

Index [November] is [11]
Index [December] is [12]

Post-assignment loop:
––––––––––-

Chapter 6: Collections 271

DECLARE
*
ERROR at line 1:
ORA-06502: PL/SQL: numeric or value error: character to

number conversion error
ORA-06512: at line 48

The second range for-loop attempts to pass a non-numeric index value to the
counter variable. The counter variable is i in the preceding program. A counter
variable is defined as a PLS_INTEGER. Thus, the variable-length string index value
cannot be cast to an integer because it is not an integer. Therefore, it raises an
ORA-06502 conversion error, as just shown. The same example worked previously
because the counter variable was cast as a VARCHAR2 when initializing members
and cast back to an INTEGER when reading the associative array.

TIP
Associative arrays do not have a navigational syntax
equivalent to their namesake in JavaScript. You cannot
treat an associative array as a cursor by using a
cursor for-loop structure.

This presents you with a problem. A non-numeric index value requires you to
know where to start and how to increment. The Collection API FIRST and NEXT
methods provide the tools. Details of the Collection API are covered later in the
chapter if you want more on these methods now.

You can use the approach demonstrated in the following example program to
solve the problem. In the second range for-loop, the logic to traverse a unique
string index is provided:

–– Available online as part of create_assocarray6.sql

DECLARE

–– Define variables to traverse an associative array that
–– uses variable-length strings for index values.
current VARCHAR2(9 CHAR);
element INTEGER;

–– Define a varray of twelve strings.
TYPE months_varray IS VARRAY(12) OF STRING(9 CHAR);

–– Define an associative array of strings.
TYPE calendar_table IS TABLE OF VARCHAR2(9 CHAR)
INDEX BY VARCHAR2(9 CHAR);

272 Oracle Database 10g PL/SQL Programming

Chapter 6: Collections 273

–– Declare and construct a varray.
month MONTHS_VARRAY :=
months_varray('January','February','March'

,'April','May','June'
,'July','August','September'
,'October','November','December');

–– Declare an associative array variable.
calendar CALENDAR_TABLE;

BEGIN

–– Check if calendar has no elements.
IF calendar.COUNT = 0 THEN

–– Print a title
DBMS_OUTPUT.PUT_LINE('Assignment loop:');
DBMS_OUTPUT.PUT_LINE('––––––––');

–– Loop through all the varray elements.
FOR i IN month.FIRST..month.LAST LOOP

–– Assign the numeric index valued varray element
–– to an equal index valued array element.
calendar(month(i)) := TO_CHAR(i);

–– Print an indexed element from the array.
DBMS_OUTPUT.PUT_LINE(
'Index ['||month(i)||'] is ['||i||']');

END LOOP;

–– Print a title
DBMS_OUTPUT.PUT(CHR(10));
DBMS_OUTPUT.PUT_LINE('Post-assignment loop:');
DBMS_OUTPUT.PUT_LINE('––––––––––-');

–– Loop through all the associative array elements.
FOR i IN 1..calendar.COUNT LOOP

–– Check if the first element in the loop.
IF i = 1 THEN

–– Assign the first character index to a variable.
current := calendar.FIRST;

–– Use the derived index to find the next index.
element := calendar(current);

274 Oracle Database 10g PL/SQL Programming

ELSE

–– Check if next index value exists.
IF calendar.NEXT(current) IS NOT NULL THEN

–– Assign the character index to a variable.
current := calendar.NEXT(current);

–– Use the derived index to find the next index.
element := calendar(current);

ELSE

–– Exit loop since last index value is read.
EXIT;

END IF;

END IF;

–– Print an indexed element from the array.
DBMS_OUTPUT.PUT_LINE(
'Index ['||current||'] is ['||element||']');

END LOOP;

END IF;

END;
/

The preceding example illustrates moving the contents of a varray with a numeric
index to an associative array with a unique string index. Here’s what the program
is doing:

■ It defines two variables to be used to manage navigation through the unique
string indexed associative array. They are the current and element variables.

■ It defines a varray data type. The varray is named months_varray. It has
a maximum size of twelve and a data type of a string. The string is nine
characters in length.

■ It defines an associative array data type. The associative array is named
calendar_table. It has no maximum size. The associative array uses

a VARCHAR2 data type. The VARCHAR2 is nine characters in length. The
associative array uses a unique string as an index value.

■ It declares and initializes a variable month. The variable is a varray data type,
named months_varray. It is initialized as a twelve-element collection
with month names as the values in each element.

■ It checks that the associative array variable calendar has no elements. It
checks for a zero value by comparing the Collection API COUNT method
return.

■ It uses a range for-loop to move from the first element to the last in the
month varray. The range is established by using the Collection API FIRST
and LAST methods.

■ In the range for-loop, it allocates and assigns a value from the month
varray to the calendar associative array. The assignment moves
the numeric index from the month varray to the element value in the
associative array. Likewise, it uses the month varray data value as the index
value for the calendar associative array. The integer is implicitly cast as
a character and converted. Finally, it prints the assignment to the calendar
associative array.

■ It uses a range for-loop to move from the first element to the last in the
calendar associative array. The range is established by using one as the
lower range value and the Collection API COUNT methods for the upper
range. This ensures an integer is returned to the for-loop counter variable.

■ In the range for-loop, it uses a nested if-then-else statement to set and
reset access indexes. Finding where to start is the first step. Then using
the Collection API, you can step through the elements one by one.

The if statement checks whether or not the range for-loop counter is equal to 1.
This finds our first record to start traversing the associative array.

If it is the first element in the range, you use the Collection API FIRST method to
return the first unique string index value. It assigns the unique string index value
to the current variable.

It then uses the current variable to find the data value and assign it to the
element variable. At this point, it exits the if-then-else statement and prints the
values, as described later.

On your second pass through the range for-loop, the if statement check will fail.
It will then go to the else statement and encounter the nested if-then-else statement.

Chapter 6: Collections 275

The if statement uses the Collection API NEXT to check whether there is another
record in the associative array.

If there is another record in the associative array, it will use the current variable
to find the next index value. Then, it assigns the value to replace the value in the
current variable.

If there is another record in the associative array, it will process the nested else
statement. At that point, it exits the range for-loop. This is the only exit from the range
for-loop because the logic in the if-then-else statement prevents any other exit.

It prints the indexes and values from calendar associative array with the DBMS_
OUTPUT utility.

The program generates the following output stream. Again, it has been edited to
conserve space:

–– Available online as output from create_assocarray6.sql

Assignment loop:
––––––––
Index [January] is [1]
Index [February] is [2]

Index [November] is [11]
Index [December] is [12]

Post-assignment loop:
––––––––––-
Index [April] is [4]
Index [August] is [8]
Index [December] is [12]
Index [February] is [2]
Index [January] is [1]
Index [July] is [7]
Index [June] is [6]
Index [March] is [3]
Index [May] is [5]
Index [November] is [11]
Index [October] is [10]
Index [September] is [9]

You can see that the population sequence of the associative array differs from how it
can be traversed. The Collection API FIRST, NEXT, and PRIOR methods work from
hash maps for the unique strings. Sorting is dependent on the NLS_COMP and NLS_
SORT database parameters in globalized databases.

As a result of this sorting behavior, unique string index values present some
interesting considerations. If you need to keep track of original ordering, you will

276 Oracle Database 10g PL/SQL Programming

Chapter 6: Collections 277

need to use a record or object type that provides a pseudokey. The pseudokey can
maintain your original ordering sequence.

TIP
If you are working in a globalized database, the
NLS_COMP and NLS_SORT parameters may alter
expected behavior of sorting. This is especially true
when dealing with time stamps.

You have developed an appreciation of standard initialization methods for
associative arrays. You have also explored key issues that you should avoid. Moreover,
you have learned how to initialize and traverse associative arrays. You will now
experiment with defining and initializing associative arrays as bulk collections.

Using Associative Arrays with BULK COLLECT and FORALL
Collections offer you many performance opportunities. They can be used in many
places in your programs. In fact, a performance enhancement has been introduced
in the Oracle 10g PL/SQL compiler. As covered in Chapter 8, the PL/SQL compiler
translates your code into machine code before executing it. Oracle 10g now does
the same thing but with a twist. The compiler dynamically rearranges your code
during its conversion to machine code and optimizes its execution. This is done by
default through the database PLSQL_OPTIMIZE_LEVEL initialization parameter,
which is set to level two. If you want to disable the optimization, you can set
PLSQL_OPTIMIZE_LEVEL to zero. At zero, the compiler does not rearrange
your code.

Likewise, using BULK COLLECT and FORALL opens the door that eliminates
row-level processing. BULK COLLECT allows you to retrieve sets of records that you
can store in associative arrays or nested tables. FORALL enables you to send DML
statements in batches. FORALL can insert, update, and delete data. These methods
reduce the context switching between the PL/SQL and SQL engines. Without them,
there would be too many parses and fetches.

You will remember that row-level processing leverages the %ROWTYPE or %TYPE.
The former can map directly to record types. The BULK COLLECT enables a
collection of %ROWTYPE or %TYPE values to be assigned as a set to an associative
array or nested table. The FORALL provides a means to move the contents of an
associative array or nested table into a database object.

Associative arrays and nested table collection types will work with BULK COLLECT
and FORALL. A nested table requires construction as a null element collection. The
BULK COLLECT will implicitly allocate space for you in the nested table. An associative
array does not need construction, just a bulk assignment. Likewise, both associative
arrays and nested tables can be the source structure for a FORALL SQL command.

You know either structure is possible as a solution. You should evaluate your
needs and choose which is appropriate to your solution. You may find that

associative arrays are generally a more natural fit to BULK COLLECT and FORALL
operations.

You will want to retrieve data batches to improve the efficiency of your PL/SQL
code. The efficiency comes from bulk binding. You can compare performance by
trace file analysis. There are two files provided to support your trace file analysis.
The bulk_collect1.sql program uses BULK COLLECT and FORALL operations
against an associative array. The bulk_collect3.sql program, not displayed,
uses a nonbulk approach to the insert and select statements. Both of the scripts
have the necessary tuning commands remarked out. You can unremark them and
run them.

If you generate and analyze trace information against both files, you will see
the differences. While you will benefit from doing the exercise yourself, a quick
comparative analysis is presented next. They contain comparative statistics on
parse, execute, and fetch. Table 6-3 illustrates the impact on the insert statement,
while Table 6-4 illustrates the impact on the select statement.

If you were wondering why the select statement executed and fetched 20,000
times instead of 10,000 times, it is the effect of the SORT BY operation. The reason
50,001 executes in the insert is not within the scope of this chapter. Moreover, the
processing cost is too high.

The following bulk_collect1.sql example program demonstrates both
FORALL and BULK COLLECT techniques with an associative array. As discussed,
the nested table is found in bulk_collect2.sql. It is not displayed, since there
is only one difference, and that difference has been covered previously in the nested
table discussion.

278 Oracle Database 10g PL/SQL Programming

Bulk Insert
(bulk_collect1.sql)

Nonbulk Insert
(bulk_collect3.sql)

INSERT INTO BULK_NUMBERS
VALUES
(:B1)

call count
–––- –––
Parse 1
Execute 1
Fetch 0
–––- –––
total 2

INSERT INTO BULK_NUMBERS
VALUES
(:B1)

call count
–––- –––
Parse 6
Execute 50001
Fetch 0
–––- –––
total 50007

TABLE 6-3. Bulk vs. Nonbulk Inserts

Chapter 6: Collections 279

–– Available online as part of bulk_collect1.sql

–– Create a table for the example.
CREATE TABLE bulk_numbers
(number_id NUMBER NOT NULL
,CONSTRAINT number_id_pk PRIMARY KEY (number_id));

–– Use a FORALL to move an associative array into a table.
DECLARE

–– Define an associative array of integers.
TYPE number_table IS TABLE OF bulk_numbers.number_id%TYPE
INDEX BY BINARY_INTEGER;

–– Define a variable of the associative array type.
number_list NUMBER_TABLE;

BEGIN

–– Loop from 1 to a million and increment array.
FOR i IN 1..10000 LOOP

–– Assign number value.
number_list(i) := i;

END LOOP;

Bulk Select
(bulk_collect1.sql)

Nonbulk Select
(bulk_collect3.sql)

SELECT NUMBER_ID
FROM
BULK_NUMBERS ORDER BY 1

call count
–––- –––
Parse 1
Execute 1
Fetch 1
–––- –––
total 3

SELECT NUMBER_ID
FROM
BULK_NUMBERS
WHERE NUMBER_ID = :B1 ORDER BY 1

call count
–––- –––
Parse 2
Execute 20000
Fetch 20000
–––- –––
total 40002

TABLE 6-4. Bulk vs. Nonbulk Selects

–– Loop through all to do a bulk insert.
FORALL i IN 1..number_list.COUNT
INSERT
INTO bulk_numbers
VALUES (number_list(i));

–– Commit records.
COMMIT;

END;
/

–– Use a BULK COLLECT to retrieve a table into an
–– associative array.
DECLARE

–– Define an associative array of integers.
TYPE number_table IS TABLE OF bulk_numbers.number_id%TYPE
INDEX BY BINARY_INTEGER;

–– Define a variable of the associative array type.
number_list NUMBER_TABLE;

BEGIN

–– Gather all rows in a bulk collect.
SELECT number_id
BULK COLLECT
INTO number_list
FROM bulk_numbers
ORDER BY 1;

–– Print a title
DBMS_OUTPUT.PUT_LINE('Bulk Collected:');
DBMS_OUTPUT.PUT_LINE('–––––––-');

–– Loop through to print elements.
FOR i IN number_list.FIRST..number_list.LAST LOOP

–– Print only the first and last two.
IF i <= 2 OR i >= 9999 THEN

–– Print an indexed element from the array.
DBMS_OUTPUT.PUT_LINE(
'Number ['||number_list(i)||']');

END IF;

280 Oracle Database 10g PL/SQL Programming

Chapter 6: Collections 281

END LOOP;

END;
/

This program does three things:

■ It defines a bulk_numbers table with a single column. The column
uses an INTEGER data type.

■ It defines an anonymous-block program that does these things:

■ It defines a number_table associative array of an INTEGER data
type indexed by a BINARY_INTEGER.

■ It defines a number_list variable using the number_table
associative array.

■ It uses a range for-loop to populate the number_list variable,
which is done in the Oracle database SGA memory space.

■ It uses a FORALL statement to do a bulk insert into the bulk_
numbers table.

■ It commits the work.

■ It defines an anonymous-block program that does these things:

■ It defines an associative array of an INTEGER data type.

■ It defines a number_list variable using the number_table
associative array.

■ It uses a select statement with a BULK COLLECT clause to return all
rows into the number_list variable. It is important to note that the
select statement is using an order by clause to ensure an ascending set
of numbers. If the order by clause is omitted, you will not see the
expected number sequence.

■ It then uses a range for-loop to print the first and last two rows returned
into the number_list associative array.

Rendering a short output as follows:

–– Available online as output from bulk_collect1.sql

Bulk Collected:
–––––––-

Number [1]
Number [2]
Number [9999]
Number [10000]

You should note that all the bulk collection example programs use the ORDER
BY operation. There is a reason for this. If you do not order the elements, you will
find that they may be retrieved by a hash value as opposed to their numerical order.

The following output is an unordered list from the table:

–– Available online as output from bulk_collect1.sql

Bulk Collected:
–––––––-
Number [1721]
Number [1722]
Number [9142]
Number [9143]

You have now reviewed associative arrays. Added to the previously covered
varrays and nested tables, you have worked with the three collection types in
Oracle 10g. The collection types each have their respective strengths and weaknesses.
You will judge which is appropriate to your programming problems.

While you have worked with some of the Collection API methods in the examples
throughout the chapter, you have not formally covered them. Since working through
the Collection API before the collections is tricky, you were introduced to the
collections first. Unfortunately, you cannot demonstrate how to use collections
without leveraging the Collection API. On balance, it is hoped that the choice of
positioning works well for you.

Now, you will cover the Collection API.

Oracle 10g Collection API
Oracle 8i introduced the Collection API. The Collection API is provided to give
simplified access to collections. These methods did simplify access before Oracle 10g.
Unfortunately, they were not critical to master. The shift from Oracle 9i index-by
tables to Oracle 10g associative arrays makes them critical for you to understand.
You covered the reason working with associative arrays. The FIRST, LAST, NEXT,
and PRIOR methods are the only way to navigate unique string indexes.

The Collection API methods are really not methods in a truly object-oriented
sense. They are functions and procedures. Three, EXTEND, TRIM, and DELETE,
are procedures. The rest are functions.

282 Oracle Database 10g PL/SQL Programming

Table 6-5 summarizes the Oracle 10g Collection API.

Chapter 6: Collections 283

Method Description Return Type
Collection(s)
Supported

COUNT The COUNT method returns the number
of elements with space allocated in
varrays and nested tables. The COUNT
method returns the number of elements
in associative arrays. COUNT can be
smaller than LIMIT for varrays.

PLS_INTEGER All

DELETE(n) The DELETE method takes a single
formal parameter that is overloaded.
The formal parameter data types are
PLS_INTEGER, VARCHAR2, and
LONG. The formal parameter maps to
a subscript for an element within the
collection. It is a procedure and does
not have a return type.

None All

DELETE(n,m) The DELETE method takes two formal
parameters that are overloaded. The
formal parameter data types are PLS_
INTEGER, VARCHAR2, and LONG.
The formal parameter maps to a
minimum and maximum subscript.
The parameters set an inclusive range
of elements in the collection. It is
a procedure and does not have a
return type.

None All

EXISTS(n) The EXISTS method determines
whether or not an element is found
in a collection. It takes a single formal
parameter that is overloaded. The
parameter data types are PLS_
INTEGER, VARCHAR2, and LONG.
The formal parameter maps to a
subscript value. If the collection is a
null element structure, the EXISTS
method will not raise a COLLECTION_
IS_NULL exception.

TRUE orFALSE All

TABLE 6-5. The Oracle 10g Collection API

284 Oracle Database 10g PL/SQL Programming

Method Description Return Type
Collection(s)
Supported

EXTEND The EXTEND method allocates space
for a new element in a collection. It is
used to allocate space before adding a
value to the collection. EXTEND will
fail if it attempts to exceed the LIMIT
of a varray.

None Varray or
nested table

EXTEND(n) The EXTEND method allocates space
for a number of new elements in a
collection. It takes a single formal
parameter. The parameter data type is
a PLS_INTEGER. It is used to allocate
space before adding a value to the
collection. EXTEND will fail if it
attempts to exceed the LIMIT of
a varray.

None Varray or
nested table

EXTEND(n,i) The EXTEND method allocates space
for a number of new elements in a
collection. It takes two formal
parameters. The parameter data types
are PLS_INTEGER. The first parameter
is used to identify how many elements
to add. The second references an
existing element in the collection that
will be replicated to the new elements.
EXTEND will fail if it attempts to
exceed the LIMIT of a varray.

None Varray or
nested table

FIRST The FIRST method returns the lowest
subscript value in a collection.

PLS_INTEGER,
VARCHAR2, or
LONG

All

LAST The LAST method returns the highest
subscript value in a collection.

PLS_INTEGER,
VARCHAR2, or
LONG

All

TABLE 6-5. The Oracle 10g Collection API (continued)

Chapter 6: Collections 285

Method Description Return Type
Collection(s)
Supported

LIMIT The LIMIT method returns the highest
allowed subscript value in a varray.

PLS_INTEGER Varray

NEXT(n) The NEXT method takes a single
overloaded formal parameter. It
accepts a parameter that can be a
PLS_INTEGER, VARCHAR2, or LONG
data type. The actual parameter must
be a valid subscript in the collection.
The NEXT method uses the subscript
to find the next higher subscript in
the collection. If there is no higher
subscript value, NEXT returns a NULL.

PLS_INTEGER,
VARCHAR2,
or LONG

All

PRIOR(n) The PRIOR method takes a single
overloaded formal parameter. It
accepts a parameter that can be a
PLS_INTEGER, VARCHAR2, or LONG
data type. The actual parameter must
be a valid subscript in the collection.
The PRIOR method uses the subscript
to find the next lower subscript in
the collection. If there is no lower
subscript value, NEXT returns a NULL.

PLS_INTEGER,
VARCHAR2, or
LONG

All

TRIM The TRIM method removes the highest
subscripted value from a collection.

None All

TRIM(n) The TRIM method takes a single formal
parameter. It accepts a PLS_INTEGER
data type. The actual parameter must
be an integer value less than the value
returned by the COUNT method or it
will raise an exception. It removes the
number or elements passed as the
actual parameter to the method.

None All

TABLE 6-5. The Oracle 10g Collection API (continued)

You will examine each of the Collection API methods in example programs. It
should be noted that only the EXISTS method will fail to raise an exception if the
collection is empty.

There are five standard collection exceptions. They are described in Table 6-6.
You will examine each of the methods in alphabetical order. Some examples

include multiple Collection API methods. Like the coverage of the collection types,
it is hard to treat the Collection API methods in isolation.

Where a single example fully covers multiple methods, it will be cross-
referenced. There are occasions where you may be forward referenced. Under
each Collection API method, you will be referenced to appropriate example code.

286 Oracle Database 10g PL/SQL Programming

Collection Exception Raised By

COLLECTION_IS_NULL An attempt to use a null collection.

NO_DATA_FOUND An attempt to use a subscript that has been
deleted or is a nonexistent unique string index
value in an associative array.

SUBSCRIPT_BEYOND_COUNT An attempt to use a numeric index value that
is higher than the current maximum number
value. This error applies only to varrays and
nested tables. Associative arrays are not bound
by the COUNT return value when adding new
elements.

SUBSCRIPT_OUTSIDE_LIMIT An attempt to use a numeric index value
outside of the LIMIT return value. This error
only applies to varrays and nested tables. The
LIMIT value is defined one of two ways.
Varrays set the maximum size, which becomes
their limit value. Nested tables have no fixed
maximum size, so the limit value is set by the
space allocated by the EXTEND method.

VALUE_ERROR An attempt is made to use a type that cannot
be converted to a PLS_INTEGER, which is
the data type for numeric subscripts.

TABLE 6-6. Collection Exceptions

COUNT Method
The COUNT method is really a function. It has no formal parameter list. It returns
the number of elements in the array. The following example program illustrates
that it returns a PLS_INTEGER value:

–– Available online as part of count.sql

DECLARE

–– Define a nested table type of INTEGER.
TYPE number_table IS TABLE OF INTEGER;

–– Define a variable of the nested table type.
number_list NUMBER_TABLE := number_table(1,2,3,4,5);

BEGIN

–– Print a title.
DBMS_OUTPUT.PUT_LINE('How many elements');
DBMS_OUTPUT.PUT_LINE('––––––––-');

–– Print the list.
DBMS_OUTPUT.PUT_LINE('Count ['||number_list.COUNT||']');

END;
/

The example program does the following:

■ It defines a nested table type of an INTEGER data type.

■ It defines a number_list variable that uses the nested table type.

■ It prints a title using DBMS_OUTPUT utility.

■ It prints the result of the Collection API COUNT method.

It generates the following output:

–– Available online as output from count.sql

How many elements
––––––––-
Count [5]

Chapter 6: Collections 287

DELETE Method
The DELETE method is really a procedure. It is an overloaded procedure. If the
concept of overloading is new to you, please check Chapter 8.

It has one version that takes a single formal parameter. The parameter must be
a valid subscript value in the collection. This version will remove the element with
that subscript. It is illustrated in the EXISTS method example program.

The other version takes two formal parameters. Both parameters must be valid
subscript values in the collection. This version deletes a continuous inclusive range
of elements from a collection. The following example program illustrates a range
delete from a collection:

–– Available online as part of delete.sql

DECLARE

–– Define a nested table type of INTEGER.
TYPE number_table IS TABLE OF INTEGER;

–– Define a variable of the nested table type.
number_list NUMBER_TABLE;

–– Define a local procedure to check and print elements.
PROCEDURE print_list
(list_in NUMBER_TABLE) IS

BEGIN

–– Loop through the possible index values of the list.
FOR i IN list_in.FIRST..list_in.LAST LOOP

–– Check if the subscripted element is there.
IF list_in.EXISTS(i) THEN

–– Print the element.
DBMS_OUTPUT.PUT_LINE('List ['||list_in(i)||']');

END IF;

END LOOP;

END print_list;

BEGIN

–– Check if a subscript element of one does not exists.

288 Oracle Database 10g PL/SQL Programming

IF NOT number_list.EXISTS(1) THEN

–– Construct the collection.
number_list := number_table(1,2,3,4,5);

END IF;

–– Print a title.
DBMS_OUTPUT.PUT_LINE('Nested table before a deletion');
DBMS_OUTPUT.PUT_LINE('–––––––––––––––');

–– Print the list.
print_list(number_list);

–– Delete an element.
number_list.DELETE(2,4);

–– Print a title.
DBMS_OUTPUT.PUT_LINE(CHR(10)||

'Nested table after a deletion');
DBMS_OUTPUT.PUT_LINE('––––––––––––––-');

–– Print the list.
print_list(number_list);

END;
/

This example does the following:

■ It defines a nested table type of an INTEGER data type.

■ It defines a number_list variable that uses the nested table type.

It defines a local procedure to manage printing the elements in the
collection. The local procedure takes a single formal parameter of
the defined nested table type. The print_list local procedure
does the following:

■ It uses a numeric range for-loop to traverse the nested table. The
Collection API FIRST and LAST methods establish the range.
The FIRST method returns the lowest subscript index value. The
LAST method returns the highest one. As a set, they cover a set of
elements in a collection. This is true whether the collection is dense or
sparse. In this example, the collection is dense and becomes sparse.

Chapter 6: Collections 289

■ It uses an if statement to evaluate whether or not there is an element
that uses each numeric subscript value between the lowest and
the highest. It does the evaluation by using the Collection API
EXISTS method.

■ It prints the element with the DBMS_OUTPUT utility if found.

■ It uses an if statement to evaluate whether an element is using the subscript
one. At this point, the collection is null element structure. Only the EXISTS
method can be used at this point without raising an exception. Within the if
statement, it initializes five elements, which are sequential. This is a dense
collection at this point.

■ It prints the list using the DBMS_OUTPUT utility.

■ It deletes the element using a beginning subscript of two and an ending
subscript of four.

■ It prints the list using the DBMS_OUTPUT utility. (You will see the element
missing in the output, which illustrates a sparse array.)

It generates the following output:

–– Available online as output from delete.sql

Nested table before a deletion
–––––––––––––––
List [1]
List [2]
List [3]
List [4]
List [5]

Nested table after a deletion
––––––––––––––-
List [1]
List [5]

EXISTS Method
The EXISTS method is really a function. It has only one formal parameter list that
it supports. It takes a subscript value. The subscript may be a number or a unique
string. The latter subscript index applies only to Oracle 10g associative arrays.

As mentioned, EXISTS is the only Collection API method that will not raise a
COLLECTION_IS_NULL exception for a null element collection. Null element

290 Oracle Database 10g PL/SQL Programming

Chapter 6: Collections 291

collections have two varieties. First, varrays and nested tables constructed with a
null constructor. Second, associative arrays that have zero elements initialized.

The following program illustrates the EXISTS method. A portion of the program
is redacted because it was used in a prior example program.

–– Available online as part of exists.sql

DECLARE

–– Define a nested table type of INTEGER.
TYPE number_table IS TABLE OF INTEGER;

–– Define a variable of the nested table type.
number_list NUMBER_TABLE;

–– Define a local procedure to check and print elements.
PROCEDURE print_list
(list_in NUMBER_TABLE) IS

BEGIN

... redacted for space ...

END print_list;

BEGIN

–– Check if a subscript element of one does not exists.
IF NOT number_list.EXISTS(1) THEN

–– Construct the collection.
number_list := number_table(1,2,3,4,5);

END IF;

–– Print a title.
DBMS_OUTPUT.PUT_LINE('Nested table before a deletion');
DBMS_OUTPUT.PUT_LINE('–––––––––––––––');

–– Print the list.
print_list(number_list);

–– Delete an element.
number_list.DELETE(2);

–– Print a title.

DBMS_OUTPUT.PUT_LINE(CHR(10)||
'Nested table after a deletion');

DBMS_OUTPUT.PUT_LINE('––––––––––––––-');

–– Print the list.
print_list(number_list);

END;
/

The example program does the following:

■ It defines a nested table type of an INTEGER data type.

■ It defines a number_list variable that uses the nested table type.

■ It defines a local procedure to manage printing the elements in the collection.
The local procedure takes a single formal parameter of the defined nested
table type. The print_list local procedure is explained in the DELETE
method example.

■ It uses an if statement to evaluate whether an element is using the subscript
one. At this point, the collection is null element structure. Only the EXISTS
method can be used at this point without raising an exception. Within the if
statement, it initializes five elements, which are sequential. This is a dense
collection at this point.

■ It prints the list using the DBMS_OUTPUT utility.

■ It deletes the element using subscript two.

■ It prints the list using the DBMS_OUTPUT utility. (You will see the element
missing in the output, which illustrates a sparse array.)

It generates the following output:

–– Available online as output from exists.sql

Nested table before a deletion
–––––––––––––––
List [1]
List [2]
List [3]
List [4]
List [5]

Nested table after a deletion

292 Oracle Database 10g PL/SQL Programming

Chapter 6: Collections 293

––––––––––––––-
List [1]
List [3]
List [4]
List [5]

EXTEND Method
The EXTEND method is really a procedure. It is an overloaded procedure. If the
concept of overloading is new to you, please check Chapter 8.

It has one version that takes no formal parameters. When used without formal
parameter(s), EXTEND allocates space for a new element in a collection. However,
if you attempt to EXTEND space beyond a LIMIT in a varray, it will raise an exception.

A second version takes a single formal parameter. The parameter must be a valid
integer value. EXTEND with a single actual parameter will allocate space for that
number of elements specified by the actual parameter. Like the version without a
parameter, attempting to EXTEND space beyond a LIMIT in a varray will raise an
exception. This method is illustrated in the following example.

The last version takes two formal parameters. Both parameters must be valid
integers. The second must also be a valid subscript value in the collection. This
version allocates element space equal to the first actual parameter. Then, it copies
the contents of the referenced subscript found in the second actual parameter.

The following program illustrates the EXTEND method with one and two formal
parameters. A portion of the program is redacted because it was used in a prior
example program.

–– Available online as part of extend.sql

DECLARE

–– Define a nested table type of INTEGER.
TYPE number_table IS TABLE OF INTEGER;

–– Define a variable of the nested table type.
number_list NUMBER_TABLE := number_table(1,2);

–– Define a local procedure to check and print elements.
PROCEDURE print_list
(list_in NUMBER_TABLE) IS

BEGIN

... redacted for space ...

END print_list;

BEGIN

–– Print a title.
DBMS_OUTPUT.PUT_LINE('Nested table before extension');
DBMS_OUTPUT.PUT_LINE('––––––––––––––-');

–– Print the list.
print_list(number_list);

–– Allocate two null elements.
number_list.EXTEND(2);

–– Allocate three elements and copy element two.
number_list.EXTEND(3,2);

–– Print a title.
DBMS_OUTPUT.PUT_LINE(CHR(10)||

'Nested table after extension');
DBMS_OUTPUT.PUT_LINE('––––––––––––––');

–– Print the list.
print_list(number_list);

END;
/

The example program does the following:

■ It defines a nested table type of an INTEGER data type.

■ It defines a number_list variable that uses the nested table type.

■ It defines a local procedure to manage printing the elements in the collection.
The local procedure takes a single formal parameter of the defined nested
table type. The print_list local procedure is explained in the DELETE
method example.

■ It uses an if statement to evaluate whether an element is using the subscript 1.
At this point, the collection has null element structure. Only the EXISTS
method can be used at this point without raising an exception. Within the if
statement, it initializes five elements, which are sequential. This is a dense
collection at this point.

■ It prints the list using the DBMS_OUTPUT utility.

■ It extends two null elements using EXTEND(2).

294 Oracle Database 10g PL/SQL Programming

Chapter 6: Collections 295

■ It extends space to three elements and copies the contents of the element in
subscript 2.

■ It prints the list using the DBMS_OUTPUT utility. (You will see the element
missing in the output, which illustrates a sparse array.)

It generates the following output:

–– Available online as output from extend.sql

Nested table before extension
––––––––––––––-
List [1]
List [2]

Nested table after extension
––––––––––––––
List [1]
List [2]
List []
List []
List [2]
List [2]
List [2]

FIRST Method
The FIRST method is really a function. It returns the lowest subscript value used in
a collection. If it is a numeric index, it returns a PLS_INTEGER. If it is an associative
array, it returns a VARCHAR2 or LONG data type. You cannot use the FIRST method
in a range for-loop when the index is non-numeric.

The FIRST method is illustrated in the example program for the DELETE method.
That example uses a numeric index. The following example demonstrates the FIRST
method with a non-numeric or unique string index. As discussed, non-numeric
indexes in associative arrays are new in Oracle 10g functionality.

–– Available online as part of first.sql

DECLARE

–– Define a nested table type of INTEGER.
TYPE number_table IS TABLE OF INTEGER
INDEX BY VARCHAR2(9 CHAR);

–– Define a variable of the nested table type.

number_list NUMBER_TABLE;

BEGIN

–– Build three elements with unique string subscripts.
number_list('One') := 1;
number_list('Two') := 2;
number_list('Nine') := 9;

–– Print the first index and next.
DBMS_OUTPUT.PUT_LINE(
'FIRST Index ['||number_list.FIRST||']');

DBMS_OUTPUT.PUT_LINE('NEXT Index ['
||number_list.NEXT(number_list.FIRST)||']');

–– Print the last index and prior.
DBMS_OUTPUT.PUT_LINE(CHR(10)||
'LAST Index ['||number_list.LAST||']');

DBMS_OUTPUT.PUT_LINE('PRIOR Index ['
||number_list.PRIOR(number_list.LAST)||']');

END;
/

The example program does the following:

■ It defines a nested table type of an INTEGER data type.

■ It defines a number_list variable that uses the nested table type.

■ It declares three elements with unique string index values and assigns them
integer values.

■ It prints the FIRST index value using the DBMS_OUTPUT utility.

■ It prints the NEXT index value using the DBMS_OUTPUT utility.

■ It prints the LAST index value using the DBMS_OUTPUT utility.

■ It prints the PRIOR index value using the DBMS_OUTPUT utility.

If you raised your eyebrows at the output, you did not catch this earlier. When
using a unique string as an index value, the ordering of values is based on the NLS
environment. Therefore, you generate the following output, which is ordered
alphabetically:

–– Available online as output from first.sql

296 Oracle Database 10g PL/SQL Programming

FIRST Index [Nine]
NEXT Index [One]

LAST Index [Two]
PRIOR Index [One]

LAST Method
The LAST method is really a function. It returns the highest subscript value used in a
collection. If it is a numeric index, it returns a PLS_INTEGER. If it is an associative
array, it returns a VARCHAR2 or LONG data type. You cannot use the LAST method
in a range for-loop when the index is non-numeric.

The LAST method is illustrated in the example program for the DELETE method.
That example uses a numeric index. The example in the FIRST method also
demonstrates the LAST method with a non-numeric or unique string index. As
discussed, non-numeric indexes in associative arrays are new in Oracle 10g
functionality.

LIMIT Method
The LIMIT method is really a function. It returns the highest possible subscript
value used in a varray. It has no value for the other two collection types. It returns
a PLS_INTEGER.

The example program that follows illustrates the LIMIT method:

–– Available online as part of limit.sql

DECLARE

–– Define a varray type of INTEGER.
TYPE number_varray IS VARRAY(5) OF INTEGER;

–– Define a variable of the varray type.
number_list NUMBER_VARRAY := number_varray(1,2,3);

–– Define a local procedure to check and print elements.
PROCEDURE print_list
(list_in NUMBER_VARRAY) IS

BEGIN

–– Loop through the possible index values of the list.
FOR i IN list_in.FIRST..list_in.COUNT LOOP

–– Print the element.
DBMS_OUTPUT.PUT_LINE(

Chapter 6: Collections 297

'List Index ['||i||'] '||
'List Value ['||list_in(i)||']');

END LOOP;

END print_list;

BEGIN

–– Print a title.
DBMS_OUTPUT.PUT_LINE('Varray after initialization');
DBMS_OUTPUT.PUT_LINE('–––––––––––––-');

–– Print the list.
print_list(number_list);

–– Extend null element to maximum limit.
number_list.EXTEND(number_list.LIMIT - number_list.LAST);

–– Print a title.
DBMS_OUTPUT.PUT(CHR(10));
DBMS_OUTPUT.PUT_LINE('Varray after extension');
DBMS_OUTPUT.PUT_LINE('–––––––––––');

–– Print the list.
print_list(number_list);

END;
/

The example program does the following:

■ It defines a varray type of an INTEGER data type.

■ It defines a number_list variable that uses the varray type.

■ It defines a local procedure to manage printing the elements in the collection.
The local procedure takes a single formal parameter of the defined nested
table type. The print_list local procedure prints the index value and
element contents.

■ It prints a title using the DBMS_OUTPUT utility.

■ It calls the local procedure to print the varray.

■ It extends space for the difference between the COUNT and LIMIT methods,
or the balance of available element space.

298 Oracle Database 10g PL/SQL Programming

■ It prints a title using the DBMS_OUTPUT utility.

■ It calls the local procedure to print the varray.

It generates the following output:

–– Available online as output from limit.sql

Varray after initialization
–––––––––––––-
List Index [1] List Value [1]
List Index [2] List Value [2]
List Index [3] List Value [3]

Varray after extension
–––––––––––
List Index [1] List Value [1]
List Index [2] List Value [2]
List Index [3] List Value [3]
List Index [4] List Value []
List Index [5] List Value []

NEXT Method
The NEXT method is really a function. It returns the next subscript value used in a
collection. If there is no higher subscript value, it returns a null. If it is a numeric
index, it returns a PLS_INTEGER. If it is an associative array, it returns a VARCHAR2
or LONG data type.

The NEXT method is illustrated in the example program for the DELETE method.
That example uses a numeric index. The example in the FIRST method also
demonstrates the NEXT method with a non-numeric or unique string index. As
discussed, non-numeric indexes in associative arrays are new in Oracle 10g
functionality.

PRIOR Method
The PRIOR method is really a function. It returns the prior subscript value used in
a collection. If there is no lower subscript value, it returns a null. If it is a numeric
index, it returns a PLS_INTEGER. If it is an associative array, it returns a VARCHAR2
or LONG data type.

The PRIOR method is illustrated in the example program for the DELETE
method. That example uses a numeric index. The example in the FIRST method
also demonstrates the PRIOR method with a non-numeric or unique string index.
As discussed, non-numeric indexes in associative arrays are new in Oracle 10g
functionality.

Chapter 6: Collections 299

300 Oracle Database 10g PL/SQL Programming

TRIM Method
The TRIM method is really a procedure. It is an overloaded procedure. If the concept
of overloading is new to you, please check Chapter 8.

It has one version that takes no formal parameters. When used without formal
parameter(s), TRIM deallocates space for an element in a collection. However, if
you attempt to TRIM space below zero elements, it will raise an exception.

The other version takes a single formal parameter. The parameter must be a valid
integer value. TRIM with a single actual parameter will deallocate space for the
number of elements specified by the actual parameter. Like the version without a
parameter, attempting to TRIM space below zero elements will raise an exception.

The example program that follows illustrates the TRIM method:

–– Available online as part of trim.sql

DECLARE

–– Define a varray type of INTEGER.
TYPE number_varray IS VARRAY(5) OF INTEGER;

–– Define a variable of the varray type.
number_list NUMBER_VARRAY := number_varray(1,2,3,4,5);

–– Define a local procedure to check and print elements.
PROCEDURE print_list
(list_in NUMBER_VARRAY) IS

BEGIN

... redacted for space ...

END print_list;

BEGIN

–– Print a title.
DBMS_OUTPUT.PUT_LINE('Varray after initialization');
DBMS_OUTPUT.PUT_LINE('–––––––––––––-');

–– Print the list.
print_list(number_list);

–– Extend null element to maximum limit.
number_list.TRIM;

–– Print a title.
DBMS_OUTPUT.PUT(CHR(10));
DBMS_OUTPUT.PUT_LINE(
'Varray after a single element trim');

DBMS_OUTPUT.PUT_LINE(
'–––––––––––––––––');

–– Print the list.
print_list(number_list);

–– Extend null element to maximum limit.
number_list.TRIM(3);

–– Print a title.
DBMS_OUTPUT.PUT(CHR(10));
DBMS_OUTPUT.PUT_LINE(
'Varray after a three element trim');

DBMS_OUTPUT.PUT_LINE(
'––––––––––––––––-');

–– Print the list.
print_list(number_list);

END;
/

The example program does the following:

■ It defines a varray type of an INTEGER data type.

■ It defines a number_list variable that uses the varray type.

■ It defines a local procedure to manage printing the elements in the collection.
The local procedure takes a single formal parameter of the defined nested
table type. The print_list local procedure prints the index value and
element contents. The full text for the print_list local procedure is
found in the LIMIT method example program.

■ It prints a title using the DBMS_OUTPUT utility.

■ It calls the local procedure to print the varray.

■ It uses the TRIM method to deallocate one element.

■ It prints a title using the DBMS_OUTPUT utility.

■ It calls the local procedure to print the varray.

■ It uses the TRIM method to deallocate three elements.

Chapter 6: Collections 301

■ It prints a title using the DBMS_OUTPUT utility.

■ It calls the local procedure to print the varray.

It generates the following output:

–– Available online as output from trim.sql

Varray after initialization
–––––––––––––-
List Index [1] List Value [1]
List Index [2] List Value [2]
List Index [3] List Value [3]
List Index [4] List Value [4]
List Index [5] List Value [5]

Varray after a single element trim
–––––––––––––––––
List Index [1] List Value [1]
List Index [2] List Value [2]
List Index [3] List Value [3]
List Index [4] List Value [4]

Varray after a three element trim
––––––––––––––––-
List Index [1] List Value [1]

You have now gone through the complete Oracle 10g Collection API. It is time
to summarize what you have covered in the chapter.

Summary
You have covered the definition and use of varrays, nested tables, and associative
arrays, which are the Oracle 10g collection types. You have worked through
examples in SQL DML and PL/SQL that use Oracle 10g collections. Finally, you
worked through the details of the Collection API.

302 Oracle Database 10g PL/SQL Programming

CHAPTER
7

Error Handling

Copyright © 2004 by The McGraw-Hill Companies, Inc. Click here for terms of use.

A
ny well-written program must have the capability to handle errors
intelligently and recover from them if possible. PL/SQL implements
error handling with exceptions and exception handlers. Exceptions
can be associated with Oracle errors or with your own user-defined
errors. In this chapter, we will discuss the syntax of exceptions and

exception handlers, how exceptions are raised and handled, and the rules of
exception propagation. The chapter closes with guidelines on using exceptions.

What Is an Exception?
In Chapter 1 we discussed how PL/SQL is based on the Ada language. One of the
features of Ada that is incorporated into PL/SQL is the exception mechanism. By
using exceptions and exception handlers, you can make your PL/SQL programs
robust and able to deal with both unexpected and expected errors during execution.
PL/SQL exceptions are similar to Java exceptions. For example, Java exceptions are
thrown and caught in a manner like those in PL/SQL. Unlike Java exceptions,
however, PL/SQL exceptions are not objects and have no methods defined on them.

What kinds of errors can occur in a PL/SQL program? Errors can be classified as
described in Table 7-1. Exceptions are designed for run-time error handling, rather
than compile-time error handling. Errors that occur during the compilation phase
are detected by the PL/SQL engine and reported back to the user. The program
cannot handle these, since the program has not yet run. For example, consider
the following block:

DECLARE
v_NumAuthors NUMBER;

BEGIN
SELECT COUNT(*)
INTO v_NumAuthors
FROM aauthors;

END;

304 Oracle Database 10g PL/SQL Programming

Error Type Reported By How Handled

Compile-time PL/SQL compiler Interactively: compiler reports errors,
and you have to correct them.

Run-time PL/SQL run-time engine Programmatically: exceptions are
raised and caught by exception
handlers.

TABLE 7-1. Types of PL/SQL Errors

This will raise the compilation error

PLS-201: identifier 'AAUTHORS' must be declared

in Oracle8i and earlier, and the error

PL/SQL: ORA-00942: table or view does not exist

in Oracle9iR1 and higher because ‘authors’ is misspelled in the SELECT statement.
Exceptions and exception handlers are the methods by which the program reacts

and deals with run-time errors. Run-time errors include SQL errors such as

ORA-1: unique constraint violated

and procedural errors such as

ORA-06502: PL/SQL: numeric or value error

NOTE
PL/SQL has a facility known as dynamic SQL
that allows you to create and run arbitrary SQL
statements and PL/SQL blocks at run time. If you
dynamically run a PL/SQL block or SQL statement
that itself contains a compilation error, then this
error will be raised at run time and can be caught
by an exception handler. For more information
on dynamic SQL, see Chapter 13.

When a run-time error occurs, an exception is raised. When this happens, control
is passed to the exception handler, which is a separate section of the program. This
separates the error handling from the rest of the program, which makes the logic of
the program easier to understand. This also ensures that all errors will be trapped.

In a language that doesn’t use the exception model for error handling (such as
C), in order to ensure that your program can handle errors in all cases, you must
explicitly insert error-handling code. For example,

int x = 1, y = 2, z = 3;
p(x); /* Procedure call, passing x as an argument. */
if <an error occurred>
handle_error(...);

y = 1 / z;
if <an error occurred>
handle_error(...);

z = x + y;
if <an error occurred>
handle_error(...);

Chapter 7: Error Handling 305

Note that a check for errors must occur after each statement in the program.
If you forget to insert the check, the program will not properly handle an error
situation. In addition, the error handling can clutter up the program, making it
difficult to understand the program’s logic. Compare the preceding example to
the similar example in PL/SQL:

DECLARE
x NUMBER := 1;
y NUMBER := 2;
z NUMBER := 3;

BEGIN
p(x);
y := 1 / z;
z := x + y;

EXCEPTION
WHEN OTHERS THEN
/* Handler to execute for all errors */
handle_error(...);

END;

Note that the error handling is separated from the program logic. This solves
both problems with the C example, namely:

■ Program logic is easier to understand, since it is clearly visible.

■ No matter which statement fails, the program will detect and handle the
error. Note that program execution will not continue from the statement
that raised the error, however. Instead, execution will continue to the
exception handler, and then to any outer block.

Declaring Exceptions
Exceptions are declared in the declarative section of the block, raised in the executable
section, and handled in the exception section. We will see how each of these is
done in the following sections.

There are two types of exceptions: user-defined and predefined.

User-Defined Exceptions
A user-defined exception is an error that is defined by the programmer. The error
that it signifies is not necessarily an Oracle error; it could be an error with the
data, for example. Predefined exceptions, on the other hand, correspond to common
SQL and PL/SQL errors.

User-defined exceptions are declared in the declarative section of a PL/SQL block.
Just like variables, exceptions have a type (EXCEPTION) and a scope. For example,

DECLARE
e_DuplicateAuthors EXCEPTION;

306 Oracle Database 10g PL/SQL Programming

Here, e_DuplicateAuthors is an identifier that will be visible until the end of
this block. Note that the scope of an exception is the same as the scope of any other
variable or cursor in the same declarative section. See Chapter 3 for information on
the scope and visibility rules for PL/SQL identifiers.

Predefined Exceptions
Oracle has predefined several exceptions that correspond to the most common Oracle
errors. Like the predefined types (NUMBER, VARCHAR2, and so on), the identifiers
for these exceptions are defined in package STANDARD. Because of this, they are
already available to the program—it is not necessary to declare them in the declarative
section like a user-defined exception. These predefined exceptions are described in
Table 7-2.

NOTE
It is possible to associate user-defined exceptions
with Oracle errors, as well. See the section “The
EXCEPTION_INIT Pragma” later in this chapter for
more information.

Chapter 7: Error Handling 307

Oracle Error Equivalent Exception Description

ORA-0001 DUP_VAL_ON_INDEX Unique constraint violated.

ORA-0051 TIMEOUT_ON_RESOURCE Time-out occurred while waiting
for resource.

ORA-1001 INVALID_CURSOR Illegal cursor operation.

ORA-1012 NOT_LOGGED_ON Not connected to Oracle.

ORA-1017 LOGIN_DENIED Invalid user name/password.

ORA-1403 NO_DATA_FOUND No data found.

ORA-1410 SYS_INVALID_ROWID Conversion to a universal rowid
failed.

ORA-1422 TOO_MANY_ROWS A SELECT.INTO statement matches
more than one row.

ORA-1476 ZERO_DIVIDE Division by zero.

ORA-1722 INVALID_NUMBER Conversion to a number failed;
for example, ‘1A’ is not valid.

TABLE 7-2. Predefined Oracle Exceptions

308 Oracle Database 10g PL/SQL Programming

Oracle Error Equivalent Exception Description

ORA-1725 USERENV_COMMITSCN_ERROR1 Incorrect usage of the
USERENV(‘COMMITSCN’) function.

ORA-6500 STORAGE_ERROR Internal PL/SQL error raised if
PL/SQL runs out of memory.

ORA-6501 PROGRAM_ERROR Internal PL/SQL error.

ORA-6502 VALUE_ERROR Truncation, arithmetic,
or conversion error.

ORA-6504 ROWTYPE_MISMATCH Host cursor variable and PL/SQL
cursor variable have incompatible
row types.

ORA-6511 CURSOR_ALREADY_OPEN Attempt to open a cursor that
is already open.

ORA-6530 ACCESS_INTO_NULL Attempt to assign values to the
attributes of a NULL object.

ORA-6531 COLLECTION_IS_NULL Attempt to apply collection methods
other than EXISTS to a NULL PL/SQL
table or varray.

ORA-6532 SUBSCRIPT_OUTSIDE_LIMIT Reference to a nested table or varray
index outside the declared range
(such as –1).

ORA-6533 SUBSCRIPT_BEYOND_COUNT Reference to a nested table or varray
index higher than the number of
elements in the collection.

ORA-6548 NO_DATA_NEEDED1 Caller of a pipelined function does
not need more rows.

ORA-6592 CASE_NOT_FOUND2 No matching WHEN clause in
a CASE statement is found.

ORA-30625 SELF_IS_NULL Attempt to call a method on a null
object instance.

1This exception is predefined in Oracle10gR1 and higher.
2This exception is predefined in Oracle9iR1 and higher.

TABLE 7-2. Predefined Oracle Exceptions (continued)

Raising Exceptions
When the error associated with an exception occurs, the exception is raised (just the
way Java exceptions are thrown). User-defined exceptions are raised explicitly via the
RAISE statement, while predefined exceptions (or user-defined exceptions associated
with an Oracle error through the EXCEPTION_INIT pragma) are raised implicitly
when their associated Oracle error occurs. If an Oracle error that is not associated with
an exception occurs, an exception is also raised. This exception can be caught with
an OTHERS handler (see the section “The OTHERS Exception Handler” later in this
chapter for details). Predefined exceptions can be raised explicitly via the RAISE
statement as well, if desired. Continuing the example started earlier, in the section
“User-Defined Exceptions,” we have this:

-- Available online as part of UserDefined.sql
DECLARE
-- Exception to indicate an error condition
e_DuplicateAuthors EXCEPTION;

-- IDs for three authors
v_Author1 books.author1%TYPE;
v_Author2 books.author2%TYPE;
v_Author3 books.author3%TYPE;

BEGIN
/* Find the IDs for the 3 authors of 'Oracle9i DBA 101' */
SELECT author1, author2, author3
INTO v_Author1, v_Author2, v_Author3
FROM books
WHERE title = 'Oracle9i DBA 101';

/* Ensure that there are no duplicates */
IF (v_Author1 = v_Author2) OR (v_Author1 = v_Author3) OR

(v_Author2 = v_Author3) THEN
RAISE e_DuplicateAuthors;

END IF;
END;

When an exception is raised, control immediately passes to the exception
section of the block. If there is no exception section, the exception is propagated to
the enclosing block (see the section “Exception Propagation” later in the chapter for
more information). Once control passes to the exception handler, there is no way to
return to the executable section of the block. This is illustrated in Figure 7-1.

Chapter 7: Error Handling 309

Predefined exceptions are automatically raised when the associated Oracle
error occurs. For example, the following PL/SQL block will raise the DUP_VAL_
ON_INDEX exception:

-- Available online as DupValOnIndex.sql
BEGIN
INSERT INTO authors (id, first_name, last_name)
VALUES (20000, 'John', 'Smith');

INSERT INTO authors (id, first_name, last_name)
VALUES (20000, 'Susan', 'Ryan');

END;

The exception is raised because the ID column of the AUTHORS table is a
primary key and therefore has a unique constraint defined on it. When the second
INSERT statement attempts to insert 20000 into this column, the error

ORA-0001: unique constraint (<constraint name>) violated

is raised. This corresponds to the DUP_VAL_ON_INDEX exception.

Handling Exceptions
When an exception is raised, control passes to the exception section of the block,
as we saw in Figure 7-1. The exception section consists of handlers for some or

310 Oracle Database 10g PL/SQL Programming

FIGURE 7-1. Control passing to exception handler

all of the exceptions. An exception handler contains the code that is executed when
the error associated with the exception occurs, and the exception is raised. The syntax
for the exception section is as follows:

EXCEPTION
WHEN exception_name THEN
sequence_of_statements1;
WHEN exception_name THEN
sequence_of_statements2;

[WHEN OTHERS THEN
sequence_of_statements3;]

END;

Each exception handler consists of the WHEN clause and statements to execute
when the exception is raised. The WHEN clause identifies which exception this
handler is for. Continuing the example started earlier, we have

-- Available online as part of UserDefined.sql
DECLARE
-- Exception to indicate an error condition
e_DuplicateAuthors EXCEPTION;

-- IDs for three authors
v_Author1 books.author1%TYPE;
v_Author2 books.author2%TYPE;
v_Author3 books.author3%TYPE;

BEGIN
/* Find the IDs for the 3 authors of 'Oracle9i DBA 101' */
SELECT author1, author2, author3
INTO v_Author1, v_Author2, v_Author3
FROM books
WHERE title = 'Oracle9i DBA 101';

/* Ensure that there are no duplicates */
IF (v_Author1 = v_Author2) OR (v_Author1 = v_Author3) OR

(v_Author2 = v_Author3) THEN
RAISE e_DuplicateAuthors;

END IF;
EXCEPTION
WHEN e_DuplicateAuthors THEN
/* Handler which executes when there are duplicate authors for

Oracle9i DBA 101. We will insert a log message recording
what has happened. */

INSERT INTO log_table (info)
VALUES ('Oracle9i DBA 101 has duplicate authors');

END;

Chapter 7: Error Handling 311

A single handler can also be executed for more than one exception. Simply list
the exception names in the WHEN clause separated by the keyword OR:

EXCEPTION
WHEN NO_DATA_FOUND OR TOO_MANY_ROWS THEN
INSERT INTO log_table (info)
VALUES ('A select error occurred.');

END;

NOTE
Unlike in Java, an exception section of a block can
have handlers for exceptions that are not actually
raised by the executable section. Likewise, it is not
required that an exception handler be present for
every possible exception that could be raised by the
executable section. The PL/SQL compiler does not
currently validate the exception section in this manner.

A given exception can be handled by at most one handler in an exception section.
If there is more than one handler for an exception, the PL/SQL compiler will raise
PLS-483, as shown by the following SQL*Plus session:

-- Available online as DuplicateHandlers.sql
SQL> DECLARE
2 -- Declare 2 user defined exceptions
3 e_Exception1 EXCEPTION;
4 e_Exception2 EXCEPTION;
5 BEGIN
6 -- Raise just exception 1.
7 RAISE e_Exception1;
8 EXCEPTION
9 WHEN e_Exception2 THEN

10 INSERT INTO log_table (info)
11 VALUES ('Handler 1 executed!');
12 WHEN e_Exception1 THEN
13 INSERT INTO log_table (info)
14 VALUES ('Handler 3 executed!');
15 WHEN e_Exception1 OR e_Exception2 THEN
16 INSERT INTO log_table (info)
17 VALUES ('Handler 4 executed!');
18 END;
19 /
WHEN e_Exception1 OR e_Exception2 THEN
*

ERROR at line 15:
ORA-06550: line 15, column 3:

312 Oracle Database 10g PL/SQL Programming

PLS-00483: exception 'E_EXCEPTION2' may appear in at most one exception
handler in this block

ORA-06550: line 0, column 0:
PL/SQL: Compilation unit analysis terminated

NOTE
It is impossible for an exception handler to be
defined for more than one exception
simultaneously; i.e.,

WHEN exception1 AND exception2

This will raise a compilation error.

The OTHERS Exception Handler
PL/SQL defines a special exception handler, known as OTHERS. This handler will
execute for all raised exceptions that are not handled by any other WHEN clauses
defined in the current exception section (similar to the generic Exception class in
Java). It should always be the last handler in the block, so that all previous (and more
specific) handlers will be scanned first. WHEN OTHERS will trap all exceptions, be
they user-defined or predefined. It is good programming practice to have an OTHERS
handler at the top level of your program (the outermost block) to ensure that no errors
go undetected. If not, then the error will propagate out to the calling environment
(see the section “Exception Propagation” for more details). In this case, the transaction
will be rolled back by the server (see the section “Exceptions and Transactions”
for details).

The next listing continues the previous example by adding an OTHERS handler:

-- Available online as part of UserDefined.sql
DECLARE
-- Exception to indicate an error condition
e_DuplicateAuthors EXCEPTION;

-- IDs for three authors
v_Author1 books.author1%TYPE;
v_Author2 books.author2%TYPE;
v_Author3 books.author3%TYPE;

BEGIN
/* Find the IDs for the 3 authors of 'Oracle9i DBA 101' */
SELECT author1, author2, author3
INTO v_Author1, v_Author2, v_Author3
FROM books
WHERE title = 'Oracle9i DBA 101';

/* Ensure that there are no duplicates */
IF (v_Author1 = v_Author2) OR (v_Author1 = v_Author3) OR

(v_Author2 = v_Author3) THEN

Chapter 7: Error Handling 313

RAISE e_DuplicateAuthors;
END IF;

EXCEPTION
WHEN e_DuplicateAuthors THEN
/* Handler which executes when there are duplicate authors for

Oracle9i DBA 101. We will insert a log message recording
what has happened. */

INSERT INTO log_table (info)
VALUES ('Oracle9i DBA 101 has duplicate authors');

WHEN OTHERS THEN
/* Handler which executes for all other errors. */
INSERT INTO log_table (info) VALUES ('Another error occurred');

END;

The OTHERS exception handler in this example simply records the fact that an
error occurred. However, it doesn’t record which error. We can determine which
error raised the exception that is being handled by an OTHERS handler through the
predefined functions SQLCODE and SQLERRM, described next.

TIP
In production code, do not write an exception
handler like this one:

WHEN OTHERS THEN NULL;

Otherwise, it will silently trap any unexpected errors
and not record the fact that they occurred. A good
OTHERS handler will log the error and possibly
provide additional information, for later analysis.

Examining the Error Stack
Although only one exception can be raised at a time, the actual error message text
could contain several messages. For example, if an exception is raised from within a
stored subprogram and propagated out (see the section “Exception Propagation” for
details on this process), there will be ORA-6512 errors indicating the line where the
exception was originally raised.

Inside an OTHERS handler, there are several ways of getting information about
the error message stack, which we will see in the following sections.

SQLCODE and SQLERRM PL/SQL provides error information via two built-in
functions, SQLCODE and SQLERRM. SQLCODE returns the current error code,
and SQLERRM returns the current error message text. For a user-defined exception,
SQLCODE returns 1, and SQLERRM returns “User-defined Exception”.

314 Oracle Database 10g PL/SQL Programming

Here is the entire PL/SQL block that we have developed so far, with a complete
OTHERS exception handler:

-- Available online as part of UserDefined.sql
DECLARE
-- Exception to indicate an error condition
e_DuplicateAuthors EXCEPTION;

-- IDs for three authors
v_Author1 books.author1%TYPE;
v_Author2 books.author2%TYPE;
v_Author3 books.author3%TYPE;

-- Code and text of other run-time errors
v_ErrorCode log_table.code%TYPE;
v_ErrorText log_table.message%TYPE;

BEGIN
/* Find the IDs for the 3 authors of 'Oracle9i DBA 101' */
SELECT author1, author2, author3
INTO v_Author1, v_Author2, v_Author3
FROM books
WHERE title = 'Oracle9i DBA 101';

/* Ensure that there are no duplicates */
IF (v_Author1 = v_Author2) OR (v_Author1 = v_Author3) OR

(v_Author2 = v_Author3) THEN
RAISE e_DuplicateAuthors;

END IF;
EXCEPTION
WHEN e_DuplicateAuthors THEN
/* Handler which executes when there are duplicate authors for

Oracle9i DBA 101. We will insert a log message recording
what has happened. */

INSERT INTO log_table (info)
VALUES ('Oracle9i DBA 101 has duplicate authors');

WHEN OTHERS THEN
/* Handler which executes for all other errors. */
v_ErrorCode := SQLCODE;
-- Note the use of SUBSTR here.
v_ErrorText := SUBSTR(SQLERRM, 1, 200);
INSERT INTO log_table (code, message, info) VALUES
(v_ErrorCode, v_ErrorText, 'Oracle error occurred');

END;

Each error message on the stack has a maximum of 512 characters, but there could
be more than one message on the stack. In the preceding listing, v_ErrorText

Chapter 7: Error Handling 315

is only 200 characters (to match the message field of the log_table table). If the
error message text is longer than 200 characters, the assignment

v_ErrorText := SQLERRM;

will itself raise the predefined exception VALUE_ERROR. To prevent this, we use the
SUBSTR built-in function to ensure that at most 200 characters of the error message
text are assigned to v_ErrorText.

Note that the values of SQLCODE and SQLERRM are assigned to local variables
first; then these variables are used in a SQL statement. Because these functions are
procedural, they cannot be used directly inside a SQL statement.

SQLERRM can also be called with a single number argument. In this case, it returns
the text associated with the number. This argument should always be negative. If
SQLERRM is called with zero, the message

ORA-0000: normal, successful completion

is returned. If SQLERRM is called with any positive value other than +100, messages
such as

non-ORACLE Exception

are returned. SQLERRM(100) returns

ORA-1403: no data found

When called from an exception handler, SQLCODE will return a negative value
indicating the Oracle error. The only exception to this is the error “ORA-1403: no
data found,” in which case SQLCODE returns +100. (100 corresponds to the ANSI
specification for the NO DATA FOUND error.)

If SQLERRM (with no arguments) is called from the executable section of a
block, it always returns

ORA-0000: normal, successful completion

and SQLCODE returns 0. All of these situations are shown in the following
SQL*Plus session:

-- Available online as SQLERRM.sql
SQL> BEGIN
2 DBMS_OUTPUT.PUT_LINE('SQLERRM(0): ' || SQLERRM(0));
3 DBMS_OUTPUT.PUT_LINE('SQLERRM(100): ' || SQLERRM(100));
4 DBMS_OUTPUT.PUT_LINE('SQLERRM(10): ' || SQLERRM(10));
5 DBMS_OUTPUT.PUT_LINE('SQLERRM: ' || SQLERRM);
6 DBMS_OUTPUT.PUT_LINE('SQLERRM(-1): ' || SQLERRM(-1));

316 Oracle Database 10g PL/SQL Programming

7 DBMS_OUTPUT.PUT_LINE('SQLERRM(-54): ' || SQLERRM(-54));
8 END;
9 /

SQLERRM(0): ORA-0000: normal, successful completion
SQLERRM(100): ORA-01403: no data found
SQLERRM(10): -10: non-ORACLE exception
SQLERRM: ORA-0000: normal, successful completion
SQLERRM(-1): ORA-00001: unique constraint (.) violated
SQLERRM(-54): ORA-00054: resource busy and acquire with NOWAIT specified
PL/SQL procedure successfully completed.

TIP
It is generally more useful to use SQLERRM with
no parameters, rather than passing a parameter
(such as SQLCODE). The version with no parameters
will return the complete error message, with any
substituted strings, such as the constraint name in
the case of the ORA-1 error in the previous example.

DBMS_UTILITY.FORMAT_ERROR_STACK The DBMS_UTILITY package provides
a function FORMAT_ERROR_STACK that returns the same information as SQLERRM,
also limited to 2000 bytes. We will discuss packages in Chapters 8 and 9. Since
FORMAT_ERROR_STACK is a packaged function, it can be used directly in a SQL
statement, so it does not have to be assigned to a local variable first like SQLERRM.
For example, we can rewrite the exception handling section of our example as follows:

-- Available online as part of UserDefined.sql
EXCEPTION
WHEN e_DuplicateAuthors THEN
/* Handler which executes when there are duplicate authors for

Oracle9i DBA 101. We will insert a log message recording
what has happened. */

INSERT INTO log_table (info)
VALUES ('Oracle9i DBA 101 has duplicate authors');

WHEN OTHERS THEN
INSERT INTO log_table (code, message, info) VALUES
(NULL, SUBSTR(DBMS_UTILITY.FORMAT_ERROR_STACK, 1, 200),
'Oracle error occurred');

END;

We still need to insert no more than the first 200 characters due to the size of message.

DBMS_UTILITY.FORMAT_ERROR_BACKTRACE The FORMAT_ERROR_
BACKTRACE function is similar to FORMAT_ERROR_STACK, except that it is

Chapter 7: Error Handling 317

not subject to the 2000-byte limit. It will return the complete error stack at the
point the error was raised.

The EXCEPTION_INIT Pragma
You can associate a named exception with a particular Oracle error. This gives you
the ability to trap this error specifically, rather than via an OTHERS handler. This is done
via the EXCEPTION_INIT pragma. The EXCEPTION_INIT pragma is used as follows:

PRAGMA EXCEPTION_INIT (exception_name, oracle_error_number);

where exception_name is the name of an exception declared prior to the pragma,
and oracle_error_number is the desired error code to be associated with this
named exception. This pragma must be in the declarative section. The following
example will raise the e_MissingNull user-defined exception if the “ORA-1400:
mandatory NOT NULL column missing or NULL during insert” error is encountered
at run time:

-- Available online as part of ExceptionInit.sql
SQL> DECLARE
2 e_MissingNull EXCEPTION;
3 PRAGMA EXCEPTION_INIT(e_MissingNull, -1400);
4 BEGIN
5 INSERT INTO authors (id) VALUES (NULL);
6 EXCEPTION
7 WHEN e_MissingNull then
8 INSERT INTO log_table (info) VALUES ('ORA-1400 occurred');
9 END;

10 /

SQL> SELECT info FROM log_table;
INFO

ORA-1400 occurred

Only one user-defined exception can be associated with an Oracle error with
each occurrence of PRAGMA EXCEPTION_INIT. Inside the exception handler,
SQLCODE and SQLERRM will return the code and message for the Oracle error
that occurred, rather than “User-Defined Exception.”

NOTE
The predefined exceptions described in Table 7-2
are associated with their corresponding Oracle
errors with the EXCEPTION_INIT pragma as well,
in package STANDARD.

318 Oracle Database 10g PL/SQL Programming

Chapter 7: Error Handling 319

Using RAISE_APPLICATION_ERROR
You can use the built-in function RAISE_APPLICATION_ERROR to create your own
error messages, which can be more descriptive than named exceptions. User-defined
errors are passed out of the block the same way as Oracle errors to the calling
environment. The syntax of RAISE_APPLICATION_ERROR is

RAISE_APPLICATION_ERROR(error_number, error_message, [keep_errors]);

where error_number is a value between –20,000 and –20,999, error_message is the
text associated with this error, and keep_errors is a Boolean value. The error_message
parameter must be fewer than 512 characters. The Boolean parameter, keep_errors,
is optional. If keep_errors is TRUE, the new error is added to the list of errors already
raised (if one exists). If it is FALSE, which is the default, the new error will replace
the current list of errors.

For example, the following procedure checks to ensure that the authors of a
proposed new book are valid, and raises errors if they are not. Procedures are discussed
in more detail starting in Chapter 8.

TIP
The constraints on the BOOKS table will not
actually allow invalid entries (as checked by
VerifyAuthors) to be inserted. However,
VerifyAuthors can be used to raise more
user-friendly errors than constraint violations.

-- Available online as part of VerifyAuthors.sql
/* Verifies that the authors passed in are valid for a book to be

added to the inventory. Errors are raised in the following
situations:

* author1 is null
* any author does not exist in the authors table
* there are author duplicates

If the authors are valid, then the procedure completes without
error. */

CREATE OR REPLACE PROCEDURE VerifyAuthors(
p_Author1 IN books.author1%TYPE,
p_Author2 IN books.author2%TYPE,
p_Author3 IN books.author3%TYPE) AS

v_AuthorCount NUMBER;
BEGIN
/* First verify that each author is in the authors table */
IF p_Author1 IS NULL THEN
RAISE_APPLICATION_ERROR(-20000, 'Author1 cannot be null');

320 Oracle Database 10g PL/SQL Programming

ELSE
SELECT COUNT(*)
INTO v_AuthorCount
FROM authors
WHERE id = p_Author1;

IF v_AuthorCount = 0 THEN
RAISE_APPLICATION_ERROR(-20001,
'Author1 ' || p_Author1 || ' does not exist');

END IF;
END IF;

IF p_Author2 IS NOT NULL THEN
SELECT COUNT(*)
INTO v_AuthorCount
FROM authors
WHERE id = p_Author2;

IF v_AuthorCount = 0 THEN
RAISE_APPLICATION_ERROR(-20001,
'Author2 ' || p_Author2 || ' does not exist');

END IF;
END IF;

IF p_Author3 IS NOT NULL THEN
SELECT COUNT(*)
INTO v_AuthorCount
FROM authors
WHERE id = p_Author3;

IF v_AuthorCount = 0 THEN
RAISE_APPLICATION_ERROR(-20001,
'Author3 ' || p_Author3 || ' does not exist');

END IF;
END IF;

/* Now verify that there are no duplicate authors. */
IF p_Author1 = p_Author2 THEN

RAISE_APPLICATION_ERROR (-20002,
'Author1 ' || p_Author1 || ' and author2 ' || p_Author2 ||
' are duplicates');

ELSIF p_Author1 = p_Author3 THEN
RAISE_APPLICATION_ERROR (-20002,
'Author1 ' || p_Author1 || ' and author3 ' || p_Author3 ||
' are duplicates');

ELSIF p_Author2 = p_Author3 THEN
RAISE_APPLICATION_ERROR (-20002,
'Author2 ' || p_Author2 || ' and author3 ' || p_Author3 ||

Chapter 7: Error Handling 321

' are duplicates');
END IF;

END VerifyAuthors;

The VerifyAuthors procedure uses RAISE_APPLICATION_ERROR in three
different places. The first thing the procedure verifies is that p_Author1 is not
NULL, since all books must have at least one author. If it is NULL, then ORA-20000
is raised. It next verifies that, if they are specified, the author IDs exist in the authors
table. If a given author ID does not exist (as verified by the SELECT COUNT(*)
statement returning 0), then ORA-20001 is raised. Finally, the procedure verifies
that there are no duplicate authors. If so, then ORA-20002 is raised. If all these tests
pass, the procedure returns successfully with no errors.

VerifyAuthors also illustrates another useful feature of RAISE_APPLICATION_
ERROR. Because the program is in charge of creating the error message text, the error
can include the actual data. For example, each one of the ORA-20002 calls includes
the duplicate author IDs. Assuming that the tables are in their initial state (as created
by tables.sql), the following SQL*Plus session illustrates the behavior of the
VerifyAuthors procedure and the errors it raises:

-- Available online as part of VerifyAuthors.sql
SQL> -- The first three calls will raise errors
SQL> BEGIN VerifyAuthors(NULL, NULL, NULL); END;
2 /

BEGIN VerifyAuthors(NULL, NULL, NULL); END;
*
ERROR at line 1:
ORA-20000: Author1 cannot be null
ORA-06512: at "EXAMPLE.VERIFYAUTHORS", line 10
ORA-06512: at line 1

SQL> BEGIN VerifyAuthors(30, 40, NULL); END;
2 /

BEGIN VerifyAuthors(30, 40, NULL); END;
*
ERROR at line 1:
ORA-20001: Author2 40 does not exist
ORA-06512: at "EXAMPLE.VERIFYAUTHORS", line 28
ORA-06512: at line 1

SQL> BEGIN VerifyAuthors(30, 30, 1); END;
2 /

BEGIN VerifyAuthors(30, 30, 1); END;
*
ERROR at line 1:

ORA-20002: Author1 30 and author2 30 are duplicates
ORA-06512: at "EXAMPLE.VERIFYAUTHORS", line 46
ORA-06512: at line 1

SQL> -- But these calls are successful
SQL> BEGIN VerifyAuthors(30, NULL, NULL); END;
2 /

PL/SQL procedure successfully completed.
SQL> BEGIN VerifyAuthors(30, 14, 8); END;
2 /

PL/SQL procedure successfully completed.

Compare the preceding output to the anonymous block that follows, which
illustrates an anonymous block that simply raises the NO_DATA_FOUND
exception:

-- Available online as part of VerifyAuthors.sql
SQL> BEGIN
2 RAISE NO_DATA_FOUND;
3 END;
4 /

BEGIN
*
ERROR at line 1:
ORA-01403: no data found
ORA-06512: at line 2

The format of both outputs is the same: an Oracle error number and text
associated with it. Note that both also include an ORA-6512 statement indicating
the line that caused the error. So RAISE_APPLICATION_ERROR can be used to
return error conditions to the user in a manner consistent with other Oracle errors.
This is very useful, because no special error handling is necessary for user-defined
errors versus predefined ones.

TIP
Some Oracle components (such as Oracle Text) also
use RAISE_APPLICATION_ERROR. So you may see
ORA-20000 errors raised in other places, which
could lead to error number duplication. You can
use a unique prefix in your error text to distinguish
your error messages from other products’ messages.

322 Oracle Database 10g PL/SQL Programming

Chapter 7: Error Handling 323

Exception Propagation
Exceptions can occur in the declarative, executable, or the exception section
of a PL/SQL block. We have seen in the previous section what happens when
exceptions are raised in the executable portion of the block, and there is a handler
for the exception. But what if there isn’t a handler, or the exception is raised from a
different section of the block? The process that governs this situation is known as
exception propagation.

Exceptions Raised in the Executable Section
When an exception is raised in the executable section of a block, PL/SQL uses the
following algorithm to determine which exception handler to invoke:

1. If the current block has a handler for the exception, execute it and complete
the block successfully. Control then passes to the enclosing block.

2. If there is no handler for the current exception, propagate the exception by
raising it in the enclosing block. Step 1 will then be executed for the enclosing
block. If there is no enclosing block, then the exception will be propagated out
to the calling environment, such as SQL*Plus.

Before we can examine this algorithm in detail, we need to define an enclosing
block. A block can be embedded inside another block. In this case, the outer block
encloses the inner block. For example,

DECLARE

-- Begin outer block.

...

BEGIN

...

DECLARE

-- Begin inner block 1. This is embedded in the outer block.

...

BEGIN

...

END;

...

BEGIN

-- Begin inner block 2. This is also embedded in the outer block.

-- Note that this block doesn't have a declarative part.

...

END;

324 Oracle Database 10g PL/SQL Programming

...

-- End outer block.

END;

In the preceding listing, inner blocks 1 and 2 are both enclosed by the outer block.
Any unhandled exceptions in blocks 1 and 2 will be propagated to the outer block.

A procedure call will also create an enclosing block, as is illustrated in the
following example:

BEGIN

-- Begin outer block.

-- Call a procedure. This outer block will enclose the procedure.

P(...);

EXCEPTION

WHEN OTHERS THEN

-- Any exceptions raised by P will be caught here

END;

If procedure P raises an unhandled exception, it will be propagated to the outer
block, since it encloses the procedure.

Different cases for the exception propagation algorithm are illustrated in
examples 1, 2, and 3 in the following sections.

Propagation Example 1
The example shown here illustrates application of rule 1. Exception A is raised and
handled in the sub-block. Control then returns to the outer block.

Propagation Example 2
In this example, rule 2 is applied for the sub-block. The exception B is propagated
to the enclosing block, where rule 1 is applied. The enclosing block then completes
successfully.

Propagation Example 3
Here, rule 2 is applied for the sub-block. The exception C is propagated to the
enclosing block, where there is still no handler for it. Rule 2 is applied again, and
the enclosing block completes unsuccessfully with an unhandled exception.

Chapter 7: Error Handling 325

326 Oracle Database 10g PL/SQL Programming

Exceptions Raised in the Declarative Section
If an assignment in the declarative section raises an exception, the exception is
immediately propagated to the enclosing block. Once there, the rules given in the
previous section are applied to propagate the exception further. Even if there is a
handler in the current block, it is not executed. Examples 4 and 5 illustrate this.

Propagation Example 4
In this example, the VALUE_ERROR exception is raised by the declaration

v_Number NUMBER(3) := 'ABC';

This exception is immediately propagated to the enclosing block. Even though there
is an OTHERS exception handler in this block, it is not executed. If this block had
been enclosed in an outer block, the outer block would have been able to catch this
exception. (Example 5 illustrates this scenario.)

Propagation Example 5
Similar to example 4, the VALUE_ERROR exception is raised in the declarative
section of the inner block. The exception is immediately propagated to the outer
block. Since the outer block has an OTHERS exception handler, the exception is
handled and the outer block completes successfully.

Exceptions Raised in the Exception Section
Exceptions can also be raised while in an exception handler, either explicitly via
the RAISE statement or implicitly via a run-time error. In either case, the exception
is propagated immediately to the enclosing block, like exceptions that are raised in
the declarative section. This is done because only one exception at a time can be
“active” in the exception section. As soon as one is handled, another can be raised.
But there cannot be more than one exception raised simultaneously. Examples 6, 7,
and 8 illustrate this scenario.

Propagation Example 6
In this example, exception A is raised and then handled. But in the exception handler
for A, exception B is raised. This exception is immediately propagated to the outer
block, bypassing the handler for B. Similar to example 5, if this block had been enclosed
in an outer block, this outer block could have caught exception B. (Example 7 illustrates
the latter case.)

Chapter 7: Error Handling 327

Propagation Example 7
Similar to example 6, exception B is raised in the handler for exception A. This
exception is immediately propagated to the enclosing block, bypassing the inner
handler for B. However, in example 7 we have an outer block that handles
exception B and completes successfully.

328 Oracle Database 10g PL/SQL Programming

Propagation Example 8
As examples 6 and 7 illustrate, RAISE can be used to raise another exception inside
a handler. In an exception handler, RAISE can also be used without an argument.
If RAISE doesn’t have an argument, the current exception is propagated to the
enclosing block. This technique is useful for logging the error and/or doing any
necessary cleanup because of it, and then notifying the enclosing block that it
occurred. Example 8 illustrates this final scenario.

Note that there is a COMMIT after the INSERT statement in example 8. This
ensures that the INSERT will be committed to the database, in case the transaction
is rolled back. See Chapter 4 for more information about transactions.

TIP
Using a nontransactional logging technique such as
the UTL_FILE package can avoid the need to commit
a logging DML statement. This could also be
accomplished though an autonomous transaction.

Exception Guidelines
This section contains guidelines and tips on how best to use exceptions in your
programs. These guidelines include the scope of exceptions, how to avoid
unhandled exceptions, how to identify which statement raised a given exception,
and the relationship between exceptions and transactions. We will also discuss

Chapter 7: Error Handling 329

some coding styles related to exceptions. These guidelines should help you use
exceptions more effectively in your own programs, and avoid some common pitfalls.

Scope of Exceptions
Exceptions are scoped just like variables. If a user-defined exception is propagated
out of its scope, it can no longer be referenced by name. The next example
illustrates this.

-- Available online as part of OutOfScope.sql
SQL> BEGIN
2 DECLARE
3 e_UserDefinedException EXCEPTION;
4 BEGIN
5 RAISE e_UserDefinedException;
6 END;
7 EXCEPTION
8 /* e_UserDefinedException is out of scope here - can only be
9 handled by an OTHERS handler */
10 WHEN OTHERS THEN
11 /* Just re-raise the exception, which will be propagated to the
12 calling environment */
13 RAISE;
14 END;
15 /
BEGIN
*
ERROR at line 1:
ORA-06510: PL/SQL: unhandled user-defined exception
ORA-06512: at line 13

In general, if a user-defined error is to be propagated out of a block, it is best
to define the exception in a package so that it will still be visible outside the block,
or to use RAISE_APPLICATION_ERROR instead. If we create a package called
Globals and define e_UserDefinedException in this package, the exception
will still be visible in the outer block. For example,

--Available online as part of OutOfScope.sql
CREATE OR REPLACE PACKAGE Globals AS
/* This package contains global declarations. Objects declared here
will

be visible via qualified references for any other blocks or
procedures.

Note that this package does not have a package body. */

/* A user-defined exception. */

330 Oracle Database 10g PL/SQL Programming

e_UserDefinedException EXCEPTION;
END Globals;

Given package Globals, we can rewrite the preceding listing as

-- Available online as part of OutOfScope.sql
BEGIN
BEGIN
RAISE Globals.e_UserDefinedException;

END;
EXCEPTION
/* Since e_UserDefinedException is still visible, we can handle it

explicitly */
WHEN Globals.e_UserDefinedException THEN
/* Just re-raise the exception, which will be propagated to the

calling environment */
RAISE;

END;

Package Globals can also be used for common PL/SQL tables, variables, and
types, in addition to exceptions. See Chapters 8 and 9 for more information on
packages.

Avoiding Unhandled Exceptions
It is good programming practice to avoid completing your program with an unhandled
exception. This can be done via an OTHERS handler at the topmost level of your
program. This handler may simply log the error and where it occurred. This way,
you ensure that no error will go undetected. For example,

DECLARE
v_ErrorNumber NUMBER; -- Variable to hold the error number
v_ErrorText VARCHAR2(200); -- Variable to hold the error message text

BEGIN
/* Normal PL/SQL processing */
...

EXCEPTION
WHEN OTHERS THEN
/* Log all exceptions so we complete successfully */
v_ErrorNumber := SQLCODE;
v_ErrorText := SUBSTR(SQLERRM, 1, 200);
INSERT INTO log_table (code, message, info) VALUES
(v_ErrorNumber, v_ErrorText, 'Oracle error occurred at ' ||
TO_CHAR(SYSDATE, 'DD-MON-YY HH24:MI:SS'));

END;

Chapter 7: Error Handling 331

332 Oracle Database 10g PL/SQL Programming

DBMS_UTILITY.FORMAT_ERROR_BACKTRACE (available in 10gR1 and higher)
could also be used in a top-level handler such as this, since it would record the
original location of the exception.

Masking Location of the Error
Since the same exception section is examined for the entire block, it can be difficult
to determine which SQL statement caused the error. Consider the following example:

BEGIN
SELECT ...
SELECT ...
SELECT ...

EXCEPTION
WHEN NO_DATA_FOUND THEN
-- Which select statement raised the exception?

END;

There are two coding methods to solve this. The first is to increment a counter
identifying the SQL statement:

DECLARE
-- Variable to hold the select statement number
v_SelectCounter NUMBER := 1;

BEGIN
SELECT ...
v_SelectCounter := 2;
SELECT ...
v_SelectCounter := 3;
SELECT ...

EXCEPTION
WHEN NO_DATA_FOUND THEN
INSERT INTO log_table (info) VALUES ('No data found in select ' ||
v_SelectCounter);

END;

The second method is to put each statement into its own sub-block:

BEGIN
BEGIN
SELECT ...

EXCEPTION
WHEN NO_DATA_FOUND THEN
INSERT INTO log_table (info) VALUES ('No data found in select 1;);

END;
BEGIN
SELECT ...

Chapter 7: Error Handling 333

EXCEPTION
WHEN NO_DATA_FOUND THEN
INSERT INTO log_table (info) VALUES ('No data found in select 2');

END;
BEGIN
SELECT ...

EXCEPTION
WHEN NO_DATA_FOUND THEN
INSERT INTO log_table (info) VALUES ('No data found in select 3');

END;
END;

TIP
Again, DBMS_UTILITY.FORMAT_ERROR_
BACKTRACE (10g and higher) could be used to
determine the line at which the exception was
raised. This would require parsing the backtrace.

Exceptions and Transactions
Raising an exception does not end a transaction, just as ending a block does
not end a transaction. However, if the top-level block exits with an unhandled
exception, which would be propagated to the calling environment, the transaction
will be rolled back automatically by the server. This is illustrated by the following
SQL*Plus session:

-- Available online as part of autoRollback.sql
SQL> BEGIN
2 -- Insert a row into temp_table, and then raise an
3 -- exception that will not be handled.
4 INSERT INTO temp_table (char_col)
5 VALUES ('This is my row!');
6 RAISE VALUE_ERROR;
7 END;
8 /

BEGIN
*
ERROR at line 1:
ORA-06502: PL/SQL: numeric or value error
ORA-06512: at line 6

SQL> -- The row is not present because the transaction has been rolled
SQL> -- back.
SQL> SELECT * FROM temp_table;
no rows selected

Exception Coding Styles
In the following sections we will discuss two issues regarding coding style of exceptions:
when RAISE_APPLICATION_ERROR is appropriate versus RAISE, and how exceptions
can be used as control statements.

RAISE_APPLICATION_ERROR vs. RAISE A user-defined error condition can
be indicated with both RAISE_APPLICATION_ERROR and RAISE of a user-defined
exception. When is each appropriate? The differences between the two techniques
are described here:

RAISE_APPLICATION_ERROR RAISE

Allows you to supply your own
error message text, which can
contain application-specific data.

Does not allow for message text.

Exceptions cannot be caught by
named handlers, only OTHERS.

Exceptions can be caught with named
handlers, as long as the exception is
within scope.

In general, I recommend using RAISE_APPLICATION_ERROR for errors that
are designed to be seen by the end user. Specific error numbers and descriptive
text are useful here. RAISE, on the other hand, is useful for errors that are designed
to be handled programmatically. The UTL_FILE package (described in Appendix B)
uses defined exceptions in this manner.

Using Exceptions as Control Statements Because raising an exception will cause
control to be passed immediately to the exception handling section of the block, a
RAISE statement can be used as a control statement, similar to a GOTO. This can
be useful, for example, if you have several deeply nested loops and need to exit
from all of them.

Summary
In this chapter, we saw how PL/SQL programs can detect and react intelligently to
run-time errors. The mechanism provided by PL/SQL to do this includes exceptions
and exception handlers. We examined how exceptions are defined and how they
correspond to either user-defined errors or predefined Oracle errors. We also
discussed the rules for exception propagation, including exceptions raised in all
parts of a PL/SQL block. The chapter concluded with guidelines on using exceptions.

334 Oracle Database 10g PL/SQL Programming

CHAPTER
8

Creating Procedures,
Functions, and

Packages

Copyright © 2004 by The McGraw-Hill Companies, Inc. Click here for terms of use.

336 Oracle Database 10g PL/SQL Programming

A
s we saw in Chapter 3, there are two main kinds of PL/SQL blocks:
anonymous and named. An anonymous block (beginning with either
DECLARE or BEGIN) is compiled each time it is issued. It also is
not stored in the database and cannot be called directly from other
PL/SQL blocks. The constructs that we will look at in this and the next

two chapters—procedures, functions, packages, and triggers—are all named blocks
and thus do not have these restrictions. They can be stored in the database and run
when appropriate. In this chapter, we will explore the syntax of creating procedures,
functions, and packages. In Chapter 9, we will examine how to use them and some
of their implications. Chapter 10 focuses on database triggers.

Procedures and Functions
PL/SQL procedures and functions behave very much like procedures and functions
in other 3GLs (third-generation languages). They share many of the same properties.
Collectively, procedures and functions are also known as subprograms. As an example,
the following code creates a procedure in the database:

–– Available online as part of AddNewAuthor.sql
CREATE OR REPLACE PROCEDURE AddNewAuthor (
p_ID authors.ID%TYPE,
p_FirstName authors.first_name%TYPE,
p_LastName authors.last_name%TYPE) AS

BEGIN
–– Insert a new row into the authors table, using the supplied
–– arguments for the column values.
INSERT INTO authors (id, first_name, last name)
VALUES (p_ID, p_FirstName, p_LastName);

END AddNewAuthor;

Once this procedure is created, we can call it from another PL/SQL block:

–– Available online as part of AddNewAuthor.sql
BEGIN
AddNewAuthor(100, 'Zelda', 'Zudnik');

END;

This example illustrates several notable points:

■ The AddNewAuthor procedure is created first with the CREATE OR
REPLACE PROCEDURE statement. When a procedure is created, it is first
compiled and then stored in the database in compiled form. This compiled
code can then be run later from another PL/SQL block. (The source code
for the procedure is also stored. See the section “Stored Subprograms and
the Data Dictionary” in Chapter 9 for more information.)

Chapter 8: Creating Procedures, Functions, and Packages 337

■ When the procedure is called, parameters can be passed. In the preceding
example, the new author’s ID and first and last names are passed to the
procedure at run time. Inside the procedure, the parameter p_ID will have
the value 100, p_FirstName will have the value ‘Zelda’, and p_LastName
will have the value ‘Zudnik’, because these literals are passed to the procedure
when it is called. The %TYPE declarations specify that the types of the
parameters should match the authors table, just as they do for variable
declarations.

■ A procedure call is a PL/SQL statement by itself. It is not called as part of
an expression. When a procedure is called, control passes to the first
executable statement inside the procedure. When the procedure finishes,
control resumes at the statement following the procedure call. In this regard,
PL/SQL procedures behave the same as procedures in other 3GLs. Functions
are called as part of an expression, as we will see later in this section.

■ A procedure is a PL/SQL block, with a declarative section, an executable
section, and an exception-handling section. As in an anonymous block,
only the executable section is required. AddNewAuthor only has an
executable section.

Subprogram Creation
Similar to other data dictionary objects, subprograms are created using the CREATE
statement. Procedures are created with CREATE PROCEDURE, and functions are
created with CREATE FUNCTION. We will examine the details of these statements
in the following sections.

Creating a Procedure
The following railroad diagram illustrates the basic syntax for the CREATE OR
REPLACE PROCEDURE statement:

338 Oracle Database 10g PL/SQL Programming

Procedure_name is the name of the procedure to be created, argument is the
name of a procedure parameter, type is the type of the associated parameter, and
procedure_body is a PL/SQL block that makes up the code of the procedure. See
the section “Subprogram Parameters” later in this chapter for information on
procedure and function parameters, and the meanings of the IN, OUT, IN OUT,
and NOCOPY keywords. The argument list is optional. In this case, there are no
parentheses either in the procedure declaration or in the procedure call. There are
additional clauses for CREATE OR REPLACE PROCEDURE, which we will discuss
later in this chapter.

In order to change the code of a procedure, the procedure must be dropped
and then re-created. Since this is a common operation while the procedure is under
development, the OR REPLACE keywords allow this to be done in one operation.
If the procedure exists, it is dropped first, without a warning message. (To drop a
procedure, use the DROP PROCEDURE command, described in the “Dropping
Procedures and Functions” section later in this chapter.) If the procedure does not
already exist, it is simply created. If the procedure exists and the OR REPLACE
keywords are not present, the CREATE statement will return the Oracle error “ORA-
955: Name is already used by an existing object.”

As with other CREATE statements, creating a procedure is a DDL operation, so
an implicit COMMIT is done both before and after the procedure is created. Either
the IS or the AS keyword can be used—they are equivalent.

The Procedure Body The body of a procedure is a PL/SQL block with declarative,
executable, and exception sections. The declarative section is located between the
IS or AS keyword and the BEGIN keyword. The executable section (the only one
that is required) is located between the BEGIN and EXCEPTION keywords, or between
the BEGIN and END keywords if there is no exception-handling section. The
exception section, if present, is located between the EXCEPTION and END keywords.

TIP
There is no DECLARE keyword in a procedure or
function declaration. The IS or AS keyword is used
instead. This syntax originally comes from Ada, on
which PL/SQL is based.

The structure of a procedure creation statement therefore looks like this:

CREATE OR REPLACE PROCEDURE procedure_name [parameter_list]
AS
/* Declarative section is here */

BEGIN
/* Executable section is here */

Chapter 8: Creating Procedures, Functions, and Packages 339

EXCEPTION
/* Exception section is here */

END [procedure_name];

The procedure name can optionally be included after the final END statement in
the procedure declaration. If there is an identifier after the END, it must match the
name of the procedure.

TIP
It is good style to include the procedure name in
the final END statement, because it makes the
procedure easier to read, emphasizes the END that
matches the CREATE statement, and enables the
PL/SQL compiler to flag mismatched BEGIN-END
pairs as early as possible.

Creating a Function
A function is very similar to a procedure. Both take parameters, which can be of
any mode (parameters and modes are described later in this chapter in the section
“Subprogram Parameters”). Both are different forms of PL/SQL blocks, with
declarative, executable, and exception sections. Both can be stored in the database
or declared within a block. However, a procedure call is a PL/SQL statement by
itself, while a function call is called as part of an expression. For example, the
following function returns TRUE if the specified book has three authors, and
FALSE otherwise:

–– Available online as part of ThreeAuthors.sql
CREATE OR REPLACE FUNCTION ThreeAuthors(p_ISBN IN books.isbn%TYPE)
RETURN BOOLEAN AS

v_Author3 books.author3%TYPE;
BEGIN
–– Select the third author for the supplied book into v_Author3.
SELECT author3
INTO v_Author3
FROM books
WHERE isbn = p_ISBN;

–– If v_Author3 is NULL, that means that the book has less then 3
–– authors, so we can return false. Otherwise, return true.
IF v_Author3 IS NULL THEN
RETURN FALSE;

ELSE
RETURN TRUE;

END IF;
END ThreeAuthors;

340 Oracle Database 10g PL/SQL Programming

The ThreeAuthors function returns a Boolean value. The following SQL*Plus
session shows how it can be called. Note that the function call is not a statement by
itself—it is used as part of the IF statement inside the loop.

–– Available online as part of ThreeAuthors.sql
SQL> BEGIN
2 FOR v_Rec IN (SELECT ISBN, title FROM books) LOOP
3 IF ThreeAuthors(v_Rec.ISBN) THEN
4 DBMS_OUTPUT.PUT_LINE('"' || v_Rec.title || '" has 3 authors');
5 END IF;
6 END LOOP;
7 END;
8 /

"Oracle DBA 101" has 3 authors
"Oracle Performance Tuning 101" has 3 authors
"Oracle9i: A Beginner's Guide" has 3 authors
"Oracle9i DBA 101" has 3 authors
"Oracle Database 10g A Beginner's Guide" has 3 authors
"Oracle E-Business Suite Financials Handbook" has 3 authors
"Oracle E-Business Suite Manufacturing & Supply Chain Management" has 3 authors
"Oracle Database 10g XML & SQL Design, Build, & Manage XML Applications in Java, C, C++,
& PL/SQL" has 3 authors
"Oracle PL/SQL Tips and Techniques" has 3 authors
PL/SQL procedure successfully completed.

Function Syntax The syntax for creating a stored function is very similar to the
syntax for a procedure. The following railroad diagram illustrates the syntax:

Chapter 8: Creating Procedures, Functions, and Packages 341

Function_name is the name of the function, argument and type are the same as
for procedures, return_type is the type of value the function returns, and function_
body is a PL/SQL block containing the code for the function. The same rules apply
for a function body as for a procedure body—for example, the function name can
optionally appear after the final END.

As with procedures, the argument list is optional. In this case, there are no
parentheses either in the function declaration or in the function call. However, the
function return type is required, since the function call is part of an expression.
The type of function is used to determine the type of the expression containing the
function call.

The RETURN Statement Inside the body of the function, the RETURN statement
is used to return control to the calling environment with a value. The general syntax
of the RETURN statement is

RETURN expression;

where expression is the value to be returned. When RETURN is executed, expression
will be converted to the type specified in the RETURN clause of the function
definition, if it is not already of that type. At this point, control immediately returns
to the calling environment.

There can be more than one RETURN statement in a function, although only
one of them will be executed. It is an error for a function to end without executing
a RETURN. For example, the ThreeAuthors function that we examined in the
previous section contained two RETURN statements. Which one is executed depends
on whether or not the supplied book has three authors or not.

When used in a function, the RETURN statement must have an expression
associated with it. RETURN can also be used in a procedure, however. In this case,
it has no arguments, which causes control to pass back to the calling environment
immediately. The current values of the formal parameters declared as OUT or IN
OUT are passed back to the actual parameters, and execution continues from the
statement following the procedure call. (See the section “Subprogram Parameters”
later in this chapter for more information on parameters.)

Dropping Procedures and Functions
Just as a table can be dropped, procedures and functions can also be dropped. This
removes the procedure or function from the data dictionary. The syntax for dropping
a procedure is

DROP PROCEDURE procedure_name;

and the syntax for dropping a function is

DROP FUNCTION function_name;

342 Oracle Database 10g PL/SQL Programming

where procedure_name is the name of an existing procedure, and function_name
is the name of an existing function. For example, the following statement drops the
AddNewAuthor procedure:

DROP PROCEDURE AddNewAuthor;

If the object to be dropped is a function, you must use DROP FUNCTION,
and if the object is a procedure, you must use DROP PROCEDURE. Like CREATE,
DROP is a DDL command, so an implicit COMMIT is done both before and after
the statement. If the subprogram does not exist, the DROP statement will raise the
error “ORA-4043: Object does not exist.”

Subprogram Parameters
As in other 3GLs, you can create procedures and functions that take parameters.
These parameters can have different modes and may be passed by value or by
reference. We will examine how to do this in the next few sections.

Parameter Modes
Given the AddNewAuthor procedure shown earlier, we can call this procedure
from the following anonymous PL/SQL block:

–– Available online as callANA.sql
DECLARE
–– Variables describing the new author
v_NewFirstName authors.first_name%TYPE := 'Cynthia';
v_NewLastName authors.last_name%TYPE := 'Camino';
v_NewAuthorID authors.ID%TYPE := 100;

BEGIN
–– Add Cynthia Camino to the database

AddNewAuthor(v_NewAuthorID, v_NewFirstName, v_NewLastName);
END;

The variables declared in the preceding block (v_NewAuthorID, v_NewFirstName,
v_NewLastName) are passed as arguments to AddNewAuthor. In this context,
they are known as actual parameters, while the parameters in the procedure
declaration (p_ID, p_FirstName, p_LastName) are known as formal parameters.
Actual parameters contain the values passed to the procedure when it is called,
and they receive results from the procedure when it returns (depending on the
mode). The values of the actual parameters are the ones that will be used in the
procedure. The formal parameters are the placeholders for the values of the actual

parameters. When the procedure is called, the formal parameters are assigned the
values of the actual parameters. Inside the procedure, they are referred to by the
formal parameters. When the procedure returns, the actual parameters are assigned
the values of the formal parameters. These assignments follow the normal rules for
PL/SQL assignment, including type conversion, if necessary.

Formal parameters can have three modes—IN, OUT, or IN OUT. (The NOCOPY
modifier is described in the next section.) If the mode is not specified for a formal
parameter, it defaults to IN. The differences between the modes are described in
Table 8-1.

Chapter 8: Creating Procedures, Functions, and Packages 343

Mode Description

IN The value of the actual parameter is passed into the procedure
when the procedure is invoked. Inside the procedure, the
formal parameter acts like a PL/SQL constant—it is considered
read-only and cannot be changed. When the procedure
finishes and control returns to the calling environment, the
actual parameter is not changed.

OUT Any value the actual parameter has when the procedure is
called is ignored. Inside the procedure, the formal parameter
acts like an uninitialized PL/SQL variable and thus has a value
of NULL. It can be read from and written to. When the procedure
finishes and control returns to the calling environment, the
contents of the formal parameter are assigned to the actual
parameter. (This behavior can be altered by using the NOCOPY
modifier—see the section “Passing Parameters by Value and by
Reference” later in this chapter.)

IN OUT This mode is a combination of IN and OUT. The value of
the actual parameter is passed into the procedure when the
procedure is invoked. Inside the procedure, the formal
parameter acts like an initialized variable and can be read
from and written to. When the procedure finishes and control
returns to the calling environment, the contents of the formal
parameter are assigned to the actual parameter (subject to
NOCOPY, as for OUT).

TABLE 8-1. Parameter Modes

Assigning Values to IN Parameters Consider the following procedure, which
takes a single IN parameter:

–– Available online as part of parameterModes.sql
CREATE OR REPLACE PROCEDURE ModeIn (
p_InParameter IN NUMBER) AS

v_LocalVariable NUMBER := 0;
BEGIN
DBMS_OUTPUT.PUT('Inside ModeIn: ');
IF (p_InParameter IS NULL) THEN
DBMS_OUTPUT.PUT_LINE('p_InParameter is NULL');

ELSE
DBMS_OUTPUT.PUT_LINE('p_InParameter = ' || p_InParameter);

END IF;

/* Assign p_InParameter to v_LocalVariable. This is legal,
since we are reading from an IN parameter and not writing
to it. */

v_LocalVariable := p_InParameter;

DBMS_OUTPUT.PUT('At end of ModeIn: ');
IF (p_InParameter IS NULL) THEN
DBMS_OUTPUT.PUT_LINE('p_InParameter is NULL');

ELSE
DBMS_OUTPUT.PUT_LINE('p_InParameter = ' || p_InParameter);

END IF;
END ModeIn;

The following SQL*Plus session illustrates a successful call to ModeIn:

–– Available online as part of parameterModes.sql
SQL> DECLARE
2 v_In NUMBER := 1;
3 BEGIN
4 – Call ModeIn with a variable, which should remain unchanged.
5 DBMS_OUTPUT.PUT_LINE('Before calling ModeIn, v_In = ' || v_In);
6 ModeIn(v_In);
7 DBMS_OUTPUT.PUT_LINE('After calling ModeIn, v_In = ' || v_In);
8 END;
9 /

Before calling ModeIn, v_In = 1
Inside ModeIn: p_InParameter = 1
At end of ModeIn: p_InParameter = 1
After calling ModeIn, v_In = 1
PL/SQL procedure successfully completed.

344 Oracle Database 10g PL/SQL Programming

Chapter 8: Creating Procedures, Functions, and Packages 345

As expected, the value of v_In remains the same before, during, and after the
procedure call.

Assigning Values to OUT Parameters Now consider the following procedure,
which takes a single OUT parameter:

–– Available online as part of parameterModes.sql
CREATE OR REPLACE PROCEDURE ModeOut (
p_OutParameter OUT NUMBER) AS

v_LocalVariable NUMBER := 0;
BEGIN
DBMS_OUTPUT.PUT('Inside ModeOut: ');
IF (p_OutParameter IS NULL) THEN
DBMS_OUTPUT.PUT_LINE('p_OutParameter is NULL');

ELSE
DBMS_OUTPUT.PUT_LINE('p_OutParameter = ' || p_OutParameter);

END IF;

/* Assign 7 to p_OutParameter. This is legal, since we
are writing to an OUT parameter. */

p_OutParameter := 7;

/* Assign p_OutParameter to v_LocalVariable. This is also legal,
* since we are reading from an OUT parameter. */

v_LocalVariable := p_OutParameter;

DBMS_OUTPUT.PUT('At end of ModeOut: ');
IF (p_OutParameter IS NULL) THEN
DBMS_OUTPUT.PUT_LINE('p_OutParameter is NULL');

ELSE
DBMS_OUTPUT.PUT_LINE('p_OutParameter = ' || p_OutParameter);

END IF;
END ModeOut;

The following SQL*Plus session illustrates a successful call to ModeOut:

–– Available online as part of parameterModes.sql
SQL> DECLARE
2 v_Out NUMBER := 1;
3 BEGIN
4 – Call ModeOut with a variable, which should be modified.
5 DBMS_OUTPUT.PUT_LINE('Before calling ModeOut, v_Out = ' || v_Out);
6 ModeOut(v_Out);
7 DBMS_OUTPUT.PUT_LINE('After calling ModeOut, v_Out = ' || v_Out);
8 END;

9 /
Before calling ModeOut, v_Out = 1
Inside ModeOut: p_OutParameter is NULL
At end of ModeOut: p_OutParameter = 7
After calling ModeOut, v_Out = 7
PL/SQL procedure successfully completed.

We can see two things from the preceding example—the formal parameter p_
OutParameter is NULL even though the actual parameter v_Out was initialized
to 1, and the final value of the formal parameter p_OutParameter is copied to
the actual parameter v_Out upon return from the procedure.

NOTE
If the procedure raises an exception, the values of
IN OUT and OUT formal parameters are not copied
to their corresponding actual parameters (subject
to NOCOPY). See the section “Exceptions Raised
Inside Subprograms” later in this chapter.

Assigning Values to IN OUT Parameters Again, consider the following procedure,
which takes a single IN OUT parameter:

–– Available online as part of parameterModes.sql
CREATE OR REPLACE PROCEDURE ModeInOut (
p_InOutParameter IN OUT NUMBER) IS

v_LocalVariable NUMBER := 0;
BEGIN
DBMS_OUTPUT.PUT('Inside ModeInOut: ');
IF (p_InOutParameter IS NULL) THEN
DBMS_OUTPUT.PUT_LINE('p_InOutParameter is NULL');

ELSE
DBMS_OUTPUT.PUT_LINE('p_InOutParameter = ' || p_InOutParameter);

END IF;

/* Assign p_InOutParameter to v_LocalVariable. This is legal,
since we are reading from an IN OUT parameter. */

v_LocalVariable := p_InOutParameter;

/* Assign 8 to p_InOutParameter. This is legal, since we
are writing to an IN OUT parameter. */

p_InOutParameter := 8;

DBMS_OUTPUT.PUT('At end of ModeInOut: ');
IF (p_InOutParameter IS NULL) THEN

346 Oracle Database 10g PL/SQL Programming

DBMS_OUTPUT.PUT_LINE('p_InOutParameter is NULL');
ELSE
DBMS_OUTPUT.PUT_LINE('p_InOutParameter = ' || p_InOutParameter);

END IF;
END ModeInOut;

The following SQL*Plus session illustrates a successful call to ModeInOut:

–– Available online as part of parameterModes.sql
SQL> DECLARE
2 v_InOut NUMBER := 1;
3 BEGIN
4 –– Call ModeInOut with a variable, which should be modified.
5 DBMS_OUTPUT.PUT_LINE('Before calling ModeInOut, v_InOut = ' ||
6 v_InOut);
7 ModeInOut(v_InOut);
8 DBMS_OUTPUT.PUT_LINE('After calling ModeInOut, v_InOut = ' ||
9 v_InOut);

10 END;
11 /

Before calling ModeInOut, v_InOut = 1
Inside ModeInOut: p_InOutParameter = 1
At end of ModeInOut: p_InOutParameter = 8
After calling ModeInOut, v_InOut = 8
PL/SQL procedure successfully completed.

This differs from the output of ModeOut in one significant manner: the formal
parameter p_InOutParameter is initialized with the value of the actual variable
v_InOut. As with ModeOut, however, the final value of the formal parameter
p_InOutParameter is copied to the actual parameter variable v_InOut upon
return from the procedure.

Literals or Constants as Actual Parameters Because of this copying, the actual
parameter that corresponds to an OUT or IN OUT formal parameter must be a
variable; it cannot be a constant or expression. There must be a location where
the returned value can be stored. The PL/SQL compiler will detect this situation
and raise an error, as the following SQL*Plus session illustrates:

–– Available online as part of parameterModes.sql
SQL> BEGIN
2 –– We cannot call ModeOut (or ModeInOut) with a constant, since
3 –– the actual parameter must identify a storage location.
4 ModeOut(3);
5 END;
6 /
ModeOut(3);

Chapter 8: Creating Procedures, Functions, and Packages 347

*
ERROR at line 4:
ORA-06550: line 4, column 11:
PLS-00363: expression '3' cannot be used as an assignment target
ORA-06550: line 4, column 3:
PL/SQL: Statement ignored

We can, however, use a constant actual parameter for a formal IN parameter
without error:

–– Available online as part of parameterModes.sql
SQL> BEGIN
2 –– We can call ModeIn with a constant, though.
3 ModeIn(3);
4 END;
5 /

Inside ModeIn: p_InParameter = 3
At end of ModeIn: p_InParameter = 3
PL/SQL procedure successfully completed.

As expected, the formal parameter p_InParameter is unchanged throughout the
execution of the procedure.

Modification of IN Parameters In addition to checking the validity of OUT
actual parameters as we saw in the previous section, the PL/SQL compiler will
also check to ensure that an IN formal parameter is not modified, as the following
SQL*Plus session shows:

–– Available online as part of parameterModes.sql
SQL> CREATE OR REPLACE PROCEDURE IllegalModeIn (
2 p_InParameter IN NUMBER) AS
3 BEGIN
4 /* Assign 7 to p_InParameter. This is ILLEGAL, since we
5 are writing to an IN parameter. */
6 p_InParameter := 7;
7 END IllegalModeIn;
8 /

Warning: Procedure created with compilation errors.

SQL> show errors
Errors for PROCEDURE ILLEGALMODEIN:
LINE/COL ERROR
–––– –––––––––––––––––––––––––––––––-
6/3 PLS-00363: expression 'P_INPARAMETER' cannot be used as an

assignment target
6/3 PL/SQL: Statement ignored

348 Oracle Database 10g PL/SQL Programming

Constraints on Formal Parameters
When a procedure is called, the values of the actual parameters are passed in,
and they are referred to using the formal parameters inside the procedure. The
constraints on the variables are passed as well, as part of the parameter passing
mechanism. In a procedure declaration, it is illegal to constrain CHAR and
VARCHAR2 parameters with a length, or NUMBER parameters with a precision
and/or scale, as the constraints will be taken from the actual parameters. For
example, the following procedure declaration is illegal and will generate a
compile error:

–– Available online as part of ParameterLength.sql
CREATE OR REPLACE PROCEDURE ParameterLength (
p_Parameter1 IN OUT VARCHAR2(10),
p_Parameter2 IN OUT NUMBER(3,1)) AS

BEGIN
p_Parameter1 := 'abcdefghijklm'; – 15 characters in length
p_Parameter2 := 12.3;

END ParameterLength;

The correct declaration for this procedure would be

–– Available online as part of ParameterLength.sql
CREATE OR REPLACE PROCEDURE ParameterLength (
p_Parameter1 IN OUT VARCHAR2,
p_Parameter2 IN OUT NUMBER) AS

BEGIN
p_Parameter1 := 'abcdefghijklmno'; – 15 characters in length
p_Parameter2 := 12.3;

END ParameterLength;

Given this example, what are the constraints on p_Parameter1 and
p_Parameter2? They come from the actual parameters. If we call
ParameterLength with

–– Available online as part of ParameterLength.sql
DECLARE
v_Variable1 VARCHAR2(40);
v_Variable2 NUMBER(7,3);

BEGIN
ParameterLength(v_Variable1, v_Variable2);

END;

then p_Parameter1 will have a maximum length of 40 (coming from the actual
parameter v_Variable1) and p_Parameter2 will have precision 7 and scale 3

Chapter 8: Creating Procedures, Functions, and Packages 349

(coming from the actual parameter v_Variable2). It is important to be aware of
this. Consider the following block, which also calls ParameterLength:

–– Available online as part of ParameterLength.sql
DECLARE
v_Variable1 VARCHAR2(10);
v_Variable2 NUMBER(7,3);

BEGIN
ParameterLength(v_Variable1, v_Variable2);

END;

The only difference between this block and the prior one is that v_Variable1,
and hence p_Parameter1, has a length of 10 rather than 40. Since
ParameterLength assigns a character string of length 15 to p_Parameter1
(and hence v_Variable1), there is not enough room in the string. This will
result in the following Oracle errors when the procedure is called:

DECLARE
*
ERROR at line 1:
ORA-06502: PL/SQL: numeric or value error: character string buffer too small
ORA-06512: at "EXAMPLE.PARAMETERLENGTH", line 5
ORA-06512: at line 5

The source of the error is not in the procedure—it is in the code that calls the
procedure. In addition, the ORA-6502 is a run-time error, not a compile error.
Thus the block compiled successfully, and the error was actually raised when the
procedure returned and the PL/SQL engine attempted to copy the actual value
‘abcdefghijklmno’ into the formal parameter.

TIP
In order to avoid errors such as ORA-6502,
document any constraint requirements of the actual
parameters when the procedure is created. This
documentation could consist of comments stored
with the procedure and include a description
of what the procedure does in addition to any
parameter definitions. Alternatively, you can
use %TYPE to declare the formal parameters,
as described in the next section.

%TYPE and Procedure Parameters Although formal parameters cannot be
declared with constraints, they can be constrained by using %TYPE. If a formal

350 Oracle Database 10g PL/SQL Programming

parameter is declared using %TYPE and the underlying type is constrained, the
constraint will be on the formal parameter rather than the actual parameter. If
we declare ParameterLength with

–– Available online as part of ParameterLength.sql
CREATE OR REPLACE PROCEDURE ParameterLength (
p_Parameter1 IN OUT VARCHAR2,
p_Parameter2 IN OUT books.copyright%TYPE) AS

BEGIN
p_Parameter2 := 12345;

END ParameterLength;

p_Parameter2 will be constrained with the precision of 3, because that is the
precision of the copyright column. Even if we call ParameterLength with
an actual parameter of enough precision, the formal precision is taken. Thus, the
following example will generate the ORA-6502 error:

–– Available online as part of ParameterLength.sql
SQL> DECLARE
2 v_Variable1 VARCHAR2(1);
3 –– Declare v_Variable2 with no constraints
4 v_Variable2 NUMBER;
5 BEGIN
6 –– Even though the actual parameter has room for 12345, the
7 –– constraint on the formal parameter is taken and we get
8 –– ORA-6502 on this procedure call.
9 ParameterLength(v_Variable1, v_Variable2);

10 END;
11 /

DECLARE
*
ERROR at line 1:
ORA-06502: PL/SQL: numeric or value error: number precision too large
ORA-06512: at "EXAMPLE.PARAMETERLENGTH", line 5
ORA-06512: at line 9

NOTE
The text of the ORA-6502 error message was
enhanced for Oracle8i. Prior to Oracle8i, the error
is reported simply as “ORA-6502: PL/SQL numeric
or value error”, regardless of the actual cause of
the error.

Chapter 8: Creating Procedures, Functions, and Packages 351

352 Oracle Database 10g PL/SQL Programming

Exceptions Raised Inside Subprograms
If an error occurs inside a subprogram, an exception is raised. This exception may
be user-defined or predefined. If the procedure has no exception handler for this
error (or if an exception is raised from within an exception handler), control
immediately passes out of the procedure to the calling environment, in accordance
with the exception propagation rules (see Chapter 9 for more details). However, in
this case, the values of OUT and IN OUT formal parameters are not returned to the
actual parameters. The actual parameters will have the same values as they would
have had if the procedure had not been called. For example, suppose we create the
following procedure:

–– Available online as part of RaiseError.sql
/* Illustrates the behavior of unhandled exceptions and
* OUT variables. If p_Raise is TRUE, then an unhandled
* error is raised. If p_Raise is FALSE, the procedure
* completes successfully.
*/

CREATE OR REPLACE PROCEDURE RaiseError (
p_Raise IN BOOLEAN,
p_ParameterA OUT NUMBER) AS

BEGIN
p_ParameterA := 7;

IF p_Raise THEN
/* Even though we have assigned 7 to p_ParameterA, this
* unhandled exception causes control to return immediately
* without returning 7 to the actual parameter associated
* with p_ParameterA.
*/

RAISE DUP_VAL_ON_INDEX;
ELSE
–– Simply return with no error. This will return 7 to the
–– actual parameter.
RETURN;

END IF;
END RaiseError;

If we call RaiseError with the following block:

–– Available online as part of RaiseError.sql
DECLARE
v_Num NUMBER := 1;

BEGIN
DBMS_OUTPUT.PUT_LINE('Value before first call: ' || v_Num);
RaiseError(FALSE, v_Num);

DBMS_OUTPUT.PUT_LINE('Value after successful call: ' || v_Num);
DBMS_OUTPUT.PUT_LINE('');

v_Num := 2;
DBMS_OUTPUT.PUT_LINE('Value before second call: ' || v_Num);
RaiseError(TRUE, v_Num);

EXCEPTION
WHEN OTHERS THEN
DBMS_OUTPUT.PUT_LINE('Value after unsuccessful call: ' || v_Num);

END;

we get the following output:

Value before first call: 1
Value after successful call: 7

Value before second call: 2
Value after unsuccessful call: 2

Before the first call to RaiseError, v_Num contained 1. The first call was successful,
and v_Num was assigned the value 7. The block then changed v_Num to 2 before
the second call to RaiseError. This second call did not complete successfully,
and v_Num was unchanged at 2 (rather than being changed to 7 again).

NOTE
The semantics of exception handling change when
an OUT or IN OUT parameter is declared with
the NOCOPY hint. See the section “Exception
Semantics with NOCOPY” later in this chapter
for details.

Passing Parameters by Reference and by Value
A subprogram parameter can be passed in one of two ways—by reference or by
value. When a parameter is passed by reference, a pointer to the actual parameter
is passed to the corresponding formal parameter. When a parameter is passed by
value, on the other hand, it is copied from the actual parameter into the formal
parameter. Passing by reference is generally faster, because it avoids the copy. This
is especially true for collection parameters (tables and varrays, which we discussed
in Chapter 6), due to their larger size. By default, PL/SQL will pass IN parameters
by reference, and IN OUT and OUT parameters by value. This is done to preserve
the exception semantics that we discussed in the previous section, and so that
constraints on actual parameters can be verified. Prior to Oracle8i, there was no
way to modify this behavior.

Chapter 8: Creating Procedures, Functions, and Packages 353

Using NOCOPY Oracle8i includes a compiler hint known as NOCOPY. The
syntax for declaring a parameter with this hint is

parameter_name [mode] NOCOPY datatype

where parameter_name is the name of the parameter, mode is the parameter mode
(IN, OUT, or IN OUT), and datatype is the parameter datatype. If NOCOPY is
present, the PL/SQL compiler will try to pass the parameter by reference, rather than
by value. NOCOPY is a compiler hint, rather than a directive, so it will not always
be taken (see the section “NOCOPY Restrictions” for details on when NOCOPY
will be heeded). The following example illustrates the syntax of NOCOPY:

–– Available online as part of NoCopyTest.sql
CREATE OR REPLACE PROCEDURE NoCopyTest (
p_InParameter IN NUMBER,
p_OutParameter OUT NOCOPY VARCHAR2,
p_InOutParameter IN OUT NOCOPY CHAR) IS

BEGIN
NULL;

END NoCopyTest;

Using NOCOPY on an IN parameter will generate a compilation error, because
IN parameters are always passed by reference and thus NOCOPY doesn’t apply.

Exception Semantics with NOCOPY When a parameter is passed by reference,
any modifications to the formal parameter also modify the actual parameter,
because both point to the same location. This means that if a procedure exits with
an unhandled exception after the formal parameter has been changed, the original
value of the actual parameter will be lost. Suppose we modify RaiseError to use
NOCOPY, as follows:

–– Available online as part of NoCopyTest.sql
CREATE OR REPLACE PROCEDURE RaiseErrorNoCopy (
p_Raise IN BOOLEAN,
p_ParameterA OUT NOCOPY NUMBER) AS

BEGIN
p_ParameterA := 7;
IF p_Raise THEN
RAISE DUP_VAL_ON_INDEX;

ELSE
RETURN;

END IF;
END RaiseErrorCopy;

354 Oracle Database 10g PL/SQL Programming

Chapter 8: Creating Procedures, Functions, and Packages 355

The only change is that p_ParameterA will now be passed by reference, rather
than by value. Suppose we call RaiseErrorNoCopy with the following:

–– Available online as part of NoCopyTest.sql
v_Num NUMBER := 1;

BEGIN
DBMS_OUTPUT.PUT_LINE('Value before first call: ' || v_Num);
RaiseErrorNoCopy(FALSE, v_Num);
DBMS_OUTPUT.PUT_LINE('Value after successful call: ' || v_Num);
DBMS_OUTPUT.PUT_LINE('');

v_Num := 2;
DBMS_OUTPUT.PUT_LINE('Value before second call: ' || v_Num);
RaiseErrorNoCopy(TRUE, v_Num);

EXCEPTION
WHEN OTHERS THEN
DBMS_OUTPUT.PUT_LINE('Value after unsuccessful call: ' || v_Num);

END;

(This is the same block we saw earlier in the section “Exceptions Raised Inside
Subprograms,” except for calling RaiseErrorNoCopy instead of RaiseError.)
The output of this block, however, is different now:

Value before first call: 1
Value after successful call: 7

Value before second call: 2
Value after unsuccessful call: 7

The actual parameter has been modified both times, even when the exception
was raised.

NOCOPY Restrictions In some cases, NOCOPY will be ignored, and the parameter
will be passed by value. No error is generated in these cases. Remember that
NOCOPY is a hint, and the compiler is not obligated to follow it. NOCOPY will
be ignored in the following situations:

■ The actual parameter is a member of an associative array. If the actual
parameter is an entire array, however, this restriction does not apply.

■ The actual parameter is constrained by a precision, scale, or NOT
NULL constraint. This restriction does not apply to a character parameter
constrained by a maximum length, though. The reason for this is that the
PL/SQL compiler checks for constraint violations only when returning from

a subprogram, when copying the value back from the formal parameter
to the actual parameter. If there is a constraint violation, the original value
of the actual parameter needs to be unchanged, which is impossible
with NOCOPY.

■ The actual and formal parameters are both records, and they were declared
either implicitly as a loop control variable or using %ROWTYPE, and the
constraints on the corresponding fields differ.

■ Passing the actual parameter requires an implicit datatype conversion.

■ The subprogram is involved in a remote procedure call (RPC). An RPC is
a procedure call made over a database link to a remote server. Since the
parameters must be transferred over the network, it is not possible to pass
them by reference.

TIP
As the last point illustrates, if the subprogram is
part of an RPC, NOCOPY will be ignored. If you
modify an existing application to make some of the
calls RPCs, rather than local calls, the exception
semantics can change.

Benefits of NOCOPY The primary advantage of NOCOPY is that it may increase
performance. This is especially valuable when passing large PL/SQL arrays, as the
following example illustrates:

–– Available online as CopyFast.sql
CREATE OR REPLACE PACKAGE CopyFast AS
–– Associative array of books.
TYPE BookArray IS
TABLE OF books%ROWTYPE;

–– Three procedures which take a parameter of BookArray, in
–– different ways. They each do nothing.
PROCEDURE PassBooks1(p_Parameter IN BookArray);
PROCEDURE PassBooks2(p_Parameter IN OUT BookArray);
PROCEDURE PassBooks3(p_Parameter IN OUT NOCOPY BookArray);

–– Test procedure.
PROCEDURE Go;

END CopyFast;

CREATE OR REPLACE PACKAGE BODY CopyFast AS
PROCEDURE PassBooks1(p_Parameter IN BookArray) IS

356 Oracle Database 10g PL/SQL Programming

Chapter 8: Creating Procedures, Functions, and Packages 357

BEGIN
NULL;

END PassBooks1;

PROCEDURE PassBooks2(p_Parameter IN OUT BookArray) IS
BEGIN
NULL;

END PassBooks2;

PROCEDURE PassBooks3(p_Parameter IN OUT NOCOPY BookArray) IS
BEGIN
NULL;

END PassBooks3;

PROCEDURE Go IS
v_BookArray BookArray := BookArray(NULL);
v_Time1 NUMBER;
v_Time2 NUMBER;
v_Time3 NUMBER;
v_Time4 NUMBER;

BEGIN
–– Fill up the array with 50,001 copies of a record.
SELECT *
INTO v_BookArray(1)
FROM books
WHERE ISBN = '72230665';

v_BookArray.EXTEND(50000, 1);

–– Call each version of PassBooks, and time them.
–– DBMS_UTILITY.GET_TIME will return the current time, in
–– hundredths of a second.
v_Time1 := DBMS_UTILITY.GET_TIME;
PassBooks1(v_BookArray);
v_Time2 := DBMS_UTILITY.GET_TIME;
PassBooks2(v_BookArray);
v_Time3 := DBMS_UTILITY.GET_TIME;
PassBooks3(v_BookArray);
v_Time4 := DBMS_UTILITY.GET_TIME;

–– Output the results.
DBMS_OUTPUT.PUT_LINE('Time to pass IN: ' ||

TO_CHAR((v_Time2 - v_Time1) / 100));
DBMS_OUTPUT.PUT_LINE('Time to pass IN OUT: ' ||

TO_CHAR((v_Time3 - v_Time2) / 100));
DBMS_OUTPUT.PUT_LINE('Time to pass IN OUT NOCOPY: ' ||

TO_CHAR((v_Time4 - v_Time3) / 100));
END Go;

END CopyFast;

NOTE
This example uses a package to group together
related procedures. Packages are described in the
section “Packages” later in this chapter. See also
Chapter 6 for information on collections and how
the EXTEND method is used, and Appendix B for
information about DBMS_UTILITY.

Each of the PassBooks procedures does nothing—the procedures simply take
a parameter that is an array of books. The parameter is 50,001 records, so it is
reasonably large. The difference between the procedures is that PassBooks1 takes
the parameter as an IN, PassBooks2 as an IN OUT, and PassBooks3 as IN OUT
NOCOPY. Thus, PassBooks2 should pass the parameter by value and the other
two by reference. We can see this by looking at the results of calling CopyFast.Go:

SQL> BEGIN
2 CopyFast.Go;
3 END;
4 /

Time to pass IN: 0
Time to pass IN OUT: 1.27
Time to pass IN OUT NOCOPY: 0
PL/SQL procedure successfully completed.

Although the actual results may differ on your system, the time for passing the IN
OUT parameter by value should be significantly more than passing the IN and
IN OUT NOCOPY parameters by reference.

NOTE
Oracle10g has made changes to the PL/SQL
optimizer, such that empty procedures may be
optimized out. Thus, the time difference between
the procedures may be less in Oracle10g and higher
because the calls to the procedures have been
removed. It is a good idea to test the performance
impact of NOCOPY using your own system and
data to determine realistic time savings.

Subprograms with No Parameters
If there are no parameters for a procedure, there are no parentheses in either the
procedure declaration or the procedure call. This is also true for functions. The
following example illustrates this:

358 Oracle Database 10g PL/SQL Programming

Chapter 8: Creating Procedures, Functions, and Packages 359

–– Available online as noparams.sql
CREATE OR REPLACE PROCEDURE NoParamsP AS
BEGIN
DBMS_OUTPUT.PUT_LINE('No Parameters!');

END NoParamsP;

CREATE OR REPLACE FUNCTION NoParamsF
RETURN DATE AS

BEGIN
RETURN SYSDATE;

END NoParamsF;

BEGIN
NoParamsP;
DBMS_OUTPUT.PUT_LINE('Calling NoParamsF on ' ||
TO_CHAR(NoParamsF, 'DD-MON-YYYY'));

END;

NOTE
With the CALL syntax available with Oracle8i, the
parentheses are optional. See the section “The
CALL Statement” later in this chapter for details.

Positional and Named Notation
In all of the examples shown so far in this chapter, the actual arguments are
associated with the formal arguments by position. Given a procedure declaration
such as

–– Available online as part of CallMe.sql
CREATE OR REPLACE PROCEDURE CallMe(
p_ParameterA VARCHAR2,
p_ParameterB NUMBER,
p_ParameterC BOOLEAN,
p_ParameterD DATE) AS

BEGIN
NULL;

END CallMe;

and a calling block such as

–– Available online as part of CallMe.sql
DECLARE
v_Variable1 VARCHAR2(10);
v_Variable2 NUMBER(7,6);

360 Oracle Database 10g PL/SQL Programming

v_Variable3 BOOLEAN;
v_Variable4 DATE;

BEGIN
CallMe(v_Variable1, v_Variable2, v_Variable3, v_Variable4);

END;

the actual parameters are associated with the formal parameters by position: v_
Variable1 is associated with p_ParameterA, v_Variable2 is associated
with p_ParameterB, and so on. This is known as positional notation. Positional
notation is more commonly used, and it is also the notation used in other 3GLs
such as C and Java.

Alternatively, we can call the procedure using named notation:

–– Available online as part of CallMe.sql
DECLARE
v_Variable1 VARCHAR2(10);
v_Variable2 NUMBER(7,6);
v_Variable3 BOOLEAN;
v_Variable4 DATE;

BEGIN
CallMe(p_ParameterA => v_Variable1,

p_ParameterB => v_Variable2,
p_ParameterC => v_Variable3,
p_ParameterD => v_Variable4);

END;

In named notation, the formal parameter and the actual parameter are both
included for each argument. This allows us to rearrange the order of the arguments,
if desired. For example, the following block also calls CallMe, with the same
arguments:

–– Available online as part of CallMe.sql
DECLARE
v_Variable1 VARCHAR2(10);
v_Variable2 NUMBER(7,6);
v_Variable3 BOOLEAN;
v_Variable4 DATE;

BEGIN
CallMe(p_ParameterB => v_Variable2,

p_ParameterC => v_Variable3,
p_ParameterD => v_Variable4,
p_ParameterA => v_Variable1);

END;

Positional and named notation can be mixed in the same call as well, if desired.
The first arguments must be specified by position, and the remaining arguments can
be specified by name. The following block illustrates this method:

–– Available online as part of CallMe.sql
DECLARE
v_Variable1 VARCHAR2(10);
v_Variable2 NUMBER(7,6);
v_Variable3 BOOLEAN;
v_Variable4 DATE;

BEGIN
–– First 2 parameters passed by position, the second 2 are
–– passed by name.
CallMe(v_Variable1, v_Variable2,

p_ParameterC => v_Variable3,
p_ParameterD => v_Variable4);

END;

Named notation is another feature of PL/SQL that comes from Ada. When
should you use positional notation, and when should you use named notation?
Neither is more efficient than the other, so the only preference is one of style.
Some of the style differences are illustrated in Table 8-2.

I generally use positional notation, as I prefer to write succinct code. It is
important to use good names for the actual parameters, however. On the other
hand, if the procedure takes a large number of arguments (more than ten is a good
measure), named notation is desirable, because it is easier to match the formal and
actual parameters. Procedures with this many arguments are fairly rare, however.
Named notation is also useful for procedures with default arguments (see the next
section for details).

TIP
The more parameters a procedure has, the more
difficult it is to call and make sure that all of the
required parameters are present. If you have a
significant number of parameters that you would
like to pass to or from a procedure, consider
defining a record type with the parameters as
fields within the record. Then you can use a single
parameter of the record type. (Note that if the
calling environment is not PL/SQL, you may not be
able to bind a record type, however). PL/SQL has
no explicit limit on the number of parameters.

Chapter 8: Creating Procedures, Functions, and Packages 361

362 Oracle Database 10g PL/SQL Programming

Parameter Default Values
As with variable declarations, the formal parameters to a procedure or function can
have default values. If a parameter has a default value, it does not have to be passed
from the calling environment. If it is passed, the value of the actual parameter will
be used instead of the default. A default value for a parameter is included using
the syntax

parameter_name [mode] [NOCOPY] parameter_type
{:= | DEFAULT} initial_value

where parameter_name is the name of the formal parameter, mode is the parameter
mode (IN, OUT, or IN OUT), parameter_type is the parameter type (either predefined
or user-defined), and initial_value is the value to be assigned to the formal parameter

Positional Notation Named Notation

Relies more on good names for the
actual parameters to illustrate what
each is used for.

Clearly illustrates the association between
the actual and formal parameters.

Names used for the formal and
actual parameters are independent;
one can be changed without
modifying the other.

Can be more difficult to maintain because
all calls to the procedure using named
notation must be changed if the names of
the formal parameters are changed.

Can be more difficult to maintain
because all calls to the procedure
using positional notation must be
changed if the order of the formal
parameters is changed.

The order used for the formal and actual
parameters is independent; one can be
changed without modifying the other.

More succinct than named
notation.

Requires more coding, because both the
formal and actual parameters are included
in the procedure call. However, this
additional coding serves to document the
purpose of each actual parameter by
explicitly including the associated formal
parameter.

Parameters with default values
must be at the end of the
argument list.

Allows default values for formal parameters
to be used, regardless of which parameter
has the default.

TABLE 8-2. Positional vs. Named Notation

by default. Either := or the DEFAULT keyword can be used. For example, consider
the AddNewBook procedure:

–– Available online as part of AddNewBook.sql
CREATE OR REPLACE PROCEDURE AddNewBook(
p_ISBN IN books.ISBN%TYPE,
p_Category IN books.category%TYPE := 'Oracle Server',
p_Title IN books.title%TYPE,
p_NumPages IN books.num_pages%TYPE,
p_Price IN books.price%TYPE,
p_Copyright IN books.copyright%TYPE DEFAULT

TO_NUMBER(TO_CHAR(SYSDATE, 'YYYY')),
p_Author1 IN books.author1%TYPE,
p_Author2 IN books.author2%TYPE := NULL,
p_Author3 IN books.author3%TYPE := NULL) AS

BEGIN
–– Insert a new row into the table using the supplied
–– parameters.
INSERT INTO books (isbn, category, title, num_pages, price,

copyright, author1, author2, author3)
VALUES (p_ISBN, p_Category, p_Title, p_NumPages, p_Price,

p_Copyright, p_Author1, p_Author2, p_Author3);
END AddNewBook;

AddNewBook has four default parameters: p_Category, p_Copyright, p_
Author2, and p_Author3. The default values for these parameters will be used
if the formal parameter does not have an actual parameter associated with it in the
procedure call. For example, we can avoid passing p_Author2 and p_Author3
with the following block:

–– Available online as part of AddNewBook.sql
BEGIN
AddNewBook('0000000000', 'Oracle Basics', 'A Really Nifty Book',

500, 34.99, 2004, 1);
END;

In this case, NULL will be used for both p_Author2 and p_Author3. We can also
call AddNewBook with named notation:

–– Available online as part of AddNewBook.sql
BEGIN
AddNewBook(p_ISBN => '0000000000',

p_Category => 'Oracle Basics',
p_Title => 'A Really Nifty Book',
p_NumPages => 500,

Chapter 8: Creating Procedures, Functions, and Packages 363

p_Price => 34.99,
p_Copyright => 2004,
p_Author1 => 1);

END;

If positional notation is used, all parameters with default values that don’t have
an associated actual parameter must be at the end of the parameter list, as we saw
in the first call to AddNewBook in the preceding example. If we wanted to use
the default values for p_Category or p_Copyright, we would have to use named
notation, as follows:

–– Available online as part of AddNewBook.sql
BEGIN
AddNewBook(p_ISBN => '0000000000',

p_Title => 'A Really Nifty Book',
p_NumPages => 500,
p_Price => 34.99,
p_Author1 => 1);

END;

TIP
When using default values, make them the last
parameters in the argument list if possible. This way,
either positional or named notation can be used.

The CALL Statement
Oracle8i added a new SQL statement to call stored subprograms: the CALL
statement, which can be used to call both PL/SQL and Java subprograms with
a PL/SQL wrapper. It has the syntax given by the following railroad diagram:

Subprogram_name is a stand-alone or packaged subprogram. It can also be an
object type method, and it can be at a remote database. The argument_list is a
comma-separated list of arguments, and host_variable is a host variable used to
retrieve the return value of functions. The following SQL*Plus session illustrates
some legal and illegal uses of the CALL statement. This example uses the SQL*Plus
VARIABLE command to declare a host variable; for more information on this
command and other features of SQL*Plus, see the Oracle documentation.

364 Oracle Database 10g PL/SQL Programming

Chapter 8: Creating Procedures, Functions, and Packages 365

–– Available online as calls.sql
SQL> CREATE OR REPLACE PROCEDURE CallProc1(p1 IN VARCHAR2 := NULL) AS
2 BEGIN
3 DBMS_OUTPUT.PUT_LINE('CallProc1 called with ' || p1);
4 END CallProc1;
5 /

Procedure created.

SQL> CREATE OR REPLACE PROCEDURE CallProc2(p1 IN OUT VARCHAR2) AS
2 BEGIN
3 DBMS_OUTPUT.PUT_LINE('CallProc2 called with ' || p1);
4 p1 := p1 || ' returned!';
5 END CallProc2;
6 /

Procedure created.

SQL> CREATE OR REPLACE FUNCTION CallFunc(p1 IN VARCHAR2)
2 RETURN VARCHAR2 AS
3 BEGIN
4 DBMS_OUTPUT.PUT_LINE('CallFunc called with ' || p1);
5 RETURN p1;
6 END CallFunc;
7 /

Function created.

SQL> – Some valid calls direct from SQL.
SQL> CALL CallProc1('Hello!');
CallProc1 called with Hello!
Call completed.

SQL> CALL CallProc1();
CallProc1 called with
Call completed.

SQL> VARIABLE v_Output VARCHAR2(50);
SQL> CALL CallFunc('Hello!') INTO :v_Output;
CallFunc called with Hello!
Call completed.

SQL> PRINT v_Output
V_OUTPUT
–––––––––––––––––––––––––––––––––––
Hello!

SQL> CALL CallProc2(:v_Output);

366 Oracle Database 10g PL/SQL Programming

CallProc2 called with Hello!
Call completed.

SQL> PRINT v_Output
V_OUTPUT
–––––––––––––––––––––––––––––––––-
Hello! returned!

SQL> – This is illegal
SQL> BEGIN
2 CALL CallProc1();
3 END;
4 /
CALL CallProc1();

*
ERROR at line 2:
ORA-06550: line 2, column 8:
PLS-00103: Encountered the symbol "CALLPROC1" when expecting one of the
following:
:= . (@ % ;
The symbol ":=" was substituted for "CALLPROC1" to continue.

SQL> – But these are legal
SQL> DECLARE
2 v_Result VARCHAR2(50);
3 BEGIN
4 EXECUTE IMMEDIATE 'CALL CallProc1(''Hello from PL/SQL'')';
5 EXECUTE IMMEDIATE
6 'CALL CallFunc(''Hello from PL/SQL'') INTO :v_Result'
7 USING OUT v_Result;
8 END;
9 /

CallProc1 called with Hello from PL/SQL
CallFunc called with Hello from PL/SQL
PL/SQL procedure successfully completed.

This example illustrates the following points:

■ CALL is a SQL statement. It is not valid inside a PL/SQL block, but it is valid
when executed using dynamic SQL, in this case, the EXECUTE IMMEDIATE
statement. (Inside a PL/SQL block, you can call the subprogram using the
PL/SQL syntax.) See Chapter 13 for more information about dynamic SQL.

■ The parentheses are always required, even if the subprogram takes no
arguments (or has default values for all the arguments).

■ The INTO clause is used for the output variables of functions only. IN OUT
or OUT parameters are specified as part of the argument_list.

Chapter 8: Creating Procedures, Functions, and Packages 367

Procedures vs. Functions
Procedures and functions share many of the same features:

■ Both can return more than one value via OUT parameters.

■ Both can have declarative, executable, and exception-handling sections.

■ Both can accept default values.

■ Both can be called using positional or named notation.

■ Both can accept NOCOPY parameters.

So when is a function appropriate, and when is a procedure appropriate? It
generally depends on how many values the subprogram is expected to return and
how those values will be used. The rule of thumb is that if there is more than one
return value, use a procedure. If there is only one return value, a function can be
used. Although it is legal for a function to have OUT parameters (and thus return
more than one value), it is generally considered poor programming style. Functions
can also be called from within a SQL statement. (See Chapter 9 for more information.)

Packages
Another Ada feature incorporated in the design of PL/SQL is the package. A package
is a PL/SQL construct that allows related objects to be stored together. A package
has two separate parts: the specification and the body. Each of them is stored
separately in the data dictionary. Unlike procedures and functions, which can be
contained locally in a block or stored in the database, a package can only be
stored; it cannot be local. Besides allowing related objects to be grouped together,
packages are useful because they are less restrictive than stored subprograms with
respect to dependencies. They also have performance advantages, which we will
discuss later in the next chapter.

A package is essentially a named declarative section. Anything that can go in
the declarative part of a block can go in a package. This includes procedures,
functions, cursors, types, and variables. One advantage of putting these objects
into a package is the ability to reference them from other PL/SQL blocks, so
packages also provide global variables (within a single database session) for PL/SQL.

Package Specification
The package specification (also known as the package header) contains information
about the contents of the package. However, it does not contain the code for any
subprograms. Consider the following example:

–– Available online as part of InventoryOps.sql
CREATE OR REPLACE PACKAGE InventoryOps AS

368 Oracle Database 10g PL/SQL Programming

–– Modifies the inventory data for the specified book.
PROCEDURE UpdateISBN(p_ISBN IN inventory.isbn%TYPE,

p_Status IN inventory.status%TYPE,
p_StatusDate IN inventory.status_date%TYPE,
p_Amount IN inventory.amount%TYPE);

–– Deletes the inventory data for the specified book.
PROCEDURE DeleteISBN(p_ISBN IN inventory.isbn%TYPE);

–– Exception raised by UpdateISBN or DeleteISBN when the specified
–– ISBN is not in the inventory table.
e_ISBNNotFound EXCEPTION;

TYPE t_ISBNTable IS TABLE OF inventory.isbn%TYPE
INDEX BY BINARY_INTEGER;

–– Returns an array containing the books with the specified status.
PROCEDURE StatusList(p_Status IN inventory.status%TYPE,

p_Books OUT t_ISBNTable,
p_NumBooks OUT BINARY_INTEGER);

END InventoryOps;

InventoryOps contains three procedures, a type, and an exception. The
general syntax for creating a package header is described by the following
railroad diagram:

Package_name is the name of the package. The elements within the package
(procedure and function specifications, variables, and so on) are the same as they
would be in the declarative section of an anonymous block. The same syntax rules
apply for a package header as for a declarative section, except for procedure and
function declarations. These rules are as follows:

■ Package elements can appear in any order. However, as in a declarative
section, an object must be declared before it is referenced. If a cursor
contains a variable as part of the WHERE clause, for example, the variable
must be declared before the cursor declaration.

■ All types of elements do not have to be present. A package can contain
only procedure and function specifications, for example, without declaring
any exceptions or types.

■ Any declarations for procedures and functions must be forward declarations.
A forward declaration simply describes the subprogram and its arguments
(if any); it does not include the code. This rule is different from the declarative
section of a block, where both forward declarations and the actual code
for procedures or functions may be found. The code that implements the
package’s procedures and functions is found in the package body.

Package Body
The package body is a separate data dictionary object from the package header.
It cannot be successfully compiled unless the package header has already been
successfully compiled. The body contains the code for the forward subprogram
declarations in the package header. It can also contain additional declarations
that are global to the package body but are not visible in the specification. The
following example shows the package body for InventoryOps:

–– Available online as part of InventoryOps.sql
CREATE OR REPLACE PACKAGE BODY InventoryOps AS
–– Modifies the inventory data for the specified book.
PROCEDURE UpdateISBN(p_ISBN IN inventory.isbn%TYPE,

p_Status IN inventory.status%TYPE,
p_StatusDate IN inventory.status_date%TYPE,
p_Amount IN inventory.amount%TYPE) IS

BEGIN
UPDATE inventory
SET status = p_Status, status_date = p_StatusDate, amount = p_Amount
WHERE isbn = p_ISBN;

–– Check for no books updated, and raise the exception.
IF SQL%ROWCOUNT = 0 THEN

Chapter 8: Creating Procedures, Functions, and Packages 369

RAISE e_ISBNNotFound;
END IF;

END UpdateISBN;

–– Deletes the inventory data for the specified book.
PROCEDURE DeleteISBN(p_ISBN IN inventory.isbn%TYPE) IS
BEGIN
DELETE FROM inventory
WHERE isbn = p_ISBN;

–– Check for no books deleted, and raise the exception.
IF SQL%ROWCOUNT = 0 THEN
RAISE e_ISBNNotFound;

END IF;
END DeleteISBN;

–– Returns an array containing the books with the specified status.
PROCEDURE StatusList(p_Status IN inventory.status%TYPE,

p_Books OUT t_ISBNTable,
p_NumBooks OUT BINARY_INTEGER) IS

v_ISBN inventory.isbn%TYPE;
CURSOR c_Books IS
SELECT isbn
FROM inventory
WHERE status = p_Status;

BEGIN
/* p_NumBooks will be the array index. It will start at
* 0, and be incremented each time through the fetch loop.
* At the end of the loop, it will have the number of rows
* fetched, and therefore the number of rows returned in
* p_Books. */
p_NumBooks := 0;
OPEN c_Books;
LOOP
FETCH c_Books INTO v_ISBN;
EXIT WHEN c_Books%NOTFOUND;

p_NumBooks := p_NumBooks + 1;
p_Books(p_NumBooks) := v_ISBN;

END LOOP;
CLOSE c_Books;

END StatusList;
END InventoryOps;

The package body contains the code for the forward declarations in the
package header and can also contain additional variables, cursors, types, or
subprograms. Objects in the header that are not forward declarations (such as the
e_ISBNNotFound exception) can be referenced directly in the package body.

370 Oracle Database 10g PL/SQL Programming

The package body is optional. If the package header does not contain any
procedures or functions (only variable declarations, cursors, types, and so on), the
body does not have to be present. This technique is valuable for declaring global
variables and types, because all objects in a package are visible outside the package.
(Scope and visibility of packaged elements are discussed in the next section.)

Any forward declaration in the package header must be fleshed out in the
package body. The specification for the procedure or function must be the same
in both. This includes the name of the subprogram, the names of its parameters,
and the modes of the parameters. For example, the following package header
does not match the package body, because the body uses a different parameter
list for FunctionA:

–– Available online as packageError.sql
CREATE OR REPLACE PACKAGE PackageA AS
FUNCTION FunctionA(p_Parameter1 IN NUMBER,

p_Parameter2 IN DATE)
RETURN VARCHAR2;

END PackageA;

CREATE OR REPLACE PACKAGE BODY PackageA AS
FUNCTION FunctionA(p_Parameter1 IN CHAR)
RETURN VARCHAR2;

END PackageA;

If we try to create PackageA as we did here, we get the following errors for the
package body:

PLS-00328: A subprogram body must be defined for the forward
declaration of FUNCTIONA.

PLS-00323: subprogram or cursor 'FUNCTIONA' is declared in a
package specification and must be defined in the package
body.

Packages and Scope
Any object declared in a package header is in scope and is visible outside the
package, by qualifying the object with the package name. For example, we can
call InventoryOps.DeleteISBN from the following PL/SQL block:

BEGIN
InventoryOps.DeleteISBN('78824389');

END;

Chapter 8: Creating Procedures, Functions, and Packages 371

372 Oracle Database 10g PL/SQL Programming

The procedure call is the same as it would be for a stand-alone procedure. The
only difference is that it is prefixed by the package name. Packaged procedures can
have default parameters, and they can be called using either positional or named
notation, just like stand-alone stored procedures.

This also applies to user-defined types defined in the package. In order to call
StatusList, for example, we need to declare a variable of type InventoryOps.t
_ISBNTable (see Chapter 6 for more information on declaring and using PL/SQL
collection types):

–– Available online as callSL.sql
DECLARE
v_BooksInStock InventoryOps.t_ISBNTable;
v_NumBooks BINARY_INTEGER;

BEGIN
–– Fill the PL/SQL table with the ISBNs of the books which
–– are in stock.
InventoryOps.StatusList('IN STOCK', v_BooksInStock, v_NumBooks);

–– And print them out.
FOR v_LoopCounter IN 1..v_NumBooks LOOP
DBMS_OUTPUT.PUT_LINE('ISBN ' || v_BooksInStock(v_LoopCounter) ||

' is in stock');
END LOOP;

END;

Inside the package body, objects in the header can be referenced without the
package name. For example, the UpdateISBN and DeleteISBN procedures can
reference the exception with simply e_ISBNNotFound, not InventoryOps.e_
ISBNNotFound. The fully qualified name can be used if desired, however.

Scope of Objects in the Package Body
As currently written, InventoryOps.UpdateISBN and InventoryOps
.StatusList do not validate the status that is passed in. We can do this by
adding a procedure to the package body, as shown here:

–– Available online as part of InventoryOps2.sql
CREATE OR REPLACE PACKAGE BODY InventoryOps AS
–– Validates the supplied status and raises an error if it is
–– not IN STOCK, BACKORDERED, or FUTURE.
PROCEDURE ValidateStatus(p_Status IN inventory.status%TYPE) IS
BEGIN
IF p_Status = 'IN STOCK' OR

p_Status = 'BACKORDERED' OR
p_Status = 'FUTURE' THEN

RETURN; – No error
ELSE
RAISE_APPLICATION_ERROR(20000,
'Supplied status ' || p_Status || ' is not valid');

END IF;
END ValidateStatus;

–– Modifies the inventory data for the specified book.
PROCEDURE UpdateISBN(p_ISBN IN inventory.isbn%TYPE,

p_Status IN inventory.status%TYPE,
p_StatusDate IN inventory.status_date%TYPE,
p_Amount IN inventory.amount%TYPE) IS

BEGIN
ValidateStatus(p_Status);
UPDATE inventory

SET status = p_Status, status_date = p_StatusDate, amount = p_Amount
WHERE isbn = p_ISBN;

–– Check for no books updated, and raise the exception.
IF SQL%ROWCOUNT = 0 THEN
RAISE e_ISBNNotFound;

END IF;
END UpdateISBN;

...

–– Returns a PL/SQL table containing the books with the specified
–– status.
PROCEDURE StatusList(p_Status IN inventory.status%TYPE,

p_Books OUT t_ISBNTable,
p_NumBooks OUT BINARY_INTEGER) IS

v_ISBN inventory.isbn%TYPE;
CURSOR c_Books IS
SELECT isbn
FROM inventory
WHERE status = p_Status;

BEGIN
ValidateStatus(p_Status);
...

END StatusList;
END InventoryOps;

ValidateStatus is declared local to the package body. Its scope is therefore
the package body itself. Consequently, it can be called from other procedures in the
body (namely UpdateISBN and StatusList), but it is not visible from outside
the body.

Chapter 8: Creating Procedures, Functions, and Packages 373

Overloading Packaged Subprograms
Inside a package, procedures and functions can be overloaded. This means that
there is more than one procedure or function with the same name, but with different
parameters. This is a very useful feature, because it allows the same operation to be
applied to objects of different types. For example, suppose we want StatusList
to return either an array of books, or an opened cursor selecting the books with the
specified status. We could do this by modifying InventoryOps as follows:

–– Available online as part of overload.sql
CREATE OR REPLACE PACKAGE InventoryOps AS
...
–– Returns an array containing the books with the specified status.
PROCEDURE StatusList(p_Status IN inventory.status%TYPE,

p_Books OUT t_ISBNTable,
p_NumBooks OUT BINARY_INTEGER);

TYPE c_ISBNCur IS REF CURSOR;

–– Returns an opened cursor containing the books with the specified
–– status.
PROCEDURE StatusList(p_Status IN inventory.status%TYPE,

p_BookCur OUT c_ISBNCur);
END InventoryOps;

CREATE OR REPLACE PACKAGE BODY InventoryOps AS
...
–– Returns an array containing the books with the specified status.
PROCEDURE StatusList(p_Status IN inventory.status%TYPE,

p_Books OUT t_ISBNTable,
p_NumBooks OUT BINARY_INTEGER) IS

v_ISBN inventory.isbn%TYPE;
CURSOR c_Books IS
SELECT isbn
FROM inventory
WHERE status = p_Status;

BEGIN
ValidateStatus(p_Status);

/* p_NumBooks will be the array index. It will start at
* 0, and be incremented each time through the fetch loop.
* At the end of the loop, it will have the number of rows
* fetched, and therefore the number of rows returned in
* p_Books. */
p_NumBooks := 0;
OPEN c_Books;

374 Oracle Database 10g PL/SQL Programming

LOOP
FETCH c_Books INTO v_ISBN;
EXIT WHEN c_Books%NOTFOUND;

p_NumBooks := p_NumBooks + 1;
p_Books(p_NumBooks) := v_ISBN;

END LOOP;
CLOSE c_Books;

END StatusList;

–– Returns an opened cursor containing the books with the specified
–– status.
PROCEDURE StatusList(p_Status IN inventory.status%TYPE,

p_BookCur OUT c_ISBNCur) IS
BEGIN
ValidateStatus(p_Status);
OPEN p_BookCur FOR
SELECT isbn
FROM inventory
WHERE status = p_Status;

END StatusList;
END InventoryOps;

The following SQL*Plus session illustrates both calls to InventoryOps.StatusList:

–– Available online as part of overload.sql
SQL> DECLARE
2 v_BooksInStock InventoryOps.t_ISBNTable;
3 v_NumBooks BINARY_INTEGER;
4 v_BookCur InventoryOps.c_ISBNCur;
5 v_ISBN inventory.isbn%TYPE;
6 BEGIN
7 DBMS_OUTPUT.PUT_LINE('First version of StatusList:');
8 –– Fill the PL/SQL table with the ISBNs of the books which
9 –– are backordered.
10 InventoryOps.StatusList('BACKORDERED', v_BooksInStock, v_NumBooks);
11
12 –– And print them out.
13 FOR v_LoopCounter IN 1..v_NumBooks LOOP
14 DBMS_OUTPUT.PUT_LINE(' ISBN ' || v_BooksInStock(v_LoopCounter) ||
15 ' is backordered');
16 END LOOP;
17
18 DBMS_OUTPUT.PUT_LINE('Second version of StatusList:');
19 –– Get an opened cursor with the ISBNs of the books which are
20 –– backordered.
21 InventoryOps.StatusList('BACKORDERED', v_BookCur);

Chapter 8: Creating Procedures, Functions, and Packages 375

22
23 –– And print them out.
24 LOOP
25 FETCH v_BookCur INTO v_ISBN;
26 EXIT WHEN v_BookCur%NOTFOUND;
27 DBMS_OUTPUT.PUT_LINE(' ISBN ' || v_ISBN || ' is backordered');
28 END LOOP;
29 CLOSE v_BookCur;
30 END;
31 /
First version of StatusList:
ISBN 72121203 is backordered
ISBN 78824389 is backordered
Second version of StatusList:
ISBN 72121203 is backordered
ISBN 78824389 is backordered
PL/SQL procedure successfully completed.

Overloading can be a very useful technique when the same operation can
be done on arguments of different types. Overloading is subject to several
restrictions, however.

■ You cannot overload two subprograms if their parameters differ only in
name or mode. The following two procedures cannot be overloaded,
for example:

PROCEDURE OverloadMe(p_TheParameter IN NUMBER);

PROCEDURE OverloadMe(p_TheParameter OUT NUMBER);

■ You cannot overload two functions that differ only in their return type.
For example, the following functions cannot be overloaded:

FUNCTION OverloadMeToo RETURN DATE;

FUNCTION OverloadMeToo RETURN NUMBER;

■ The parameters of overloaded functions must differ by type family—you
cannot overload on the same family. For example, since both CHAR and
VARCHAR2 are in the same family, you can’t overload the following
procedures:

PROCEDURE OverloadChar(p_TheParameter IN CHAR);

PROCEDURE OverloadChar(p_TheParameter IN VARCHAR2);

■ In Oracle10gR1, however, you can overload two subprograms if their
parameters differ only in numeric datatype, such as BINARY_FLOAT vs.
BINARY_DOUBLE. This is primarily useful for mathematical functions.

376 Oracle Database 10g PL/SQL Programming

Chapter 8: Creating Procedures, Functions, and Packages 377

NOTE
The PL/SQL compiler will actually allow you to
create a package that has subprograms that violate
the preceding restrictions. However, the run-time
engine will not be able to resolve the references
and will always generate a “PLS-307: Too many
declarations of ‘subprogram’ match this call” error.

Object Types and Overloading
Packaged subprograms can also be overloaded through use of user-defined object
types. For example, suppose we create the following two object types:

–– Available online as part of objectOverload.sql
CREATE OR REPLACE TYPE t1 AS OBJECT (
f NUMBER

);

CREATE OR REPLACE TYPE t2 AS OBJECT (
f NUMBER

);

We can now create a package and package body that contains procedures that are
overloaded in terms of the object type of their parameter:

–– Available online as part of objectOverload.sql
CREATE OR REPLACE PACKAGE Overload AS
PROCEDURE Proc(p_Parameter1 IN t1);
PROCEDURE Proc(p_Parameter1 IN t2);

END Overload;

CREATE OR REPLACE PACKAGE BODY Overload AS
PROCEDURE Proc(p_Parameter1 IN t1) IS
BEGIN
DBMS_OUTPUT.PUT_LINE('Proc(t1): ' || p_Parameter1.f);

END Proc;

PROCEDURE Proc(p_Parameter1 IN t2) IS
BEGIN
DBMS_OUTPUT.PUT_LINE('Proc(t2): ' || p_Parameter1.f);

END Proc;
END Overload;

378 Oracle Database 10g PL/SQL Programming

As the following example shows, the correct procedure is called to correspond to
the type of argument:

–– Available online as part of objectOverload.sql
SQL> DECLARE
2 v_Obj1 t1 := t1(1);
3 v_OBj2 t2 := t2(2);
4 BEGIN
5 Overload.Proc(v_Obj1);
6 Overload.proc(v_Obj2);
7 END;
8 /

Proc(t1): 1
Proc(t2): 2
PL/SQL procedure successfully completed.

See Chapters 14 and 15 for more information on object types.

Package Initialization
The first time a packaged subprogram is called, or any reference to a packaged
variable or type is made, the package is instantiated. This means that the package
is read from disk into memory, and the compiled code of the called subprogram is
run. At this point, memory is allocated for all variables defined in the package. Each
session will have its own copy of packaged variables, ensuring that two sessions
executing subprograms in the same package use different memory locations.

In many cases, initialization code needs to be run the first time the package is
instantiated within a session. This can be done by adding an initialization section
to the package body, after all other objects, with the syntax

CREATE OR REPLACE PACKAGE BODY package_name {IS | AS}
...

BEGIN
initialization_code;

END [package_name];

where package_name is the name of the package, and initialization_code is the
code to be run. For example, the following package implements a random
number function:

–– Available online as Random.sql
CREATE OR REPLACE PACKAGE Random AS
–– Random number generator. Uses the same algorithm as the
–– rand() function in C.

–– Used to change the seed. From a given seed, the same
–– sequence of random numbers will be generated.

PROCEDURE ChangeSeed(p_NewSeed IN NUMBER);

–– Returns a random integer between 1 and 32767.
FUNCTION Rand RETURN NUMBER;

–– Same as Rand, but with a procedural interface.
PROCEDURE GetRand(p_RandomNumber OUT NUMBER);

–– Returns a random integer between 1 and p_MaxVal.
FUNCTION RandMax(p_MaxVal IN NUMBER) RETURN NUMBER;

–– Same as RandMax, but with a procedural interface.
PROCEDURE GetRandMax(p_RandomNumber OUT NUMBER,

p_MaxVal IN NUMBER);
END Random;

CREATE OR REPLACE PACKAGE BODY Random AS

/* Used for calculating the next number. */
v_Multiplier CONSTANT NUMBER := 22695477;
v_Increment CONSTANT NUMBER := 1;

/* Seed used to generate random sequence. */
v_Seed number := 1;

PROCEDURE ChangeSeed(p_NewSeed IN NUMBER) IS
BEGIN
v_Seed := p_NewSeed;

END ChangeSeed;

FUNCTION Rand RETURN NUMBER IS
BEGIN
v_Seed := MOD(v_Multiplier * v_Seed + v_Increment,

(2 ** 32));
RETURN BITAND(v_Seed/(2 ** 16), 32767);

END Rand;

PROCEDURE GetRand(p_RandomNumber OUT NUMBER) IS
BEGIN
–– Simply call Rand and return the value.
p_RandomNumber := Rand;

END GetRand;

FUNCTION RandMax(p_MaxVal IN NUMBER) RETURN NUMBER IS
BEGIN
RETURN MOD(Rand, p_MaxVal) + 1;

END RandMax;

Chapter 8: Creating Procedures, Functions, and Packages 379

PROCEDURE GetRandMax(p_RandomNumber OUT NUMBER,
p_MaxVal IN NUMBER) IS

BEGIN
–– Simply call RandMax and return the value.
p_RandomNumber := RandMax(p_MaxVal);

END GetRandMax;

BEGIN
/* Package initialization. Initialize the seed to the current

time in seconds. */
ChangeSeed(TO_NUMBER(TO_CHAR(SYSDATE, 'SSSSS')));

END Random;

In order to retrieve a random number, you can simply call Random.Rand. The
sequence of random numbers is controlled by the initial seed—the same sequence
is generated for a given seed. Thus, in order to provide more random values, we
need to initialize the seed to a different value each time the package is instantiated.
To accomplish this, the ChangeSeed procedure is called from the package
initialization section.

NOTE
Oracle includes a built-in package DBMS_
RANDOM, which can also be used to provide
random numbers. See Appendix B for more
information on the built-in packages.

Summary
We have examined three types of named PL/SQL blocks in this chapter: procedures,
functions, and packages. We discussed the syntax for creating each of these, paying
particular attention to various types of parameter passing. In the next chapter, we
will see more uses of procedures, functions, and packages. Chapter 9 will focus on
types of subprograms, how they are stored in the data dictionary, and calling stored
subprograms from SQL statements. In Chapter 10, we will cover a fourth type of
named block: database triggers.

380 Oracle Database 10g PL/SQL Programming

CHAPTER
9

Using Procedures,
Functions, and

Packages

Copyright © 2004 by The McGraw-Hill Companies, Inc. Click here for terms of use.

I
n the last chapter, we discussed the details of creating procedures,
packages, and functions. In this chapter, we will look at some of their
features, including the difference between stored and local subprograms,
how stored subprograms interact with the data dictionary, and how to
call stored subprograms from SQL statements. We will also examine

some features of stored subprograms new in Oracle9i and Oracle10g. The examples
we use are dependent on database tables found in tables.sql. We need to run
tables.sql before testing the example files. We will examine triggers in Chapter 10.

Subprogram Locations
Subprograms and packages can be stored in the data dictionary, as all of the examples
in the preceding chapter have shown. The subprogram is first created with the
CREATE OR REPLACE command, and then it is called from another PL/SQL block.
In addition to this, however, a subprogram can be defined within the declarative
section of a block. In this case, it is known as a local subprogram. Packages must
be stored in the data dictionary and cannot be local.

Stored Subprograms and the Data Dictionary
When a subprogram is created with CREATE OR REPLACE, it is stored in the data
dictionary. In addition to the source text, the subprogram is stored in compiled form,
which is known as p-code. The p-code has all of the references in the subprogram
evaluated, and the source code is translated into a form that is easily readable by
the PL/SQL engine. When the subprogram is called, the p-code is read from disk,
if necessary, and executed. Once it is read from disk, the p-code is stored in the
shared pool portion of the system global area (SGA), where multiple users can access
it as needed. Like all of the contents of the shared pool, p-code is aged out of the
shared pool according to a least recently used (LRU) algorithm.

P-code is analogous to the object code generated by other 3GL compilers, or
to Java bytecodes that can be read by a Java run-time system. Since the p-code
has the object references in the subprogram evaluated (this is a property of early
binding, which we saw in Chapter 5), executing the p-code is a comparatively
inexpensive operation.

NOTE
Beginning with Oracle9i, you may compile
subprograms into native operating system code
rather than p-code. See the section “Native
Compilation” later in this chapter for more details.

382 Oracle Database 10g PL/SQL Programming

Information about the subprogram is accessible through various data dictionary
views. The USER_OBJECTS view contains information about all objects owned by
the current user, including stored subprograms. This information includes when the
object was created and last modified, the type of object (table, sequence, function,
and so on), and the validity of the object. The USER_SOURCE view contains the
original source code for the object. The USER_ERRORS view contains information
about compile errors.

Consider the following simple procedure:

–– Available online as part of Simple.sql
CREATE OR REPLACE PROCEDURE Simple AS
v_Counter NUMBER;

BEGIN
v_Counter := 7;

END Simple;
/

After this procedure is created, USER_OBJECTS shows it as valid, and USER_
SOURCE contains the source code for it. USER_ERRORS has no rows, because
the procedure was compiled successfully. This is illustrated by the following
SQL*Plus session.

–– Available online as part of Simple.sql
SELECT object_name, object_type, status
FROM user_objects
WHERE object_name = 'SIMPLE';

The output for the query is shown here:

OBJECT_NAME OBJECT_TYPE STATUS
––––––––––––––– ––––––––– –––-
SIMPLE PROCEDURE VALID

You may see the source code by using this query:

SELECT text
FROM user_source
WHERE name = 'SIMPLE'
ORDER BY line;

The query returns the plain text for the stored object.

TEXT
–––––––––––––––––––––––––––––––––
PROCEDURE Simple AS

Chapter 9: Using Procedures, Functions, and Packages 383

v_Counter NUMBER;
BEGIN
v_Counter := 7;

END Simple;

A query of the USER_ERRORS table after compiling the procedure will select
no rows.

SELECT line, position, text
FROM user_errors
WHERE name = 'SIMPLE'
ORDER BY sequence;

Suppose, however, we change the code of Simple so that it has a compile error
(note the missing semicolon after the number 7), such as

–– Available online as part of Simple.sql
CREATE OR REPLACE PROCEDURE Simple AS
v_Counter NUMBER;

BEGIN
v_Counter := 7

END Simple;
/

and examine the same the USER_OBJECTS data dictionary view. We would see
the source code missing the statement semicolon. Querying the USER_ERRORS
view, we will see the following PLS-103 error by setting the SQL*Plus formatting
parameters noted.

COL line FORMAT 999
COL position FORMAT 999
COL text FORMAT
SELECT line, position, text
FROM user_errors
WHERE name = 'SIMPLE'
ORDER BY sequence;

The query shows the following error message:

LINE POSITION TEXT
––- –––– ––––––––––––––––––––––––––––––-

5 1 PLS-00103: Encountered the symbol "END" when expecting one of
the following:

* & = - + ; < / > at in is mod remainder not rem

384 Oracle Database 10g PL/SQL Programming

<an exponent (**)> <> or != or ~= >= <= <> and or like
between || multiset member SUBMULTISET_

The symbol ";" was substituted for "END" to continue.

TIP
In SQL*Plus, the SHOW ERRORS command queries
USER_ERRORS for you and formats the output for
readability. It will return information about errors
for the last object that you created. You can use
SHOW ERRORS after receiving the message
“Warning: Procedure created with compilation
errors.” See Chapter 2 for more information on
SQL*Plus. Other PL/SQL development tools have
their own mechanisms for querying compilation
errors such as these.

A stored subprogram that is invalid is still stored in the database. However,
it cannot be called successfully until the error is fixed. If an invalid procedure
is called, the PLS-905 error is returned. Next, we attempt to call the invalid
stored procedure.

BEGIN Simple; END;
/

The attempted execution of an invalid stored object raises a PLS-905 error.

BEGIN Simple; END;
*

ERROR at line 1:

ORA-06550: line 1, column 7:
PLS-00905: object EXAMPLE.SIMPLE is invalid
ORA-06550: line 1, column 7:
PL/SQL: Statement ignored

The data dictionary is discussed in more detail in Appendix C.

Local Subprograms
A local subprogram, declared in the declarative section of a PL/SQL block, is
illustrated in the following example. If we have not run tables.sql at this
point, the localSub.sql script will fail.

Chapter 9: Using Procedures, Functions, and Packages 385

–– Available online as localSub.sql
SET SERVEROUTPUT ON SIZE 1000000
DECLARE
CURSOR c_SomeAuthors IS
SELECT first_name, last_name
FROM authors
WHERE last_name > 'L'
ORDER BY last_name;

v_FormattedName VARCHAR2(50);

/* Function which will return the first and last name
concatenated together, separated by a space. */

FUNCTION FormatName(p_FirstName IN VARCHAR2,
p_LastName IN VARCHAR2)

RETURN VARCHAR2 IS
BEGIN
RETURN p_FirstName || ' ' || p_LastName;

END FormatName;

–– Begin main block.
BEGIN
FOR v_AuthorRecord IN c_SomeAuthors LOOP
v_FormattedName := FormatName(v_AuthorRecord.first_name,

v_AuthorRecord.last_name);
DBMS_OUTPUT.PUT_LINE(v_FormattedName);

END LOOP;
END;
/

The anonymous PL/SQL block returns the following to the console:

Kevin Loney
Dan Natchek
Aaron Newman
Rich Niemic
Jason Price
Simon Russell
Sumit Sarin
Mark Scardina
Dirk Schepanek
Graham Seibert
Kenny Smith
Marlene Theriault
Joe Trezzo
Scott Urman
Gaja Vaidyanatha

386 Oracle Database 10g PL/SQL Programming

Steve Vandivier
Rama Velpuri
James Viscusi
Jinyu Wang
PL/SQL procedure successfully completed.

The FormatName function is declared in the declarative section of the block.
The function name is a PL/SQL identifier and thus follows the same scope and
visibility rules as any other PL/SQL identifier. Specifically, it is visible only in the
block in which it is declared. Its scope extends from the point of declaration until
the end of the block. No other block can call FormatName, since it would not be
visible from another block.

Local Subprograms as Part of Stored Subprograms
Local subprograms can also be declared as part of the declarative section of a stored
subprogram, as the following example illustrates. In this case, FormatName can be
called only from within StoredProc, since that is the limit of its scope.

–– Available online as part of localStored.sql
CREATE OR REPLACE PROCEDURE StoredProc AS
/* Local declarations, which include a cursor, variable, and a

function. */

CURSOR c_SomeAuthors IS
SELECT first_name, last_name
FROM authors
WHERE last_name > 'L'
ORDER BY last_name;

v_FormattedName VARCHAR2(50);

/* Function which will return the first and last name
concatenated together, separated by a space. */

FUNCTION FormatName(p_FirstName IN VARCHAR2,
p_LastName IN VARCHAR2)

RETURN VARCHAR2 IS
BEGIN
RETURN p_FirstName || ' ' || p_LastName;

END FormatName;

–– Begin main block.
BEGIN
FOR v_AuthorRecord IN c_SomeAuthors LOOP
v_FormattedName := FormatName(v_AuthorRecord.first_name,

v_AuthorRecord.last_name);

Chapter 9: Using Procedures, Functions, and Packages 387

DBMS_OUTPUT.PUT_LINE(v_FormattedName);
END LOOP;

END StoredProc;
/

Given the preceding stored procedure, we can call it and receive the same output as
for the previous anonymous block example, as follows:

–– Available online as part of localStored.sql
SET SERVEROUTPUT ON SIZE 1000000
BEGIN StoredProc; END;
/

The anonymous PL/SQL block returns the following to the console:

Kevin Loney
Dan Natchek
Aaron Newman
Rich Niemic
Jason Price
Simon Russell
Sumit Sarin
Mark Scardina
Dirk Schepanek
Graham Seibert
Kenny Smith
Marlene Theriault
Joe Trezzo
Scott Urman
Gaja Vaidyanatha
Steve Vandivier
Rama Velpuri
James Viscusi
Jinyu Wang
PL/SQL procedure successfully completed.

Location of Local Subprograms
Any local subprogram must be declared at the end of the declarative section. If
we were to move FormatName above the declaration for c_SomeAuthors,
as the following SQL*Plus session illustrates, we would get a compile error:

–– Available online as localError.sql
DECLARE
/* Declare FormatName first. This will generate a compile

error, since all other declarations have to be before

388 Oracle Database 10g PL/SQL Programming

any local subprograms. */
FUNCTION FormatName(p_FirstName IN VARCHAR2,

p_LastName IN VARCHAR2)
RETURN VARCHAR2 IS
BEGIN
RETURN p_FirstName || ' ' || p_LastName;

END FormatName;

CURSOR c_SomeAuthors IS
SELECT first_name, last_name
FROM authors
WHERE last_name > 'L'
ORDER BY last_name;

v_FormattedName VARCHAR2(50);

–– Begin main block.
BEGIN
FOR v_AuthorRecord IN c_SomeAuthors LOOP
v_FormattedName := FormatName(v_AuthorRecord.first_name,

v_AuthorRecord.last_name);
DBMS_OUTPUT.PUT_LINE(v_FormattedName);

END LOOP;
END;
/

The anonymous PL/SQL block fails because declarations follow the locally scoped
FormatName function. When run, it will raise the following error:

CURSOR c_SomeAuthors IS
*

ERROR at line 12:
ORA-06550: line 12, column 3:
PLS-00103: Encountered the symbol "CURSOR" when expecting one of the following:
begin function package pragma procedure form

Forward Declarations
Since the names of local PL/SQL subprograms are identifiers, they must be declared
before they are referenced. This is normally not a problem. However, in the case
of mutually referential subprograms, this does present a difficulty. Consider the
following example:

–– Available online as part of forwardDeclarations.sql
DECLARE
v_TempVal BINARY_INTEGER := 5;

Chapter 9: Using Procedures, Functions, and Packages 389

–– Local procedure A. Note that the code of A calls procedure B.
PROCEDURE A(p_Counter IN OUT BINARY_INTEGER) IS

BEGIN
DBMS_OUTPUT.PUT_LINE('A(' || p_Counter || ')');
IF p_Counter > 0 THEN
B(p_Counter);
p_Counter := p_Counter - 1;

END IF;
END A;

–– Local procedure B. Note that the code of B calls procedure A.
PROCEDURE B(p_Counter IN OUT BINARY_INTEGER) IS

BEGIN
DBMS_OUTPUT.PUT_LINE('B(' || p_Counter || ')');
p_Counter := p_Counter - 1;
A(p_Counter);

END B;
BEGIN
B(v_TempVal);

END;
/

The anonymous PL/SQL block fails because the A procedure does not have a
forward reference to the B procedure. When run, it will raise the following error:

DECLARE
*
ERROR at line 1:
ORA-06550: line 9, column 7:
PLS-00313: 'B' not declared in this scope
ORA-06550: line 9, column 7:
PL/SQL: Statement ignored

The example fails to compile. Procedure A cannot call procedure B unless B
is declared prior to A to resolve the reference to B. Likewise, procedure B calls
procedure A, so A must be declared prior to B to resolve the reference to A. Both
conditions cannot be true without a forward declaration. A forward declaration
is a procedure name that may include formal parameters. It enables mutually
referential procedures to exist. Forward declarations are also used in package
specifications. The following example illustrates the technique:

–– Available online as part of forwardDeclarations.sql
SET SERVEROUTPUT ON SIZE 1000000
DECLARE

390 Oracle Database 10g PL/SQL Programming

v_TempVal BINARY_INTEGER := 5;

–– Forward declaration of procedure B.
PROCEDURE B(p_Counter IN OUT BINARY_INTEGER);

PROCEDURE A(p_Counter IN OUT BINARY_INTEGER) IS
BEGIN
DBMS_OUTPUT.PUT_LINE('A(' || p_Counter || ')');
IF p_Counter > 0 THEN
B(p_Counter);
p_Counter := p_Counter - 1;

END IF;
END A;

PROCEDURE B(p_Counter IN OUT BINARY_INTEGER) IS
BEGIN
DBMS_OUTPUT.PUT_LINE('B(' || p_Counter || ')');
p_Counter := p_Counter - 1;
A(p_Counter);

END B;
BEGIN
B(v_TempVal);

END;
/

The output from the preceding block is shown here:

B(5)
A(4)
B(4)
A(3)
B(3)
A(2)
B(2)
A(1)
B(1)
A(0)

Overloading Local Subprograms
As we saw in Chapter 7, subprograms declared in packages can be overloaded.
This is also true for local subprograms, as the following example illustrates:

–– Available online as overloadedLocal.sql
SET SERVEROUTPUT ON SIZE 1000000

Chapter 9: Using Procedures, Functions, and Packages 391

DECLARE
–– Two overloaded local procedures
PROCEDURE LocalProc(p_Parameter1 IN NUMBER) IS
BEGIN
DBMS_OUTPUT.PUT_LINE('In version 1, p_Parameter1 = ' ||

p_Parameter1);
END LocalProc;

PROCEDURE LocalProc(p_Parameter1 IN VARCHAR2) IS
BEGIN
DBMS_OUTPUT.PUT_LINE('In version 2, p_Parameter1 = ' ||

p_Parameter1);
END LocalProc;

BEGIN
–– Call version 1
LocalProc(12345);

–– And version 2
LocalProc('abcdef');

END;

The output from the preceding example is

In version 1, p_Parameter1 = 12345
In version 2, p_Parameter1 = abcdef

Stored vs. Local Subprograms
Stored subprograms and local subprograms behave differently and have different
properties. When should each be used? We generally prefer to use stored
subprograms, and we will usually put them in a package. If you develop a
useful subprogram, it is likely that you will want to call it from more than one
block. In order to do this, the subprogram must be stored in the database. The
size and complexity benefits are also usually a factor. The only procedures and
functions that we declare local to a block tend to be short ones, which are called
from only one specific section of the program (their containing block). Local
subprograms of this sort are generally used to avoid code duplication within
a single block. This usage is similar to C macros. Table 9-1 summarizes the
differences between stored and local subprograms.

392 Oracle Database 10g PL/SQL Programming

Considerations of Stored
Subprograms and Packages
Storing subprograms and packages as data dictionary objects has advantages. For
example, it allows them to be shared among database users as needed. There are

Chapter 9: Using Procedures, Functions, and Packages 393

Stored Subprograms Local Subprograms

The stored subprogram is stored in
compiled p-code in the database; when
the procedure is called, it does not have
to be compiled.

The local subprogram is compiled
as part of its containing block. If the
containing block is anonymous and
is run multiple times, the subprogram
has to be compiled each time.

Stored subprograms can be called from
any block submitted by a user who has
EXECUTE privileges on the subprogram.

Local subprograms can be called
only from the block containing the
subprogram.

By keeping the subprogram code separate
from the calling block, the calling block
is shorter and easier to understand. The
subprogram and calling block can also
be maintained separately, if desired.

The subprogram and the calling
block are one and the same, which
can lead to confusion. If a change
to the calling block is made, the
subprogram will be recompiled as
part of the recompilation of the
containing block.

The compiled p-code can be pinned in the
shared pool using the DBMS_SHARED_
POOL.KEEP packaged procedure.* This
can improve performance.

Local subprograms cannot be pinned
in the shared pool by themselves.

Stand-alone stored subprograms cannot be
overloaded, but packaged subprograms can
be overloaded within the same package.

Local subprograms can be
overloaded within the same block.

* The DBMS_SHARED_POOL package is discussed later in this chapter in the section “Pinning in the
Shared Pool.”

TABLE 9-1. Stored vs. Local Subprograms

several implications of this, however. These include dependencies among stored
objects, how package state is handled, and the privileges necessary to run stored
subprograms and packages.

Subprogram Dependencies
When a stored procedure or function is compiled, all of the Oracle objects that
it references are recorded in the data dictionary. The procedure is dependent on
these objects. We have seen that a subprogram that has compile errors is marked
as invalid in the data dictionary. A stored subprogram can also become invalid if
a DDL operation is performed on one of its dependent objects. The best way to
illustrate this is by example. The ThreeAuthors function (defined in Chapter 7)
queries the books table. The dependencies of ThreeAuthors are illustrated in
Figure 9-1. ThreeAuthors depends on only one object: books. The arrow in
the figure indicates this.

Now if we create a procedure that calls ThreeAuthors, we can insert the
results into temp_table. We need to ensure our environment contains the
ThreeAuthors function. If it does not have the stored function, the following
script will fail. We can add the ThreeAuthors function by running
createThreeAuthors.sql script. This procedure is RecordThreeAuthors:

–– Available online as RecordThreeAuthors.sql
CREATE OR REPLACE PROCEDURE RecordThreeAuthors AS
CURSOR c_Books IS
SELECT *
FROM books;

BEGIN
FOR v_BookRecord in c_Books LOOP
–– Record all the books which have three authors
–– in temp_table.
IF ThreeAuthors(v_BookRecord.ISBN) THEN

INSERT INTO temp_table (char_col) VALUES
(v_BookRecord.title || ' has three authors!');

END IF;
END LOOP;

END RecordThreeAuthors;
/

The arrows in Figure 9-2 illustrate the dependency information.
RecordThreeAuthors depends both on ThreeAuthors and on temp_
table. These are direct dependencies, because RecordThreeAuthors
refers directly to both ThreeAuthors and temp_table. ThreeAuthors
itself depends on books, so RecordThreeAuthors has an indirect dependency
on books.

394 Oracle Database 10g PL/SQL Programming

If a DDL operation is performed on books, all objects that depend on books
(directly or indirectly) are invalidated. Suppose we alter the books table in our
example by adding an extra column:

ALTER TABLE authors
ADD (age NUMBER(2));

This will cause both ThreeAuthors and RecordThreeAuthors to become
invalid, since they depend on authors. The following SQL statement will illustrate
the status of these objects before we change a dependency:

–– Available online as part of automaticInvalidation.sql
SELECT object_name, status
FROM user_objects
WHERE object_name IN ('THREEAUTHORS', 'RECORDTHREEAUTHORS');

Chapter 9: Using Procedures, Functions, and Packages 395

FIGURE 9-1. ThreeAuthors dependencies

FIGURE 9-2. RecordThreeAuthors dependencies

The output shows both are valid in the database.

OBJECT_NAME STATUS
–––––––––– –––-
RECORDTHREEAUTHORS VALID
THREEAUTHORS VALID

Modify the books table with the following DDL statement:

ALTER TABLE books MODIFY
(title VARCHAR2(150) /* Increase size of title column */);
Table altered.

Reselect the status of the object with this query:

SELECT object_name, status
FROM user_objects
WHERE object_name IN ('THREEAUTHORS', 'RECORDTHREEAUTHORS');

The output shows both are now invalid because of the change to the dependent
object.

OBJECT_NAME STATUS
–––––––––– –––-
RECORDTHREEAUTHORS INVALID
THREEAUTHORS INVALID

Automatic Recompilation
If a dependent object is invalidated, the PL/SQL engine will automatically attempt
to recompile it the next time it is called. Because RecordFullAuthors and
ThreeAuthors do not reference the title column in books, this recompilation
will be successful. The following SQL continues from the preceding example. The
call of the stored procedure automatically compiles it. This is often referred to as a
lazy compile.

–– Available online as part of automaticInvalidation.sql
BEGIN
RecordThreeAuthors;

END;
/

Reselect the status of the object with the following query:

396 Oracle Database 10g PL/SQL Programming

SELECT object_name, status
FROM user_objects
WHERE object_name IN ('THREEAUTHORS', 'RECORDTHREEAUTHORS');

The output shows both are valid in the database.

OBJECT_NAME STATUS
–––––––––– –––-
RECORDTHREEAUTHORS VALID
THREEAUTHORS VALID

CAUTION
The automatic recompilation can fail (especially
if a table description is modified). In this case, the
calling block will receive a compilation error.
However, these errors will occur at run time, not
compile time.

Packages and Dependencies
As the previous example showed, stored subprograms can be invalidated if their
dependent objects are modified. The situation is different for packages, however.
Consider the dependency picture for InventoryOps (which we saw in Chapter 7)
in Figure 9-3. The package body depends on the inventory table and the package
header. But, the package header does not depend on the package body or the
inventory table. That is one advantage of packages—we can change the package
body without having to change the header. Therefore, other objects that depend on
the header won’t have to be recompiled at all, since they never get invalidated. If

Chapter 9: Using Procedures, Functions, and Packages 397

FIGURE 9-3. InventoryOps dependencies

the header is changed, this automatically invalidates the body. The body becomes
invalid because it depends on the header.

NOTE
There are certain cases where a change in the
package body necessitates a change in the header.
For example, if the arguments to a procedure need
to be changed, the header and body would have to
be modified to match. The header would not
have to be modified if the implementation of a
body procedure were changed without affecting its
declaration, however. Similarly, if you are using the
signature dependency model (described in the next
section, “How Invalidations Are Determined”), only
changes to the signatures of objects in the package
specification will invalidate the body. In addition,
if you add an object to a package header (such as
a cursor or variable), the body will be invalidated.

We can also see this behavior by creating a table and package that have no
dependencies. We will call the independent package dependee. Then, we create
a procedure with a dependency on the dependee package named depender.

–– Available online as dependencies.sql
CREATE TABLE simple_table (f1 NUMBER);

CREATE OR REPLACE PACKAGE Dependee AS
PROCEDURE Example(p_Val IN NUMBER);

END Dependee;
/

CREATE OR REPLACE PACKAGE BODY Dependee AS
PROCEDURE Example(p_Val IN NUMBER) IS
BEGIN
INSERT INTO simple_table VALUES (p_Val);

END Example;
END Dependee;
/

CREATE OR REPLACE PROCEDURE Depender(p_Val IN NUMBER) AS
BEGIN
Dependee.Example(p_Val + 1);

END Depender;
/

Querying the data dictionary, we can see if all the objects are created.

398 Oracle Database 10g PL/SQL Programming

SELECT object_name, object_type, status
FROM user_objects
WHERE object_name IN ('DEPENDER', 'DEPENDEE','SIMPLE_TABLE');

The output shows all are valid in the database.

OBJECT_NAME OBJECT_TYPE STATUS
––––––––––––––– ––––––- –––-
SIMPLE_TABLE TABLE VALID
DEPENDEE PACKAGE VALID
DEPENDEE PACKAGE BODY VALID
DEPENDER PROCEDURE VALID

Change the package body with the following script:

CREATE OR REPLACE PACKAGE BODY Dependee AS
PROCEDURE Example(p_Val IN NUMBER) IS
BEGIN
INSERT INTO simple_table VALUES (p_Val - 1);

END Example;
END Dependee;
/

When we query the data dictionary, we see that all the objects are valid because
we changed a package body, not the specification. The dependency is on the
package name, the nested procedure name, and the formal parameter of the nested
procedure. The specification provides these and has not been changed. The package
body structure mirrors the specification and provides an implementation. The
implementation may change without changing the structure of the package. Use
the following query to check object status:

SELECT object_name, object_type, status
FROM user_objects
WHERE object_name IN ('DEPENDER', 'DEPENDEE','SIMPLE_TABLE');

The output shows all are valid in the database.

OBJECT_NAME OBJECT_TYPE STATUS
––––––––––––––– ––––––- –––-
SIMPLE_TABLE TABLE VALID
DEPENDEE PACKAGE VALID
DEPENDEE PACKAGE BODY VALID
DEPENDER PROCEDURE VALID

The package body provides the implementation, which has a dependency on a
table. When we drop the table, it will invalidate only the package body. This is true

Chapter 9: Using Procedures, Functions, and Packages 399

because the package body contains the implementation that is dependent on the
table. Use the following query to drop the table:

DROP TABLE simple_table;

Using our familiar query of the data dictionary, we can check the status of objects.

SELECT object_name, object_type, status
FROM user_objects
WHERE object_name IN ('DEPENDER', 'DEPENDEE','SIMPLE_TABLE');

The output shows that only the package body is invalid. The other objects are unaltered
by the loss of the table from the data dictionary.

OBJECT_NAME OBJECT_TYPE STATUS
––––––––––––––– ––––––- –––-
DEPENDEE PACKAGE VALID
DEPENDEE PACKAGE BODY INVALID
DEPENDER PROCEDURE VALID

NOTE
The data dictionary views user_dependencies,
all_dependencies, and dba_dependencies
directly list the relationships between schema
objects. For more information on these views,
see Appendix C.

Figure 9-4 shows the dependencies of the objects created by this script.

400 Oracle Database 10g PL/SQL Programming

FIGURE 9-4. More package dependencies

How Invalidations Are Determined
When an object is altered, its dependent objects are invalidated, as we have seen.
If all of the objects are in the same database, the dependent objects are invalidated
as soon as the base object is altered. This can be done quickly, because the data
dictionary tracks the dependencies. Suppose we create two procedures, P1 and
P2, as illustrated in Figure 9-5. P1 depends on P2, which means that recompiling P2
will invalidate P1.

Create the P2 procedure before the P1 procedure because P1 depends on P2.

–– Available online as part of remoteDependencies.sql
CREATE OR REPLACE PROCEDURE P2 AS
BEGIN
DBMS_OUTPUT.PUT_LINE('Inside P2!');

END P2;
/

CREATE OR REPLACE PROCEDURE P1 AS
BEGIN
DBMS_OUTPUT.PUT_LINE('Inside P1!');
P2;

END P1;
/

Using our familiar query of the data dictionary, we can check the status of objects.

SELECT object_name, object_type, status
FROM user_objects
WHERE object_name IN ('P1', 'P2');

The output returns confirmation that P1 and P2 are valid.

OBJECT_NAME OBJECT_TYPE STATUS
––––––––––––––– –––––––- –––-
P2 PROCEDURE VALID
P1 PROCEDURE VALID

Issue the alter command for the P2 procedure and the P1 procedure will immediately
become invalid.

ALTER PROCEDURE P2 COMPILE;

Using our familiar query of the data dictionary, we see the invalidation.

SELECT object_name, object_type, status
FROM user_objects
WHERE object_name IN ('P1', 'P2');

Chapter 9: Using Procedures, Functions, and Packages 401

The output returns confirmation that P1 is invalid while P2 is valid.

OBJECT_NAME OBJECT_TYPE STATUS
––––––––––––––– –––––––- –––-
P2 PROCEDURE VALID
P1 PROCEDURE INVALID

Suppose, however, that P1 and P2 are in different databases, and P1 calls
P2 over a database link. This situation is illustrated in Figure 9-6. In this case,
recompiling P2 does not immediately invalidate P1.

There are some steps required to support the following example. Assuming you
are using an Oracle user named USERA and the user has been granted the create
database link responsibility, you must create a database link as USERA. We will
walk through these steps in the example that follows.

Create a fixed-user database link that references USERA. You will need to
replace the connect_string with the SERVICE_NAME value from in your
listener.ora file. Also, the syntax assumes that the password for USERA is
its own user name, which may not be the case in your database. If the password
is the same, you should change it.

–– Available online as part of remoteDependencies.sql
CREATE DATABASE LINK loopback
CONNECT TO usera IDENTIFIED BY usera
USING 'connect_string';

402 Oracle Database 10g PL/SQL Programming

FIGURE 9-5. P1 and P2 in the same database

After creating the database link, run the statement that follows. It references the
stored procedure resolved through the database link:

CREATE OR REPLACE PROCEDURE P1 AS
BEGIN
DBMS_OUTPUT.PUT_LINE('Inside P1!');
P2@loopback;

END P1;
/

Using our familiar query of the data dictionary, we see that both objects are valid.

SELECT object_name, object_type, status
FROM user_objects
WHERE object_name IN ('P1', 'P2');

The output will also show that both objects are valid.

OBJECT_NAME OBJECT_TYPE STATUS
––––––––––––––– –––––––- –––-
P2 PROCEDURE VALID
P1 PROCEDURE VALID

When we recompile P2, P1 is not immediately invalidated because it is resolved
through a database link.

Chapter 9: Using Procedures, Functions, and Packages 403

FIGURE 9-6. P1 and P2 in different databases

ALTER PROCEDURE P2 COMPILE;

Our familiar query of the data dictionary shows that both objects are valid.

SELECT object_name, object_type, status
FROM user_objects
WHERE object_name IN ('P1', 'P2');

The output query likewise shows that both objects are valid.

OBJECT_NAME OBJECT_TYPE STATUS
––––––––––––––– –––––––- –––-
P2 PROCEDURE VALID
P1 PROCEDURE VALID

NOTE
In the preceding example, the database link is
actually a loopback, which points to the same
database. The observed behavior, however, is the
same as if P1 and P2 were actually in separate
databases. Using a loopback enables us to query
the status of P1 and P2 in one SELECT statement.

Why is the behavior different in the remote case? The answer is that the data
dictionary does not track remote dependencies. It would be too expensive to
invalidate all the remote dependent objects, because they could be in different
databases (that may or may not even be accessible at the time of the invalidation).

Instead, the validity of remote objects is checked at run time. When P1 is called,
the remote data dictionary is queried to determine the status of P2 (if the remote
database is inaccessible, an error is raised). P1 and P2 are compared to see if P1
needs to be recompiled. There are two different methods of comparison—the
timestamp and signature methods.

NOTE
It is not necessary to have a database link to utilize
run-time validity checking. If P1 were in a client-
side PL/SQL engine (such as Oracle Forms), and P2
were in the server, the situation would be similar,
and either the timestamp or signature method would
be used. See Chapter 2 for more information about
different PL/SQL execution environments.

404 Oracle Database 10g PL/SQL Programming

Timestamp Model With this model, the timestamps of the last modifications of
the two objects are compared. The last_ddl_time column of user_objects
contains this timestamp. If the base object has a newer timestamp than the dependent
object, the dependent object will be recompiled. There are several issues with this
model, however:

■ The date comparison does not take the locations of the two PL/SQL engines
into account. If they are in different time zones, the comparison may not
be valid.

■ Even if the two engines are in the same time zone, the timestamp model
can result in unnecessary recompilations. In the preceding example, P2
was simply recompiled but was not actually changed. P1 does not really
have to be recompiled, but because it has an older timestamp, it would be.

■ Slightly more serious is when P1 is contained in a client-side PL/SQL
engine, such as Oracle Forms. In this case, it may not be possible to
recompile P1, because the source for it may not be included with the
run-time version of Forms.

Signature Model PL/SQL provides a different method for determining when
remote dependent objects need to be recompiled, which resolves the issues with
the timestamp model. This method is called the “signature model.” When a
procedure is created, a signature is stored in the data dictionary in addition to the
p-code. The signature encodes the types and order of the parameters. With this
model, the signature of P2 will change only when the parameters change. When P1
is compiled the first time, the signature of P2 is included (rather than the timestamp).
Thus, P1 needs to be recompiled only when the signature of P2 changes.

In order to use the signature model, the parameter REMOTE_DEPENDENCIES_
MODE must be set to SIGNATURE. This is a parameter in the database initialization
file. (The name and location of the initialization file, commonly called init.ora,
varies depending on your system.) It can also be set interactively. There are three
ways of setting this mode:

■ Add the line REMOTE_DEPENDENCIES_MODE=SIGNATURE to the
database initialization file. The next time the database is started,
the mode will be set to SIGNATURE for all sessions.

■ Issue the command

ALTER SYSTEM SET REMOTE_DEPENDENCIES_MODE = SIGNATURE;

This will affect the entire database (all sessions) from the time the
statement is issued. You must have the ALTER SYSTEM system privilege
to issue this command.

Chapter 9: Using Procedures, Functions, and Packages 405

■ Issue the command

ALTER SESSION SET REMOTE_DEPENDENCIES_MODE = SIGNATURE;

This will affect only your session. Objects created after this point in the
current session will use the signature method.

In all of these options, TIMESTAMP can be used instead of SIGNATURE to use
the timestamp model. TIMESTAMP is the default. There are several things to be
aware of when using the signature method:

■ Signatures don’t get modified if the default values of formal parameters are
changed. Suppose P2 has a default value for one of its parameters, and P1
is using this default value. If the default value in the specification for P2 is
changed, P1 will not be recompiled by default. The old value for the
default parameter will still be used until P1 is manually recompiled. This
applies for IN parameters only.

■ If P1 is calling a packaged procedure P2, and a new overloaded version
of P2 is added to the remote package, the signature is not changed. P1
will still use the old version (not the new overloaded one) until P1 is
recompiled manually.

■ To manually recompile a procedure, use the command

ALTER PROCEDURE procedure_name COMPILE;

where procedure_name is the name of the procedure to be compiled. For
functions, use

ALTER FUNCTION function_name COMPILE;

where function_name is the name of the function to be compiled. And for
packages, use any of the following:

ALTER PACAKGE package_name COMPILE;

ALTER PACKAGE package_name COMPILE SPECIFICATION;

ALTER PACKAGE package_name COMPILE BODY;

where package_name is the name of the package. If SPECIFICATION is
present, only the package header is compiled. If BODY is present, only
the package body is compiled. If neither is present, both are compiled.

Package Run-Time State
When a package is first instantiated, the package code is read from disk into the
shared pool. However, the run-time state of a package—namely, the packaged
variables and cursors—are kept in session memory. This means that each session

406 Oracle Database 10g PL/SQL Programming

has its own copy of the run-time state. It is initialized when the package is instantiated
and remains until the session is closed, even if the package state is aged out of the
shared pool. As we saw in Chapter 6, variables declared in a package header have
global scope. They are visible for any PL/SQL block that has EXECUTE privilege for
the package. Since the package state persists until the end of the session, variables
in a package header can be used as global variables. The following example
illustrates this:

–– Available online as PersistPkg.sql
CREATE OR REPLACE PACKAGE PersistPkg AS
–– Type which holds an array of book ISBN's
TYPE t_BookTable IS TABLE OF books.isbn%TYPE
INDEX BY BINARY_INTEGER;

–– Maximum number of rows to return each time.
v_MaxRows NUMBER := 4;

–– Returns up to v_MaxRows ISBN's
PROCEDURE ReadBooks(p_BookTable OUT t_BookTable,

p_NumRows OUT NUMBER);
END PersistPkg;
/

CREATE OR REPLACE PACKAGE BODY PersistPkg AS
–– Query against books. Since this is global to the package
–– body, it will remain past a database call.
CURSOR c_BasicBooks IS
SELECT isbn
FROM BOOKS
WHERE category = 'Oracle Basics'
ORDER BY title;

PROCEDURE ReadBooks(p_BookTable OUT t_BookTable,
p_NumRows OUT NUMBER) IS

v_Done BOOLEAN := FALSE;
v_NumRows NUMBER := 1;

BEGIN
IF NOT c_BasicBooks%ISOPEN THEN
–– First open the cursor
OPEN c_BasicBooks;

END IF;

–– Cursor is open, so we can fetch up to v_MaxRows
WHILE NOT v_Done LOOP
FETCH c_BasicBooks INTO p_BookTable(v_NumRows);
IF c_BasicBooks%NOTFOUND THEN

Chapter 9: Using Procedures, Functions, and Packages 407

–– No more data, so we're finished.
CLOSE c_BasicBooks;
v_Done := TRUE;

ELSE
v_NumRows := v_NumRows + 1;
IF v_NumRows > v_MaxRows THEN
v_Done := TRUE;

END IF;
END IF;

END LOOP;

–– Return the actual number of rows fetched.
p_NumRows := v_NumRows - 1;

END ReadBooks;
END PersistPkg;
/

PersistPkg.ReadBooks will select from the c_BasicBooks cursor.
Since this cursor is declared at the package level (not inside ReadBooks), it will
remain past a call to ReadBooks. We can call PersistPkg.ReadBooks with
the following block:

–– Available online as callPP.sql
DECLARE
v_BookTable PersistPkg.t_BookTable;
v_NumRows NUMBER := PersistPkg.v_MaxRows;
v_Title books.title%TYPE;

BEGIN
PersistPkg.ReadBooks(v_BookTable, v_NumRows);
DBMS_OUTPUT.PUT_LINE(' Fetched ' || v_NumRows || ' rows:');
FOR v_Count IN 1..v_NumRows LOOP
SELECT title
INTO v_Title
FROM books
WHERE isbn = v_BookTable(v_Count);

DBMS_OUTPUT.PUT_LINE(v_Title);
END LOOP;

END;
/

Use the testCallPP.sql script to generate the following output. Different data
is returned because the cursor has remained open in between each call:

408 Oracle Database 10g PL/SQL Programming

SQL> @testCallPP
Fetched 4 rows:
Oracle Backup & Recovery 101
Oracle DBA 101
Oracle Database 10g A Beginner's Guide
Oracle Enterprise Manager 101

PL/SQL procedure successfully completed.

Fetched 4 rows:
Oracle PL/SQL 101
Oracle Performance Tuning 101
Oracle8i: A Beginner's Guide
Oracle9i DBA 101

PL/SQL procedure successfully completed.

Fetched 1 rows:
Oracle9i: A Beginner's Guide

PL/SQL procedure successfully completed.

Serially Reusable Packages
PL/SQL lets you mark a package as serially reusable. The run-time state of a serially
reusable package will last only for each database call, rather than for the entire
session. A serially reusable package has the syntax

PRAGMA SERIALLY_REUSABLE;

in the package header (and also the package body, if present). If we modify
PersistPkg to include this pragma, the output changes. Here is the modified
package:

–– Available online as PersistPkg2.sql
CREATE OR REPLACE PACKAGE PersistPkg AS
PRAGMA SERIALLY_REUSABLE;

TYPE t_BookTable IS TABLE OF books.isbn%TYPE
INDEX BY BINARY_INTEGER;

–– Maximum number of rows to return each time.
v_MaxRows NUMBER := 4;

–– Returns up to v_MaxRows ISBN's

Chapter 9: Using Procedures, Functions, and Packages 409

PROCEDURE ReadBooks(p_BookTable OUT t_BookTable,
p_NumRows OUT NUMBER);

END PersistPkg;
/

CREATE OR REPLACE PACKAGE BODY PersistPkg AS
PRAGMA SERIALLY_REUSABLE;

–– Query against books. Even though this is global to the
–– package body, it will be reset after each database call,
–– because the package is now serially reusable.
CURSOR c_BasicBooks IS
SELECT isbn
FROM BOOKS
WHERE category = 'Oracle Basics'
ORDER BY title;

...
END PersistPkg;
/

The output from running the serially reusable version of PersistPkg appears next.
You can rerun the testCallPP.sql script to generate the output on your system.

Fetched 4 rows:
Oracle DBA 101
Oracle PL/SQL 101
Oracle Performance Tuning 101
Oracle8i: A Beginner's Guide

PL/SQL procedure successfully completed.

Fetched 4 rows:
Oracle DBA 101
Oracle PL/SQL 101
Oracle Performance Tuning 101
Oracle8i: A Beginner's Guide

PL/SQL procedure successfully completed.

Note the difference in behavior between the two versions—the non–serially
reusable version will maintain the state of the cursor over database calls, while
the serially reusable version resets the state (and thus the output) each time. The
differences between serially reusable and non–serially reusable packages are
summarized in the following table. Serially reusable packages can save memory,
at the expense of the package state being reset after each call.

410 Oracle Database 10g PL/SQL Programming

Serially Reusable Packages Non–Serially Reusable Packages

Run-time state is kept in shared
memory and is freed after every
database call.

Run-time state is kept in process memory
and lasts for the life of the database session.

The maximum memory used is
proportional to the number of
concurrent users of the package.

The maximum memory used is proportional
to the number of concurrently logged-on
users, which is typically much higher.

Dependencies of Package Run-Time State
In addition to dependencies between stored objects, dependencies can exist between
package state and anonymous blocks. For example, consider the following package:

–– Available online as anonymousDependencies.sql
CREATE OR REPLACE PACKAGE SimplePkg AS
v_GlobalVar NUMBER := 1;
PROCEDURE UpdateVar;

END SimplePkg;
/

CREATE OR REPLACE PACKAGE BODY SimplePkg AS
PROCEDURE UpdateVar IS
BEGIN
v_GlobalVar := 7;

END UpdateVar;
END SimplePkg;
/

SimplePkg contains a package global—v_GlobalVar. Suppose we
create SimplePkg from one database session. Then, in a second session,
we call SimplePkg.UpdateVar with the following block:

BEGIN
SimplePkg.UpdateVar;

END;
/

Back in the first session, we run the anonymousDependencies.sql creation
script that drops and re-creates SimplePkg. Returning to session 2, we run the
same anonymous block and get the following error. If we re-created the package
without a change to the package specification, we would not encounter an error,
because the package would not be recompiled. The error happens only when
there is a change to the package specification in the data dictionary. Dropping and

Chapter 9: Using Procedures, Functions, and Packages 411

re-creating the package or modifying the package forces a recompile in the data
dictionary. It generates this error:

BEGIN
*
ERROR at line 1:
ORA-04068: existing state of packages has been discarded
ORA-04061: existing state of package "USERA.SIMPLEPKG" has been invalidated
ORA-04065: not executed, altered or dropped package "USERA.SIMPLEPKG"
ORA-06508: PL/SQL: could not find program unit being called
ORA-06512: at line 2

What has happened here? The dependency picture for this situation is shown
in Figure 9-7. The anonymous block depends on SimplePkg, in the same sense
that we have seen earlier. This is a compile-time dependency, in that it is determined
when the anonymous block is first compiled. However, there is also a run-time
dependency in the SimplePkg. SimplePkg contains a package variable. Each session
has its own copy of packaged variables. Thus, when SimplePkg is recompiled
the run-time dependency is followed, which invalidates the block and raises the
ORA-4068 error.

Run-time dependencies exist only on a package state. This includes variables
and cursors declared in a package. If the package had no global variables, the
second execution of the anonymous block would have succeeded.

Privileges and Stored Subprograms
Stored subprograms and packages are objects in the data dictionary, and as such
a particular database user, or schema, owns them. Other users can access these
objects if they are granted the correct privileges on them. Privileges and roles also
come into play when creating a stored object, with regard to the access available
inside the subprogram.

412 Oracle Database 10g PL/SQL Programming

FIGURE 9-7. Package global dependencies

EXECUTE Privilege
In order to allow access to a table, the SELECT, INSERT, UPDATE, and DELETE
object privileges are used. The GRANT statement gives these privileges to a
database user or a role. For stored subprograms and packages, the relevant
privilege is EXECUTE. Consider the RecordThreeAuthors procedure, which
we examined earlier in this chapter:

–– Available online as part of execute.sql
CREATE OR REPLACE PROCEDURE RecordThreeAuthors AS
CURSOR c_Books IS
SELECT *
FROM books;

BEGIN
FOR v_BookRecord in c_Books LOOP
–– Record all the books which have three authors
–– in temp_table.
IF ThreeAuthors(v_BookRecord.ISBN) THEN
INSERT INTO temp_table (char_col) VALUES
(v_BookRecord.title || ' has three authors!');

END IF;
END LOOP;

END RecordThreeAuthors;
/

NOTE
The online example execute.sql will first create
the users UserA and UserB and then create the
necessary objects for the examples in this section.
You may have to modify the password used for the
DBA account in order to get the example to work on
your system. You can see the output from running
execute.sql in execute.out, also available
online. The execute.sql file creates the books
table with only two rows.

Suppose the UserA user owns the objects RecordThreeAuthors depends
on (the ThreeAuthors function and books and temp_table tables). Likewise,
UserA owns RecordThreeAuthors. If we grant the EXECUTE privilege on
RecordThreeAuthors to another database user, say UserB, with

–– Available online as part of execute.sql
GRANT EXECUTE ON RecordThreeAuthors TO UserB;

Chapter 9: Using Procedures, Functions, and Packages 413

then UserB can execute RecordFullAuthors with the following block. Note
that dot notation is used to indicate the schema:

BEGIN
UserA.RecordThreeAuthors;

END;
/

In this scenario, UserA owns all of the database objects. This situation is illustrated
in Figure 9-8. The dotted line signifies the GRANT statement from UserA to UserB,
while the solid lines signify object dependencies. After executing the preceding
block, the results will be inserted into UserA.temp_table.

Now suppose that UserB has another table, also called temp_table, as illustrated
in Figure 9-9. If UserB calls UserA.RecordThreeAuthors (by executing the
anonymous block just shown), which table gets modified? The table in UserA does.
By default, a subprogram executes under the privilege set of its owner. Even though
UserB is calling RecordThreeAuthors, RecordThreeAuthors is owned
by UserA. Thus, the identifier temp_table will evaluate to the table belonging
to UserA, not UserB.

414 Oracle Database 10g PL/SQL Programming

FIGURE 9-8. Database objects owned by UserA

NOTE
It is possible to specify that a procedure should
execute under the privilege set of its owner, or of
its caller. See the section “Invoker’s vs. Definer’s
Rights” later in this chapter for details.

Stored Subprograms and Roles
Let’s modify the situation in Figure 9-9 slightly. Suppose UserA does not own
temp_table or RecordThreeAuthors, and these are owned by UserB.
Furthermore, suppose we have modified RecordThreeAuthors to explicitly refer
to the objects in UserA. This is illustrated by the following listing and Figure 9-10.

–– Available online as part of execute.sql
CREATE OR REPLACE PROCEDURE RecordThreeAuthors AS
CURSOR c_Books IS
SELECT *
FROM UserA.books;

BEGIN
FOR v_BookRecord in c_Books LOOP

Chapter 9: Using Procedures, Functions, and Packages 415

FIGURE 9-9. temp_table owned by UserB and UserA

–– Record all the books which have three authors
–– in temp_table.
IF UserA.ThreeAuthors(v_BookRecord.ISBN) THEN
INSERT INTO temp_table (char_col) VALUES
(v_BookRecord.title || ' has three authors!');

END IF;
END LOOP;

END RecordThreeAuthors;
/

In order for RecordThreeAuthors to compile correctly, UserA must
have granted the SELECT privilege on books and the EXECUTE privilege on
ThreeAuthors to UserB. The dotted lines in Figure 9-10 represent this. The grant
must be done explicitly and not through a role. The following GRANTs, executed by
UserA, would allow a successful compilation of UserB.RecordThreeAuthors;
they can be found in recreateRTA.sql script.

–– Available online as part of execute.sql
GRANT SELECT ON books TO UserB;
GRANT EXECUTE ON ThreeAuthors TO UserB;

416 Oracle Database 10g PL/SQL Programming

FIGURE 9-10. RecordThreeAuthors owned by UserB

A GRANT done through an intermediate role, as in

–– Available online as part of execute.sql
CREATE ROLE UserA_Role;
GRANT SELECT ON classes TO UserA_Role;
GRANT EXECUTE ON AlmostFull TO UserA_Role;
GRANT UserA_Role to UserB;

will not work. The role is illustrated in Figure 9-11.
So we can clarify the rule in the previous section as this: A subprogram executes

under the privileges that have been granted explicitly to its owner, not via a role.
If the grants had been done via a role, we would have received ORA-942 and

PLS-201 errors when we tried to compile RecordThreeAuthors:

SQL> show errors
Errors for PROCEDURE RECORDTHREEAUTHORS:

LINE/COL ERROR
–––– –––––––––––––––––––––––––––––––-
3/5 PL/SQL: SQL Statement ignored
4/18 PL/SQL: ORA-00942: table or view does not exist
9/5 PL/SQL: Statement ignored
9/8 PLS-00201: identifier 'USERA.THREEAUTHORS' must be declared

This rule also applies for triggers and packages, which are stored in the database
as well. Essentially, by default, the only objects available inside a stored procedure,
function, package, or trigger are the ones owned by the owner of the subprogram,
or explicitly granted to the owner.

Why is this? To explain this restriction, we need to examine binding. PL/SQL
uses early binding—references are evaluated when a subprogram is compiled,
not when it is run. GRANT and REVOKE are both DDL statements. They take
effect immediately, and the new privileges are recorded in the data dictionary. All
database sessions will see the new privilege set. However, this is not necessarily
true for roles. A role can be granted to a user, and that user can then choose to
disable the role with the SET ROLE command. The distinction is that SET ROLE
applies to one database session only, while GRANT and REVOKE apply to all
sessions. A role can be disabled in one session but enabled in other sessions.

In order to allow privileges granted via a role to be used inside stored
subprograms and triggers, the privileges would have to be checked every time the
procedure is run. The privileges are checked as part of the binding process. But
early binding means that the privileges are checked at compile time, not run time.
In order to maintain early binding, all roles are disabled inside stored procedures,
functions, packages, and triggers.

Chapter 9: Using Procedures, Functions, and Packages 417

Invoker’s vs. Definer’s Rights
Consider the situation that we examined earlier in this chapter in the section “EXECUTE
Privilege,” and illustrated earlier in Figure 9-9. In this situation, both UserA and
UserB own a copy of temp_table, and RecordThreeAuthors, since UserA
owns it, inserts into UserA.temp_table. As we saw in the previous sections,
unqualified external references within RecordThreeAuthors are resolved under
the privilege set of its owner, or definer. Thus, RecordThreeAuthors is known
as a definer’s rights procedure.

Oracle8i introduced a different kind of external reference resolution. In an
invoker’s rights subprogram, external references are resolved under the privilege
set of the caller, or invoker, not the owner. Using the AUTHID clause creates
an invoker’s rights routine. It is valid for stand-alone subprograms, package
specifications, and object type specifications (see Chapters 14–16 for information
about object types) only.

Individual subprograms within a package must be all invoker’s or definer’s, not
a mix. The syntax of AUTHID is given here:

CREATE [OR REPLACE] FUNCTION function_name
[parameter_list] RETURN return_type
[AUTHID {CURRENT_USER | DEFINER}] {IS | AS}
function_body;

418 Oracle Database 10g PL/SQL Programming

FIGURE 9-11. GRANTs done via a role

CREATE [OR REPLACE] PROCEDURE procedure_name
[parameter_list]
[AUTHID {CURRENT_USER | DEFINER}] {IS | AS}
function_body;

CREATE [OR REPLACE] PACKAGE package_spec_name
[AUTHID {CURRENT_USER | DEFINER}] {IS | AS}
package_spec;

If CURRENT_USER is specified in the AUTHID clause, the object will have invoker’s
rights. If DEFINER is specified, then the object will have definer’s rights. The default
if the AUTHID clause is not present is definer’s rights.

For example, the following version of RecordThreeAuthors is an invoker’s
rights procedure:

–– Available online as part of invokers.sql
CREATE OR REPLACE PROCEDURE RecordThreeAuthors
AUTHID CURRENT_USER AS
CURSOR c_Books IS
SELECT *
FROM UserA.books;

BEGIN
FOR v_BookRecord in c_Books LOOP
–– Record all the books which have three authors
–– in temp_table.
IF UserA.ThreeAuthors(v_BookRecord.ISBN) THEN
INSERT INTO temp_table (char_col) VALUES
(v_BookRecord.title || ' has three authors!');

END IF;
END LOOP;

END RecordThreeAuthors;
/

NOTE
The online example invokers.sql will first create
the users UserA and UserB and then create the
necessary objects for the examples in this section.
You may have to modify the password used for the
DBA account in order to get the example to work on
your system. You can see the output from running
invokers.sql in invokers.out, also available
online. The invokers.sql file creates the books
table with only two rows.

This version of RecordThreeAuthors explicitly references UserA.books
and UserA.ThreeAuthors. The only unqualified reference is temp_table.

Chapter 9: Using Procedures, Functions, and Packages 419

Thus, if UserB executes RecordThreeAuthors, the insert will be done in
UserB.temp_table. If UserA executes it, the insert will be done in UserA.temp_
table. The logic is illustrated in Figure 9-12.

Before doing this example, you may elect to run execute.sql from a
privileged user like SYS or SYSTEM. With a clean environment, connect to the
database using UserA. Execute the following anonymous block, which may be
copied from the invokers.sql script. Doing so, there is an assumption that
we have run createThreeAuthors.sql and RecordThreeAuthors.sql.
If those scripts have not been run, we should run them now. Alternatively, we
may run invokers.sql to rebuild the environment.

BEGIN
RecordThreeAuthors;
COMMIT;

END;
/

Query the UserA.TEMP_TABLE to confirm the insert, as shown here:

SELECT * FROM temp_table;

420 Oracle Database 10g PL/SQL Programming

FIGURE 9-12. Invoker’s Rights RecordThreeAuthors

The output will show two rows if the environment was refreshed by running
invokers.sql before you started this section.

NUM_COL CHAR_COL
––––– ––––––––––––––––––––––––––––––

Oracle DBA 101 has three authors!
Oracle DBA 101 has three authors!

As UserB, grant execute system privileges to UserB for RecordThreeAuthors
procedure.

GRANT SELECT ON books TO userb;
GRANT EXECUTE ON ThreeAuthors TO userb;
Connect to UserB and create the temp_table illustrated below.
–– Available online as part of create_temp_table.sql
CREATE TABLE temp_table
(num_col NUMBER
,char_col VARCHAR2(60));

Execute the following anonymous block, which may be copied from the
invokers.sql script.

–– Available online as part of invokeRTA.sql
BEGIN
UserA.RecordThreeAuthors;
COMMIT;

END;
/

Query the temp_table from UserB and you will find the following three rows:

NUM_COL CHAR_COL
––––– ––––––––––––––––––––––––––––––

Oracle DBA 101 has three authors!
Oracle DBA 101 has three authors!
Oracle DBA 101 has three authors!

Resolution with Invoker’s Rights In an invoker’s rights routine, external references
in SQL statements will be resolved using the caller’s privilege set. However,
references in PL/SQL statements (such as assignments or procedure calls) are still
resolved under the owner’s privilege set. This is why, back in Figure 9-12, GRANTs
need be done only on RecordThreeAuthors and the books table. Since the

Chapter 9: Using Procedures, Functions, and Packages 421

call to ThreeAuthors is a PL/SQL reference, it will always be done under UserA’s
privilege set, and thus it does not need to be GRANTed to UserB.

However, suppose that the GRANT on books was not done. In this case, UserA
can successfully compile and run the procedure, because all of the SQL objects are
accessible from UserA’s privilege set. But UserB will receive an ORA-942 error
upon calling RecordThreeAuthors. Before attempting this example, let’s clean
up any grants that may lead to an erroneous result. We should connect as SYSTEM
before attempting a revocation of system privileges. Revoking SELECT system
privileges from both UserB and the UserA_Role will ensure the example works.

REVOKE SELECT ON books FROM usera_role;
REVOKE SELECT ON books FROM userb;

Execute the following anonymous block, which may be copied from the
invokers.sql script.

–– Available online as part of invokeRTA.sql
BEGIN
UserA.RecordThreeAuthors;

END;
/

The output will produce the following error stack:

BEGIN
*
ERROR at line 1:
ORA-00942: table or view does not exist
ORA-06512: at "USERA.RECORDTHREEAUTHORS", line 4
ORA-06512: at "USERA.RECORDTHREEAUTHORS", line 7
ORA-06512: at line 2

Figure 9-13 shows the relationship between the package owner and non-package
owner schemas:

NOTE
The error received here is ORA-942 and not
PLS-201. It is a database compilation error,
but we receive it at run time.

Roles and Invoker’s Rights Suppose the GRANT on classes was done via a
role, and not directly. Recall from the situation earlier in Figure 9-11 that definer’s
rights procedures must have all privileges GRANTed explicitly. For invoker’s rights
routines, however, this is not the case. Because the resolution of external references

422 Oracle Database 10g PL/SQL Programming

for invoker’s rights routines is done at run time, the current privilege set is available.
This implies that privileges GRANTed via a role to the caller will be accessible. This
is why we revoked rights from UserB and the UserA_Role.

NOTE
References that are resolved at the time of procedure
compilation must still be GRANTed directly. Only
those references that are resolved at run time can be
GRANTed via a role. This also implies that the SET
ROLE command (if executed through dynamic SQL)
can be used with run-time references.

Figure 9-14 shows the role relationship between the owning and calling schemas.

Triggers, Views, and Invoker’s Rights A database trigger will always be executed
with definer’s rights and will execute under the privilege set of the schema that owns
the triggering table. This is also true for a PL/SQL function that is called from a view.
In this case, the function will execute under the privilege set of the view’s owner.

Chapter 9: Using Procedures, Functions, and Packages 423

FIGURE 9-13. Revoked SELECT on books

Stored Functions and SQL Statements
In general, because calls to subprograms are procedural, they cannot be called from
SQL statements. However, if a stand-alone or packaged function meets certain
restrictions, it can be called during execution of a SQL statement. There are two
different methods of using stored functions in SQL statements: single valued and
multiple valued.

Single-Valued Functions
For the single-value case, a user-defined function is called the same way as built-in
functions such as TO_CHAR, UPPER, or ADD_MONTHS. To be used in this manner,
the function must return a single scalar value, as opposed to a collection.

Restrictions
Depending on where and how a user-defined function is used, it must meet the
following restrictions:

■ Any function called from a SELECT statement cannot modify any
database tables.

424 Oracle Database 10g PL/SQL Programming

FIGURE 9-14. Roles and Invoker’s Rights

■ A function called by a DML statement (INSERT, UPDATE, or DELETE) cannot
query or modify any tables affected by the statement. It can reference other
tables, however.

■ In order for a DML statement containing a function to be parallelized, the
function must not modify any database tables.

■ A function called by a query or a DML statement must not execute any
transaction control statements (COMMIT, ROLLBACK), session control
statements (ALTER SESSION, SET ROLE), or system control statements
(ALTER SYSTEM). This implies that it cannot execute any DDL statements
(CREATE, DROP) because they issue an implicit COMMIT.

■ Any procedures and functions called by the top-level function must meet
the same restrictions as the top-level function for it to be callable.

■ The function has to be stored in the database, either stand-alone or as part
of a package. It must not be local to another block.

■ The function can take only IN parameters, no IN OUT or OUT.

■ The formal parameters must use only database types, not PL/SQL types
such as BOOLEAN or RECORD. These types can be user defined, if they
are defined with a schema-level CREATE TYPE statement.

■ The return type of the function must also be a database type or defined
with a schema-level CREATE TYPE statement.

As an example, the FullName function meets all of the preceding restrictions.
Given an author ID, it returns the first and last names concatenated. We should run
it from the usera schema.

–– Available online as part of SQLFunctions.sql
CREATE OR REPLACE FUNCTION FullName (
p_Authorid authors.ID%TYPE)
RETURN VARCHAR2 IS

v_Result VARCHAR2(100);
BEGIN
SELECT first_name || ' ' || last_name
INTO v_Result
FROM authors
WHERE ID = p_AuthorID;

RETURN v_Result;
END FullName;
/

Chapter 9: Using Procedures, Functions, and Packages 425

We can use FullName as part of the select list in a query, as well as in DML
statements, as shown next. The FullName function can be used in SQL queries
because it meets all the restrictions.

–– Available online as part of SQLFunction.sql
SELECT FullName(ID) full_name
FROM authors
WHERE ID < 10
ORDER BY full_name;

The output lists the first nine rows in the authors table by concatenating the
first_name column, a white space, and the last_name column.

FULL_NAME
–––––––––––––––––––––––––––––––––-
Gaja Vaidyanatha
Ian Abramson
James Viscusi
John Kostelac
Kirtikumar Deshpande
Marlene Theriault
Michael Abbey
Michael Corey
Rachel Carmichael

9 rows selected.

We can use the FullName function in DML statements like the one that follows in
the anonymous PL/SQL block:

DECLARE
CURSOR c_IDs IS
SELECT ID FROM authors WHERE ID BETWEEN 10 AND 20;

BEGIN
FOR v_Rec IN c_IDs LOOP
INSERT INTO temp_table (num_col, char_col)
VALUES (v_Rec.ID, FullName(v_Rec.ID));

END LOOP;
END;
/

A query against the temp_table will show that the tenth through twentieth records
have been concatenated and inserted into the table.

426 Oracle Database 10g PL/SQL Programming

SELECT *
FROM temp_table
ORDER BY num_col;

This is the output for the query:

NUM_COL CHAR_COL
––––– ––––––––––––––––––––––––––––––

10 Kenny Smith
11 Stephan Haisley
12 Lars Bo
13 Dirk Schepanek
14 Christopher Allen
15 David James
16 Graham Seibert
17 Simon Russell
18 Bastin Gerald
19 Nigel King
20 Dan Natchek

11 rows selected.

The restrictions are checked when the SQL statement containing the function is
executed. For example, if we modify FullName to insert into temp_table, it will
no longer be callable from a query. This is illustrated by this modification:

–– Available online as part of SQLFunction.sql
CREATE OR REPLACE FUNCTION FullName (p_AuthorID authors.ID%TYPE)
RETURN VARCHAR2 IS

v_Result VARCHAR2(100);
BEGIN
SELECT first_name || ' ' || last_name
INTO v_Result
FROM authors
WHERE ID = p_AuthorID;

INSERT INTO temp_table (num_col, char_col)
VALUES (p_AuthorID, 'called by FullName!');

RETURN v_Result;
END FullName;
/

Rerunning the query used before will generate an error while both objects are valid.

Chapter 9: Using Procedures, Functions, and Packages 427

SELECT FullName(ID) full_name
FROM authors
WHERE ID < 10
ORDER BY full_name;

It raises an ORA-14551 error, which tells us that the function cannot perform a DML
operation when included in a selection predicate.

SELECT FullName(ID) full_name
*

ERROR at line 1:
ORA-14551: cannot perform a DML operation inside a query
ORA-06512: at "EXAMPLE.FULLNAME", line 12

Default Parameters
When calling a function from a procedural statement, you can use the default
values for formal parameters, if they are present. When calling a function from
a SQL statement, however, all parameters must be specified. Furthermore, you
have to use positional notation and not named notation. The following call to
FullName is illegal:

SELECT FullName(p_AuthorID => 37) FROM dual;

When we attempt this, we get the following error:

SELECT FullName(p_AuthorID => 37) FROM dual
*

ERROR at line 1:
ORA-00907: missing right parenthesis

Purity Levels and RESTRICT_REFERENCES
If a function does not meet the restrictions for being called from a SQL statement, an
error (such as ORA-14551) is raised at run time when the function is actually called.
It is possible, however, for the PL/SQL compiler to determine if the restrictions are
met at compile time, and raise an error then if they are not. This is done through
purity levels. A purity level defines what kinds of data structures the function reads
or modifies. The available levels are listed in Table 9-2.

We can redefine the rules for calling functions in terms of the purity levels. For
example, a function called from a query must have at least the WNDS purity level,
since it cannot modify any database tables.

428 Oracle Database 10g PL/SQL Programming

In order for the compiler to check the purity level of a given function, you use
the RESTRICT_REFERENCES pragma. This pragma is defined with the syntax

PRAGMA RESTRICT_REFERENCES(subprogram_or_package_name,
[WNDS] [, WNPS] [, RNDS] [, RNPS] [TRUST] [DEFAULT]);

where subprogram_or_package_name is the name of a package, or a packaged
subprogram. The purity levels can be specified in any order. The pragma goes in the
package header, with the specification for the function. For example, we can add
pragma statements to the InventoryOps package, which we first saw in Chapter 7:

–– Available online as part of RestrictReferences.sql
CREATE OR REPLACE PACKAGE InventoryOps AS
–– Modifies the inventory data for the specified book.
PROCEDURE UpdateISBN(p_ISBN IN inventory.isbn%TYPE,

p_Status IN inventory.status%TYPE,
p_StatusDate IN inventory.status_date%TYPE,
p_Amount IN inventory.amount%TYPE);

PRAGMA RESTRICT_REFERENCES(UpdateISBN, RNPS, WNPS);

–– Deletes the inventory data for the specified book.
PROCEDURE DeleteISBN(p_ISBN IN inventory.isbn%TYPE);
PRAGMA RESTRICT_REFERENCES(DeleteISBN, RNPS, WNPS);

–– Exception raised by UpdateISBN or DeleteISBN when the specified

Chapter 9: Using Procedures, Functions, and Packages 429

Purity Level Meaning Description

WNDS Writes no
database state

The function does not modify any database
tables (using DML statements).

RNDS Reads no
database state

The function does not read any database tables
(using the SELECT statement).

WNPS Writes no
package state

The function does not modify any packaged
variables (no packaged variables are used on
the left side of an assignment or in a FETCH
statement).

RNPS Reads no
package state

The function does not examine any packaged
variables (no packaged variables appear on
the right side of an assignment or as part of a
procedural or SQL expression).

TABLE 9-2. Function Purity Levels

–– ISBN is not in the inventory table.
e_ISBNNotFound EXCEPTION;

TYPE t_ISBNTable IS TABLE OF inventory.isbn%TYPE
INDEX BY BINARY_INTEGER;

–– Returns a PL/SQL table containing the books with the specified
–– status.
PROCEDURE StatusList(p_Status IN inventory.status%TYPE,

p_Books OUT t_ISBNTable,
p_NumBooks OUT BINARY_INTEGER);

PRAGMA RESTRICT_REFERENCES(StatusList, RNPS, WNPS, WNDS);

END InventoryOps;
/

Rationale for RESTRICT_REFERENCES Since the PL/SQL engine will raise an
error if a given function (or procedure called from a function) does not meet the
requirements for being called from SQL, why use this pragma? It serves as a form
of documentation for the function, as well as ensuring that it will be callable from
SQL. Any modifications to the function that violate the pragma will be raised at
compile time. For example, if we modify InventoryOps.StatusList to insert
into temp_table, this will violate the pragma and we will get an error:

–– Available online as part of RestrictReferences.sql
CREATE OR REPLACE PACKAGE BODY InventoryOps AS
...
–– Returns a PL/SQL table containing the books with the specified
–– status.
PROCEDURE StatusList(p_Status IN inventory.status%TYPE,

p_Books OUT t_ISBNTable,
p_NumBooks OUT BINARY_INTEGER) IS

v_ISBN inventory.isbn%TYPE;
CURSOR c_Books IS
SELECT isbn
FROM inventory
WHERE status = p_Status;

BEGIN
INSERT INTO temp_table (char_col)
VALUES ('Hello from StatusList!');

/* p_NumBooks will be the table index. It will start at
* 0, and be incremented each time through the fetch loop.
* At the end of the loop, it will have the number of rows

430 Oracle Database 10g PL/SQL Programming

* fetched, and therefore the number of rows returned in
* p_Books. */
p_NumBooks := 0;
OPEN c_Books;
LOOP
FETCH c_Books INTO v_ISBN;
EXIT WHEN c_Books%NOTFOUND;

p_NumBooks := p_NumBooks + 1;
p_Books(p_NumBooks) := v_ISBN;

END LOOP;
CLOSE c_Books;

END StatusList;
END InventoryOps;
/

The pragma violation will raise a PLS-452 compilation error due to the insert DML
within the StatusList procedure.

LINE/COL ERROR
–––– ––––––––––––––––––––––––––––––––-
32/3 PLS-00452: Subprogram 'STATUSLIST' violates its associated pragma

TIP
Before Oracle8i, the PL/SQL engine could verify
the purity levels of stand-alone functions at run
time, but packaged functions only at compile time.
This was the original reason for the RESTRICT_
REFERENCES pragma.

Initialization Section The code in the initialization section of a package can
have a purity level as well. The first time any function in the package is called, the
initialization section is run. Consequently, a packaged function is only as pure as
the initialization section of the containing package. The purity level for a package is
guaranteed with RESTRICT_REFERENCES. This is done by referencing the package
name rather than a function name:

CREATE OR REPLACE PACKAGE InventoryOps AS
PRAGMA RESTRICT_REFERENCES (InventoryOps, WNDS);
...

END InventoryOps;
/

Chapter 9: Using Procedures, Functions, and Packages 431

DEFAULT Keyword If no RESTRICT_REFERENCES pragma is associated with a
given packaged function, it will not have any purity level asserted. However, you
can change the default purity level for a package. The DEFAULT keyword is used
instead of the subprogram name in the pragma:

PRAGMA RESTRICT_REFERENCES(DEFAULT,
WNDS [, WNPS] [, RNDS] [, RNPS]);

Any subsequent subprograms in the package must comply with the purity levels
specified. For example, consider the DefaultPragma package:

–– Available online as DefaultPragma.sql
CREATE OR REPLACE PACKAGE DefaultPragma AS
FUNCTION F1 RETURN NUMBER;
PRAGMA RESTRICT_REFERENCES(F1, RNDS, RNPS);

PRAGMA RESTRICT_REFERENCES(DEFAULT, WNDS, WNPS, RNDS, RNPS);
FUNCTION F2 RETURN NUMBER;

FUNCTION F3 RETURN NUMBER;
END DefaultPragma;
/

CREATE OR REPLACE PACKAGE BODY DefaultPragma AS
FUNCTION F1 RETURN NUMBER IS
BEGIN
INSERT INTO temp_table (num_col, char_col)
VALUES (1, 'F1!');

RETURN 1;
END F1;

FUNCTION F2 RETURN NUMBER IS
BEGIN
RETURN 2;

END F2;

–– This function violates the default pragma.
FUNCTION F3 RETURN NUMBER IS
BEGIN
INSERT INTO temp_table (num_col, char_col)
VALUES (1, 'F3!');

RETURN 3;
END F3;

END DefaultPragma;
/

432 Oracle Database 10g PL/SQL Programming

The default pragma (which asserts all four purity levels) will be applied to both F2
and F3. Since F3 INSERTs into temp_table, it violates the pragma. Compiling the
preceding package will return the following errors:

LINE/COL ERROR
–––– ––––––––––––––––––––––––––––––––-
15/3 PLS-00452: Subprogram 'F3' violates its associated pragma

TRUST Keyword Although RESTRICT_REFERENCES is no longer required (and in
fact cannot be used for external routines), code written prior to Oracle8i may use it.
The pragma can also be used for documentation, as we discussed in the previous
section. Thus, you may want to call a function that does not have the pragma from
one that is declared pure. To aid this, Oracle provides an additional keyword that
can be used in the pragma, in addition to or instead of the purity levels—TRUST.

If the TRUST keyword is present, the restrictions listed in the pragma are not
enforced. Rather, they are trusted to be true. This allows you to write new code that
does not use RESTRICT_REFERENCES, and call the new code from functions that are
declared pure. For example, consider the following package:

–– Available online as TrustPkg.sql
CREATE OR REPLACE PACKAGE TrustPkg AS
FUNCTION ToUpper (p_a VARCHAR2) RETURN VARCHAR2 IS
LANGUAGE JAVA
NAME 'Test.Uppercase(char[]) return char[]';
PRAGMA RESTRICT_REFERENCES(ToUpper, WNDS, TRUST);

PROCEDURE Demo(p_in IN VARCHAR2, p_out OUT VARCHAR2);
PRAGMA RESTRICT_REFERENCES(Demo, WNDS);

END TrustPkg;
/

CREATE OR REPLACE PACKAGE BODY TrustPkg AS
PROCEDURE Demo(p_in IN VARCHAR2, p_out OUT VARCHAR2) IS
BEGIN
p_out := ToUpper(p_in);

END Demo;
END TrustPkg;
/

TrustPkg.ToUpper is an external routine—the body of the function is actually
written in Java, and will return its input parameter in all uppercase. Since the body
is not in PL/SQL, the TRUST keyword is necessary for the pragma. Then, because
ToUpper is trusted to have the WNDS purity, we can call ToUpper from Demo.

Chapter 9: Using Procedures, Functions, and Packages 433

NOTE
Although TrustPkg can be compiled without
having the Java stored procedure present, it cannot
be run without first creating Test.Uppercase.

Overloaded Functions RESTRICT_REFERENCES can appear anywhere in the
package specification, after the function declaration. It can apply to only one
function definition, however. For overloaded functions, the pragma applies to the
nearest definition prior to the pragma. In the following example, each pragma
applies to the version of TestFunc just prior to it:

–– Available online as part of OverloadRestrictReferences.sql
CREATE OR REPLACE PACKAGE Overload AS
FUNCTION TestFunc(p_Parameter1 IN NUMBER)
RETURN VARCHAR2;

PRAGMA RESTRICT_REFERENCES(TestFunc, WNDS, RNDS, WNPS, RNPS);

FUNCTION TestFunc(p_ParameterA IN VARCHAR2,
p_ParameterB IN DATE)

RETURN VARCHAR2;
PRAGMA RESTRICT_REFERENCES(TestFunc, WNDS, RNDS, WNPS, RNPS);

END Overload;
/

CREATE OR REPLACE PACKAGE BODY Overload AS
FUNCTION TestFunc(p_Parameter1 IN NUMBER)
RETURN VARCHAR2 IS

BEGIN
RETURN 'Version 1';

END TestFunc;

FUNCTION TestFunc(p_ParameterA IN VARCHAR2,
p_ParameterB IN DATE)

RETURN VARCHAR2 IS
BEGIN
RETURN 'Version 2';

END TestFunc;
END Overload;
/

A query against Overload.TestFunc with a number signature demonstrates one
of the overloaded functions.

–– Available online as part of Overload.sql
SELECT Overload.TestFunc(1) FROM dual;

434 Oracle Database 10g PL/SQL Programming

The output shows that number signature overloaded function is successful.

OVERLOAD.TESTFUNC(1)
––––––––––––––––––––––––––––
Version 1

A query against Overload.TestFunc with a variable-length string and date
signature demonstrates the other overloaded function.

SELECT Overload.TestFunc('abc', SYSDATE) FROM dual;

The output shows that variable-length string and date signature overloaded function
is successful.

OVERLOAD.TESTFUNC('ABC',SYSDATE)
––––––––––––––––––––––––––––
Version 2

TIP
We generally prefer to code the RESTRICT_
REFERENCES pragma immediately after
each function so that it is clear to which
version it applies.

Multiple-Valued Functions
As we have seen in the previous section, a single-valued function returns a
scalar value. A multiple-valued function, or table function, on the other hand,
returns a collection of values. With the TABLE SQL operator, this collection can
itself be used as a relational table in a SQL query. For example, consider the
SomeBooks function:

–– Available online as part of TableFunctions.sql
CREATE TYPE BookType AS OBJECT
(isbn CHAR(10)
,title VARCHAR2(100));
/

CREATE TYPE BookTypes AS TABLE OF BookType;
/

CREATE OR REPLACE FUNCTION SomeBooks(p_Category IN books.category%TYPE)

Chapter 9: Using Procedures, Functions, and Packages 435

RETURN BookTypes AS

v_ResultSet BookTypes := BookTypes();

CURSOR c_SomeBooks IS
SELECT isbn, title
FROM books
WHERE category = p_Category;

BEGIN
FOR v_Rec IN c_SomeBooks LOOP

v_ResultSet.EXTEND;
v_ResultSet(v_ResultSet.LAST) := BookType(v_Rec.isbn, v_Rec.title);

END LOOP;

RETURN v_ResultSet;
END SomeBooks;
/

SomeBooks returns a table of BookType, which itself is an object type consisting
of two fields, isbn and title. (See Chapter 6 for more information on collections
and Chapters 14–16 for more information about object types.) We can call
SomeBooks from SQL, since it does not violate any of the restrictions we saw in
the previous sections:

–– Available online as part of TableFunctions.sql
SELECT SomeBooks('Oracle Basics') FROM dual;

The output shows that a table of BookType is returned.

SOMEBOOKS('ORACLEBASICS')(ISBN, TITLE)
––
BOOKTYPES(BOOKTYPE('72121203 ', 'Oracle DBA 101'), BOOKTYPE('72122048 ', 'Orac
le8i: A Beginner''s Guide'), BOOKTYPE('0072131454', 'Oracle Performance Tuning 1
01'), BOOKTYPE('007212606X', 'Oracle PL/SQL 101')))

NOTE
The preceding output indicates that the return value
of the function is itself a collection of records. This
is the SQL*Plus formatting for such a return type.

436 Oracle Database 10g PL/SQL Programming

We can now go one step further and use the SQL TABLE operator. This operator
takes a collection as input, and returns the same data in a form that can be directly
queried by a SELECT statement. For example,

–– Available online as part of TableFunctions.sql
SELECT *
FROM TABLE(SomeBooks('Oracle Basics'));

The output shows the record structure of the table of BookType.

ISBN TITLE
––––– ––––––––––––––––––––
72121203 Oracle DBA 101
72122048 Oracle8i: A Beginner's Guide
0072131454 Oracle Performance Tuning 101
007212606X Oracle PL/SQL 101

Although this example is somewhat contrived, it illustrates how the TABLE
operator works. The function that generates the result set can use any arbitrary
logic to create it, which may or may not include querying tables. This is especially
useful for functions that are computationally expensive, since it provides an easy
method of iterating through the results using straight SQL.

Deterministic Table Functions
If the function will always return the same output given the same input, we can
use the DETERMINISTIC keyword in the function definition. This allows Oracle to
internally cache the values of the function for use in repeated queries using TABLE,
which can improve performance. DETERMINISTIC is found after the return type,
before IS or AS, as the following example illustrates:

–– Available online as part of TableFunctions.sql
CREATE OR REPLACE FUNCTION SomeBooks(p_Category IN books.category%TYPE)
RETURN BookTypes DETERMINISTIC AS

v_ResultSet BookTypes := BookTypes();

CURSOR c_SomeBooks IS
SELECT isbn, title
FROM books
WHERE category = p_Category;

BEGIN

Chapter 9: Using Procedures, Functions, and Packages 437

438 Oracle Database 10g PL/SQL Programming

FOR v_Rec IN c_SomeBooks LOOP

v_ResultSet.EXTEND;
v_ResultSet(v_ResultSet.LAST) := BookType(v_Rec.isbn, v_Rec.title);

END LOOP;

RETURN v_ResultSet;
END SomeBooks;
/

NOTE
Oracle does not actually verify that the function
is truly deterministic. Thus, you should use it only
for functions that you know to be deterministic.

Pipelined Table Functions
In many cases, it will take time for a table function to compute the entire result set.
However, this must be done before any further processing of the TABLE operator.
If the rows in the result set can be determined individually, however, then you can
use a pipelined table function. A pipelined function is identified by the PIPELINED
keyword before IS or AS. (The DETERMINISTIC keyword may be present as well.)
Furthermore, a pipelined function uses the PIPE ROW statement to return an
individual row. PIPE ROW is defined as

PIPE ROW (row_type)

where row_type is a single row in the result set. RETURN is used to signal the end
of processing. For example, consider the following types and function:

–– Available online as part of OracleErrors.sql
CREATE OR REPLACE TYPE OracleError AS OBJECT (
ErrNumber INTEGER,
Message VARCHAR2(4000));

/

CREATE OR REPLACE TYPE OracleErrors AS TABLE OF OracleError;
/

Create the function with the DETERMINISTIC keyword because the function will
always return the same output.

CREATE OR REPLACE FUNCTION OracleErrorTable
RETURN OracleErrors DETERMINISTIC PIPELINED

AS
v_Low PLS_INTEGER := -65535;
v_High PLS_INTEGER := 100;

v_Message VARCHAR2(4000);
BEGIN
FOR i IN v_Low..v_High LOOP
–– Get the message for the given error number
v_Message := SQLERRM(i);

–– If it is legal, then output it.
IF v_Message != ' -' || TO_CHAR(i) || ': non-ORACLE exception '
AND v_Message != 'ORA' || TO_CHAR(i, '00000') || ': Message ' ||

TO_CHAR(-i) || ' not found; product=RDBMS; facility=ORA'
THEN
PIPE ROW(OracleError(i, v_Message));

END IF;
END LOOP;
RETURN;

END;
/

OracleErrorTable will return a collection of OracleError objects, each of
which will represent the code and text for a particular error message. Because of the
PIPE ROW, each row will be returned as soon as it is created. We can now create a
view using the TABLE operator, as follows:

–– Available online as part of OracleErrors.sql
CREATE OR REPLACE VIEW all_oracle_errors
AS SELECT * FROM TABLE(OracleErrorTable());

Query the view for the minimum and maximum numbers and the count of errors.

SELECT MIN(errnumber), MAX(errnumber), COUNT(*)
FROM all_oracle_errors;

MIN(ERRNUMBER) MAX(ERRNUMBER) COUNT(*)
––––––– ––––––– –––––

-43016 100 14427

Native Compilation
Similar to Java bytecode, p-code is first generated by the PL/SQL engine, which
interprets the PL/SQL program code and creates p-code. This is a very portable
design, in that the same PL/SQL code can be run in different databases, possibly on
different platforms. However, because it is interpreted, it is not as fast as compiled

Chapter 9: Using Procedures, Functions, and Packages 439

440 Oracle Database 10g PL/SQL Programming

object code. Object code is machine level instructions specific to an operating
system platform.

In Oracle9i, you can choose to have PL/SQL compiled to native code. This will
create a shared library, which is then run by the Oracle shadow process. In order
to use this feature, you must have a C compiler installed on your system, as the
PL/SQL compiler will generate C code that is then compiled into the native library.

For details on how to do this, see the Oracle documentation.

Pinning in the Shared Pool
The shared pool is the portion of the SGA that contains, among other things, the p-
code of compiled subprograms as they are run. The first time a stored subprogram
is called, the p-code is loaded from disk into the shared pool. Once the object is no
longer referenced, it is free to be aged out. Objects are aged out of the shared pool
using an LRU (least recently used) algorithm. See Oracle Concepts for more information
on the shared pool and how it works.

The DBMS_SHARED_POOL package allows you to pin objects in the shared
pool. When an object is pinned, it will never be aged out until you request it, no
matter how full the pool gets or how often the object is accessed. This can improve
performance, as it takes time to reload a package from disk. Pinning an object also
helps minimize fragmentation of the shared pool. DBMS_SHARED_POOL has four
procedures: DBMS_SHARED_POOL.KEEP, DBMS_SHARED_POOL.UNKEEP,
DBMS_SHARED_POOL.SIZES, and DBMS_SHARED_POOL.ABORTED_REQUEST_
THRESHOLD.

KEEP
The DBMS_SHARED_POOL.KEEP procedure is used to pin objects in the pool.
Packages, triggers, sequences, object types, Java objects (Oracle8i and higher),
and SQL statements can be pinned. KEEP is defined with the syntax

PROCEDURE KEEP(name VARCHAR2,
flag CHAR DEFAULT ‘P’);

The parameters are described in Table 9-3. Once an object has been kept, it
will not be removed until the database is shut down or the DBMS_SHARED_
POOL.UNKEEP procedure is used. Note that DBMS_SHARED_POOL.KEEP does
not load the package into the shared pool immediately; rather, it will be pinned
the first time it is subsequently loaded.

UNKEEP
UNKEEP is the only way to remove a kept object from the shared pool, without
restarting the database. Kept objects are never aged out automatically. UNKEEP
is defined with the syntax.

PROCEDURE UNKEEP(name VARCHAR2,
flag CHAR DEFAULT ‘P’);

The arguments are the same as for KEEP. If the specified object does not already
exist in the shared pool, an error is raised.

SIZES
SIZES will echo the contents of the shared pool to the screen. It is defined with
the syntax

PROCEDURE SIZES(minsize NUMBER);

Objects with a size greater than minsize will be returned. SIZES uses DBMS_
OUTPUT to return the data, so be sure to use “set serveroutput on” in SQL*Plus
or Server Manager before calling the procedure.

ABORTED_REQUEST_THRESHOLD
When the database determines that there is not enough memory in the shared
pool to satisfy a given request, it will begin aging objects out until there is enough

Chapter 9: Using Procedures, Functions, and Packages 441

Parameter Type Description

name VARCHAR2 Name of the object. This can be an object name or
the identifier associated with a SQL statement. The
SQL identifier is the concatenation of the address
and hash_value fields in the v$sqlarea view
(by default, selectable only by SYS) and is returned by
the SIZES procedure.

flag CHAR Determines the type of the object. The values for flag
have the following meanings:
P Package, function, or procedure
Q Sequence
R Trigger
T Object type (Oracle8 and higher)
JS Java source (Oracle8i and higher)
JC Java class (Oracle8i and higher)
JR Java resource (Oracle8i and higher)
JD Java shared data (Oracle8i and higher)
C SQL cursor

TABLE 9-3. DBMS_SHARED_POOL.KEEP Parameters

memory. If enough objects are aged out, this can have a performance impact on
other database sessions. The ABORTED_REQUEST_THRESHOLD can be used to
remedy this. It is defined with the syntax

PROCEDURE ABORTED_REQUEST_THRESHOLD(threshold_size NUMBER);

Once this procedure is called, Oracle will not start aging objects from the pool
unless at least threshold_size bytes is needed.

The PL/SQL Wrapper
Oracle applications often consist of multiple subprograms and packages. In many
cases, the source code for these applications is proprietary, and the authors do
not want the details to be visible. However, they still have to be installed at a
customer site. In order to accomplish this, Oracle provides the PL/SQL wrapper.
The wrapper is an operating system utility that takes a SQL source file as input,
containing CREATE OR REPLACE statements for subprograms or packages. The
output is another SQL source file with CREATE OR REPLACE statements, but with
the source code obfuscated so that it is not human-readable. It is, however, still
readable to the system, and the file can be loaded into the database with SQL*Plus
just like the original files.

TIP
The Oracle supplied packages (such as DBMS_
SHARED_POOL, which we examined in the
previous section) are all shipped in wrapped
form. The package headers are in clear text,
while the package bodies are wrapped. This
is a good model to adopt for your own code,
since the package header source provides
documentation for the packages.

Summary
We have continued our discussion of three types of named PL/SQL blocks in
this chapter—procedures, functions, and packages. This included the differences
between local and stored subprograms, and how dependencies among stored
subprograms work. We also discussed how to call stored subprograms from SQL
statements. We closed the chapter with a discussion of the DBMS_SHARED_POOL
package. In the next chapter, we will cover a fourth type of named PL/SQL block:
database triggers.

442 Oracle Database 10g PL/SQL Programming

CHAPTER
10

Database Triggers

Copyright © 2004 by The McGraw-Hill Companies, Inc. Click here for terms of use.

444 Oracle Database 10g PL/SQL Programming

T
he fourth type of named PL/SQL block is the trigger. Triggers share
many of the same characteristics as subprograms (which we have
examined in the previous two chapters), but they have significant
differences both in how they are created and how they are called.
In this chapter, we will examine how to create different types of

triggers and discuss some possible applications.

Types of Triggers
Triggers are similar to procedures or functions in that they are named PL/SQL blocks
with declarative, executable, and exception handling sections. Like packages and
object types (which we will discuss in Chapters 14–16), triggers must be stored as
stand-alone objects in the database and cannot be local to a block or package. As
we have seen in the past two chapters, a procedure is executed explicitly from
another block via a procedure call, which can also pass arguments. On the other
hand, a trigger is executed implicitly whenever the triggering event happens, and a
trigger doesn’t accept arguments. The act of executing a trigger is known as firing
the trigger. The triggering event can be a DML (INSERT, UPDATE, or DELETE)
operation on a database table or certain kinds of views; or a system event, such as
database startup or shutdown, and certain kinds of DDL operations. We will discuss
the triggering events in detail later in this chapter.

Triggers can be used for many things, including the following:

■ Maintaining complex integrity constraints not possible through declarative
constraints enabled at table creation

■ Auditing information in a table by recording the changes made and who
made them

■ Automatically signaling other programs that action needs to take place
when changes are made to a table

■ Publishing information about various events in a publish-subscribe
environment

There are three main kinds of triggers: DML, instead-of, and system triggers.
In the following sections, we will introduce each kind. We will offer more details
later in the section “Creating Triggers.”

Chapter 10: Database Triggers 445

NOTE
Oracle allows triggers to be written in either PL/SQL
or other languages that can be called as external
routines. See the section “Trigger Bodies” later
in this chapter for more information (as well as
Chapter 12 for more information on external
routines in general).

DML Triggers
A DML trigger is fired by a DML statement, and the type of statement determines
the type of DML trigger. DML triggers can be defined for INSERT, UPDATE, or
DELETE operations. They can be fired before or after the operation on a row. DML
triggers can act on all rows or only some rows. They act on a subset of rows when
they are defined as statement-level triggers. The difference is a statement-level
trigger uses a WHEN clause to evaluate where a specific type of change is occurring.
By putting the condition in a WHEN clause, it eliminates running the trigger unless
the condition is met.

As an example, suppose we want to track statistics about different categories,
including the number of books in the database and the average price in each
category. We are going to store these results in the category_stats table:

–– Available online as part of tables.sql
CREATE TABLE category_stats (
category VARCHAR2(20),
total_books NUMBER,
average_price NUMBER

);

In order to keep category_stats up-to-date, we can create a trigger on
books that will update category_stats every time books is modified. The
UpdateCategoryStats trigger, shown next, does this. After any DML operation
on books, the trigger will execute. The body of the trigger queries books and
updates category_stats with the current statistics.

–– Available online as UpdateCategoryStats.sql
CREATE OR REPLACE TRIGGER UpdateCategoryStats
/* Keeps the category_stats table up-to-date with changes made

to the books table. */

446 Oracle Database 10g PL/SQL Programming

AFTER INSERT OR DELETE OR UPDATE ON books
DECLARE
CURSOR c_Statistics IS
SELECT category,

COUNT(*) total_books,
AVG(price) average_price

FROM books
GROUP BY category;

BEGIN
/* First delete from category_stats. This will clear the

statistics, and is necessary to account for the deletion
of all books in a given category */

DELETE FROM category_stats;

/* Now loop through each category, and insert the appropriate row into
category_stats. */

FOR v_StatsRecord in c_Statistics LOOP
INSERT INTO category_stats (category, total_books, average_price)
VALUES (v_StatsRecord.category, v_StatsRecord.total_books,

v_StatsRecord.average_price);
END LOOP;

END UpdateCategoryStats;
/

A statement trigger can be fired for more than one type of triggering statement. For
example, UpdateCategoryStats is fired on INSERT, UPDATE, and DELETE
statements. The triggering event specifies one or more of the DML operations that
should fire the trigger.

Instead-of Triggers
Instead-of triggers can be defined on views (either relational or object) only. Unlike
a DML trigger, which executes in addition to the DML operation, an instead-of
trigger will execute instead of the DML statement that fired it. Instead-of triggers
must be row level. For example, consider the books_authors view:

–– Available online as part of insteadOf1.sql
CREATE OR REPLACE VIEW books_authors AS
SELECT b.isbn, b.title, a.first_name, a.last_name
FROM books b, authors a
WHERE b.author1 = a.id

OR b.author2 = a.id
OR b.author3 = a.id;

It is illegal to INSERT into this view directly, because it is a join of two tables and
the INSERT requires that both underlying tables be modified, as the following
SQL*Plus session shows:

Chapter 10: Database Triggers 447

–– Available online as part of insteadOf1.sql
INSERT INTO books_authors (isbn, title, first_name, last_name)
VALUES ('72230665', 'Oracle Database 10g PL/SQL Programming','Joe', 'Blow');

The output illustrates the insert failure to the view:

INSERT INTO books_authors (isbn, title, first_name, last_name)
*

ERROR at line 1:
ORA-01779: cannot modify a column which maps to a non key-preserved table

However, we can create an instead-of trigger that does the correct thing for an
INSERT, namely to update the underlying tables:

–– Available online as part of insteadOf2.sql
CREATE OR REPLACE TRIGGER InsertBooksAuthors
INSTEAD OF INSERT ON books_authors

DECLARE

v_Book books%ROWTYPE;
v_AuthorID authors.id%TYPE;

BEGIN
–– Figure out the ID of the new author
BEGIN
SELECT id
INTO v_AuthorID
FROM authors
WHERE first_name = :new.first_name
AND last_name = :new.last_name;

EXCEPTION
WHEN NO_DATA_FOUND THEN
–– No author found, create a new one
INSERT INTO authors (id, first_name, last_name)
VALUES (author_sequence.NEXTVAL, :new.first_name, :new.last_name)
RETURNING ID INTO v_AuthorID;

END;

SELECT *
INTO v_Book
FROM books
WHERE isbn = :new.isbn;

–– Figure out whether the book already has 1 or 2 authors, and update
–– accordingly
IF v_Book.author2 IS NULL THEN
UPDATE books
SET author2 = v_AuthorID
WHERE isbn = :new.isbn;

448 Oracle Database 10g PL/SQL Programming

ELSE
UPDATE books
SET author3 = v_AuthorID
WHERE isbn = :new.isbn;

END IF;
END InsertBooksAuthors;
/

With the InsertBooksAuthors trigger in place, the INSERT statement succeeds
and does the correct thing.

NOTE
As currently written, InsertBooksAuthors
does not have any error checking. We will rectify
this later in this chapter in the section “Creating
Instead-of Triggers.”

System Triggers
A system trigger fires when a system event, such as database startup or shutdown,
occurs, rather than on a DML operation on a table. A system trigger can also be
fired on DDL operations, such as table creation. For example, suppose we want to
record whenever a data dictionary object is created. We can do this by creating a
table, as follows:

–– Available online as part of LogCreations.sql
CREATE TABLE ddl_creations (
user_id VARCHAR2(30),
object_type VARCHAR2(20),
object_name VARCHAR2(30),
object_owner VARCHAR2(30),
creation_date DATE);

Once this table is available, we can create a system trigger to record the relevant
information. The LogCreations trigger does just that—after every CREATE
operation on the current schema, it records information about the object just
created in ddl_creations.

–– Available online as part of LogCreations.sql
CREATE OR REPLACE TRIGGER LogCreations
AFTER CREATE ON SCHEMA

BEGIN
INSERT INTO ddl_creations (user_id, object_type, object_name,

object_owner, creation_date)

VALUES (USER, ORA_DICT_OBJ_TYPE, ORA_DICT_OBJ_NAME,
ORA_DICT_OBJ_OWNER, SYSDATE);

END LogCreations;
/

Creating Triggers
Regardless of the type, all triggers are created using the same syntax. The general
syntax for creating a trigger is

CREATE [OR REPLACE] TRIGGER trigger_name
{BEFORE | AFTER | INSTEAD OF} triggering_event

[referencing_clause]
[WHEN trigger_condition]
[FOR EACH ROW]
trigger_body;

where trigger_name is the name of the trigger, triggering_event specifies the event
that fires the trigger (possibly including a specific table or view), and trigger_body
is the main code for the trigger. The referencing_clause is used to refer to the data in
the row currently being modified by a different name. The trigger_condition in the
WHEN clause, if present, is evaluated first, and the body of the trigger is executed
only when this condition evaluates to TRUE. We will see more examples of different
kinds of triggers in the following sections.

NOTE
The trigger body cannot exceed 32K. If you have a
trigger that exceeds this size, you can reduce it by
moving some of the code to separately compiled
packages or stored procedures, and calling these
from the trigger body. It is generally a good idea
to keep trigger bodies small, because of the
frequency with which they execute.

The trigger body is a PL/SQL block, which must contain at least an executable
section. Like any other block, the declarative and exception handling sections are
optional. If there is a declarative section, however, the trigger_body must begin with
the DECLARE keyword. This is different from a subprogram, where the DECLARE
keyword is not present.

Creating DML Triggers
A DML trigger is fired on an INSERT, UPDATE, or DELETE operation on a database
table. It can be fired either before or after the statement executes and can be fired

Chapter 10: Database Triggers 449

once per affected row, or once per statement. The combination of these
factors determines the type of the trigger. There are a total of 28 possible types:
(3 statements + 4 combination statements) × 2 timing × 2 levels. For example,
all of the following are valid DML trigger types:

■ Before UPDATE statement level

■ After INSERT row level

■ Before DELETE row level

Table 10-1 summarizes the various options. A trigger can also be fired for more
than one kind of DML statement on a given table—INSERT and UPDATE, for example.
Any code in the trigger will be executed along with the triggering statement itself,
as part of the same transaction.

A table can have any number of triggers defined on it, including more than one
of a given DML type. For example, you can define two after DELETE statement-level
triggers. All triggers of the same type will fire sequentially. (For more information on
the order of trigger firing, see the following section.)

The triggering event for a DML trigger specifies the name of the table (and column)
on which the trigger will fire. A trigger can also fire on a column of a nested table.
See Chapter 6 for more information on nested tables.

450 Oracle Database 10g PL/SQL Programming

Category Values Comments

Statement INSERT, DELETE,
or UPDATE

Defines which kind of DML statement
causes the trigger to fire.

Timing BEFORE or AFTER Defines whether the trigger fires before
or after the statement is executed.

Level Row or statement If the trigger is a row-level trigger, it
fires once for each row affected by the
triggering statement. If the trigger is a
statement-level trigger, it fires once, either
before or after the statement. A row-level
trigger is identified by the FOR EACH
ROW clause in the trigger definition.

TABLE 10-1. Types of DML Triggers

Chapter 10: Database Triggers 451

Order of DML Trigger Firing
Triggers are fired as the DML statement is executed. The algorithm for executing a
DML statement is given here:

1. Execute the before statement-level triggers, if present.

2. For each row affected by the statement:

■ Execute the before row-level triggers, if present.

■ Execute the statement itself.

■ Execute the after row-level triggers, if present.

3. Execute the after statement-level triggers, if present.

To illustrate this, suppose we create all four kinds of UPDATE triggers on the
books table—before and after, statement and row levels. We will also create three
before-row triggers and two after-statement triggers, as follows:

–– Available online as part of firingOrder.sql
CREATE SEQUENCE trig_seq
START WITH 1
INCREMENT BY 1;

CREATE OR REPLACE PACKAGE TrigPackage AS
–– Global counter for use in the triggers
v_Counter NUMBER;

END TrigPackage;
/

CREATE OR REPLACE TRIGGER BooksBStatement
BEFORE UPDATE ON books

BEGIN
–– Reset the counter first.
TrigPackage.v_Counter := 0;

INSERT INTO temp_table (num_col, char_col)
VALUES (trig_seq.NEXTVAL,
'Before Statement: counter = ' || TrigPackage.v_Counter);

–– And now increment it for the next trigger.
TrigPackage.v_Counter := TrigPackage.v_Counter + 1;

END BooksBStatement;
/

452 Oracle Database 10g PL/SQL Programming

CREATE OR REPLACE TRIGGER BooksAStatement1
AFTER UPDATE ON books

BEGIN
INSERT INTO temp_table (num_col, char_col)
VALUES (trig_seq.NEXTVAL,
'After Statement 1: counter = ' || TrigPackage.v_Counter);

–– Increment for the next trigger.
TrigPackage.v_Counter := TrigPackage.v_Counter + 1;

END BooksAStatement1;
/

CREATE OR REPLACE TRIGGER BooksAStatement2
AFTER UPDATE ON books

BEGIN
INSERT INTO temp_table (num_col, char_col)
VALUES (trig_seq.NEXTVAL,
'After Statement 2: counter = ' || TrigPackage.v_Counter);

–– Increment for the next trigger.
TrigPackage.v_Counter := TrigPackage.v_Counter + 1;

END BooksAStatement2;
/

CREATE OR REPLACE TRIGGER BooksBRow1
BEFORE UPDATE ON books
FOR EACH ROW

BEGIN
INSERT INTO temp_table (num_col, char_col)
VALUES (trig_seq.NEXTVAL,
'Before Row 1: counter = ' || TrigPackage.v_Counter);

–– Increment for the next trigger.
TrigPackage.v_Counter := TrigPackage.v_Counter + 1;

END BooksBRow1;
/

CREATE OR REPLACE TRIGGER BooksBRow2
BEFORE UPDATE ON books
FOR EACH ROW

BEGIN
INSERT INTO temp_table (num_col, char_col)
VALUES (trig_seq.NEXTVAL,
'Before Row 2: counter = ' || TrigPackage.v_Counter);

–– Increment for the next trigger.

Chapter 10: Database Triggers 453

TrigPackage.v_Counter := TrigPackage.v_Counter + 1;
END BooksBRow2;
/

CREATE OR REPLACE TRIGGER BooksBRow3
BEFORE UPDATE ON books
FOR EACH ROW

BEGIN
INSERT INTO temp_table (num_col, char_col)
VALUES (trig_seq.NEXTVAL,
'Before Row 3: counter = ' || TrigPackage.v_Counter);

–– Increment for the next trigger.
TrigPackage.v_Counter := TrigPackage.v_Counter + 1;

END BooksBRow3;
/

CREATE OR REPLACE TRIGGER BooksARow
AFTER UPDATE ON books
FOR EACH ROW

BEGIN
INSERT INTO temp_table (num_col, char_col)
VALUES (trig_seq.NEXTVAL,
'After Row: counter = ' || TrigPackage.v_Counter);

–– Increment for the next trigger.
TrigPackage.v_Counter := TrigPackage.v_Counter + 1;

END BooksARow;
/

Suppose we now issue the following UPDATE statement:

–– Available online as part of firingOrder.sql
UPDATE books
SET category = category
WHERE category = 'Oracle Ebusiness';

This statement affects three rows. The before and after statement-level triggers are
each executed once, and the before and after row-level triggers are each executed
three times. We can use the following query to select from temp_table:

–– Available online as part of firingOrder.sql
SELECT *
FROM temp_table
ORDER BY num_col;

We will see the following output:

NUM_COL CHAR_COL
––––– –––––––––––––––––––––-

1 Before Statement: counter = 0
2 Before Row 3: counter = 1
3 Before Row 2: counter = 2
4 Before Row 1: counter = 3
5 After Row: counter = 4
6 Before Row 3: counter = 5
7 Before Row 2: counter = 6
8 Before Row 1: counter = 7
9 After Row: counter = 8

10 Before Row 3: counter = 9
11 Before Row 2: counter = 10
12 Before Row 1: counter = 11
13 After Row: counter = 12
14 After Statement 2: counter = 13
15 After Statement 1: counter = 14

As each trigger is fired, it will see the changes made by the earlier triggers, as
well as any database changes made by the statement so far. This can be seen by
the counter value printed by each trigger. (See Chapter 9 for more information
about using packaged variables.)

The order in which triggers of the same type are fired is not defined. As in
the preceding example, each trigger will see changes made by earlier triggers.
If the order is important, combine all of the operations into one trigger.

NOTE
When you create a snapshot log for a table, Oracle
will automatically create an after-row trigger for
the table, that will update the log after every DML
statement. You should be aware of this if you need
to create an additional after-row trigger on that
table. There are also additional restrictions on
triggers and snapshots (known as materialized
views in Oracle9i). For more information, check
the Oracle Database Advanced Replication
documentation.

Correlation Identifiers in Row-Level Triggers
A row-level trigger fires once per row processed by the triggering statement. Inside
the trigger, you can access the data in the row that is currently being processed.

454 Oracle Database 10g PL/SQL Programming

This is accomplished through two correlation identifiers—:old and :new. A
correlation identifier is a special kind of PL/SQL bind variable. The colon in front
of each indicates that they are bind variables, in the sense of host variables used
in embedded PL/SQL, and indicates that they are not regular PL/SQL variables. The
PL/SQL compiler will treat them as records of type

triggering_table%ROWTYPE

where triggering_table is the table for which the trigger is defined. Thus, a reference
such as

:new.field

will be valid only if field is a field in the triggering table. The meanings of :old
and :new are described in Table 10-2. Although syntactically they are treated as
records, in reality they are not (this is discussed later in the section “Pseudorecords”);
:old and :new are also known as pseudorecords for this reason.

NOTE
The :old identifier is undefined for INSERT
statements, and :new is undefined for DELETE
statements. The PL/SQL compiler will not generate
an error if you use :old in an INSERT or :new in a
DELETE, but the field values of both will be NULL.

Oracle defines one additional correlation identifier—:parent. If the trigger
is defined on a nested table, :old and :new refer to the rows in the nested table,
while :parent refers to the current row of the parent table. For more information,
see the Oracle documentation.

Chapter 10: Database Triggers 455

Triggering Statement :old :new

INSERT Undefined—all fields
are NULL

Values that will be inserted
when the statement is
complete

UPDATE Original values for the
row before the update

New values that will be
updated when the statement
is complete

DELETE Original values before
the row is deleted

Undefined—all fields are
NULL

TABLE 10-2. The :old and :new Correlation Identifier

Using :old and :new The GenerateAuthorID trigger, shown next, uses
:new. It is a before-INSERT trigger, and its purpose is to fill in the ID field of
authors with a value generated from the author_sequence sequence.

–– Available online as part of GenerateAuthorID.sql
CREATE OR REPLACE TRIGGER GenerateAuthorID
BEFORE INSERT OR UPDATE ON authors
FOR EACH ROW

BEGIN
/* Fill in the ID field of authors with the next value from

author_sequence. Since ID is a column in authors, :new.ID
is a valid reference. */

SELECT author_sequence.NEXTVAL
INTO :new.ID
FROM dual;

END GenerateAuthorID;
/

GenerateAuthorID actually modifies the value of :new.ID. This is one of
the useful features of :new—when the statement is actually executed, whatever
values are in :new will be used. With GenerateAuthorID, we can issue an
INSERT statement such as

–– Available online as part of GenerateAuthorID.sql
INSERT INTO authors (first_name, last_name)
VALUES ('Lolita', 'Lazarus');

without generating an error. Even though we haven’t specified a value for the
primary-key column ID (which is required), the trigger will supply it. In fact, if we
do specify a value for ID, it will be ignored, since the trigger changes it. If we issue

–– Available online as part of GenerateAuthorID.sql
INSERT INTO authors (ID, first_name, last_name)
VALUES (-7, 'Zelda', 'Zoom');

the ID column will be populated from author_sequence.NEXTVAL, rather
than containing –7.

As a result of this, you cannot change :new in an after row-level trigger, because
the statement has already been processed. In general, :new is modified only in a
before row-level trigger, and :old is never modified, only read from.

The :new and :old records are valid only inside row-level triggers. If you try
to reference either inside a statement-level trigger, you will get a compile error.
Since a statement-level trigger executes once—even if many rows are processed by
the statement— :old and :new have no meaning. Which row would they refer to?

456 Oracle Database 10g PL/SQL Programming

Chapter 10: Database Triggers 457

Pseudorecords Although :new and :old are syntactically treated as records
of triggering_table%ROWTYPE, in reality they are not. As a result, operations that
would normally be valid on records are not valid for :new and :old. For example,
they cannot be assigned as entire records. Only the individual fields within them
may be assigned. The following example illustrates this:

–– Available online as pseudoRecords.sql
CREATE OR REPLACE TRIGGER TempDelete
BEFORE DELETE ON temp_table
FOR EACH ROW

DECLARE
v_TempRec temp_table%ROWTYPE;

BEGIN
/* This is not a legal assignment, since :old is not truly

a record. */
v_TempRec := :old;
/* We can accomplish the same thing, however, by assigning
the fields individually. */

v_TempRec.char_col := :old.char_col;
v_TempRec.num_col := :old.num_col;

END TempDelete;
/

In addition, :old and :new cannot be passed to procedures or functions that take
arguments of triggering_table%ROWTYPE. The pseudoRecords.sql script will
fail due to this behavior with the following error message:

LINE/COL ERROR
–––– ––––––––––––––––––––––––––––––––-
6/16 PLS-00049: bad bind variable 'OLD'

REFERENCING Clause If you choose, you can use the REFERENCING clause
to specify a different name for :old and :new. This clause is found after the
triggering event, before the WHEN clause, with syntax

REFERENCING [OLD AS old_name] [NEW AS new_name]

In the trigger body, you can use :old_name and :new_name instead of :old
and :new. Note that the correlation identifiers do not have colons within
the REFERENCING clause. What follows is an alternate version of the
GenerateAuthorID trigger, which uses REFERENCING to refer to :new
as :new_author:

–– Available online as part of GenerateStudentID.sql
CREATE OR REPLACE TRIGGER GenerateAuthorID
BEFORE INSERT OR UPDATE ON authors

458 Oracle Database 10g PL/SQL Programming

REFERENCING new AS new_author
FOR EACH ROW

BEGIN
/* Fill in the ID field of authors with the next value from

author_sequence. Since ID is a column in authors, :new.ID
is a valid reference. */

SELECT author_sequence.NEXTVAL
INTO :new_author.ID
FROM dual;

END GenerateAuthorID;
/

The WHEN Clause
The WHEN clause is valid only for row-level triggers. If present, the trigger body
will be executed only for those rows that meet the condition specified by the WHEN
clause. The WHEN clause looks like

WHEN trigger_condition

where trigger_condition is a Boolean expression. It will be evaluated for each row.
The :new and :old records can be referenced inside trigger_condition as well, but
as with REFERENCING, the colon is not used there. The colon is valid only in the
trigger body. For example, the body of the CheckPrice trigger is executed only if
the price of a given book is more than $49.99:

–– Available online as part of CheckPrice1.sql
CREATE OR REPLACE TRIGGER CheckPrice
BEFORE INSERT OR UPDATE OF price ON books
FOR EACH ROW
WHEN (new.price > 49.99) BEGIN
/* Trigger body goes here. */
NULL;

END;
/

CheckPrice could also be written as follows:

CREATE OR REPLACE TRIGGER CheckPrice
BEFORE INSERT OR UPDATE OF price ON books
FOR EACH ROW

BEGIN
IF :new.price > 49.99 THEN
/* Trigger body goes here. */
NULL;

END IF;
END;
/

Trigger Predicates: INSERTING, UPDATING, and DELETING
The UpdateCategoryStats trigger earlier in this chapter is an INSERT, UPDATE,
and DELETE trigger. Inside a trigger of this type (which will fire for different kinds of
DML statements) there are three Boolean functions that you can use to determine
what the operation is. These predicates are INSERTING, UPDATING, and DELETING.
Their behavior is described in the following table:

Predicate Behavior

INSERTING TRUE if the triggering statement is an INSERT; FALSE otherwise

UPDATING TRUE if the triggering statement is an UPDATE; FALSE
otherwise

DELETING TRUE if the triggering statement is a DELETE; FALSE otherwise

NOTE
There are additional functions that can be called
from within a trigger body, similar to trigger
predicates. See the section “Event Attribute
Functions” later in this chapter for more details.

The LogInventoryChanges trigger uses these predicates to record all
changes made to the inventory table. In addition to the change, it records the
user who makes the change. The records are kept in the inventory_audit
table, which looks like this:

– Available online as part of logInventoryChanges1.sql
CREATE TABLE inventory_audit (
change_type CHAR(1) NOT NULL,
changed_by VARCHAR2(8) NOT NULL,
timestamp DATE NOT NULL,
old_isbn CHAR(10),
new_isbn CHAR(10),
old_status VARCHAR2(25),
new_status VARCHAR2(25),
old_status_date DATE,
new_status_date DATE,
old_amount NUMBER,
new_amount NUMBER

);

LogInventoryChanges is created with

Chapter 10: Database Triggers 459

–– Available online as part of logInventoryChanges1.sql
CREATE OR REPLACE TRIGGER LogInventoryChanges
BEFORE INSERT OR DELETE OR UPDATE ON inventory
FOR EACH ROW

DECLARE
v_ChangeType CHAR(1);

BEGIN
/* Use 'I' for an INSERT, 'D' for DELETE, and 'U' for UPDATE. */
IF INSERTING THEN
v_ChangeType := 'I';

ELSIF UPDATING THEN
v_ChangeType := 'U';

ELSE
v_ChangeType := 'D';

END IF;

/* Record all the changes made to inventory in
inventory_audit. Use SYSDATE to generate the timestamp, and
USER to return the userid of the current user. */

INSERT INTO inventory_audit
(change_type, changed_by, timestamp,
old_isbn, old_status, old_status_date, old_amount,
new_isbn, new_status, new_status_date, new_amount)

VALUES
(v_ChangeType, USER, SYSDATE,
:old.isbn, :old.status, :old.status_date, :old.amount,
:new.isbn, :new.status, :new.status_date, :new.amount);

END LogInventoryChanges;
/

The following update statement will update two rows and illustrate the behavior of
LogInventoryChanges:

–– Available online as part of logInventoryChanges2.sql
UPDATE inventory
SET amount = 2000
WHERE isbn IN ('72223049', '72223855');

We can query the Inventory_Audit table to see the trigger working.

SELECT change_type, old_amount, new_amount FROM inventory_audit;

The output from the query is shown here:

C OLD_AMOUNT NEW_AMOUNT
- ––––– –––––

460 Oracle Database 10g PL/SQL Programming

U 1,000 2,000
U 1,000 2,000

Triggers are commonly used for auditing, as in LogInventoryChanges.
While auditing at the level of LogInventoryChanges is available as part
of the database, triggers allow for more customized and flexible recording.
LogInventoryChanges could be modified, for example, to record changes
made by only certain people. It could also check to see if users have permission
to make changes and raise an error (with RAISE_APPLICATION_ERROR) if
they don’t.

Creating Instead-of Triggers
Unlike DML triggers, which fire in addition to the INSERT, UPDATE, or DELETE
operation (either before or after them), instead-of triggers (as their name implies) fire
instead of and replace a DML operation. Also, instead-of triggers can be defined
only on views, while DML triggers are defined on tables. Instead-of triggers are used
in two cases:

■ To allow a view that would otherwise not be modifiable to be modified

■ To modify the columns of a nested table column in a view

We will discuss the first case in this section. For more information on nested
tables, see Chapter 6.

Modifiable vs. Nonmodifiable Views
A modifiable view is one against which you can issue a DML statement. In general,
a view is modifiable if it does not contain any of the following:

■ Set operators (UNION, UNION ALL, MINUS)

■ Aggregate functions (SUM, AVG, etc.)

■ GROUP BY, CONNECT BY, or START WITH clauses

■ The DISTINCT operator

■ Joins

There are, however, some views that contain joins that are modifiable. In general,
a join view is modifiable if the DML operation on it modifies only one base table
at a time, and if the DML statement meets the conditions in Table 10-3. (For more
information on modifiable vs. nonmodifiable join views, see Oracle Database

Chapter 10: Database Triggers 461

Concepts documentation.) If a view is nonmodifiable, you can write an instead-of
trigger on it that does the correct thing, thus allowing it to be modified. An instead-
of trigger can also be written on a modifiable view, if additional processing is required.

Table 10-3 refers to key-preserved tables. A table is key-preserved if, after a join
with another table, the keys in the original table are also keys in the resultant join. For
more details on key-preserved tables, see the Oracle Database Application Developer’s
Guide – Fundamentals.

Instead-of Example
Consider the books_authors view that we saw earlier in this chapter:

–– Available online as part of insteadOf1.sql
CREATE OR REPLACE VIEW books_authors AS
SELECT b.isbn, b.title, a.first_name, a.last_name
FROM books b, authors a
WHERE b.author1 = a.id

OR b.author2 = a.id
OR b.author3 = a.id;

As we saw earlier, it is illegal to INSERT into this view. It is also illegal to UPDATE
or DELETE from the view. This is true partially because it is possible to define
different behavior for each of the DML operations on the view. Suppose, however,
that they have the following meanings:

Operation Meaning

INSERT Update the row containing the book to include the supplied
author. This will result in an update of either author2 or
author3. If the author does not exist, add it to the authors
table first using author_sequence to generate the author ID.

462 Oracle Database 10g PL/SQL Programming

DML Operation Permitted if

INSERT The statement does not refer, implicitly or explicitly, to the
columns of a non-key-preserved table.

UPDATE The updated columns map to columns of a key-preserved table.

DELETE There is exactly one key-preserved table in the join.

TABLE 10-3. Modifiable Join Views

Chapter 10: Database Triggers 463

Operation Meaning

UPDATE Same as the INSERT case, except that if the author is changing
author1, author2, or author3 could be modified.

DELETE Update the row containing the book to remove the supplied
author. This could result in an update of any of the authors
columns.

All For all operations, allow only changes to the first_name and
last_name fields of books_authors. Changes to isbn or
title should be done on the base table.

The InsteadBooksAuthors trigger, shown next, enforces the preceding rules
and allows DML operations to be performed correctly against books_authors.
This is a more complete version of the InsertBooksAuthors trigger that we
saw in the introductory sections of this chapter, and it also includes error handling.
Note that some of the error handling is taken care of by the constraints on the books
table itself, rather than within the trigger.

–– Available online as part of InsteadBooksAuthors.sql
CREATE OR REPLACE TRIGGER InsteadBooksAuthors
INSTEAD OF INSERT OR UPDATE OR DELETE ON books_authors
FOR EACH ROW

DECLARE

v_Book books%ROWTYPE;
v_NewAuthorID authors.ID%TYPE;
v_OldAuthorID authors.ID%TYPE;

–– Local function which returns the ID of the new authors.
–– If the first and last names do not exist in authors
–– then a new ID is generated from author_sequence.
FUNCTION getID(p_FirstName IN authors.first_name%TYPE,

p_LastName IN authors.last_name%TYPE)
RETURN authors.ID%TYPE IS
v_AuthorID authors.ID%TYPE;

BEGIN
–– Make sure that first and last name are both specified
IF p_FirstName IS NULL or p_LastName IS NULL THEN
RAISE_APPLICATION_ERROR(-20004,
'Both first and last name must be specified');

END IF;

–– Use a nested block to trap the NO_DATA_FOUND exception

464 Oracle Database 10g PL/SQL Programming

BEGIN
SELECT id
INTO v_AuthorID
FROM authors
WHERE first_name = p_FirstName
AND last_name = p_LastName;

EXCEPTION
WHEN NO_DATA_FOUND THEN
– No author found, create a new one
INSERT INTO authors (id, first_name, last_name)
VALUES (author_sequence.NEXTVAL, p_FirstName, p_LastName)
RETURNING ID INTO v_AuthorID;

END;

–– Now v_AuthorID contains the correct ID and we can return it.
RETURN v_AuthorID;

END getID;

–– Local function which returns the row identified by either
–– ISBN or title.
FUNCTION getBook(p_ISBN IN books.ISBN%TYPE,

p_Title IN books.title%TYPE)
RETURN books%ROWTYPE IS

v_Book books%ROWTYPE;
BEGIN
–– Ensure that at least one of isbn or title is supplied
IF p_ISBN IS NULL AND p_Title IS NULL THEN
RAISE_APPLICATION_ERROR(-20001,
'Either ISBN or title must be specified');

ELSIF p_ISBN IS NOT NULL AND p_Title IS NOT NULL THEN
–– Both specified, so use both title and ISBN in query
SELECT *
INTO v_Book
FROM books
WHERE isbn = p_ISBN
AND title = p_Title;

ELSE
–– Only one specified, so use either title or ISBN in query
SELECT *
INTO v_Book
FROM books
WHERE isbn = p_ISBN

OR title = p_Title;
END IF;

Chapter 10: Database Triggers 465

RETURN v_Book;
EXCEPTION
WHEN NO_DATA_FOUND THEN
RAISE_APPLICATION_ERROR(-20002,
'Could not find book with supplied ISBN/title');

WHEN TOO_MANY_ROWS THEN
RAISE_APPLICATION_ERROR(-20003,
'ISBN/title must match a single book');

END getBook;

BEGIN /* Start of main trigger body */
IF INSERTING THEN
–– Get the book and author info
v_Book := getBook(:new.ISBN, :new.title);
v_NewAuthorID := getID(:new.first_name, :new.last_name);

–– Ensure there are no duplicates
IF v_Book.author1 = v_NewAuthorID OR

v_Book.author2 = v_NewAuthorID THEN
RAISE_APPLICATION_ERROR(-20006,
'Cannot have duplicate authors');

END IF;

–– Figure out whether the book already has 1 or 2 authors, and
–– update accordingly
IF v_Book.author2 IS NULL THEN
UPDATE books
SET author2 = v_NewAuthorID
WHERE ISBN = v_Book.ISBN;

ELSIF v_Book.author3 IS NULL THEN
UPDATE books
SET author3 = v_NewAuthorID
WHERE ISBN = v_Book.ISBN;

ELSE
–– Too many authors, cannot insert
RAISE_APPLICATION_ERROR(-20005,
v_Book.title || ' already has 3 authors');

END IF;

ELSIF UPDATING THEN
–– First check to ensure that the ISBN or title fields are not
–– modified.
IF (:new.ISBN != :old.ISBN OR

:new.title != :old.title) THEN
RAISE_APPLICATION_ERROR(-20007,

466 Oracle Database 10g PL/SQL Programming

'Cannot modify ISBN or title in books_authors');
END IF;

–– Get the book and author info
v_Book := getBook(:new.ISBN, :new.title);
v_NewAuthorID := getID(:new.first_name, :new.last_name);
v_OldAuthorID := getID(:old.first_name, :old.last_name);

–– Figure out which of author1, author2, or author3 to modify
–– and update accordingly
IF v_Book.author1 = v_OldAuthorID THEN
UPDATE books
SET author1 = v_NewAuthorID
WHERE ISBN = v_Book.ISBN;

ELSIF v_Book.author2 = v_OldAuthorID THEN
UPDATE books
SET author2 = v_NewAuthorID
WHERE ISBN = v_Book.ISBN;

ELSE
UPDATE BOOKS
SET author3 = v_NewAuthorID
WHERE ISBN = v_Book.ISBN;

END IF;
ELSE
–– Get the book and author info
v_Book := getBook(:old.ISBN, :old.title);
v_OldAuthorID := getID(:old.first_name, :old.last_name);

–– Figure out which of author1, author2, or author3 to modify
–– and update accordingly. Note that if this results in
–– all authors being removed from the table the NOT NULL
–– constraint on author1 will raise an error.
IF v_Book.author1 = v_OldAuthorID THEN
–– Set author1 = author2, author2 = author3
v_Book.Author1 := v_Book.Author2;
v_Book.Author2 := v_Book.Author3;

ELSIF v_Book.author2 = v_OldAuthorID THEN
–– Set author2 = author 3
v_Book.Author2 := v_Book.Author3;

ELSE
–– Clear author3
v_Book.Author3 := NULL;

END IF;
UPDATE BOOKS
SET author1 = v_Book.Author1,

author2 = v_Book.Author2,
author3 = v_Book.Author3

WHERE ISBN = v_Book.ISBN;

END IF;
END InsteadBooksAuthors;
/

NOTE
The FOR EACH ROW clause is optional for an
instead-of trigger. All instead-of triggers are row
level, whether or not the clause is present.

InsteadBooksAuthors uses trigger predicates to determine the DML operation
being performed, and to take the appropriate action. Figure 10-1 contains the
original contents for books, authors, and books_authors for ISBN 72223855,
Oracle 9i New Features. Suppose we then issue the following INSERT statement:

–– Available online as part of InsteadBooksAuthors.sql
INSERT INTO books_authors(ISBN, title, first_name, last_name)
VALUES ('72223855', 'Oracle 9i New Features', 'Esther', 'Elegant');

The trigger causes books to be updated to reflect the new author, and a new row
to be inserted into authors. (The author ID for Esther Elegant may be different,
depending on the value of author_sequence.) Figure 10-2 illustrates the situation
that occurs after the INSERT. Now, suppose we issue the following UPDATE statement:

–– Available online as part of InsteadBooksAuthors.sql
UPDATE books_authors
SET first_name = 'Rose', last_name = 'Riznit'
WHERE ISBN = '72223855'
AND last_name = 'Elegant';

Chapter 10: Database Triggers 467

FIGURE 10-1. Original Contents of books, authors, and books_authors for
ISBN 72223855

Figure 10-3 illustrates the situation after the UPDATE. The books table has been
updated again, and one more row is inserted into authors. Finally, suppose we
issue the following DELETE statement:

–– Available online as part of InsteadBooksAuthors.sql
DELETE FROM books_authors
WHERE ISBN = '72223855'
AND last_name = 'Riznit';

The books table is now back to where it was originally, along with books_authors.
But we still have the two additional rows in authors, as shown in Figure 10-4.

468 Oracle Database 10g PL/SQL Programming

FIGURE 10-2. Contents after INSERT

FIGURE 10-3. Contents after UPDATE

Chapter 10: Database Triggers 469

Creating System Triggers
As we have seen in the previous sections, both DML and instead-of triggers fire
on (or instead of) DML events, namely INSERT, UPDATE, or DELETE statements.
System triggers, on the other hand, fire on two different kinds of events: DDL
or database. DDL events include CREATE, ALTER, or DROP statements, while
database events include startup/shutdown of the server, logon/logoff of a user,
and a server error. The syntax for creating a system trigger is as follows:

CREATE [OR REPLACE] TRIGGER [schema.]trigger_name
{BEFORE | AFTER}
{ddl_event_list | database_event_list}
ON {DATABASE | [schema.]SCHEMA}
[when_clause]
trigger_body;

where ddl_event_list is one or more DDL events (separated by the OR keyword),
and database_event_list is one or more database events (separated by the OR
keyword).

Table 10-4 describes the DDL and database events, along with their allowed
timings (BEFORE or AFTER). You cannot create an instead-of system trigger.

NOTE
You must have the ADMINISTER DATABASE
TRIGGER system privilege in order to create a
system trigger. See the section “Trigger Privileges”
later in this chapter for more information.

FIGURE 10-4. Contents after DELETE

470 Oracle Database 10g PL/SQL Programming

Event Timings Allowed Description

STARTUP AFTER Fired when an instance is started up.

SHUTDOWN BEFORE Fired when an instance is shut down. This event
may not fire if the database is shut down
abnormally (as in a shutdown abort).

SERVERERROR AFTER Fired whenever an error occurs.

LOGON AFTER Fired after a user has successfully connected to
the database.

LOGOFF BEFORE Fired at the start of a user logoff.

CREATE BEFORE, AFTER Fired before or after a schema object is created.

DROP BEFORE, AFTER Fired before or after a schema object is dropped.

ALTER BEFORE, AFTER Fired before or after a schema object is altered.

TRUNCATE BEFORE, AFTER Fired before or after a TRUNCATE statement is
issued.

DDL BEFORE, AFTER Fired before or after most DDL statements are
issued. This event will not fire for ALTER
DATABASE, CREATE CONTROLFILE, or CREATE
DATABASE statement, nor will it fire for DDL
issued through a procedural interface, such as AQ.

ANALYZE BEFORE, AFTER Fired before or after an ANALYZE STATEMENT is
issued.

ASSOCIATE
STATISTICS

BEFORE, AFTER Fired before or after an ASSOCIATE STATISTICS
statement is issued.

DISASSOCIATE
STATISTICS

BEFORE, AFTER Fired before or after a DISASSOCIATE STATISTICS
statement is issued.

AUDIT BEFORE, AFTER Fired before or after an AUDIT statement is issued.

NOAUDIT BEFORE, AFTER Fired before or after a NOAUDIT statement is
issued.

COMMENT BEFORE, AFTER Fired before or after a COMMENT statement is
issued

GRANT BEFORE, AFTER Fired before or after a GRANT statement is issued.

REVOKE BEFORE, AFTER Fired before or after a REVOKE statement is issued.

TABLE 10-4. System DDL and Database Events

Database vs. Schema Triggers
A system trigger can be defined at the database level or a schema level. A database-
level trigger will fire whenever the triggering event occurs, while a schema-level
trigger will fire only when the triggering event occurs for the specified schema. The
DATABASE and SCHEMA keywords determine the level for a given system trigger.
If the schema is not specified with the SCHEMA keyword, it defaults to the schema
that owns the trigger. For example, suppose we create the following trigger while
connected as UserA:

NOTE
These examples require that UserA, UserB,
and Example exist in the database. Please
run createUser.sql if they are not present
before running DatabaseSchema1.sql. See
DatabaseSchema1.sql for more details. Also,
you need to run the DatabaseSchema1.sql
script as the system user or a user with the DBA
role privileges. It creates the example user and
grants necessary system privileges.

–– Available online as part of DatabaseSchema1.sql
CREATE OR REPLACE TRIGGER LogUserAConnects
AFTER LOGON ON SCHEMA

BEGIN
INSERT INTO example.temp_table
VALUES (1, 'LogUserAConnects fired!');

END LogUserAConnects;
/

Chapter 10: Database Triggers 471

Event Timings Allowed Description

RENAME BEFORE, AFTER Fired before or after a RENAME statement is issued.

SUSPEND* AFTER Fired after a SQL statement is suspended due to
an out of space condition. In this case, the trigger
can correct the situation, so the statement can
be reissued.

*This event is available with Oracle9i and higher.

TABLE 10-4. System DDL and Database Events (continued)

472 Oracle Database 10g PL/SQL Programming

LogUserAConnects will record in temp_table whenever UserA connects
to the database. We can do likewise for UserB by creating the following while
connected as UserB:

–– Available online as part of DatabaseSchema.sql
CREATE OR REPLACE TRIGGER LogUserBConnects
AFTER LOGON ON SCHEMA

BEGIN
INSERT INTO example.temp_table
VALUES (2, 'LogUserBConnects fired!');

END LogUserBConnects;
/

Finally, we can create the following trigger while connected as example.
LogAllConnects will record all connects to the database, because it is a
database-level trigger.

–– Available online as part of DatabaseSchema1.sql
CREATE OR REPLACE TRIGGER LogAllConnects
AFTER LOGON ON DATABASE

BEGIN
INSERT INTO example.temp_table
VALUES (3, 'LogAllConnects fired!');

END LogAllConnects;
/

We can now connect to the database as UserA, UserB, and Example and see
the effects of the different triggers. The after-logon trigger to the schema fires first,
followed by the after-logon trigger to the database.

–– Available online as part of DatabaseSchema1.sql
connect UserA/UserA
connect UserB/UserB
connect example/example

A SQL*Plus formatted query against the temporary table enables us to see the
sequence of fired triggers.

COL num_col FORMAT 9
COL char_col FORMAT A50
SELECT * FROM temp_table;

The UserA schema trigger is the first record in the table, followed by the after–logon
to the database trigger. The third and fourth entries mirror the behavior for UserB.

The Example user does not have a schema-level trigger. The connection to that
schema fires only the after–logon to the database trigger.

NUM_COL CHAR_COL
––––– ––––––––––––––––––––––––––––––

1 LogUserAConnects fired!
3 LogAllConnects fired!
2 LogUserBConnects fired!
3 LogAllConnects fired!
3 LogAllConnects fired!

LogAllConnects has fired three times (once for all three connections), while
LogUserAConnects and LogUserBConnects have fired only once, as expected.

NOTE
STARTUP and SHUTDOWN triggers are relevant
only at the database level. It is not illegal to create
them at the schema level, but they will not fire.

Event Attribute Functions
Within a system trigger, several event attribute functions are available. Similar to the
trigger predicates (INSERTING, UPDATING, and DELETING), they allow a trigger
body to get information about the triggering event. Although it is legal to call these
functions from other PL/SQL blocks (not necessarily in a system trigger body), they
will not always return a valid result. The event attribute functions are described in
Table 10-5.

The LogCreations trigger, which we saw at the beginning of this chapter,
uses some of the attribute functions. Unlike trigger predicates, event attribute functions
are stand-alone PL/SQL functions. They have public synonyms defined for them,
and they begin with ORA_.

Before running this section, we should connect to the example schema.

–– Available online as part of LogCreations.sql
CREATE OR REPLACE TRIGGER LogCreations
AFTER CREATE ON SCHEMA

BEGIN
INSERT INTO ddl_creations (user_id, object_type, object_name,

object_owner, creation_date)
VALUES (USER, ORA_DICT_OBJ_TYPE, ORA_DICT_OBJ_NAME,

ORA_DICT_OBJ_OWNER, SYSDATE);
END LogCreations;
/

Chapter 10: Database Triggers 473

474 Oracle Database 10g PL/SQL Programming

TIP
Prior to Oracle8i, the event attribute functions, in
addition to having different names, were owned by
SYS and did not have synonyms defined for them.
Consequently, they had to be prefixed by SYS in
order to be resolved. Although this syntax is still
legal, you should use the current syntax.

Use the describe command in SQL*Plus to view the ORA_DICT_OBJ_NAME_LIST
argument list, type, and mode.

FUNCTION ora_dict_obj_name_list RETURNS BINARY_INTEGER
Argument Name Type In/Out Default?
––––––––––––––– –––––––––––- ––– ––––
OBJECT_LIST DBMS_STANDARD OUT

/

Some of the attribute functions (such as ORA_DICT_OBJ_NAME_LIST) have
OUT parameters of type ORA_NAME_LIST_T. This type is defined as follows:

TYPE ORA_NAME_LIST_T IS TABLE OF VARCHAR2(64);

as part of package STANDARD. The OUT parameters are described in Table 10-5.

Attribute Function Return Type
System Events
Applicable For Description

ORA_CLIENT_IP_
ADDRESS

VARCHAR2 LOGON Returns the IP address of the
client for a database logon. If
the protocol is not TCP/IP,
then this function is not valid.

ORA_DATABASE_
NAME

VARCHAR2(50) All events Returns the name of the
database.

ORA_DES_
ENCRYPTED_
PASSWORD

VARCHAR2 ALTER For ALTER USER events,
returns the DES-encrypted
password of the user.

TABLE 10-5. Event Attribute Functions

Chapter 10: Database Triggers 475

Attribute Function Return Type
System Events
Applicable For Description

ORA_DICT_OBJ_
NAME

VARCHAR2(30) ALTER,
ANALYZE,
ASSOCIATE
STATISTICS,
COMMENT,
CREATE, DDL,
DISASSOCIATE
STATISTICS,
DROP, GRANT,
RENAME,
REVOKE,
TRUNCATE

Returns the name of the
dictionary object on which
a DDL operation occurred.

ORA_DICT_OBJ_
NAME_LIST(name_
list OUT ORA_
NAME_LIST_T)

BINARY_
INTEGER

ASSOCIATE
STATISTICS,
DISASSOCIATE
STATISTICS

The name_list will contain
a list of object names being
modified by the event. The
return value is the size of
the array.

ORA_DICT_OBJ_
OWNER

VARCHAR2(30) ALTER,
ANALYZE,
ASSOCIATE
STATISTICS,
COMMENT,
CREATE, DDL,
DISASSOCIATE
STATISTICS,
DROP, GRANT,
RENAME,
REVOKE,
TRUNCATE

Returns the owner of the
dictionary object on which
a DDL operation occurred.

ORA_DICT_OBJ_
OWNER_
LIST(name_list
OUT ORA_NAME_
LIST_T)

BINARY_
INTEGER

ASSOCIATE
STATISTICS,
DISASSOCIATE
STATISTICS

The name_list will contain a
list of the owners of objects
being modified by the event.
The return value is the size
of the array.

TABLE 10-5. Event Attribute Functions (continued)

476 Oracle Database 10g PL/SQL Programming

Attribute Function Return Type
System Events
Applicable For Description

ORA_DICT_OBJ_
TYPE

VARCHAR2(20) ALTER,
ANALYZE,
ASSOCIATE
STATISTICS,
COMMENT,
CREATE, DDL,
DISASSOCIATE
STATISTICS,
DROP, GRANT,
RENAME,
REVOKE,
TRUNCATE

Returns the type of the
dictionary object on which
a DDL operation occurred.

ORA_
GRANTEE(user_list
OUT ORA_NAME_
LIST_T)

BINARY_
INTEGER

GRANT The user_list will contain
the grantees for a GRANT
statement. The return value
is the size of the array.

ORA_INSTANCE_
NUM

NUMBER All events Returns the instance number.

ORA_IS_ALTER_
COLUMN(column_
name IN
VARCHAR2)

BOOLEAN ALTER For ALTER TABLE events,
returns true if column_name
is being altered.

ORA_IS_
CREATING_
NESTED_TABLE

BOOLEAN CREATE Returns true if the current
event is creating a nested
table.

ORA_IS_DROP_
COLUMN(column_
name IN
VARCHAR2)

BOOLEAN DROP Returns true if column_name
is being dropped.

ORA_IS_
SERVERERROR(error
num IN BINARY
INTEGER)

BOOLEAN SERVERERROR,
SUSPEND

Returns true if error_num is on
the error stack.

ORA_LOGIN_USER VARCHAR2(30) All events Returns the login user name.

TABLE 10-5. Event Attribute Functions (continued)

Chapter 10: Database Triggers 477

Attribute Function Return Type
System Events
Applicable For Description

ORA_PARTITION_
POS*

BINARY_
INTEGER

CREATE For a CREATE TABLE
statement, returns the position
within the text where a
PARTITION clause could
be inserted.

ORA_PRIVILEGE_
LIST(privilege_list
OUT ORA_NAME_
LIST_T)

BINARY_
INTEGER

GRANT,
REVOKE

The privilege_list will contain
the privileges being granted or
revoked. The return value is
the size of the array.

ORA_
REVOKEE(user_list
OUT ORA_NAME_
LIST_T)

BINARY_
INTEGER

REVOKE The user_list will contain
the revokees for a REVOKE
statement. The return value
is the size of the array.

ORA_SERVER_
ERROR(position IN
BINARY_INTEGER)

NUMBER SERVERERROR Returns the error number at
the given position in the error
stack. The top of the stack is
position 1.

ORA_SERVER_
ERROR_DEPTH*

BINARY_
INTEGER

SERVERERROR Returns the total number of
errors on the error stack.

ORA_SERVER_
ERROR_
MSG(position IN
BINARY_INTEGER)*

VARCHAR2 SERVERERROR Returns the error message at
the given position in the error
stack. The top of the stack is
position 1.

ORA_SERVER_
ERROR_NUM_
PARAMS(position IN
BINARY_INTEGER)*

BINARY_
INTEGER

SERVERERROR Returns the number of
parameters for the error
message at the given position.
A parameter is inserted into an
error message using a format
string like “%s” or “%d” in the
error message text. The top of
the stack is position 1.

ORA_SERVER_
ERROR_
PARAM(position IN
BINARY_INTEGER),
param IN BINARY_
INTEGER)*

VARCHAR2 SERVERERROR Returns the value substituted
for the given parameter (1 is
the first parameter) at the given
position in the error stack. The
top of the stack is position 1.

TABLE 10-5. Event Attribute Functions (continued)

System Triggers and Transactions
Depending on the triggering event, the transactional behavior of a system trigger
varies. A system trigger will either fire as a separate transaction that is committed
upon successful completion of the trigger, or it will fire as part of the current user
transaction. STARTUP, SHUTDOWN, SERVERERROR, and LOGON triggers all fire
as separate transactions, while LOGOFF and DDL triggers fire as part of the current
transaction.

It is important to note, however, that the work done by the trigger will generally
be committed regardless. In the case of a DDL trigger, the current transaction

478 Oracle Database 10g PL/SQL Programming

Attribute Function Return Type
System Events
Applicable For Description

ORA_SQL_TEXT(sql_
text OUT ORA_
NAME_LIST_T*

BINARY_
INTEGER

All events Returns the text of the
triggering statement. If the
statement is long, it is broken
up into multiple elements, with
the return value specifying the
size of the array.

ORA_SYSEVENT VARCHAR2 All events Name of the system event
firing the trigger.

ORA_WITH_
GRANT_OPTION

BOOLEAN GRANT Returns true if privileges are
being granted with the grant
option.

SPACE_ERROR_
INFO(error_number
OUT NUMBER,
error_type OUT
VARCHAR2, object_
owner OUT
VARCHAR2, table_
space_name OUT
VARCHAR2, object_
name OUT
VARCHAR2, sub_
object_name OUT
VARCHAR2)*

BOOLEAN SERVERERROR,
SUSPEND

Returns true if the error is
related to an out-of-space
condition, and the out
parameters are filled in
with information about the
object causing the error.

*
This function is available with Oracle9iR1 and higher.

TABLE 10-5. Event Attribute Functions (continued)

(namely, the CREATE, ALTER, or DROP statement) is automatically committed,
which commits the work in the trigger. The work in a LOGOFF trigger will also be
committed as part of the final transaction in the session.

NOTE
Because system triggers are generally committed
anyway, declaring them as autonomous will not
have any effect.

System Triggers and the WHEN Clause
Just like DML triggers, system triggers can use the WHEN clause to specify a condition
on the trigger firing. However, there are restrictions on the types of conditions that
can be specified for each type of system trigger, namely

■ STARTUP and SHUTDOWN triggers cannot have any conditions.

■ SERVERERROR triggers can use the ERRNO test to check for a specific
error only.

■ LOGON and LOGOFF triggers can check the user ID or user name with
the USERID or USERNAME tests.

■ DDL triggers can check the type and name of the object being modified,
and can check the user ID or user name.

Other Trigger Issues
In this section, we will discuss some remaining issues about triggers. These include
the namespace for trigger names, various restrictions on using triggers, and different
kinds of trigger bodies. The section closes with a discussion of the privileges related
to triggers.

Trigger Names
The namespace for trigger names is different from that of other subprograms. A
namespace is the set of legal identifiers available for use as the names of an object.
Procedures, packages, and tables all share the same namespace. This means that,
within one database schema, all objects in the same namespace must have unique
names. For example, it is illegal to give the same name to a procedure and a package.

Triggers, however, exist in a separate namespace. This means that a trigger can
have the same name as a table or procedure. Within one schema, however, a given
name can be used for only one trigger. For example, we can create a trigger called
inventory on the inventory table, but it is illegal to create a procedure also

Chapter 10: Database Triggers 479

called inventory. The following needs to be tested within the UserA account
because of the dependency on the inventory table created in it. Alternatively,
you may run the tables.sql script into another schema to test it.

–– Available online as samename.sql
CREATE OR REPLACE TRIGGER inventory
BEFORE INSERT ON inventory

BEGIN
INSERT INTO temp_table (char_col)
VALUES ('Trigger fired!');

END inventory;
/

If we attempt to create a procedure called inventory after creating the trigger
with the same name, it will fail because it attempts to occupy the same namespace.

–– Available online as samename.sql
CREATE OR REPLACE PROCEDURE inventory AS
BEGIN
INSERT INTO temp_table (char_col)
VALUES ('Procedure called!');

END inventory;
/

The attempt to create the procedure will raise the following error:

CREATE OR REPLACE PROCEDURE inventory AS
*
ERROR at line 1:
ORA-00955: name is already used by an existing object

TIP
Although it is possible to use the same name for
a trigger and a table, we don’t recommend it. It
is better to give each trigger a unique name that
identifies its function as well as the table on which
it is defined, or to prefix triggers with a common
sequence of characters (such as TRG_).

Restrictions on Triggers
The body of a trigger is a PL/SQL block or CALL statement (see the next section for
details on using CALL). Any statement that is legal in a PL/SQL block is legal in a
trigger body, subject to the following restrictions:

480 Oracle Database 10g PL/SQL Programming

Chapter 10: Database Triggers 481

■ A trigger may not issue any transaction control statements—COMMIT,
ROLLBACK, SAVEPOINT, or SET TRANSACTION. The PL/SQL compiler
will allow a trigger to be created that contains one of these statements, but
you will receive an error when the trigger is fired. This is because it is fired as
part of the execution of the triggering statement and is in the same transaction
as the triggering statement. When the triggering statement is committed or
rolled back, the work in the trigger is committed or rolled back as well. (You
can create a trigger that executes as an autonomous transaction, in which
case the work in the trigger can be committed or rolled back independent
of the state of the triggering statement. See Chapter 4 for more information
about autonomous transactions.)

■ Likewise, any procedures or functions that are called by the trigger body
cannot issue any transaction control statements (unless they are also
declared as autonomous).

■ The trigger body cannot declare any LONG or LONG RAW variables. Also,
:new and :old cannot refer to a LONG or LONG RAW column in the
table for which the trigger is defined.

■ Code in a trigger body may reference and use LOB (Large OBject) columns,
but it may not modify the values of the columns. This is also true for object
columns.

There are also restrictions on which tables a trigger body may access. Depending
on the type of trigger and the constraints on the tables, tables may be mutating. This
situation is discussed in detail in the section “Mutating Tables” later in this chapter.

Trigger Bodies
Prior to Oracle8i, trigger bodies had to be PL/SQL blocks. In Oracle8i and higher,
however, a trigger body can consist of a CALL statement instead. The procedure
that is called can be a PL/SQL stored subprogram, or it can be a wrapper for a C or
Java routine. This allows you to create triggers where the functional code is written
in Java. For example, suppose we want to record connects and disconnects to the
database, in the following table found in the UserA schema:

–– Available online as part of tables.sql
CREATE TABLE connect_audit (
user_name VARCHAR2(30),
operation VARCHAR2(30),
timestamp DATE);

We can use the following package to record connects and disconnects:

–– Available online as LogPkg1.sql
CREATE OR REPLACE PACKAGE LogPkg AS
PROCEDURE LogConnect(p_UserID IN VARCHAR2);
PROCEDURE LogDisconnect(p_UserID IN VARCHAR2);

END LogPkg;
/

CREATE OR REPLACE PACKAGE BODY LogPkg AS
PROCEDURE LogConnect(p_UserID IN VARCHAR2) IS
BEGIN
INSERT INTO connect_audit (user_name, operation, timestamp)
VALUES (p_USerID, 'CONNECT', SYSDATE);

END LogConnect;

PROCEDURE LogDisconnect(p_UserID IN VARCHAR2) IS
BEGIN
INSERT INTO connect_audit (user_name, operation, timestamp)
VALUES (p_USerID, 'DISCONNECT', SYSDATE);

END LogDisconnect;
END LogPkg;
/

Both LogPkg.LogConnect and LogPkg.LogDisconnect take a username as
an argument and insert a row into connect_audit. Finally, we can call them
from LOGON and LOGOFF triggers, as follows:

–– Available online as LogConnects.sql
CREATE OR REPLACE TRIGGER LogConnects
AFTER LOGON ON DATABASE
CALL LogPkg.LogConnect(SYS.LOGIN_USER)

/

CREATE OR REPLACE TRIGGER LogDisconnects
BEFORE LOGOFF ON DATABASE
CALL LogPkg.LogDisconnect(SYS.LOGIN_USER)

/

NOTE
Since LogConnects and LogDisconnects
are system triggers on the database (as opposed
to a schema), you must have the ADMINISTER
DATABASE TRIGGER system privilege to
create them.

482 Oracle Database 10g PL/SQL Programming

Chapter 10: Database Triggers 483

The trigger body for both LogConnects and LogDisconnects is simply a
CALL statement, which indicates the procedure to be executed. The current user is
passed as the only argument. In the preceding example, the target of the CALL is a
standard PL/SQL packaged procedure. However, it could be a wrapper for a C or
Java external routine. For example, suppose we load the following Java class into
the database and test it.

Before we attempt to load the Java program into the database, we need to
ensure that we have our environment set up correctly. We need to ensure that
our CLASSPATH environment variable is set up. This is done a bit differently in
Windows and in Unix. Both syntaxes are noted here. If the classes12.zip
Java archive is in the CLASSPATH, then we may not need to set it.

UNIX

echo $CLASSPATH

Windows

C:> echo %CLASSPATH%

If the CLASSPATH environment variable does not contain classes12.zip and
a reference to our present working directory, we must add them to the classpath.
Java archives may have several extension types, but the most common are *.jar
and *.zip. These files are treated like directories. When you place them in the
CLASSPATH environment variable, you need to treat them as directories. The
present working directory will be required when you execute a loadjava command
to the database. If a CLASSPATH variable exists, you should prepend it to the
classes12.zip file.

UNIX

export set CLASSPATH=$ORACLE_HOME/jdbc/lib/classes12.zip:.

Windows

C:> set CLASSPATH=%ORACLE_HOME%/jdbc/lib/classes12.zip;.

Copy the Logger.java file that follows from the web site or type it in your
working directory and compile the file. The syntax is the same whether on Unix
or Windows. This will create a Thick Java client program that must be executed
from the server where the Oracle database resides. This limitation is due to the
library dependencies external to the Oracle JDBC implementation.

javac Logger.java

This will generate a Java byte file, named Logger.class. We will load that into
the database with the loadjava utility and the following syntax. This will load the
Java byte code into the database for the Example schema.

484 Oracle Database 10g PL/SQL Programming

loadjava -r -f -o -user example/example Logger.class

// Available online as Logger.java
import java.sql.*;
import oracle.jdbc.driver.*;

public class Logger {
public static void LogConnect(String userID)
throws SQLException {
// Get default JDBC connection
Connection conn = new OracleDriver().defaultConnection();

String insertString = “INSERT INTO connect_audit " +
“(user_name, operation, timestamp) " +
“VALUES (?, 'CONNECT', SYSDATE)";

// Prepare and execute a statement that does the insert
PreparedStatement insertStatement =
conn.prepareStatement(insertString);

insertStatement.setString(1, userID);
insertStatement.execute();

}

public static void LogDisconnect(String userID)
throws SQLException {
// Get default JDBC connection
Connection conn = new OracleDriver().defaultConnection();

String insertString =
"INSERT INTO connect_audit (user_name, operation, timestamp)" +
" VALUES (?, 'DISCONNECT', SYSDATE)";

// Prepare and execute a statement that does the insert
PreparedStatement insertStatement =
conn.prepareStatement(insertString);

insertStatement.setString(1, userID);
insertStatement.execute();

}
}

We create the PL/SQL LogPkg package as a wrapper for the Java class we have
created.

–– Available online as LogPkg2.sql
CREATE OR REPLACE PACKAGE LogPkg AS
PROCEDURE LogConnect(p_UserID IN VARCHAR2);

PROCEDURE LogDisconnect(p_UserID IN VARCHAR2);
END LogPkg;
/

CREATE OR REPLACE PACKAGE BODY LogPkg AS
PROCEDURE LogConnect(p_UserID IN VARCHAR2) IS
LANGUAGE JAVA
NAME 'Logger.LogConnect(java.lang.String)';

PROCEDURE LogDisconnect(p_UserID IN VARCHAR2) IS
LANGUAGE JAVA
NAME 'Logger.LogDisconnect(java.lang.String)';

END LogPkg;
/

Before testing the wrappers, we will need to create a copy of the connect_audit
table in the Example schema. If we fail to do so, we will get an uncaught Java error
and an ORA-00942 error when we attempt to test the PL/SQL wrappers.

–– Available online as part of createConnectAudit.sql
CREATE TABLE connect_audit (
user_name VARCHAR2(30),
operation VARCHAR2(30),
timestamp DATE);

We can build an anonymous block PL/SQL program to test connection and
disconnection. They would be defined as follows:

–– Available online as testLogPkg.sql
DECLARE
v_string VARCHAR2(80) := 'USERA';

BEGIN
logpkg.logconnect(v_string);

END;
/

DECLARE
v_string VARCHAR2(80) := 'USERA';

BEGIN
logpkg.logdisconnect(v_string);

END;
/

We can see the results of our test by querying the connect_audit table. Likewise, we
can use the same triggers to achieve the desired effect. See Chapter 12 for more
information about external routines.

Chapter 10: Database Triggers 485

NOTE
Trigger predicates such as INSERTING, UPDATING,
and DELETING, and the :old and :new correlation
identifiers (and :parent), can be used only if the
trigger body is a complete PL/SQL block and not a
CALL statement.

Trigger Privileges
There are five system privileges that apply to triggers, which are described in
Table 10-6. In addition to these, the owner of a trigger must have the necessary
object privileges on the objects referenced by the trigger. Since a trigger is a
compiled object, these privileges must be granted directly and not through a role
(triggers are defined with definers rights only).

Triggers and the Data Dictionary
Similar to stored subprograms, certain data dictionary views contain information
about triggers and their status. These views are updated whenever a trigger is
created or dropped.

486 Oracle Database 10g PL/SQL Programming

System Privilege Description

CREATE TRIGGER Allows the grantee to create a trigger in his or her
own schema.

CREATE ANY TRIGGER Allows the grantee to create triggers in any schema
except SYS. It is not recommended to create triggers
on data dictionary tables.

ALTER ANY TRIGGER Allows the grantee to enable, disable, or compile
database triggers in any schema except SYS. Note
that if the grantee does not have CREATE ANY
TRIGGER, he or she cannot change trigger code.

DROP ANY TRIGGER Allows the grantee to drop database triggers in any
schema except SYS.

ADMINISTER DATABASE
TRIGGER

Allows the grantee to create or alter a system trigger
on the database (as opposed to the current schema).
The grantee must also have either CREATE TRIGGER
or CREATE ANY TRIGGER.

TABLE 10-6. System Privileges Related to Triggers

Chapter 10: Database Triggers 487

Data Dictionary Views
When a trigger is created, its source code is stored in the data dictionary view
user_triggers. This view includes the trigger body, WHEN clause, triggering
table, and the trigger type. For example, the following formatted query returns
information about UpdateMajorStats after running GenerateAuthorID.sql
script in the UserA schema:

COL table_name FORMAT A10
COL triggering_event FORMAT A20
SELECT trigger_type, table_name, triggering_event
FROM user_triggers
WHERE trigger_name = 'GENERATEAUTHORID';

We will see the trigger type, the table name, and the triggering event in the output
from the query.

TRIGGER_TYPE TABLE_NAME TRIGGERING_EVENT
–––––––- ––––– ––––––––
BEFORE EACH ROW AUTHORS INSERT OR UPDATE

The user_triggers view contains information about the triggers owned by
the current user. There are also two additional views: all_triggers contains
information about the triggers that are accessible to the current user (but might be
owned by a different user), and dba_triggers contains information about all
triggers in the database.

Dropping and Disabling Triggers
Like procedures and packages, triggers can be dropped. The command to do this
has the syntax

DROP TRIGGER triggername;

where triggername is the name of the trigger to be dropped. This permanently
removes the trigger from the data dictionary. As in subprograms, the OR REPLACE
clause can be specified in the trigger CREATE statement. In this case, the trigger is
dropped first, if it already exists.

Unlike procedures and packages, however, a trigger can be disabled without
dropping it. When a trigger is disabled, it still exists in the data dictionary but is
never fired. To disable a trigger, use the ALTER TRIGGER statement:

ALTER TRIGGER triggername {DISABLE | ENABLE};

where triggername is the name of the trigger. All triggers are enabled by default
when they are created. ALTER TRIGGER can disable and then reenable any trigger.
For example, the following code disables and then reenables UpdateMajorStats:

ALTER TRIGGER GenerateAuthorID DISABLE;

ALTER TRIGGER GenerateAuthorID ENABLE;

All triggers for a particular table can be enabled or disabled using the ALTER
TABLE command as well, by adding the ENABLE ALL TRIGGERS or the DISABLE
ALL TRIGGERS clause. For example:

ALTER TABLE authors ENABLE ALL TRIGGERS;

ALTER TABLE authors DISABLE ALL TRIGGERS;

The status column of user_triggers contains either ‘ENABLED’ or
‘DISABLED,’ indicating the current status of a trigger. Disabling a trigger does
not remove it from the data dictionary, as dropping it would do. We can use
the following query to check the status:

SELECT trigger_name, status
FROM user_triggers
WHERE trigger_name = ‘trigger_name’;

Trigger P-Code
When a package or subprogram is stored in the data dictionary, the compiled p-code
is stored in addition to the source code for the object. This is also true for triggers.
This means that triggers can be called without recompilation, and that dependency
information is stored. Thus they can be automatically invalidated in the same
manner as packages and subprograms. When a trigger is invalidated, it will be
recompiled the next time it is fired.

Mutating Tables
There are restrictions on the tables and columns that a trigger body may access.
In order to define these restrictions, it is necessary to understand mutating and
constraining tables. A mutating table is a table that is currently being modified
by a DML statement. For a trigger, this is the table on which the trigger is defined.
Tables that may need to be updated as a result of DELETE CASCADE referential
integrity constraints are also mutating. (For more information on referential
integrity constraints, see the Oracle Application Developer Guide Fundamentals.)
A constraining table is a table that might need to be read from for a referential
integrity constraint. To illustrate these definitions, consider the students, classes
and registered_students tables. The students and classes tables have
no dependencies, but the registered_students table has two foreign key
dependencies. One dependency is on the primary key of the students table,
and the other is on the primary key of the classes table. These ensure referential
integrity at the database level but carry a processing overhead. You may run all
these example scripts by using the createObjects.sql script.

488 Oracle Database 10g PL/SQL Programming

–– Available online as part of createStudents.sql
CREATE TABLE students (
id NUMBER(5) NOT NULL,
current_credits NUMBER(2),
major VARCHAR2(20),
last_name VARCHAR2(20) NOT NULL,
first_name VARCHAR2(20) NOT NULL,
middle_initial VARCHAR2(1) NOT NULL,
CONSTRAINT students_pk PRIMARY KEY (id));

–– Available online as part of createClasses.sql
CREATE TABLE classes (
department CHAR(3) NOT NULL,
course NUMBER(3) NOT NULL,
current_students NUMBER(3) NOT NULL,
num_credits NUMBER(1) NOT NULL,
name VARCHAR2(30) NOT NULL,
CONSTRAINT classes_pk PRIMARY KEY (department,course));

–– Available online as part of createRegisteredStudents.sql
CREATE TABLE registered_students (
student_id NUMBER(5) NOT NULL,
department CHAR(3) NOT NULL,
course NUMBER(3) NOT NULL,
grade CHAR(1),
CONSTRAINT rs_grade
CHECK (grade IN ('A', 'B', 'C', 'D', 'F')),

CONSTRAINT rs_student_id
FOREIGN KEY (student_id) REFERENCES students (id),

CONSTRAINT rs_department_course
FOREIGN KEY (department, course)
REFERENCES classes (department, course));

Registered_students has two declarative referential integrity constraints.
As such, both students and classes are constraining tables for registered_
students. Because of the constraints, classes and students may need to be
modified and/or queried by the DML statement. Also, registered_students
itself is mutating during execution of a DML statement against it.

SQL statements in a trigger body may not

■ Read from or modify any mutating table of the triggering statement. This
includes the triggering table itself.

■ Read from or modify the primary-, unique-, or foreign-key columns of a
constraining table of the triggering table. They may, however, modify the
other columns if desired.

Chapter 10: Database Triggers 489

These restrictions apply to all row-level triggers. They apply for statement
triggers only when the statement trigger would be fired as a result of a DELETE
CASCADE operation.

NOTE
If an INSERT statement affects only one row, the
before- and after-row triggers for that row do not
treat the triggering table as mutating. This is the
only case where a row-level trigger may read from
or modify the triggering table. Statements such as
INSERT INTO table SELECT ...
always treat the triggering table as mutating, even
if the subquery returns only one row.

As an example, consider the CascadeRSInserts trigger, shown next. Even
though it modifies both students and classes, it is legal because the columns
in students and classes that are modified are not key columns. In the next
section, we will examine an illegal trigger.

–– Available online as cascadeRSInsert.sql
CREATE OR REPLACE TRIGGER CascadeRSInserts
/* Keep the registered_students, students, and classes

tables in synch when an INSERT is done to registered_students. */
BEFORE INSERT ON registered_students
FOR EACH ROW

DECLARE
v_Credits classes.num_credits%TYPE;

BEGIN
–– Determine the number of credits for this class.
SELECT num_credits
INTO v_Credits
FROM classes
WHERE department = :new.department
AND course = :new.course;

–– Modify the current credits for this student.
UPDATE students
SET current_credits = current_credits + v_Credits
WHERE ID = :new.student_id;

–– Add one to the number of students in the class.
UPDATE classes
SET current_students = current_students + 1
WHERE department = :new.department

490 Oracle Database 10g PL/SQL Programming

AND course = :new.course;
END CascadeRSInserts;
/

Mutating Table Example
Suppose we want to limit the number of students in each major to five. We could
accomplish this with a before INSERT or UPDATE row-level trigger on students,
given here:

–– Available online as part of limitMajors.sql
CREATE OR REPLACE TRIGGER LimitMajors
/* Limits the number of students in each major to 5.

If this limit is exceeded, an error is raised through
raise_application_error. */

BEFORE INSERT OR UPDATE OF major ON students
FOR EACH ROW

DECLARE
v_MaxStudents CONSTANT NUMBER := 5;
v_CurrentStudents NUMBER;

BEGIN
–– Determine the current number of students in this
–– major.
SELECT COUNT(*)
INTO v_CurrentStudents
FROM students
WHERE major = :new.major;

–– If there isn't room, raise an error.
IF v_CurrentStudents + 1 > v_MaxStudents THEN
RAISE_APPLICATION_ERROR(-20000,
'Too many students in major ' || :new.major);

END IF;
END LimitMajors;
/

At first glance, this trigger seems to accomplish the desired result. However,
if we attempt to update students, it will fire the LimitMajor trigger. We will
need to populate the tables with data before testing the update statement. This
can be done by running insertAcademicRecords.sql or rerunning
createObjects.sql.

–– Available online as part of limitMajors.sql
UPDATE students
SET major = 'History'
WHERE id = 1;

Chapter 10: Database Triggers 491

492 Oracle Database 10g PL/SQL Programming

The LimitMajor trigger will raise the following exception.

UPDATE students
*

ERROR at line 1:
ORA-04091: table USERA.STUDENTS is mutating, trigger/function may not
see it
ORA-06512: at "USERA.LIMITMAJORS", line 7
ORA-04088: error during execution of trigger 'USERA.LIMITMAJORS'

The ORA-4091 error results because LimitMajors queries its own triggering
table, which is mutating. ORA-4091 is raised when the trigger is fired, not when it
is created.

Workaround for the Mutating Table Error
Students is mutating only for a row-level trigger. This means that we cannot
query it in a row-level trigger, but we can in a statement-level trigger. However, we
cannot simply make LimitMajors into a statement trigger, since we need to use
the value of :new.major in the trigger body. The solution for this is to create two
triggers—one row level and the other statement level. In the row-level trigger, we
record the value of :new.major, but we don’t query students. The query is
done in the statement-level trigger and uses the value recorded in the row trigger.

How do we record this value? One way is to use a PL/SQL table inside a package.
This way, we can save multiple values per update. Also, each session gets its own
instantiation of packaged variables, so we don’t have to worry about simultaneous
updates by different sessions. This solution is implemented with the student_
data package and the RLimitMajors and SLimitMajors triggers:

–– Available online as part of createNonMutating.sql
CREATE OR REPLACE PACKAGE StudentData AS
TYPE t_Majors IS TABLE OF students.major%TYPE
INDEX BY BINARY_INTEGER;

TYPE t_IDs IS TABLE OF students.ID%TYPE
INDEX BY BINARY_INTEGER;

v_StudentMajors t_Majors;
v_StudentIDs t_IDs;
v_NumEntries BINARY_INTEGER := 0;

END StudentData;
/

CREATE OR REPLACE TRIGGER RLimitMajors
BEFORE INSERT OR UPDATE OF major ON students
FOR EACH ROW

BEGIN

/* Record the new data in StudentData. We don't make any
changes to students, to avoid the ORA-4091 error. */

StudentData.v_NumEntries := StudentData.v_NumEntries + 1;
StudentData.v_StudentMajors(StudentData.v_NumEntries) :=
:new.major;

StudentData.v_StudentIDs(StudentData.v_NumEntries) := :new.id;
END RLimitMajors;
/

CREATE OR REPLACE TRIGGER SLimitMajors
AFTER INSERT OR UPDATE OF major ON students

DECLARE
v_MaxStudents CONSTANT NUMBER := 2;
v_CurrentStudents NUMBER;
v_StudentID students.ID%TYPE;
v_Major students.major%TYPE;

BEGIN
/* Loop through each student inserted or updated, and verify

that we are still within the limit. */
FOR v_LoopIndex IN 1..StudentData.v_NumEntries LOOP
v_StudentID := StudentData.v_StudentIDs(v_LoopIndex);
v_Major := StudentData.v_StudentMajors(v_LoopIndex);

–– Determine the current number of students in this major.
SELECT COUNT(*)
INTO v_CurrentStudents
FROM students
WHERE major = v_Major;

–– If there isn't room, raise an error.
IF v_CurrentStudents > v_MaxStudents THEN
RAISE_APPLICATION_ERROR(-20000,
'Too many students for major ' || v_Major ||
' because of student ' || v_StudentID);

END IF;
END LOOP;

–– Reset the counter so the next execution will use new data.
StudentData.v_NumEntries := 0;

END SlimitMajors;
/

NOTE
Be sure to drop the incorrect LimitMajors
trigger before running the preceding script.

493 Oracle Database 10g PL/SQL Programming

We can now test this series of triggers by updating students until we have
too many history majors. This can be done by using the testNonMutating.sql
script or typing the following update statement:

–– Available online as part of testNonMutating.sql
UPDATE students
SET major = 'History'
WHERE id IN (1,2,3);

The limit on majors is set at two in the SlimitMajors trigger. The update
statement attempts to put three history majors in the system. It fails with this
error message:

UPDATE students
*

ERROR at line 1:
ORA- 20000: Too many students for major History because of student 2
ORA-06512: at "USERA.SLIMITMAJORS", line 21
ORA-04088: error during execution of trigger 'USERA.SLIMITMAJORS'

This is the desired behavior. This technique can be applied to occurrences of
ORA-4091 when a row-level trigger reads from or modifies a mutating table. Instead
of doing the illegal processing in the row-level trigger, we defer the processing to an
after statement-level trigger, where it is legal. The packaged PL/SQL tables are used
to store the rows that were changed.

There are several things to note about this technique:

■ The PL/SQL tables are contained in a package so that they will be visible
to both the row-level trigger and the statement-level trigger. The only way to
ensure that variables are global is to put them in a package.

■ A counter variable, StudentData.v_NumEntries, is used. This is
initialized to zero when the package is created. It is incremented by the
row-level trigger. The statement-level trigger references it and then resets
it to zero after processing. This is necessary so that the next UPDATE
statement issued by this session will have the correct value.

■ The check in SLimitMajors for the maximum number of students
had to be changed slightly. Since this is now an after-statement
trigger, v_CurrentStudents will hold the number of students in
the major after the insert or update, not before. Thus the check for
v_CurrentStudents + 1, which we did in LimitMajors, is
replaced by v_CurrentStudents.

494 Oracle Database 10g PL/SQL Programming

■ A database table could have been used instead of PL/SQL tables. We
don’t recommend this technique, because simultaneous sessions
issuing an UPDATE would interfere with each other (in Oracle8i and
higher you could use a temporary table, however). Packaged PL/SQL
tables are unique among sessions, which avoids the problem.

Summary
As we have seen, triggers are a valuable addition to PL/SQL and Oracle. They can
be used to enforce data constraints that are much more complex than normal referential
integrity constraints, as well as implement the correct behavior for complex views.
Event attribute functions can be used for system triggers to determine all kinds of
information about the triggering event and the situation that caused it. In the next
section, we will begin our discussion of the built-in packages with intersession
communication.

Chapter 10: Database Triggers 495

This page intentionally left blank

PART
II

Advanced PL/
SQL Features

Copyright © 2004 by The McGraw-Hill Companies, Inc. Click here for terms of use.

This page intentionally left blank

CHAPTER
11

Intersession
Communication

Copyright © 2004 by The McGraw-Hill Companies, Inc. Click here for terms of use.

500 Oracle Database 10g PL/SQL Programming

I
ntersession communication is the ability to communicate between
different user connections. Sessions are individual work areas. Sessions
begin when you connect and end when you disconnect from the Oracle
10g database. You have several approaches that enable you to
communicate between sessions. The DBMS_PIPE and DBMS_ALERT

built-in utilities are the focus of the chapter.
You will cover topics as follows. The chapter assumes you read it sequentially. It

also assumes you have read the preceding ten chapters. If you feel comfortable with
an area, please feel free to move to the section of interest. However, the chapter
assumes you have mastery of earlier sections.

■ Introducing intersession communication

■ DBMS_PIPE built-in package

■ DBMS_ALERT built-in package

Introducing Intersession Communication
Intersession communication is the ability to communicate between different user
connections. When users connect to the database, they establish sessions. The
duration of a session starts at connection and ends at disconnection. During the
session users are in full control of their resources. Resources are anything that they
own directly or have access permissions to perform, for example, using DQL, DML,
or PL/SQL execution against resources.

You can communicate between sessions in Oracle 10g using several approaches.
They each have pluses and minuses. Two types involve permanent or semipermanent
objects in the database. The other two types involve SGA memory segments, called
named pipes. A synopsis of methods follows.

Requiring Permanent or Semipermanent Structures
Permanent or semipermanent structures enable you to do the following:

■ You can leverage the Advanced Queuing facility introduced in Oracle 8
with the DBMS_AQADM and DBMS_AQ packages. These involve setting
up advanced queuing for each of the participants. Then, you use messages
to exchange information between the sessions. This technology underpins
Oracle’s implementation of workflow applications.

■ You can use tables, grants, and synonyms to exchange data between
sessions. The solution is simple but subject to transaction control
limitations. Transaction control limits mean that a transaction must
complete and commit permanently the change to the database. The

solution more or less involves implementing triggers to restrict DML
operations based on other table values.

Not Requiring Permanent or Semipermanent
Structures
Here you can do the following:

■ You can use the DBMS_PIPE built-in package. DBMS_PIPE uses dynamic
memory structures in the SGA called pipes. They are very similar to Unix
pipes. Pipes may be local, private, or publicly accessible. They act as
first-in and last-out (FIFO) queues. Transaction control issues do not bind
them. You can use pipes to send and receive data between sessions
asynchronously.

■ You can use the DBMS_ALERT built-in package. DBMS_ALERT also uses a
memory structure in the SGA. While the structure is not formally referred to
as a pipe, it works as a public pipe. These are likewise similar to Unix pipes.
They are publicly accessible pipes or FIFO queues. These pipes are populated
on event triggers and subject to transaction control limits. The alert pipes
communicate between sessions asynchronously at the conclusion of an
event. Events are anything that you can build a trigger against, like a DML or
system action (check Chapter 10 for more on triggers). Unlike DBMS_PIPE,
the DBMS_ALERT built-in package works on a publish-and-subscribe
paradigm. It publishes notifications. Then it enables subscribers to register
their interest in the alert and receive the alert notifications.

You should understand when and where to use these approaches. As a rule of
thumb, you do not want to use permanent or semipermanent structures to exchange
information when they can be avoided. Using these types of structures incurs file
access, which can slow your application down. Intersession communication should
be done in memory where possible.

Both DBMS_PIPE and DBMS_ALERT work in memory. They do not have
permanent or semipermanent structures in the database. The structures are designed
to support intersession communication. Pipes can be defined to support intersession
communication two ways: Pipes can support communication between two or more
sessions of a single user. Alternatively, they can support communication between
two or more users. Alerts also supports two or more sessions of a single user.

DBMS_ALERT works best as an asynchronous transaction control mechanism.
The DBMS_ALERT notifies subscribers of an event. The subscribers can then take
action on events. DBMS_ALERT implements a publish-and-subscribe paradigm.
When you use a publish-and-subscribe process, polling daemons are simplified or
eliminated. Polling daemons run as background processes. They consume varying

Chapter 11: Intersession Communication 501

502 Oracle Database 10g PL/SQL Programming

resources, depending on how you implement them. If you eliminate polling
daemons, you reduce resource demands on the database and physical machine.

DBMS_PIPE can help you mimic POSIX-compliant threads. Such threads
provide structures that you may use as C/C++ mutex variables. Likewise, they are
ideal for passing information to external processes that may monitor or control
system resources. For example, DBMS_PIPE can:

■ Enable you to use local pipes to control a single program’s execution.

■ Enable you to use private pipes to control concurrent programs run by
the single user.

■ Enable you to use public pipes to control concurrent programs run by
multiple users.

The DBMS_PIPE Built-in Package
In Oracle 10g, DBMS_PIPE is a privileged package owned by the SYS user. You
or your DBA must grant EXECUTE permission on the DBMS_PIPE package to the
PLSQL user as well as to another user you may choose—some of the examples and
exercises in this chapter require two users to carry out. The second user may be one
used before in the book, like USERA/USERB, or another of your choosing. That user
also requires EXECUTE permission on the DBMS_PIPE package.

TIP
You or your DBA should probably grant execute
permission with the grant option to SYSTEM. Then,
the SYSTEM user should grant execute permission to
the PLSQL user manually. Alternatively, you can run
the create_user.sql script.

Introducing the DBMS_PIPE Package
The architecture of DBMS_PIPE is key to understanding its use. You need to
understand three perspectives presented by DBMS_PIPE. The perspectives are
represented by access privileges. Also, the structures used to temporarily store the
data are memory structures in the PGA or the SGA.

DBMS_PIPE has session local, user private, and public pipe variations. It is
possible that using multiple types in the same session can cause problems. Typically,
the problems relate to inadvertent destruction of the session local pipe contents. The
session local pipe acts as a private buffer. Unfortunately, the same private buffer
serves as the access to and from user private and public pipes. The private buffer is
a PGA pipe and is inaccessible by named reference externally to the session. Private
and public pipes are SGA structures.

You will now examine each of the access methods. Local pipes are first. The
local pipe is only a buffer. The buffer can contain only one element. You write a
variable-length string to the local buffer. Then you may read the string from the
buffer. If the element is not read locally or forwarded to a named private or public
pipe before the next write, the original value is lost. Figure 11-1 depicts a local pipe
read-and-write operation. Forwarding the element will be covered later.

Having mastered the local read-and-write buffer, you will examine a private user
pipe read-and-write operation. Private user pipes are accessible to all sessions of the
user who created the pipe. Before writing to the private pipe, the data must be written
to the local buffer. Then, you send the contents of the local buffer to the private pipe.
The contents of the private pipe can then be read to a local session buffer. The local
session buffer can then be read and assigned to a variable. Figure 11-2 illustrates a
private user pipe.

Figure 11-2 shows that there are one or two sessions when using a private user
pipe. It is possible that the same user session creating a private pipe can write and
read to it. As discussed, the local pipe is a buffer that contains only one value. A
private pipe may contain any number of values in a FIFO queue. Therefore, a
session that needs to write a series of data values may write to and read from a
private pipe.

Alternatively, the same user can have two or more sessions and share the
FIFO queue. This scenario presents some interesting issues because any session
created by the user who owns the queue can write to or read from it. There is no
way to track which session wrote to the pipe unless you tokenize the variable-
length string.

Tokenizing a variable-length string means that you build a string that contains
a delimiter and substrings. The delimiter separates substrings. You can tokenize a
string by using a comma, for instance. The first value before the comma can contain

Chapter 11: Intersession Communication 503

FIGURE 11-1. Session local buffer read-and-write operation

504 Oracle Database 10g PL/SQL Programming

a string that identifies the originating, or writing, session. The next delimited string
can contain the destination, or reading, session. The last substring can contain the
value substring or a series of delimited substrings.

In the tokenized string scenario, it is possible for the wrong session to read a
message. If you implement this architecture, you will need to ensure the code puts
the message back into the queue. Unfortunately, it will be out of sequence. This
behavior is a natural consequence of FIFO queues. When using FIFO queues, you
should not depend solely on sequencing of data. As an alternative, you can use a
tokenized message. A tokenized message is a series of delimited substrings that are
sequential. You can get much more complex in solutions, but that belongs in
another book.

The premise of a private pipe is not too different from that of a public pipe. In
fact, all the activity described in a private user pipe can be done in a public pipe. A
public pipe is also the default pipe created. You must override the default behavior
to create a private user pipe. Figure 11-3 shows a public pipe.

FIGURE 11-2. Private pipe read-and-write operation

Chapter 11: Intersession Communication 505

Moreover, public pipes are designed for sharing between two users. Figure 11-3
depicts two sessions, which would occur for multiple users sharing a public pipe.
All read and write operations mirror the previously described behaviors.

You should now have a high-level view of what DBMS_PIPE uses as memory
structures. This architectural view will be important as we cover the procedures and
functions of the DBMS_PIPE built-in.

Defining the DBMS_PIPE Package
The DBMS_PIPE package contains procedures and functions. Typically, procedures
would be limited to PL/SQL execution and functions enabled for SQL and PL/SQL.
The CREATE_PIPE function has limited utility in SQL because the PRIVATE formal
parameter is a Boolean data type, and Boolean data types cannot be used in SQL.
Since the default value for the PRIVATE formal parameter is true, you must use PL/
SQL to create a public pipe.

Table 11-1 describes the DBMS_PIPE package.
Having defined the DBMS_PIPE package, you will work with DBMS_PIPE in

the next section.

FIGURE 11-3. Public pipe read-and-write operation

506 Oracle Database 10g PL/SQL Programming

Function or Procedure Description Return Type SQL Access

CREATE_PIPE The CREATE_PIPE function takes three
formal parameters:
PIPENAME is positionally the first and is a
mandatory parameter. It is defined as a
VARCHAR2 data type. Its maximum size
should be 128 bytes. You should not use
ORA$ as a preface to any of your pipes
because those are reserved by Oracle
Corporation for their own use.
MAXPIPESIZE is positionally the second
and an optional formal parameter. It has
an INTEGER data type. The default value
is 8192.
PRIVATE is positionally the third and an
optional parameter. It has a BOOLEAN
data type. The default value is TRUE,
which maps to a default private pipe.
If a privileged user calls the CREATE_
PIPE function and the pipe already exists,
it will not alter the existing pipe. It will
return a zero value. The zero value
indicates successful completion, but in
this case nothing was created; it was
ignored.
You may attempt to re-create a public
pipe as another user. It will appear to
work but in reality the command is
ignored.
If you lack permission to create the
object, you raise an ORA-23322
exception.

INTEGER Limited

NEXT_ITEM_TYPE The NEXT_ITEM_TYPE function takes no
formal parameters. It reads the contents of
the local pipe or buffer. It returns an
INTEGER that maps to the following:
0: An empty buffer.
6: A NUMBER data type.
9: A VARCHAR2 data type.
11: A ROWID data type.
12: A DATE data type.
23: A RAW data type.
If you empty the local buffer, you will
raise an ORA-06556 exception when
attempting to secure a return value.

INTEGER Yes

TABLE 11-1. The DBMS_PIPE Package

Chapter 11: Intersession Communication 507

Function or Procedure Description Return Type SQL Access

PACK_MESSAGE The PACK_MESSAGE procedure takes a
single formal parameter. The parameter
can be a DATE, NCHAR, NUMBER, or
VARCHAR2 data type.
PACK_MESSAGE takes the value of the
actual parameter and puts it into the local
pipe or buffer.

None No

PACK_MESSAGE_RAW The PACK_MESSAGE_RAW procedure
takes a single formal parameter. The
parameter is a RAW data type.
PACK_MESSAGE_RAW takes the value of
the actual parameter and puts it into the
local pipe or buffer.

None No

PACK_MESSAGE_
ROWID

The PACK_MESSAGE_ROWID procedure
takes a single formal parameter. The
parameter is a ROWID data type.
PACK_MESSAGE_ROWID takes the value
of the actual parameter and puts it into
the local pipe or buffer.

None No

PURGE The PURGE procedure takes a single
formal parameter. The parameter is a
VARCHAR2 data type and must be a valid
private or public pipe name.

None No

RECEIVE_MESSAGE The RECEIVE_MESSAGE function takes
one or two formal parameters. The first
positional parameter is a VARCHAR2 data
type and must be a valid private or public
pipe name. The second positional and
optional parameter is an INTEGER data
type. Unless you can allow your program
to hang for 1000 days, you should override
this value to a suitably lower count in
seconds.
It reads the contents of the named pipe and
transfers it to the local buffer. It returns an
INTEGER that maps to the following:
0: Successful completion.
1: A timeout without a reply.
2: A pipe message too large for the buffer,
which should never happen.
3: An interrupt of some kind.
If you lack permission to access the pipe,
you raise an ORA-23322 exception. The
error means you cannot receive from that
pipe.

INTEGER Yes

TABLE 11-1. The DBMS_PIPE Package (continued)

508 Oracle Database 10g PL/SQL Programming

Function or Procedure Description Return Type SQL Access

REMOVE_PIPE The REMOVE_PIPE function takes one
formal parameter. It is a VARCHAR2 data
type and must be a valid private or public
pipe name.
It returns an INTEGER that maps to the
following:
0: Successful completion.
If you lack permission to remove the
object, you raise an ORA-23322
exception.
If the user who created the named pipe
is not known, the DBA has one of two
choices. The DBA can shut down and
restart the instance to get rid of the
conflicting named pipe. Alternatively, as
SYSDBA, you can remove the offending
named pipe.

INTEGER Yes

RESET_BUFFER The RESET_BUFFER procedure takes no
formal parameter. It removes the contents
of the local buffer.

None No

SEND_MESSAGE The SEND_MESSAGE function takes one
to three formal parameters. The first
positional parameter is a VARCHAR2 data
type and must be a valid private or public
pipe name. The second positional and
optional parameter is an INTEGER data
type. Unless you can allow your program
to hang for 1000 days, you should
override this value to a suitably lower
count in seconds. The third positional and
optional parameter is an INTEGER
representing the total size of all messages
placed in the pipe. This number must be
equal to or less than the value used when
creating the named pipe.
It writes the contents of the local buffer to
the named pipe. It returns an INTEGER
that maps to the following:
0: Successful completion.
1: A timeout without a reply.
2: A pipe message too large for the buffer,
which should never happen.
3: An interrupt of some kind.
If you lack permission to access the pipe,
you raise an ORA-23322 exception. The
error means you cannot write to that pipe.

INTEGER Yes

TABLE 11-1. The DBMS_PIPE Package (continued)

Working with the DBMS_PIPE Package
In this section, you will work with the following:

■ Sending to and receiving from the local pipe or buffer

■ Creating pipes

■ Reading and writing from pipes

■ Putting a wrapper around DBMS_PIPE

These topics will help prepare you to use DBMS_PIPE successfully. The topics
also should prepare you to experiment with the package.

Chapter 11: Intersession Communication 509

Function or Procedure Description Return Type SQL Access

UNIQUE_SESSION_
NAME

The UNIQUE_SESSION_NAME function
takes no formal parameter.
It returns a VARCHAR2 string that
represents the current session.

VARCHAR2 Yes

UNPACK_MESSAGE The UNPACK_MESSAGE procedure takes
a single formal parameter. The parameter
can be a DATE, NCHAR, NUMBER, or
VARCHAR2 data type.
UNPACK_MESSAGE takes the value from
the local pipe or buffer and returns it as
the OUT mode value of the actual
parameter.

None No

UNPACK_MESSAGE_
RAW

The UNPACK_MESSAGE_RAW procedure
takes a single formal parameter. The
parameter must be a RAW data type.
UNPACK_MESSAGE_RAW takes the value
from the local pipe or buffer and returns it
as the OUT mode value of the actual
parameter.

None No

UNPACK_MESSAGE_
ROWID

The UNPACK_MESSAGE_ROWID
procedure takes a single formal
parameter. The parameter must be
a ROWID data type.
UNPACK_MESSAGE_ROWID takes the
value from the local pipe or buffer and
returns it as the OUT mode value of the
actual parameter.

None No

TABLE 11-1. The DBMS_PIPE Package (continued)

510 Oracle Database 10g PL/SQL Programming

If you do not have a PLSQL account with the correct permissions, you can run
the create_user.sql script to build one.

Sending to and Receiving from the Local Pipe or Buffer
The local buffer is very important. You can write programs that will return an
anomalous result if you do not understand how to use the local buffer. Only
the session that writes to the local buffer can access the local buffer.

The following program shows how to write to the local buffer:

-- Available online as part of write_local.sql

DECLARE

-- Define variables for functions and procedures.
message VARCHAR2(30 CHAR);
success INTEGER;

BEGIN

-- Assign the unique session name to message.
message := DBMS_PIPE.UNIQUE_SESSION_NAME;

-- Reset the local private pipe.
DBMS_PIPE.RESET_BUFFER;

-- Write a message to the local private pipe.
DBMS_PIPE.PACK_MESSAGE(message);

-- Write what was written to the pipe.
DBMS_OUTPUT.PUT_LINE('Written to pipe ['||message||']');

END;
/

The sample program does the following:

■ It defines and declares a variable message using a VARCHAR2 data type.

■ It defines and declares a variable success using an INTEGER data type.

■ It assigns to the message variable the return value of the unique session
name.

■ It resets the local buffer to ensure it is empty.

■ It packs or sends the message variable to the local buffer.

■ It uses DBMS_OUTPUT to print a message to console.

Chapter 11: Intersession Communication 511

This has placed a value in your local buffer. The following program will let you
read and print the contents of the pipe to the console. As with previous PL/SQL
programs, this uses the DBMS_OUTPUT utility to print the data. The SERVEROUTPUT
parameter should be enabled in SQL*Plus to see the output.

-- Available online as part of read_local.sql

DECLARE

-- Define variables for functions and procedures.
message VARCHAR2(30 CHAR);
success INTEGER;

BEGIN

-- Read a message from the local private pipe.
DBMS_PIPE.UNPACK_MESSAGE(message);

-- Print the contents of the message.
DBMS_OUTPUT.PUT_LINE('Message ['||message||']');

END;
/

The sample program does the following:

■ It defines and declares a variable message using a VARCHAR2 data type.

■ It defines and declares a variable success using an INTEGER data type.

■ It assigns to the message variable the OUT mode value of the DBMS_
PIPE.UNPACK_MESSAGE procedure.

■ It uses DBMS_OUTPUT to print the output to console.

You have learned how to write to and read from the local buffer. If you attempted
to receive the contents from a named pipe in this session between writing to and
reading from the local buffer, you would raise a pipe is empty exception.

The following SQL query reads the contents of a nonexistent named pipe. What
it really does is attempt to transfer the contents of a nonexistent named pipe to the
local buffer. If you insert the following SQL statement between the write_
local.sql and read_local.sql programs, it will return a 1.

512 Oracle Database 10g PL/SQL Programming

A 1 indicates the pipe is empty. When the RECEIVE_MESSAGE function returns
any value, it has done one of two things: it has returned the contents of a named
pipe or a null into the local buffer.

-- Available online as part of read_local_error.sql

SELECT DBMS_PIPE.RECEIVE_MESSAGE('NOWHERE',0)
FROM dual;

You can test this behavior by running the read_local_error.sql script.
The script will produce the following output error messages:

-- Available online as output from read_local_error.sql

DECLARE
*
ERROR at line 1:
ORA-06556: the pipe is empty, cannot fulfill the

unpack_message request
ORA-06512: at "SYS.DBMS_PIPE", line 78
ORA-06512: at line 10

You have seen that sequencing of commands is critical to having something in
the local buffer. Also, you have seen that a call to the RECEIVE_MESSAGE function
will fail but write a null to the local buffer.

You will now learn how to create named pipes.

Creating Pipes
As discussed, there are two types of named pipes. One is a private named pipe;
the other is a public named pipe. The former is the default type for named pipes.

You will learn how to build a named private pipe and public pipe. You should
ensure you run this as the PLSQL user, since the pipe name is hard-coded. The
following example demonstrates creating a private pipe:

-- Available online as part of create_pipe1.sql

DECLARE

-- Define and declare variables.
message_pipe VARCHAR2(30) := 'PLSQL$MESSAGE_INBOX';
message_size INTEGER := 20000;

-- Function output variable.
retval INTEGER;

BEGIN

Chapter 11: Intersession Communication 513

-- Define a private pipe.
retval := DBMS_PIPE.CREATE_PIPE(message_pipe

,message_size);

-- Print the retval status.
IF (retval = 0) THEN
DBMS_OUTPUT.PUT_LINE('MESSAGE_INBOX pipe is created.');

END IF;

EXCEPTION

-- Raise generic exception.
WHEN others THEN
DBMS_OUTPUT.PUT_LINE(SQLERRM);
RETURN;

END;
/

The sample program does the following:

■ It defines and declares a variable message_pipe using a VARCHAR2
data type.

■ It defines and declares a variable message_size using an INTEGER
data type.

■ It defines and declares a variable retval using an INTEGER data type.

■ It assigns to the retval variable the return value from the DBMS_
PIPE.CREATE_PIPE function. The creation uses only two actual
parameters. By default, the third parameter is true. Therefore, it creates
a private pipe.

■ It evaluates if the retval value is zero and prints a success message by
using the DBMS_OUTPUT utility.

■ It handles all exceptions and prints the SQL error message raised by using
the DBMS_OUTPUT utility.

Unfortunately, there is no convenient way to display defined pipes. If you
connect as another user (like USERA) and attempt to run the create_pipe1.sql
script, it will raise two errors. The attempt to use DBMS_PIPE.REMOVE_PIPE will
result in an untrapped error. This is the default error message:

-- Available online as output from create_pipe1.sql

DECLARE
*

ERROR at line 1:
ORA-23322: Privilege error accessing pipe
ORA-06512: at "SYS.DBMS_SYS_ERROR", line 86
ORA-06512: at "SYS.DBMS_PIPE", line 130
ORA-06512: at line 4

The attempt to create a named pipe owned by the PLSQL user will raise
SQLERRM only. It does so because it is managed in the exception handler. It raises
the following exception:

-- Available online as output from create_pipe1.sql

ORA-23322: Privilege error accessing pipe

You have learned that the user who created the private named pipes is the only
one who can alter them. Any other user will receive a privilege error when attempting
to remove or re-create a private named pipe. You will now see the differences
between creating private and publicly accessible pipes.

The following example should be run as the PLSQL user. It shows you how to
create a public pipe:

-- Available online as part of create_pipe2.sql

-- An anonymous block program to delete a pipe.
DECLARE

-- Define and declare a variable by removing a pipe.
retval INTEGER :=
DBMS_PIPE.REMOVE_PIPE('PLSQL$MESSAGE_INBOX');

BEGIN

NULL;

END;
/

-- An anonymous block program to create a pipe.
DECLARE

-- Define and declare variables.
message_pipe VARCHAR2(30) := 'PLSQL$MESSAGE_INBOX';
message_size INTEGER := 20000;
message_flag BOOLEAN := TRUE;

-- Function output variable.

514 Oracle Database 10g PL/SQL Programming

retval INTEGER;

BEGIN

-- Define a public pipe.
retval := DBMS_PIPE.CREATE_PIPE(message_pipe

,message_size
,message_flag);

-- Print the retval status.
IF (retval = 0) THEN
DBMS_OUTPUT.PUT_LINE('MESSAGE_INBOX pipe is created.');

END IF;

EXCEPTION

-- Raise generic exception.
WHEN others THEN
DBMS_OUTPUT.PUT_LINE(SQLERRM);
RETURN;

END;
/

The sample program does the following:

■ It defines a retval variable of INTEGER type and declares it as the return
value of DBMS_PIPE.REMOVE_PIPE function. This is how you remove an
existing pipe. If you fail to remove a named pipe before trying to create a
variation using the same name, it will raise an ORA-23322 error. There is
unfortunately no equivalent to the SQL create or replace command syntax
for database objects in the DBMS_PIPE package.

■ It defines and declares a variable message_pipe using a VARCHAR2
data type.

■ It defines and declares a variable message_size using an INTEGER
data type.

■ It defines and declares a variable retval using an INTEGER data type.

■ It assigns to the retval variable the return value from the DBMS_
PIPE.CREATE_PIPE function. The creation is only using all three actual
parameters. It overrides the private default value, and the pipe created is a
public pipe.

Chapter 11: Intersession Communication 515

516 Oracle Database 10g PL/SQL Programming

■ It evaluates if the retval value is zero and prints a success message by
using the DBMS_OUTPUT utility.

■ It handles all exceptions and prints the SQL error message raised by using
the DBMS_OUTPUT utility.

The next test assumes you have run create_pipe2.sql as the PLSQL user. If
you connect as USERA, you will find that you can rerun the create_pipe2.sql
statement without raising an exception.

It appears that the public pipe is re-created under a new user because no
exception was raised. This is not the case. A zero, or success, is returned when the
public pipe already exists with the same signature. (A signature is a collection of
formal parameter(s) that define a function, method, or procedure.)

The lack of a raised exception is misleading. Unfortunately, that’s the way
DBMS_PIPE.CREATE_PIPE works when the same signature is used. You can test
the lack of a privilege error by running create_pipe1.sql in the PLSQL schema
and then running create_pipe2.sql in another user’s schema.

It will raise the following exception:

ORA-23322: Privilege error accessing pipe

If you attempt to run create_pipe1.sql in the USERA schema, you will raise
an exception. The reason it now returns a privilege exception is straightforward.
USERA is attempting to modify the signature for the pipe, making it private when it
is public. USERA cannot override the pipe created in that name because it is not the
user who created it.

While it would have taken too much space in the book, a create_pipe3.sql
script can be found on the web site. It has all the appropriate error trapping and good
coding practices. You should take a look at how it works. Much of the anonymous
block logic is migrated into the DBMS_PIPE wrapper discussed later in this chapter.

You have learned how to create private and public pipes. You have also seen
that the privileges error can sometimes be suppressed. The next section will show
how to read from and write to named pipes.

Writing to and Reading from Pipes
Private and public pipes are written to and read from in the same way. You write
data by placing it in the local buffer and sending it to the named pipe. Then, you
read data by the inverse process. You receive data from a named pipe into the local
buffer and then read data from the local buffer.

You will examine two programs. One will write data to a named pipe. The other
will read from a named pipe. You should use the PLSQL schema to write and read
the data. However, you can read the data from any other user that has the execute
privilege on DBMS_PIPE, provided you last ran create_pipe2.sql in the PLSQL
schema, which builds a public pipe.

Chapter 11: Intersession Communication 517

The following program writes to a named pipe:

-- Available online as part of write_pipe.sql

DECLARE

-- Define line return to separate pipe writes.
line_return VARCHAR2(1) := CHR(10);

-- Define a return value
flag INTEGER;

BEGIN

-- Purge pipe content.
dbms_pipe.purge('PLSQL$MESSAGE_INBOX');

-- Print input title.
DBMS_OUTPUT.PUT_LINE('Input Message to Pipe');
DBMS_OUTPUT.PUT_LINE('---------------------');

-- Use a range for-loop to send three messages.
FOR i IN 1..3 LOOP

-- Print the input line.
DBMS_OUTPUT.PUT_LINE('Message ['||i||']');

-- Put a message in the local buffer.
DBMS_PIPE.PACK_MESSAGE(
'Message ['||i||']'||line_return);

-- Send message, success is a zero return value.
flag := DBMS_PIPE.SEND_MESSAGE('PLSQL$MESSAGE_INBOX');

END LOOP;

-- Print message based on flag status.
IF (flag = 0) THEN
DBMS_OUTPUT.PUT_LINE(
'Message sent to PLSQL$MESSAGE_INBOX.');

END IF;

END;
/

The sample program does the following:

■ It defines and declares a variable line_return using a VARCHAR2
data type.

518 Oracle Database 10g PL/SQL Programming

■ It defines flag as an INTEGER variable to receive the execution code from
the SEND_MESSAGE function.

■ It uses the DBMS_PIPE.PURGE procedure to remove any existing contents
from the named pipe.

■ It uses DBMS_OUTPUT utility to print a title.

■ Using a range for-loop, the program does the following:

■ It uses DBMS_OUTPUT to print each line that will be sent as a message.

■ It uses DBMS_PIPE.PACK_MESSAGE to put the actual parameter into
the local buffer.

■ It uses DBMS_PIPE.SEND_MESSAGE to move the contents of the local
buffer to the named pipe.

■ It evaluates if the flag value is zero and prints a success message by using
the DBMS_OUTPUT utility.

The program outputs this:

-- Available online as output from write_pipe.sql

Input Message to Pipe

Message [1]
Message [2]
Message [3]
Message sent to PLSQL$MESSAGE_INBOX.

You can read the data from the named pipe by inverting the write process. The
process is demonstrated in the following program:

-- Available online as part of read_pipe.sql

DECLARE

-- Define message variable.
line_return VARCHAR2(1) := CHR(10);
message VARCHAR2(4000);
output VARCHAR2(4000);

-- Define a return value
flag INTEGER;

BEGIN

-- Reset the local buffer.
DBMS_PIPE.RESET_BUFFER;

-- Print input title.
DBMS_OUTPUT.PUT(line_return);
DBMS_OUTPUT.PUT_LINE('Output Message from Pipe');
DBMS_OUTPUT.PUT_LINE('------------------------');

-- Use range for-loop to receive and read three messages.
FOR i IN 1..3 LOOP

-- Receive message, success is a zero return value.
flag :=
DBMS_PIPE.RECEIVE_MESSAGE('PLSQL$MESSAGE_INBOX',0);

-- Read message from local buffer.
DBMS_PIPE.UNPACK_MESSAGE(message);

-- Append message to output variable.
output := output || message;

END LOOP;

-- Print message based on flag status.
IF (flag = 0) THEN

-- Print the output variable.
DBMS_OUTPUT.PUT(output);

-- Print confirmation message.
DBMS_OUTPUT.PUT_LINE(
'Message received from PLSQL$MESSAGE_INBOX.');

END IF;

END;
/

The sample program does the following:

■ It defines and declares a variable line_return using a VARCHAR2
data type.

■ It defines message as a VARCHAR2 variable.

■ It defines output as a VARCHAR2 variable.

Chapter 11: Intersession Communication 519

520 Oracle Database 10g PL/SQL Programming

■ It defines flag as an INTEGER variable to receive the execution code from
the RECEIVE_MESSAGE function.

■ It uses DBMS_OUTPUT utility to print a title.

■ Using a range for-loop, the program does the following:

■ It does not use the DBMS_PIPE.PURGE procedure to remove any
existing contents from the named pipe. If it did so, it would not
retrieve any data.

■ It does use the DBMS_PIPE.RESET_BUFFER procedure to clear the
local buffer. While unnecessary when nothing is done with the buffer
contents before retrieving from a named pipe, this procedure can cause
erroneous data to be retrieved from the local buffer. It is a good
programming practice to use it before reading from a named pipe.

■ It uses DBMS_PIPE.RECEIVE_MESSAGE to move the contents from the
named pipe to the local buffer. It uses a second parameter of zero. This
forces an immediate read on the pipe. Unless you override the time-out
of 1000 days, your program could hang on an empty pipe instead of
returning an error message.

■ It uses DBMS_PIPE.UNPACK_MESSAGE to put the contents of the local
buffer into the actual parameter.

■ It appends to the output variable by assigning it to itself and the
message value.

■ It evaluates if the flag value is zero. Then, it prints the contents of the output
variable and a success message by using the DBMS_OUTPUT utility.

The program outputs this:

-- Available online as output from write_pipe.sql

Output Message from Pipe

Message [1]
Message [2]
Message [3]
Message received from PLSQL$MESSAGE_INBOX.

You should notice that the output from the pipe is ordered the same as when
it was written. This is a property of a FIFO queue. As you learned earlier in the
chapter, all pipes are FIFO queues.

You have learned how to create private and public pipes. Moreover, you can
now write to and read from pipes. The PACK_MESSAGE_RAW, PACK_MESSAGE_
ROWID, UNPACK_MESSAGE_RAW, and UNPACK_MESSAGE_ROWID procedures are

Chapter 11: Intersession Communication 521

not covered because they work like the PACK_MESSAGE and UNPACK_MESSAGE
procedures. Two other commands have not been covered in earlier examples: the
NEXT_ITEM_TYPE and UNIQUE_SESSION_NAME function will be covered in the
next example.

The NEXT_ITEM_TYPE and UNIQUE_SESSION_NAME functions are covered in
the following example program:

-- Available online as part of next_item_type.sql

DECLARE

-- Define session.
session VARCHAR2(30) :=
DBMS_PIPE.UNIQUE_SESSION_NAME;

-- Define line return to separate pipe writes.
line_return VARCHAR2(1) := CHR(10);
message VARCHAR2(4000);
output VARCHAR2(4000);

-- Define a return values.
flag INTEGER;
code INTEGER;

-- Define and declare input variables.
message1 INTEGER := 1776;
message2 DATE := TO_DATE('04-JUL-1776');
message3 VARCHAR2(30 CHAR) := 'John Adams';

-- Define output variables.
message11 INTEGER;
message12 DATE;
message13 VARCHAR2(30 CHAR);

BEGIN

-- Purge pipe content.
DBMS_PIPE.PURGE('PLSQL$MESSAGE_INBOX');

-- Print input title.
DBMS_OUTPUT.PUT_LINE('Input Message to Pipe');
DBMS_OUTPUT.PUT_LINE('Session: ['||session||']');
DBMS_OUTPUT.PUT_LINE('--------------------------------');

-- Do the following for message1, message2, and message3:
-- 1. Print the input line.
-- 2. Use the procedure to put a message in local buffer
-- of a specific data type.

-- 3. Send message, success is a zero return value.

-- Process message1.
DBMS_OUTPUT.PUT_LINE(message1||'[NUMBER]');
DBMS_PIPE.PACK_MESSAGE(message1);
flag := DBMS_PIPE.SEND_MESSAGE('PLSQL$MESSAGE_INBOX');

-- Process message2.
DBMS_OUTPUT.PUT_LINE(message2||'[DATE]');
DBMS_PIPE.PACK_MESSAGE(message2);
flag := DBMS_PIPE.SEND_MESSAGE('PLSQL$MESSAGE_INBOX');

-- Process message3.
DBMS_OUTPUT.PUT_LINE(message3||'[VARCHAR2]');
DBMS_PIPE.PACK_MESSAGE(message3);
flag := DBMS_PIPE.SEND_MESSAGE('PLSQL$MESSAGE_INBOX');

-- Print message based on flag status.
IF (flag = 0) THEN
DBMS_OUTPUT.PUT_LINE(
'Message sent to PLSQL$MESSAGE_INBOX.');

END IF;

-- Print input title.
DBMS_OUTPUT.PUT(line_return);
DBMS_OUTPUT.PUT_LINE('Output Message from Pipe');
DBMS_OUTPUT.PUT_LINE('Session: ['||session||']');
DBMS_OUTPUT.PUT_LINE('--------------------------------');

-- Use range for-loop to receive and read three messages.
FOR i IN 1..3 LOOP

-- Reset the local buffer.
DBMS_PIPE.RESET_BUFFER;

-- Receive message, success is a zero return value.
flag :=
DBMS_PIPE.RECEIVE_MESSAGE('PLSQL$MESSAGE_INBOX',0);

-- Get the item type from the buffer contents.
code := DBMS_PIPE.NEXT_ITEM_TYPE;

-- Use case statement to return string.
CASE code

-- When buffer contents is a NUMBER.
WHEN 6 THEN

522 Oracle Database 10g PL/SQL Programming

-- Unpack into a NUMBER variable type.
DBMS_PIPE.UNPACK_MESSAGE(message11);
output := output || message11

||'[NUMBER]'||line_return;

-- When buffer contents is a VARCHAR2.
WHEN 9 THEN

-- Unpack into a VARCHAR2 variable type.
DBMS_PIPE.UNPACK_MESSAGE(message13);
output := output || message13

||'[VARCHAR2]'||line_return;

-- When buffer contents is a DATE.
WHEN 12 THEN

-- Unpack into a DATE variable type.
DBMS_PIPE.UNPACK_MESSAGE(message12);
output := output || message12

||'[DATE]'||line_return;

END CASE;

END LOOP;

-- Print message based on flag status.
IF (flag = 0) THEN

-- Print the output variable.
DBMS_OUTPUT.PUT(output);

-- Print confirmation message.
DBMS_OUTPUT.PUT_LINE(
'Message received from PLSQL$MESSAGE_INBOX.');

END IF;

END;
/

The sample program does the following:

■ It defines and declares a variable session using a VARCHAR2 data type. It
is assigned the value from the DBMS_PIPE.UNIQUE_SESSION_NAME
function.

Chapter 11: Intersession Communication 523

■ It defines and declares a variable line_return using a VARCHAR2
data type.

■ It defines message as a VARCHAR2 variable.

■ It defines output as a VARCHAR2 variable.

■ It defines a flag and code function return assignment targets that are
INTEGER data types.

■ It defines and declares three input message variables: message1,
message2, and message3. They are INTEGER, DATE, and VARCHAR2
data types, respectively.

■ It defines three output message variables: message11, message12, and
message13. Like the input message variables, these are INTEGER, DATE,
and VARCHAR2 data types, respectively.

■ It uses the DBMS_PIPE.PURGE procedure to remove any existing contents
from the named pipe.

■ It uses DBMS_OUTPUT utility to print an input title.

■ For each of the three input data types:

■ It uses DBMS_OUTPUT utility to print the input message.

■ It uses DBMS_PIPE.PACK_MESSAGE to put the message into the
local buffer.

■ It uses DBMS_PIPE.SEND_MESSAGE to transfer the local buffer
contents to the named pipe.

■ It evaluates if the flag value is zero. Then, it prints the contents of the output
variable and a success message by using the DBMS_OUTPUT utility.

■ It uses DBMS_OUTPUT utility to print an input title.

■ Using a range for-loop, the program does the following:

■ It uses DBMS_PIPE.RESET_BUFFER to clean the local buffer.

■ It uses DBMS_PIPE.RECEIVE_MESSAGE to move the contents from
the named pipe to the local buffer. It uses a second parameter of zero.
This forces an immediate read on the pipe. Unless you override the
time-out of 1000 days, your program could hang on an empty pipe
instead of returning an error message.

■ It assigns a code value from DBMS_PIPE.NEXT_ITEM_TYPE that
identifies the data type of the local buffer.

524 Oracle Database 10g PL/SQL Programming

Chapter 11: Intersession Communication 525

■ It uses a case statement to evaluate the data type before using the DBMS_
PIPE.UNPACK_MESSAGE utility. The case statement manages retrieval
by data type. The DBMS_PIPE.UNPACK_MESSAGE is an overloaded
procedure that returns a DATE, NUMBER, or VARCHAR2 data type
variable. The DBMS_PIPE.NEXT_ITEM_TYPE enables you to pass into
and manage different data types through a common pipe. You should
check the definition of the DBMS_PIPE utility presented earlier in the
chapter to review the data type to INTEGER return values.

■ It appends to the output variable by assigning it to itself and the message
value.

■ It evaluates if the flag value is zero. Then, it prints the contents of the output
variable and a success message by using the DBMS_OUTPUT utility.

The following is the output from next_item_type.sql script. It shows the
data type in square brackets to the right of the value sent in and received from the
pipe.

-- Available online as output from next_item_type.sql

Input Message to Pipe
Session: [ORA$PIPE$00F2AFC20001]

1776[NUMBER]
04-JUL-76[DATE]
John Adams[VARCHAR2]
Message sent to PLSQL$MESSAGE_INBOX.

Output Message from Pipe
Session: [ORA$PIPE$00F2AFC20001]

1776[NUMBER]
04-JUL-76[DATE]
John Adams[VARCHAR2]
Message received from PLSQL$MESSAGE_INBOX.

TIP
The DBMS_PIPE.PACK_MESSAGE and DBMS_
PIPE.UNPACK_MESSAGE procedures are
overloaded. They can use DATE, NUMBER, and
VARCHAR2 data types. You must ensure you
evaluate data types before reading them from the
local buffer when you use more than VARCHAR2
data types.

The preceding program has highlighted how you manage DATE, NUMBER, and
VARCHAR2 into and out of database pipes. The DBMS_PIPE.NEXT_ITEM_TYPE
function provides the tool to read out different data types.

You will now see how some of the complexity of DBMS_PIPE can be hidden
from your users.

Putting a Wrapper Around DBMS_PIPE
You probably noticed that working with DBMS_PIPE is a bit tedious. Much of the
problem is because of the awkward mix of functions and procedures. Functions
require return variables, and procedures, the UNPACK_MESSAGE procedure, for
instance, require active actual parameter values.

Access to these can be simplified by writing a PL/SQL stored procedure that wraps
(a fancy word for hides the complexity) of the DBMS_PIPE package. The following
package provides a wrapper to exchange messages between all users on the system.
The package builds two pipes for any user by using the create_pipe3.sql script
mentioned earlier in the chapter. These pipes are named USER$MESSAGE_INBOX
and USER$MESSAGE_OUTBOX, respectively.

The package specification creates two functions: SEND_MESSAGE and
RECEIVE_MESSAGE. These wrap the complexity of the DBMS_PIPE package.

The package body implements the two published functions and creates a local
function GET_USER. It returns the user name for the current session. This eliminates
any formal parameters for the RECEIVE_MESSAGE function.

The MESSENGER package provides the ability to send and receive messages in
SQL or PL/SQL. It manages only VARCHAR2 data types. The MESSENGER package
provides a glimpse into building components based on the DBMS_PIPE package.
The following contains the package specification and body:

-- Available online as part of create_messenger.sql

-- Create package specification.
CREATE OR REPLACE PACKAGE messenger IS

-- Define function specification.
FUNCTION send_message
(user_name VARCHAR2
,message VARCHAR2
,message_box VARCHAR2 DEFAULT 'MESSAGE_INBOX')
RETURN INTEGER;

-- Define function specification.
FUNCTION receive_message
RETURN VARCHAR2;

END messenger;

526 Oracle Database 10g PL/SQL Programming

Chapter 11: Intersession Communication 527

/

-- Create package body.
CREATE OR REPLACE PACKAGE BODY messenger IS

-- Define local package function to return user name.
FUNCTION get_user
RETURN VARCHAR2 IS

BEGIN

-- Use a cursor for-loop to get user name.
FOR i IN (SELECT user FROM dual) LOOP

-- Return the user.
return i.user;

END LOOP;

END get_user;

-- Implement package function defined in specification.
FUNCTION send_message
(user_name VARCHAR2
,message VARCHAR2
,message_box VARCHAR2 DEFAULT 'MESSAGE_INBOX')
RETURN INTEGER IS

-- Define variable for target mailbox.
message_pipe VARCHAR2(100 CHAR);

BEGIN

-- Purge local pipe content.
DBMS_PIPE.RESET_BUFFER;

-- Declare the target outbox for a message.
message_pipe := UPPER(user_name) || '$'

|| UPPER(message_box);

-- Put a message in the local buffer.
DBMS_PIPE.PACK_MESSAGE(message);

-- Send message, success is a zero return value.
IF (DBMS_PIPE.send_message(message_pipe) = 0) THEN

-- Message sent, so return 0.
RETURN 0;

528 Oracle Database 10g PL/SQL Programming

ELSE

-- Message not sent, so return 1.
RETURN 1;

END IF;

END send_message;

-- Implement package function defined in specification.
FUNCTION receive_message
RETURN VARCHAR2 IS

-- Define variable for target mailbox.
message VARCHAR2(4000 CHAR) := NULL;
message_box VARCHAR2(100 CHAR);
inbox VARCHAR2(14 CHAR) := 'MESSAGE_INBOX';
timeout INTEGER := 0;
return_code INTEGER;

BEGIN

-- Purge local pipe content.
DBMS_PIPE.RESET_BUFFER;

-- Declare the target outbox for a message.
message_box := get_user || '$' || inbox;

-- Put a message in the local buffer.
return_code :=
DBMS_PIPE.receive_message(message_box,timeout);

-- Evaluate and process return code.
CASE return_code
WHEN 0 THEN

-- Read the message into a variable.
DBMS_PIPE.UNPACK_MESSAGE(message);

WHEN 1 THEN

message := 'The message pipe is empty.';

WHEN 2 THEN

message :=
'The message is too large for variable.';

WHEN 3 THEN

Chapter 11: Intersession Communication 529

message :=
'An interrupt occurred, contact the DBA.';

END CASE;

-- Return the message.
RETURN message;

END receive_message;

END messenger;
/

As a rule, programs are explained in text. For a package like this, a text description
is unproductive. You can see the package lets you exchange messages with other
users, provided they have execute privileges to the wrapper MESSENGER package
or a separate copy in their user source code.

The specification for the package follows:

-- Available as the output from the SQL*Plus DESCRIBE.

FUNCTION RECEIVE_MESSAGE RETURNS VARCHAR2
FUNCTION SEND_MESSAGE RETURNS NUMBER(38)
Argument Name Type In/Out Default?
---------------- ----------------------- ------ --------
USER_NAME VARCHAR2 IN
MESSAGE VARCHAR2 IN
MESSAGE_BOX VARCHAR2 IN DEFAULT

The following program illustrates sending and receiving a message using the
wrapper MESSENGER package:

-- Available online as part of use_messenger.sql

DECLARE

-- Define local package function to return user name.
FUNCTION get_user
RETURN VARCHAR2 IS

BEGIN

-- Use a cursor for-loop to get user name.
FOR i IN (SELECT user FROM dual) LOOP

-- Return the user.
return i.user;

END LOOP;

END get_user;

BEGIN

-- Send a message.
IF (MESSENGER.SEND_MESSAGE(get_user,'Hello World!') = 0)
THEN

-- Receive and print message.
DBMS_OUTPUT.PUT_LINE(MESSENGER.RECEIVE_MESSAGE);

END IF;

END;
/

The sample program does the following:

■ It implements the same get_user local function as used in the
MESSENGER package. By doing so, this program will succeed in your
environment whether you are using the PLSQL user or another user.

■ It uses an if-then-else statement to successfully send of a message.

■ It uses DBMS_OUTPUT to print the message sent and received.

You can use this package or create your own to experiment with DBMS_PIPE.
You have now covered the DBMS_PIPE package and a key feature—intersession
messaging. You will now learn about DBMS_ALERT.

DBMS_ALERT Built-in Package
DBMS_ALERT is the second intersession communication tool provided by Oracle 10g.
It builds on the behavior of DBMS_PIPE and leverages the DBMS_PIPE package.

Introducing the DBMS_ALERT Package
DBMS_ALERT is an asynchronous transaction control mechanism. It publishes an
event. Other users become subscribers by registering their interest in the named
alert. DBMS_ALERT implements a publish-and-subscribe paradigm.

As mentioned at the beginning of the chapter, a publish-and-subscribe process
eliminates polling daemons. Polling daemons run as background processes. They
loop until they find an event. The event triggers the polling daemon to signal, spawn

530 Oracle Database 10g PL/SQL Programming

another program activity, or terminate. There are three components to polling
daemons: One is the monitoring loop. Another is the signal processing detection.
Finally, there is the activity or termination logic triggered by receiving a signal.

If you eliminate polling daemons, you can reduce resource demands on the
database and physical machine. Unfortunately, there are good business reasons
for using polling daemons. DBMS_ALERT provides a means of automating the
monitoring loop and signal processing detection components. DBMS_ALERT
implements public pipes through using the DBMS_PIPE package.

DBMS_ALERT also uses the DBMS_PIPE memory structure in the SGA. While the
structure is not formally referred to as a pipe, it works as a public pipe through DBMS_
PIPE. As discussed earlier in the chapter, they are publicly accessible pipes or FIFO
queues similar to Unix pipes. These pipes are populated on event triggers and subject
to transaction control limits. Moreover, alert pipes communicate between sessions
asynchronously after a transaction occurs. DBMS_ALERT extends DBMS_PIPE by
implementing a publish-and-subscribe paradigm. It publishes notifications. Then it
enables subscribers to register to receive event notifications.

Defining the DBMS_ALERT Package
The DBMS_ALERT package contains only procedures. Procedures are limited to PL/
SQL execution. The DBMS_ALERT procedures support only VARCHAR2 data type
pipes. Like the MESSENGER package provided earlier in the chapter, DBMS_ALERT
is a wrapper package to the DBMS_PIPE package. There is one exception. DBMS_
ALERT maintains a new memory structure that enables the publish-and-subscribe
process. That memory structure contains a list of pipes and those who are interested
in their receipt.

Table 11-2 describes the DBMS_ALERT package.

Chapter 11: Intersession Communication 531

Procedure Description

REGISTER The REGISTER procedure takes a single formal parameter,
NAME, which accepts a valid SIGNAL name. Unfortunately,
if you attempt to register for a signal name that does not
exist, no exception will be raised.
Use REGISTER to subscribe to an alert. You may use it to
subscribe to a number of alerts. You should keep a list of
subscribed alerts. There is no tool to check what you have
registered an interest in.

TABLE 11-2. The DBMS_ALERT Package

532 Oracle Database 10g PL/SQL Programming

Procedure Description

REMOVE The REMOVE procedure takes a single formal parameter,
NAME, which accepts a valid SIGNAL name. Unfortunately,
if you attempt to remove a signal name that does not exist,
no exception will be raised.
Use REMOVE to unsubscribe from an alert. You may use it
to unsubscribe from a number of alerts. You should keep a
list of subscribed alerts. There is no tool to check what you
have registered an interest in.

REMOVEALL The REMOVEALL procedure takes no formal parameter.
Use REMOVEALL to unsubscribe from all alerts. You
may use it to unsubscribe from all previously subscribed
alert lists.
This eliminates the need to keep a list of subscribed alerts.

SET_DEFAULTS The SET_DEFAULTS procedure takes a single formal
parameter, SENSITIVITY, which accepts a valid
INTEGER. It sets the polling frequency for the DBMS_
ALERT package.
The default SENSITIVITY value is five seconds.

SIGNAL The SIGNAL procedure takes two formal parameters, the
NAME and MESSAGE parameters. The NAME parameter
accepts a valid SIGNAL name. A SIGNAL name must be
no longer than 30 characters. The MESSAGE parameter
accepts a valid VARCHAR2 name.
The MESSAGE VARCHAR2 size is limited to 1800 bytes or
less. This presents potential issues using Unicode character
sets. You should not use ORA$ as a preface to any of your
alerts, because those are reserved by Oracle Corporation
for their own use.
You should keep a list of signaled alerts. Since there is no
tool to check what you have signaled, it may help you
clean up your environment without bouncing the instance.

TABLE 11-2. The DBMS_ALERT Package (continued)

Chapter 11: Intersession Communication 533

Procedure Description

WAITONE The WAITONE procedure takes four formal parameters.
They are covered here:
NAME is positionally the first and a mandatory parameter. It
is defined as a VARCHAR2 data type. The formal parameter
NAME accepts a valid SIGNAL name.
MESSAGE is positionally the second and a mandatory formal
parameter. It is an OUT mode parameter and as such is the
output for a value from the procedure. It has a VARCHAR2
data type and a maximum size of 1800 bytes.
STATUS is positionally the third and a mandatory formal
parameter. It is an OUT mode parameter and as such is the
output for a value from the procedure. It has an INTEGER
data type. It returns a zero or a one as possible values. A
zero means that it was successful. A one means that the
program timed out before an alert was signaled.
TIMEOUT is positionally the fourth and an optional formal
parameter. It is an IN mode parameter and sets the length
of time allowed to check for the alert.
When using the WAITONE procedure, you need to ensure
that the variable is equal to or larger than the actual message
sent. If you size the variable too small, you will not receive
the message.
Since DBMS_ALERT uses DBMS_LOCK, you should ensure
that you do not attempt to override an existing lock. If you
do, you will receive a status four from DBMS_LOCK.

TABLE 11-2. The DBMS_ALERT Package (continued)

You have reviewed the idea, utility, and specifics of the DBMS_ALERT package.
In the next section, you will see how DBMS_ALERT works.

Working with the DBMS_ALERT Package
In this section, you will work with the following:

■ Building a trigger to signal an alert

■ Registering interest in an alert

534 Oracle Database 10g PL/SQL Programming

Procedure Description

WAITANY The WAITANY procedure takes four formal parameters.
They are covered here:
NAME is positionally the first and a mandatory parameter. It
is defined as a VARCHAR2 data type. The formal parameter
NAME accepts a valid SIGNAL name.
MESSAGE is positionally the second and a mandatory
formal parameter. It is an OUT mode parameter and as
such is the output for a value from the procedure. It has a
VARCHAR2 data type and a maximum size of 1800 bytes.
STATUS is positionally the third and a mandatory formal
parameter. It is an OUT mode parameter and as such is the
output for a value from the procedure. It has an INTEGER
data type. It returns a zero or a one as possible values. A
zero means that it was successful. A one means that the
program timed out before an alert was signaled.
TIMEOUT is positionally the fourth and an optional formal
parameter. It is an IN mode parameter and sets the length
of time allowed to check for the alert.
When using the WAITANY procedure, you need to ensure
that the variable is equal to or larger than the actual
message sent. If you size the variable too small, you will
not receive the message.
Since DBMS_ALERT uses DBMS_LOCK, you should ensure
that you do not attempt to override an existing lock. If you
do, you will receive a status four from DBMS_LOCK.

TABLE 11-2. The DBMS_ALERT Package (continued)

■ Waiting on an alert

■ Triggering an alert

■ Analyzing the impact of transaction-based alerts

These topics will help prepare you to use DBMS_ALERT successfully. The topics
also should prepare you to experiment with the package. Before running any of
these scripts, you should run create_messages_table.sql. It will build
necessary database tables to support the examples.

Building a Trigger to Signal an Alert
These topics will help prepare you to use DBMS_ALERT successfully. The topics
also should prepare you to experiment with the package. Before running any of
these scripts, you should run create_messages_table.sql. It will build
necessary database tables to support the examples.

The following row-level trigger allows you to see how to capture inserts,
updates, and deletes from a table. As you work with the trigger and DBMS_ALERT,
you will find there are some design issues to consider. This trigger is our signaling
device. Any call to DBMS_ALERT.SIGNAL should be found in a database trigger.
If it is not in a trigger, you are leveraging DBMS_ALERT in an unintended way.

-- Available online as part of create_signal_trigger.sql

CREATE OR REPLACE TRIGGER signal_messages
AFTER
INSERT OR UPDATE OR DELETE
OF message_id
,message_source
,message_destination
,message

ON messages
FOR EACH ROW

BEGIN

-- Check if no row previously existed - an insert.
IF :old.message_id IS NULL THEN

-- Signal Event.
DBMS_ALERT.SIGNAL(
'EVENT_MESSAGE_QUEUE'
,:new.message_source||':Insert');

-- Insert alert message.

Chapter 11: Intersession Communication 535

INSERT
INTO messages_alerts
VALUES (:new.message_source||':Insert');

-- Check if no row will exist after DML - a delete.
ELSIF :new.message_id IS NULL THEN

-- Signal Event.
DBMS_ALERT.SIGNAL(
'EVENT_MESSAGE_QUEUE'
,:old.message_source||':Delete');

-- Insert alert message.
INSERT
INTO messages_alerts
VALUES (:old.message_source||':Delete');

-- This handles update DMLs.
ELSE

-- Check if message source is updated.
IF :new.message_source IS NULL THEN

-- Signal Event.
DBMS_ALERT.SIGNAL(
'EVENT_MESSAGE_QUEUE'
,:new.message_source||':Update#1');

-- Insert alert message.
INSERT
INTO messages_alerts
VALUES (:new.message_source||'Update#1');

-- A column other than message source is updated.
ELSE

-- Signal Event.
DBMS_ALERT.SIGNAL(
'EVENT_MESSAGE_QUEUE'
,:old.message_source||':Update#2');

-- Insert alert message.
INSERT
INTO messages_alerts
VALUES (:old.message_source||':Update#2');

END IF;

536 Oracle Database 10g PL/SQL Programming

Chapter 11: Intersession Communication 537

END IF;

END;
/

The sample trigger does the following:

■ It creates a row-level trigger on the messages table. The trigger will fire
after an insert, update, or delete from the messages table.

■ It checks if the :old.message_id does not exist. This condition is met
whenever a new row is inserted into the target table. If this condition is met,
it uses DBMS_ALERT to signal an alert to EVENT_MESSAGE_QUEUE and
insert a matching message into the messages_alert table.

■ It checks if the :new.message_id does not exist. This condition is met
whenever a row is deleted from the target table. If this condition is met,
it uses DBMS_ALERT to signal an alert to EVENT_MESSAGE_QUEUE and
insert a matching message into the messages_alert table.

■ The all other category, or ELSE, handles updates. There are two types of
updates that the trigger is interested in capturing. One is an update that
changes the message_source. The other is any updates that change
something other than the message_source. Within the ELSE clause,
it does the following:

■ It checks if the :new.message_source does not exist. This
condition is met whenever an update to the row does not change the
message_source. If this condition is met, it uses DBMS_ALERT to
signal an alert to EVENT_MESSAGE_QUEUE and insert a matching
message into the messages_alert table.

■ It uses the ELSE clause to process any change to the message_
source column. If this condition is met, it uses DBMS_ALERT to signal
an alert to EVENT_MESSAGE_QUEUE and insert a matching message
into the messages_alert table.

You have built your signaling device. It will publish the message. The next
section will examine how you subscribe to see the published message.

Registering Interest in an Alert
When you register your interest in an alert, you are subscribing to an alert. You
register within the scope of a session. This means that each session that is interested
in a published alert must subscribe.

538 Oracle Database 10g PL/SQL Programming

The following example program subscribes to a named alert:

-- Available online as part of register_interest.sql

BEGIN

-- Register interest in an alert.
DBMS_ALERT.REGISTER('EVENT_MESSAGE_QUEUE');

END;
/

The sample program registers interest in the EVENT_MESSAGE_QUEUE alert.
You have now registered interest in the EVENT_MESSAGE_QUEUE alert.

Alternatively, you have subscribed to the alert. Every time the alert fires after an
insert, update, or delete, you will receive a message if you are waiting to handle
its receipt.

Waiting on an ALERT
After you have registered your interest in an alert, you may or may not receive an
alert. Part of a publish-and-subscribe paradigm requires you to wait to receive a
message. It is very much like a baseball pitcher’s and catcher’s relationship. If the
catcher is not there and the pitcher throws the ball, the ball will not be caught.

In the following program, you will learn to catch the ball. The program shows
you how to wait on a single alert. You should also note that the SENSITIVITY,
or polling rate, discussed earlier is the default. The default is checking every five
seconds.

-- Available online as part of waitone.sql

DECLARE

-- Define OUT mode variables required from WAITONE.
message VARCHAR2(30 CHAR);
status INTEGER;

BEGIN

-- Register interest in an alert.
DBMS_ALERT.WAITONE('EVENT_MESSAGE_QUEUE'

,message
,status
,30);

IF (STATUS <> 0) THEN

Chapter 11: Intersession Communication 539

-- Print an error message.
DBMS_OUTPUT.PUT_LINE('A timeout has happened.');

ELSE

-- Print title.
DBMS_OUTPUT.PUT_LINE('Alert Messages Received');
DBMS_OUTPUT.PUT_LINE('-----------------------');

-- Print alert message received.
DBMS_OUTPUT.PUT_LINE(message);

END IF;

END;
/

The sample program does the following:

■ It defines a message variable of VARCHAR2 data type.

■ It defines a status variable of INTEGER data type.

■ It uses DBMS_ALERT.WAITONE procedure to create a polling loop for 30
seconds. Given a five-second default interval, the polling loop will run six
times before ending.

■ It uses an if-then-else statement to check if the status was due to a time-out.
A time-out occurs when no alert was received. If the time-out does not
occur before an alert is received, it will print the alert.

You should run this without doing anything to trigger the alert. It will show you
a time-out message:

-- Available online as output from waitone.sql

A timeout has happened.

You have worked through subscribing to an alert. Unfortunately, there was no
alert signaled before the scheduled time-out. The next section will show you how
to trigger events.

Triggering an Alert
After you have built a trigger and registered interest in another session where you
are waiting for a signaled alert, you can trigger the alert. That means you need two

540 Oracle Database 10g PL/SQL Programming

sessions connected to the PLSQL user to do this. In one session, you need to start
the waitone.sql script discussed previously. In the other session, you need to run
the following program before the thirty seconds has expired. If thirty seconds is too
short a time, then you should modify waitone.sql to allow yourself more time.

The following program will trigger an alert:

-- Available online as part of trigger_alerts1.sql

-- Insert a new row.
INSERT
INTO messages
VALUES (4,'PLSQL','USERA','Insert, Shazaam.');

-- Upgrade a row.
UPDATE messages
SET message = 'Update, Shazaam.'
WHERE message_id = 2;

-- Delete a row.
DELETE messages
WHERE message_id = 3;

-- Commit the changes.
COMMIT;

The preceding program inserted, updated, and deleted rows from the messages
table. After making all three changes, it committed the changes.

The waitone.sql script will now return the following formatted output:

-- Available online as output from waitone.sql

Alert Messages Received

PLSQL:Delete

MESSAGE

PLSQL:Insert
PLSQL:Update#2
PLSQL:Delete

You can see the benefit of doing the INSERT statement within the signal_
messages trigger. It sends the messages and inserts a duplicate into a table. The
commit for the external transaction commits the writes to the messages_alerts
table. As you can see, there are three messages, but the DBMS_ALERT subscription
returned only the last one. The other two messages were lost. This is why the output
for alert messages received shows only the last DML change made.

Chapter 11: Intersession Communication 541

In the next section, you will analyze why you lost two messages with DBMS_
ALERT. You may already have guessed the answer. If so, you have two choices at
this point. You can skip the next section or confirm your analysis.

Analyzing the Impact of Transaction-Based Alerts
The general answer is that the polling loop returns immediately the alert message.
In the preceding script, the commit occurs only once at the end of the program.
Actually, three messages were sent by DBMS_ALERT.SIGNAL. The second message
overwrote the value of the first, and the third, the value of the second. The third
value was actually the only value published because it was the last value signaled
before the commit.

DBMS_ALERT operates much like DBMS_PIPE. Individual signals are stuffed
into a private pipe that acts like a local buffer. Imitating a local buffer, the private
pipe can contain only one signal value. Therefore, only the last private pipe value
is signaled to the subscribers.

The following program will trigger three alerts:

-- Available online as part of trigger_alerts2.sql

-- Insert a new row.
INSERT
INTO messages
VALUES (4,'PLSQL','USERA','Insert, Shazaam.');

-- Commit the change.
COMMIT;

-- Upgrade a row.
UPDATE messages
SET message = 'Update, Shazaam.'
WHERE message_id = 2;

-- Commit the change.
COMMIT;

-- Delete a row.
DELETE messages
WHERE message_id = 3;

-- Commit the change.
COMMIT;

The preceding program inserted, updated, and deleted rows from the messages
table. It committed each change before making another.

You can now rerun the waitone.sql program in one session and trigger_
alerts2.sql in another. The waitone.sql script will generate the following
results:

-- Available online as output from waitone.sql

Alert Messages Received

PLSQL:Insert

MESSAGE

PLSQL:Insert
PLSQL:Update#2
PLSQL:Delete

As you can see, only the first signaled message is received by the polling program
waitone.sql. The reason is that the polling program is a simple illustration of
how you catch the signal. The commit terminates the transaction. Termination of
the transaction triggers the signaling of the alert.

The presentation has laid a foundation for you. More elegant solutions can be
developed. You develop them by nesting the polling logic into signal management
programming logic.

Summary
You have covered both mechanisms for accomplishing intersession communication,
DBMS_ALERT and DBMS_PIPE. The DBMS_PIPE package gives you more freedom
of latitude but requires more programming management, while the DBMS_ALERT
package is very limited in scope because of how it is linked to transaction
processing.

The chapter has provided coverage of both utilities. You should be able to
leverage the material to rapidly build intersession communication solutions.

542 Oracle Database 10g PL/SQL Programming

CHAPTER
12

External Routines

Copyright © 2004 by The McGraw-Hill Companies, Inc. Click here for terms of use.

E
xternal routines are delivered in Oracle 10g through external
procedures. They enable the database to communicate with external
applications through PL/SQL. While it is nontrivial to configure the
database to support them, external procedures provide a critical
feature.

You will cover topics as follows. The chapter assumes you read it sequentially.
It also assumes you have read the preceding eleven chapters. If you feel comfortable
with an area, please feel free to move to the section of interest. However, the chapter
assumes you have mastery of earlier sections.

■ Introducing external procedures

■ Working with external procedures

A new script, create_user.sql, is provided for use with this chapter. You
will need to run it to work through the examples in the chapter.

Introducing External Procedures
External routines provide the ability to communicate between the database and
external programs written in C, C++, COBOL, FORTRAN, PL/1, Visual Basic, and
Java. There is one caveat; the language must be callable from C. While the surgeon
general has not provided a warning, other languages can present different challenges
than PL/SQL. The chapter will focus on implementations of C and Java libraries as
external routines.

Development teams may want to isolate programming logic from the database.
External routines are the natural solution. They are ideal for computation-intensive
programs, providing an interface between external data sources and the database.
Unlike stand-alone Oracle Pro*C programs, they are callable from PL/SQL.

You will work with a C shared library and a Java class library in this chapter.
The C and Java examples have been made as small and narrow in scope as possible
to conserve space while you focus on PL/SQL programming.

External routines leverage Oracle Net Services transport layer. You will need to
work through a number of architectural and configuration issues to run the basic
samples. It is helpful if you have some formal background in C or Java, but it is not
necessary. This chapter is important because PL/SQL programmers can be expected
to explain the process to C and Java programmers. You will also write the PL/SQL
library definitions, which become the gateways to these libraries. These are often
called PL/SQL wrappers.

544 Oracle Database 10g PL/SQL Programming

Chapter 12: External Routines 545

NOTE
The documentation for this chapter is spread far and
wide. The key configuration references are Chapter
8 in the Database Application Developer’s Guide –
Fundamentals, Chapter 5 in the Heterogeneous
Connectivity Administrator’s Guide, and Chapter 13
in the Net Services Administrator’s Guide.

You will now work with implementing external procedures.

Working with External Procedures
As discussed, external procedures enable you to communicate through PL/SQL with
external programs. The external programs can call back to an Oracle database using
the Oracle Call Interface (OCI). They can also communicate with external databases
such as Sybase, IBM DB2, and Microsoft SQL Server. External procedures are ideal
to work with external applications. External applications can use other databases or
file systems as data repositories. Moreover, any combination of these is supported.

You will now learn about the architecture for external procedures. Then you will
learn the setup issues for Oracle Networking and the heterogeneous service agent.
When you have learned how to configure your environment, you will then work
with building and accessing C and Java libraries from PL/SQL.

Defining the extproc Architecture
Oracle built an extensible architecture for external procedures. It is flexible to support
any programming language that is callable by the C programming language. For
example, you can call a C++ program using the extern command in C. However,
callbacks into the database by the external programming languages are limited to
those supported by OCI. OCI supports C, C++, COBOL, FORTRAN, PL/1, Visual
Basic, and Java.

Whatever programming language you choose to implement must support
building a shared library. Likewise, the platform must support shared libraries.
Shared libraries, also called dynamic link libraries (DLLs), are code modules that
can be leveraged by your program. Java shared libraries are called libunits. When
you access shared libraries from PL/SQL, the libraries are loaded dynamically at run
time as external procedures. By default, each remote procedure call uses a discrete
and dedicated extproc agent to access the shared library. Alternatively, you can
configure a multithreaded agent through the Oracle Heterogeneous Services. If you
do so, you can share the extproc agent among any number of database sessions.

External procedures use the PL/SQL library definition to exchange data between
the PL/SQL run-time engine and shared libraries. The PL/SQL library definition acts
as a wrapper to the shared library. It defines the external call specification and maps
PL/SQL data types to native language equivalents. The map between data types is
used to translate data types when exchanging information. Figure 12-1 illustrates the
external procedure architecture.

A call to a PL/SQL wrapper translates types. Then, the wrapper sends a signal across
Oracle Net Services. Oracle Net Services receives the signal and spawns or forks an
extproc agent process. It is the extproc agent that accesses the shared library.
The extproc agent forks a Remote Procedure Call (RPC) to the shared library. The
shared library result is returned to the extproc agent by the RPC. The extproc
agent then returns the result to the PL/SQL wrapper. Next, the PL/SQL wrapper receives
and translates the data types from the local language to the native PL/SQL data types.
Ultimately, the PL/SQL wrapper returns the value to the calling PL/SQL program.

546 Oracle Database 10g PL/SQL Programming

FIGURE 12-1. External procedure architecture

As you can see from Figure 12-1, there are two potential failure points to dynamic
execution. The decision diamonds in the process flow chart qualify potential failure
points. Both failure points are linked to the listener. The second failure point can also
be missing libraries in the defined locations.

One failure point exists when a separate extproc agent listener is not configured
or incorrectly configured. The other failure point arises in two possible cases. One case
is when the extproc listener fails to resolve the connection. Another case is when a
physical shared library is not found where defined in the PL/SQL library definition.

Configuring the heterogeneous multithreaded agent is complex. However, it
enables you to share a single extproc agent among multiple database sessions.
Benefits of this implementation are a reduction in resources required to dynamically
fork extproc agents. The default behavior of external procedures is to fork a new
extproc agent for each external procedure call. The default works but consumes
too many resources too frequently. When you have many sessions using external
libraries, you should use a multithreaded extproc agent. Figure 12-2 looks at how
a multithreaded extproc agent works.

As shown in the diagram, multiple database sessions can connect through the
heterogeneous multithreaded extproc agent, which fits into the extproc agent
niche in Figure 12-1. Once the signal arrives at the agent, the monitor thread puts

Chapter 12: External Routines 547

FIGURE 12-2. Multithreaded agent architecture

548 Oracle Database 10g PL/SQL Programming

the connection into a FIFO queue. The monitor thread maintains load-balancing
information; using that information, the monitor thread passes the connection to the
first available dispatcher thread, which puts the request into another FIFO queue.
Task threads read the dispatcher FIFO queues and process requests. Each task thread
sends the result back to the requesting session. You will cover more about the
multithreaded agent later in this chapter.

You have developed an understanding of the basic architecture of external
procedures. The next section will show you how to set up and configure Oracle
Net Services to support external procedures.

Defining extproc Oracle Net Services
Configuration
External procedures use Oracle Net Services to fork or link signals to the extproc
agent. As discussed, the extproc agent can be the default stand-alone unit or a
multithreaded extproc agent. Unfortunately, configuring your listener.ora
and tnsnames.ora files is a manual process.

The standard listener built by the Net Configuration Assistant on installation
does not provide a complete extproc agent listener. Net Configuration Assistant
likewise does not provide an automated way to create an extproc agent listener.
The standard listener includes an extproc handler service in the standard listener.
This is not adequate for implementing the extproc agent. You must set up an
exclusive listener for external procedures.

As a PL/SQL developer, configuring Oracle Net Services may not be something
you do often. It is also possible your DBA may be unfamiliar with the nuances
required to support extproc agents. This section provides the steps required to
configure Oracle Net Services to support extproc agents.

The listener.ora file can be found in one of two locations. It can be found
in the directory pointed to by the $TNS_ADMIN environment variable. Alternatively,
the default location is in the $ORACLE_HOME/network/admin directory. The
standard listener.ora file contains two entries: one is the LISTENER and the
other is the SID_LIST_LISTENER.

The LISTENER describes an address list or set of address lists. Addresses consist
of a protocol definition and a key value, or else a protocol definition, a host name,
and a port number. The Oracle 10g standard fresh install LISTENER entry in the
listener.ora file follows:

-- Available online as listener1.ora
LISTENER =
(DESCRIPTION_LIST =
(DESCRIPTION =
(ADDRESS_LIST =
(ADDRESS = (PROTOCOL = IPC)

(KEY = EXTPROC)

Chapter 12: External Routines 549

)
)
(ADDRESS_LIST =
(ADDRESS = (PROTOCOL = TCP)

(HOST = <host_name>.<domain_name>)
(PORT = 1521)

)
)

)
)

The standard listener.ora file has a problem supporting the extproc
agent. The problem is that the listener has two ADDRESS_LIST parameters using
different protocols. The first listens for Internal Procedure Calls (IPCs). The second
listens for TCP messages, like RPCs. This is the principal reason why a separate
listener is required for extproc IPC calls.

The SID_LIST_LISTENER, the second entry in the standard listener.ora
file, contains the SID description. The Oracle 10g standard SID_DESC is defined
by the SID_NAME, ORACLE_HOME, and PROGRAM parameter definitions. The SID_
NAME parameter is defined as PLSExtProc, which is used as the extproc identifier.
The ORACLE_HOME parameter defines the Oracle home directory. Finally, the
PROGRAM parameter defines the extproc agent as the program. The Oracle 10g
standard SID_LIST_LISTENER entry in the listener.ora file follows:

-- Available online as listener1.ora
SID_LIST_LISTENER =
(SID_LIST =
(SID_DESC =
(SID_NAME = PLSExtProc)
(ORACLE_HOME = <oracle_home_directory)
(PROGRAM = extproc)

)
)

The standard SID_LIST_LISTENER is another mix of two purposes in one
definition. The SID_NAME and PROGRAM parameters are there to support the
extproc agent signals. The ORACLE_HOME parameter is provided for both the TCP
listener and extproc IPC services. These two services run under a single standard
listener, although they really are suited to separate listeners. The clincher is that
external procedures require their own listener.

NOTE
Oracle provides the preceding caveat for the
extproc listener in Chapter 8 of the Oracle
Database Application Developer’s Guide –
Fundamentals.

The standard listener.ora file works in tandem with the standard
tnsnames.ora file. The listener.ora and tnsnames.ora files are used by
Oracle Net Services. The standard tnsnames.ora file provides two service names.
One is CODE, which maps to the standard listener to the database. The other is
EXTPROC_CONNECTION_DATA, which maps to the extproc agent. The following
is an example of the standard tnsnames.ora file:

-- Available online as part of tnsnames1.ora
CODE =
(DESCRIPTION =
(ADDRESS = (PROTOCOL = TCP)

(HOST = <host_name>.<domain_name>)
(PORT = 1521)

)
(CONNECT_DATA =
(SERVER = DEDICATED)
(SERVICE_NAME = <database_sid>)

)
)

EXTPROC_CONNECTION_DATA =
(DESCRIPTION =
(ADDRESS_LIST =
(ADDRESS = (PROTOCOL = IPC)

(KEY = EXTPROC)
)

)
(CONNECT_DATA =
(SID = PLSExtProc)
(PRESENTATION = RO)

)
)

The tnsnames.ora service names provide connection aliases that enable
users and programs to connect to the listener. They resolve requests for connections
by matching the tnsnames.ora ADDRESS parameter to the address in a running
listener. Then they use the CONNECTION_DATA parameters to connect a database
or agent. The extproc agent is not the only agent supported by Oracle 10g. You
can define any number of heterogeneous servers that enable communication
between Oracle and other databases.

On any case-insensitive system, these files resolve extproc across Oracle
Net Services. They fail on a case-sensitive system. The KEY parameter in the
listener.ora file is lowercase, while the KEY value in the tnsnames.ora is
uppercase. The two will fail to resolve. You can see if your system contains the
error by using the tnsping utility.

550 Oracle Database 10g PL/SQL Programming

For example, run tnsping with the following:

$ tnsping EXTPROC_CONNECTION_DATA

If you get the following, everything is correctly configured:

TNS Ping Utility for Linux: Version 10.1.0.2.0 - Production on 07-JUL-2004
Copyright (c) 1997, 2003, Oracle. All rights reserved.
Used parameter files:
/u02/oracle/10g/10.1.0/network/admin/sqlnet.ora
Used TNSNAMES adapter to resolve the alias
Attempting to contact (DESCRIPTION = (ADDRESS_LIST = (ADDRESS = (PROTOCOL =
IPC)(KEY = extproc))) (CONNECT_DATA = (SID = PLSExtProc) (PRESENTATION = RO)))
OK (0 msec)

If you get a TNS-12541 error when using tnsping, the likelihood is that there is a
mismatch between the ADDRESS parameter values in the listener.ora and
tnsnames.ora files.

Before you are introduced to working files, you need to learn about the
PROGRAM and ENV parameters in listener.ora files. The PROGRAM parameter
must specify a valid executable in the $ORACLE_HOME/bin directory. The program
can access only libraries found in the $ORACLE_HOME/lib directory by default.
You can change the default by doing any of the following:

■ Define EXTPROC_DLLS to enable loading of shared libraries. You have
three choices for using EXTPROC_DLLS. They are shown in Table 12-1.

■ Define the $LD_LIBRARY_PATH for the extproc agent.

■ Define the $PATH for the extproc agent.

■ Define the $APL_ENV_FILE to specify a set of environment variables for
the external extproc agent.

Chapter 12: External Routines 551

Syntax Description Security Level

DLL:DLL Allows the extproc agent to load any of
the specified shared libraries located in the
$ORACLE_HOME/lib directory.

Medium

ONLY:DLL:DLL Allows extproc to run any entered DLLs
from specified directories.

High
(Recommended)

ANY Allows extproc to load any DLL. It
disables DLL checking.

Low

TABLE 12-1. Options for EXTPROC_DLLS

552 Oracle Database 10g PL/SQL Programming

The following listener.ora file separates the two listeners. It also defines
an external library that you will work with later in the chapter. You can use it as an
example to build your own listener.ora file.

-- Available online as part of listener2.ora
LISTENER =
(DESCRIPTION_LIST =
(DESCRIPTION =
(ADDRESS_LIST =
(ADDRESS = (PROTOCOL = TCP)

(HOST = <host_name>.<domain_name>)
(PORT = 1521)

)
)

)
)

SID_LIST_LISTENER =
(SID_LIST =
(SID_DESC =
(SID_NAME = <database_name>)
(ORACLE_HOME = <oracle_home_directory>)

)
)

CALLOUT_LISTENER =
(DESCRIPTION_LIST =
(DESCRIPTION =
(ADDRESS_LIST =
(ADDRESS = (PROTOCOL = IPC)

(KEY = extproc)
)

)
)

)

SID_LIST_CALLOUT_LISTENER =
(SID_LIST =
(SID_DESC =
(SID_NAME = PLSExtProc)
(ORACLE_HOME = <oracle_home_directory>)
(PROGRAM = extproc)
(ENV = "EXTPROC_DLLS=ONLY:

<oracle_home_directory>/customlib/writestr1.so
,LD_LIBRARY_PATH=<oracle_home_directory>/lib")

)
)

Chapter 12: External Routines 553

The sample listener.ora file delivers the following:

■ It has a standard LISTENER TCP listener on port 1521. You should note
that the IPC ADDRESS information has been removed from the standard
listener. The name of the standard listener is LISTENER.

■ It has a standard SID_LIST_LISTENER. You should notice that the SID_
NAME parameter value is no longer PLSExtProc, which was used for the
extproc agent. It uses the database name. You should also notice that the
PROGRAM parameter and value are no longer in the SID_LIST_LISTENER.

■ It has an extproc CALLOUT_LISTENER ICP listener using a KEY value of
extproc (all lowercase). Basically, the second address was removed from
the standard listener and put in a separate listener.

■ It has an extproc SID_LIST_CALLOUT_LISTENER. You should notice
that the SID_NAME parameter has a value of PLSExtProc, which should
map to a case-sensitive equivalent SID parameter value in the CONNECT_
DATA tnsnames.ora service name. Also, the PROGRAM parameter is there
with a new ENV parameter. The ENV parameter provides the recommended
security implementation that allows access to only a specified library and
the LD_LIBRARY_PATH for the external procedure.

The new listener.ora requires a new tnsnames.ora file. The following
file works with the new listener.ora previously covered:

-- Available online as part of tnsnames2.ora
CODE =
(DESCRIPTION =
(ADDRESS = (PROTOCOL = TCP)

(HOST = <host_name>.<domain_name>)
(PORT = 1521)

)
(CONNECT_DATA =
(SERVER = DEDICATED)
(SERVICE_NAME = CODE)

)
)

EXTPROC_CONNECTION_DATA =
(DESCRIPTION =
(ADDRESS_LIST =
(ADDRESS = (PROTOCOL = IPC)

(KEY = extproc)
)

)

(CONNECT_DATA =
(SID = PLSExtProc)
(PRESENTATION = RO)

)
)

The sample tnsnames.ora file delivers the following:

■ It has a CODE alias that uses an ADDRESS pointing to the database and
a CONNECT_DATA parameter supporting a dedicated connection. These
components are defined as follows:

■ The ADDRESS contains three parameters. PROTOCOL has a value of
TCP. HOST has a value of the host name and domain name. PORT has
a value for the listening port number.

■ The CONNECT_DATA parameter contains two parameters. SERVER has
a value that is dedicated, which means a dedicated server connection.
SERVICE_NAME has a value equal to the ORACLE_SID value.

■ It has an EXTPROC_CONNECTION_DATA alias that uses a single ADDRESS
to an IPC and CONNECT_DATA to the extproc SID. These components
are defined as follows:

■ The ADDRESS points to an IPC PROTOCOL using a KEY value. The KEY
value is known as the listener key. You need to know that the choice
of using extproc is arbitrary. The listener key can be any string,
provided it is equally defined in both the listener.ora and
tnsnames.ora files.

■ The CONNECT_DATA parameter supports a SID value of PLSExtProc.
The SID points to the extproc SID value. Like the listener key, it is an
arbitrary string token. The only limitation is that what you define in the
listener.ora should resolve through the tnsnames.ora file.
PLSExtProc was used as the extproc SID because it happens to
be the Oracle default value.

You now have working listener.ora and tnsnames.ora files. You will need
to shut down the listener services, copy the files into the new locations, and restart the
listener. The following are the steps to take to replace the listener, by platform.

Microsoft Windows

■ As the Oracle user, source your environment, navigate to your system
services and shut down the Oracle listener.

■ Copy the original listener.ora and tnsnames.ora files in the
%ORACLE_HOME%\network\admin directory to listener.ora.orig
and tnsnames.ora.orig.

554 Oracle Database 10g PL/SQL Programming

■ Copy the new listener2.ora and tnsnames2.ora files into the
%ORACLE_HOME%\network\admin directory and rename them as
listener.ora and tnsnames.ora, respectively.

■ As the Oracle user, source your environment, navigate to your system
services, and start up the Oracle listener. In Windows, you will need to
rebuild the original service and build a new service for the second listener.

■ Verify that you have two listener processes running by using the Task
Manager. You will find the running services under the Processes tab.

Unix

■ As the Oracle user, source your environment and shut down the Oracle
listener. You can use the following on a generic demonstration database:

$ lsnrctl stop LISTENER

■ Copy the original listener.ora and tnsnames.ora files in the
$ORACLE_HOME/network/admin directory to listener.ora.orig
and tnsnames.ora.orig.

■ Copy the new listener2.ora and tnsnames2.ora files into the
$ORACLE_HOME/network/admin directory and rename them as
listener.ora and tnsnames.ora, respectively.

■ As the Oracle user, source your environment and start up the Oracle
listener and extproc agent listener. You can use the following syntax,
based on a generic demonstration database:

$ lsnrctl start LISTENER

$ lsnrctl start CALLOUT_LISTENER

■ Verify that you have two listener processes running by using the ps utility,
as shown:

$ ps –ef | grep –v grep | grep tnslsnr

At this point, you should have a LISTENER for the database and a CALLOUT_
LISTENER for the extproc agent. You should also have a background process
running for the extproc agent. In Microsoft Windows, you can check with the
Task Manager for an extprocPLSExtProc process. In Unix, you can use the ps
utility to find it.

Assuming you have successfully started the two listeners, you need to confirm
whether or not it can communicate to the extproc agent. There are two steps to
validating whether or not it is working. After sourcing your environment files, you
should first use the tnsping utility as you did earlier in the chapter to test the

Chapter 12: External Routines 555

network connection. You will use the EXTPROC_CONNECTION_DATA alias to check
connectivity. Run tnsping with the following:

$ tnsping EXTPROC_CONNECTION_DATA

If you get the following, everything is correctly configured:

TNS Ping Utility for Linux: Version 10.1.0.2.0 - Production on 07-JUL-2004
Copyright (c) 1997, 2003, Oracle. All rights reserved.
Used parameter files:
/u02/oracle/10g/10.1.0/network/admin/sqlnet.ora

If you get a TNS-12541 error when using tnsping, the likelihood is that there
is a mismatch between the ADDRESS parameter values in the listener.ora and
tnsnames.ora files. Please check if there is a typo in either the listener.ora
or tnsnames.ora file. You must resolve any TNS-12541 error before continuing
with the examples in the chapter.

Assuming you have successfully used the tnsping utility, the second step is to
attempt to connect to the extproc agent TNS alias. Use this to attempt to connect
to the extproc agent TNS alias:

$ sqlplus plsql/plsql@EXTPROC_CONNECTION_DATA

It should always fail. You should get the following output:

SQL*Plus: Release 10.1.0.2.0 - Production on Thu Jul 8 16:15:50 2004
Copyright (c) 1982, 2004, Oracle. All rights reserved.
ERROR:
ORA-28547: connection to server failed, probable Net8 admin error

This is the correct behavior. It is actually telling you that the SQL*Plus connection is
rejected by the extproc agent. For this message to be returned, the connection
had to be begun and rejected as not supported.

You have now learned how to configure your listener to support the extproc
agent. The next section will demonstrate an alternative to spawning a dedicated
extproc agent for each database session.

Defining the Multithreaded
External Procedure Agent
As discussed in the review of architecture, configuring the heterogeneous
multithreaded agent is complex. However, it enables you to share a single extproc
agent among multiple database sessions. Implementing a multithreaded external
procedure agent reduces resources required to dynamically fork extproc agents.

556 Oracle Database 10g PL/SQL Programming

Chapter 12: External Routines 557

The default behavior of external procedures is to fork a new extproc agent for
each external procedure call. This default works but consumes too many resources
too frequently. When you have many sessions using external libraries, you should
use a multithreaded extproc agent. This section will show you how to configure
and use the mutlithreaded extproc agent.

Before you begin to learn how to configure the multithreaded external
procedure agent, there are three things to note about it:

■ The external library must be thread-safe.

■ The agent process, the database server, and the listener process must be on
the same host.

■ The agent process must run from the same database instance that issues the
external procedure call.

When using the multithreaded external procedure agent, you must start the
agent separately from the database. The multithreaded external procedure agent is
an implementation of Oracle Heterogeneous Connectivity Services. The agtctl
executable to start and manage sessions is the Agent Control utility. You will find it
in the $ORACLE_HOME/hs directory.

If you attempt to use this tool without setting either the $AGTCTL_ADMIN or
$TNS_ADMIN environment variable, you will generate the following error message:

$ agtctl

AGTCTL: Release 10.1.0.2.0 - Production on Wed Jul 7 07:57:24 2004

Copyright (c) 1982, 2004, Oracle. All rights reserved.

ORA-28591: agent control utility: unable to access parameter file
ORA-28591: agent control utility: unable to access parameter file

It is recommended that you set the $AGTCTL_ADMIN environment variable to point
to the $ORACLE_HOME/hs/admin directory. Any environment variables configured
in the ENV parameter within your extproc listener must be in the sourced
environment of the Oracle user when running agtctl.

The agtctl utility has two interfaces. One is the single-line command mode,
and the other is the agtctl shell mode. There is no GUI interface to the agtctl
utility. There is no text configuration file for this utility. It maintains parameter
values in the $ORACLE_HOME/hs/admin/initagt.dat control file, which is
a binary file maintained by the agtctl utility. Before you run the agtctl utility,
the file will not exist. Table 12-2 provides a synopsis of the command structure.

There are six initialization parameters. All have default behaviors that can
be overridden by using the agtctl set command. Table 12-3 provides the
initialization parameters and their default values and descriptions.

558 Oracle Database 10g PL/SQL Programming

Command Syntax Description

delete agent_sid Deletes an agent_sid entry.

Exit Exits the agtctl file.

Help Displays available commands.

set parameter_name
parameter_value

Sets a configuration parameter.

Show parameter_name Shows a parameters value.

shutdown agent_sid Shuts down an agent_sid multithreaded agent.

startup agent_sid Starts an agent_sid multithreaded agent.

unset parameter_name
parameter_value

Unsets a configuration parameter.

TABLE 12-2. Commands for the agtctl Utility

Parameter Default Value Description

Listener_address (ADDRESS_LIST =
(ADDRESS =
(PROTOCOL = IPC)
(KEY = PNPKEY))
(ADDRESS =
(PROTOCOL = IPC)
(KEY= <oracle_sid>)
(ADDRESS =
(PROTOCOL = TCP)
(HOST = 127.0.0.1)
(PORT = 1521)))

Address list for the agent controller
listener. The <oracle_sid> value is the
<service_name> parameter in the
tnsnames.ora entry for the database.

max_dispatchers 1 Maximum number of dispatchers.

max_sessions 5 Maximum number of sessions.

max_task_threads 2 Maximum number of threads.

shutdown_address (ADDRESS_LIST =
(ADDRESS =
(PROTOCOL = IPC)
(KEY = extproc)))

Address on which agtctl listens for
shutdown instruction.

tcp_dispatchers 0 Number of dispatchers listening on TCP.
All other dispatchers listen on IPC.

TABLE 12-3. Initialization Parameters for the agtctl Utility

You will now configure the extproc multithreaded agent using the agtctl
shell mode. The following steps will enable one hundred sessions and four
dispatchers before starting the extproc multithreaded agent:

AGTCTL> set agent_sid CALLOUT_LISTENER
AGTCTL> set max_dispatchers 4
AGTCTL> set max_sessions 100
AGTCTL> show max_dispatchers
4
AGTCTL> show max_sessions
100
AGTCTL> startup extproc

In Unix, you can use the ps utility to see the multithreaded external procedure
agent. The task manager in Microsoft Windows will also let you see the process.
Here is the Unix command:

$ ps –ef | grep –v grep | grep extprocCALLOUT

The output from this command is

oracle 4635 1 0 18:41 ? 00:00:01 extprocCALLOUT_LISTENER -mt

You can now shut down the multithreaded external procedure agent by using
the shutdown command. Shutdown without an argument acts like a shutdown
of the database, which means it allows transactions in progress to complete.
Shutdown immediate will cause in-progress external procedure calls to abort.
This is the immediate command:

AGTCTL> shutdown immediate

When you start the extproc multithreaded agent, all new external procedure calls
will route through the multithreaded agent. However, any calls previously started
with dynamic stand-alone extproc agents will continue to completion.

When you shut down the extproc multithreaded agent, all previously started
external procedure calls will complete unless you specify immediate. After the
shutdown command, no new calls will be accepted by the multithreaded external
procedure monitoring thread. Dynamic extproc agents will be spawned for any
new external procedure calls.

You have now learned how to start, configure, and stop the multithreaded
external procedure agent. You have seen how you can seamlessly move
between dedicated dynamic extproc sessions and a background multithreaded
agent. The next section will demonstrate how you create an external C shared
library.

Chapter 12: External Routines 559

560 Oracle Database 10g PL/SQL Programming

Working with a C Shared Library
As discussed when you covered the extproc architecture, Oracle built an extensible
architecture for external procedures. It is flexible to support any programming language
that is callable by the C programming language. For example, you can call a C++
program using the extern command in C. You could call another C program from
the shared library. It could then call back into the database. The second C program
would use embedded SQL to access data. Using embedded SQL requires use of the
Oracle Pro*C precompiler and the Oracle Call Interface (OCI). Both the Pro*C
precompiler and OCI tools require a solid working knowledge of C or C++.

Defining the C Shared Library
You will now define a simple C shared library. You will use the following C
program as a dynamic link library (DLL) or shared library. The structure of this
program has been chosen to avoid having to introduce you to the extensive details
of Oracle Pro*C precompiler and OCI functionality. You will need to have a C
compiler installed on your platform to compile this example.

Compiling a C program has several nuances. A C compiler does several things.
It preprocesses the source code by breaking it down into tokens while validating
syntax. Then, it compiles the program into assembly programming code and uses
an assembler to create object code. After creating the object code, the compiler
then links other object code into the program to create a stand-alone program unit.

The following program includes standard library header files but does not link
libraries:

-- Available online as part of writestr1.c
/* Include standard IO. */
#include <stdio.h>

/* Declare a writestr function. */
void writestr(char *path, char *message)
{
/* Declare a FILE variable. */
FILE *file_name;

/* Open the File. */
file_name = fopen(path,"w");

/* Write to file the message received. */
fprintf(file_name,"%s\n",message);

/* Close the file. */
fclose(file_name);

}

Chapter 12: External Routines 561

The program does the following:

■ It includes the stdio.h file, which is called a header file. stdio.h
contains the definitions required to do basic operations in C programs. The
#include <stdio.h> statement tells the C precompiler to include the
contents of /usr/include/stdio.h file in the program.

■ It declares a writestr function. The function takes two arguments. The
arguments are single-dimensional character arrays, which are what PL/SQL
programmers see as strings. Strings map to PL/SQL VARCHAR2 data types.

■ It declares a FILE variable type.

■ It assigns the FILE returned by the fopen() function to the FILE variable
file_name.

■ It uses the fprintf() function to write a string to the opened file.

■ It uses the fclose() function to close the open file.

It should be noted that the writestr1.c program does not have a main()
function. A main() function is required for a stand-alone C program. This program
can be used only as a DLL or shared library.

If you attempt a generic compilation of a library file that lacks a main()
function, it will raise an error. For example, if writestr1.c were a stand-alone
program, you would compile it into object code like this:

$ cc -o writestr.o writestr1.c

This will raise an error because there is no main() function in the program. The
error message follows:

/usr/lib/gcc-lib/i386-redhat-linux7/2.96/../../../crt1.o(.text+0x18): In function
`_start':
: undefined reference to `main'
collect2: ld returned 1 exit status

It is assumed that you have a C or C++ Development IDE if you are working on
the Microsoft Windows platform. Since each IDE works a bit differently, you will
have to understand how to use your IDE to compile the program as a DLL.

If you are working on Unix, you live in the command-line world. The following
examples illustrate the two methods for creating a C shared library in Unix. The first
example will work on the Sun Microsystems C compiler. The second example is the
most common approach and supported on Linux.

562 Oracle Database 10g PL/SQL Programming

Unix C Compiler that supports the –G option

cc –G –o writestr1.so writestr1.c

Unix C Compiler that supports the –shared option

cc –shared –o writestr1.so writestr1.c
- OR -
gcc –shared –o writestr1.so writestr1.c

TIP
If you are using IBM AIX and the IBM C compiler,
you need to ensure that you have a symbolic link
named cc that points to xlc. The IBM C compiler
will attempt to include proprietary libraries that are
not referenced in the sample program. It will not
attempt to include those libraries if the calling
executable is cc.

You should now have a C shared library. Now, you or your DBA should create
a customer library directory off your $ORACLE_HOME. Please name it customlib if
you want to be consistent with the examples in this chapter. You should ensure the
permissions for the directory is read, write, and execute for owner and read and
execute for group and user.

If you are not the DBA but a member of the DBA group, copying the file and
executing it will work. If are not in the DBA group, please have your DBA change
the group ownership of the file to the DBA group. It will not prevent you from
executing the shared library, but it is a check-in mechanism. Any files not in
the DBA group would be considered development or stage program units.

You have now created a C DLL or shared library and positioned it where a
database external procedure can call it. Next, you will define the PL/SQL library
definition and wrapper.

Defining and Calling the PL/SQL Library Wrapper
You have configured your network; learned how to start, configure, and shut down
a multithreaded and stand-alone extproc agent; and created a C DLL or shared
library. Now you need to define a PL/SQL library definition and wrapper so that you
can pass information from the database to your C program.

PL/SQL Library Definition
The first step is to define the external library in the database. You do this after you
have decided where to place your library. $ORACLE_HOME/customlib is used
for the C external procedure example. As discussed, using a custom library
requires configuration of the EXTPROC_DLLS value in the ENV parameter. The
ENV parameter is found in the listener.ora file. Alternatively, you can put
your libraries in the $ORACLE_HOME/bin or $ORACLE_HOME/lib directories
and not configure the EXTPROC_DLLS value. If you have customized where you
place your libraries, please synchronize the directory path for the library with
your listener.ora file.

The generalized format to create a PL/SQL library is

CREATE [OR REPLACE] LIBRARY <library_name> AS | IS
‘<file_specification>’
AGENT ‘<agent_dblink>’;
/

The create_library1.sql and create_library2.sql files use
Dynamic Native SQL (DNS) to build the library creation DLL. This was done to
simplify your submission of a directory path. The command is provided in the
comments section for the programs and noted in the following:

-- Available online as part of create_library1.sql
CREATE OR REPLACE LIBRARY library_write_string AS
'<oracle_home_directory>/<custom_library>/<file_name>.<file_ext>';
/

The PL/SQL library role defines the name of the library and the physical
location where the library will be found. There is no validation of whether or
not the file is physically located where you have specified. The library name is
the access point for your PL/SQL wrapper. You will now learn about the PL/SQL
library wrapper.

PL/SQL Library Wrapper
The principal role of the PL/SQL library wrapper is to define an interface between
the database and the external procedure. The interface defines how the formal
parameters map between PL/SQL and C data types. It also defines any context
and the location of the external procedure or library. When you create a PL/SQL
library wrapper, there is no check whether or not the shared library is in the
directory. You need to have a management process to ensure check-in and
version control.

Chapter 12: External Routines 563

Oracle provides additional derived types to support OCI. The table columns
show the source of the types. The table also shows you the default conversion type.
Table 12-4 maps PL/SQL and C data types:

564 Oracle Database 10g PL/SQL Programming

PL/SQL Native C Oracle Default

BINARY_INTEGER
BOOLEAN
PLS_INTEGER

[UNSIGNED] CHAR
[UNSIGNED] SHORT
[UNSIGNED] INT
[UNSIGNED] LONG

SB1, SB2, SB4
UB1, UB2, UB4
SIZE_T

INT

NATURAL
NATURALN
POSITIVE
POSITIVEN
SIGNTYPE

[UNSIGNED] CHAR
[UNSIGNED] SHORT
[UNSIGNED] INT
[UNSIGNED] LONG

SB1, SB2, SB4
UB1, UB2, UB4
SIZE_T

[UNSIGNED] INT

FLOAT
REAL

FLOAT FLOAT

DOUBLE PRECISION DOUBLE DOUBLE

CHAR
CHARACTER
LONG
NCHAR
NVARCHAR2
ROWID
VARCHAR
VARCHAR2

STRING
OCISTRING

STRING

LONG RAW
RAW

RAW
OCIRAW

RAW

BFILE
BLOB
CLOB
NCLOB

OCILOBLOCATOR OCILOBLOCATOR

NUMBER
DEC
DECIMAL
INT
INTEGER
NUMERIC
SMALLINT

OCINUMBER OCINUMBER

DATE OCIDATE OCIDATE

TIMESTAMP
TIMESTAMP WITH
TIME ZONE
TIMESTAMP WITH
LOCAL TIME ZONE

OCIDATETIME OCIDATETIME

TABLE 12-4. Mapping PL/SQL Data Types to C

Chapter 12: External Routines 565

In your small example, data types are converted only from PL/SQL to C, but the
library definition supports bidirectional conversions. The bidirectional support is
independent of the external shared library. Whether the external C library returns
data or not, the PL/SQL library wrapper has defined it as bidirectional.

There are some differences beyond mapping between PL/SQL and C data types.
They are qualified here:

■ A variable can be NULL in PL/SQL, but there is no equivalent of a null
value in C. When a variable can be NULL, you must use another variable
to notify that a variable is null or not. This second variable is known as an
indicator. You use OCI_IND_NULL and OCI_IND_NOTNULL to check
whether the indicator variable is null or not. The indicator value is passed
by value unless you override that behavior and pass by reference. An
advanced consideration for an indicator variable is that it can have a
type descriptor object (TDO) for composite objects and collections.

■ Both C and PL/SQL need to know the length of character strings when they
are exchanged. This is problematic because there is no standard means of
determining the length of RAW or STRING parameter types. You can use the
LENGTH or MAXLEN functions to determine the length of a formal parameter.
It is important to note that LENGTH is passed into the external procedure by
value when the mode is IN. It is passed by reference when using mode OUT.

■ CHARSETID and CHARSETFORM are subject to globalization complexity if
the extproc agent database is running in a different database. The calling
database NLS_LANG and NLS_CHAR values are the expected values for the
extproc agent. If this is not the case for the extproc agent, you need to
use the OCI attribute names to set these for the program. The OCI attributes
are OCI_ATTR_CHARSET_ID and OCI_ATTR_CHARSET_FORM. Both
CHARSETID and CHARSETFORM are passed by value for IN mode and
by reference for OUT mode.

PL/SQL Native C Oracle Default

INTERVAL DAY TO
SECOND
INTERVAL YEAR TO
MONTH

OCIINTERVAL OCIINTERVAL

Composite Object
Types: ADTs

dvoid Dvoid

Composite Object
Types: Collections
(VARRAYS, NESTED
TABLES)

OCICOLL OCICOLL

TABLE 12-4. Mapping PL/SQL Data Types to C (continued)

566 Oracle Database 10g PL/SQL Programming

The generalized format for creating a C library wrapper procedure is noted here:

CREATE [OR REPLACE] PROCEDURE name [parameter_list]
AS EXTERNAL
LIBRARY_NAME library_name
NAME “external_library_name”
AGENT IN [parameter_list]
WITH CONTEXT
PARAMETER [parameter_list];

It is important to note that the external_library_name is case sensitive when
the operating system supports case sensitivity. Even while working on Microsoft
Windows, you should always treat it as case sensitive. Good PL/SQL coding habits
can make your life simpler when you change work environments.

When you define the parameter lists for a PL/SQL wrapper, positional order is
not important. The PL/SQL wrapper relates them by name.

Objects present a unique case with the normally implicit SELF. In PL/SQL, you
do not have to manage an object type’s SELF member function, because it is implicitly
managed. The problem is that the SELF reference is a parameter in the formal
parameter list. The external C program requires the PL/SQL external procedure
wrapper to define a complete formal parameter list. This means that it must formally
define SELF. You pass an object to an external procedure by using the WITH
CONTEXT clause when you define the object type. The following example illustrates
defining an external object type:

CREATE OR REPLACE TYPE BODY object_library_sample AS
MEMBER FUNCTION get_tea_temperature
RETURN NUMBER
AS LANGUAGE C
NAME “tea_temp”
WITH CONTEXT
PARAMETERS
(CONTEXT
, SELF
, SELF INDICATOR STRUCT
, SELF TDO
, RETURN INDICATOR);
END;
/

Another rule applies to passing variables by reference to an external procedure.
You must append the BY REFERENCE phrase to all variables passed by reference.

The AGENT IN clause allows run-time identification of the external agent
program. This is an advanced feature. It is useful when you have more than one
external agent running or configured. An example that would benefit from this type
of PL/SQL wrapper is an environment with multiple external applications. Making
the external agent a dynamic component gives you more flexibility. You can then
use stored objects to make dynamic calls to different external application libraries.

Chapter 12: External Routines 567

You are now ready to create your PL/SQL external procedure wrapper. The
sample program to build the PL/SQL wrapper follows:

-- Available online as part of create_library1.sql
CREATE OR REPLACE PROCEDURE write_string
(path VARCHAR2
,message VARCHAR2) AS EXTERNAL

LIBRARY library_write_string
NAME "writestr"
PARAMETERS
(path STRING
,message STRING);

/

The PL/SQL external procedure wrapper does the following:

■ It creates an external procedure wrapper named write_string. This
creates a data dictionary entry for a procedure named write_string.

■ It accepts two variables of a VARCHAR2 data type.

■ It names the library library_write_string. This creates a data
dictionary entry for a library named library_write_string.

■ It qualifies the name of the external procedure without the *.so suffix (or
on Microsoft Windows platforms, a *.dll). The suffix is automatically
postpended. If it were included in the definition of the NAME value, the
extproc agent would look for writestr1.so.so and fail.

■ It passes the VARCHAR2 data types as STRING data types to the external
library.

You have learned how to define and configure a PL/SQL wrapper. Previously,
you learned how to do all network plumbing, library coding, and agent
configuration. It is now time to see if it was done correctly.

If you are working in Unix, use the online file. However, if you are working in
Microsoft Windows, change the first argument to the write_string procedure. It
should change from “/tmp/file.txt” to “C:\TEMP\FILE.TXT”. You can now
execute the external procedure by invoking the PL/SQL wrapper, as shown in the
following code:

-- Available online as part of create_library1.sql
BEGIN

-- Call the external procedure.
write_string('/tmp/file.txt','Hello World!');

END;
/

568 Oracle Database 10g PL/SQL Programming

When the procedure completes successfully, you can then open the file in the Unix
/tmp or Microsoft Windows C:\TEMP directory. Rerunning the program will create a
new file of the same name and rewrite the same string. If the file is in the /tmp or
C:\TEMP directory, only the file’s date stamp will appear to change.

There are some restrictions when working with external procedures. The
restrictions are these:

■ You should not use global variables, because they are not thread safe.

■ You should not use external static variables, because they are not thread safe.

■ You can use this feature only on platforms that support DLLs or shared libraries.

■ You can use only programming languages callable from the C programming
language.

■ You must use objects when you want to pass cursor or record variables to
an external procedure.

■ You cannot use a DB_LINK in the LIBRARY section of a PL/SQL wrapper
declaration.

■ You can pass a maximum of 128 parameters. If you have float or double
data types, they count for two parameters.

You have completed everything required to configure and set up a C DLL or
shared library. If everything worked, please accept our congratulations. However, if
something failed, you can go straight to the troubleshooting section. In that section,
you will troubleshoot the most common problems.

Alternatively, it is time to look at creating Java external procedures.

Working with a Java Shared Library
As discussed when you covered the extproc architecture, Oracle built an extensible
architecture for external procedures. It is flexible enough to support any programming
language that is callable by the C programming language.

Oracle directly supports Java as part of the database. Java libraries do not use
the extproc agent because they are natively part of the Oracle database. This
simplifies much but does restrict some activities. Those restricted activities make the
case for using the extproc agent and external C or C callable libraries.

Java has a few advantages over C:

■ Java understands SQL types. It avoids the tedious data type mapping when
using C.

■ Java is loaded into the Oracle database. It avoids the file management
issues and listener ENV parameter processes because it does not use the
extproc agent.

Chapter 12: External Routines 569

■ Java is natively thread safe. It does not require you to deal with the threading
nuances provided you avoid static variables.

■ Java does not require management of memory addresses. Memory addresses
are called pointers in C/C++.

NOTE
Java static variables are considered class-level
variables, which means they are built at compile
time, not run time. There can be only one copy of
a class variable in a Java Virtual Machine (JVM),
provided there is only one Java class loader.
Unfortunately, within the context of the Oracle
JVM, there can be more than one Java class loader.
Therefore, if you plan on using a Java class for an
external procedure, avoid using static variables.

Java has a few disadvantages relative to C:

■ Java uses the Java pool in the SGA for processing, whereas C external
procedures use their own memory space. Effectively, C external programs
lower the memory consumption of the SGA, while Java increases the load
on the SGA.

■ Java is not as fast as C because native Java byte code needs to be interpreted
by the JVM.

■ Java has restricted access to files. This protects the integrity of the database.
The DBMS_JAVA package provides a means to define read and write access
for Java library programs.

■ PL/SQL wrapper functions that use Java libraries impose a limit on method
definitions. All Java class methods accessed by PL/SQL wrapper functions
must be static. Therefore, Java libraries that support PL/SQL wrapper functions
are not thread safe.

You will now define a simple Java library.

Defining the Java Library
Java is an interpreted language, as opposed to a compiled language like C. C
compilation results in a file of object code, which is machine code or binary
instructions. Java compilation results in a Java byte stream. The JVM interprets
the byte stream and executes the run-time object code. JVMs are platform specific,
while byte streams are generic. This is why Java class files are portable across
platforms.

570 Oracle Database 10g PL/SQL Programming

Compiling a Java program does several things. It preprocesses the source code
by breaking it down into tokens while validating syntax. Then, it compiles the
program into Java byte code and writes a Java .class file. Java .class files
are positionally dependent at run time on any included libraries.

The following program includes a standard I/O library. This will enable the
database to access a physical file external to the instance. You do not define
permission to Java file access in the initSID.ora parameter file. You must use the
DBMS_JAVA package to grant permission from the SYSTEM account. The grant has
already been done if you ran the online create_user.sql script for this chapter.
The following shows the command required to grant read-only access to the /tmp/
file.txt file:

-- Available online as part of create_user.sql
-- Grant Java permissions to file IO against a file.
DBMS_JAVA.GRANT_PERMISSION('PLSQL'

,'SYS:java.io.FilePermission'
,'/tmp/file.txt'
,'read');

Much as when using the C external procedure, you will first need to define the
Java library. At a minimum, you will need to configure your Java environment. If
you are using a Java IDE, it is assumed you know how to compile Java source code
into class files. Only the command-line steps are covered in here.

Unlike the example in Chapter 10, the Java program will not interact with the
database through SQL. That means you do not need to include the class files to
support SQL. Therefore, you do not need to set your $CLASSPATH. For reference, the
Oracle SQL class files are found in $ORACLE_HOME/jdbc/lib/classes12.zip.

Assuming you have access to the Java SDK, you will need to download the
following program and compile it to Java byte code:

-- Available online as part of ReadFile1.java
// Class imports.
import java.io.*;

// Class defintion.
public class ReadFile1
{
// Define readString() method with String input.
public static String readString(String s)
{
// Call the readString() method with File input.
return readFileString(new File(s));

}

// Define readFileString() method with File input.
private static String readFileString(File file)

Chapter 12: External Routines 571

{
// Define a int to read the file.
int c;

// Define a String to return the text.
String s = new String();

// Define a FileReader.
FileReader inFile;

// Use a try-catch block because FileReader requires it.
try
{
// Assign the file.
inFile = new FileReader(file);

// Read a character at a time.
while ((c = inFile.read()) != -1)
{
// Append a character to the string.
s += (char) c;

} // End of while loop.

} // End of try block.
catch (IOException e)
{
// Return the error.
return e.getMessage();

} // End of catch block.

// Return the string.
return s;

} // End of readFileString() method.

// Define the main() method.
public static void main(String[] args)
{
// Define the file name.
String file = new String("/tmp/file.txt");

// Output the string.
System.out.println(ReadFile1.readString(file));

} // End of main() method.

} // End of ReadFile class.

572 Oracle Database 10g PL/SQL Programming

The program does the following:

■ It includes the java.io.*, which is the contents of the Java I/O package.
The Java I/O package is used to read and write to files.

■ It defines a ReadFile1 class. Class names must exactly match the
filename. If they do not match, you cannot compile them.

■ It defines a static readString() method. The method takes a Java String
variable and returns the same data type. Internally, it returns the output
from the readFileString() method. To call the readFileString()
method, it must construct an instance of the Java File class.

■ It defines a static readFileString() method. The method takes a Java File
variable and returns a Java String variable. Internally, it does the following:

■ It declares a variable c, using an integer data type.

■ It declares and instantiates a null Java String variable.

■ It declares a Java FileReader variable. FileReader is one of the
streams implemented in Java. Streams in C are typically limited to
STDIN, STDOUT, and STDERR, but Java has over thirty stream types.
It will allow you to manage opening the file for reading.

■ It uses a try-catch block to read the file because the FileReader may raise
an exception. In Java, if you work with a class library that can raise an
exception, you must access it within a try-catch block. It is similar to
a BEGIN and EXCEPTION concept in PL/SQL programming.

■ It assigns the FileReader variable to the file referenced by the File
formal parameter to the method. In the example, that is the /tmp/
file.txt file.

■ It use a while loop to read all the characters in the file. Within the
while loop, it casts the integer reads to a character and appends them
to the local String variable, s. If an error is encountered, it returns the
error message instead of the file contents.

■ It uses a static main() method. This method is only for testing external
to the database. The main() method becomes inaccessible once the
class is loaded into the database.

Once you have downloaded the file and compiled it, you need to load it into
the database. You can do so with the Oracle loadjava utility. The following
loadjava command will make the Java class available in the PLSQL schema:

$ loadjava -r -f -o -user plsql/plsql ReadFile1.class

You have now completed the library Java library definition. You will now define
and call the PL/SQL library wrapper to the Java library.

Chapter 12: External Routines 573

Defining and Calling the PL/SQL Library Wrapper
Writing the PL/SQL library wrapper to a Java module is called publishing the Java
library. Since you used a C external procedure, you will define a Java library function.
There are a couple reasons for doing so. First, Java libraries must use static methods
when they are published as PL/SQL functions. Second, it gives you an opportunity
to see how arguments for Java libraries are limited.

When you use Java, only arrays support a pass by reference semantic. A pass
by reference semantic means that the memory address is passed by the PL/SQL run-
time engine to the Java library. After the Java library updates the array and completes
processing, it will return control to the PL/SQL run-time engine. PL/SQL knows the
address and can access any changed data values. If you want to move data into and
out of a Java library, you must do one of two things:

■ You define a function and manage the return type of the function. The
downside to a function is that it is not thread safe because you must use
static method definitions.

■ You define a procedure and use an array in OUT mode. The array
option requires including the classes12.zip file and using an
oracle.sql.ARRAY[] data type. oracle.sql.ARRAY[] is a
nested table collection with a numeric index value.

Java libraries and PL/SQL have a mapping relationship like C. Table 12-5 qualifies
the mapping.

SQL Data Types Java Class Data Types

CHAR
LONG
VARCHAR2

oracle.sql.CHAR
java.lang.String
java.lang.Byte
java.lang.Short
java.lang.Integer
java.lang.Long
java.lang.Float
java.lang.Double
java.lang.BigDecimal
java.sql.Date
java.sql.Time
java.sql.Timestamp
byte
short
int
long
float
double

TABLE 12-5. SQL and Java Data Types

574 Oracle Database 10g PL/SQL Programming

SQL Data Types Java Class Data Types

DATE oracle.sql.DATE
java.lang.String
java.sql.Date
java.sql.Time
java.sql.Timestamp

NUMBER oracle.sql.NUMBER
java.lang.Byte
java.lang.Short
java.lang.Integer
java.lang.Long
java.lang.Float
java.lang.Double
java.lang.BigDecimal
byte
short
int
long
float
double

OPAQUE oracle.sql.OPAQUE

RAW
LONG RAW

oracle.sql.RAW
byte[]

ROWID oracle.sql.CHAR
oracle.sql.ROWID
java.lang.String

BFILE oracle.sql.BFILE

BLOB oracle.sql.BLOB
oracle.jdbc.Blob (JDK 1.1.x)

CLOB
NCLOB

oracle.sql.CLOB
oracle.jdbc.Clob (JDK 1.1.x)

OBJECT
Object types

oracle.sql.STRUCT
java.sql.Struct (JDK 1.1.x)

java.sql.SQLData
oracle.sql.ORAData

REF
Reference types

oracle.sql.REF
java.sql.Ref (JDK 1.1.x)
oracle.sql.ORAData

TABLE
VARRAY
Nested table & types
VARRAY types

oracle.sql.ARRAY
java.sql.Array (JDK 1.1.x)
oracle.sql.ORAData

Any of the preceding SQL types oracle.sql.CustomDatum
oracle.sql.Datum

TABLE 12-5. SQL and Java Data Types (continued)

Chapter 12: External Routines 575

Most of the types are straightforward. The LONG and LONG RAW data types
are limited to 32K. The oracle.sql.Datum is an abstract class. This means that
it becomes whatever SQL type is passed to it.

You can publish your Java function by using the following wrapper:

-- Available online as part of create_javalib1.sql
CREATE OR REPLACE FUNCTION read_string
(file IN VARCHAR2)
RETURN VARCHAR2 IS
LANGUAGE JAVA
NAME 'ReadFile.readString(java.lang.String) return String';

/

The PL/SQL Java library wrapper publishes the Java class. It is important to point
out that you must define the formal parameter with the fully qualified path. If you
attempt to use String and not java.lang.String, it will compile successfully
but fail at run time. The following program can test success or failure:

-- Available online as part of call_javawrapper.sql
SELECT read_string('/tmp/file.txt')
FROM dual;

It will return the following output from the /tmp/file.txt file if you modify
the input formal parameter as described previously, that is, if you change the
java.lang.String to String.

-- Available as output from call_javawrapper.sql
FROM dual

*
ERROR at line 2:
ORA-29531: no method readString in class ReadFile

You have now defined a Java library and published the Java class file. Next, you
will take a look at troubleshooting the extproc agent and external procedures.

Troubleshooting the Shared Library
This is the section where you try to find out why something is not working. Hopefully,
we have put most of the explanation in the chapter already. This section will cover
some known errors and their fixes.

External procedures typically fail because of two issues. One is the configuration
of the listener, shared library, or environment. That is why you went through all the
components and how they fit together. Another is when the definition of the external
program differs from the PL/SQL wrapper. This typically happens when data types
are incorrectly mapped. Each class of problem is described in the two subsections
that follow.

Configuration of the Listener or Environment
There are four general problems with network connectivity. They are noted here
with the typical error messages and explanations.

Listener ENV Parameter Is Incorrect
As discussed in the extproc Oracle Net Services configuration, the following error
will be raised when the ENV variable is incorrectly configured:

BEGIN
*
ERROR at line 1:
ORA-06520: PL/SQL: Error loading external library
ORA-06522: /u02/oracle/10g/10.1.0/lib/writestr1.so: cannot open shared object
file: No such file or directory
ORA-06512: at "PLSQL.WRITE_STRING", line 1
ORA-06512: at line 4

If you receive this error, you have experienced one of two types of failures. One is
that the library is not in the directory you have designated, is named differently, or
is case sensitive. Another is that you have made an error in configuring the ENV
parameter in your listener.ora file.

File Path Problem
If the file path is not in the directory you have designated in the ENV value,
correcting the file path should resolve the problem. If the file path is missing a
component or is not consistent in case with the PL/SQL wrapper NAME parameter
value or EXTPROC_DLLS value, synchronizing all three entries will fix it.

If the file path is in the directory and all three locations mentioned are matched
in spelling and case, the problem is in the listener ENV variable. Two areas can cause
the problem: a bad EXTPROC_DLLS or a bad LD_LIBRARY_PATH entry. There is a
third potential error: the APL_ENV_FILE value. This third error is typically a problem
only when you have positioned the extproc agent in another Oracle home.

EXTPROC_DLLS Value Problem
You need to check the ENV variable in CALLOUT_LISTENER. The general rule is
that you should have an entry for EXTPROC_DLLS and LD_LIBRARY_PATH in the
ENV value. EXTPROC_DLLS should specify an equal sign, the word ONLY, a colon
and the shared libraries you want to use or a list of shared libraries separated by a
colon. Alternatively, you can choose to leave out the ONLY qualifier and provide a
shared library or list of shared libraries separated by a colon. If you leave the ONLY
qualifier out, you have not restricted the IPC listener to only those libraries. It is
recommended by Oracle that you use ONLY to narrow the privileges of the listener.

576 Oracle Database 10g PL/SQL Programming

You also need to check whether the shared libraries have a fully qualified path
statement, the filename, and the file extension. Likewise, the LD_LIBRARY_PATH
should at a minimum specify the fully qualified path to the $ORACLE_HOME/lib
directory. If your libraries require other libraries, you would use the LD_LIBRARY_
PATH reference. When you have more than the one library in the LD_LIBRARY_
PATH, you use a set of fully qualified path statements separated by a colon.

If you would like to see this error, you can do the following:

■ Rename the shared library path in the PL/SQL wrapper. You would do this
by rerunning the create_library1.sql script with an incorrect path
statement.

■ Rerun the anonymous block PL/SQL call to the write_string procedure.

NOTE
If you do this test, do not forget to fix everything
before you move on to the rest of the chapter.

The extproc Listener Is Incorrectly Configured or Not Running
As discussed in the extproc Oracle Net Services configuration, the following error
will be raised when the extproc listener is not running or misconfigured.

BEGIN
*
ERROR at line 1:
ORA-28576: lost RPC connection to external procedure agent
ORA-06512: at "PLSQL.WRITE_STRING", line 1
ORA-06512: at line 4

If you receive this error, the extproc listener is not running or the KEY parameters
in listener.ora and in tnsnames.ora fails to agree. You need to verify the
setup of your listener.ora and tnsnames.ora files. The method to do so is
described in an earlier section of this chapter, “Defining extproc Oracle Net
Services Configuration.”

If you would like to see this error, you can do the following:

■ Shut down the CALLOUT_LISTENER.

■ Alter the KEY parameter value in the listener.ora file so that it no
longer agrees with the tnsnames.ora file.

■ Start up the CALLOUT_LISTENER.

■ Rerun the anonymous-block PL/SQL call to the write_string procedure.

Chapter 12: External Routines 577

578 Oracle Database 10g PL/SQL Programming

NOTE
If you do this test, do not forget to fix everything
before you move on to the rest of the chapter.

There Is No Separate extproc Listener
As discussed in connection with the extproc Oracle Net Services configuration,
the following error will be raised when three conditions are met:

■ The correct environment is defined in the extproc listener.

■ There is no separate extproc listener.

■ The extproc agent is attempting to access the DLL or shared library in any
directory other than $ORACLE_HOME/bin or $ORACLE_HOME/lib.

BEGIN
*
ERROR at line 1:
ORA-28595: Extproc agent : Invalid DLL Path
ORA-06522: h§n¶h§n¶

If you receive this error, these three conditions are met, since you have configured a
perfect ENV variable in the standard single LISTENER. You now need to do one of
two things. You can migrate the extproc agent listener to a separate listener. This
is described in the section “Defining extproc Oracle Net Services Configuration.”

Alternatively, you can abandon the custom library directory and put the external
libraries in the $ORACLE_HOME/lib directory.

If you would like to see this error, you can do the following:

■ Shut down the CALLOUT_LISTENER.

■ Using the online listener1.ora and tnsnames2.ora files, replace
your listener.ora and tnsnames.ora, respectively. Do not forget to
configure these files. You need to provide full path statements that match
your system for them to work. Do not forget to make a copy of your modified
files so that you can restore them.

■ Start up the CALLOUT_LISTENER.

■ Rerun the anonymous block PL/SQL call to the write_string procedure.

NOTE
If you do this test, do not forget to fix everything
before you move on to the rest of the chapter.

Chapter 12: External Routines 579

PL/SQL Wrapper Defined NAME Value Is Incorrect
As discussed in the defining and calling the PL/SQL library wrapper, the following
error will be raised when the NAME variable is incorrectly entered:

BEGIN
*
ERROR at line 1:
ORA-06521: PL/SQL: Error mapping function
ORA-06522: /u02/oracle/10g/10.1.0/lib/libagtsh.so: undefined symbol:
writestr1.so
ORA-06512: at "PLSQL.WRITE_STRING", line 1
ORA-06512: at line 3

If you receive this error, you need to check the NAME variable in the PL/SQL external
library definition. The ORA-06522 error returns the filename of the object that cannot
be found. It is unclear from the error if it was looking for the writestr1.so file in
the $ORACLE_HOME/lib directory. Actually, it first looked in the designated custom
library directory, then in the $ORACLE_HOME/lib directory. It could not find the
writestr1.so.so file. Defining the NAME parameter of the external procedure with
the filename and suffix can cause the problem. It should always be only the filename.
The extproc agent implicitly appends .so or .DLL, depending on the platform.

NOTE
The extproc agent always searches the ENV defined
directories first and the $ORACLE_HOME/lib last.
Anytime the DLL or shared library name fails to match
the value in the PL/SQL library definition, the ORA-
06522 will return the $ORACLE_HOME/lib directory.

If you encounter this error and verify everything is working, shut down your
extproc listener. Use the ps utility to find the running extprocPLSExtProc
agent. If it is running after you shut down the listener, it should not be running. Use
the kill utility to end it. Then restart your extproc listener. This eliminates the
conflict with the preserved state in the extproc agent.

If you would like to see this error, you can do the following:

■ Rename the writestr.so shared library file.

■ Rerun the anonymous block PL/SQL call to the write_string procedure.

NOTE
If you do this test, do not forget to fix everything
before you move on to the rest of the chapter.

The LD_LIBRARY_PATH should at a minimum specify the fully qualified path
to the $ORACLE_HOME/lib directory. If you use the default location for your
shared library, you can exclude it.

Configuration of the Shared Library or PL/SQL
Library Wrapper
As you built the shared external library file and PL/SQL wrapper, you probably
noticed that the formal parameter types mapped correctly. When they do not
map correctly, you will lose the RPC connection and generate the following
error message:

BEGIN
*
ERROR at line 1:
ORA-28576: lost RPC connection to external procedure agent
ORA-06512: at "PLSQL.WRITE_STRING", line 1
ORA-06512: at line 4

If you receive this error, the PL/SQL library is defining a mapping relationship that
cannot be implicitly caste. This error is raised when you try to fork an external
library with actual parameters that do not implicitly caste to the formal parameters
of the library.

NOTE
Actually, implicit casting is a big nightmare. If you
run into an implicit caste, you will not get an error
during the call to the external procedure. You will
likely get bad data from your program, and it may
take a while to sort out why. Ensuring the external
library types match the definition in the PL/SQL
wrapper is a configuration management issue. You
will save yourself countless hours of frustration and
lost productivity if you create a check-in process
that ensures external library definitions agree with
PL/SQL library definitions.

If you would like to see this error, you can do the following:

■ Create a writestr2.so shared library from the online writestr2.c file.

■ Shut down the CALLOUT_LISTENER.

580 Oracle Database 10g PL/SQL Programming

■ Use the online listener3.ora and tnsnames3.ora files to replace your
listener.ora and tnsnames.ora files, respectively. Do not forget to
configure these files. You need to provide full path statements that match
your system for them to work.

■ Start up the CALLOUT_LISTENER.

■ Run the online create_library2.sql file to build the PL/SQL external
procedure wrapper.

■ Rerun the anonymous block PL/SQL call to the write_string procedure.

NOTE
If you do this test, do not forget to fix everything
before you move on to the rest of the chapter.

You have now completed the troubleshooting section. It is time to summarize
what you have done in the chapter.

Summary
You have learned what external procedures do and how to configure the Oracle Net
Services to support them. You have worked through defining and calling extproc
and native Java libraries. Then, you learned how to troubleshoot the most common
problems.

Chapter 12: External Routines 581

This page intentionally left blank

CHAPTER
13

Dynamic SQL

Copyright © 2004 by The McGraw-Hill Companies, Inc. Click here for terms of use.

D
ynamic SQL delivered in Oracle 9i provides a replacement for
most of the functionality delivered in the Oracle DBMS_SQL built
in. It is a powerful technology that lets you do many things that
were more difficult when using DBMS_SQL. This chapter will
cover both utilities and provide you with comparative examples.

You will cover topics as follows. The chapter assumes you read it sequentially. It
also assumes you have read the preceding twelve chapters. If you feel comfortable
with an area, please feel free to move to the section of interest. However, the chapter
assumes you have mastery of earlier sections.

■ Introducing dynamic SQL

■ Working with Native Dynamic SQL (NDS)

There is a new create_user.sql script with this chapter. Before you run
the create_user.sql script from the SYSTEM account or an account with the
DBA role, you need to grant privileges from the SYS user. The following grant
from the SYS user is required to use the DBMS_SQL package successfully in the
chapter exercises:

–– Not available in an online file.
GRANT EXECUTE ON dbms_sys_sql TO SYSTEM WITH GRANT OPTION;
GRANT EXECUTE ON dbms_sql TO SYSTEM WITH GRANT OPTION;

After you have granted privileges on the SYS.DBMS_SYS_SQL and SYS.DBMS_
SQL packages to the SYSTEM user, you can run the create_user.sql script to
rebuild the PLSQL user. If you fail to run the script, you will raise the following
exception:

DECLARE
*
ERROR at line 1:
ORA-01031: insufficient privileges
ORA-06512: at "SYS.DBMS_SYS_SQL", line 906
ORA-06512: at "SYS.DBMS_SQL", line 39
ORA-06512: at "PLSQL.DBMS_SQL_TUTORIAL", line 92
ORA-06512: at line 15

If you have other objects that you do not want to lose from the PLSQL user
account, you can manually execute the following grants from the SYSTEM user in
lieu of running create_user.sql:

–– Not available in an online file.
GRANT EXECUTE ON sys.dbms_sys_sql TO PLSQL;

584 Oracle Database 10g PL/SQL Programming

GRANT EXECUTE ON dbms_sql TO PLSQL;
GRANT CREATE TABLE TO PLSQL;
GRANT CREATE SEQUENCE TO PLSQL;

You will need to run create_user.sql or manually execute the grants to
work through the examples in the chapter. There are also two key packages that
support this chapter. They are dbms_sql.sql and nds_sql.sql, and they
build the DBMS_SQL_TUTORIAL and NDS_TUTORIAL packages, respectively.
You should run these after the create_user.sql script to support the examples
in the chapter.

Introducing Dynamic SQL
Dynamic SQL is the ability to build and run SQL statements on the fly. Prior to
DBMS_SQL, you needed to know the columns and tables of any DQL or DML
statement. When you reference and store known columns and tables in a
SQL statement, that statement is called a static SQL statement.

There are three benefits of static SQL statements:

■ When you compile or test them, you know immediately whether or not
all supporting database objects are present. If the dependent objects are
not there, the SQL will immediately fail.

■ When you compile or test them, you know immediately whether or not
all grants, privileges, and synonyms have been defined properly. If the
dependencies are not there, the SQL fails and complains of missing objects.

■ When you use static SQL, you can tune it for optimal performance. This is
a critical benefit when high-volume activity is involved.

While some programmers would say these benefits indicate you should always
use static SQL, it is not always possible. Moreover, there is another approach to
problems. That other approach teaches you to write robust, reusable, and dynamic
algorithmic solutions. This is an object-oriented philosophy. In a nutshell, dynamic
SQL enables you to write elegant PL/SQL code that is polymorphic whether or not
you use the object types provided by Oracle.

Polymorphism is the ability for your program to do two things: One is to discern
from actual parameters what it should do. The other is to enable it to take different
actions based on the actual parameters. PL/SQL can deliver polymorphism with
static SQL statements, but it makes the programs much larger.

For example, you can use a multilevel if-then-else or case statement to evaluate
what the program should do. Then, you can hard-code each of the static SQL
statements in the appropriate block of the if-then-else or case statement. Dynamic

Chapter 13: Dynamic SQL 585

SQL reduces what you need in those if-then-else blocks, since you can build run-
time SQL statements.

Here are other benefits of dynamic SQL:

■ You can include DDL statements within your PL/SQL programs.

■ You can write code that adjusts to table redefinitions.

■ You can enable stored programs to support various user inputs.

On balance, you will use dynamic SQL to solve programming problems. The
key choices with Oracle 10g are when to use NDS over DBMS_SQL. While you
should make your own judgment, Oracle 10g NDS delivers performance superior
to DBMS_SQL.

NDS provides flexibility and simpler syntax than the DBMS_SQL built-in.
NDS also provides a direct solution to working with collection and object types.
Unfortunately, there is one exception to that rule. NDS does not support dynamic
SQL where you do not know the number, name, or data types of arguments in
advance. You will need to use DBMS_SQL for those occasions.

You will cover both DBMS_SQL and NDS for two reasons. There are millions of
DBMS_SQL lines of code in the Oracle community, and you will need to understand
how that code works. NDS is the future strategy and direction of dynamic SQL for
the Oracle database. Using comparative analysis will help build and reinforce
learning of these two technologies. You will learn NDS first and then DBMS_SQL.

Working with Native Dynamic SQL
Native Dynamic SQL has become well known under the acronym of NDS. It
is a powerful tool for running dynamic SQL against the Oracle 10g database.
NDS runs faster than DBMS_SQL. It is the future vision for dynamic SQL in the
Oracle database.

NDS delivers three dynamic SQL functionalities to your PL/SQL programs:

■ Dynamic DDL and DML without bind variables

■ Dynamic DML with a known list of bind variables

■ Dynamic DQL

You will cover each of these dynamic SQL functionalities in sequence. As you
work through these examples, collection and object types will be leveraged. If you
need to check out object types, please refer to Chapters 14–16. There will be some

586 Oracle Database 10g PL/SQL Programming

forward referencing to the DBMS_SQL built-in as you work through this section.
The following are advantages of NDS over DBMS_SQL:

■ It performs faster than DBMS_SQL.

■ It has syntax that mirrors the standard static SQL statements. Many
programmers find its syntax easier than using the DBMS_SQL built-in.

■ It can fetch directly into PL/SQL record types, while DBMS_SQL cannot.

■ It supports all PL/SQL data types supported by static SQL statements. These
include user-defined types, user-defined objects, and reference cursors.
DBMS_SQL does not support user-defined types.

EXECUTE IMMEDIATE provides the syntax to parse (prepare a statement) and
execute dynamic SQL. It takes a single argument, which is a string containing a
SQL statement. The string is a VARCHAR2 data type. SQL statements have a single
semicolon that is equivalent to the “/” or execute command. When preparing a SQL
statement, you should not include the semicolon in the string.

The semicolon must be included when you put an anonymous-block PL/SQL
program into the string argument. PL/SQL requires the terminating semicolon to end
its block definition and a “/” to execute the program. The EXECUTE IMMEDIATE
command appends an execution signal to the statement string. That is why a SQL
statement does not require it and why an anonymous-block PL/SQL program unit
does. Table 13-1 summarizes the available clauses to the EXECUTE IMMEDIATE
command.

NDS also supports bulk processing. As discussed in the Chapter 6, bulk processing
enables you to work with moving collections into and out of the database. Bulk
processing with NDS has a set of different semantics. There are three commands,
two additional clauses, and one cursor attribute to support bulk processing:

■ The BULK FETCH statement

■ The BULK EXECUTE IMMEDIATE statement

■ The FORALL statement

■ The COLLECT INTO clause

■ The RETURNING INTO clause

■ The %BULK_ROWCOUNT cursor attribute

The NDS_TUTORIAL package is provided online as a test repository of
procedures. Example procedures will be used to demonstrate NDS techniques.

Chapter 13: Dynamic SQL 587

Working with DDL and DML
Without Bind Variables
If you have taken a moment to refer to some of the online scripts, you will have
found that we use NDS frequently to ensure the integrity of the scripts. We do not,
however, use the DBMS_SQL built-in. The reason is that NDS is simpler to use and
less dependent on database privileges. Like those privileges you set up to ensure,
you could work through the DBMS_SQL built-in exercises.

The simplest approach to using dynamic SQL is the place you will start. Building
and executing dynamic DDL and DML SQL statements has two approaches. One
approach uses concatenation of static text and variables into strings that are assigned
to a VARCHAR2 statement variable. The other approach is to use bind variables
that are substituted at run time.

This section will cover concatenation approaches. The next section will cover
bind variable approaches. There is no magic to the statement variable name, but
by convention it is widely used. The variable name statement seems to enhance
the readability of native dynamic SQL and DBMS_SQL programs.

The following procedure is taken from the NDS_TUTORIAL package. It
demonstrates NDS using concatenation to do a DDL sequence creation statement:

588 Oracle Database 10g PL/SQL Programming

NDS Clause Mode Description

INTO OUT The INTO clause specifies variable targets only
for single-row return statements. There must be
a value defined in the INTO clause for each
column returned by the query. It is positionally
specific to the column order in the query.

RETURNING
<variable>
INTO
<bind_variable

IN OUT The RETURNING INTO clause provides a means
to alter the positional return values and assign
them to specific target variables. Like the INTO
clause, it must retrieve only one row.

USING IN OUT The USING clause enables both IN and OUT
modes unless you have also used RETURNING
INTO clause. If you use both clauses, the USING
clause is restricted to an IN-only mode.

TABLE 13-1. Clauses Available to the EXECUTE IMMEDIATE Command

Chapter 13: Dynamic SQL 589

–– Available online as part of nds_sql.sql
PROCEDURE create_sequence
(sequence_name IN VARCHAR2) IS

–– Define local variable.
statement VARCHAR2(2000);

–– Define local function to find a sequence.
FUNCTION verify_not_sequence
(sequence_name_in IN VARCHAR2)

RETURN BOOLEAN IS

–– Defines default return value.
retval BOOLEAN := TRUE;

–– Cursor returns a single row when finding a sequence.
CURSOR find_sequence IS
SELECT null
FROM user_objects
WHERE object_name = sequence_name_in;

BEGIN

–– Sets the Boolean when it finds a sequence.
FOR i IN find_sequence LOOP
retval := FALSE;

END LOOP;

–– Return Boolean state.
RETURN retval;

END verify_not_sequence;

BEGIN

–– If sequence does not exist create it.
IF verify_not_sequence(sequence_name) = TRUE THEN

–– Build dynamic SQL statement.
statement := 'CREATE SEQUENCE '||sequence_name||CHR(10)

|| ' INCREMENT BY 1' ||CHR(10)
|| ' START WITH 1' ||CHR(10)
|| ' CACHE 20' ||CHR(10)
|| ' ORDER';

–– Use NDS to run the statement.

EXECUTE IMMEDIATE statement;

–– Print successful output message.
dbms_output.put_line(
'-> nds_tutorial.create_sequence');

–– Print output break.
dbms_output.put_line(sline);

–– Print sequence created.
dbms_output.put_line(
'Created Sequence <'||sequence_name||'>');

ELSE

–– Print module name output message.
dbms_output.put_line(
'-> nds_tutorial.create_sequence');

–– Print output line break.
dbms_output.put_line(sline);

–– Print output message.
dbms_output.put_line(
'Sequence <'||sequence_name||'> already exists');

END IF;

END create_sequence;

The procedure does the following:

■ It defines a procedure that takes a single formal parameter of
sequence_name.

■ It defines a local statement variable. The statement variable
is used as the argument to an EXECUTE IMMEDIATE NDS call.

■ It defines a local verify_not_sequence function. The function
takes a sequence name and checks whether it exists.

■ An if-then-else statement uses the verify_not_sequence function
to check if a sequence exists. It does the following if false:

■ It assigns a concatenated static string with the actual parameter
sequence_name.

590 Oracle Database 10g PL/SQL Programming

Chapter 13: Dynamic SQL 591

■ It uses EXECUTE IMMEDIATE with an argument of the statement
variable, which runs the NDS statement.

■ It prints a success message to the console.

If the function returns true, the sequence does not exist, and it prints a failure
message to the console.

In the NDS_TUTORIAL package, there is a mirror to this create_sequence
procedure in the drop_sequence procedure. It is a mirror in its approach to
dropping a sequence with an NDS statement. Please check the online file to examine
the drop_sequence procedure. Both of these illustrate using concatenation to
build a DDL statement and execute it as an NDS statement.

The following anonymous-block program calls the create_sequence,
increment_sequence, and drop_sequence procedures:

–– Available online as part of nds_sql_01.sql
DECLARE

–– Define local variables.
value_in VARCHAR2(30) := 'TESTING_S1';
value_out NUMBER;

BEGIN

–– Break output stream.
dbms_output.put_line(nds_tutorial.dline);

–– Test create sequence.
nds_tutorial.create_sequence(value_in);

–– Break output stream.
dbms_output.put_line(nds_tutorial.dline);

–– Use for loop to increment sequence three times.
FOR i IN 1..3 LOOP

–– Increment sequence.
nds_tutorial.increment_sequence(value_in,value_out);

–– Break output stream.
dbms_output.put_line(nds_tutorial.sline);

END LOOP;

–– Break output stream.

dbms_output.put_line(nds_tutorial.dline);

–– Drop the sequence.
nds_tutorial.drop_sequence(value_in);

–– Break output stream.
dbms_output.put_line(nds_tutorial.dline);

END;
/

The program does the following:

■ It defines two local variables, assigning the first a TESTING_S1 value.
The second is used later in the program as an output variable.

■ It prints a double line break.

■ It prints the results of nds_tutorial.create_sequence.

■ It prints a double line break.

■ It uses a for-loop to call the increment_sequence procedure three
times and prints a line break.

■ It prints a double line break.

■ It calls the drop_sequence procedure.

■ It prints a double line break.

The program produces the following output:

–– Available as output from online nds_sql_01.sql
==
-> nds_tutorial.create_sequence
––––––––––––––––––––––––––––––
Created Sequence <TESTING_S1>
==
-> nds_tutorial.increment_sequence
––––––––––––––––––––––––––––––
Sequence <TESTING_S1> Value <1>
––––––––––––––––––––––––––––––
-> nds_tutorial.increment_sequence
––––––––––––––––––––––––––––––
Sequence <TESTING_S1> Value <2>
––––––––––––––––––––––––––––––
-> nds_tutorial.increment_sequence

592 Oracle Database 10g PL/SQL Programming

Chapter 13: Dynamic SQL 593

––––––––––––––––––––––––––––––
Sequence <TESTING_S1> Value <3>
––––––––––––––––––––––––––––––
==
-> nds_tutorial.drop_sequence
––––––––––––––––––––––––––––––
Dropped Sequence <TESTING_S1>
==

A DML without bind variables works more or less the same way. You define
formal parameters and concatenate them into a VARCHAR2 string. Then, you use
the VARCHAR2 string as the argument to the EXECUTE IMMEDIATE command.

DDL commands work well with the concatenation method because of the
variable mode. Using NDS, all DDL commands take only IN-mode variables. Some
DML commands work well using NDS concatenation in statement strings. The
following insert_into_table procedure from the nds_tutorial package
illustrates a DML insert using concatenation:

–– Available online as part of nds_sql.sql
–– Procedure demonstrates a DML without bind variables.
PROCEDURE insert_into_table
(table_name IN VARCHAR2
, table_column_value1 IN NUMBER
, table_column_value2 IN VARCHAR2
, table_column_value3 IN VARCHAR2) IS

–– Define local variables.
statement VARCHAR2(2000);

–– Define a local function to ensure table does exist.
FUNCTION verify_table
(object_name_in IN VARCHAR2)

RETURN BOOLEAN IS

–– Defines default return value.
retval BOOLEAN := FALSE;

–– Cursor returns a single row when finding a table.
CURSOR find_object IS
SELECT null
FROM user_objects
WHERE object_name = object_name_in;

BEGIN

–– The for-loop sets the Boolean when a table is found.

594 Oracle Database 10g PL/SQL Programming

FOR i IN find_object LOOP
retval := TRUE;

END LOOP;

–– Return Boolean state.
RETURN retval;

END verify_table;

BEGIN

–– If table exists insert into it.
IF verify_table(table_name) = TRUE THEN

–– Build dynamic SQL statement.
statement := 'INSERT '

|| 'INTO '||table_name||' '
|| 'VALUES ('
|| ''''||table_column_value1||''','
|| ''''||table_column_value2||''','
|| ''''||table_column_value3||''')';

–– Execute the NDS statement.
EXECUTE IMMEDIATE statement;

–– Commit the records.
commit;

–– Print module name output message.
dbms_output.put_line(
'-> nds_tutorial.insert_into_table');

–– Print line break.
dbms_output.put_line(sline);

–– Print data output.
dbms_output.put_line(
'Value inserted <'||table_column_value1||'>');

dbms_output.put_line(
'Value inserted <'||table_column_value2||'>');

dbms_output.put_line(
'Value inserted <'||table_column_value3||'>');

ELSE

–– Print module name output message.
dbms_output.put_line(
'-> nds_tutorial.insert_into_table');

Chapter 13: Dynamic SQL 595

–– Print line break.
dbms_output.put_line(sline);

–– Print error output message.
dbms_output.put_line(
'Object <'||table_name||'> does not exist');

END IF;

END insert_into_table;

The procedure does the following:

■ It defines a procedure that takes four formal parameters.

■ It defines a local statement variable. The statement variable is used as
the argument to an EXECUTE IMMEDIATE NDS call.

■ It defines a local verify_table function. The function takes a table name
and checks whether it exists.

■ An if-then-else statement uses the verify_table function to check if a
table exists. It does the following if false:

■ It assigns a concatenated static string with the actual parameter
table_name.

■ It uses EXECUTE IMMEDIATE with an argument of the statement
variable, which runs the NDS statement.

■ It prints a success message to the console.

If the function returns true, the table exists, and it prints a failure message to
the console.

The nds_sql_02.sql test script demonstrates the insert_into_table
procedure. It contains three program units. The first program unit is an anonymous-
block PL/SQL program that calls two procedures, create_table and insert_
into_table. The second program unit is a SELECT statement that queries the
test_messages table. Last is another anonymous-block PL/SQL program that uses
the single_row_return procedure and then the drop_table procedure.

If you have more than a single row in the test_messages table, the nds_
sql_02.sql script will raise an error. You can get the error if you ran the nds_
sql_03.sql script before running this script. If so, the program will raise the
following error:

BEGIN
*

596 Oracle Database 10g PL/SQL Programming

ERROR at line 1:
ORA-01422: exact fetch returns more than requested number of rows
ORA-06512: at "PLSQL.NDS_TUTORIAL", line 739
ORA-06512: at line 7

There are also four bind variables declared in the nds_sql_02.sql script.
The bind variables allow the two anonymous PL/SQL block programs to share
variable values in the same session. You should refer to Chapter 3 if you need a
quick update on bind variables. The following script tests the insert_into_
table procedure:

–– Available online as part of nds_sql_02.sql
DECLARE

–– Define local variables.
table_name_in VARCHAR2(30) := 'TEST_MESSAGES';
table_definition_in VARCHAR2(2000);
column_name1 VARCHAR2(30) := 'TEST_MESSAGE_ID';
column_name2 VARCHAR2(30) := 'MESSAGE_SENT';
column_name3 VARCHAR2(30) := 'REVIEWED_BY';
table_column_value1 NUMBER := '1';
table_column_value2 VARCHAR2(20) := 'Hello World';
table_column_value3 VARCHAR2(30) := USER;

BEGIN

–– Assign table name to bind variable.
:table_name := table_name_in;
:column_name1 := column_name1;
:column_name2 := column_name2;
:column_name3 := column_name3;

–– Initialize table definition.
table_definition_in := '(test_message_id NUMBER' ||CHR(10)

|| ', message_sent VARCHAR2(20)'||CHR(10)
|| ', reviewed_by VARCHAR2(30))';

–– Print line break.
dbms_output.put_line(nds_tutorial.dline);

–– Create the table.
nds_tutorial.create_table(table_name_in,table_definition_in);

–– Print line break.
dbms_output.put_line(nds_tutorial.dline);

Chapter 13: Dynamic SQL 597

–– Insert into the table.
nds_tutorial.insert_into_table(table_name_in

, table_column_value1
, table_column_value2
, table_column_value3);

–– Print line break.
dbms_output.put_line(nds_tutorial.dline);

END;
/

The program does the following:

■ It defines local variables.

■ It assigns the four local variables to session-level bind variables. These are
the values for the table and column names that will be inserted into the table.

■ It builds an insert statement and assigns it to a variable.

■ It calls the nds_tutorial.create_table procedure that uses NDS to
dynamically build the table.

■ It prints a line break to the output stream.

■ It calls the nds_tutorial.insert_into_table procedure that uses
NDS to dynamically insert into the table.

■ It prints a line break to the output stream.

A query against the table shows that the row has been inserted by returning
the following:

–– Available online as output from dns_sql_02.sql
Test

Message
ID # Message Sent Reviewed By

–––- –––––––––– –––––––––––––––
1 Hello World PLSQL

You have now covered how to use NDS to process DDL and DML statements.
These have worked without using bind variables. The next section will illustrate
several approaches to DML statements that use bind variables.

598 Oracle Database 10g PL/SQL Programming

Working with DML and a
Known List of Bind Variables
Bind variables are very powerful devices, as you learned in Chapter 3. You also got
a chance to see how they can support moving data between two anonymous-block
PL/SQL programs in the prior section. Briefly, bind variables exist within the context
of the session, not a program unit. As long as the session does not unset the bind
variable, it is available.

When NDS executes a statement, it does so within the context of the user session
and behaves like a Unix subshell. Bind variables provide the means of exchanging
information between your programs. For example, consider the program that
executes an NDS call as the shell environment and the spawned NDS statement
as the subshell. Bind variables act as targets that you pass data to. This is called
passing by value. In other cases, bind variables are passed by address. This is
called passing by reference. If the mode is IN for a bind variable, the data is passed
by value. If the mode is OUT for a bind variable, the data is passed by reference.

You will now work with another procedure from the nds_tutorial package.
The inserts_into_table procedure is a clone of the insert_into_table
procedure. The statement variable has changed to include bind variables. As a
result of the addition of bind variables in the statement variable, the USING clause
is added. The following procedure demonstrates using bind variables:

–– Available online as part of nds_sql.sql
PROCEDURE inserts_into_table
(table_name IN VARCHAR2
, table_column_value1 IN NUMBER
, table_column_value2 IN VARCHAR2
, table_column_value3 IN VARCHAR2) IS

–– Define local variables.
statement VARCHAR2(2000);

–– Define a local function to ensure table does exist.
FUNCTION verify_table
(object_name_in IN VARCHAR2)

RETURN BOOLEAN IS

–– Defines default return value.
retval BOOLEAN := FALSE;

–– Cursor returns a single row when finding a table.
CURSOR find_object IS
SELECT null

Chapter 13: Dynamic SQL 599

FROM user_objects
WHERE object_name = object_name_in;

BEGIN

–– The for-loop sets the Boolean when a table is found.
FOR i IN find_object LOOP
retval := TRUE;

END LOOP;

–– Return Boolean state.
RETURN retval;

END verify_table;

BEGIN

–– If table exists insert into it.
IF verify_table(table_name) = TRUE THEN

–– Build dynamic SQL statement.
statement := 'INSERT '

|| 'INTO '||table_name||' '
|| 'VALUES (:col_one, :col_two, :col_three)';

–– Execute the NDS statement.
EXECUTE IMMEDIATE statement
USING table_column_value1
, table_column_value2
, table_column_value3;

–– Commit the records.
commit;

–– Print module name output message.
dbms_output.put_line(
'-> nds_tutorial.insert_into_table');

–– Print line break.
dbms_output.put_line(sline);

–– Print data output.
dbms_output.put_line(
'Value inserted <'||table_column_value1||'>');

dbms_output.put_line(
'Value inserted <'||table_column_value2||'>');

dbms_output.put_line(
'Value inserted <'||table_column_value3||'>');

ELSE

–– Print module name output message.
dbms_output.put_line(
'-> nds_tutorial.insert_into_table');

–– Print line break.
dbms_output.put_line(sline);

–– Print error output message.
dbms_output.put_line(
'Object <'||table_name||'> does not exist');

END IF;

END inserts_into_table;

The procedure does the following:

■ It defines a procedure that takes four formal parameters.

■ It defines a local statement variable. The statement variable is used as
the argument to an EXECUTE IMMEDIATE NDS call.

■ It defines a local verify_table function. The function takes a table name
and checks whether it exists.

■ An if-then-else statement uses the verify_table function to check if a
table exists. It does the following if true:

■ It assigns a concatenated static string with the actual parameter
table_name and three bind variables. The bind variables :col_one,
:col_two, and :col_three are placeholders. They map positionally
to the variables in the USING clause.

■ It uses EXECUTE IMMEDIATE with an argument of the statement
variable, which runs the NDS statement. It also has a USING clause
followed by three of the formal parameters to the procedure.

■ It prints a success message to the console.

If the function returns false, the table does not exist, and it prints a failure message
to the console.

600 Oracle Database 10g PL/SQL Programming

The program to test the insert_bind_table procedure is a clone of the one
used to test the insert_into_table procedure. The only difference is the name
of the procedure. Please refer back to the example provided from nds_sql_
02.sql. Likewise, it produces the same output, which is not repeated here.

You will now see how to select a collection using NDS, bind variables, and a
bulk collection operation.

Working with DQL
You will work with selecting a row from the database using NDS, bind variables,
and a bulk collection operation. There are two details you need to know to use bulk
processing within NDS:

■ NDS can only work with database types. This means that if you want to
return a collection, you must define the collection type in the database.

■ NDS can use bulk collections only from within an anonymous-block
PL/SQL program.

NOTE
DBMS_SQL does not support user-defined types.

For example, for this chapter you will need to define the following types:

–– Available online as part of create_types.sql
CREATE OR REPLACE TYPE varchar2_table1 IS
VARRAY(100) OF VARCHAR2(1);
/

–– Create a Varray of number.
CREATE OR REPLACE TYPE card_number_varray IS
VARRAY(100) OF NUMBER;
/

–– Create a Varray of twenty-character string.
CREATE OR REPLACE TYPE card_name_varray IS
VARRAY(100) OF VARCHAR2(2000);
/

–– Create a Varray of thirty-character string.
CREATE OR REPLACE TYPE card_suit_varray IS
VARRAY(100) OF VARCHAR2(2000);
/

Chapter 13: Dynamic SQL 601

TIP
While the examples use varrays, you probably
should consider using nested tables. They are better
solutions for NDS because they are not upward-
bound array structures. As you know, the number
of rows from a query or transactional processing
insert, update, or delete is unknown until run time.

You will see in the next sample procedure how the varray data type is used. The
second detail is that you must encapsulate bulk processing within anonymous-block
PL/SQL units. If you rewrite the NDS statement in the multiple_row_return
procedure as follows, it will fail:

–– Build dynamic SQL statement.
statement := 'SELECT ''A'' '

|| 'BULK COLLECT INTO :col_val '
|| 'FROM DUAL';

While the package will successfully compile, at run time you will see it fail. You
can use the following anonymous block to test it:

BEGIN nds_tutorial.multiple_row_return; END;
/

Attempting this, you will raise the following error:

BEGIN nds_tutorial.multiple_row_return; END;
*
ERROR at line 1:
ORA-03001: unimplemented feature
ORA-06512: at "PLSQL.NDS_TUTORIAL", line 631
ORA-06512: at line 1

If you inspect the nds_tutorial package, you will find the multiple_row_
return procedure is overloaded. You will first test the form of the procedure that
takes no parameters and returns only a single row. The multiple_row_return
procedure without parameters lets you work through the basic syntax.

The multiple_row_return procedure is listed here:

–– Available online as part of nds_sql.sql
PROCEDURE multiple_row_return IS

–– Define local variables.
statement VARCHAR2(2000);

602 Oracle Database 10g PL/SQL Programming

value_out VARCHAR2_TABLE2;

BEGIN

–– Build dynamic SQL statement.
statement := 'BEGIN '

|| 'SELECT ''A'' '
|| 'BULK COLLECT INTO :col_val '
|| 'FROM DUAL;'
|| 'END;';

–– Use Bulk NDS to query a static string.
EXECUTE IMMEDIATE statement
USING OUT value_out;

–– Print module name message.
dbms_output.put_line(
'-> nds_tutorial.multiple_row_return');

–– Print line break.
dbms_output.put_line(sline);

–– Use a range loop to read the values.
FOR i IN 1..value_out.COUNT LOOP

–– Print output message.
dbms_output.put_line(
'Value from COLUMN_VALUE <'||value_out(i)||'>');

END LOOP;

END multiple_row_return;

The procedure does the following:

■ It defines two local variables. One is for the NDS statement value, and the
other is for the output string from the NDS statement.

■ It builds the NDS statement with an anonymous-block PL/SQL program.
This uses a BULK COLLECT INTO statement. The bulk collect assigns the
result to the :col_val bind variable.

■ It executes the NDS statement value and the USING clause to receive the
value from the NDS statement execution.

■ It prints an output title and a line break.

Chapter 13: Dynamic SQL 603

■ It uses a for-loop to print the returned values, which in this case will always
be one returned value.

The following enables you to test the multiple_row_return procedure:

–– Available online as part of nds_sql_02.sql
BEGIN

–– Print line break.
dbms_output.put_line(nds_tutorial.dline);

–– Run dynamic DQL against table.
nds_tutorial.single_row_return(:table_name

,:column_name1
,:column_name2
,:column_name3);

–– Print line break.
dbms_output.put_line(nds_tutorial.dline);

–– Drop table.
nds_tutorial.drop_table(:table_name);

–– Print line break.
dbms_output.put_line(nds_tutorial.dline);

END;
/

The program does the following:

■ It prints a line break.

■ It calls the nds_tutorial.multiple_row_return procedure with
bind variables set in an earlier program unit. You should check the online
script to see how the bind variables work.

■ It prints a line break.

■ It calls the nds_tutorial.drop_table procedure with a bind variable
set in an earlier program unit. You should check the online script to see
how the bind variables work.

■ It prints a line break.

It will generate the following output:

604 Oracle Database 10g PL/SQL Programming

–– Available online as output from dns_sql_02.sql
==
-> nds_tutorial.single_row_return
––––––––––––––––––––––––––––––
Value from COLUMN_VALUE <1>
Value from COLUMN_VALUE <Hello World>
Value from COLUMN_VALUE <PLSQL>
==
==
-> nds_tutorial.drop_table
––––––––––––––––––––––––––––––
Dropped Table <TEST_MESSAGES>
==

The first example returned only a single row because there was only one row.
You saw how the mechanics of the BULK COLLECT worked in NDS. The following
nds_sql_03.sql example provides another example, returning multiple columns
into varray data types.

The procedure does the following:

–– Available online as part of nds_sql.sql
–– Procedure demonstrates multiple row with columns DQL.
PROCEDURE multiple_row_return
(table_name VARCHAR2
, column_name1 VARCHAR2
, column_name2 VARCHAR2
, column_name3 VARCHAR2)IS

–– Define local Native Dynamic SQL variables.
statement VARCHAR2(2000);
cvalue_out1 CARD_NAME_VARRAY;
cvalue_out2 CARD_SUIT_VARRAY;
nvalue_out CARD_NUMBER_VARRAY;

BEGIN

–– Build dynamic SQL statement.
statement := 'BEGIN '

|| 'SELECT '
|| column_name1 ||','
|| column_name2 ||','
|| column_name3 ||' '
|| 'BULK COLLECT INTO :col1, :col2, :col3 '
|| 'FROM '|| table_name ||';'
|| 'END;';

–– Execute native dynamic SQL.

Chapter 13: Dynamic SQL 605

606 Oracle Database 10g PL/SQL Programming

EXECUTE IMMEDIATE statement
USING OUT nvalue_out, OUT cvalue_out1, cvalue_out2;

–– Print module name message.
dbms_output.put_line('-> nds_tutorial.multiple_row_return');

–– Print line break.
dbms_output.put_line(sline);

FOR i IN 1..nvalue_out.COUNT LOOP

–– Print data output.
dbms_output.put_line(
'Value from ['||column_name1||'] '||
'is: ['||nvalue_out(i)||']');

dbms_output.put_line(
'Value from ['||column_name1||'] '||
'is: ['||SUBSTR(cvalue_out1(i),1,20)||']');

dbms_output.put_line(
'Value from ['||column_name1||'] '||
'is: ['||SUBSTR(cvalue_out2(i),1,30)||']');

END LOOP;

END multiple_row_return;

The procedure does the following:

■ It defines two local variables. One is for the NDS statement value, and the
other is for the output string from the NDS statement.

■ It builds the NDS statement with an anonymous-block PL/SQL program.
This uses a BULK COLLECT INTO statement. The bulk collect assigns the
result to :col1, :col2, and :col3 bind variables.

■ It executes the NDS statement value and the USING clause to receive the
value from the NDS statement execution. Each variable in the USING
clause has an OUT mode specified. The OUT mode must be specified
because the default mode is IN. If the default mode is used, you will raise
an ORA-06536 error.

■ It prints an output title and line break.

■ It uses a for-loop to print the returned values, which in this case will always
be one returned value.

You can test it with the following program:

–– Available online as part of nds_sql_03.sql
BEGIN

–– Print line break.
dbms_output.put_line(nds_tutorial.dline);

–– Run dynamic DQL against table.
nds_tutorial.multiple_row_return(:table_name

,:column_name1
,:column_name2
,:column_name3);

–– Print line break.
dbms_output.put_line(nds_tutorial.dline);

–– Print line break.
dbms_output.put_line(nds_tutorial.dline);

–– Drop table.
nds_tutorial.drop_table(:table_name);

–– Print line break.
dbms_output.put_line(nds_tutorial.dline);

END;
/

It provides the following output:

–– Available online as output from nds_sql_03.sql
==
-> nds_tutorial.multiple_row_return
––––––––––––––––––––––––––––––
Value from [TEST_MESSAGE_ID] is: [1]
Value from [TEST_MESSAGE_ID] is: [Hello World!]
Value from [TEST_MESSAGE_ID] is: [PLSQL]
Value from [TEST_MESSAGE_ID] is: [2]
Value from [TEST_MESSAGE_ID] is: [Hello Universe!]
Value from [TEST_MESSAGE_ID] is: [PLSQL]
==

You should note that the OUT mode is specified for each BULK COLLECT target
variable. If you fail to designate the mode for each of the variables, you will raise an
exception. For example, you can use nds_sqle.sql to create another version of

Chapter 13: Dynamic SQL 607

608 Oracle Database 10g PL/SQL Programming

the nds_tutorial package. It will remove the OUT mode from one of the variables
in the multiple_row_return procedure, raising the following exception when
you run nds_sql_03.sql:

–– Available online as output from nds_sql_03.sql
BEGIN
*
ERROR at line 1:
ORA-06536: IN bind variable bound to an OUT position
ORA-06512: at "PLSQL.NDS_TUTORIAL", line 684
ORA-06512: at line 7

NDS does not manage NULL values. You must manage NULL values. The
following provides you with a working example:

–– Available online as part of nds_null.sql
DECLARE

–– Declare a variable and do not initialize it.
null_value VARCHAR2(1);

BEGIN

–– Use NDS to select nothing into a bind variable.
EXECUTE IMMEDIATE 'BEGIN SELECT null INTO :out FROM DUAL; END;'
USING OUT null_value;

–– Print the output message.
dbms_output.put_line('Null is ['||null_value||']');

END;
/

The program does three things:

■ It declares a variable but does not initialize it.

■ It executes native dynamic SQL against a PL/SQL block.

■ It prints the output message.

If you remove the PL/SQL block delimiters, you will raise the following exception:

DECLARE
*
ERROR at line 1:

ORA-00911: invalid character
ORA-06512: at line 7

You have now covered NDS. You have found it is a powerful facility with a few
quirks related to bulk processing. You will now work with the DBMS_SQL built-in.

Working with the Oracle
DBMS_SQL Built-in Package
Oracle introduced the DBMS_SQL built-in package in Oracle 7. It provided a
means to store object code in the database that would dynamically build SQL
statements, and it innovated a solution around the object validation phase of
PL/SQL compilation. Prior to DBMS_SQL, you could not store a SQL statement
unless the table existed with the same definition.

DBMS_SQL was enhanced to facilitate collections in Oracle 8i. It has grown to
a considerable size. The built-in provides a number of overloaded procedures. If
you were to do run a describe command on the DBMS_SQL package, you would
find a copy of each of these overloaded procedures for the types listed. Table 13-2
lists the DBMS_SQL procedures, with types of scalar and nested table variables in
the types column.

DBMS_SQL still has a major feature that is not delivered in NDS. It does not
need to know beforehand the number and types of arguments it will receive and
process. This feature is available because of two procedures, DESCRIBE_COLUMNS
and DESCRIBE_COLUMNS2.

Like the NDS approach, DBMS_SQL supports string concatenation and bind
variables. If you need a refresh on bind variables, please check Chapter 3.

Unlike NDS, the DBMS_SQL package requires explicit grants. For example,
you have to grant execute permission on DBMS_SYS_SQL to the SYSTEM account
with GRANT OPTION from the SYSDBA account. Another security caveat of the
DBMS_SQL package is that some privileges must be directly granted as opposed
to being provisioned by roles. If there is a missing privilege, you will raise the
following exception:

ORA-01031: insufficient privileges

Both the dns_tutorial and the dbms_sql_tutorial are designed to have
the same procedure specifications. However, the internals of each procedure are
different. You will now work through DBMS_SQL examples with and without bind
variables. You will also cover how to use DQL using DBMS_SQL.

Chapter 13: Dynamic SQL 609

610 Oracle Database 10g PL/SQL Programming

Function or
Procedure

Formal
Parameters

Formal
Data Types Mode Types

BIND_ARRAY C
NAME
<Table
Name>

NUMBER(38)
NAME
<Nested Table>

IN
IN
IN

BINARY FILE LOB
BINARY_FLOAT
BINARY_DOUBLE
BLOB
CLOB
DATE
INTERVAL YEAR TO MONTH
INTERVAL DAY TO SECOND
NUMBER
ROWID
TIME
TIME W/TIME ZONE
TIMESTAMP
TIMESTAMP W/TIME ZONE
VARCHAR2(2000)

BIND_ARRAY C
NAME
<Table
Name>
INDEX1
INDEX2

NUMBER(38)
NAME
<Nested Table>
NUMBER(38)
NUMBER(38)

IN
IN
IN
IN
IN

BINARY FILE LOB
BINARY_FLOAT
BINARY_DOUBLE
BLOB
CLOB
DATE
INTERVAL YEAR TO MONTH
INTERVAL DAY TO SECOND
NUMBER
ROWID
TIME
TIME W/TIME ZONE
TIMESTAMP
TIMESTAMP W/TIME ZONE
VARCHAR2(2000)

TABLE 13-2. DBMS_SQL Procedures

Chapter 13: Dynamic SQL 611

Function or
Procedure

Formal
Parameters

Formal
Data Types Mode Types

BIND_VALUE C
NAME
VALUE

NUMBER(38)
VARCHAR2
<Types>

IN
IN
IN

BINARY FILE LOB
BINARY_FLOAT
BINARY_DOUBLE
BLOB
CHAR
CLOB
DATE
INTERVAL YEAR TO MONTH
INTERVAL DAY TO SECOND
NUMBER
RAW
ROWID
TIME
TIME W/TIME ZONE
TIMESTAMP
TIMESTAMP W/TIME ZONE
VARCHAR2(2000)

BIND_VALUE C
NAME
VALUE
OUT_VALUE_
SIZE

NUMBER(38)
NAME
<Nested Table>
NUMBER(38)

IN
IN
IN
IN

CHAR
NUMBER
RAW
VARCHAR2

CLOSE_
CURSOR

C NUMBER(38) IN/
OUT

COLUMN_
VALUE

C
POSITION
VALUE

NUMBER(38)
NUMBER(38)
<Type>

IN
IN
OUT

BINARY FILE LOB
BINARY_FLOAT
BINARY_DOUBLE
BLOB
CLOB
DATE
INTERVAL YEAR TO MONTH
INTERVAL DAY TO SECOND
NUMBER
ROWID
TIME
TIME W/TIME ZONE
TIMESTAMP
TIMESTAMP W/TIME ZONE
VARCHAR2

TABLE 13-2. DBMS_SQL Procedures (continued)

612 Oracle Database 10g PL/SQL Programming

Function or
Procedure

Formal
Parameters

Formal
Data Types Mode Types

COLUMN_
VALUE

C
NAME
<Table
Name>

NUMBER(38)
NUMBER(38)
<Nested Type>

IN
IN
IN

BINARY FILE LOB
BINARY_FLOAT
BINARY_DOUBLE
BLOB
CLOB
DATE
INTERVAL YEAR TO MONTH
INTERVAL DAY TO SECOND
NUMBER
ROWID
TIME
TIME W/TIME ZONE
TIMESTAMP
TIMESTAMP W/TIME ZONE
VARCHAR2

COLUMN_
VALUE

C
NAME
VALUE
COLUMN_
ERROR
ACTUAL_
LENGTH

NUMBER(38)
NUMBER(38)
<Type>
NUMBER
NUMBER(38)

IN
IN
OUT
OUT
OUT

DATE
NUMBER
VARCHAR2

COLUMN_
VALUE_CHAR

C
POSITION
VALUE

NUMBER(38)
NUMBER(38)
<Type>

IN
IN
OUT

CHAR

COLUMN_
VALUE_CHAR

C
POSITION
VALUE
COLUMN_
ERROR
ACTUAL_
LENGTH

NUMBER(38)
NUMBER(38)
<Type>
NUMBER
NUMBER(38)

IN
IN
OUT
OUT
OUT

CHAR

COLUMN_
VALUE_LONG

C
POSITION
OFFSET
VALUE
VALUE_
LENGTH
ACTUAL_
LENGTH

NUMBER(38)
NUMBER(38)
NUMBER(38)
NUMBER(38)
VARCHAR2
NUMBER(38)

IN
IN
IN
IN
OUT
OUT

LONG

TABLE 13-2. DBMS_SQL Procedures (continued)

Chapter 13: Dynamic SQL 613

Function or
Procedure

Formal
Parameters

Formal
Data Types Mode Types

COLUMN_
VALUE_RAW

C
POSITION
VALUE

NUMBER(38)
NUMBER(38)
NUMBER

IN
IN
OUT

RAW

COLUMN_
VALUE_RAW

C
POSITION
VALUE
COLUMN_
ERROR
ACTUAL_
LENGTH

NUMBER(38)
NUMBER(38)
NUMBER
NUMBER
NUMBER(38)

IN
IN
OUT
OUT
OUT

RAW

COLUMN_
VALUE_ROWID

C
POSITION
VALUE

NUMBER(38)
NUMBER(38)
NUMBER

IN
IN
OUT

ROWID

COLUMN_
VALUE_ROWID

C
POSITION
VALUE
COLUMN_
ERROR
ACTUAL_
LENGTH

NUMBER(38)
NUMBER(38)
NUMBER
NUMBER
NUMBER(38)

IN
IN
OUT
OUT
OUT

ROWID

DEFINE_
ARRAY

C
POSITION
<Table
Name>
COLUMN_
ERROR
LOWER_
BOUND

NUMBER(38)
NUMBER(38)
<Nested Table>
NUMBER(38)
NUMBER(38)

IN
IN
IN
IN
IN

BINARY FILE LOB
BINARY_FLOAT
BINARY_DOUBLE
BLOB
CLOB
DATE
INTERVAL YEAR TO MONTH
INTERVAL DAY TO SECOND
NUMBER
ROWID
TIME
TIME W/TIME ZONE
TIMESTAMP
TIMESTAMP W/TIME ZONE
VARCHAR2

TABLE 13-2. DBMS_SQL Procedures (continued)

614 Oracle Database 10g PL/SQL Programming

Function or
Procedure

Formal
Parameters

Formal
Data Types Mode Types

DEFINE_
COLUMN

C
POSITION
COLUMN

NUMBER(38)
NUMBER(38)
<Type>

IN
IN
IN

BINARY FILE LOB
BINARY_FLOAT
BINARY_DOUBLE
BLOB
CLOB
DATE
INTERVAL YEAR TO MONTH
INTERVAL DAY TO SECOND
NUMBER
ROWID
TIME
TIME W/TIME ZONE
TIMESTAMP
TIMESTAMP W/TIME ZONE
VARCHAR2

DEFINE_
VALUE_CHAR

C
POSITION
COLUMN
COLUMN_
SIZE

NUMBER(38)
NUMBER(38)
CHAR
NUMBER(38)

IN
IN
IN
IN

CHAR

DEFINE_
VALUE_LONG

C
POSITION

NUMBER(38)
NUMBER(38)

IN
IN

LONG

DEFINE_
VALUE_RAW

C
POSITION
COLUMN
COLUMN_
SIZE

NUMBER(38)
NUMBER(38)
RAW
NUMBER(38)

IN
IN
IN
IN

RAW

DEFINE_
VALUE_ROWID

C
POSITION
COLUMN

NUMBER(38)
NUMBER(38)
ROWID

IN
IN
IN

ROWID

TABLE 13-2. DBMS_SQL Procedures (continued)

Chapter 13: Dynamic SQL 615

Function or
Procedure

Formal
Parameters

Formal
Data Types Mode Types

DESCRIBE_
COLUMNS

C
COL_CNT
DESC_T

NUMBER(38)
NUMBER(38)
<Nested Table>

IN
OUT
OUT

BINARY FILE LOB
BINARY_FLOAT
BINARY_DOUBLE
BLOB
CLOB
DATE
INTERVAL YEAR TO MONTH
INTERVAL DAY TO SECOND
NUMBER
ROWID
TIME
TIME W/TIME ZONE
TIMESTAMP
TIMESTAMP W/TIME ZONE
VARCHAR2

DESCRIBE_
COLUMNS2

C
COL_CNT
DESC_T

NUMBER(38)
NUMBER(38)
<Nested Table>

IN
OUT
OUT

BINARY FILE LOB
BINARY_FLOAT
BINARY_DOUBLE
BLOB
CLOB
DATE
INTERVAL YEAR TO MONTH
INTERVAL DAY TO SECOND
NUMBER
ROWID
TIME
TIME W/TIME ZONE
TIMESTAMP
TIMESTAMP W/TIME ZONE
VARCHAR2

TABLE 13-2. DBMS_SQL Procedures (continued)

616 Oracle Database 10g PL/SQL Programming

Function or
Procedure

Formal
Parameters

Formal
Data Types Mode Types

EXECUTE C NUMBER(38) IN RETURNS INTEGER

EXECUTE_
AND_FETCH

C
EXACT

NUMBER(38)
BOOLEAN

IN
IN

RETURNS INTEGER

FETCH_ROWS C NUMBER(38) IN RETURNS INTEGER

IS_OPEN C NUMBER(38) IN RETURNS INTEGER

LAST_ERROR_
POSITION

RETURNS INTEGER

LAST_ROW_
COUNT

RETURNS INTEGER

LAST_ROW_ID RETURNS INTEGER

LAST_SQL_
FUNCTION_
CODE

RETURNS INTEGER

OPEN_CURSOR RETURNS INTEGER

PARSE C
STATEMENT
LANGUAGE_
FLAG

NUMBER(38)
VARCHAR2
NUMBER(38)

IN
IN
IN

VARCHAR2

PARSE C
STATEMENT
LB
UB
LFFLG
LANGUAGE_
FLAG

NUMBER(38)
<Nested Table>
NUMBER(38)
NUMBER(38)
BOOLEAN
NUMBER(38)

IN
IN
IN
IN
IN
IN

VARCHAR2(256)
VARCHAR2(32767)

TABLE 13-2. DBMS_SQL Procedures (continued)

Chapter 13: Dynamic SQL 617

Function or
Procedure

Formal
Parameters

Formal
Data Types Mode Types

VARIABLE_
VALUE

C
NAME
VALUE

NUMBER(38)
VARCHAR2
<Type>

IN
IN
IN

BINARY FILE LOB
BINARY_FLOAT
BINARY_DOUBLE
BLOB
CHAR
CLOB
DATE
INTERVAL YEAR TO MONTH
INTERVAL DAY TO SECOND
NUMBER
RAW
ROWID
TIME
TIME W/TIME ZONE
TIMESTAMP
TIMESTAMP W/TIME ZONE
VARCHAR2

VARIABLE_
VALUE

C
NAME
VALUE

NUMBER(38)
VARCHAR2
<Type>

IN
IN
IN

BINARY FILE LOB
BINARY_FLOAT
BINARY_DOUBLE
BLOB
CLOB
DATE
INTERVAL YEAR TO MONTH
INTERVAL DAY TO SECOND
NUMBER
RAW
ROWID
TIME
TIME W/TIME ZONE
TIMESTAMP
TIMESTAMP W/TIME ZONE
VARCHAR2(2000)

TABLE 13-2. DBMS_SQL Procedures (continued)

618 Oracle Database 10g PL/SQL Programming

Working with DDL and DML
Without Bind Variables
DBMS_SQL supports string concatenation much like NDS. The key difference is
that a number of additional steps are required to implement a simple procedure.
You will now work with an alternative to the earlier nds_sql.create_sequence
procedure. The following dbms_sql.create_sequence procedure should
look familiar:

–– Available online as part of dbms_sql.sql
PROCEDURE create_sequence
(sequence_name IN VARCHAR2) IS

–– Define local DBMS_SQL variables.
c INTEGER := dbms_sql.open_cursor;
fdbk INTEGER;
statement VARCHAR2(2000);

–– Define a local function to find sequence.
FUNCTION verify_not_sequence
(sequence_name_in IN VARCHAR2)

RETURN BOOLEAN IS

–– Defines default return value.
retval BOOLEAN := TRUE;

–– Cursor returns a single row when finding a sequence.
CURSOR find_sequence IS
SELECT null
FROM user_objects
WHERE object_name = sequence_name_in;

BEGIN

–– Sets the Boolean when a sequence is found.
FOR i IN find_sequence LOOP
retval := FALSE;

END LOOP;

–– Return Boolean state.
RETURN retval;

END verify_not_sequence;

Chapter 13: Dynamic SQL 619

BEGIN

–– If sequence does not exist create it.
IF verify_not_sequence(sequence_name) = TRUE THEN

–– Build dynamic SQL statement.
statement := 'CREATE SEQUENCE '||sequence_name||CHR(10)

|| ' INCREMENT BY 1' ||CHR(10)
|| ' START WITH 1' ||CHR(10)
|| ' CACHE 20' ||CHR(10)
|| ' ORDER';

–– Parse and execute the statement.
dbms_sql.parse(c,statement,dbms_sql.native);
fdbk := dbms_sql.execute(c);

–– Close the open cursor.
dbms_sql.close_cursor(c);

–– Print module name message.
dbms_output.put_line(
'-> dbms_sql_tutorial.create_sequence');

–– Print line break.
dbms_output.put_line(sline);

–– Print the output message.
dbms_output.put_line(
'Created Sequence <'||sequence_name||'>');

ELSE

–– Print module name message.
dbms_output.put_line(
'-> dbms_sql_tutorial.create_sequence');

–– Print line break.
dbms_output.put_line(sline);

–– Print the output message.
dbms_output.put_line(
'Sequence <'||sequence_name||'> already exists');

END IF;

END create_sequence;

620 Oracle Database 10g PL/SQL Programming

The procedure does the following:

■ It defines a procedure that takes a single formal parameter of
sequence_name.

■ It defines a local statement variable. The statement variable is
used as the argument to a DBMS_SQL.PARSE procedure call.

■ It defines two variables required for DBMS_SQL. One is fdbk, or the
feedback variable, and the other is c, or the cursor variable.

■ It defines a local verify_not_sequence function. The function takes
a sequence name and checks whether it exists.

■ An if-then-else statement uses the verify_not_sequence function to
check if a sequence does not exist. It does the following if true:

■ It assigns a concatenated static string with the actual parameter
sequence_name.

■ It uses DBMS_SQL.PARSE with three arguments. The first is c, which
is the cursor number. Second is the statement variable, which is
the DDL or DML statement. Third is the type of DBMS_SQL
environment constant.

■ It uses DBMS_SQL.EXECUTE with the cursor number to run the DDL
or DML statement.

■ It uses DBMS_SQL.CLOSE_CURSOR to close the open cursor.

■ It prints a module name.

■ It prints a line break.

■ It prints the success message with the sequence name.

If the function returns false, the sequence exists, and it prints a failure message
to the console.

You can use the following to test the dbms_tutorial.create_sequence
procedure:

–– Available online as part of dbms_sql_01.sql
DECLARE

–– Define local variables.
value_in VARCHAR2(30) := 'TESTING_S1';
value_out NUMBER;

BEGIN

Chapter 13: Dynamic SQL 621

–– Break output stream.
dbms_output.put_line(dbms_sql_tutorial.dline);

–– Test create sequence.
dbms_sql_tutorial.create_sequence(value_in);

–– Break output stream.
dbms_output.put_line(dbms_sql_tutorial.dline);

–– Loop six times.
FOR i IN 1..3 LOOP

–– Test increment_sequence procedure.
dbms_sql_tutorial.increment_sequence(value_in,value_out);

END LOOP;

–– Print line break.
dbms_output.put_line(dbms_sql_tutorial.dline);

–– Drop the sequence.
dbms_sql_tutorial.drop_sequence(value_in);

–– Print line break.
dbms_output.put_line(dbms_sql_tutorial.dline);

END;
/

The program does the following:

■ It defines two local variables, assigning the first a TESTING_S1 value.
The second is used later in the program as an output variable.

■ It prints a double line break.

■ It prints the results of dbms_sql_tutorial.create_sequence.

■ It prints a double line break.

■ It uses a for-loop to call the increment_sequence procedure three
times and print a line break.

■ It prints a double line break.

■ It calls the drop_sequence procedure.

■ It prints a double line break.

It generates the following output:

–– Available online as output from dbms_sql_01.sql
==
-> dbms_sql_tutorial.create_sequence
––––––––––––––––––––––––––––––
Created Sequence <TESTING_S1>
==
Sequence <TESTING_S1> Value <1>
Sequence <TESTING_S1> Value <2>
Sequence <TESTING_S1> Value <3>
==
-> dbms_sql_tutorial.drop_sequence
––––––––––––––––––––––––––––––
Dropped Sequence <TESTING_S1>
==

As you can see, NDS and DBMS_SQL perform much the same. Unfortunately,
there is a lot more syntax to manage with DBMS_SQL. Now you will see a
comparative version of a bulk insert using DBMS_SQL.

Working with DML and a
Known List of Bind Variables
Oracle 8i introduced additional procedures to the DBMS_SQL package. These
enabled programmers to do bulk collections. They are limited in Oracle 10g to
associative arrays that are indexed by BINARY_INTEGER values. As discussed
previously, DBMS_SQL has no support for user-defined types.

There are four poorly documented errors that can occur when using DBMS_
SQL. They are qualified in Table 13-3.

622 Oracle Database 10g PL/SQL Programming

Error Message Description

ORA-06502: PL/SQL:
numeric or value error

An explicit size is required for CHAR, RAW, and
VARCHAR2 variables. The overloaded procedure
has an output size variable in the fourth position
that you need to use.

PLS-00049: bad bind
variable

A bad bind variable message means the identifier
is outside of the expected SQL data type, like a
NUMBER or VARCHAR2 string. When this happens,
the bind variable is treated as an undefined
session-level variable.

TABLE 13-3. Errors That Can Occur When Using DBMS_SQL

Chapter 13: Dynamic SQL 623

A single row return and table insert can be done with dbms_sql_02.sql. The
following DML procedure with bind variables illustrates a bulk insert:

–– Available online as part of dbms_sql.sql
PROCEDURE inserts_into_table
(table_name IN VARCHAR2
, table_column_values1 IN DBMS_SQL.NUMBER_TABLE
, table_column_values2 IN DBMS_SQL.VARCHAR2_TABLE
, table_column_values3 IN DBMS_SQL.VARCHAR2_TABLE) IS

–– Define local DBMS_SQL variables.
c INTEGER := dbms_sql.open_cursor;
fdbk INTEGER;
statement VARCHAR2(2000);

–– Define a local function to ensure table does exist.
FUNCTION verify_table
(object_name_in IN VARCHAR2)

RETURN BOOLEAN IS

–– Defines default return value.
retval BOOLEAN := FALSE;

–– Cursor returns a single row when finding a table.
CURSOR find_object IS
SELECT null
FROM user_objects
WHERE object_name = object_name_in;

BEGIN

–– The for-loop sets the Boolean when a table is found.

Error Message Description

ORA-00928: missing
SELECT keyword

This can occur on an insert statement when you
put bind variables into the INTO clause for
column names.

ORA-01006: bind
variable does not exist

This can happen when you have quote marks
around VARCHAR2 bind variables; you may
raise the “bind variable does not exist” error. If
you need to use that syntax, you can encapsulate
the DML in a PLSQL wrapper.

TABLE 13-3. Errors That Can Occur When Using DBMS_SQL (continued)

FOR i IN find_object LOOP
retval := TRUE;

END LOOP;

–– Return Boolean state.
RETURN retval;

END verify_table;

BEGIN

–– If table exists insert into it.
IF verify_table(table_name) = TRUE THEN

–– Build dynamic SQL statement.
statement := 'INSERT '

|| 'INTO '||table_name||' '
|| '(card_number '
|| ', card_name '
|| ', card_suit)'
|| 'VALUES '
|| '(:card_number'
|| ', :card_name'
|| ', :card_suit)';

–– Parse the statement.
dbms_sql.parse(c,statement,dbms_sql.native);

–– Bind each bind variable.
dbms_sql.bind_array(c,'card_number',table_column_values1);
dbms_sql.bind_array(c,'card_name',table_column_values2);
dbms_sql.bind_array(c,'card_suit',table_column_values3);

–– Execute the dynamic statement.
fdbk := dbms_sql.execute(c);

–– Print the number of rows inserted.
dbms_output.put_line('Inserted ['||fdbk||'].');

–– Close the open cursor.
dbms_sql.close_cursor(c);

–– Commit the records.
commit;

–– Print module name message.
dbms_output.put_line('-> dbms_sql_tutorial.inserts_into_table');

624 Oracle Database 10g PL/SQL Programming

–– Print line break.
dbms_output.put_line(sline);

–– Use a for-loop to print values.
FOR i IN 1..table_column_values1.COUNT LOOP

–– Print output message.
dbms_output.put_line(
'Value inserted <'||table_column_values1(i)||'>');

dbms_output.put_line(
'Value inserted <'||table_column_values2(i)||'>');

dbms_output.put_line(
'Value inserted <'||table_column_values3(i)||'>');

END LOOP;

ELSE

–– Print module name message.
dbms_output.put_line(
'-> dbms_sql_tutorial.inserts_into_table');

–– Print line break.
dbms_output.put_line(sline);

–– Print output message.
dbms_output.put_line(
'Object <'||table_name||'> does not exist');

END IF;

END inserts_into_table;

The procedure does the following:

■ It defines a procedure that takes four formal parameters. One is a VARCHAR2
used to map to the table name. The other three are variable types defined in
the DBMS_SQL package.

■ It defines a local statement variable. The statement variable is used as
the argument to a DBMS_SQL.PARSE procedure call.

■ It defines two variables required for DBMS_SQL. One is fdbk, or the feedback
variable, and the other is c, or the cursor variable.

■ It defines a local verify_table function. The function takes a table name
and checks whether it exists.

Chapter 13: Dynamic SQL 625

■ An if-then-else statement uses the verify_table function to check if a
table exists. It does the following if true:

■ It assigns a concatenated static string with the actual parameter
sequence_name.

■ It uses DBMS_SQL.PARSE with three arguments. The first is c, which
is the cursor number. Second is the statement variable, which is
the DDL or DML statement. Third is the type of DBMS_SQL
environment constant.

■ It uses DBMS_SQL.BIND_ARRAY to bind the Oracle 10g associative
arrays to the internal bind variables.

■ It uses DBMS_SQL.EXECUTE with the cursor number to run the DDL
or DML statement.

■ It prints the number of rows captured by the fdbk (feedback) integer.

■ It uses DBMS_SQL.CLOSE_CURSOR to close the open cursor.

■ It prints a module name.

■ It prints a line break.

■ It uses a for-loop to print the success message with the row values
retrieved.

If the function returns false, the table does exist, and it prints a failure message to
the console.

Unfortunately, to test this bulk insert requires a long test script. You can test it by
using the following:

–– Available online as part of dbms_sql_03.sql
–– Set bind variable to pass table name.
VARIABLE table_name VARCHAR2(30)
VARIABLE column_name1 VARCHAR2(30)
VARIABLE column_name2 VARCHAR2(30)
VARIABLE column_name3 VARCHAR2(30)

DECLARE

–– Define a nested tables.
TYPE card_number_table IS TABLE OF NUMBER

INDEX BY BINARY_INTEGER;
TYPE card_name_table IS TABLE OF VARCHAR2(2000)

INDEX BY BINARY_INTEGER;
TYPE card_suit_table IS TABLE OF VARCHAR2(2000)

626 Oracle Database 10g PL/SQL Programming

Chapter 13: Dynamic SQL 627

INDEX BY BINARY_INTEGER;

–– Declare and initialize a nested table with three rows.
card_numbers CARD_NUMBER_TABLE;
card_names CARD_NAME_TABLE;
card_suits CARD_SUIT_TABLE;

–– Define local variables.
column_name1 VARCHAR2(30) := 'CARD_NUMBER';
column_name2 VARCHAR2(30) := 'CARD_NAME';
column_name3 VARCHAR2(30) := 'CARD_SUIT';
table_name_in VARCHAR2(30) := 'CARD_DECK';
table_definition_in VARCHAR2(2000);
table_column_value1 DBMS_SQL.NUMBER_TABLE;
table_column_value2 DBMS_SQL.VARCHAR2_TABLE;
table_column_value3 DBMS_SQL.VARCHAR2_TABLE;

BEGIN

–– Assign table name to bind variable.
:table_name := table_name_in;
:column_name1 := column_name1;
:column_name2 := column_name2;
:column_name3 := column_name3;

–– Initialize the card numbers;
FOR i IN 1..13 LOOP
card_numbers(i) := i;

END LOOP;

–– Initialize the care names.
card_names(1) := 'Ace';
card_names(2) := 'Two';
card_names(3) := 'Three';
card_names(4) := 'Four';
card_names(5) := 'Five';
card_names(6) := 'Six';
card_names(7) := 'Seven';
card_names(8) := 'Eight';
card_names(9) := 'Nine';
card_names(10) := 'Ten';
card_names(11) := 'Jack';
card_names(12) := 'Queen';
card_names(13) := 'King';

–– Initialize the card suits.
card_suits(1) := 'Spades';
card_suits(2) := 'Hearts';

card_suits(3) := 'Diamonds';
card_suits(4) := 'Clubs';
card_suits(5) := 'Spades';
card_suits(6) := 'Hearts';
card_suits(7) := 'Diamonds';
card_suits(8) := 'Clubs';
card_suits(9) := 'Spades';
card_suits(10) := 'Hearts';
card_suits(11) := 'Diamonds';
card_suits(12) := 'Clubs';
card_suits(13) := 'Spades';

–– Assign card numbers in a for-loop.
FOR i IN CARD_NUMBERS.FIRST..CARD_NUMBERS.LAST LOOP
table_column_value1(i) := card_numbers(i);

END LOOP;

–– Assign card names in a for-loop.
FOR i IN CARD_NAMES.FIRST..CARD_NAMES.LAST LOOP
table_column_value2(i) := card_names(i);

END LOOP;

–– Assign card names in a for-loop.
FOR i IN CARD_SUITS.FIRST..CARD_SUITS.LAST LOOP
table_column_value3(i) := card_suits(i);

END LOOP;

–– Initialize table definition.
table_definition_in := '('||column_name1||' NUMBER' ||CHR(10)

|| ','||column_name2||' VARCHAR2(2000)'||CHR(10)
|| ','||column_name3||' VARCHAR2(2000))';

–– Print the output.
dbms_output.put_line(dbms_sql_tutorial.dline);
dbms_sql_tutorial.create_table(table_name_in,table_definition_in);

–– Insert into the table.
dbms_output.put_line(dbms_sql_tutorial.dline);
dbms_sql_tutorial.inserts_into_table(table_name_in

, table_column_value1
, table_column_value2
, table_column_value3);

dbms_output.put_line(dbms_sql_tutorial.dline);

END;
/

–– Set SQL*Plus environment formatting.

628 Oracle Database 10g PL/SQL Programming

COL c1 FORMAT 999 HEADING "Test|Message|ID #"
COL c2 FORMAT A20 HEADING "Message Sent"
COL c3 FORMAT A30 HEADING "Reviewed By"

–– Select from the dynamically created table.
SELECT card_number c1
, card_name c2
, card_suit c3
FROM card_deck;

–– Use DBMS_SQL_TUTORIAL to drop the table.
BEGIN

–– Run dynamic DQL against table.
dbms_output.put_line(dbms_sql_tutorial.dline);
dbms_sql_tutorial.multiple_row_return(:table_name

,:column_name1
,:column_name2
,:column_name3);

dbms_output.put_line(dbms_sql_tutorial.dline);

–– Drop table.
dbms_output.put_line(dbms_sql_tutorial.dline);
dbms_sql_tutorial.drop_table(:table_name);
dbms_output.put_line(dbms_sql_tutorial.dline);

END;
/

The test program does the following:

■ It defines four bind variables to share values across multiple program units
in a session.

■ It defines three associative arrays that are indexed by a BINARY_INTEGER.

■ It defines local variables. These include a variable for the table name and
variables for column names. Three variables for column inputs use DBMS_
SQL data types.

■ It assigns the table and column names to the session-level bind variables.

■ It uses a for-loop to populate the associative array of numbers.

■ It manually assigns thirteen values to both of the VARCHAR2 associative arrays.

■ It uses three for-loops to assign the associative array values to the DBMS_
SQL.NUMBER_TABLE and two DBMS_SQL.VARCHAR2_TABLE data types.

Chapter 13: Dynamic SQL 629

■ It assigns the table definition.

■ It prints a line break.

■ It creates a table by calling the dbms_sql_tutorial.create_table
procedure.

■ It prints a line break.

■ It calls the dbms_sql_tutorial.inserts_into_table procedure
and does a bulk insert into the table.

■ It prints a line break.

■ It runs a SQL command to print the contents of the table to the console.

■ It prints a line break.

■ It calls the dbms_sql_tutorial.multiple_row_returns procedure.
The process of the multiple_row_returns procedure will be covered
in the next section.

■ It prints a line break.

The shortened output looks like this:

–– Available online as output from dbms_sql_03.sql
==
-> dbms_sql_tutorial.create_table
––––––––––––––––––––––––––––––
Created Table <CARD_DECK>
==
Inserted [13].
-> dbms_sql_tutorial.inserts_into_table
––––––––––––––––––––––––––––––
Value inserted <1>
Value inserted <Ace>
Value inserted <Spades>
... shortened ...
Value inserted <13>
Value inserted <King>
Value inserted <Spades>
==

1 Ace Spades
... shortened ...

13 King Spades
==
-> dbms_sql_tutorial.multiple_row_return
––––––––––––––––––––––––––––––

630 Oracle Database 10g PL/SQL Programming

Value from [CARD_NUMBER] is: [1]
Value from [CARD_NUMBER] is: [Ace]
Value from [CARD_NUMBER] is: [Spades]
-> dbms_sql_tutorial.multiple_row_return
––––––––––––––––––––––––––––––
... shortened ...
––––––––––––––––––––––––––––––
Value from [CARD_NUMBER] is: [13]
Value from [CARD_NUMBER] is: [King]
Value from [CARD_NUMBER] is: [Spades]
==
==

-> dbms_sql_tutorial.drop_table
––––––––––––––––––––––––––––––
Dropped Table <CARD_DECK>
==

You have now seen how DBMS_SQL supports the same activity as NDS for bulk
processing. It has substantially more complex syntax than NDS. In the next section,
you will see the complexity of DQL using DBMS_SQL.

Working with DQL
The DBMS_SQL built-in supports DQL, but you rarely see it used. The rarity is
probably related to its complexity.

TIP
The DBMS_SQL.DEFINE_COLUMN procedure
presents a surprise if you are not careful. CHAR,
RAW, and VARCHAR2 columns must specify a size
argument. Failure to provide a size value will raise
the following error:

PLS-00307: too many declarations of ‘DEFINE_COLUMN’ match this call

The following DQL procedure with bind variables illustrates a bulk collect:

–– Available online as part of dbms_sql.sql
PROCEDURE multiple_row_return
(table_name VARCHAR2
, column_name1 VARCHAR2
, column_name2 VARCHAR2
, column_name3 VARCHAR2)IS

– Define local DBMS_SQL variables.
c INTEGER := dbms_sql.open_cursor;

Chapter 13: Dynamic SQL 631

632 Oracle Database 10g PL/SQL Programming

fdbk INTEGER;
statement VARCHAR2(2000);
cvalue_out1 VARCHAR2(2000);
cvalue_out2 VARCHAR2(2000);
nvalue_out NUMBER;

BEGIN

–– Build dynamic SQL statement.
statement := 'SELECT '

|| column_name1 ||','
|| column_name2 ||','
|| column_name3 ||' '
|| 'FROM '|| table_name;

–– Parse dynamic SQL statement.
dbms_sql.parse(c,statement,dbms_sql.native);

–– Define the column mapping to the value_out variable.
dbms_sql.define_column(c,1,nvalue_out);
dbms_sql.define_column(c,2,cvalue_out1,2000);
dbms_sql.define_column(c,3,cvalue_out2,2000);

–– Execute dynamic SQL statement.
fdbk := dbms_sql.execute(c);

–– Use a loop to read all rows.
LOOP

–– Exit when no more rows to fetch.
EXIT WHEN dbms_sql.fetch_rows(c) = 0;

–– Copy the contents of column #1 to the value_out variable.
dbms_sql.column_value(c,1,nvalue_out);
dbms_sql.column_value(c,2,cvalue_out1);
dbms_sql.column_value(c,3,cvalue_out2);

–– Print module name.
dbms_output.put_line(
'-> dbms_sql_tutorial.multiple_row_return');

–– Print line break.
dbms_output.put_line(sline);

–– Print output message.
dbms_output.put_line(

'Value from ['||column_name1||'] '||
'is: ['||nvalue_out||']');

dbms_output.put_line(
'Value from ['||column_name1||'] '||
'is: ['||SUBSTR(cvalue_out1,1,5)||']');

dbms_output.put_line(
'Value from ['||column_name1||'] '||
'is: ['||SUBSTR(cvalue_out2,1,8)||']');

END LOOP;

–– Close the open cursor.
dbms_sql.close_cursor(c);

END multiple_row_return;

The procedure does the following:

■ It defines five local variables. Three are for the DBMS_SQL statement, and
three are to capture the output of the query.

■ It builds the DBMS_SQL statement.

■ It parses the statement value.

■ It uses the DBMS_SQL.DEFINE_COLUMN procedure to map column values
returned by the select statement to assignment target variables. The target
variables are nvalue_out, cvalue_out1, and cvalue_out2.

■ It executes the cursor.

■ It uses a simple loop to read until DBMS_SQL.FETCH_ROWS returns a zero
value. The zero value indicates that there are no more rows to read.

■ It uses DBMS_SQL.COLUMN_VALUE to assign the columns of a row to the
defined columns.

■ It prints a module name.

■ It prints a line break.

■ It prints the columns of data.

■ It closes the open cursor.

The dbms_sql_03.sql script tests the multiple_row_return procedure’s
functionality. It was reviewed in the preceding section, on DBMS_SQL DMLs. Please
refer back to the prior section to review it.

Chapter 13: Dynamic SQL 633

You have now covered the DBMS_SQL DQL utility. It is time to summarize
the chapter.

Summary
You have learned about the concepts of dynamic SQL, exploring features and
approaches in Native Dynamic SQL (NDS) and DBMS_SQL. The presentation
drew clear contrasts in coding approaches between the two techniques.

NDS is the simpler form and the future direction for dynamic SQL. DBMS_SQL
is the standard for dynamic SQL and supports the dynamic marshaling of column
descriptions. You should have gained an ability to read, understand, and use both
dynamic SQL approaches.

634 Oracle Database 10g PL/SQL Programming

CHAPTER
14

Introduction to
Objects

Copyright © 2004 by The McGraw-Hill Companies, Inc. Click here for terms of use.

S
upport for object-oriented programming (OOP) in PL/SQL began in
version 8. Since then, enhancements including inheritance, attribute
chaining, type evolution, and user-defined constructor methods have
caught the eye of OOP enthusiasts and provided programmers with
an alternative to traditional PL/SQL development. In this chapter, we

introduce you to Oracle’s OOP implementation in PL/SQL, describe enhancements
in 9i and 10g, and discuss benefits and drawbacks of moving your application
development to objects.

Introduction to Object-Oriented
Programming
Mention object-oriented programming languages and Java and C++ generally come
to mind. They have the greatest following in the OOP world and are known for their
capability to simplify complex applications using a modular design. Object-oriented
languages are designed to model real-world objects rather than focusing on their data
sources. A non-OO programmer may be wondering what all the fuss is about. Well,
imagine being able to model your application just like your business. Code can be
easily reused by different parts of your application, and base objects you define can
pass their features, or attributes, to related subobjects or subtypes.

In the publishing world, for example, there are authors, editors, bookstores, and
a publisher all working together to release a book to market. Authors submit chapters
to editors, and they accept or return chapters to the author for changes. Once these
changes are accepted, the publisher releases the book. Bookstores determine books
they wish to carry, track inventory and sales, and stock their shelves.

NOTE
Unless otherwise noted, the base release for this
chapter is Oracle 9iR1, since this is where most of
the complex object features were added.

Data and Procedural Abstraction
OOP takes the model we described and uses it directly in the application. The Object
layer is used in application design instead of the lower-level data structures. Figure 14-1
illustrates the difference between the Object layer and the underlying data structures
for a bookstore. Inventory, music, books, hard cover books, and soft cover books are
all types of objects—abstract representations of the real-world objects.

The Object layer implements both data and procedural abstraction. The data
is manipulated through object methods rather than directly by SQL, reducing the
complexity of application development and maintenance.

636 Oracle Database 10g PL/SQL Programming

Chapter 14: Introduction to Objects 637

Object Type Overview
An object type is the definition, or template, of an object, and not the object itself.
Java and C++ programmers—when you hear object types, think classes! Object
types, like classes, consist of attributes and methods. Attributes describe the object.
A bookstore, for example, has a name, square footage, date opened, etc. Methods
are the procedures and functions that represent the actions or behavior of the object.

FIGURE 14-1. Object diagram

Object types are schema objects, similar to packages in design. They are owned
by their creator and are subject to the same rules and restrictions as other objects.
To create object types, your user must be granted the CREATE TYPE privilege or
the RESOURCE role that includes this privilege. If you need to create object types
in another schema, you must have the CREATE ANY TYPE privilege. As with other
database objects, you can reference the data dictionary for more information.

At run time, instances of the object based on the definition of the object type
are created. The objects can be transient or persistent, depending on how they were
created. Transient objects are available only during program execution and are deleted
when the program is done. Examples in this chapter are transient. Persistent objects,
on the other hand, are stored in the database; they are dealt with in greater detail in
Chapter 15.

Creating Object Types
As mentioned earlier, object types are similar in structure to packages. They have
specifications and bodies. The specification is the public declaration of the object
type’s attributes and methods, and the body contains the implementation of the
methods using functions and procedures.

Object Type Specification
The specification contains the attributes and forward declarations of the methods. Just
as with packages, the specification is public, so attributes and method declarations are
visible to the outside world. If a user has EXECUTE privileges on an object type, that
user can modify the attributes of that type.

To create an object type specification, use the CREATE TYPE .. AS OBJECT
statement using the following syntax:

CREATE [OR REPLACE] TYPE [schema.]type_name
[AUTHID {CURRENT_USER|DEFINER}] AS OBJECT (
attribute1 datatype,
[attribute2 datatype,]
[method1]
[method2]);

/

AUTHID indicates that the methods will be executed using the privilege set of the
CURRENT_USER or DEFINER as defined at creation time. CURRENT_USER is the
user calling the method, and DEFINER is the owner.

Let’s take a look at a bookstore example. Our bookstore carries all kinds of
inventory, including books, music, magazines, etc. With this wide variety of items,
an object type created for inventory can handle only a few attributes in order to
remain a generic inventory object. The areas in common among these different

638 Oracle Database 10g PL/SQL Programming

types of objects are the number of items in stock, the reorder status, and the price of the
item. We include these three attributes of inventory, along with the unique item_id, in
our specification. See the following definition of the inventory_obj object type specification:

-- Available online as part of Inheritance.sql
CREATE OR REPLACE TYPE inventory_obj AS OBJECT (

item_id NUMBER(10),
num_in_stock NUMBER(10),
reorder_status VARCHAR2(20),
price NUMBER(10,2),

...
);
/

Attributes
Attribute declarations are similar to variable declarations. There are a few restrictions,
however:

■ Attributes must be listed prior to methods. Including methods before all
attributes are listed results in the following exception:

PLS-00311: the declaration of "OBJECT_NAME" is incomplete or malformed

■ The datatype can be any database datatype except for ROWID, UROWID,
LONG, LONG RAW, NCHAR, NCLOB, NVARCHAR2, any PL/SQL-specific
type, or types defined inside a PL/SQL package. You can use any other
built-in or user-defined datatype, or else another Object Type.

■ Types available only in PL/SQL but not in the database are not allowed.
These include BINARY_INTEGER, BOOLEAN, PLS_INTEGER, RECORD,
and REF CURSOR.

■ A NOT NULL constraint cannot be used, though a similar result can be
obtained by using database triggers on instances of the object.

■ At least one attribute must be listed.

■ A DEFAULT value cannot be used.

One more restriction, but one with a caveat: %TYPE and %ROWTYPE cannot
be applied directly to an attribute or object type. You can, however, apply them
to an attribute of an object instance. How are these different? See the following
example:

-- Available online as part of TypeAttribute.sql
-- This example works fine. %TYPE is applied
-- to the variable, not the object type directly.
DECLARE

Chapter 14: Introduction to Objects 639

640 Oracle Database 10g PL/SQL Programming

v_discount_price discount_price_obj;
v_price v_discount_price.price%TYPE;

BEGIN
NULL;

END;
/
PL/SQL procedure successfully completed.

-- This example throws an exception. %TYPE is applied
-- directly to the object type.
DECLARE

v_price discount_price_obj.price%TYPE;
BEGIN

NULL;
END;
/
ORA-06550: line 3, column 22:
PLS-00206: %TYPE must be applied to a variable, column, field or attribute,
not to "DISCOUNT_PRICE_OBJ.PRICE"

Complex Object Types Complex object types can include another object type as
the datatype of an attribute. In our inventory_obj example we see the attribute
price has a datatype of number. For bookstore1, however, we want to discount the
price. We can accomplish this by nesting object types. The following example adds
a discount_price_obj and recreates the inventory_obj object type to
modify the price attribute’s datatype:

-- Available online as part of ComplexObj.sql
CREATE OR REPLACE TYPE discount_price_obj AS OBJECT (

discount_rate NUMBER(10,4),
price NUMBER(10,2),

MEMBER FUNCTION discount_price RETURN NUMBER)
INSTANTIABLE
FINAL;
/

Now recreate the inventory_obj, specifying discount_price_obj as
the datatype.

-- Available online as part of ComplexObj.sql
CREATE OR REPLACE TYPE inventory_obj AS OBJECT (

item_id NUMBER(10),
num_in_stock NUMBER(10),
reorder_status VARCHAR2(20),
price DISCOUNT_PRICE_OBJ);

/

This method of nesting object types allows us to make complex object types from
other very basic types.

Chapter 14: Introduction to Objects 641

Character Semantics The inventory_obj.reorder_status attribute has a
string datatype of VARCHAR2(20). The precision of 20 is not a problem as long as
we are working with single-byte characters, but if we support multibyte characters,
this can become an issue. UTF-8 encoding supports characters up to three bytes
if using supplementary characters, they take four bytes), so it is possible that a
precision of 20 can support only six characters.

Oracle 9i and 10g provide a method of handling this issue, called character
semantics. With a slight change in syntax, precision is based on number of characters,
regardless of byte size. See the change in bold:

-- Available online as part of Inheritance.sql
CREATE OR REPLACE TYPE inventory_obj AS OBJECT (

item_id NUMBER(10),
num_in_stock NUMBER(10),
reorder_status VARCHAR2(20 CHAR),
price DISCOUNT_PRICE_OBJ,

...
);
/

Adding CHAR guarantees, regardless of the number of bytes, that 20 characters can
be assigned to the attribute.

NOTE
For more information on globalization in
Oracle, see the globalization support guide at
http://otn.oracle.com. For more information on
Unicode, see www.unicode.org.

Methods
Methods are either functions or procedures that are declared in the specification
after attributes. Where attributes describe an object, methods act on them. If you
recall our syntax diagram for creating the specification, the method list is separated
by commas and uses the MEMBER, CONSTRUCTOR, or STATIC keywords. MAP
or ORDER can be added to the MEMBER method for additional functionality. For
functions, return type datatypes are under the same restrictions listed for attributes
earlier in the chapter. Here is the extended syntax for method declaration:

[STATIC | MEMBER] PROCEDURE procedure_spec,
[STATIC | MEMBER | CONSTRUCTOR] FUNCTION function_spec,
[MAP | ORDER] MEMBER FUNCTION function_spec,
pragma_declaration

This declaration is not too different from the package specification. The STATIC,
CONSTRUCTOR, and MEMBER keywords are the main difference. MAP and ORDER

642 Oracle Database 10g PL/SQL Programming

are used to determine the sort order for this object type. They are covered later in
the chapter, in the section “MAP and ORDER Methods.”

MEMBER Method Member methods, though similar to packaged subprograms,
are called differently. Each instantiation of a given object must reference the object
instance it is to operate upon. Like procedures in a package, methods can be called
with either positional or named notation, and the parameters can have default
values. They can also be overloaded on the type and number of arguments, as
we will see later.

Here we examine our member declaration to the discount_price_obj
object specification:

-- Available online as part of MemberMethod.sql
CREATE OR REPLACE TYPE discount_price_obj AS OBJECT (

discount_rate NUMBER(10,4),
price NUMBER(10,2),

MEMBER FUNCTION discount_price RETURN NUMBER)
INSTANTIABLE
FINAL;
/

The discount_price function can reference the attributes of the object type
when we create the body.

Member methods are invoked against instances of the object, not the object
type. To invoke the MEMBER method, use the following syntax:

instance_expression.method_name()

For example, to use the discount_price method in the discount_price_
obj object we created, call it as follows:

SET SERVEROUTPUT ON SIZE 1000000
DECLARE

v_price DISCOUNT_PRICE_OBJ := discount_price_obj(.1, 75.00);
v_value NUMBER(10);

BEGIN
v_value := v_price.discount_price; -- invokes the discount_price method
DBMS_OUTPUT.PUT_LINE('v_value ['||v_value||']');

END;
/

In this example, v_price is the instance_expression, and discount_price is the
method_name.

STATIC Method Static methods are independent of the object instance and cannot
refer to the attributes of the object in the object type body. They were very useful before

9i Release 2, as they allowed us to “fake” a user-defined constructor method. Here we
modify the discount_price_obj object type to include a static method:

-- Available online as part of StaticMethod.sql
CREATE OR REPLACE TYPE discount_price_obj AS OBJECT (

discount_rate NUMBER(10,4),
price NUMBER(10,2),

STATIC FUNCTION new_price (
i_price IN NUMBER,
i_discount_rate IN NUMBER DEFAULT .1) RETURN NUMBER)

INSTANTIABLE
FINAL;
/

In this implementation we provide a default value for i_discount_rate. Notice
that we have the same attributes in this case as the object_type itself.

To invoked the static method, we use the object type itself, rather than an
instance of it, using the syntax

object_type_name.method_name

This discount_rate_obj example uses this syntax:

-- Note - only the price is passed. We have a default discount rate.
SET SERVEROUTPUT ON SIZE 1000000
exec DBMS_OUTPUT.PUT_LINE(discount_price_obj.new_price(75));

CONSTRUCTOR Method So far we have seen only explicitly declared member
and static methods that use procedures and functions to operate on the attributes.
Constructor methods, on the other hand, have historically been system-defined
functions that return an initialized object and take as arguments the values for the
object’s attributes. For every object type, Oracle predefines a constructor with the
same name and attributes as the type.

Beginning with Oracle 9i Release 2, though, user-defined types are available
that allow you to override the system-defined method or add additional constructor
methods. Here is an example of a constructor method in the discount_price_obj
object type:

-- Available online as part of ConstructorMethod.sql
CREATE OR REPLACE TYPE discount_price_obj AS OBJECT (

discount_rate NUMBER(10,4),
price NUMBER(10,2),
CONSTRUCTOR FUNCTION discount_price_obj (

price NUMBER)
RETURN SELF AS RESULT)

Chapter 14: Introduction to Objects 643

644 Oracle Database 10g PL/SQL Programming

INSTANTIABLE
FINAL;
/

In this case, the user-defined constructor method is the same as the object type,
but it has only one attribute, where the object type specification lists two. We are
overloading using the constructor method. In cases where the discount_rate is
different from the default of 10 percent, we can specify it in our call, and the system-
defined constructor is used. If the default of 10 percent is okay, simply pass the value
for the price and the user-defined constructor method is used. If we had the object
type and constructor with the same name and the same number of attributes, then
the constructor would actually override the system-defined constructor.

TIP
Remember, you do not need to explicitly define
your own constructor. Every object type has one
implicitly created for it. It is a good practice to
explicitly create it, however. Doing so provides the
ability to add default attribute values, modify the
default attribute list, and use overloading.

Declaring and Initializing Objects
Through our examples, we have seen cases of both declaring and initializing
objects. Just like any other PL/SQL variable, an object is declared simply by placing
it syntactically after its type in the declarative section of the block. For example,

DECLARE
v_price DISCOUNT_PRICE_OBJ;

...

In this case, v_price is an instance of object type discount_price_obj.
Since we did not use the constructor, the object has been initialized to NULL. Since
the object is NULL, any reference to one of its attributes will result in an exception
being thrown. For example, the following anonymous block raises an error because
of the null:

SET SERVEROUTPUT ON SIZE 1000000
DECLARE

v_price DISCOUNT_PRICE_OBJ;
BEGIN

v_price.price := 75;
dbms_output.PUT_LINE(v_price.price);

END;
/

Chapter 14: Introduction to Objects 645

The raised error is shown here:

ERROR at line 1:
ORA-06530: Reference to uninitialized composite
ORA-06512: at line 4

The solution to this is to initialize the object. We do this using the constructor
method we just discussed. As mentioned in the last section, every object type has
a constructor method. We can fix the preceding anonymous block by doing the
following:

SET SERVEROUTPUT ON SIZE 1000000
DECLARE

v_price DISCOUNT_PRICE_OBJ := discount_price_obj(null, null);
BEGIN

v_price.price := 75;
dbms_output.PUT_LINE(v_price.price);

END;
/
75

Now that the object has been initialized, we can reference it in the body of the
block without the exception.

Object Type Body
The body of the object type is similar to that of a package. Where the specification
is made up of attributes and declarations of methods, only method bodies are in the
object type body. If an object type specification contains only attributes, then there
is no need for the object type body.

To create an object type body, use the following syntax:

CREATE [OR REPLACE] TYPE BODY [schema.]type_name {IS | AS}
[STATIC | MEMBER] PROCEDURE procedure_body

[STATIC | MEMBER | CONSTRUCTOR] FUNCTION function_body
[MAP | ORDER] MEMBER function_body

END;

where procedure_body and function_body are the implementation of methods defined
in the type specification, just like subprograms defined in a package body. Let’s take a
look at a simple example. Here is the body of the discount_price_obj object type:

-- Available online as part of Inheritance.sql
CREATE OR REPLACE TYPE BODY discount_price_obj AS

MEMBER FUNCTION discount_price RETURN NUMBER
IS
BEGIN

646 Oracle Database 10g PL/SQL Programming

RETURN (price * (1-discount_rate));
END discount_price;

END;
/

The discount_price_obj specification includes two attributes and a declaration
of one method, a function called discount_price. The object body discount_
price_obj defines how the discount_price method acts upon the data structure.
In this case, the return value is a calculation of the discounted price and statement
of savings based on the discount provided.

We can test out our object type with an anonymous block that passes in two
values for the attributes:

SET SERVEROUTPUT ON SIZE 1000000
DECLARE

v_price DISCOUNT_PRICE_OBJ := discount_price_obj(.1, 75.00);
BEGIN

DBMS_OUTPUT.PUT_LINE(v_price.discount_price);
END;
/

67.5

Here we provided a 10 percent discount on a base price of $75, and the resulting
price is 67.5. Our object works.

Although the package body and object type body may seem nearly identical,
there are some key differences to remember:

■ Initial values in an object type are set using the constructor. Packages can
contain an initialization section.

■ Packages are a type of schema object that group together related
declarations. Object types are actually PL/SQL types. Variables, for
example, can be declared of a particular object type.

■ The name of the object type body does not appear after the final END.
Names appear only after the END for the methods.

■ Private declarations are allowed in package bodies. Object type bodies can
contain only member and constructor subprograms.

SELF Parameter
The keyword SELF simply refers to the current object instance. Similar to the Java
this keyword, it can be used to refer to the entire object or to a method or attribute
of the current object.

SELF is automatically declared as the first parameter of a MEMBER method and
defaults to IN for MEMBER functions and IN OUT for MEMBER procedures, if not
stated explicitly. SELF cannot be declared as an OUT parameter and must be the
same datatype as the original object.

For the discount_price_obj example, we did not have to include the SELF
keyword, since references to the attributes use the current object by default. We
also did not explicitly declare SELF as an IN parameter to the method, yet our next
example illustrates that we can reference its attributes to represent the object that
was instantiated. In the following example, SELF.price relates to the price attribute
of the current object, and SELF.discount_rate is the discount_rate of the
current object.

-- Available online as part of MemberMethod.sql
CREATE OR REPLACE TYPE BODY discount_price_obj AS

MEMBER FUNCTION discount_price RETURN NUMBER
IS
BEGIN

RETURN (SELF.price * (1-SELF.discount_rate));
END discount_price;

END;
/

While the preceding example used SELF as an optional keyword, user-defined
constructor methods must use RETURN SELF AS RESULT in the return clause.

-- Available online as part of ConstructorMethod.sql
CREATE OR REPLACE TYPE BODY discount_price_obj AS

CONSTRUCTOR FUNCTION discount_price_obj (price NUMBER)
RETURN SELF AS RESULT
AS
BEGIN

self.price := price * .9;
RETURN;

END discount_price_obj;
END;
/

Attempting to use anything but SELF in the return yields the following exception:

PLS-00659: constructor method must return SELF AS RESULT

SELF is also required if you wish to pass the current object instance, or a reference
to it, as an argument to another procedure or method, or if a method is called from
another method in an object type.

Chapter 14: Introduction to Objects 647

Static methods cannot use the SELF keyword. As we discussed earlier, static
methods do not have a current object—they operate independent of it and actually
fail if there is an attempt to reference an attribute from the object type in the method
body. This being the case, use of SELF would be pointless.

MAP and ORDER Methods
Our object type specification and body syntax includes two more types of MEMBER
methods: MAP and ORDER. Oracle built-in types have an implicit ordering sequence
for the data they represent. NUMBER, for example, allows you to determine if one
value is greater than the other. Object types have no implicit ordering associated with
them, so these two methods are introduced to help us in ordering and comparison of the
instantiated objects. MAP and ORDER methods not only allow comparisons between
objects, but they can be used to sort objects stored in the database, as will be shown
in Chapter 15.

Before diving into each one individually, here are some rules that apply to both
methods:

■ Only one MAP or ORDER method is allowed per object.

■ Both MAP and ORDER cannot be defined in the same object.

■ MAP and ORDER allow for comparison between objects in procedural code.
If they are not used, an exception is thrown. Tests for equality can be done
in SQL, however, since the comparison simply compares all of the attributes
(more on this in Chapter 15).

The following example compares discount prices from discount_price_obj,
which does not use MAP or ORDER methods. It demonstrates the error you get when
comparing object instances without using MAP or ORDER methods:

SET SERVEROUTPUT ON SIZE 1000000
DECLARE

v_price1 DISCOUNT_PRICE_OBJ := discount_price_obj(.1, 75);
v_price2 DISCOUNT_PRICE_OBJ := discount_price_obj(.2, 75);

BEGIN
IF v_price1 = v_price2 THEN

DBMS_OUTPUT.PUT_LINE(
v_price1.discount_price
||' equals '
||v_price2.discount_price);

ELSE
DBMS_OUTPUT.PUT_LINE(

v_price2.discount_price
||' Does not equal '

648 Oracle Database 10g PL/SQL Programming

||v_price2.discount_price);
END IF;

END;
/

The anonymous block returns the following exception:

IF v_price1 = v_price2 THEN
*

ERROR at line 5:
ORA-06550: line 5, column 16:
PLS-00526: A MAP or ORDER function is required for comparing objects in
PL/SQL.

MAP Method When Oracle needs to compare two objects (Boolean comparison)
or compare objects using GROUP BY, ORDER BY, or DISTINCT clauses, it can call
the MAP function to convert the object to a type that can be sorted. MAP is more
efficient than ORDER when working with large groups of objects because it converts
the entire set of objects to a simpler type (operating as a hash function), which is then
sorted. MAP allows only the SELF parameter and returns a scalar type of DATE,
NUMBER, VARCHAR2, CHAR, or REAL.

Let’s take a look at an example using the MAP method. Returning to our bookstore
example, the bookstore inventory contains objects of type book. Here we create a
new object type specification and include a MAP method that returns the isbn from
the object:

-- Available online as part of MapMethod.sql
CREATE OR REPLACE TYPE book_obj AS OBJECT (
isbn CHAR(10),
title VARCHAR2(100),
num_pages NUMBER,
MAP MEMBER FUNCTION return_isbn RETURN CHAR

);
/

The object type body simply returns the SELF.isbn, or the isbn of the current
object.

-- Available online as part of MapMethod.sql
CREATE OR REPLACE TYPE BODY book_obj AS
MAP MEMBER FUNCTION return_isbn RETURN CHAR IS
BEGIN
RETURN SELF.isbn;

END return_isbn;
END;
/

Chapter 14: Introduction to Objects 649

650 Oracle Database 10g PL/SQL Programming

Now we are able to compare two objects by isbn:

-- Available online as part of MapMethod.sql
SET SERVEROUTPUT ON SIZE 1000000
DECLARE

v_book1 BOOK_OBJ := book_obj('72121203', 'Oracle DBA 101', 563);
v_book2 BOOK_OBJ := book_obj('72122048',

'Oracle 8i: A Beginner''s Guide', 765);
BEGIN

IF v_book1 < v_book2 THEN
DBMS_OUTPUT.PUT_LINE(v_book1.title

||' < '
||v_book2.title);

ELSIF v_book1 = v_book2 THEN
DBMS_OUTPUT.PUT_LINE(v_book1.title

||' = '
||v_book2.title);

ELSE
DBMS_OUTPUT.PUT_LINE(v_book1.title

||' > '
||v_book2.title);

END IF;
END;
/

The anonymous block returns the following:

Oracle DBA 101 < Oracle 8i: A Beginner's Guide
PL/SQL procedure successfully completed.

NOTE
When using object type inheritance (see the later
section “Object Type Inheritance”), you can include
map methods in subtypes, but only if the top-level
base type also has one.

ORDER Method An ORDER method is similar to the MAP method in function,
though execution is a bit different. It takes as an argument one parameter of the
object type and must return a NUMBER.

We see the difference in implementation by recreating the book object type.
The comparison accomplishes the same thing, but notice the difference in object
type bodies between the ORDER method example and the MAP method example:

-- Available online as part of OrderMethod.sql
CREATE OR REPLACE TYPE book_obj AS OBJECT (
isbn CHAR(10),

Chapter 14: Introduction to Objects 651

title VARCHAR2(100),
num_pages NUMBER,
ORDER MEMBER FUNCTION compare_book (i_isbn IN BOOK_OBJ)
RETURN NUMBER

);
/

Now to recreate the body:

-- Available online as part of OrderMethod.sql
CREATE OR REPLACE TYPE BODY book_obj AS
ORDER MEMBER FUNCTION compare_book (i_isbn IN BOOK_OBJ)
RETURN NUMBER IS

BEGIN
IF i_isbn.isbn < SELF.isbn THEN
RETURN 1;

ELSIF i_isbn.isbn > SELF.isbn THEN
RETURN -1;

ELSE
RETURN 0;

END IF;
END compare_book;

END;
/

The anonymous block remains the same:

-- Available online as part of OrderMethod.sql
DECLARE

v_book1 BOOK_OBJ := book_obj('72121203', 'Oracle DBA 101', 563);
v_book2 BOOK_OBJ := book_obj('72122048',

'Oracle 8i: A Beginner''s Guide', 765);
BEGIN

IF v_book1 < v_book2 THEN
dbms_output.PUT_LINE(v_book1.title

||' < '
||v_book2.title);

ELSIF v_book1 = v_book2 THEN
dbms_output.PUT_LINE(v_book1.title

||' = '
||v_book2.title);

ELSE
dbms_output.PUT_LINE(v_book1.title

||' > '
||v_book2.title);

END IF;
END;
/

The anonymous block returns the following:

Oracle DBA 101 < Oracle 8i: A Beginner's Guide
PL/SQL procedure successfully completed.

NOTE
Order methods must be in the top-level object type
when working with object type inheritance (see
the next section, “Object Type Inheritance”), and
accordingly, subtypes cannot override the method.

Object Type Inheritance
Inheritance refers to the ability of one object type to take attributes and methods
from a parent, or base, object type as their own. Inheritance was one of the major
breakthroughs in PL/SQL’s OOP implementation in Oracle 9i.

In the “Object Types” section, we learned that an object type is made up of
attributes, which define an object, and methods, which act upon the object. Object
type inheritance allows us to create a base object type, or parent, whose attributes
and methods can be inherited by another object type. We can then create a
subtype, or child, to either use the inherited attributes and methods or overwrite
them with its own.

In our bookstore example, inheritance allows us to create a fairly generic object
to model inventory. Our inventory_obj object provides an item ID, in-stock/
out-of-stock tracking, reorder status, and price. These four attributes are generic to
all items contained in the store. We do not want to repeat all four of these attributes
in each of the object types for book and music objects.

This is where object type inheritance can help. We can create an inventory
object type as a base type (parent) and then create subtypes (children) for books
and music. We do not have to code the attributes and methods from the inventory
object into all of the subobjects. They will automatically inherit them and have the
ability to use them. What’s more, the subtypes automatically pick up any changes
to the base type.

Figure 14-2 is a model of the bookstore using object type inheritance. It lays out
the object model, including subtypes and inherited attributes and methods.

If needed, we can add even more complexity to Figure 14-2 by adding subtypes
to book_obj for hard cover and soft cover books. Each level of the inheritance tree
adds detail to the Base object type or overrides something from its parent. All subtypes
in the tree are related, however, to a common object type called the supertype, which
is the topmost object type in the tree.

652 Oracle Database 10g PL/SQL Programming

Chapter 14: Introduction to Objects 653

There are a number of steps to build our application. We’ll walk through each
one, explaining syntax along the way.

-- Available online as part of Inheritance.sql
CREATE OR REPLACE TYPE discount_price_obj AS OBJECT (

discount_rate NUMBER(10,4),
price NUMBER(10,2),

MEMBER FUNCTION discount_price RETURN NUMBER)
INSTANTIABLE
FINAL;
/

CREATE OR REPLACE TYPE BODY discount_price_obj AS
MEMBER FUNCTION discount_price RETURN NUMBER
IS
BEGIN

FIGURE 14-2. Object type inheritance model

RETURN (SELF.price * (1-SELF.discount_rate));
END discount_price;

END;
/

The discount_price_obj specification includes two keywords following the
member declaration: instantiable and final.

Instantiable is a keyword that simply indicates that we can instantiate, or create
object instances, from the type. You might consider using NOT INSTANTIABLE if
you have an object type that serves no other purpose than to be a parent, or base,
type. In that situation, attributes and methods could still be inherited, but you would
not call the object type directly. Doing so results in a PLS-00713 exception.
INSTANTIABLE is the default if no keyword is specified.

Final means that there will be no subtypes under this object type, and no objects
will inherit from it. If we tried to create a subtype under the discount_price_obj
object type, for example, it would result in a PLS-00590 exception. If we did want
this to be a base type, we could change the keyword to NOT FINAL. FINAL is the
default if no keyword is specified.

We will now create our base object type, inventory_obj:

-- Available online as part of Inheritance.sql
-- inventory_obj is a complex object type that
-- uses discount_price_obj as a datatype for
-- the price attribute. We also create it to
-- be a base object type that can be instantiated.

-- inventory_obj specification
CREATE OR REPLACE TYPE inventory_obj AS OBJECT (

item_id NUMBER (10),
num_in_stock NUMBER (10),
reorder_status VARCHAR2 (20 CHAR),
price NUMBER,
CONSTRUCTOR FUNCTION inventory_obj (

item_id IN NUMBER,
num_in_stock IN NUMBER,
price IN NUMBER

)
RETURN SELF AS RESULT,

MEMBER PROCEDURE print_inventory,
MEMBER PROCEDURE print_status,
MEMBER PROCEDURE print_price

)
INSTANTIABLE NOT FINAL;
/

654 Oracle Database 10g PL/SQL Programming

Chapter 14: Introduction to Objects 655

We specify the inventory_obj object type as NOT FINAL so that we can add
subtypes under it. We also overloaded the constructor method by adding a constructor
function. Here is the body:

-- Available online as part of Inheritance.sql
CREATE OR REPLACE TYPE BODY inventory_obj
AS

CONSTRUCTOR FUNCTION inventory_obj (
item_id IN NUMBER,
num_in_stock IN NUMBER,
price IN NUMBER

)
RETURN SELF AS RESULT

IS
BEGIN

SELF.item_id := item_id;
SELF.num_in_stock := num_in_stock;
SELF.price := price;
RETURN;

END;
MEMBER PROCEDURE print_inventory
IS
BEGIN

DBMS_OUTPUT.PUT_LINE ('INVENTORY FOR BOOKSTORE1');
DBMS_OUTPUT.PUT_LINE ('========================');
DBMS_OUTPUT.PUT_LINE ('Item number '

|| SELF.item_id
|| ' has '
|| SELF.num_in_stock
|| ' in stock'

);
END print_inventory;
MEMBER PROCEDURE print_status
IS

v_status VARCHAR2 (20);
BEGIN

IF SELF.num_in_stock > 0
THEN

v_status := 'IN STOCK';
ELSE

v_status := 'OUT OF STOCK';
END IF;
DBMS_OUTPUT.PUT_LINE ('INVENTORY STATUS FOR BOOKSTORE1');
DBMS_OUTPUT.PUT_LINE ('===============================');
DBMS_OUTPUT.PUT_LINE ('Item number '

|| SELF.item_id

656 Oracle Database 10g PL/SQL Programming

|| ' is '
|| v_status

);
END print_status;
MEMBER PROCEDURE print_price
IS

-- Notice that the print_price method calls another object,
-- using SELF and the price attribute to pass the value
-- required for the other object type’s constructor.

v_discount_price discount_price_obj
:= discount_price_obj (SELF.price);
BEGIN

DBMS_OUTPUT.PUT_LINE ('BOOKSTORE1 PRICES');
DBMS_OUTPUT.PUT_LINE ('=================');
DBMS_OUTPUT.PUT_LINE ('Item number '

|| SELF.item_id);
DBMS_OUTPUT.PUT_LINE ('Retail cost: '

|| SELF.price
|| ' US dollars');

DBMS_OUTPUT.PUT_LINE ('OUR LOW - LOW - LOW DISCOUNT PRICE: '
|| v_discount_price.price
|| ' US dollars'

);
END print_price;

END;
/

Use the following anonymous block to test our object:

-- Available online as part of Inheritance.sql
SET SERVEROUTPUT ON SIZE 1000000
DECLARE

v_prices INVENTORY_OBJ := inventory_obj (3124, 15, 39.99);
BEGIN

v_prices.print_inventory;
DBMS_OUTPUT.PUT_LINE (' ');
v_prices.print_status;
DBMS_OUTPUT.PUT_LINE (' ');
v_prices.print_price;

END;
/

The anonymous block results in the following:

INVENTORY FOR BOOKSTORE1
========================
Item number 3124 has 15 in stock

INVENTORY STATUS FOR BOOKSTORE1
===============================
Item number 3124 is IN STOCK

BOOKSTORE1 PRICES
=================
Item number 3124
Retail cost: 39.99 US dollars
OUR LOW - LOW - LOW DISCOUNT PRICE: 35.99 US DOLLARS

PL/SQL procedure successfully completed.

Our base object includes four attributes and four methods (one constructor and
three members). The book subtype creation includes additional attributes for isbn,
title, category, and number of pages. We also create additional methods, as well
as override the print_price method (our low, low, low prices for books don’t
apply).

-- Available online as part of Inheritance.sql
-- book_obj is a subtype of inventory_obj

CREATE OR REPLACE TYPE book_obj
UNDER inventory_obj (

isbn CHAR (10 CHAR),
CATEGORY VARCHAR2 (20 CHAR),
title VARCHAR2 (100 CHAR),
num_pages NUMBER,

CONSTRUCTOR FUNCTION book_obj (
item_id NUMBER,
num_in_stock NUMBER,
price NUMBER,
isbn CHAR,
title VARCHAR2,
num_pages NUMBER
)
RETURN SELF AS RESULT,

MEMBER PROCEDURE print_book_information,
OVERRIDING MEMBER PROCEDURE print_price

)
INSTANTIABLE FINAL;
/

We highlighted a few keywords in bold in the last example. A typical specification
includes the keywords AS OBJECT. In our example, that is replaced by UNDER, along
with the object that serves as its base type. The keyword OVERRIDING with the
print_price method causes the subtype’s method to take precedence over the

Chapter 14: Introduction to Objects 657

base type’s method of the same name. Book_obj is also FINAL, meaning that no
subtypes can be created under it.

Base types and subtypes have a “one-to-many” relationship. Inventory_obj
can have many subtypes associated with it, but a subtype can be associated with
only a single base type. If we think of inheritance in the context of the family and
genetics, parents are the base type and children are subtypes. Attributes (genes)
are passed from parent to child, not the other way around. Object types can chain
together as well, creating multiple levels of inheritance, just as children inherit
attributes from grandparents through their parents.

We can see the attributes of both base type and subtype by doing a describe on
the book_obj specification.

SQL> desc book_obj

book_obj extends OBJECTS_USER.INVENTORY_OBJ
Name Null? Type
--- -------- ----------------------
ITEM_ID NUMBER(10)
NUM_IN_STOCK NUMBER(10)
REORDER_STATUS VARCHAR2(20 CHAR)
PRICE NUMBER(10,2)
ISBN CHAR(10 CHAR)
CATEGORY VARCHAR2(20 CHAR)
TITLE VARCHAR2(100 CHAR)
NUM_PAGES NUMBER
MEMBER PROCEDURE PRINT_INVENTORY
MEMBER PROCEDURE PRINT_STATUS

METHOD

FINAL CONSTRUCTOR FUNCTION BOOK_OBJ RETURNS SELF AS RESULT
Argument Name Type In/Out Default?
------------------------------ ----------------------- ------ --------
ITEM_ID NUMBER IN
NUM_IN_STOCK NUMBER IN
PRICE NUMBER IN
ISBN CHAR IN
TITLE VARCHAR2 IN
NUM_PAGES NUMBER IN
MEMBER PROCEDURE PRINT_BOOK_INFORMATION
MEMBER PROCEDURE PRINT_PRICE

The default constructor would include all of the attributes listed here. We
want the ability to use a subset of those, so we created a user-defined constructor
method. The book_obj constructor method includes some attributes from
inventory_obj and some from book_obj. Here is the body for book_obj:

658 Oracle Database 10g PL/SQL Programming

-- Available online as part of Inheritance.sql
CREATE OR REPLACE TYPE BODY book_obj
IS

CONSTRUCTOR FUNCTION book_obj (
item_id NUMBER,
num_in_stock NUMBER,
price NUMBER,
isbn CHAR,
title VARCHAR2,
num_pages NUMBER

)
RETURN SELF AS RESULT

IS
BEGIN

SELF.item_id := item_id;
SELF.num_in_stock := num_in_stock;
SELF.price := price;
SELF.isbn := isbn;
SELF.title := title;
SELF.num_pages := num_pages;
RETURN;

END book_obj;
MEMBER PROCEDURE print_book_information
IS
BEGIN

DBMS_OUTPUT.PUT_LINE ('BOOK INFORMATION');
DBMS_OUTPUT.PUT_LINE ('================');
DBMS_OUTPUT.PUT_LINE ('Title: '

|| SELF.title);
DBMS_OUTPUT.PUT_LINE ('# Pages: '

|| SELF.num_pages);
DBMS_OUTPUT.PUT_LINE ('# In Stock: '

|| SELF.num_in_stock);
END print_book_information;
OVERRIDING MEMBER PROCEDURE print_price
IS
BEGIN

DBMS_OUTPUT.PUT_LINE ('BOOKSTORE1 PRICES');
DBMS_OUTPUT.PUT_LINE ('=================');
DBMS_OUTPUT.PUT_LINE ('Title: '

|| SELF.title);
DBMS_OUTPUT.PUT_LINE ('Always low price of: '

|| SELF.price);
END print_price;

END;
/

Chapter 14: Introduction to Objects 659

We can test how the inheritance and method overriding works with the
following:

-- Available online as part of Inheritance.sql
SET SERVEROUTPUT ON SIZE 1000000
DECLARE

v_book BOOK_OBJ := book_obj (
3124, 15, 39.99, '72121203', 'Oracle DBA 101', 563);

BEGIN
v_book.print_book_information;
DBMS_OUTPUT.PUT_LINE (' ');
v_book.print_price;

END;
/

The anonymous block returns the following result:

Book Information
================
Title: Oracle DBA 101
Pages: 563
In Stock: 15

BOOKSTORE1 PRICES
=================
Title: Oracle DBA 101
Always low price of: 39.99

NOTE
If we were to alter the book_obj object type to be NOT FINAL
and create a new subtype beneath it, would the print_price
method from book_obj or inventory_obj be inherited?
The method for book_obj would be inherited because it is
closer to the new subtype in the hierarchy and overrode the
base type.

Dynamic Method Dispatch
Overloading has been a heavily used feature of PL/SQL for years. For those unfamiliar
with it, the basic premise is that if you have two functions in a package with the
same name, but different parameter lists, Oracle is able to determine which function
is appropriate given the number and type of arguments provided. This is sometimes
referred to as static polymorphism—the ability for a program to determine which
method to execute when more than one have the same name, and to do so at
compile time.

660 Oracle Database 10g PL/SQL Programming

Object type inheritance provides a different kind of overloading capability—
dynamic method dispatch, sometimes called dynamic polymorphism or run-time
polymorphism. Here, the decision of which method to run is not made until the
code is actually executed. Inheritance includes methods, but rules of OVERRIDING
and FINAL that can apply to methods mean that the decision cannot be made solely
on number of parameters. There is an order of precedence in the hierarchy, where
the object type closest to you that meets the requirements is chosen.

Let’s take a look at an example:

-- Available online as part of DynamicDispatch.sql
CREATE OR REPLACE TYPE abbrev_inventory_obj AS OBJECT (

item_id NUMBER (10),
price NUMBER (10, 2),
MEMBER PROCEDURE print_price

)
NOT FINAL INSTANTIABLE;
/

CREATE OR REPLACE TYPE BODY abbrev_inventory_obj
AS

MEMBER PROCEDURE print_price
IS

v_price NUMBER := SELF.price * .80;
BEGIN

DBMS_OUTPUT.PUT_LINE ('Wholesale Cost: ' || v_price);
END print_price;

END;
/

CREATE OR REPLACE TYPE abbrev_book_obj
UNDER abbrev_inventory_obj (

isbn VARCHAR2 (50),
OVERRIDING MEMBER PROCEDURE print_price

)
FINAL INSTANTIABLE;
/

CREATE OR REPLACE TYPE BODY abbrev_book_obj
AS

OVERRIDING MEMBER PROCEDURE print_price
IS
BEGIN

DBMS_OUTPUT.PUT_LINE ('Retail Cost: ' || SELF.price);
END print_price;

END;
/

Chapter 14: Introduction to Objects 661

Abbrev_book_obj is a subtype of abbrev_inventory_obj, and the
print_price method is in both. The print_price method in the subtype
overrides the base type. The following example illustrates dynamic method
dispatch under these circumstances:

-- Available online as part of DynamicDispatch.sql
SET SERVEROUTPUT ON SIZE 1000000
DECLARE

v_wholesale ABBREV_INVENTORY_OBJ
:= abbrev_inventory_obj (22, 54.95);

v_retail ABBREV_BOOK_OBJ
:= abbrev_book_obj (22, 54.95, 23022843);

BEGIN
DBMS_OUTPUT.PUT_LINE ('SUBTYPE EXECUTION - FULL PRICE');
DBMS_OUTPUT.PUT_LINE ('==============================');
v_retail.print_price;
DBMS_OUTPUT.PUT_LINE (' ');
DBMS_OUTPUT.PUT_LINE ('BASE TYPE EXECUTION - REDUCED PRICE');
DBMS_OUTPUT.PUT_LINE ('===================================');
v_wholesale.print_price;
DBMS_OUTPUT.PUT_LINE (' ');
DBMS_OUTPUT.PUT_LINE ('EXAMPLE OF DYNAMIC DISPATCH');
DBMS_OUTPUT.PUT_LINE ('SUBTYPE METHOD RUN WHEN BASE TYPE IS EXECUTED');
DBMS_OUTPUT.PUT_LINE ('===');
v_wholesale := v_retail;
v_wholesale.print_price;

END;
/

The anonymous block returns the following:

SUBTYPE EXECUTION - FULL PRICE
==============================
Retail Cost: 54.95

BASE TYPE EXECUTION - REDUCED PRICE
===================================
Wholesale Cost: 43.96

EXAMPLE OF DYNAMIC DISPATCH
SUBTYPE METHOD RUN WHEN BASE TYPE IS EXECUTED
===
Retail Cost: 54.95

PL/SQL procedure successfully completed.

The abbrev_inventory_obj object type was executed for the last price, but
the results are from abbrev_book_obj.

662 Oracle Database 10g PL/SQL Programming

Chapter 14: Introduction to Objects 663

Attribute Chaining
We saw a small example of attribute chaining when discussing complex object
types. If you recall, we set the datatype of one attribute to be another object type.
We can access the attributes of that object type and any other object type in the
chain. Let’s look at an example:

-- Available online as part of AttributeChain.sql
CREATE OR REPLACE TYPE address_obj AS OBJECT (

address1 VARCHAR2 (30 CHAR),
address2 VARCHAR2 (30 CHAR),
city VARCHAR2 (30 CHAR),
state CHAR (2 CHAR)

)
INSTANTIABLE FINAL;
/

CREATE OR REPLACE TYPE person_obj AS OBJECT (
first_name VARCHAR2 (20),
last_name VARCHAR2 (20)

)
INSTANTIABLE FINAL;
/

Address_obj and person_obj are at one end of the chain. After our section
on inheritance, the keyword FINAL should make more sense. There can be no
subtypes under these, so we are not looking at inheritance at all. Here we create
our first object type that uses the object types as attribute datatypes:

-- Available online as part of AttributeChain.sql
CREATE OR REPLACE TYPE contact_obj AS OBJECT (

NAME PERSON_OBJ,
address ADDRESS_OBJ,
phone NUMBER (10)

)
INSTANTIABLE FINAL;
/

The contact_obj object type includes three attributes, the first two of which have
other object types as their datatypes. Again, this is marked as FINAL. You will also
notice that there is no body associated with any of the first three object types. There
are no methods, only attributes, so the body is not necessary.

Let’s take a look at the fourth and final object type specification and body that
pulls this together:

-- Available online as part of AttributeChain.sql
-- Specification

CREATE OR REPLACE TYPE publisher_obj AS OBJECT (
pub_name VARCHAR2 (30),
contact_info CONTACT_OBJ,
MEMBER PROCEDURE show_contact

)
INSTANTIABLE FINAL;
/

1 CREATE OR REPLACE TYPE BODY publisher_obj
2 AS
3 MEMBER PROCEDURE show_contact
4 IS
5 BEGIN
6 DBMS_OUTPUT.PUT_LINE ('CONTACT INFORMATION');
7 DBMS_OUTPUT.PUT_LINE ('===================');
8 DBMS_OUTPUT.PUT_LINE (SELF.pub_name);
9 DBMS_OUTPUT.PUT_LINE (SELF.contact_info.NAME.first_name
10 || ' '
11 || SELF.contact_info.NAME.last_name
12);
13 DBMS_OUTPUT.PUT_LINE (SELF.contact_info.address.address1);
14 DBMS_OUTPUT.PUT_LINE (SELF.contact_info.address.city);
15 DBMS_OUTPUT.PUT_LINE (SELF.contact_info.address.state);
16 DBMS_OUTPUT.PUT_LINE (SELF.contact_info.phone);
17 RETURN;
18 END show_contact;
19 END;
20 /

NOTE
We included the line numbers for illustration
purposes only.

Let’s take a look at what is happening:

■ The contact_info datatype is the contact_obj object type.

■ The contact_obj object type has two attributes, name and address,
whose datatypes are other object types.

■ All of the contact information we need is contained in the attributes of
these four object types. Attributes are referenced by name and can use
the keyword SELF to reference the current instance of the object, but
when the attribute is from another object type, we cannot reference the
attribute directly.

664 Oracle Database 10g PL/SQL Programming

■ We are not working with inherited attributes, so the only way to get the
information in the current object instance is to follow the chain of attributes
back to the end of the chain.

■ Line 8 starts us off with one of publisher_obj’s attributes. Using SELF
is sufficient.

■ Line 9 requires a large chain of attributes to pull in first_name (SELF
.contact_info.name.first_name). The remaining lines use a similar
structure, all going to the last attribute in the chain to get the required value.
Notice that only attributes are referenced in this string, not their object types.
This is because the object types are already known from their declaration in
the specification. For example, if we know contact_info has a datatype of
contact_obj, we know we need to look in contact_obj to find the next
attribute listed in the chain. See Figure 14-3 for a more detailed look at this.

The only thing left to do is test it. The following block instantiates all four object
types and then uses the show_contact method from publisher_obj object
type to pull it all together:

-- Available online as part of AttributeChain.sql
DECLARE

v_person PERSON_OBJ := person_obj ('Ron', 'Hardman');
v_address ADDRESS_OBJ := address_obj ('123 Ora Way',

NULL,
'Colorado Springs',
'CO');

Chapter 14: Introduction to Objects 665

FIGURE 14-3. Attribute chaining diagram

v_contact CONTACT_OBJ := contact_obj (
v_person, -- variable declared above
v_address, -- variable declared above
5555555555);

v_publisher PUBLISHER_OBJ := publisher_obj ('Oracle Press',
v_contact); -- variable declared above

BEGIN
v_publisher.show_contact;

END;
/

The anonymous block returns the following:

CONTACT INFORMATION
===================
Oracle Press
Ron Hardman
123 Ora Way
Colorado Springs
CO
5555555555

Making Changes
It is inevitable. No application is perfect upon creation (at least according to users),
and none can escape evolving requirements and user needs. The concept of object
types—subtypes, object tables, and object views (more on these in Chapter 15),
attribute chaining, etc.—likely sends shivers down the spines of all those responsible
for application maintenance and design changes.

Oracle made altering object types much easier in 9i and 10g with the
introduction of type evolution. In addition, object types are schema objects, so
information about them can be obtained from the data dictionary. They are also
created and maintained using SQL.

Type Evolution
Type evolution refers to any modification of an object type and, in turn, its dependents.
This became extremely important in 9i, when object type inheritance was introduced.
A change to attributes of a base type needs to be reflected in subtypes that inherit
the attributes and methods. The full scope of type evolution’s impact will be clear
in Chapter 15, when we look at persistent objects.

The following examples include inheritance, attribute chaining, and overloading
of the constructor method in a subtype that includes attributes from the base type
that are part of the attribute chain. The music_obj object type is the base type.
Both composer and artist attributes have the music_person_obj object type as

666 Oracle Database 10g PL/SQL Programming

the datatype. The cd_obj is a subtype under music_obj and has a constructor
method defined that includes attributes from the base type.

-- Available online in TypeEvolution.sql
-- Specification only - provides first and last name
-- as part of an attribute chain.
CREATE OR REPLACE TYPE music_person_obj AS OBJECT (

first_name VARCHAR2 (50 CHAR),
last_name VARCHAR2 (50 CHAR)

)
FINAL INSTANTIABLE;
/

-- Also specification only as there are no
-- methods. This is the base type for our example.
CREATE OR REPLACE TYPE music_obj AS OBJECT (

style VARCHAR2 (50 CHAR),
composer music_person_obj,
artist music_person_obj

)
NOT FINAL INSTANTIABLE;
/

-- subtype under music_obj. Note the constructor
-- method. Both spec and body created.
CREATE OR REPLACE TYPE cd_obj
UNDER music_obj (

title VARCHAR2 (50 CHAR),
date_released DATE,
CONSTRUCTOR FUNCTION cd_obj (

artist music_person_obj,
title VARCHAR2,
date_released DATE

)
RETURN SELF AS RESULT,

MEMBER PROCEDURE show_cd
)
FINAL INSTANTIABLE;
/

CREATE OR REPLACE TYPE BODY cd_obj
AS

CONSTRUCTOR FUNCTION cd_obj (
artist music_person_obj,
title VARCHAR2,
date_released DATE

)

Chapter 14: Introduction to Objects 667

RETURN SELF AS RESULT
IS
BEGIN

SELF.artist := artist;
SELF.title := title;
SELF.date_released := date_released;
RETURN;

END cd_obj;
MEMBER PROCEDURE show_cd
IS
BEGIN

DBMS_OUTPUT.PUT_LINE ('MUSIC TITLES IN BOOKSTORE1');
DBMS_OUTPUT.PUT_LINE ('==========================');
DBMS_OUTPUT.PUT_LINE ('TITLE: ' || SELF.title);
DBMS_OUTPUT.PUT_LINE ('ARTIST: '

|| SELF.artist.first_name
|| ' '
|| SELF.artist.last_name

);
DBMS_OUTPUT.PUT_LINE ('DATE RELEASED: ' || SELF.date_released);

END show_cd;
END;
/

Let’s run a quick test to make sure everything works.

DECLARE
v_person MUSIC_PERSON_OBJ := music_person_obj ('Chuck', 'Soulful');
v_cd CD_OBJ := cd_obj (v_person, 'GMAN Blues', '01-JUN-1995');

BEGIN
v_cd.show_cd;

END;
/

The anonymous block produces the following output:

MUSIC TITLES IN BOOKSTORE1
==========================
TITLE: GMAN Blues
ARTIST: Chuck Soulful
DATE RELEASED: 01-JUN-95

One more verification—let’s do a describe on the cd_obj object type so that
we have something to compare against.

SQL> desc cd_obj
cd_obj extends SCHEMA.MUSIC_OBJ
Name Null? Type

668 Oracle Database 10g PL/SQL Programming

Chapter 14: Introduction to Objects 669

--- -------- ----------------------
STYLE VARCHAR2(50 CHAR)
COMPOSER MUSIC_PERSON_OBJ
ARTIST MUSIC_PERSON_OBJ
TITLE VARCHAR2(50 CHAR)
DATE_RELEASED DATE

METHOD

FINAL CONSTRUCTOR FUNCTION CD_OBJ RETURNS SELF AS RESULT
Argument Name Type In/Out Default?
------------------------------ ----------------------- ------ --------
ARTIST MUSIC_PERSON_OBJ IN
TITLE VARCHAR2 IN
DATE_RELEASED DATE IN
MEMBER PROCEDURE SHOW_CD

Altering and Dropping Types
The ALTER TYPE statement is used to modify and recompile object types. The
syntax is as follows:

ALTER TYPE type_name COMPILE [SPECIFICATION | BODY];

If specification or body keywords are not used, both specification and body are
compiled. The compile is done using the current definition according to the data
dictionary, the same way any other schema object is compiled.

We can also alter the object to change its structure. If we want to add a subtitle
for the cd_obj object type, we can just make the modification using the ALTER TYPE
command:

-- Modify the cd_obj attributes to include a subtitle
ALTER TYPE cd_obj
ADD ATTRIBUTE subtitle VARCHAR2(50 CHAR);

Type altered.

To verify the change, describe the cd_obj object type:

SQL> desc cd_obj
ERROR:
ORA-22337: the type of accessed object has been evolved

We get this exception because we did a describe of the object type before
altering it, without having disconnected in the meantime. The type was loaded
to our client cache, and unless we reconnect, the client cache is not cleared. If
we had not described the object type prior to altering it, or had cleared our session
by logging out, we would not receive this error. At the time of this writing, there
is no mechanism for flushing the client cache without disconnecting your session.

670 Oracle Database 10g PL/SQL Programming

SQL> conn schema/oracle
Connected.
SQL> desc cd_obj
cd_obj extends SCHEMA.MUSIC_OBJ
Name Null? Type
--- -------- ---------------------
STYLE VARCHAR2(50 CHAR)
COMPOSER MUSIC_PERSON_OBJ
ARTIST MUSIC_PERSON_OBJ
TITLE VARCHAR2(50 CHAR)
DATE_RELEASED DATE
SUBTITLE VARCHAR2(50 CHAR)

Subtitle has been added. This tested only the alter command, though; it didn’t test
type evolution based on dependencies. For that, we need to modify the base type.

Let’s change the artist attribute to VARCHAR2(50 CHAR). We can’t alter the
attribute in this case. We will need to drop and recreate it. Note that the artist attribute
is in the base type and is part of the user-defined constructor method of the cd_obj
object type.

-- Drop and recreate artist attribute

alter type music_obj
drop attribute artist cascade;

Type altered.

-- Reconnect in SQL*Plus if needed
-- The attribute is no longer present for cd_obj

SQL> desc cd_obj
Name Null? Type
--- -------- ---------------------
STYLE VARCHAR2(50 CHAR)
COMPOSER MUSIC_PERSON_OBJ
TITLE VARCHAR2(50 CHAR)
DATE_RELEASED DATE
SUBTITLE VARCHAR2(50 CHAR)

-- Add the artist attribute back in with a VARCHAR2 datatype
ALTER TYPE music_obj
ADD ATTRIBUTE artist VARCHAR2(50 CHAR) CASCADE;

SQL> desc cd_obj
Name Null? Type
--- -------- ---------------------
STYLE VARCHAR2(50 CHAR)
COMPOSER MUSIC_PERSON_OBJ

ARTIST VARCHAR2(50 CHAR)
TITLE VARCHAR2(50 CHAR)
DATE_RELEASED DATE
SUBTITLE VARCHAR2(50 CHAR)

Artist is back on the list of inherited attributes, and the datatype is now VARCHAR2.
Although Oracle did a wonderful job on type evolution here, we are still responsible
for our own code. Our cd_obj body references first and last names of artists, and it
is marked as invalid until we can fix it and recompile.

Not only can we alter the type to add, modify, and delete attributes, but we
can also maintain the methods in the object type. We did not specify a user-defined
constructor method in the music_obj object type. In fact, there is no object body
at all, since there were no methods declared. To add a method to the object type
specification, type

ALTER TYPE music_obj ADD CONSTRUCTOR FUNCTION music_obj (
style VARCHAR2,
artist MUSIC_PERSON_OBJ)
RETURN SELF AS RESULT CASCADE;

Type altered.

-- A description of music_obj shows the new method
SQL> DESC music_obj
music_obj is NOT FINAL
Name Null? Type
--- -------- --------------------
STYLE VARCHAR2(50 CHAR)
COMPOSER MUSIC_PERSON_OBJ
ARTIST MUSIC_PERSON_OBJ
METHOD

FINAL CONSTRUCTOR FUNCTION MUSIC_OBJ RETURNS SELF AS RESULT
Argument Name Type In/Out Default?
------------------------------ ----------------------- ------ --------
STYLE VARCHAR2 IN
ARTIST MUSIC_PERSON_OBJ IN

We don’t have an object type body to implement the constructor method. If we
do not want to keep it, we can use the drop command:

ALTER TYPE music_obj
DROP CONSTRUCTOR FUNCTION music_obj (
style varchar2,
artist music_person_obj)
RETURN SELF AS RESULT CASCADE;

Chapter 14: Introduction to Objects 671

NOTE
It is not required that you provide the entire method
syntax when altering the object type, but it is good
practice.

To drop an object type, we use the DROP TYPE command. This can be made
more specific to the object type body by using DROP TYPE BODY. To test this, we
can drop the music_person_obj object type:

SQL> DROP TYPE music_person_obj;
drop type music_person_obj
*
ERROR at line 1:
ORA-02303: cannot drop or replace a type with type or table dependents

This fails because music_person_obj is used as the datatype for two music_obj
attributes. We can add the FORCE keyword to make the drop ignore the dependencies.

SQL> DROP TYPE music_person_obj FORCE;

Type dropped.

Using FORCE allows the drop to succeed, but the remaining objects are marked
as invalid. Should we recreate the music_person_obj object, we must recompile
the invalid objects. In the next chapter (Chapter 15) we will also explore the
VALIDATE keyword, and its usefulness when working with object tables.

Summary
In this chapter we reviewed object-oriented programming (OOP) concepts, discussed
Oracle’s implementation of OOP in PL/SQL, and tested features such as inheritance,
type evolution, and attribute chaining. In the next chapter we continue our
discussion of objects, but we shift to persistent objects in the database.

672 Oracle Database 10g PL/SQL Programming

CHAPTER
15

Objects in the
Database

Copyright © 2004 by The McGraw-Hill Companies, Inc. Click here for terms of use.

674 Oracle Database 10g PL/SQL Programming

I
n Chapter 14 we discussed object-oriented programming and introduced
object types and object instances. The focus of the chapter was on transient
objects, or objects that exist only in the context of program execution.
In this chapter we extend the objects discussion to persistent objects, or
objects that exist after program execution, such as object tables and object

views. You will also learn how to use DML and built-in functions with objects, and
explore type evolution with persistent objects.

NOTE
If you are unfamiliar with object type creation,
inheritance, type evolution, and differences between
transience and persistence, it is highly recommended
that you read Chapter 14 before reading this chapter.

Introduction to Objects in the Database
Chapter 14 introduced you to object-oriented programming (OOP) and Oracle’s
implementation of it in PL/SQL. Inheritance and dynamic dispatch, while fairly new
to PL/SQL, are standard features of other OOP languages like C++ and Java. So why
choose PL/SQL for your OOP needs? PL/SQL objects can be stored in the database
and created, maintained, and accessed using SQL and PL/SQL, providing
persistence to objects.

Persistence, or the ability to store objects in the database rather than memory,
provides a way for an object to exist outside the context of a single program’s
execution. Object types are still at the heart of the design, but the implementation
extends to object tables, object views, and built-in functions to help us use and
manage the objects.

Figure 15-1 shows how we can model a bookstore using objects. We have
created only transient objects to this point. Let’s take a look at how we can create
persistent objects from this model in the database.

NOTE
Unless otherwise noted, the base release for this
chapter is Oracle 9iR1, since this is where most
of the complex object features were added.

Object Tables
Object tables are created from object types and match the definitions of the object
type attributes. Object tables contain object rows. Each row in the object table is an
instance of the object, and the table contains only columns matching the attributes
of the object type it is created from.

Chapter 15: Objects in the Database 675

Creating Object Tables
We create object tables using the CREATE TABLE...OF statement. The object table
takes the attributes of the object type as its columns. If an attribute discount_
rate in the discount_price_obj object type has a datatype of NUMBER (10,
4), then the table created from it has a column named discount_rate and a
datatype of NUMBER (10, 4). See the following example:

-- Available online as part of ObjectTable.sql
CREATE OR REPLACE TYPE discount_price_obj AS OBJECT (

discount_rate NUMBER (10, 4),
price NUMBER (10, 2),
CONSTRUCTOR FUNCTION discount_price_obj (price NUMBER)

RETURN SELF AS RESULT
)
INSTANTIABLE FINAL;

/

FIGURE 15-1. Bookstore object model

The object table is created with the CREATE TABLE table_name OF object_type_
name statement.

-- Available online as part of ObjectTable.sql
CREATE TABLE discount_price_tbl OF discount_price_obj;

A describe of the table shows us the same definition as discount_price_obj:

DESC discount_price_tbl
Name Null? Type
--- -------- -------------
DISCOUNT_RATE NUMBER(10,4)
PRICE NUMBER(10,2)

NOTE
The object table is based on the system-defined
constructor rather than the user-defined constructor.

The object table and object type it was created from are tied together. Let’s
attempt to drop the discount_price_obj example we just created.

DROP TYPE discount_price_obj;

If you attempt to drop the type without first invalidating or dropping the table, you
will receive the following error:

drop type discount_price_obj
*
ERROR at line 1:
ORA-02303: cannot drop or replace a type with type or table dependents

Any modifications to the table must be done through the type. The following
example attempts to alter discount_price_tbl to add a column:

ALTER TABLE discount_price_tbl
ADD col1 VARCHAR2(200 CHAR);

This generates the following error:

ADD col1 VARCHAR2(200 CHAR)
*

ERROR at line 2:
ORA-22856: cannot add columns to object tables

676 Oracle Database 10g PL/SQL Programming

NOTE
If you are unfamiliar with the use of CHAR with a
string datatype, refer to the “Character Semantics”
section of Chapter 14.

We will discuss persistent object maintenance and type evolution at greater
length later in this chapter, under the heading “Maintaining Persistent Objects.”

Inheritance and Attribute Chaining
Creating object tables is straightforward when the object type is not very complex.
Adding inheritance and attribute chaining throws a bit of a wrinkle into our nice,
neat object table example, though.

Chapter 14 introduced the concept of attribute chaining, which provides a way
to link object types to attributes of other object types. If contact information is a
composite structure made up of name, address, and phone number, and the address
is made up of multiple attributes as well, we can “chain” the list of attributes together
and present them as a composite in our publisher_obj.contact_info attribute.
Refer back to Figure 15-1 for a diagram of the following example:

-- Available online as part of AttributeChain.sql
CREATE OR REPLACE TYPE address_obj AS OBJECT (

address1 VARCHAR2 (30 CHAR),
address2 VARCHAR2 (30 CHAR),
city VARCHAR2 (30 CHAR),
state CHAR (2 CHAR)

)
INSTANTIABLE FINAL;

/

CREATE OR REPLACE TYPE person_obj AS OBJECT (
first_name VARCHAR2 (20 CHAR),
last_name VARCHAR2 (20 CHAR)

)
INSTANTIABLE FINAL;

/

Address_obj and person_obj are at the end of the chain and have no
dependencies. Contact_obj, created next, uses address_obj and person_
obj for two of its attribute types.

-- Available online as part of AttributeChain.sql
CREATE OR REPLACE TYPE contact_obj AS OBJECT (

name PERSON_OBJ,
address ADDRESS_OBJ,

Chapter 15: Objects in the Database 677

678 Oracle Database 10g PL/SQL Programming

phone NUMBER (10)
)
INSTANTIABLE FINAL;

/

Finally, publisher_obj is created to use contact_obj for one of its datatypes.

-- Available online as part of AttributeChain.sql
CREATE OR REPLACE TYPE publisher_obj AS OBJECT (

pub_name VARCHAR2 (30),
contact_info CONTACT_OBJ,
MEMBER PROCEDURE show_contact

)
INSTANTIABLE FINAL;

/

Base the object table on the publisher_obj object type.

CREATE TABLE publisher_tbl OF publisher_obj;

The table publisher_tbl should now have the same structure as the object
type publisher_obj that it is based on. A describe of both publisher_obj and
publisher_tbl show the same structure:

SQL> desc publisher_obj
Name Null? Type
--- -------- ------------
PUB_NAME VARCHAR2(30)
CONTACT_INFO CONTACT_OBJ
MEMBER PROCEDURE SHOW_CONTACT

SQL> desc publisher_tbl
Name Null? Type
--- -------- -------------
PUB_NAME VARCHAR2(30)
CONTACT_INFO CONTACT_OBJ

Our new object table is a mirror of our object type including the attribute chain. In
this case, contact_info has a datatype of contact_obj.

Inheritance provides an object type hierarchy where subtypes inherit attributes
and methods from their parents, all the way up to the supertype. Figure 15-1 shows
our inheritance model that is used in the following example:

-- Available online as part of Inheritance.sql
CREATE OR REPLACE TYPE inventory_obj AS OBJECT (

item_id NUMBER (10),
num_in_stock NUMBER (10),
reorder_status VARCHAR2 (20 CHAR),
price NUMBER (10, 2),

Chapter 15: Objects in the Database 679

CONSTRUCTOR FUNCTION inventory_obj (
item_id IN NUMBER,
num_in_stock IN NUMBER,
price IN NUMBER

)
RETURN SELF AS RESULT,

MEMBER PROCEDURE print_inventory,
MEMBER PROCEDURE print_status,
MEMBER PROCEDURE print_price

)
INSTANTIABLE NOT FINAL;

/

CREATE OR REPLACE TYPE book_obj
UNDER inventory_obj (

isbn CHAR (10 CHAR),
CATEGORY VARCHAR2 (20 CHAR),
title VARCHAR2 (100 CHAR),
num_pages NUMBER,
publisher PUBLISHER_OBJ,
CONSTRUCTOR FUNCTION book_obj (
item_id NUMBER,
num_in_stock NUMBER,
price NUMBER,
isbn CHAR,
title VARCHAR2,
num_pages NUMBER

)
RETURN SELF AS RESULT,

MEMBER PROCEDURE print_book_information,
OVERRIDING MEMBER PROCEDURE print_price

)
INSTANTIABLE NOT FINAL;

/

CREATE OR REPLACE TYPE hard_cover_obj
UNDER book_obj (

distribution_date DATE,
OVERRIDING MEMBER PROCEDURE print_price

)
INSTANTIABLE FINAL;

/

CREATE OR REPLACE TYPE soft_cover_obj
UNDER book_obj (

distribution_date DATE,
OVERRIDING MEMBER PROCEDURE print_price

)
INSTANTIABLE FINAL;

/

680 Oracle Database 10g PL/SQL Programming

Now we can create an object table for soft_cover_obj.

SQL> create table soft_cover_tbl of soft_cover_obj;

A describe of the soft_cover_tbl shows all attributes included in the hierarchy:

SQL> desc soft_cover_tbl
Name Type
--------------------------- ------------------
ITEM_ID NUMBER(10)
NUM_IN_STOCK NUMBER(10)
REORDER_STATUS VARCHAR2(20 CHAR)
PRICE NUMBER(10,2)
ISBN CHAR(10 CHAR)
CATEGORY VARCHAR2(20 CHAR)
TITLE VARCHAR2(100 CHAR)
NUM_PAGES NUMBER
PUBLISHER PUBLISHER_OBJ -- Part of Attribute Chain
DISTRIBUTION_DATE DATE

Describing Object Tables
Describing the object tables using default settings does not provide a complete
picture of our table, as the attributes included in publisher_obj were not
included in our describe of soft_cover_obj. The SET DESC(RIBE) command
can provide a more complete picture of our object table. The syntax is as follows:

SET DESCRIBE [DEPTH {1|n|ALL}]
[LINENUM {ON|OFF}] [INDENT {ON|OFF}]

Let’s set the depth to all and linenum on so that we can view the hierarchy:

SQL> SET DESC DEPTH ALL LINENUM ON
SQL> DESC soft_cover_tbl

Name Null? Type
------------------------------- -------- --------------------

1 ITEM_ID NUMBER(10)
2 NUM_IN_STOCK NUMBER(10)
3 REORDER_STATUS VARCHAR2(20 CHAR)
4 PRICE NUMBER(10,2)
5 ISBN CHAR(10 CHAR)
6 CATEGORY VARCHAR2(20 CHAR)
7 TITLE VARCHAR2(100 CHAR)
8 NUM_PAGES NUMBER
9 PUBLISHER PUBLISHER_OBJ
10 9 PUB_NAME VARCHAR2(30)
11 9 CONTACT_INFO CONTACT_OBJ
12 11 NAME PERSON_OBJ

Chapter 15: Objects in the Database 681

13 12 FIRST_NAME VARCHAR2(20)
14 12 LAST_NAME VARCHAR2(20)
15 11 ADDRESS ADDRESS_OBJ
16 15 ADDRESS1 VARCHAR2(30 CHAR)
17 15 ADDRESS2 VARCHAR2(30 CHAR)
18 15 CITY VARCHAR2(30 CHAR)
19 15 STATE CHAR(2 CHAR)
20 11 PHONE NUMBER(10)

MEMBER PROCEDURE SHOW_CONTACT
21 DISTRIBUTION_DATE DATE

This provides a little better view of our object! It allows us to see the complete
object table, and shows the hierarchy with line numbers and indentation.

NOTE
For expanded coverage on this topic, refer to Jason
Price, Oracle 10g SQL (McGraw-Hill/Osborne,
2004), or visit http://otn.oracle.com and view the
online SQL*Plus documentation.

Object Identifiers
Relational tables have unique identifiers called rowid’s that are system generated.
Similarly, object tables have unique identifiers that are system generated called
object identifiers, or OIDs. Each row object receives an OID that is guaranteed
unique and allows a reference to the object instance, or row object, in your
program. Read more on object references in the section “Accessing Persistent
Objects Using SQL and PL/SQL.”

OIDs are created only for object tables and object views (discussed later in this
chapter) and are not available for use with transient objects and object columns (also
discussed later). Once an OID is assigned to an object, it is forever with that object.
Oracle allows for a whopping 2128 OIDs to avoid problems of objects “stepping”
on each other during operations such as export/import. If I export objects and then
import them again, the OID stays with that object.

Oracle does allow us to override the system generated OID with our primary
key at object table creation if we wish. See the following example:

CREATE TABLE soft_cover_tbl
OF soft_cover_obj
(CONSTRAINT soft_cover_tbl_p PRIMARY KEY (item_id))
OBJECT IDENTIFIER IS PRIMARY KEY;

Notice line 4—the OID is now based on the primary key, and the hidden column
SYS_NC_OID$ in soft_cover_tbl can be used similar to rowid.

682 Oracle Database 10g PL/SQL Programming

Synonyms
We can create synonyms for our object tables just as we can for relational tables.
Consider the following example:

CREATE OR REPLACE SYNONYM soft_cover_syn
FOR objects_user.soft_cover_tbl;

While synonyms are created using the same syntax regardless of the type of table,
access to the data is still restricted according to the rules of the underlying table.

Column Objects
Column objects are created as part of a relational or object table by setting the
datatype of a column as an object type. In our examples for object tables, the
soft_cover_tbl table is an object table but also contains object columns.
The publisher column was of type publisher_obj.

One of the main differences between column objects and object tables is the
latter’s ability to reference object instances using OID’s. There are no OIDs assigned
to column objects. The object instance is part of the relational record that has a
rowid assigned.

Creating Column Objects
We can create a relational table similar in structure to the inventory_obj object
type, but not based on it. As part of the relational table, we will create the price
column with a discount_price_obj object type.

-- Available online as part of ColObj.sql
CREATE TABLE inventory_tbl (

item_id NUMBER (10) PRIMARY KEY,
num_in_stock NUMBER (10),
reorder_status VARCHAR2 (20 CHAR),
price DISCOUNT_PRICE_OBJ)

/

By doing a describe of the table using our SET DESC settings discussed earlier,
we can see the structure of the inventory_tbl table:

SQL> desc inventory_tbl
Name Null? Type
------------------------------- -------- -------------------

--
1 ITEM_ID NOT NULL NUMBER(10)
2 NUM_IN_STOCK NUMBER(10)
3 REORDER_STATUS VARCHAR2(20 CHAR)
4 PRICE DISCOUNT_PRICE_OBJ
5 4 DISCOUNT_RATE NUMBER(10,4)
6 4 PRICE NUMBER(10,2)

Chapter 15: Objects in the Database 683

METHOD

FINAL CONSTRUCTOR FUNCTION DISCOUNT_PRICE_OBJ RETURNS SELF AS RESULT
Argument Name Type In/Out Default?
------------------------------ ----------------------- ------ --------
PRICE NUMBER IN

Our relational table has a price column that looks similar to a nested table and
also has access to the discount_price_obj.price method.

While object tables are tied to their object type and do not allow alteration of
the table directly, tables containing column objects have no such restriction. If we
wish to add a column to the table, we do so with a normal ALTER TABLE statement.

SQL> ALTER TABLE inventory_tbl
2 ADD backordered CHAR(1);

Table altered.

Object Views
Object views allow us to use object features with relational structures. This is especially
handy when changing an application to use OO features over time. It is also useful for
extending relational applications to use OO features where modification of the original
source is not possible.

Creating Basic Object Views
To create an object view, we must create a type whose attributes match the
underlying column names in the table(s). The following example re-creates the
specification of the discount_price_obj and inventory_obj object types.
Notice that while the attributes in the inventory_obj specification match those
in the inventory_tbl relational table, the column num_in_stock is not
included in the object type definition.

-- Available online as part of ObjectView.sql
CREATE OR REPLACE TYPE discount_price_obj AS OBJECT (

discount_rate NUMBER (10, 4),
price NUMBER (10, 2),
MEMBER FUNCTION discount_price

RETURN NUMBER
)
INSTANTIABLE FINAL;
/

CREATE OR REPLACE TYPE BODY discount_price_obj
AS

MEMBER FUNCTION discount_price
RETURN NUMBER

IS

684 Oracle Database 10g PL/SQL Programming

BEGIN
RETURN (SELF.price * (1 - SELF.discount_rate));

END discount_price;
END;

/

CREATE OR REPLACE TYPE inventory_obj AS OBJECT (
item_id NUMBER (10),
reorder_status VARCHAR2 (20 CHAR),
price DISCOUNT_PRICE_OBJ,
MEMBER PROCEDURE print_inventory,
MEMBER PROCEDURE print_status,
MEMBER PROCEDURE print_price

)
INSTANTIABLE NOT FINAL;

/

Now that we have the object type specification created, we can base the object
view on it. We must decide the type of OID we want to use with the CREATE VIEW
statement. Object views are created with an OID that is either based on the primary
key of the underlying table or is system generated. The object identifiers provide the
same ability as an OID on an object table to support object references. Let’s look at
an example that creates the view using the item_id column for the OID.

-- Available online as part of ObjectView.sql
CREATE VIEW inventory_vie

OF inventory_obj
WITH OBJECT IDENTIFIER (item_id)

AS
SELECT i.item_id, i.num_in_stock, i.reorder_status,

i.price
FROM inventory_tbl i

/

A describe of the inventory_tbl table shows the following structure:

SET DESC DEPTH ALL LINENUM ON

-- Describe of the TABLE
DESC inventory_tbl

Name Null? Type
------------------------------- -------- -------------------

-

1 ITEM_ID NOT NULL NUMBER(10)
2 NUM_IN_STOCK NUMBER(10)
3 REORDER_STATUS VARCHAR2(20 CHAR)
4 PRICE DISCOUNT_PRICE_OBJ

Chapter 15: Objects in the Database 685

5 4 DISCOUNT_RATE NUMBER(10,4)
6 4 PRICE NUMBER(10,2)

METHOD

MEMBER FUNCTION DISCOUNT_PRICE RETURNS NUMBER

Now, compare the table’s structure to that of the inventory_vie view.

desc inventory_vie
Name Null? Type
------------------------------- -------- -------------------

1 ITEM_ID NUMBER(10)
2 REORDER_STATUS VARCHAR2(20 CHAR)
3 PRICE DISCOUNT_PRICE_OBJ
4 3 DISCOUNT_RATE NUMBER(10,4)
5 3 PRICE NUMBER(10,2)

METHOD

MEMBER FUNCTION DISCOUNT_PRICE RETURNS NUMBER

Here we see the view is nearly identical to the table, including access to the
member function discount_price. The difference between the two is that the
num_in_stock attribute is no longer visible.

In the “Objects View” subsection of “Accessing Persistent Objects Using SQL
and PL/SQL,” we will use this view to retrieve data from the inventory_tbl
table, and introduce a method of inserting records into object views using INSTEAD
OF triggers.

Accessing Persistent Objects Using SQL
and PL/SQL
At the beginning of this chapter we pointed out that PL/SQL objects can be
stored in the database and created, maintained, and accessed using SQL and
PL/SQL. As such, DML operations against objects are transactional and subject
to the same read-consistency and undo rules as any other DML operation.
In this section we discuss various methods of using SQL and PL/SQL to access
persistent objects.

Object Tables
Let’s start by looking at a very basic example using INSERT, UPDATE, DELETE, and
SELECT against an object table. Our discount_price_obj object type has two

686 Oracle Database 10g PL/SQL Programming

columns, both with NUMBER datatypes. In the following example, we create the
discount_price_tbl table from the discount_price_obj type:

-- Available online as part of objectTable.sql
CREATE OR REPLACE TYPE discount_price_obj AS OBJECT (

discount_rate NUMBER (10, 4),
price NUMBER (10, 2),
MEMBER FUNCTION discount_price

RETURN NUMBER
)
INSTANTIABLE FINAL;

/

CREATE OR REPLACE TYPE BODY discount_price_obj
AS

MEMBER FUNCTION discount_price
RETURN NUMBER

IS
BEGIN

RETURN (SELF.price * (1 - SELF.discount_rate));
END discount_price;

END;
/

CREATE TABLE discount_price_tbl OF discount_price_obj;

The following block performs DML as if the object table were a standard
relational table:

-- Available online as part of ObjectTable.sql
SET SERVEROUTPUT ON SIZE 1000000
DECLARE

v_DiscountRate discount_price_tbl.discount_rate%TYPE;
v_OriginalPrice discount_price_tbl.price%TYPE;
v_DiscountPrice discount_price_tbl.price%TYPE;

BEGIN
-- INSERT a new row into the discount_price_tbl table
INSERT INTO discount_price_tbl

VALUES (.1, 54.95);

-- UPDATE the record, changing the discount rate
UPDATE discount_price_tbl

SET discount_rate = .15
WHERE discount_rate = .1;

-- SELECT and print the values to the screen
SELECT discount_rate, price, price - (discount_rate * price)
INTO v_DiscountRate, v_OriginalPrice, v_DiscountPrice
FROM discount_price_tbl

Chapter 15: Objects in the Database 687

WHERE rownum < 2;

DBMS_OUTPUT.PUT_LINE ('Original Price: ' || v_OriginalPrice);
DBMS_OUTPUT.PUT_LINE ('Discount Rate Applied: '

|| v_DiscountRate * 100
|| '%'

);
DBMS_OUTPUT.PUT_LINE ('Our LOW, LOW price: ' || v_DiscountPrice);

-- DELETE the row we added
DELETE FROM discount_price_tbl;

END;
/

This anonymous block returns the following:

Original Price: 54.95
Discount Rate Applied: 15%
Our LOW, LOW price: 46.71

Our discount_price_obj method called discount_price is for retrieval, so
we will need to seed the table prior to calling the method.

-- Available online as part of ObjectTable.sql
DELETE FROM discount_price_tbl;
INSERT INTO discount_price_tbl VALUES (.1, 54.95);
INSERT INTO discount_price_tbl VALUES (.1, 39.95);
INSERT INTO discount_price_tbl VALUES (.15, 42.95);
INSERT INTO discount_price_tbl VALUES (.2, 65.95);
INSERT INTO discount_price_tbl VALUES (.1, 52.95);
commit;

This simple select shows how we call the discount_price method:

-- Available online as part of ObjectTable.sql
SELECT d.price "Original Price", d.discount_price() "Our Price"
FROM discount_price_tbl d;

This select results in the following:

Original Price Our Price
-------------- ----------

54.95 49.455
39.95 35.955
42.95 36.5075
65.95 52.76
52.95 47.655

5 rows selected.

688 Oracle Database 10g PL/SQL Programming

Notice the call to the discount_price method. We created our table from the
discount_price_obj object type that contains the discount_price method.
In our select statement, the call to the discount_price method uses the table
alias, not the object type name! If we had simply created the table as a normal
relational table, this would not be possible.

The table alias in this case is the correlation identifier, and it must be used to
access methods and/or attributes of the object table. The correlation identifier will
become of even greater importance in our discussion of object references in the
next section.

Carrying this one step further, let’s create a table based on the inventory_obj
object type specification. Where the discount_price_obj object type
specification included attributes with standard Oracle datatypes, the inventory_
obj object type is a complex object that uses another object type as a datatype.

-- Available online as part of objectTable.sql
CREATE OR REPLACE TYPE inventory_obj AS OBJECT (

item_id NUMBER (10),
num_in_stock NUMBER (10),
reorder_status VARCHAR2 (20 CHAR),
price DISCOUNT_PRICE_OBJ,
MEMBER PROCEDURE print_inventory,
MEMBER PROCEDURE print_status,
MEMBER PROCEDURE print_price

)
INSTANTIABLE NOT FINAL;

/

CREATE TABLE inventory_tbl OF inventory_obj;

Now describe the table to examine the structure.

DESC inventory_tbl
Name Null? Type
------------------------------- -------- ------------------

1 ITEM_ID NUMBER(10)
2 NUM_IN_STOCK NUMBER(10)
3 REORDER_STATUS VARCHAR2(20 CHAR)
4 PRICE DISCOUNT_PRICE_OBJ
5 4 DISCOUNT_RATE NUMBER(10,4)
6 4 PRICE NUMBER(10,2)

METHOD

MEMBER FUNCTION DISCOUNT_PRICE RETURNS NUMBER

The price column has discount_price_obj as its datatype, just like the
inventory_obj object type specification. Adding data is a bit more complex
now. Here we attempt a basic insert:

INSERT INTO inventory_tbl
VALUES (1, 10, 'IN STOCK', 54.95);

The insert returns the following error:

VALUES (1, 10, 'IN STOCK', 54.95)
*

ERROR at line 2:
ORA-00932: inconsistent datatypes: expected UDT got NUMBER

To complete the insert, we must first create an instance of the type by using a
constructor method. A constructor is a function that returns an initialized object
and takes as arguments the values for the object’s attributes. For every object type,
Oracle predefines a constructor with the same name as the type. Here is our insert
using the discount_price_obj constructor:

-- Available online as part of objectTable.sql
INSERT INTO inventory_tbl

VALUES (1, 10, 'IN STOCK', discount_price_obj (.1, 75));

The insert is now successful.

Accessing Column Objects
As we discussed earlier in the chapter, column objects are created in a relational or
object table when the type of a column is set to another object type. As you saw in
the “Object Tables” section, most DML operations work without modification when
operating on a basic object table. Column objects add some complexity but also a
number of additional benefits. Let’s drop and re-create the inventory_tbl table
as a relational table, still keeping the same structure:

-- Available online as part of ColObj.sql
CREATE TABLE inventory_tbl (

item_id NUMBER(10) PRIMARY KEY,
num_in_stock NUMBER(10),
reorder_status VARCHAR2(20 CHAR),
price DISCOUNT_PRICE_OBJ)

/

We saw how to perform an insert into this table in the object table section:

-- Available online as part of ColObj.sql
INSERT INTO inventory_tbl

VALUES (1, 10, 'IN STOCK', discount_price_obj (.1, 75));

Chapter 15: Objects in the Database 689

690 Oracle Database 10g PL/SQL Programming

Describing the table shows the attribute chain for the price column, as well as
the method we have access to through the discount_price_obj object type:

desc inventory_tbl
Name Null? Type
--- -------- ----------------------

1 ITEM_ID NOT NULL NUMBER(10)
2 NUM_IN_STOCK NUMBER(10)
3 REORDER_STATUS VARCHAR2(20 CHAR)
4 PRICE DISCOUNT_PRICE_OBJ
5 4 DISCOUNT_RATE NUMBER(10,4)
6 4 PRICE NUMBER(10,2)

METHOD

MEMBER FUNCTION DISCOUNT_PRICE RETURNS NUMBER

A SELECT from our table results in the following:

COL reorder_status FORMAT A15
COL price FORMAT A30
SELECT *
FROM inventory_tbl;

ITEM_ID NUM_IN_STOCK REORDER_STATUS PRICE(DISCOUNT_RATE, PRICE)
---------- ------------ --------------- ---------------------------------

1 10 IN STOCK DISCOUNT_PRICE_OBJ(.1, 75)

The value stored in the column object includes the name of the object type. We can
make reference to both attributes and methods of the discount_price_obj
object type, as is demonstrated in the following example:

-- Available online as part of ColObj.sql
SET SERVEROUTPUT ON SIZE 1000000
DECLARE

v_Price DISCOUNT_PRICE_OBJ;
BEGIN
-- Update attribute of the price object

SELECT price
INTO v_Price
FROM inventory_tbl
WHERE item_id = 1;

DBMS_OUTPUT.PUT_LINE (' ');
DBMS_OUTPUT.PUT_LINE ('Price BEFORE update: '

|| v_Price.discount_price);
v_Price.discount_rate := .2;

UPDATE inventory_tbl
SET price = v_Price;

Chapter 15: Objects in the Database 691

DBMS_OUTPUT.PUT_LINE (' ');
DBMS_OUTPUT.PUT_LINE ('Price AFTER update: '

|| v_Price.discount_price);
ROLLBACK;

END;
/

This block produces the following result:

Price BEFORE update: 67.5
Price AFTER update: 60

In this block we referenced both attributes and methods in the discount_
price_obj object type. If we attempt this in SQL, there is a slight difference in
that we must use the correlation ID.

-- Available online as part of ColObj.sql
SELECT i.price.price, i.price.discount_rate
FROM inventory_tbl i;

The select returns

PRICE.PRICE PRICE.DISCOUNT_RATE
----------- -------------------

75 .1

This SELECT returns attribute values only. If we want to access the methods via SQL,
we use dot notation as well but include the parameter list in the call.

-- Available online as part of ColObj.sql
SELECT i.price.discount_price()
FROM inventory_tbl i;

This select returns the following:

I.PRICE.DISCOUNT_PRICE()

67.5

The parameter list in this case is take care of by the column object itself, so we use
() in the call.

Accessing Object Views
Object views present relational data in an object-oriented way. Earlier in the
chapter we re-created the table inventory_tbl as a relational table with an
object column, and then we created an object view of the structure. We will extend
this example here, showing how to access the attributes and methods of the object
column through the view rather than the table.

692 Oracle Database 10g PL/SQL Programming

Retrieving Rows
The following example creates the object view on the relational table:

-- Available online as part of ObjectView.sql
CREATE VIEW inventory_vie

OF inventory_obj
WITH OBJECT IDENTIFIER (item_id)

AS
SELECT i.item_id OID, i.reorder_status, i.price
FROM inventory_tbl I

/

Now, to seed records in the inventory_tbl table:

INSERT INTO inventory_tbl
VALUES (1, 10, 'IN STOCK', discount_price_obj (.1, 75));

INSERT INTO inventory_tbl
VALUES (2, 13, 'IN STOCK', discount_price_obj (.1, 54.95));

INSERT INTO inventory_tbl
VALUES (3, 24, 'IN STOCK', discount_price_obj (.15, 43.95));

INSERT INTO inventory_tbl
VALUES (4, 13, 'IN STOCK', discount_price_obj (.1, 60));

INSERT INTO inventory_tbl
VALUES (5, 5, 'IN STOCK', discount_price_obj (.20, 42.95));

The methods of selecting data from the object views and from the object tables
are nearly identical. One difference, as you may have noticed, is that the view
definition is missing the num_in_stock column. This column is present in the
inventory_tbl table. Just as with standard views, you can access columns or
attributes present in the view only when selecting from the view.

The following SELECT accesses the object view, retrieving attributes from the
column object, and uses the discount_price method from the column object:

-- Available online as part of ObjectView.sql
SELECT i.item_id, i.price.price, i.price.discount_rate,

i.price.discount_price ()
FROM inventory_vie I

/

This returns the following result:

ITEM_ID PRICE.PRICE PRICE.DISCOUNT_RATE I.PRICE.DISCOUNT_PRICE()
---------- ----------- ------------------- ------------------------

1 75 .1 67.5
2 54.95 .1 49.455
3 43.95 .15 37.3575
4 60 .1 54
5 42.95 .2 34.36
6 64.95 .15 55.2075

Chapter 15: Objects in the Database 693

Inserting and Updating
Although direct inserting and updating of object views is not supported, we can
create an INSTEAD OF trigger to facilitate this for us. Here we create a trigger that
performs an insert into the inventory_tbl table whenever an insert is performed
against the view:

-- Available online as part of ObjectView.sql
CREATE OR REPLACE TRIGGER inventory_trg

INSTEAD OF INSERT ON inventory_vie
FOR EACH ROW
BEGIN
INSERT INTO inventory_tbl

VALUES (:NEW.item_id, NULL, :NEW.reorder_status, :NEW.price);
END;

/

We test this by performing an insert into the inventory_vie view.

INSERT INTO inventory_vie
VALUES (7, 'ON ORDER', discount_price_obj(.15, 68.95));

1 row created.

We can verify the row was inserted into the inventory_tbl table with a simple
select:

-- Available online as part of ObjectView.sql
SELECT *
FROM inventory_tbl

WHERE item_id = 7;

This returns the following:

ITEM_ID NUM_IN_STOCK REORDER_STATUS PRICE(DISCOUNT_RATE, PRICE)
---------- ------------ --------------- -------------------------------
--

7 ON ORDER DISCOUNT_PRICE_OBJ(.15, 68.95)

Object Related Functions and Operators
Earlier in the chapter we discussed the object identifier (OID) and some of its uses
with object tables and object views. Object references are pointers to the rows of
our object tables and views; they are possible because of the OID. The reference,
or REF, stores the OID and the table ID, allowing us to retrieve and navigate
object rows based on the REF value. Oracle provides additional capabilities using
functions such as TREAT, VALUE, and SYS_TYPEID. We will review these functions
and more in this section.

REF
You can think of a REF value simply as a pointer to an object instance in an object
table or object view. The syntax for REF is as follows:

REF(co_id)

where co_id is the correlation identifier for the object table or object view being
accessed. The following simple example retrieves an object reference for a row
object in the inventory_tbl table with an item_id attribute of 1:

SELECT REF(i)
FROM inventory_tbl i

WHERE item_id = 1;

The REF value for item_id 1 is returned.

REF(I)

00002802094BB784FE506643A0B0C48386C259A337E03E98B727144068BAD3219746127480018000FF0000

Let’s use the inventory_obj object type and the inventory_tbl object
table to test out the REF function further. In this block we declare a variable to
reference an object. The syntax for declaring an object reference in a declarative
section or table definition is

variable_or_column_name REF object_type;

where variable_or_column_name is the name of the object reference, and object_
type is the object type. See the following example for the implementation:

-- Available online as part of RefObj.sql
DELETE FROM inventory_tbl;
INSERT INTO inventory_tbl (item_id, num_in_stock, reorder_status, price)

VALUES (1, 10, 'IN STOCK', discount_price_obj (.1, 75));
INSERT INTO inventory_tbl (item_id, num_in_stock, reorder_status, price)

VALUES (2, 2, 'ON ORDER', discount_price_obj (.1, 54.95));
INSERT INTO inventory_tbl (item_id, num_in_stock, reorder_status, price)

VALUES (3, 24, 'IN STOCK', discount_price_obj (.1, 63.95));
COMMIT ;

The following block sets a variable as a REF of inventory_obj, retrieves the
REF value of an item, and then uses that REF value in the remainder of the block to
reference the row object:

-- Available online as part of RefObj.sql
DECLARE

v_InventoryRef REF INVENTORY_OBJ;
v_ItemID NUMBER (10);
v_ReorderStatus VARCHAR2 (20 CHAR);

694 Oracle Database 10g PL/SQL Programming

BEGIN
SELECT REF (i)
INTO v_InventoryRef
FROM inventory_tbl i

WHERE reorder_status = 'ON ORDER';

SELECT i.item_id, i.reorder_status
INTO v_ItemID, v_ReorderStatus
FROM inventory_tbl I

WHERE REF (i) = v_InventoryRef;

DBMS_OUTPUT.PUT_LINE ('Item ID '
|| v_ItemID
|| ' is '
|| v_ReorderStatus

);
END;

/

Executing the block returns the following:

Item ID 2 is ON ORDER

As the results show, we were able to use the REF value as the pointer to the row we
needed.

NOTE
Though the object reference, or REF, is a logical
pointer, it is a static binary value that can be stored
in a physical table if you wish.

Forward Type Declaration
What happens if I am creating a specification that references another object type,
but that other type does not yet exist? This can be problematic, especially if I do not
yet know how I want the other object type structured. The inventory_obj object
type that follows references discount_price_obj:

-- Available online as part of ForwardDeclaration.sql
CREATE OR REPLACE TYPE inventory_obj AS OBJECT (

item_id NUMBER(10),
num_in_stock NUMBER(10),
reorder_status VARCHAR2(20),
price REF DISCOUNT_PRICE_OBJ);

/
PLS-00201: identifier 'DISCOUNT_PRICE_OBJ' must be declared

Chapter 15: Objects in the Database 695

696 Oracle Database 10g PL/SQL Programming

Running this without first specifying discount_price_obj results in the
exception just shown. To solve this problem, we can use a forward type:

CREATE OR REPLACE TYPE discount_price_obj;
/

This simple type allows inventory_obj to be created successfully even though
there is no definition for discount_price_obj.

CREATE OR REPLACE TYPE inventory_obj AS OBJECT (
item_id NUMBER(10),
num_in_stock NUMBER(10),
reorder_status VARCHAR2(20),
price REF discount_price_obj);

/

DEREF
DEREF returns the object instance that the REF value points to. This is more easily
explained with a simple example. In this case, DEREF is passed the REF value for
the correlation ID of the inventory_tbl:

SELECT DEREF(REF(i))
FROM inventory_tbl i

WHERE item_id = 1;

The object instance associated with the REF value of item_id 1 is returned:

DEREF(REF(I))(ITEM_ID, NUM_IN_STOCK, REORDER_STATUS, PRICE(DISCOUNT_RA
--
INVENTORY_OBJ(1, 10, 'IN STOCK', DISCOUNT_PRICE_OBJ(.1, 75))

IS DANGLING
REFs that point to nothing are considered dangling. The following example
illustrates how this is possible:

-- Available online as part of IsDangling.sql
SET SERVEROUTPUT ON SIZE 1000000
DECLARE

v_InventoryRef REF INVENTORY_OBJ;
v_ItemID NUMBER (10);
v_ReorderStatus VARCHAR2 (20 CHAR);
v_Status VARCHAR2 (20 CHAR);

BEGIN
SELECT REF (i)
INTO v_InventoryRef
FROM inventory_tbl i

WHERE reorder_status = 'ON ORDER';

DELETE FROM inventory_tbl I
WHERE REF (i) = v_InventoryRef;

SELECT 'I''M DANGLING'
INTO v_Status
FROM DUAL

WHERE v_InventoryRef IS DANGLING;

DBMS_OUTPUT.PUT_LINE (v_Status);
END;

/

In this block we retrieved a REF value for an item into a variable, then deleted that
item. We were able to test the REF value then by using a SELECT...FROM that
includes the IS DANGLING test. The where clause evaluates to true, so the
following is returned:

I'M DANGLING

TREAT
The TREAT function does verification at run time to see if a base type can be
treated as one of its subtypes. In our example (illustrated earlier in the chapter
in Figure 15-1), we see an inventory_obj object type with book_obj as its
subtype. Inventory_obj may have music_obj as its subtype as well, so not all
object instances of inventory_obj are guaranteed to be books. TREAT allows us
to use methods, or access attributes, of a subtype if the object instance is of that
subtype. We use the following syntax:

TREAT (object_instance|REF AS subtype) [. attribute|method]

Object_instance, in the case of our example, is an instance of inventory_obj.
The REF value can also be used when working with object tables and object views to
point to the instance. Subtype is under the base type whose instance is evaluated, and
is part of the same inheritance hierarchy. Attribute and method are from the subtype.

In our DEREF example we can see the stored object instance in the
inventory_tbl table is of type inventory_obj. Inventory_obj includes
subtypes of book_obj and music_obj, so with a slight modification to our insert
statement, we can make records of each of these types:

TIP
You may choose to run cleanSchema.sql prior
to running treat.sql, as some of the base objects
change in the treat.sql example.

Chapter 15: Objects in the Database 697

698 Oracle Database 10g PL/SQL Programming

-- Available online as part of Treat.sql
CREATE OR REPLACE TYPE inventory_obj AS OBJECT (

item_id NUMBER (10),
num_in_stock NUMBER (10),
reorder_status VARCHAR2 (20 CHAR),
price NUMBER(10,2),
CONSTRUCTOR FUNCTION inventory_obj (

item_id IN NUMBER,
num_in_stock IN NUMBER,
price IN NUMBER

)
RETURN SELF AS RESULT,

MEMBER PROCEDURE print_inventory,
MEMBER PROCEDURE print_status,
MEMBER PROCEDURE print_price

)
INSTANTIABLE NOT FINAL;

/

Now create the object table based on inventory_obj:

CREATE TABLE inventory_tbl OF inventory_obj;

We can insert records into our inventory_tbl table as follows:

-- Available online as part of Treat.sql
INSERT INTO inventory_tbl

VALUES (music_obj (1,
10,
'IN STOCK',
11.99,
'Hip-Hop',
music_person_obj ('George', 'Instructor'),
music_person_obj ('George', 'Instructor')
));

INSERT INTO inventory_tbl
VALUES (book_obj (2,

13,
'IN STOCK',
54.95,
'72121203',
'TECHNICAL',
'Oracle DBA 101',
563,
publisher_obj ('Oracle Press',

contact_obj (person_obj ('Susan',
Publisher'

),
address_obj ('123 Street',

'Suite 2',
'My City',
'CO'
),

'5555555555'
)

)
));

NOTE
Notice the amount of nesting in the last insert. This
is the result of attribute chaining and the amount of
detail that is included in a single object instance.

Now when we perform a select against the inventory_tbl table, we can see
both rows and the subtypes associated with them.

SELECT SYS_NC_ROWINFO$
FROM inventory_tbl;

SYS_NC_ROWINFO$(ITEM_ID, NUM_IN_STOCK, REORDER_STATUS, PRICE)
--
MUSIC_OBJ(1, 10, 'IN STOCK', 11.99, 'Hip-Hop', MUSIC_PERSON_OBJ('George',
'Instructor'), MUSIC_PERSON_OBJ('George', 'Instructor'))

BOOK_OBJ(2, 13, 'IN STOCK', 54.95, '72121203 ', 'TECHNICAL', 'Oracle DBA 101',
563, PUBLISHER_OBJ('Oracle Press', CONTACT_OBJ(PERSON_OBJ('Susan', 'Publisher'),
ADDRESS_OBJ('123 Street', 'Suite 2', 'My City', 'CO'), 5555555555)))

The two records, stored in the same object table, contain totally different information
outside of the four initial attributes of the supertype.

NOTE
SYS_NC_ROWINFO$ is a hidden column in object
tables that can be used in select statements to
retrieve complete row objects.

Now we can use the TREAT function. As part of the TREAT function, we specify
the subtype. In the following example, we use the book_obj object type:

SELECT TREAT(VALUE(i) AS book_obj)
FROM inventory_tbl i;

Chapter 15: Objects in the Database 699

700 Oracle Database 10g PL/SQL Programming

This select returns the following:

TREAT(VALUE(I)ASBOOK_OBJ)(ITEM_ID, NUM_IN_STOCK, REORDER_STATUS, PRICE, ISBN,
CATEGORY, TITLE, NUM_P
--

BOOK_OBJ(2, 13, 'IN STOCK', 54.95, '72121203 ', 'TECHNICAL', 'Oracle DBA 101',
563, PUBLISHER_OBJ('Oracle Press', CONTACT_OBJ(PERSON_OBJ('Susan', 'Publisher'),
ADDRESS_OBJ('123 Street', 'Suite 2', 'My City', 'CO'), 5555555555)))

2 rows selected.

We can rerun the select, replacing book_obj with music_obj.

SQL> SELECT TREAT(VALUE(i) AS music_obj)
2 FROM inventory_tbl i;

This select returns the following:

TREAT(VALUE(I)ASMUSIC_OBJ)(ITEM_ID, NUM_IN_STOCK, REORDER_STATUS, PRICE, STYLE,
COMPOSER(FIRST_NAME
--
MUSIC_OBJ(1, 10, 'IN STOCK', 11.99, 'Hip-Hop', MUSIC_PERSON_OBJ('George',
'Instructor'), MUSIC_PERSON_OBJ('George', 'Instructor'))

2 rows selected.

Notice that there are two rows selected in each case. The decision of which row(s)
to return with a value is made at run time. NULL is always returned when the record
in the table does not match the subtype specified.

We can also TREAT the REF value so that only REF values are returned that
match the specified subtype. See the following example:

SELECT TREAT(REF(i) AS REF book_obj)
FROM inventory_tbl i;

This select returns the following:

TREAT(REF(I)ASREFBOOK_OBJ)
--
00002802097656A76CF1524CE4A26CDC19D05FBAF577F1D1ED4A304B62ADF6CFED98EC2699018000FF0001

2 rows selected.

VALUE
The VALUE function takes as input the correlation ID and returns the object
instances from the object table or object view. Syntax for VALUE is

VALUE(co_id)[. attribute|method]

where co_id is the correlation identifier for the object table or object view being
accessed. The following simple select returns all object instances from the
inventory_obj object table:

SELECT VALUE(i)
FROM inventory_tbl i;

This select returns the following:

VALUE(I)(ITEM_ID, NUM_IN_STOCK, REORDER_STATUS, PRICE)
--
MUSIC_OBJ(1, 10, 'IN STOCK', 11.99, 'Hip-Hop', MUSIC_PERSON_OBJ('George',
'Instructor'), MUSIC_PERSON_OBJ('George', 'Instructor'))

BOOK_OBJ(2, 13, 'IN STOCK', 54.95, '72121203 ', 'TECHNICAL', 'Oracle DBA 101',
563, PUBLISHER_OBJ('Oracle Press', CONTACT_OBJ(PERSON_OBJ('Susan', 'Publisher'),
ADDRESS_OBJ('123 Street', 'Suite 2', 'My City', 'CO'), 5555555555)))

2 rows selected.

We can use dot notation to extract only the attributes we want to see. The following
example retrieves the item_id and price attributes:

SELECT VALUE(i).item_id, VALUE(i).price
FROM inventory_tbl i;

The select returns the following:

VALUE(I).ITEM_ID VALUE(I).PRICE
---------------- --------------

1 11.99
2 54.95

Methods can also be used with the same dot notation.

IS OF
IS OF is a predicate used to determine whether a value or variable is of a particular
type. The following example is the same as one of our VALUE examples, except in
the WHERE clause:

SELECT VALUE(i)
FROM inventory_tbl I
WHERE VALUE(i) IS OF (book_obj);

Chapter 15: Objects in the Database 701

702 Oracle Database 10g PL/SQL Programming

The select returns the following:

VALUE(I)(ITEM_ID, NUM_IN_STOCK, REORDER_STATUS, PRICE)
--
BOOK_OBJ(2, 13, 'IN STOCK', 54.95, '72121203 ', 'TECHNICAL', 'Oracle DBA 101',
563, PUBLISHER_OBJ('Oracle Press', CONTACT_OBJ(PERSON_OBJ('Susan', 'Publisher'),
ADDRESS_OBJ('123 Street', 'Suite 2', 'My City', 'CO'), 5555555555)))

In this case, IS OF checks to see whether the object instances are of the type
specified. If we had objects of a subtype of book_obj, such as soft_cover_obj,
those values would have been returned as well.

Oracle provides the ONLY keyword to restrict the return result to only those
values related directly to the stated type. The following statement modifies the last
example to use the ONLY keyword:

SELECT VALUE(i)
FROM inventory_tbl I
WHERE VALUE(i) IS OF (ONLY book_obj);

We can use IS OF in a PL/SQL block, as is demonstrated in the next example:

SET SERVEROUTPUT ON SIZE 1000000
DECLARE

v_inventory INVENTORY_OBJ;
BEGIN

SELECT VALUE (i)
INTO v_Inventory
FROM inventory_tbl i
WHERE VALUE (i).item_id = 1;

IF v_Inventory IS OF (book_obj)
THEN

DBMS_OUTPUT.PUT_LINE ('Item ID '
|| v_Inventory.item_id
|| ' is of type BOOK_OBJ'

);
ELSIF v_inventory IS OF (music_obj)
THEN

DBMS_OUTPUT.PUT_LINE ('Item ID '
|| v_Inventory.item_id
|| ' is of type MUSIC_OBJ'

);
END IF;

END;
/

Execution of the block returns the following:

Item ID 1 is of type MUSIC_OBJ

SYS_TYPEID
The SYS_TYPEID function returns the typeid of the object instance. The following
example illustrates this:

SELECT VALUE(i).item_id, SYS_TYPEID(VALUE(i))
FROM inventory_tbl i;

The results of the select are as follows:

VALUE(I).ITEM_ID SYS_TYPEID(VALUE(I))
---------------- --------------------------------

1 03
2 02

The function takes the object instance as its argument, hence the VALUE
function’s use in the last example. Another way to get the same information
is to select from the SYS_NC_TYPEID$ hidden column.

SELECT VALUE(i).item_id, SYS_NC_TYPEID$
FROM inventory_tbl i;

The select returns the following:

VALUE(I).ITEM_ID SYS_NC_TYPEID$
---------------- --------------------------------

1 03
2 02

UTL_REF
The UTL_REF package performs various actions against an object instance given
a reference to it. The six procedures included in the package perform tasks such
as retrieving an object instance, locking an object, updating an object, and more.
Table 15-1 lists the six procedures and explains what each can do.

Chapter 15: Objects in the Database 703

Procedure Arguments Description

SELECT_OBJECT ref_in IN
var_out OUT

Retrieves an object from an object
table, given a reference to it

SELECT_OBJECT_WITH_CR ref_in IN
var_out OUT

Retrieves an object from an object
table, given a reference to it, and
makes a copy of the object

LOCK_OBJECT ref_in IN Locks an object from an object
table, given a reference to it

TABLE 15-1. UTL_REF Built-In Package

704 Oracle Database 10g PL/SQL Programming

The following example demonstrates the SELECT_OBJECT and DELETE_OBJECT
procedures:

-- Available online as part of UtlRef.sql
-- Must be run as part of UtlRef
SET SERVEROUTPUT ON 1000000
DECLARE

CURSOR c_inventory
IS

SELECT REF (i)
FROM inventory_tbl i

WHERE VALUE (i) IS OF (book_obj);

v_InventoryRef REF INVENTORY_OBJ;
v_Inventory INVENTORY_OBJ;
v_Status VARCHAR2 (200 CHAR);
v_Book BOOK_OBJ;

BEGIN
-- Delete one of the records in the inventory_tbl table

SELECT REF (i)
INTO v_InventoryRef
FROM inventory_tbl i

WHERE item_id = 2;

UTL_REF.DELETE_OBJECT (v_InventoryRef);
DBMS_OUTPUT.PUT_LINE (' ');
DBMS_OUTPUT.PUT_LINE ('DELETE_OBJECT');
DBMS_OUTPUT.PUT_LINE ('=============');

-- Verify that the row was deleted
SELECT 'The row was deleted with DELETE_OBJECT and '

|| 'my REF is DANGLING! I will rollback so we can continue.'

Procedure Arguments Description

LOCK_OBJECT ref_in IN
var_out OUT

Locks an object from an object
table, given a reference to it, and
retrieves it

UPDATE_OBJECT ref_in IN
var_out OUT

Updates an object in an object
table, given a reference to it

DELETE_OBJECT ref_in IN Deletes an object from an object
table, given a reference to it

TABLE 15-1. UTL_REF Built-In Package (continued)

INTO v_Status
FROM DUAL

WHERE v_InventoryRef IS DANGLING;

DBMS_OUTPUT.PUT_LINE (v_status);
DBMS_OUTPUT.PUT_LINE (' ');
ROLLBACK;
DBMS_OUTPUT.PUT_LINE ('SELECT_OBJECT');
DBMS_OUTPUT.PUT_LINE ('=============');
DBMS_OUTPUT.PUT_LINE

('Use the SELECT_OBJECT procedure to return the object instance, ');
DBMS_OUTPUT.PUT_LINE

('then use TREAT on the inventory object to allow access to the ');
DBMS_OUTPUT.PUT_LINE ('print_book_information method of the subtype.');
DBMS_OUTPUT.PUT_LINE (' ');

-- Retrieve the object instance using the ref we retrieved earlier
UTL_REF.SELECT_OBJECT (v_InventoryRef, v_Inventory);

SELECT TREAT (v_Inventory AS book_obj)
INTO v_Book
FROM DUAL;

v_Book.print_book_information;
END;
/

Maintaining Persistent Objects
Object maintenance became much easier in 9i with the introduction of type
evolution. This is especially important when object tables, object columns, object
views, and inheritance create very complex structures. The ability to cascade
changes through dependent objects removes the need to track down and re-create
all objects because of one small change.

Type Evolution
In Chapter 14 we discussed type evolution as it applied to transient objects. I’m sure
by now you appreciate its features more after seeing the implementation of persistent
objects. In the following example we create object types showing inheritance, an
object table, and an object view. We can then alter one of the object types to change
the underlying structures.

TIP
You may choose to run cleanSchema.sql prior
to running objMaintain.sql, as some of the
objects change in the objMaintain.sql example.

Chapter 15: Objects in the Database 705

-- Available online as part of ObjMaintain.sql
CREATE OR REPLACE TYPE inventory_obj AS OBJECT (

item_id NUMBER (10),
num_in_stock NUMBER (10),
reorder_status VARCHAR2 (20 CHAR),
price NUMBER (10, 2),
CONSTRUCTOR FUNCTION inventory_obj (

item_id IN NUMBER,
num_in_stock IN NUMBER,
price IN NUMBER

)
RETURN SELF AS RESULT,

MEMBER PROCEDURE print_inventory,
MEMBER PROCEDURE print_status,
MEMBER PROCEDURE print_price

)
INSTANTIABLE NOT FINAL;

/

CREATE OR REPLACE TYPE book_obj
UNDER inventory_obj (

isbn CHAR (10 CHAR),
CATEGORY VARCHAR2 (20 CHAR),
title VARCHAR2 (100 CHAR),
num_pages NUMBER,
publisher PUBLISHER_OBJ,
CONSTRUCTOR FUNCTION book_obj (
item_id NUMBER,
num_in_stock NUMBER,
price NUMBER,
isbn CHAR,
title VARCHAR2,
num_pages NUMBER

)
RETURN SELF AS RESULT,

MEMBER PROCEDURE print_book_information,
OVERRIDING MEMBER PROCEDURE print_price

)
INSTANTIABLE NOT FINAL;

/

The object type specifications are created, so we can create the object table:

CREATE TABLE book_tbl OF book_obj;

Finally, we create the view:

706 Oracle Database 10g PL/SQL Programming

CREATE VIEW book_vie
OF book_obj
WITH OBJECT IDENTIFIER (item_id)

AS
SELECT item_id, num_in_stock, reorder_status,

price, isbn, CATEGORY, title,
num_pages, publisher

FROM book_tbl;

In this example, we have a supertype inventory_obj, with a subtype book_obj.
A table was created from book_obj, and an object view was created from book_
obj with a select of book_tbl.

NOTE
For the sake of space, the inserts that are included in
the objMaintain.sql script are omitted from the
preceding example. If you are using the examples, the
insert statements are part of the objMaintain.sql
script.

Let’s test out type evolution by adding an attribute to the supertype
inventory_obj.

ALTER TYPE inventory_obj
ADD ATTRIBUTE location VARCHAR2(100 CHAR);

This statement returns the following:

ALTER TYPE inventory_obj
*
ERROR at line 1:
ORA-22312: must specify either CASCADE or INVALIDATE option

Oracle recognized the dependencies on this type and throws an exception. Let’s try
it again, specifying CASCADE.

ALTER TYPE inventory_obj
ADD ATTRIBUTE location VARCHAR2(100 CHAR) CASCADE;

This time the alter statement will work. Now that we have successfully altered the
type, let’s check the definition of the subtype, object table, and object view.

desc book_obj

Chapter 15: Objects in the Database 707

708 Oracle Database 10g PL/SQL Programming

A describe after altering the type may result in the following exception:

ERROR:
ORA-22337: the type of accessed object has been evolved

The exception we get here is expected and was discussed in Chapter 14. You
may or may not get this exception. If you did a describe prior to altering the type,
then you will likely get this exception. It is simply stating that the client cache has
an older copy, and you need to disconnect and reconnect your session to clear
the cache.

desc book_tbl
Name Null? Type
-------------------------- -------- ------------

1 ITEM_ID NUMBER(10)
2 NUM_IN_STOCK NUMBER(10)
3 REORDER_STATUS VARCHAR2(20 CHAR)
4 PRICE NUMBER(10,2)

...
21 LOCATION VARCHAR2(100 CHAR)

The describe of the book_tbl table shows that it picked up the new attribute.

desc book_vie
ERROR:
ORA-24372: invalid object for describe

The view is the only problem, as it is marked as invalid. Let’s verify this in the
data dictionary.

SELECT object_name, status
FROM user_objects
WHERE object_name = 'BOOK_VIE'

This select statement returns the following:

OBJECT_NAME STATUS
---------------------------- -------
BOOK_VIE INVALID

The reason can be seen on the describe of the book_obj object type that the view
is based on—remember to clear your client cache by reconnecting:

desc book_obj
book_obj extends OBJECTS_USER.INVENTORY_OBJ
book_obj is NOT FINAL

Name Null? Type
------------------------------- -------- -------------------

1 ITEM_ID NUMBER(10)
2 NUM_IN_STOCK NUMBER(10)
3 REORDER_STATUS VARCHAR2(20 CHAR)
4 PRICE NUMBER(10,2)
5 LOCATION VARCHAR2(100 CHAR)

...

So the addition of the location attribute cascaded to the book_obj object type,
making the view invalid due to a column mismatch. To fix the view, we will need
to re-create it.

Summary
In Chapter 14 and the present chapter, we discussed transient and persistent
objects and demonstrated many of their key features. Chapter 14 discussed
transient objects, inheritance, and attribute chaining. This chapter focused
on persistent objects and using those objects in SQL and PL/SQL. In the next
chapter we discuss Large Objects (LOBs) in Oracle.

Chapter 15: Objects in the Database 709

This page intentionally left blank

CHAPTER
16

Large Objects

Copyright © 2004 by The McGraw-Hill Companies, Inc. Click here for terms of use.

V
ARCHAR2 and CHAR datatypes are great for storing small amounts
of data, but what if you need to store large amounts of data such as
chapters of a book, an image of the book cover, or the complete book
in PDF format? Oracle provides LOB (Large OBject) datatypes
to work with these kinds of data. In this chapter we look at the

different kinds of LOBs, ways to manipulate them using SQL and PL/SQL, the
DBMS_LOB package, and performance considerations when working with LOBs,
including the use of Oracle Text.

Introduction to Large Objects
First introduced in Oracle 8, large objects, or LOBs, provide a means to store,
manipulate, and retrieve large amounts of text and binary data. Prior to Oracle 8,
LONG and LONG RAW datatypes were used for these purposes, but the use of LONG
and LONG RAW datatypes have a number of restrictions:

■ A table can have only one LONG or LONG RAW column.

■ Storage is limited to 2GB.

■ SQL access to the values stored in a LONG or LONG RAW column is an
all-or-nothing proposition. There is no ability to retrieve or manipulate
just a portion of the data using SQL.

LONG and LONG RAW types are still available, but Oracle recommends
converting to LOBs because they solve many of the problems just noted. They
provide the following benefits to the application developer:

■ Depending on the block size of the database, they can store from 8 to 128
terabytes in a single column in Oracle 10gR1 (4GB in all prior releases).

■ DML can be used on all, or just a portion of, the data stored in a LOB column.

■ More than one LOB column can be created in a single table.

■ Advanced features such as Oracle interMedia text in 8i, and Oracle Text
in 9i and 10g can index LOB columns, providing full-text information
retrieval on the LOB contents.

■ LOB data can be stored in the database, or on a file system that can be
accessed by the database.

712 Oracle Database 10g PL/SQL Programming

Now, you may be wondering, as we did, where the LOB size limit of 8 to 128
terabytes came from. It seems that some of the size limitations in Oracle are drawn
from a hat, or are a developer’s lucky number. Not so here.

The terabyte LOB limits are set by the formula (4G – 1) * DB_BLOCK_SIZE. The
Oracle block size (specified by the DB_BLOCK_SIZE parameter) can range from 2K
to 32K. In my case, my DB_BLOCK_SIZE is set to 8K, so my limit is 4G * 8K = 32
terabytes (just under actually, since we ignored the “‘–1” in the formula for simplicity).

The storage capabilities should not be surprising given some of the other size-
related enhancements to Oracle 10g. For example, an Oracle database can store 8
exabytes (8 million terabytes), and large datafiles support up to 4 terabytes in a
single file. Honestly, we can’t think of anything to store in a LOB column beyond
40G or so, but it is nice to know the extra space is there should we ever need it!

Features Comparison
Chances are, you are not running just one version of the database in your company.
To avoid version differences catching you by surprise, Table 16-1 contains a list of
LOB-related features, and the releases where they are available.

NOTE
This is a summary list of features. For a complete
list of LOB features available for your specific
release, visit the Oracle Technology Network (OTN)
documentation web site at http://otn.oracle.com/
documentation/index.html.

Types of LOBs
A LOB is not a datatype itself. It is a classification of datatypes that handle large
objects. There are four LOB datatypes that are divided into two distinct categories:
internal LOBs and external LOBs. Both internal and external LOBs have LOB
locators and LOB values, but they manage them in different ways. Internal LOBs,
or LOBs whose data is stored and managed in the database, include BLOB, CLOB,
and NCLOB types. There is one external LOB called BFILE whose data is stored and
managed outside the database.

LOB Locators
Before diving headfirst into internal and external LOBs, we need to discuss LOB
locators. Each LOB, regardless of type, has a LOB locator. When you insert an
internal LOB value that is greater than 4K, it is not stored directly in the table. External

Chapter 16: Large Objects 713

LOBs are never stored directly in the table. Instead a locator, or reference, to the
actual physical storage location is what gets inserted. Oracle uses this LOB locator
to retrieve the correct LOB value when it is needed.

NOTE
LOB values can be stored in-row in a table. If they
are stored out-of-row, additional structures are
created. See the sections “LOB Structure” as well as
“Internal LOB Storage,” “External LOB Storage,” and
“Temporary LOB Storage” later in this chapter for a
much more detailed discussion on how and where
LOB values are stored.

714 Oracle Database 10g PL/SQL Programming

Feature 8i 9iR1 9iR2 10gR1

Manipulate data piecewise using DML X X X X

LOB storage—internal and external to the database X X X X

Indexing using interMedia Text and Oracle Text
supported

X X X X

Client-side access to the DBMS_LOB package X X X

SQL operators and functions supported X X X

Implicit conversion between VARCHAR2 and CLOB X X X

C++ API added—Oracle C++ Cal Interface (OCCI) X X X

Limited support for execution of DML in parallel X X

LOB columns can be created in locally managed
tablespaces

X X

Full support LOBs in partitioned index-organized
tables (IOT)

X

Implicit conversion between CLOB and NCLOB X

Support for regular expressions X

Allows 8 to 128 terabytes storage depending on
system configuration

X

TABLE 16-1. LOB Features

Internal LOBs
An internal LOB, or a LOB whose storage is managed by the database, is stored either
as part of a table, or in the database tablespace with a LOB locator stored in the table.
An internal LOB instance has both a LOB value and a LOB locator. The locator in
this case points to the location to the LOB value stored within the database.

Internal LOB instances that are stored in a table are considered persistent. They
can be used by multiple transactions and applications that access the data, and are
not terminated with the session. The default tablespace is used to store the LOB
value unless another tablespace is specified. Standard SQL rules such as two-phase
commit apply, and the data is treated with regard to backup/recovery operations as
any other datatype.

Internal LOBs can also be temporary, where the LOB instance exists only in the
context of the current session or application. In this case, the temporary tablespace
is used to store the LOB value. If you insert the instance into a table, it becomes
persistent. Otherwise, the LOB instance is deleted when you free the instance, or
your session ends. You can free the instance using the DBMS_LOB built-in package
discussed later in this chapter.

Regardless of whether the LOB instance is persistent or temporary, Oracle copies
both the LOB locator and the LOB value during DML operations. This is referred
to as copy semantics, since both locator and value are stored and managed within
the database.

BLOB A binary large object, or BLOB, can store binary objects such as images,
video, or audio files. You can also store files like PDF or Word documents in their
original form. Since BLOBs are internal, they are stored and managed in the database.

CLOB Character large objects, or CLOBs, are typically used to store large amounts
of text. Characters are stored in the database character encoding as specified by the
parameter NLS_CHARACTERSET.

NCLOB National character Set large objects, or NCLOBs, also store text, but they
do so using the National Character Set of the database. The national character set is
determined by the parameter NLS_NCHAR_CHARACTERSET.

External LOBs
External LOBs are stored and managed outside of the database by the operating
system. Since file management is under the control of the operating system, we are
limited in what we can do with them within the database. Oracle cannot guarantee
read-consistency of the file, and backup/recovery operations must explicitly include
the External LOB operating system files—they are not included by default.

Chapter 16: Large Objects 715

When inserting external LOBs, Oracle copies only the LOB locator, since the
LOB value is external to the database. This is referred to as reference semantics,
since only the reference, or locator, is copied.

BFILE Oracle provides one datatype called BFILE, or binary file, to handle external
LOBs. A pointer to the file is stored in the database, but all management of the file
itself is under the control of the operating system. The file can be stored in any
operating system directory that allows Oracle to access it, including CDs and other
servers on your network.

Unlike when using the other LOB types, we are limited to read-only access to
the files. Any changes to the files, aside from modifying the location, require a
direct change to the file via the operating system.

Other Types That Are Stored as LOBs
Yes, we know we said there were two categories of LOBs—internal and external.
We have a special category, however, that encompasses user-defined types and
some newer Oracle datatypes. A VARRAY, or variable-size array, can be stored
as a LOB under certain circumstances, and the XMLType datatype is stored as a
CLOB in 9iR1.

VARRAY As discussed earlier in the book, a VARRAY is a predefined composite
datatype. If your VARRAY is less than 4K, it is stored in a table. A VARRAY is stored
as a LOB if the declared size is greater than 4K, or if the ...STORE AS LOB... syntax
is added to the VARRAY declaration. The ability to store a VARRAY as a LOB was
first introduced in Oracle 9iR1.

The following example creates three object type specifications as VARRAYs
of varying sizes and creates a table with the storage clause specified for one of
the columns.

NOTE
The CreateLobUser.sql script has been
provided to create the LOB_USER schema.
Use this schema for all examples.

–– Available online as VarrayLob.sql
CREATE or REPLACE TYPE varray_table_obj

AS VARRAY(3964) OF VARCHAR2(10);
/
CREATE OR REPLACE TYPE varray_lob_obj

AS VARRAY(4001) OF VARCHAR2(10);
/

716 Oracle Database 10g PL/SQL Programming

CREATE OR REPLACE TYPE varray_lob2_obj
AS VARRAY(3964) OF VARCHAR2(10);

/
CREATE TABLE varray_lob (

column1 varray_table_obj,
column2 varray_lob_obj,
column3 varray_lob2_obj)
VARRAY column3 STORE AS LOB column3_seg;

In this example, VARRAY_LOB.COLUMN1 is the only column not stored as a LOB.
Notice that the object type definition for VARRAY_TABLE_OBJ does not exceed
the 4K limit, and the VARRAY STORE AS... clause is not specified for that column.
COLUMN2 and COLUMN3 are both stored as LOBs, though. COLUMN2 exceeds 4K,
and COLUMN3 is included in the STORE AS LOB... clause at table creation.

XMLType The XMLType datatype was first introduced in Oracle 9iR1. The following
table creation sets a column datatype to XMLType:

CREATE TABLE XMLType_table (
COLUMN1 XMLTYPE);

The data stored in column1 is stored as a CLOB. Accordingly, you can specify
storage attributes similar to other LOBs, including specifying a separate tablespace
to store your XML data. To add a storage clause for an XMLType column, use the
XMLTYPE ... STORE AS syntax as follows:

XMLTYPE COLUMN column_name
STORE AS CLOB [lob_segment_name]
[(TABLESPACE tablespace

{ENABLE|DISABLE} STORAGE IN ROW
STORAGE storage_clause
CHUNK int
PCTVERSION int)

NOTE
Each of the storage options noted here is
explained in the section titled “LOB Storage.”

LOB Structure
Earlier we discussed LOB locators. They point to the location of the LOB values. To
get a little more detail on the internal structure of a LOB, we can look at a block
dump. Figure 16-1 provides an illustration of what we see when a LOB value is
stored outside the table.

Chapter 16: Large Objects 717

So, on closer examination, we are not just dealing with LOB locators and LOB
values. In reality, we have LOB locators, LOB inodes, LOB indexes, and LOB segments,
along with additional control information.

For a table that stores LOBs, a segment and an index are created by default for
each LOB column. When we need to work with the LOB, the locator, index, and
segment are needed. Figure 16-1 shows that the locator are 20 bytes. If you do a
block dump, you will see that ten bytes of this are actually a LOB ID (the other ten
bytes are miscellaneous information related to the LOB). The LOB ID is passed to
the LOB index, which in turn has a listing of all of the blocks in the LOB segment
that are used to store the LOB value. The LOB index is essentially a map that allows
us to piece our out-of-row LOB together.

NOTE
More on chunks and storage options in
the next section, “Internal LOB Storage.”

Internal LOB Storage
Why should the PL/SQL programmer care about how LOBs are created and stored?

■ DML and DDL operations involving LOBs are tied to LOB locators and LOB
values. Failing to understand how LOB values are stored and accessed will
result in inefficient code.

718 Oracle Database 10g PL/SQL Programming

FIGURE 16-1. Out-of-row LOB

■ You can better determine which LOB type is appropriate, and under what
circumstances they should be used, if there is a clear understanding of how
the data is stored and retrieved.

■ When working with software development on Oracle, interaction and
communication between the Developer and the DBA is critical. PL/SQL
developers who can communicate storage requirements are worth their
weight in gold to the DBA responsible for the environment.

Let’s start our discussion regarding LOB storage by looking at how to create a
table with LOBs columns. Table creation can include separate storage clauses for
each LOB column. If no storage options are specified, the LOBs are created in the
table’s tablespace. To specify different storage options, use the following syntax in
your create table statement:

CREATE TABLE table_name (
lob_column lob_datatype
) LOB (lob_column,..) STORE AS [lob_segment_name]
[(TABLESPACE tablespace
{ENABLE|DISABLE} STORAGE IN ROW
STORAGE storage_clause
CHUNK int
PCTVERSION int
CACHE
CACHE READS [[NO]LOGGING]
NOCACHE [[NO]LOGGING])

/
Next we create a sample table that includes all four LOB types. Note the storage

information that follows the create table statement:

–– Available online as part of CreateLobTables.sql
CREATE TABLE book_samples (

book_sample_id NUMBER (10) PRIMARY KEY,
isbn CHAR(10 CHAR),
description CLOB,
nls_description NCLOB,
book_cover BLOB,
chapter_title VARCHAR2(30 CHAR),
chapter BFILE

) LOB (book_cover)
STORE AS blob_seg(TABLESPACE blob_ts

CHUNK 16384
PCTVERSION 0
NOCACHE
NOLOGGING

Chapter 16: Large Objects 719

DISABLE STORAGE IN ROW)
LOB (description, nls_description)

STORE AS (TABLESPACE clob_ts
CHUNK 16384
PCTVERSION 10
NOCACHE
LOGGING
ENABLE STORAGE IN ROW);

Let’s review each of these options in more detail.

LOB (lob_column,...) STORE AS
We split our storage up in our example. The BLOB column has one set of storage
options, and CLOB and NCLOB have another. Now, we have ourselves an interesting
dilemma with the optional LOB segment name. The first LOB listing includes a LOB
segment name, but the second does not. This is because a LOB segment name has
a restriction related to the LOB column list. If we were to add an optional LOB
segment name to the second LOB clause, we would get the following exception:

ORA-22855: optional name for LOB storage segment incorrectly specified

We can still specify storage names for these other two columns, but we must
have a LOB clause for each column rather than a comma-separated list. For our
example we will allow the system to name the LOB segment names for the last
clause, just as it is displayed here.

Tablespace
If you will be storing large LOB values, it may be a good idea, for performance
reasons, to store them in a tablespace separate from the tables. In our example,
the CLOB and NCLOB values are stored in the CLOB_TS tablespace. The BLOB
values are stored in the BLOB_TS tablespace.

TIP
There is no rule about when you should break
your CLOB storage to separate tablespaces. It all
depends on your usage and implementation. If you
are considering splitting your LOBs to separate
tablespaces, speak to your DBA first, and review
a Statspack report (8i through 10gR1), or ADDM
output (10g only). They can tell you whether the
activity on your tablespace warrants a move.

720 Oracle Database 10g PL/SQL Programming

Chunk
LOB I/O is done in chunks. By default, a single chunk is equal to a single block, but
this can be overwritten using the CHUNK storage option. It is recommended that
the CHUNK value be a multiple of the block size.

For performance reasons, do not use the default size for CHUNK. Larger chunks
provide the ability to read multiple blocks at a time. Keep in mind that if you specify
INITIAL and NEXT storage options, you should make them larger than the chunk size.

PCTVersion
PCTVERSION indicates the percent of total LOB blocks that can contain old LOB
data. When a LOB value is changed, the old LOB blocks are not purged immediately.
They are kept until the PCTVERSION threshold is met, and then Oracle begins
reusing the old blocks. The default is 10 percent.

Retention
Where PCTVERSION is related to space for old LOB data, the RETENTION parameter
is related to the amount of time the old data is kept. If RETENTION is specified at
table creation, the time set for the database parameter UNDO_RETENTION is used
for the LOB RETENTION as well.

NOTE
PCTVERSION and RETENTION cannot
be specified at the same time.

Cache|NoCache|CacheReads
The database buffer cache is an area of memory in the database SGA. Caching data
in the buffer cache generally improves performance for subsequent operations
against it by avoiding trips to disk. This is not always the case with LOBs, however.
The following table shows three settings and provides descriptions of each.

CACHE LOB blocks are read into the buffer cache for read and
write operations.

NOCACHE LOB blocks are not read into the buffer cache. NOCACHE
is the default setting.

CACHEREADS LOB blocks are read into the buffer cache for read
operations only.

As noted, NOCACHE is the default setting if not included as a storage option.
Only use the CACHE setting when accessing the LOBs often.

Chapter 16: Large Objects 721

722 Oracle Database 10g PL/SQL Programming

Logging|NoLogging
This parameter determines whether redo is generated for inserts into the LOB column.
NOLOGGING is best reserved for large loads, as it decreases the overhead. For
normal operations, LOGGING is recommended.

Enable|Disable Storage In Row
ENABLE STORAGE IN ROW, which is the default setting, says that if the LOB value
is less than 4K (including control information), store it inline. In the case of our
book_cover column, we have elected to DISABLE STORAGE IN ROW. This
means that regardless of the size of the BLOB, it will not be stored inline.

This is all performance related. If a LOB can be stored inline, the LOB locator
is still used to find the LOB value. The benefit is that if the LOB value is less than
4K, the value can be retrieved without added overhead of going to disk again for
the value. It has already been read into the buffer cache with the rest of the row.

Now that we have our table created, let’s try altering it to change the BLOB
column to allow inline storage.

ALTER TABLE book_samples
MODIFY (book_cover BLOB) LOB (book_cover)

STORE AS (ENABLE STORAGE IN ROW);

MODIFY (book_cover BLOB) LOB (book_cover)
*

ERROR at line 2:
ORA-22858: invalid alteration of datatype

As you can see, this is an illegal operation. Once we set the inline storage for a
column, we cannot change it without dropping and recreating the table. This makes
perfect sense, of course. If we used a table for a period of time and then modified
where the LOB values are stored, new records would use inline storage for a column,
while old records would not.

External LOB Storage
BFILEs do not store their values in the database at all, so the storage options are
completely different from internal LOBs. An OS directory is created to hold the
files on the operating system, and a named directory is created in Oracle to point
to that location as follows:

CREATE DIRECTORY book_samples_loc AS '/home/oracle/';

As with every operation in Oracle, permission is required to create directories.
You must have the CREATE DIRECTORY privilege or the DBA role to create the
directory in SQL*Plus, as well as READ privileges on the directory to work with
the contents stored there.

TIP
Make sure your user has OS privileges on the
specified file path. Oracle does not verify your
file path when you create the directory. In fact, we
are able to create the directory in the preceding
example (Unix file path) in our Windows
environment without error. Just try using it!

At table creation, no additional storage options are required for the BFILE
column. Twenty bytes are still allocated in the row for the LOB locator, and
some additional space is needed for the directory path to the stored image.

If you wish to see the directories that are created in your instance, query
the DBA_DIRECTORIES or ALL_DIRECTORIES views.

select * from dba_directories;

Here you will find the directory just created:

OWNER DIRECTORY_NAME
––––––––––––––– ––––––––––
DIRECTORY_PATH
–––––––––––––––––––––––––-
SYS BOOK_SAMPLES_LOC
/home/oracle/

Should we need to drop a directory, we can use the DROP DIRECTORY command
as follows:

DROP DIRECTORY book_samples_loc;

Temporary LOB Storage
Temporary LOBs are just that, temporary. The LOB instance is stored in a temporary
tablespace and only exists in the context of the current session. As soon as the
session is terminated, the temporary space used for the LOB instance is freed.

A temporary LOB can be created explicitly as part of the application design,
or behind the scenes as support for SQL and PL/SQL operations. When the LOB is
created explicitly using PL/SQL, the CACHE parameter can improve performance
substantially. Setting the CACHE parameter to true allows the LOB to pass through
the buffer cache. If it is set to false, all reads and writes are to disk only. More on
temporary LOB creation in the section titled “DBMS_LOB” later in this chapter.

Chapter 16: Large Objects 723

Oracle provides a view called V$TEMPORARY_LOBS that shows information
on temporary LOBs and the sessions that hold them. You can use this to monitor
and maintain temporary LOB usage in the instance.

Migrating from LONGs to LOBs
Hopefully you have enough information at this point to decide whether you will
migrate your current environment from using LONGs to LOBs. We definitely
recommend it for all of the reasons listed earlier.

Migration from LONG to LOB is a fairly simple operation. We can use either
the ALTER TABLE command or the TO_LOB operator. In this example, we create
a table containing a column of type LONG:

–– Available online as part of LongToLob.sql
CREATE TABLE long_to_lob (

id NUMBER,
text LONG);

INSERT INTO long_to_lob (id, text)
VALUES (1, 'Change the column from LONG to CLOB');

COMMIT;

We now have a table with one row that includes a column of type LONG, as the
following describe shows:

DESC long_to_lob
Name Type
––––––––––––––––––––- –––
ID NUMBER
TEXT LONG

We can alter the table to make the column a CLOB.

–– Available online as part of LongToLob.sql
ALTER TABLE long_to_lob
MODIFY text CLOB;

To verify the change, let’s do a DESCRIBE on the LONG_TO_LOB table.

DESC long_to_lob
Name Type
––––––––––––––––––––- –––-
ID NUMBER
TEXT CLOB

724 Oracle Database 10g PL/SQL Programming

The conversion was successful. Had our column been a LONG RAW type, we
would have used the same command, but BLOB would have been the datatype
to convert to.

LOBs and SQL
In this section we put what we learned about LOB locators and LOB structure and
storage to use. We discuss how to manipulate LOB values using SQL.

SQL for Internal Persistent LOBs
Internal persistent LOBs differ from external LOBs in their support for SQL operations.
Using SQL, we can insert, update, and delete internal LOBs. Many SQL features/
functions such as regular expressions and character functions now support LOBs.
SQL does not yet support piecewise manipulation of LOBs. To modify a portion of
a LOB value, we must use PL/SQL with DBMS_LOB, or one of the other supported
interfaces. DBMS_LOB is covered later in this chapter, in the section titled “LOBs
and PL/SQL.”

LOB Initialization
LOB initialization is done during insert or update operations. LOBs either are NULL,
are empty with only a LOB locator, or contain both LOB locator and LOB value. As
you will see in the INSERT and UPDATE sections, we can initialize LOBs using a
built-in function that leaves the LOB empty with only a locator, or by inserting/
updating it with a small amount of data.

Initialization is especially critical when we get to our discussion later in the
chapter on the PL/SQL API called DBMS_LOB. External APIs, such as DBMS_LOB,
require a LOB locator. Although it is possible to set a LOB column to NULL, APIs
such as DBMS_LOB require a LOB instance to work with, and you cannot get a
LOB instance without a locator.

Insert
We can initialize a LOB column during inserts either by including a value less
than 3964 bytes in the insert statement so that the LOB is in-row or by using
EMPTY_BLOB() or EMPTY_CLOB() at run time.

Let’s look at the following insert statement into the BOOK_SAMPLES table:

–– Available online as part of LobInsert.sql
CREATE DIRECTORY book_samples_loc AS 'C:\files';

INSERT INTO book_samples (
book_sample_id,

Chapter 16: Large Objects 725

isbn,
description,
nls_description,
book_cover,
chapter)

VALUES (
1,
'72230665',
'The essential reference for PL/SQL has been revised and
expanded, featuring all new examples throughout based on
the new Oracle Database 10g, plus all the book's code
and expanded topics are included on the website for download.',

EMPTY_CLOB(),
EMPTY_BLOB(),
BFILENAME('BOOK_SAMPLES_LOC', '72230665.jpg'));

commit;

The CLOB value is less than 3964 bytes, so we initialized the LOB just with the
insert. On INSERT, a locator is automatically created pointing to the inline value.
For our NCLOB column called NLS_DESCRIPTON, we initialized the column with
function EMPTY_CLOB(). This function creates a locator in the row. Aside from
the locator, it is empty—no other values exist—yet it is not NULL. Take a look at the
following example:

SELECT LENGTH(nls_description)
FROM book_samples;

LENGTH(NLS_DESCRIPTION)
–––––––––––-

0

So, there is nothing in the column, but at the same time it is not NULL.

SELECT COUNT(rowid)
FROM book_samples
WHERE nls_description IS NULL;

COUNT(ROWID)
––––––

0

Notice in our insert into BOOK_SAMPLES that we used EMPTY_BLOB() to do
the same thing for our BLOB column. The BFILE simply uses BFILENAME() and
includes the directory and filename. More on this appears in the section titled
“External LOB – BFILE.”

726 Oracle Database 10g PL/SQL Programming

TIP
If you anticipate having to initialize your LOB
columns with EMPTY_CLOB() or EMPTY_BLOB(),
do it at table creation time! Simply put a DEFAULT
EMPTY_CLOB() next to your column definition.

Update
Updates operate similar to inserts. We can use EMPTY_CLOB() or EMPTY_BLOB()
in the update statement to initialize the LOB, or include a small amount of text that
creates the locator automatically.

In the following example, we build off of our earlier insert example and update
the description column to be empty:

–– Available online as part of LobUpdate.sql
UPDATE book_samples
SET description = EMPTY_CLOB()
WHERE description IS NOT NULL;

COMMIT;

The column containing the book’s description that included text is now empty
(not NULL).

SELECT LENGTH(description)
FROM book_samples;

LENGTH(DESCRIPTION)
–––––––––-

0

Updates work the same for BLOBs, CLOBs, and NCLOBs.

Delete
There is nothing fancy about deleting internal persistent LOBs. Just as with any
other datatype, the entire row is deleted, including the LOB locator and LOB value
if stored inline. Out-of-row LOBs also have their segment and index freed.

Select
If you are new to LOBs, SELECT statements will likely be a source of frustration
initially. We’ll try and ease the pain a bit by answering a few of the most frequently
asked questions.

Chapter 16: Large Objects 727

728 Oracle Database 10g PL/SQL Programming

CLOB and NCLOB Retrieving character data using a select statement is fairly
straightforward—when selecting small amounts of data, that is. If the CLOB|NCLOB
values are 80 bytes or less, the full value is returned to the UI using basic SQL syntax.

NOTE
The value of LONG is 80 in my environment, but
yours may be different, depending on your session
settings. To find out how many bytes will be
returned when selecting CLOB|NCLOB values
type show long at the SQL prompt.

This is nothing new if you have worked with the LONG datatype before, but
we’ll take a quick look at it in case you are not familiar with it. The following
example performs an insert back into the BOOK_SAMPLES table and then performs
a simple select:

–– Available online as part of LobInsert.sql
INSERT INTO book_samples (

book_sample_id,
isbn,
description,
nls_description,
book_cover,
chapter)

VALUES (
1,
'72230665',
'The essential reference for PL/SQL has been revised and
expanded, featuring all new examples throughout based
on the new Oracle Database 10g, plus all the book's code
and expanded topics are included on the website for download.',

EMPTY_CLOB(),
EMPTY_BLOB(),
BFILENAME('BOOK_SAMPLES_LOC', '72230665.jpg'));

commit;

SELECT description
FROM book_samples;

DESCRIPTION
––

Chapter 16: Large Objects 729

The essential reference for PL/SQL has been revised and expanded,
featuring all

The value returned to the UI was in fact truncated to 80 bytes. Now, let’s set LONG
to a value greater than 80 and redo the select.

–– Available online as part of LobInsert.sql
SET LONG 64000
SELECT description
FROM book_samples;

DESCRIPTION
––––––––––––––––––––––––––––––––––––––
The essential reference for PL/SQL has been revised and expanded,
featuring all new examples throughout based on the new Oracle
Database 10g, plus all the book's code and expanded topics are
included on the website for download.

Much better! Our CLOB|NCLOB information is easily retrieved.

BLOB BLOBs react totally different when it comes to selects. In fact, you can’t
select BLOBs at all using SQL*Plus. It makes sense, really. I don’t know about you,
but binary data displayed in a text window doesn’t mean much to me. If you try to
select a BLOB you will get the following:

SELECT book_cover
FROM book_samples;

SP2-0678: Column or attribute type can not be displayed by SQL*Plus

More on retrieving BLOBs appears in the later section titled “LOBs and PL/SQL.”

External LOB – BFILE
Inserts and updates are done using the SQL function BFILENAME. The function takes
the directory name and the filename as arguments. The LOB locator and physical
location of the file are stored in the row, but the file itself is on the operating system.
Figure 16-2 illustrates this. Deletes remove the LOB locator and file location from
the database table, but the file itself must be removed from the OS through the OS
file utilities like Windows Explorer or the rm command in Unix.

There is very little else we can do with external LOBs using SQL. Since the value
is actually stored external to the database, we are unable to select the LOB value
using SQL*Plus. We’ll see how to work with BFILES in the next section.

730 Oracle Database 10g PL/SQL Programming

LOBs and PL/SQL
Oracle provides a number of APIs in different programming environments that can
work with LOBs. Supported environments include

■ C++ (OCCI & PRO*C)

■ OCI

■ COBOL

■ Visual Basic

■ .NET Framework

■ Java (JDBC)

■ PL/SQL

These interfaces provide much more flexibility when working with LOBs. We
noted in the “LOBs and SQL” section that piecewise manipulation of LOBs was not
possible with SQL alone. As we will see in this section, PL/SQL provides support for
piecewise data manipulation, as well as greater support for External LOBs.

DBMS_LOB
The PL/SQL API is a package called DBMS_LOB. Table 16-2 lists procedures and
functions available as part of the API.

FIGURE 16-2. External LOB

Chapter 16: Large Objects 731

Name Type Description

APPEND PROCEDURE Overloaded procedure that appends one LOB
instance to another instance, provided the
LOBs already exist and are the same type.
Available for CLOBs and BLOBs.

CLOSE PROCEDURE Overloaded procedure available for BLOB,
CLOB, and BFILE operations to close the
instance. Closing the LOB is required if you
have opened it.

COMPARE FUNCTION Overloaded function to compare LOBs of the
same type. It is available for BLOBs, CLOBs,
and BFILEs. It is possible to compare either all
or a part of the LOBs.

CONVERTTOBLOB PROCEDURE Converts character to binary. It takes a source
CLOB as input and returns the destination
BLOB.

CONVERTTOCLOB PROCEDURE This is the opposite of CONVERTTOBLOB. It
takes a source BLOB as input and returns the
destination CLOB.

COPY PROCEDURE Overloaded procedure to copy one LOB to
another. It is possible to copy all or part of the
LOB. The LOBs must be of the same type.

CREATETEMPORARY PROCEDURE Overloaded procedure to explicitly create a
temporary LOB.

ERASE PROCEDURE Overloaded procedure that erases part of a
LOB as determined by the offset passed to
the procedure.

FILECLOSE PROCEDURE Procedure available for BFILE operations only.
It closes the specified BFILE. Oracle now
recommends CLOSE be used instead.

FILECLOSEALL PROCEDURE BFILE procedure only. It closes all open BFILEs
and is the only procedure or function that
takes no arguments.

FILEEXISTS FUNCTION BFILE function only. This function tests to see
whether the BFILE is present on the file system.

FILEGETNAME PROCEDURE Procedure to retrieve the directory and filename
of a BFILE with only the LOB locator passed in.

TABLE 16-2. DBMS_LOB

732 Oracle Database 10g PL/SQL Programming

Name Type Description

FILEISOPEN FUNCTION This BFILE function tests to see if the file is
already open.

FILEOPEN PROCEDURE Procedure to open BFILEs. Oracle
recommends that new development use
OPEN instead.

FREETEMPORARY PROCEDURE Overloaded procedure to free temporary
LOBs. Although temporary LOBs exist only
in the scope of the application, or as long as
your session is connected, use this procedure
to explicitly free the resources.

GETCHUNKSIZE FUNCTION Overloaded function that returns the actual
space used in the LOB chunk for the LOB
value.

GETLENGTH FUNCTION Overloaded function that returns the length
of the LOB.

GET_STORAGE_LIMIT FUNCTION The 10g LOB storage limitation is between 8
and 128 terabytes. This function returns the
storage limit for your configuration. This is a
10g function only!

INSTR FUNCTION Overloaded function that tests for patterns.
You provide the LOB locator and pattern to
search for, and this function determines
whether it exists in the LOB.

ISOPEN FUNCTION Overloaded function that determines whether
the LOB instance is open or not.

ISTEMPORARY FUNCTION Overloaded function tests to see if a LOB is
temporary or not.

LOADBLOBFROMFILE PROCEDURE First introduced in Oracle 9iR2, this procedure
loads binary data from a BFILE into a BLOB
column. An offset can be specified to load
only a portion of the file.

LOADCLOBFROMFILE PROCEDURE The procedure was added in Oracle 9iR2;
it loads character data from a file to CLOB
or NCLOB columns. It can also perform
character set conversion on load. An offset
can be specified to load only a portion of
the file.

TABLE 16-2. DBMS_LOB (continued)

All of the procedures and functions listed in Table 16-2, except FILECLOSEALL,
take the LOB locator as input. The reason FILECLOSEALL does not require a locator
is that it impacts all files, not just one individually.

The following sections provide expanded coverage of many procedures and
functions in Table 16-2. While we cannot cover all of them, we focus on those not
covered well in the online Oracle documentation, and we provide some hints to
help you avoid problems in your implementation. Basic procedures and functions
(such as OPEN and CLOSE) will not have their own headings but are used
throughout the other examples.

NOTE
If you wish to run the examples shown in the
following sections, you can find the complete
examples (that include the table creation and seed
data) on the web site in this chapter’s directory.

Chapter 16: Large Objects 733

Name Type Description

LOADFROMFILE PROCEDURE Loads data from a BFILE to CLOB, NCLOB,
and BLOB columns. An offset can be
specified to load only a portion of the file. It
is recommended that LOADBLOBFROMFILE
or LOADCLOBFROMFILE be used, depending
on the type of data being loaded.

OPEN PROCEDURE Overloaded procedure that opens a LOB
instance.

READ PROCEDURE Overloaded procedure that retrieves a
specified amount of data into the buffer
beginning at a stated position.

SUBSTR FUNCTION Overloaded function that reads a part of a
LOB beginning at a specified offset.

TRIM PROCEDURE Overloaded procedure that trims a LOB value
to the size specified.

WRITE PROCEDURE Overloaded procedure that writes the buffer
to a LOB.

WRITEAPPEND PROCEDURE Overloaded procedure that appends the buffer
contents to a LOB.

TABLE 16-2. DBMS_LOB (continued)

734 Oracle Database 10g PL/SQL Programming

APPEND
Append takes source and destination LOB locators and appends the source LOB
instance to the destination LOB instance. The procedure is overloaded and works
for BLOBs, CLOBs, and NCLOBs. You cannot append a CLOB to a BLOB. The
procedure definition is as follows in Oracle 10g:

PROCEDURE APPEND
Argument Name Type In/Out Default?
––––––––––––––– –––––––––––- ––– ––––
DEST_LOB BLOB IN/OUT
SRC_LOB BLOB IN

PROCEDURE APPEND
Argument Name Type In/Out Default?
––––––––––––––– –––––––––––- ––– ––––
DEST_LOB CLOB IN/OUT
SRC_LOB CLOB IN

To demonstrate the APPEND functionality, let’s start by creating a procedure
that does the bulk of the work for us. The following procedure appends one NCLOB
to another NCLOB:

–– Available online as part of NclobAppend.sql
CREATE OR REPLACE PROCEDURE LOBAPPEND (

io_lob_source IN OUT NCLOB,
io_lob_destination IN OUT NCLOB)

AS
BEGIN

DBMS_LOB.OPEN(io_lob_source, DBMS_LOB.LOB_READONLY);
DBMS_LOB.OPEN(io_lob_destination, DBMS_LOB.LOB_READWRITE);

DBMS_LOB.APPEND(io_lob_destination, io_lob_source);
EXCEPTION

WHEN OTHERS
THEN
DBMS_OUTPUT.PUT_LINE('Append failed!');

END;
/

NOTE
See if you can spot the mistake in this block. We
will reveal the problem at the end of this section.

The procedure itself is fairly straightforward. It takes source and destination LOB
locators as arguments and appends the source to the destination. For our example,
we have two tables with one row in each. Our destination table.column was
initialized using EMPTY_CLOB(). Recall that this gives us our locator so that we
can use it with the LOB APIs (DBMS_LOB, for example).

–– Available online as part of NclobAppend.sql
SET SERVEROUTPUT ON
DECLARE

v_source_lob_loc NCLOB;
v_destination_lob_loc NCLOB;
v_combined_lob NCLOB;

BEGIN
SELECT nls_description
INTO v_source_lob_loc
FROM book_samples_nls
FOR UPDATE;

SELECT nls_description
INTO v_destination_lob_loc
FROM book_samples
FOR UPDATE;

LOBAPPEND(v_source_lob_loc, v_destination_lob_loc);

SELECT nls_description
INTO v_combined_lob
from book_samples;

DBMS_OUTPUT.PUT_LINE(SUBSTR(v_combined_lob, 1, 150));
DBMS_OUTPUT.PUT_LINE(SUBSTR(v_combined_lob, 151, 300));

EXCEPTION
WHEN OTHERS
THEN
DBMS_OUTPUT.PUT_LINE('OOPS!');
DBMS_OUTPUT.PUT_LINE(SQLERRM);

END;
/

Notice how our SELECT statements that retrieve the LOB locator include a FOR
UPDATE clause. If you do not do this, the LOBAPPEND procedure will throw the
following error:

ORA-22292: Cannot open a LOB in read-write mode without a transaction

Chapter 16: Large Objects 735

We mentioned earlier that there was a problem with the LOBAPPEND procedure
we created. The LOBs were never closed! What happens when you don’t close your
LOBs? Here we try dropping the book_samples_loc directory:

DROP DIRECTORY book_samples_loc;
*
ERROR at line 1:
ORA-22297: warning: Open LOBs exist at transaction commit time

Always close your LOBs!

COMPARE
There are three varieties of the COMPARE function that deal with CLOBs/NCLOBs,
BLOBs, and BFILEs. The function takes LOB_1 and LOB_2 as input, and the LOB
instances are compared to see whether they are identical. If 0 is returned, then the
LOBs are the same. If 1 is returned, then they are different.

The DBMS_LOB spec shows the following definition for the COMPARE function
for CLOBs in Oracle 10gR1:

FUNCTION COMPARE RETURNS NUMBER(38)
Argument Name Type In/Out Default?
––––––––––––––– –––––––––––- ––– ––––
LOB_1 CLOB IN
LOB_2 CLOB IN
AMOUNT NUMBER(38) IN DEFAULT
OFFSET_1 NUMBER(38) IN DEFAULT
OFFSET_2 NUMBER(38) IN DEFAULT

The other two functions by the same name are identical, with the exception of the
datatypes for LOB_1 and LOB_2. Also, the argument names for BFILEs are FILE_1
and FILE_2.

The following example compares two CLOB columns. We compare the full
text of the column, though we could compare a partial value if we needed to. This
procedure takes the locator values for the LOBs we wish to compare as arguments.
The call to the COMPARE function also takes the buffer size (we use the max of 32K)
and the offset values (we will compare the entire CLOB) as arguments.

–– Available online as part of ClobCompare.sql
CREATE OR REPLACE PROCEDURE CLOB_COMPARE (

v_lob1 IN OUT CLOB,
v_lob2 IN OUT CLOB)

AS
v_compare PLS_INTEGER := 0;

BEGIN
DBMS_LOB.OPEN(v_lob1, DBMS_LOB.LOB_READONLY);

736 Oracle Database 10g PL/SQL Programming

DBMS_LOB.OPEN(v_lob2, DBMS_LOB.LOB_READONLY);

v_compare := DBMS_LOB.COMPARE(v_lob1,v_lob2, 32764, 1, 1);

DBMS_OUTPUT.PUT_LINE('The value returned by COMPARE is: '||v_compare);

IF v_compare = 0
THEN

DBMS_OUTPUT.PUT_LINE('=====================');
DBMS_OUTPUT.PUT_LINE('The LOBs are the same');
DBMS_OUTPUT.PUT_LINE('=====================');

ELSE
DBMS_OUTPUT.PUT_LINE('======================');
DBMS_OUTPUT.PUT_LINE('The LOBs are different');
DBMS_OUTPUT.PUT_LINE('======================');

END IF;

DBMS_LOB.CLOSE(v_lob1);
DBMS_LOB.CLOSE(v_lob2);

EXCEPTION
WHEN OTHERS
THEN

DBMS_OUTPUT.PUT_LINE(SQLERRM);
END;
/

COMPARE returns 0 if the LOBs are the same and 1 if they are different. We can
test our procedure with the following anonymous block:

–– Available online as part of ClobCompare.sql
SET SERVEROUTPUT ON
DECLARE

v_lob1 CLOB;
v_lob2 CLOB;
v_lob3 CLOB;

BEGIN
SELECT description
INTO v_lob1
FROM book_samples
WHERE book_sample_id = 1;

SELECT description
INTO v_lob2
FROM book_samples
WHERE book_sample_id = 2;

SELECT description

Chapter 16: Large Objects 737

INTO v_lob3
FROM book_samples
WHERE book_sample_id = 3;

DBMS_OUTPUT.PUT_LINE('Test comparison of different values');
DBMS_OUTPUT.PUT_LINE('===================================');
CLOB_COMPARE(v_lob1, v_lob2);

DBMS_OUTPUT.PUT_LINE('Test comparison of identical values');
DBMS_OUTPUT.PUT_LINE('===================================');
CLOB_COMPARE(v_lob1, v_lob3);

EXCEPTION
WHEN OTHERS
THEN

DBMS_OUTPUT.PUT_LINE('I''m Broken!');
DBMS_OUTPUT.PUT_LINE(SQLERRM);

END;
/

This returns the following result:

Test comparison of different values
===================================
The value returned by the COMPARE function is: 1
The LOBs are different

Test comparison of identical values
===================================
The value returned by the COMPARE function is: 0
The LOBs are the same

Our implementation using COMPARE worked nicely. Remember, if you wish to
compare only a portion of the LOB, simply specify the offset.

CONVERTTOBLOB/CONVERTOCLOB
CONVERTTOBLOB converts CLOBs to BLOBs. CONVERTTOCLOB does the reverse.
The convert procedures are defined as follows in Oracle 10gR1:

PROCEDURE CONVERTTOBLOB
Argument Name Type In/Out Default?
––––––––––––––– –––––––––––- ––– ––––
DEST_LOB BLOB IN/OUT
SRC_CLOB CLOB IN
AMOUNT NUMBER(38) IN
DEST_OFFSET NUMBER(38) IN/OUT

738 Oracle Database 10g PL/SQL Programming

SRC_OFFSET NUMBER(38) IN/OUT
BLOB_CSID NUMBER IN
LANG_CONTEXT NUMBER(38) IN/OUT
WARNING NUMBER(38) OUT

PROCEDURE CONVERTTOCLOB
Argument Name Type In/Out Default?
––––––––––––––– –––––––––––- ––– ––––
DEST_LOB CLOB IN/OUT
SRC_BLOB BLOB IN
AMOUNT NUMBER(38) IN
DEST_OFFSET NUMBER(38) IN/OUT
SRC_OFFSET NUMBER(38) IN/OUT
BLOB_CSID NUMBER IN
LANG_CONTEXT NUMBER(38) IN/OUT
WARNING NUMBER(38) OUT

The following procedure can either convert from a CLOB column to a BLOB or
convert a BLOB to a CLOB. We will leave the line numbers in for reference later:

–– Available online as part of Convert.sql
SQL> CREATE OR REPLACE PROCEDURE CONVERT_ME (
2 v_blob_or_clob IN NUMBER,
3 v_blob IN OUT BLOB,
4 v_clob IN OUT CLOB,
5 v_amount IN OUT NUMBER,
6 v_blob_offset IN OUT NUMBER,
7 v_clob_offset IN OUT NUMBER,
8 v_lang_context IN OUT NUMBER,
9 v_warning OUT NUMBER)
10 AS
11 BEGIN
12
13 DBMS_LOB.OPEN(v_blob, DBMS_LOB.LOB_READWRITE);
14 DBMS_LOB.OPEN(v_clob, DBMS_LOB.LOB_READWRITE);
15
16 IF v_blob_or_clob = 0
17 THEN
18 DBMS_LOB.CONVERTTOBLOB(v_blob,
19 v_clob,
20 v_amount,
21 v_blob_offset,
22 v_clob_offset,
23 1,
24 v_lang_context,
25 v_warning);
26 ELSE

Chapter 16: Large Objects 739

27 DBMS_LOB.CONVERTTOCLOB(v_clob,
28 v_blob,
29 v_amount,
30 v_clob_offset,
31 v_blob_offset,
32 1,
33 v_lang_context,
34 v_warning);
35 END IF;
36
37 DBMS_LOB.CLOSE(v_blob);
38 DBMS_LOB.CLOSE(v_clob);
39
40 EXCEPTION
41 WHEN OTHERS
42 THEN
43 DBMS_OUTPUT.PUT_LINE('The conver_me procedure is broken ...');
44 DBMS_OUTPUT.PUT_LINE(SQLERRM);
45 END;
46 /

Let’s start with lines 13 and 14. We are opening the LOBs with READWRITE.
If we were simply going to convert from CLOB to BLOB, or do the reverse, one
could be READWRITE, and the other READONLY. In this case, however, we are
supporting both operations in the same procedure, so both types of LOBs may be
written to. Alternatively, we could push the OPEN operation inside the IF - THEN
statement.

Line 16 begins our IF - THEN section. If we pass a value of zero, the
CONVERTTOBLOB procedure is called; ELSE the CONVERTTOCLOB procedure
is used.

Our test block converts a CLOB to a BLOB, copies the BLOB from record 1 to
record 2, and then converts the BLOB back to a CLOB and displays the end result:

–– Available online as part of Convert.sql
DECLARE

v_clob_or_blob NUMBER;
v_blob_locator BLOB;
v_clob_locator CLOB;
v_blob_offset NUMBER;
v_clob_offset NUMBER;
v_lang_context NUMBER := DBMS_LOB.DEFAULT_LANG_CTX;
v_warning NUMBER;
v_string_length NUMBER(10);
v_source_locator BLOB;
v_destination_locator BLOB;
v_amount PLS_INTEGER;

740 Oracle Database 10g PL/SQL Programming

Chapter 16: Large Objects 741

v_string CLOB;
BEGIN

–– CONVERT CLOB TO BLOB
SELECT description
INTO v_clob_locator
FROM book_samples
WHERE book_sample_id = 1
FOR UPDATE;

SELECT misc
INTO v_blob_locator
FROM book_samples
WHERE book_sample_id = 1
FOR UPDATE;

v_string_length := DBMS_LOB.GETLENGTH(v_blob_locator);
v_amount := DBMS_LOB.GETLENGTH(v_clob_locator);

DBMS_OUTPUT.PUT_LINE(
'The initial length of the BLOB is: '||v_string_length);

v_clob_or_blob := 0; – Convert clob to blob
v_clob_offset := 1;
v_blob_offset := 1;

CONVERT_ME(v_clob_or_blob,
v_blob_locator,
v_clob_locator,
v_amount,
v_blob_offset,
v_clob_offset,
v_lang_context,
v_warning);

v_string_length := DBMS_LOB.GETLENGTH(v_blob_locator);

DBMS_OUTPUT.PUT_LINE(
'The length of the BLOB post-conversion is: '||v_string_length);

–– COPY BLOB FOR ONE ROW TO BLOB IN ANOTHER
v_source_locator := v_blob_locator;

SELECT misc
INTO v_destination_locator
FROM book_samples
WHERE book_sample_id = 2
FOR UPDATE;

742 Oracle Database 10g PL/SQL Programming

DBMS_LOB.COPY(v_destination_locator, v_source_locator, 32768, 1, 1);

v_string_length := DBMS_LOB.GETLENGTH(v_destination_locator);

DBMS_OUTPUT.PUT_LINE(
'The length of the BLOB post-copy is: '||v_string_length);

–– COPY BLOB FOR RECORD 2 BACK TO A CLOB
SELECT description
INTO v_clob_locator
FROM book_samples
WHERE book_sample_id = 2
FOR UPDATE;

SELECT misc
INTO v_blob_locator
FROM book_samples
WHERE book_sample_id = 2
FOR UPDATE;

v_string_length := DBMS_LOB.GETLENGTH(v_clob_locator);
v_amount := DBMS_LOB.GETLENGTH(v_blob_locator);

DBMS_OUTPUT.PUT_LINE(
'The initial length of the CLOB (record 2) is: '||v_string_length);

v_clob_or_blob := 1; – Convert blob to clob
v_clob_offset := 1;
v_blob_offset := 1;

CONVERT_ME(v_clob_or_blob,
v_blob_locator,
v_clob_locator,
v_amount,
v_clob_offset,
v_blob_offset,
v_lang_context,
v_warning);

v_string_length := DBMS_LOB.GETLENGTH(v_clob_locator);

SELECT description
INTO v_string
FROM book_samples
WHERE book_sample_id = 2;

DBMS_OUTPUT.PUT_LINE(
'The length of the CLOB post-conversion is: '||v_string_length);

DBMS_OUTPUT.PUT_LINE('==================');
DBMS_OUTPUT.PUT_LINE('The converted CLOB');
DBMS_OUTPUT.PUT_LINE('==================');
DBMS_OUTPUT.PUT_LINE(SUBSTR(v_string,1,150));
DBMS_OUTPUT.PUT_LINE(SUBSTR(v_string,151,300));

EXCEPTION
WHEN OTHERS
THEN

DBMS_OUTPUT.PUT_LINE('I''M BROKEN ... FIX ME!');
DBMS_OUTPUT.PUT_LINE(SQLERRM);

END;
/

This results in the following:

The initial length of the BLOB is: 0
The length of the BLOB post-conversion is: 228
The length of the BLOB post-copy is: 228
The initial length of the CLOB (record 2) is: 0
The length of the CLOB post-conversion is: 228

The converted CLOB
==================
The essential reference for PL/SQL has been revised and
expanded, featuring all new examples throughout based on
the new Oracle Database 10g, plus all the book’s code
and expanded topics are included on the website for download.

A couple of observations about this example:

■ Once again, our select statement required a FOR UPDATE clause. Any
time we need to write to a LOB column, we must specify FOR UPDATE.
An exception will be raised otherwise.

■ When testing the compare function, we set the AMOUNT to 32K. Doing so
in this case would have resulted in the following exception on conversion
of the BLOB to CLOB:

ORA-22993: specified input amount is greater than actual source amount

Instead, we set the AMOUNT (assigned to V_AMOUNT) to the exact size of the
value by using the GETLENGTH function.

Chapter 16: Large Objects 743

744 Oracle Database 10g PL/SQL Programming

■ We had to re-initialize our CLOB and BLOB offset variables (v_clob_
offset and v_blob_offset) back to 1 after calling CONVERTTOBLOB.
If this is skipped, CONVERTTOCLOB will fail with the following:

ORA-22994: source offset is beyond the end of the source LOB

The reason for the error? The SRC_OFFSET and DEST_OFFSET parameters are IN
OUT. When we call CONVERTTOBLOB, the SRC_OFFSET and DEST_OFFSET
return the length of the LOB instance plus 1, or 229 in this case. To pass this to
CONVERTTOCLOB does not work, as an offset of 229 exceeds the total length of
the BLOB, causing the ORA-22994 exception.

BFILE – FILEEXISTS
This function tests whether a file exists by the name specified in the insert statement.
We begin with a BOOK_SAMPLES table that contains the following row:

–– Available online as part of BfileFileExists.sql
INSERT INTO book_samples (

book_sample_id,
isbn,
description,
nls_description,
misc,
bfile_description)

VALUES (
1,
'72230665',
EMPTY_CLOB(),
EMPTY_CLOB(),
EMPTY_BLOB(),
BFILENAME('BOOK_SAMPLES_LOC', 'bfile_example.pdf'));

COMMIT;

The CHECK_FILE procedure uses the DBMS_LOB.FILEEXISTS function to see
if our BFILE is where we said it should be. If it returns a value of 0, the file does not
exist. If 1 is returned, the file exists where we said it would be.

–– Available online as part of BfileFileExists.sql
CREATE OR REPLACE PROCEDURE CHECK_FILE (

v_bfile IN BFILE)
AS

v_exists PLS_INTEGER := 0;
BEGIN

v_exists := DBMS_LOB.FILEEXISTS(v_bfile);

IF v_exists = 0

THEN
DBMS_OUTPUT.PUT_LINE ('The file does not exists in the directory specified.');
DBMS_OUTPUT.PUT_LINE (' Check to be sure the directory exists, and the file');
DBMS_OUTPUT.PUT_LINE (' name is valid.');

ELSE
DBMS_OUTPUT.PUT_LINE ('The file exists and the directory valid!');

END IF;
EXCEPTION

WHEN OTHERS
THEN

DBMS_OUTPUT.PUT_LINE(SQLERRM);
END;
/

We call this procedure with the following block:

–– Available online as part of BfileFileExists.sql
DECLARE

v_bfile BFILE;
BEGIN

SELECT bfile_description
INTO v_bfile
FROM book_samples
WHERE book_sample_id = 1;

CHECK_FILE(v_bfile);
END;
/

In this instance (since we have the bfile_example.pdf saved to our C:\files
directory), the test is successful.

The file exists and the directory valid!

Please refer to the INSERT statement shown earlier. Notice that the directory
name we provided is in quotes and is in uppercase. Remember, when a string is in
quotes, it is literal and case sensitive. If you select from the DBA_DIRECTORIES
data dictionary view, even though we created the directory with the name in
lowercase, it is stored in all capital letters for the data dictionary.

Here we insert another record, but this time we include our directory name
in lowercase:

INSERT INTO book_samples (
book_sample_id,
isbn,
description,
nls_description,
misc,
bfile_description)

Chapter 16: Large Objects 745

VALUES (
2,
'72230665',
EMPTY_CLOB(),
EMPTY_CLOB(),
EMPTY_BLOB(),
BFILENAME('book_samples_loc', 'bfile_example2.pdf'));

COMMIT;

Now, we can test it again.

DECLARE
v_bfile BFILE;

BEGIN
SELECT bfile_description
INTO v_bfile
FROM book_samples
WHERE book_sample_id = 2;

CHECK_FILE(v_bfile);
END;
/

This throws an exception:

ORA-22285: non-existent directory or file for FILEEXISTS operation

‘book_samples_loc’ does not equal ‘BOOK_SAMPLES_LOC’.

BFILE – FILEOPEN/OPEN
Oracle recommends that OPEN be used instead of FILEOPEN. OPEN can be used
for all LOB types. When used with a BFILE, its definition is as follows:

PROCEDURE OPEN
Argument Name Type In/Out Default?
––––––––––––––– –––––––––––- ––– ––––
FILE_LOC BINARY FILE LOB IN/OUT
OPEN_MODE BINARY_INTEGER IN DEFAULT

We are required to pass the file_loc, or LOB locator, to the procedure.
When working with BFILES, the OPEN_MODE parameter is optional. It is required
with other types of LOBs. Open_mode can be set to DBMS_LOB.LOB_READONLY
or DBMS_LOB.LOB_READWRITE.

746 Oracle Database 10g PL/SQL Programming

Chapter 16: Large Objects 747

BFILE – FILEISOPEN/ISOPEN
ISOPEN should be used in place of FILEISOPEN when possible. ISOPEN is more
flexible, since it can test to see if CLOBs, NCLOBs, and BLOBs are open, not
just BFILEs.

The CHECK_STATUS procedure that follows uses the ISOPEN function to
determine whether a BFILE is open:

–– Available online as part of BfileIsOpen.sql
CREATE OR REPLACE PROCEDURE CHECK_STATUS (

v_bfile IN BFILE)
AS

v_isopen PLS_INTEGER := 0;
BEGIN

v_isopen := DBMS_LOB.ISOPEN(v_bfile);

IF v_isopen = 0
THEN

DBMS_OUTPUT.PUT_LINE ('The file is not open. You must open the');
DBMS_OUTPUT.PUT_LINE (' file before working with it.');

ELSE
DBMS_OUTPUT.PUT_LINE ('The file is open already.');

END IF;
EXCEPTION

WHEN OTHERS
THEN

DBMS_OUTPUT.PUT_LINE (SQLERRM);
END;
/

The following block passes the BFILE LOB locator to the CHECK_STATUS
procedure without opening the BFILE:

–– Available online as part of BfileIsOpen.sql
DECLARE

v_bfile BFILE;
BEGIN

SELECT bfile_description
INTO v_bfile
FROM book_samples
WHERE book_sample_id = 1;

CHECK_STATUS(v_bfile);
END;
/

This returns the following result:

The file is not open. You must open the
file before working with it.

We can test this again, but this time we open the BFILE prior to calling CHECK_
STATUS:

–– Available online as part of BfileIsOpen.sql
DECLARE

v_bfile BFILE;
BEGIN

SELECT bfile_description
INTO v_bfile
FROM book_samples
WHERE book_sample_id = 1;

DBMS_LOB.OPEN(v_bfile);
CHECK_STATUS(v_bfile);

END;
/

Our result changes to reflect the open file.

The file is open already.

BFILE – FILECLOSE/CLOSE/FILECLOSEALL
FILECLOSE and CLOSE both close one BFILE at a time, while FILECLOSEALL closes
all open BFILEs. It is recommended by Oracle that CLOSE be used rather than
FILECLOSE for all new development. CLOSE can be used with all LOB types, not
just BFILEs.

We will once again emphasize the importance of closing all LOBs when they
have been opened. In addition to certain operations failing when we forget/neglect
to close our LOBs (like our attempted drop of a directory in the earlier section
“APPEND”), there is a limit to the number of BFILEs that can be open at a given
time. Taking care to close LOBs when we are done with them ensures that we do
not run into the limit unnecessarily.

NOTE
SESSION_MAX_OPEN_FILES is the parameter that
determines the number of BFILEs that can be open
at any one time.

748 Oracle Database 10g PL/SQL Programming

The CLOSE_FILE procedure we create next opens a BFILE in the BOOK_
SAMPLES table, verifies it is open, closes it again, and then verifies it is closed:

–– Available online as part of BfileClose.sql
CREATE OR REPLACE PROCEDURE CLOSE_FILE (

v_bfile IN OUT BFILE)
AS

v_isopen PLS_INTEGER := 0;
BEGIN

DBMS_OUTPUT.PUT_LINE('Test to see if the file is open');
DBMS_OUTPUT.PUT_LINE('===============================');
DBMS_LOB.OPEN(v_bfile);
v_isopen := DBMS_LOB.ISOPEN(v_bfile);

IF v_isopen = 0
THEN

DBMS_OUTPUT.PUT_LINE ('The file is closed.');
ELSE

DBMS_OUTPUT.PUT_LINE ('The file is open.');
END IF;

DBMS_OUTPUT.PUT_LINE ('=================================');
DBMS_OUTPUT.PUT_LINE ('Test to see if the file is closed');
DBMS_OUTPUT.PUT_LINE('==================================');

DBMS_LOB.CLOSE(v_bfile);

v_isopen := DBMS_LOB.ISOPEN(v_bfile);

IF v_isopen = 0
THEN

DBMS_OUTPUT.PUT_LINE ('The file is closed.');
ELSE

DBMS_OUTPUT.PUT_LINE ('The file is open.');
END IF;

EXCEPTION
WHEN OTHERS
THEN

DBMS_OUTPUT.PUT_LINE (SQLERRM);
END;
/

To test it, we can use the following anonymous block:

–– Available online as part of BfileClose.sql
DECLARE

Chapter 16: Large Objects 749

750 Oracle Database 10g PL/SQL Programming

v_bfile BFILE;
BEGIN

SELECT bfile_description
INTO v_bfile
FROM book_samples
WHERE book_sample_id = 1;

CLOSE_FILE(v_bfile);
END;
/

So, we were able to close a single file with the CLOSE procedure, but what
about large numbers of BFILEs? CLOSE and FILECLOSE require a LOB locator to
work. FILECLOSEALL does not, and it operates on all open BFILEs at once. Let’s
look at an example:

–– Available online as part of BfileCloseAll.sql
SET SERVEROUTPUT ON

CREATE OR REPLACE PROCEDURE CLOSE_ALL_FILES
AS

v_isopen PLS_INTEGER := 0;
v_counter PLS_INTEGER := 0;
v_bfile BFILE;

CURSOR cur_bfile IS
SELECT bfile_description
FROM book_samples;

BEGIN

DBMS_OUTPUT.PUT_LINE('Open all BFILEs in the table');
DBMS_OUTPUT.PUT_LINE('============================');

OPEN cur_bfile;

LOOP
FETCH cur_bfile INTO v_bfile;
EXIT WHEN cur_bfile%NOTFOUND;

BEGIN
v_counter := v_counter + 1;

DBMS_LOB.OPEN(v_bfile);
v_isopen := DBMS_LOB.ISOPEN(v_bfile);

IF v_isopen = 0

Chapter 16: Large Objects 751

THEN
DBMS_OUTPUT.PUT_LINE ('File number '||v_counter||' is closed.');

ELSE
DBMS_OUTPUT.PUT_LINE ('File number '||v_counter||' is open.');

END IF;
END;

END LOOP;
CLOSE cur_bfile;

DBMS_OUTPUT.PUT_LINE('=====================');
DBMS_OUTPUT.PUT_LINE('Close all open BFILEs');
DBMS_OUTPUT.PUT_LINE('=====================');
DBMS_LOB.FILECLOSEALL();
DBMS_OUTPUT.PUT_LINE(' DONE ');
DBMS_OUTPUT.PUT_LINE('=====================');

DBMS_OUTPUT.PUT_LINE('Test to verify all BFILEs were closed');
DBMS_OUTPUT.PUT_LINE('=====================================');

OPEN cur_bfile;

LOOP
FETCH cur_bfile INTO v_bfile;
EXIT WHEN cur_bfile%NOTFOUND;

BEGIN
v_counter := v_counter + 1;

v_isopen := DBMS_LOB.ISOPEN(v_bfile);

IF v_isopen = 0
THEN

DBMS_OUTPUT.PUT_LINE ('File number '||v_counter||' is closed.');
ELSE

DBMS_OUTPUT.PUT_LINE ('File number '||v_counter||' is open.');
END IF;

END;
END LOOP;
CLOSE cur_bfile;

EXCEPTION
WHEN OTHERS
THEN

DBMS_OUTPUT.PUT_LINE (SQLERRM);
END;
/

Executing this procedure, we can see that our call to DBMS_LOB.FILECLOSEALL
caused all open BFILEs to close:

–– Available online as part of BfileCloseAll.sql
EXEC close_all_files()

Open all BFILEs in the table
============================
File number 1 is open
File number 2 is open

Close all open BFILEs
=====================
DONE

Test to verify all BFILEs were closed
======================================
File number 1 is closed
File number 2 is closed

DBMS_LOB.FILECLOSEALL caused all open LOBs to close.

LOADFROMFILE/LOADCLOBFROMFILE/LOADBLOBFROMFILE
These procedures allow us to load file contents to CLOB and BLOB columns. It is
recommended that LOADCLOBFROMFILE and LOADBLOBFROMFILE be used for
their specific datatypes rather than using the generic overloaded LOADFROMFILE.

LOADFROMFILE has the following definition in Oracle 10g:

PROCEDURE LOADFROMFILE
Argument Name Type In/Out Default?
––––––––––––––– –––––––––––- ––– ––––
DEST_LOB BLOB IN/OUT
SRC_LOB BINARY FILE LOB IN
AMOUNT NUMBER(38) IN
DEST_OFFSET NUMBER(38) IN DEFAULT
SRC_OFFSET NUMBER(38) IN DEFAULT

The CLOB version of the procedure is identical, except for the DEST_LOB
datatype. We also specify the amount, or LOB size, and the offset values for both
source and destination. Remember, the source is the BFILE and the destination is
the CLOB/BLOB column.

The following example uses our bfile_example.pdf and bfile_
example.txt files as the source. We load our destination CLOB and BLOB
columns using the LOADFROMFILE procedure:

752 Oracle Database 10g PL/SQL Programming

Chapter 16: Large Objects 753

–– Available online as part of LoadFromFile.sql
DECLARE

v_dest_blob BLOB;
v_dest_clob CLOB;
v_source_locator1 BFILE := BFILENAME('BOOK_SAMPLES_LOC',

'bfile_example.pdf');
v_source_locator2 BFILE := BFILENAME('BOOK_SAMPLES_LOC',

'bfile_example.txt');

BEGIN
–– Empty the description and misc columns
UPDATE book_samples
SET description = EMPTY_CLOB(),

misc = EMPTY_BLOB()
WHERE book_sample_id = 1;

–– Retrieve the locators for the two destination columns
SELECT description, misc
INTO v_dest_clob, v_dest_blob
FROM book_samples
WHERE book_sample_id = 1
FOR UPDATE;

–– Open the BFILEs and destination LOBs
DBMS_LOB.OPEN(v_source_locator1, DBMS_LOB.LOB_READONLY);
DBMS_LOB.OPEN(v_source_locator2, DBMS_LOB.LOB_READONLY);
DBMS_LOB.OPEN(v_dest_blob, DBMS_LOB.LOB_READWRITE);
DBMS_LOB.OPEN(v_dest_clob, DBMS_LOB.LOB_READWRITE);

DBMS_OUTPUT.PUT_LINE('Length of the BLOB file is: '
||DBMS_LOB.GETLENGTH(v_source_locator1));

DBMS_OUTPUT.PUT_LINE('Length of the CLOB file is: '
||DBMS_LOB.GETLENGTH(v_source_locator2));

DBMS_OUTPUT.PUT_LINE('Size of BLOB pre-load: '
||DBMS_LOB.GETLENGTH(v_dest_blob));

DBMS_OUTPUT.PUT_LINE('Size of CLOB pre-load: '
||DBMS_LOB.GETLENGTH(v_dest_clob));

–– Load the destination columns from the source
DBMS_LOB.LOADFROMFILE(v_dest_blob, v_source_locator1,

DBMS_LOB.LOBMAXSIZE, 1, 1);
DBMS_LOB.LOADFROMFILE(v_dest_clob, v_source_locator2,

DBMS_LOB.LOBMAXSIZE, 1, 1);

DBMS_OUTPUT.PUT_LINE('Size of BLOB post-load: '
||DBMS_LOB.GETLENGTH(v_dest_blob));

DBMS_OUTPUT.PUT_LINE('Size of CLOB post-load: '
||DBMS_LOB.GETLENGTH(v_dest_clob));

–– Close the LOBs that we opened
DBMS_LOB.CLOSE(v_source_locator1);
DBMS_LOB.CLOSE(v_source_locator2);
DBMS_LOB.CLOSE(v_dest_blob);
DBMS_LOB.CLOSE(v_dest_clob);

EXCEPTION
WHEN OTHERS
THEN

DBMS_OUTPUT.PUT_LINE(SQLERRM);
DBMS_LOB.CLOSE(v_source_locator1);
DBMS_LOB.CLOSE(v_source_locator2);
DBMS_LOB.CLOSE(v_dest_blob);
DBMS_LOB.CLOSE(v_dest_clob);

END;
/

Notice that we used DBMS_LOB.LOBMAXSIZE for the AMOUNT parameter. We
could have used the length as retrieved by the GETLENGTH function as we did
in other examples with the same effect. For all DBMS_LOB.LOAD% procedures,
AMOUNT must be less than or equal to the file size or set to LOBMAXSIZE.

TIP
Using LOBMAXSIZE removes the need to retrieve
the length of the file, so consider using it. It is not as
precise, but it works well and reduces the amount
of code.

Our example results in the following output:

Length of the BLOB file is: 30731
Length of the CLOB file is: 411
Size of BLOB pre-load: 0
Size of CLOB pre-load: 0
Size of BLOB post-load: 30731
Size of CLOB post-load: 205

The size of the CLOB post-load is not the same as the length of the CLOB BFILE. There
is no implicit character set conversion when using LOADFROMFILE. A select of the
description column will show binary characters rather than the text from the file.

754 Oracle Database 10g PL/SQL Programming

–– Available online as part of LoadFromFile.sql
SET LONG 64000
SELECT description
FROM book_samples
WHERE book_sample_id = 1;

DESCRIPTION
––––––––––––––––––––––––––––––––––––––
??????????????????????????????4??????????????????/
???????????????4??????????7??????/
??/
?????????????????????????4????????????????????????

To avoid this, we would need to do a character set conversion on the BFILE prior
to using LOADFROMFILE.

Let’s rework the example to use LOADCLOBFROMFILE and LOADBLOBFROMFILE.
Oracle added these procedures in 9iR2 and recommends they be used instead
of LOADFROMFILE. The parameters for the BLOB version are the same as
LOADFROMFILE’s, while the CLOB version adds character set and language
parameters to better handle text.

PROCEDURE LOADBLOBFROMFILE
Argument Name Type In/Out Default?
––––––––––––––– –––––––––––- ––– ––––
DEST_LOB BLOB IN/OUT
SRC_BFILE BINARY FILE LOB IN
AMOUNT NUMBER(38) IN
DEST_OFFSET NUMBER(38) IN/OUT
SRC_OFFSET NUMBER(38) IN/OUT

PROCEDURE LOADCLOBFROMFILE
Argument Name Type In/Out Default?
––––––––––––––– –––––––––––- ––– ––––
DEST_LOB CLOB IN/OUT
SRC_BFILE BINARY FILE LOB IN
AMOUNT NUMBER(38) IN
DEST_OFFSET NUMBER(38) IN/OUT
SRC_OFFSET NUMBER(38) IN/OUT
BFILE_CSID NUMBER IN
LANG_CONTEXT NUMBER(38) IN/OUT
WARNING NUMBER(38) OUT

We mentioned LOADFROMFILE does no character set conversion on load.
LOADCLOBFROMFILE, on the other hand, does an implicit conversion, as we
will see.

Chapter 16: Large Objects 755

756 Oracle Database 10g PL/SQL Programming

–– Available online as part of LoadLOBFromFile.sql
DECLARE

v_dest_blob BLOB;
v_dest_clob CLOB;
v_source_locator1 BFILE := BFILENAME('BOOK_SAMPLES_LOC',

'bfile_example.pdf');
v_source_locator2 BFILE := BFILENAME('BOOK_SAMPLES_LOC',

'bfile_example.txt');
v_source_offset NUMBER := 1;
v_dest_offset NUMBER := 1;
v_lang_context NUMBER := DBMS_LOB.DEFAULT_LANG_CTX;
v_warning PLS_INTEGER;

BEGIN
–– Empty the description and misc columns
UPDATE book_samples
SET description = EMPTY_CLOB(),

misc = EMPTY_BLOB()
WHERE book_sample_id = 1;

–– Retrieve the locators for the two destination columns
SELECT description, misc
INTO v_dest_clob, v_dest_blob
FROM book_samples
WHERE book_sample_id = 1
FOR UPDATE;

–– Open the BFILEs and destination LOBs
DBMS_LOB.OPEN(v_source_locator1, DBMS_LOB.LOB_READONLY);
DBMS_LOB.OPEN(v_source_locator2, DBMS_LOB.LOB_READONLY);
DBMS_LOB.OPEN(v_dest_blob, DBMS_LOB.LOB_READWRITE);
DBMS_LOB.OPEN(v_dest_clob, DBMS_LOB.LOB_READWRITE);

DBMS_OUTPUT.PUT_LINE('Length of the BLOB file is: '
||DBMS_LOB.GETLENGTH(v_source_locator1));

DBMS_OUTPUT.PUT_LINE('Length of the CLOB file is: '
||DBMS_LOB.GETLENGTH(v_source_locator2));

DBMS_OUTPUT.PUT_LINE('Size of BLOB pre-load: '
||DBMS_LOB.GETLENGTH(v_dest_blob));

DBMS_OUTPUT.PUT_LINE('Size of CLOB pre-load: '
||DBMS_LOB.GETLENGTH(v_dest_clob));

–– Load the destination columns from the source
DBMS_LOB.LOADBLOBFROMFILE(v_dest_blob,

v_source_locator1,

Chapter 16: Large Objects 757

DBMS_LOB.LOBMAXSIZE,
v_dest_offset,
v_source_offset);

DBMS_OUTPUT.PUT_LINE('Size of BLOB post-load: '||(v_dest_offset -1));

v_dest_offset := 1;
v_source_offset := 1;

DBMS_LOB.LOADCLOBFROMFILE(v_dest_clob,
v_source_locator2,
DBMS_LOB.LOBMAXSIZE,
v_dest_offset,
v_source_offset,
DBMS_LOB.DEFAULT_CSID,
v_lang_context,
v_warning);

DBMS_OUTPUT.PUT_LINE('Size of CLOB post-load: '||(v_dest_offset -1));

–– Close the LOBs that we opened
DBMS_LOB.CLOSE(v_source_locator1);
DBMS_LOB.CLOSE(v_source_locator2);
DBMS_LOB.CLOSE(v_dest_blob);
DBMS_LOB.CLOSE(v_dest_clob);

EXCEPTION
WHEN OTHERS
THEN

DBMS_OUTPUT.PUT_LINE(SQLERRM);

DBMS_LOB.CLOSE(v_source_locator1);
DBMS_LOB.CLOSE(v_source_locator2);
DBMS_LOB.CLOSE(v_dest_blob);
DBMS_LOB.CLOSE(v_dest_clob);

END;
/

Execution of this block shows the following:

Length of the BLOB file is: 30731
Length of the CLOB file is: 411
Size of BLOB pre-load: 0
Size of CLOB pre-load: 0
Size of BLOB post-load: 30731
Size of CLOB post-load: 411

A select of the CLOB column shows a totally different result than our
LOADFROMFILE example:

–– Available online as part of LoadLOBFromFile.sql
SET LONG 64000
SELECT description
FROM book_samples
WHERE book_sample_id = 1;

DESCRIPTION
––––––––––––––––––––––––––––––––––––––
Make certain you have this file saved to your file system in the
location specified in your Oracle Directory. If it is not
there, the examples will not work.

Book Description:
The essential reference for PL/SQL has been revised and
expanded, featuring all new examples throughout based on
the new Oracle Database 10g, plus all the book's code
and expanded topics are included on the website for download.

Much better, and we did not have to manually convert the text.

Performance Considerations
By now, you should see that LOBs are far superior to LONG and LONG RAW types
in functionality. They also have a leg up in performance as well. In this section we
review some features that improve the speed of your code and reduce overhead
associated with working with large objects.

Returning Clause
Our examples thus far separate the insertion of LOBs from the retrieval of their
locators. Doing this is perfectly fine if you do not need the data immediately. If
you require the locator right after the insert, though, it would make sense to return
the locator you just created at insertion.

We do this with the RETURNING clause. RETURNING is a keyword added to
the end of the INSERT statement allowing you to work with the LOB immediately,
without any additional steps.

The following example inserts a value into the BOOK_SAMPLES table and
immediately returns the LOB locator:

–– Available online as part of Returning.sql
SET SERVEROUTPUT ON LONG 64000
DECLARE

758 Oracle Database 10g PL/SQL Programming

v_clob CLOB;
BEGIN

INSERT INTO book_samples (
book_sample_id,
isbn,
description,
nls_description,
book_cover,
chapter)
VALUES (
1,
'72230665',
'The essential reference for PL/SQL has been revised
and expanded, featuring all new examples throughout based
on the new Oracle Database 10g, plus all the book’s code
and expanded topics are included on the website for download.',

EMPTY_CLOB(),
EMPTY_BLOB(),
BFILENAME('BOOK_SAMPLES_LOC', '72230665.jpg'))
RETURNING description INTO v_clob;
COMMIT;

DBMS_OUTPUT.PUT_LINE(v_clob);
EXCEPTION

WHEN OTHERS
THEN

DBMS_OUTPUT.PUT_LINE(SQLERRM);
END;
/

The output from this block shows the contents of the description column just inserted:

The essential reference for PL/SQL has been revised and
expanded, featuring all new examples throughout based on
the new Oracle Database 10g, plus all the book’s code
and expanded topics are included on the website for download.

Indexing
Indexing capabilities of LOBs have come a long way since 8.0! Beginning in
Oracle 8.1.6, Oracle interMedia’s text indexing component became standard
(meaning you don’t have to license it separately). It was an option to select at
database creation time that provided full-text search capabilities (text retrieval
similar to most Internet search engines) for CLOB and NCLOB columns.

In Oracle 9iR1, the text-indexing component was separated from interMedia.
The name was changed to Oracle Text. Violating Oracle’s tradition of changing
names every release, the name has remained Oracle Text through release 10gR1.

Chapter 16: Large Objects 759

NOTE
From this point forward, we will refer to Oracle’s
text indexing as Oracle Text, even though the
functionality is included in interMedia in Oracle 8i.

Table 16-3 lists the four types of indexes, their descriptions, and which releases
first made the index types available.

For the purposes of our discussion regarding LOBs, we will focus on the
CONTEXT index.

CONTEXT Index The CONTEXT index works with the following datatypes:

■ CLOB

■ NCLOB

■ BLOB

■ BFILE

■ VARCHAR2

■ XMLTYPE

760 Oracle Database 10g PL/SQL Programming

Index Name Primary Use

CONTEXT Most widely used index with CLOBs/NCLOBs. This index
allows full-text retrieval with ranking, stemming, wildcards,
and many other advanced features. The CONTEXT index is
the oldest of the index types.

CTXRULE Primarily for classification and routing applications, this index
enables you to define RULES or queries that automatically
classify documents in your collection.

CTXCAT Introduced in Oracle 9iR1, this index is for smaller pieces
of data than the CONTEXT index. It is intended for catalog
applications, as its name implies.

CTXXPATH Introduced in Oracle 9iR2, this is the first index specifically
designed for indexing XML documents. The intent is to
improve XPath search performance over what a standard
CONTEXT index provides.

TABLE 16-3. Oracle Text Indexes

It can index more than 150 different document types (determined by the
built-in INSO Filter), as well as all internal LOBS. Indexing can be done on
data stored in the database, across a URL, on a file system, or in another user-
defined location.

Refer to Figure 16-3 for a diagram of the indexing process. At index creation,
the documents (or data stored in the database) are passed to the FILTER. Text is
extracted, and the markup is passed onto a SECTIONER that separates sections
from text. The sections are passed directly to the INDEXING ENGINE for later use.
The text is passed to a LEXER that generates tokens (words or phrases) based on
the appropriate language. The indexing engine creates five tables (four in 8i) to
support the indexes. The table we will look at later, and the one you will likely
use most often, is the DR$...$I table. It contains a list of all tokens generated
from the source files/columns.

Chapter 16: Large Objects 761

FIGURE 16-3. Oracle text indexing

Using the CONTEXT index, we are able to perform the following types of queries:

■ Boolean searches AND, OR, NOT.

■ Exact matches Search for the exact word or phrase inside the text.

■ Inexact matches Search using stemming (a search for mice finds mouse),
wildcard, soundex (one word sounds like another).

■ Proximity A word is near another.

■ Ranking A value is provided based on relevance to the keywords used in
the query.

■ Theme searches Search on what a document or text is about. The keywords
you supply don’t even have to exist in the underlying document as long as
the theme has been generated and Oracle Text can relate your keyword to
the theme or gist of the text.

Let’s go ahead and start our example by creating a CONTEXT index on the
DESCRIPTION column in the BOOK_SAMPLES table. The first step in creating
the CONTEXT index is to create named preferences. These tell the indexing engine
how to process the data when the index is actually created.

–– Available online as part of TextIndex.sql
BEGIN

ctx_ddl.create_preference ('lob_lexer', 'basic_lexer');
ctx_ddl.set_attribute ('lob_lexer', 'index_text', 'true');
ctx_ddl.set_attribute ('lob_lexer', 'index_themes', 'false');

END;
/

Our LEXER preference, called LOB_LEXER, is using the BASIC_LEXER. If we wished
to index text in another language we can specify this here. Japanese, for example,
has two possible lexers: JAPANESE_LEXER and JAPANESE_VGRAM_LEXER.

Breaking text into tokens is very different from language to language, yet Oracle
provides a MULTI_LEXER in 8i and above that can accurately tokenize text in multiple
languages stored in the same table and column. You must specify the language of
each row in order to use the MULTI_LEXER. Oracle 10gR1 includes a lexer called
the WORLD_LEXER that can detect the language of the text, so no additional
language specification is necessary.

Here we continue our example by creating a wordlist called LOB_WORDLIST:

–– Available online as part of TextIndex.sql
BEGIN

762 Oracle Database 10g PL/SQL Programming

ctx_ddl.create_preference ('lob_wordlist', 'basic_wordlist');
ctx_ddl.set_attribute ('lob_wordlist', 'substring_index', 'true');

END;
/

We are again using a basic wordlist for our example.
The index creation is fairly straightforward. We index our DESCRIPTION

column in the BOOK_SAMPLES table. The type of index is the CONTEXT index,
and we pass the two preferences created earlier as parameters.

–– Available online as part of TextIndex.sql
CREATE INDEX lob_indx ON book_samples(description)
INDEXTYPE IS CTXSYS.CONTEXT
PARAMETERS ('lexer lob_lexer

wordlist lob_wordlist
stoplist ctxsys.empty_stoplist');

STOPLIST in this example refers to noise words, or words we do not wish to
index. Examples of noise words would be “the,” “of,” “a,” etc. These are words
that do not add much of anything to a search and that you see no reason to store
as tokens. In this case, we specified EMPTY_STOPLIST, so all words are indexed,
including noise words.

To examine our tokens, we can select from the DRLOB_INDXI table.

–– Available online as part of TextIndex.sql
set pages 9999
SELECT token_text
FROM DRLOB_INDXI;

This returns 30 rows. A subset of the data appears here:

TOKEN_TEXT
–––––
10G
ALL
AND
ARE
BASED
BEEN
BOOK
CODE
DATABASE
DOWNLOAD
ESSENTIAL
...

Chapter 16: Large Objects 763

Our CLOB column is now indexed and is searchable! To see the difference
between an EMPTY_STOPLIST and the DEFAULT_STOPLIST, let’s drop the index
and recreate it using the DEFAULT_STOPLIST value:

–– Available online as part of TextIndex.sql
DROP INDEX lob_indx force;

–– Create an index with the default stoplist
CREATE INDEX lob_indx ON book_samples(description)
INDEXTYPE IS CTXSYS.CONTEXT
PARAMETERS ('lexer lob_lexer

wordlist lob_wordlist
stoplist ctxsys.default_stoplist');

We can rerun the same select against the DRLOB_INDXI table to see the
difference.

–– Available online as part of TextIndex.sql
set pages 9999
SELECT token_text
FROM DRLOB_INDXI;

TOKEN_TEXT
–––––
10G
BASED
BOOK
CODE
DATABASE
DOWNLOAD
ESSENTIAL
...

Now only 21 rows are returned from the select statement. This makes a big difference
on indexing performance of our LOBs, but also on querying them.

To query the CONTEXT index, we use the CONTAINS operator. The following
block searches for the string WEBSITE:

–– Available online as part of TextIndex.sql
SELECT SCORE(1), book_sample_id
FROM book_samples
WHERE CONTAINS(description, 'website', 1) > 0;

SCORE(1) BOOK_SAMPLE_ID
––––– –––––––

3 1

764 Oracle Database 10g PL/SQL Programming

One very nice feature of the CONTEXT index is that all searches are case-
insensitive by default. The TOKEN_TEXT column in the DR$...$I table is in
uppercase, so all values for queries are converted to uppercase for comparison. You
can always make your indexes case-sensitive by setting your preferences to index
that way, but most of the time it is not beneficial.

In addition to the basic querying just shown, you can also do stemming, soundex,
and wildcard searches. Of these, stemming is generally the toughest to grasp. For
example: A document contains the word “mouse,” and you type “mice” in the
search window. A normal query, or exact match Text query, would return “no
rows.” Even though the word mice is the plural of mouse, they do not share the
same root, so a wildcard would not be efficient (‘M%’ would be the only option).
With stemming, if you search for mice, you find all documents containing the
word mouse.

Oracle Text makes large documentation sets manageable and retrieval and
categorization of large volumes of data possible. If you are interested in learning
more about Oracle Text, please visit http://otn.oracle.com/products/text/index.html.

Summary
In this chapter we discussed the following:

■ BLOBs, BFILEs, CLOBs, and NCLOBs, and the ways we can use them in
SQL and PL/SQL

■ The differences between LOBs and the LONG and LONG RAW datatypes

■ Storage of internal and external LOBs, including in-row and out-of-row LOBs

■ The DBMS_LOB package, and how its procedures and functions help us
work with LOBs

■ Performance considerations for LOBs

■ How Oracle Text improves access to LOB data in applications

Chapter 16: Large Objects 765

This page intentionally left blank

CHAPTER
17

Scheduling Tasks

Copyright © 2004 by The McGraw-Hill Companies, Inc. Click here for terms of use.

768 Oracle Database 10g PL/SQL Programming

S
cheduling tasks for automated execution can save you time, and
your company money. Examples of these tasks include the regular
collection of statistics, the purging of interface tables at a specific
time, or the execution of any anonymous PL/SQL block, shell script,
or stored procedure. Virtually any program or executable can be

scheduled for execution using the built-in packages DBMS_JOB and, in Oracle 10g,
DBMS_SCHEDULER.

Alas, DBMS_JOB’s time is almost up. With Oracle 10g comes DBMS_SCHEDULER,
a built-in package that is available from the command line and is fully integrated
with the Enterprise Manager utility. While offering all the functionality of DBMS_
JOB, it also provides some great new features not available with its predecessor.

In this chapter we discuss both DBMS_JOB and DBMS_SCHEDULER. With
DBMS_JOB we discuss some of the key procedures, demonstrating how to create,
modify, and remove jobs from the queue. Next, we discuss the new-to-10g scheduling
package DBMS_SCHEDULER and provide some insights into the package structure
and job creation using this new facility.

The examples for the chapter are included online. To run them, you must do
the following:

■ Run the examples on a server with a valid e-mail server.

■ Modify the seed data in the scripts to provide valid e-mail addresses if
you wish to fully test the e-mail functionality.

■ Provide your e-mail SMTP server when prompted by the scripts.

■ If you are using Oracle 10g, you will need to run the utlmail.sql and
prvtmail.plb scripts in the $ORACLE_HOME/rdbms/admin directory.

■ Use the CreateUser.sql script for the schema creation to ensure all
permissions are granted.

NOTE
Not using Oracle 10g yet? You will find the
information in this chapter on DBMS_JOB
relevant to all releases.

Introducing DBMS_JOB
The DBMS_JOB package was introduced in PL/SQL version 2.2 and is available in
all currently supported releases of the Oracle data server, including Oracle 10gR1.
It is widely used and recognized as one of the best database features for application

developers and administrators alike. With its principal job of running programs on
an interval, the ways in which the package is implemented are as varied as the types
of programs available. Some common uses include, but are not limited to

■ Monitoring session information and logging it to a table

■ Scheduling the execution of the UTL_SMTP and UTL_MAIL packages

■ Scheduling the gathering of Statspack snapshots

■ Replacing OS operations against the database that typically require cron
jobs, adding a level of security and exception handling not available with
OS jobs

■ Running statistics gathering on a regular interval, ensuring consistent
explain plan generation by the Cost-Based Optimizer

■ Purging interface or staging tables on a regular interval

■ Scheduling the execution of time- and resource-intensive programs for
off-hours execution

Jobs are scheduled by submitting them to a queue. The Coordinator Job Queue
(CJQ) process runs in the background, and when a job is ready to be run, it spawns
a job queue process (Jnnn) to execute the jobs one at a time. Although each job
queue process can handle only one request at a time, multiple processes can be
spawned to deal with the workload. The number of concurrent processes allowed is
controlled by the init.ora/spfile parameter JOB_QUEUE_PROCESSES.

If you are unsure what the value is for the JOB_QUEUE_PROCESSES parameter,
run the following query:

SELECT name||': '||value PARAMETER
FROM v$parameter
WHERE name = 'job_queue_processes';

The results on our system are

PARAMETER
––––––––––––––––––––––––
job_queue_processes: 10

One very nice feature of jobs is that they can be exported and imported,
maintaining the same job number the whole time. This portability makes tablespace
reorganization, or any other process that uses export/import, much less painful.

Chapter 17: Scheduling Tasks 769

770 Oracle Database 10g PL/SQL Programming

All jobs are created and maintained using the DBMS_JOB or DBMS_IJOB (not
covered here) packages, but information about the jobs is obtained through the
following data dictionary views:

■ [ALL | DBA | USER]_JOBS

■ DBA_JOBS_RUNNING

DBMS_JOB contains eleven procedures and two functions in Oracle 10gR1.
We cover the most commonly used procedures in the next few sections in much
greater detail.

NOTE
The only procedure that has an implicit commit
is the DBMS_JOB.RUN procedure. All other
procedures are transactional and require a commit
before they can be used. Take note of this in your
implementation, as it is quite easy to forget!

SUBMIT
The SUBMIT procedure creates a job by sending it to the job queue. No job can run
without being in the job queue. The procedure has the following definition:

PROCEDURE SUBMIT
Argument Name Type In/Out Default?
––––––––––––––– ––––––––––––––––––––––– –––––– ––––––––
JOB BINARY_INTEGER OUT
WHAT VARCHAR2 IN
NEXT_DATE DATE IN DEFAULT
INTERVAL VARCHAR2 IN DEFAULT
NO_PARSE BOOLEAN IN DEFAULT
INSTANCE BINARY_INTEGER IN DEFAULT
FORCE BOOLEAN IN DEFAULT

To execute, use the following syntax:

DBMS_JOB.SUBMIT (JOB => job_no,
WHAT => code_to_run,
NEXT_DATE => date,
INTERVAL => schedule,
NO_PARSE => parse_timing,
INSTANCE => inst_no,
FORCE => force_value)

Chapter 17: Scheduling Tasks 771

Here is how the parameters are defined:

■ Job_no is the number associated with the job when it is created. The value
is derived from the sequence JOBSEQ owned by SYS.

■ Code_to_run is the task you wish to execute.

■ Date is the time the job will run next. The default for date is SYSDATE.

■ Schedule is the pattern or frequency of execution. The default is NULL,
which means it will run only once.

■ Parse_timing determines when the job is parsed. The default for parse_
timing is FALSE, meaning the job is parsed as soon as it is submitted. If
it were TRUE, the parse occurs at the time the job is executed by the SNPn
background process.

■ Inst_no is the instance number, which can be retrieved from the
V$INSTANCE view.

■ Force_value is related to inst_no. They are both added for instance affinity.
If FALSE, which is the default, the value provided for inst_no must be a
valid instance number, and the instance must be running. If TRUE, any
positive integer can be provided as the instance number.

In the following set of examples there is a table containing e-mail messages with
both sent and unsent messages. The SUBMIT procedure is used to create jobs to
process the e-mails.

Example 1: Procedure Execution on 30-Minute Interval
This example creates a job that loops through the EMAIL_TBL table for e-mail messages
that still need to be processed. The job executes every half-hour and sends them to the
recipients using UTL_SMTP.

–– Available online as part of Submit.sql
SET SERVEROUTPUT ON
DECLARE

v_job_number NUMBER(10);
v_instance_number NUMBER(10);

BEGIN

–– Get the instance number for use with DBMS_JOB.SUBMIT
SELECT instance_number
INTO v_instance_number
FROM v$instance;

–– Submit a job to begin tonight at midnight, and execute

–– ever half-hour thereafter
DBMS_JOB.SUBMIT (JOB => v_job_number,

WHAT => 'email_manager.smtp(&mail_server);',
NEXT_DATE => TRUNC(SYSDATE + 1),
INTERVAL => 'SYSDATE + 1/48',
NO_PARSE => TRUE,
INSTANCE => v_instance_number,
FORCE => NULL);

COMMIT;
DBMS_OUTPUT.PUT_LINE('The job number is: '||v_job_number);

END;
/

This anonymous block returned a job value of 33 from our system (it will be
different in yours). We created the GET_JOB_DETAILS procedure to collect
information about jobs:

–– Available online as part of Submit.sql
CREATE OR REPLACE PROCEDURE get_job_details(

i_job_number IN NUMBER,
cv_job_details IN OUT SYS_REFCURSOR)

IS
BEGIN

OPEN cv_job_details FOR
SELECT job, schema_user,

to_char(next_date, 'dd-mon-yyyy hh24:mi:ss'),
interval, what, broken

FROM user_jobs
WHERE job = i_job_number;

EXCEPTION
WHEN OTHERS
THEN

DBMS_OUTPUT.PUT_LINE(SQLERRM);
END get_job_details;
/

We can run this procedure as follows:

VARIABLE v_job_details REFCURSOR
EXEC GET_JOB_DETAILS(&job_number, :v_job_details)

COL schema FORMAT A15
COL next_date FORMAT A20
COL interval FORMAT A20
COL what FORMAT A60
PRINT v_job_details

772 Oracle Database 10g PL/SQL Programming

Executing this procedure passing 33 in as the job number, we see:

JOB SCHEMA NEXT_DATE INTERVAL
–––––––––– –––––––––––– –––––––––––––––––––– –––––––––––––––––––
WHAT B
–– -

33 PLSQL 28-jun-2004 00:00:00 SYSDATE + 1/48
email_manager.smtp('mail.smtp.com'); N

The job is in the queue and scheduled to run at midnight tonight. It will be
executed every one-half hour (1/48) thereafter.

Example 2: Purge the E-Mail Table Once Per Week
In this example we create a job that runs a DELETE statement. It is schedule to run
every Sunday.

–– Available online as part of Submit.sql
SET SERVEROUTPUT ON
DECLARE

v_job_number NUMBER;
v_instance_number NUMBER;
v_statement VARCHAR2(500);

BEGIN
–– Get the instance number for use with DBMS_JOB.SUBMIT
SELECT i.instance_number
INTO v_instance_number
FROM v$instance i;

v_statement := 'DELETE FROM email_tbl WHERE date_sent IS NOT NULL;';

–– Submit a job to begin today, and execute
–– every Sunday at 11:45 PM.
DBMS_JOB.SUBMIT (JOB => v_job_number,

WHAT => v_statement,
NEXT_DATE => TRUNC(SYSDATE + 1),
INTERVAL => 'NEXT_DAY(TRUNC(SYSDATE), ''SUNDAY'') + 95/96',
NO_PARSE => TRUE,
INSTANCE => v_instance_number,
FORCE => NULL);

COMMIT;
DBMS_OUTPUT.PUT_LINE('The job number is: '||v_job_number);

END;
/

In this example we set the interval so that the job would run every Sunday at 11:45 P.M.,
a time that will allow the snapshots in our first job to start fresh at midnight.

Chapter 17: Scheduling Tasks 773

The last example returned a job number of 34 in our instance. We can again
execute the GET_JOB_DETAILS procedure.

–– Available online as part of Submit.sql
VARIABLE v_job_details REFCURSOR
EXEC GET_JOB_DETAILS(142, :v_job_details)

COL schema_user FORMAT A15
COL next_date FORMAT A20
COL interval FORMAT A20
COL what FORMAT A60
SET PAGES 9999
PRINT v_job_details

This prints the following output to the screen:

JOB SCHEMA NEXT_DATE
–––––––––– –––––––––––– –––––––––––––––––––
INTERVAL
––
WHAT B
–– -

34 PLSQL 04-jul-2004 23:45:00
NEXT_DAY(TRUNC(SYSDATE), 'SUNDAY') + 95/96
DELETE FROM email_tbl WHERE date_sent IS NOT NULL; N

The job was successfully created. Note that the time for the next execution is
shown in the interval column as 23:45, or 11:45 P.M.

BROKEN
The Coordinator Job Queue process does not attempt to run any job marked as
broken. Jobs are marked as broken if they cannot successfully complete after
repeated attempts. Oracle also provides a procedure called BROKEN to explicitly
mark a job as broken.

The BROKEN procedure has the following definition:

PROCEDURE BROKEN
Argument Name Type In/Out Default?
–––––––––––––––––––––––––––– ––––––––––––––––––––––- –––––– ––––––––
JOB BINARY_INTEGER IN
BROKEN BOOLEAN IN
NEXT_DATE DATE IN DEFAULT

To execute it, use the following syntax:

774 Oracle Database 10g PL/SQL Programming

Chapter 17: Scheduling Tasks 775

DBMS_JOB.BROKEN (job => job_no,
broken => boolean_value,
next_date => date);

where job_no is the number associated with the job when it is created. This number
is static. Boolean_value can be TRUE, which marks the job as broken, or FALSE,
which says the job is not broken. Date is the time the job will run next.

This example sets a job created in the Submit section (job number 142) as broken:

–– Available online as part of Broken.sql
BEGIN

DBMS_JOB.BROKEN(job => &job_number,
broken => TRUE,
next_date => sysdate);

COMMIT;
END;
/

We can run this, providing the job number of 34 that we created earlier as part
of the Submit section, Example 2 (again, your job numbers will be different than
ours). To confirm the change, we can check the data dictionary view USER_JOBS
using the procedure GET_JOB_DETAILS that we created earlier.

–– Available online as part of Broken.sql
VARIABLE v_job_details REFCURSOR
EXEC GET_JOB_DETAILS(&job_number, :v_job_details)

COL schema_user FORMAT A15
COL next_date FORMAT A20
COL interval FORMAT A60
COL what FORMAT A4000
SET PAGES 9999
PRINT v_job_details

This returns the following:

JOB SCHEMA NEXT_DATE
–––––––––– –––––––––––– –––––––––––––––––––
INTERVAL
–––-
WHAT
–––-
B
-

34 PLSQL 01-jan-4000 00:00:00

776 Oracle Database 10g PL/SQL Programming

NEXT_DAY(TRUNC(SYSDATE), 'SUNDAY') + 95/96
DELETE FROM email_tbl WHERE date_sent IS NOT NULL;
Y

Job 34 is marked as broken, as indicated by the Y in the broken column. The
Coordinator Job Queue process will not spawn a process to run this job while in
this state. Using the BROKEN procedure, we can re-enable the job by passing a
value of FALSE to the broken parameter.

RUN
Even though job 34 is currently marked as broken, and the job will not be run
automatically, the RUN procedure can force the execution of the job regardless
of time or status. It has the following definition:

PROCEDURE RUN
Argument Name Type In/Out Default?
–––––––––––––––––––––––––––––– ––––––––––––––––––––––- –––––– –––––––
JOB BINARY_INTEGER IN
FORCE BOOLEAN IN DEFAULT

To execute it, use the following syntax:

DBMS_JOB.RUN (JOB => job_no,
FORCE => force_value);

where job_no is the job number as seen in the USER_JOBS view, and force_value
is added for instance affinity.

We will test this out by running job 34 that we just disabled in the last section.
Checking the record count in the EMAIL_TBL table prior to the job’s execution, we
can see there are six records.

SELECT COUNT(1)
FROM email_tbl;

COUNT(1)
–––––

6

We can now run the job.

–– Available online as part of Run.sql
SET SERVEROUTPUT ON
DECLARE

v_error EXCEPTION;
PRAGMA EXCEPTION_INIT(v_error, -23421);

BEGIN
DBMS_JOB.RUN(job => &job_number, FORCE => TRUE);
COMMIT;

EXCEPTION
WHEN v_error
THEN

DBMS_OUTPUT.PUT_LINE('The job number entered was not valid');
END;
/

By supplying 34 as the job number, we force its execution. Rerunning the GET_
JOB_DETAILS procedure, notice the change to the value for BROKEN.

JOB SCHEMA NEXT_DATE
–––––––––– –––––––––––– –––––––––––––––––––
INTERVAL
–––
WHAT
–––
B
-

34 PLSQL 01-aug-2004 23:45:00
NEXT_DAY(TRUNC(SYSDATE), 'SUNDAY') + 95/96
DELETE FROM email_tbl WHERE date_sent IS NOT NULL;
N

Forcing the run marked it as not broken and executed the job. It also performed the
DELETE that is part of the job, as can be seen by a record count.

SELECT COUNT(1)
FROM email_tbl;

COUNT(1)
––––––––––

4

NOTE
No COMMIT was used with the RUN procedure. It
is the only procedure where the COMMIT is implicit.

CHANGE
The CHANGE procedure provides a way to modify an existing job in the job queue.
While it is possible to remove and recreate the job, the job number would change
as a result. Using this procedure, the job number remains.

Chapter 17: Scheduling Tasks 777

778 Oracle Database 10g PL/SQL Programming

The CHANGE procedure has the following definition:

PROCEDURE CHANGE
Argument Name Type In/Out Default?
––––––––––––––––––––––––––––– ––––––––––––––––––––––- –––––– ––––––––
JOB BINARY_INTEGER IN
WHAT VARCHAR2 IN
NEXT_DATE DATE IN
INTERVAL VARCHAR2 IN
INSTANCE BINARY_INTEGER IN DEFAULT
FORCE BOOLEAN IN DEFAULT

To execute it, use the following syntax:

EXEC DBMS_JOB.CHANGE (JOB => job_no,
WHAT => code_to_run,
NEXT_DATE => date,
INTERVAL => schedule,
INSTANCE => inst_no,
FORCE => force_value);

Here is how the parameters are defined:

■ Job_no is the number associated with the job when it is created. The value
is derived from the sequence JOBSEQ owned by SYS.

■ Code_to_run is the task you wish to execute.

■ Date is the time the job will run next. The default for date is SYSDATE.

■ Schedule is the pattern or frequency of execution. The default is NULL.

■ Inst_no is the instance number, which can be retrieved from the
V$INSTANCE view.

■ Force_value is related to inst_no. They are both added for instance affinity.
If FALSE, which is the default, the value provided for inst_no must be a
valid instance number, and the instance must be running. If TRUE, any
positive integer can be provided as the instance number.

To test the CHANGE procedure, we will modify job 33 that was created in the
“SUBMIT” section.

–– Available online as part of Change.sql
DECLARE

v_instance_number NUMBER(10);
BEGIN

–– Get the instance number for use with DBMS_JOB.SUBMIT
SELECT instance_number
INTO v_instance_number
FROM v$instance;

DBMS_JOB.CHANGE (JOB => &job_number,
WHAT => 'email_manager.smtp(''&mail_server'');',
NEXT_DATE => TRUNC(SYSDATE + 1),
INTERVAL => 'SYSDATE + 1/24',
INSTANCE => v_instance_number,
FORCE => NULL);

COMMIT;
END;
/

Now, when we run the GET_JOB_DETAILS procedure, it shows a modified
INTERVAL.

JOB SCHEMA NEXT_DATE
–––––––––– –––––––––––– ––––––––––
INTERVAL
––––––––––––––––––––––––––––––––––––
WHAT
––––––––––––––––––––––––––––––––––––
B
-

33 PLSQL 27-jul-2004 00:00:00
SYSDATE + 1/24
email_manager.smtp('mail.smtp.com');
N

The job will be executed every hour, rather than every half-hour.

REMOVE
The last procedure we will cover is the one used to remove jobs from the job
queue. The REMOVE procedure takes but one argument: the job number. Its
definition is as follows:

PROCEDURE REMOVE
Argument Name Type In/Out Default?
–––––––––––––––––––––––––––––– ––––––––––––––––––––––- –––––– ––––––––
JOB BINARY_INTEGER IN

To execute this procedure, use the following syntax:

DBMS_JOB.REMOVE (JOB => job_no);

Chapter 17: Scheduling Tasks 779

To illustrate, we will remove job 142 on our system.

–– Available online as part of Remove.sql
EXEC DBMS_JOB.REMOVE(JOB => &job_number);
COMMIT;

Running the GET_JOB_DETAILS procedure, passing 141 as the job number,
results in the following:

no rows selected

The job was successfully removed.

Oracle Scheduler
Oracle has made it clear that DBMS_JOB will not be around much longer. In fact,
the script that creates the DBMS_JOB package specification ($Oracle_Home/
rdbms/admin/dbmsjob.sql) includes a line in the header that says it is present
only for backward compatibility and is not used any longer.

What does this mean for application developers and database administrators
using Oracle 10g? It means that it is time to migrate those scheduled tasks from using
DBMS_JOB to use DBMS_SCHEDULER, and to do it fast!

In this section we provide an overview of the new Scheduler and convert the
two jobs created in the section on DBMS_JOB to use DBMS_SCHEDULER instead.

Terminology
If you are familiar with DBMS_JOB (if not, go back and read the last section), you
might find the initial terminology quite familiar in meaning, if not name. For instance,
Scheduler includes jobs, or tasks to be executed. It includes schedules, similar to
the interval specified with the SUBMIT procedure in DBMS_JOB. It also includes
programs, similar to the value passed to the WHAT parameter of the DBMS_JOB
.SUBMIT procedure.

This is really where the terminology parts ways, however. Scheduler includes
features and concepts not available with DBMS_JOB, so here we review some of
the basics. Refer to Table 17-1 for a list of terms and their definitions.

Using DBMS_SCHEDULER
The DBMS_SCHEDULER package is owned by the user SYS. As you might expect,
permissions on a package of this type are not granted to PUBLIC. Rights must be

780 Oracle Database 10g PL/SQL Programming

Chapter 17: Scheduling Tasks 781

specifically granted to use the package. For the examples here we will use the
SCHEDULER_ADMIN role that provides the following system privileges:

■ CREATE ANY JOB

■ EXECUTE ANY PROGRAM

■ EXECUTE ANY CLASS

It also includes the MANAGE SCHEDULER privilege that allows our user to
perform most administrative tasks.

DBMS_SCHEDULER.CREATE_JOB
Creating the job with DBMS_SCHEDULER is not so different from using DBMS_JOB.
The CREATE_JOB procedure is actually an overloaded procedure with four definitions.
We are using the following definition for both examples shown here:

PROCEDURE CREATE_JOB
Argument Name Type In/Out Default?
––––––––––––––––––––––––––––- ––––––––––––––––––––––- –––––– ––––––––

Term Definition

JOB CLASS Job categorization. Similar jobs are grouped together
into job classes.

JOB LOGGING All jobs are logged to the SYS.SCHEDULER$_EVENT_
LOG and viewed through the DBA_SCHEDULER_
JOB_LOG view.

RESOURCE
CONSUMER GROUP

Defines limits to users and job classes on system
resources. It also provides a mechanism for defining job
priority, so that the most critical jobs are handled first.

RESOURCE PLAN Determines limits placed on Resource Consumer Groups.

WINDOW Schedules resource plan activation. For example, it is
possible to have one resource plan in effect during peak
hours, and another take over for off-peak times.

WINDOW GROUP Groups logical windows together.

WINDOW PRIORITY The order of precedence given to overlapping windows.

TABLE 17-1. Scheduler Terminology

JOB_NAME VARCHAR2 IN
JOB_TYPE VARCHAR2 IN
JOB_ACTION VARCHAR2 IN
NUMBER_OF_ARGUMENTS BINARY_INTEGER IN DEFAULT
START_DATE TIMESTAMP WITH TIME ZONE IN DEFAULT
REPEAT_INTERVAL VARCHAR2 IN DEFAULT
END_DATE TIMESTAMP WITH TIME ZONE IN DEFAULT
JOB_CLASS VARCHAR2 IN DEFAULT
ENABLED BOOLEAN IN DEFAULT
AUTO_DROP BOOLEAN IN DEFAULT
COMMENTS VARCHAR2 IN DEFAULT

We are using this procedure because it allows us to create a job without a
predefined schedule. The other CREATE_JOB procedures rely on existing schedules
and/or programs where the name can be supplied.

The parameters for CREATE_JOB are defined as follows:

■ JOB_NAME The name must be a valid identifier as described in Chapter 3.
Unlike jobs created with DBMS_JOB, they can be created in another
schema simply by prefixing the JOB_NAME with the name of the schema.
Names must be unique within a schema.

■ JOB_TYPE The type can be PLSQL_BLOCK, STORED_PROCEDURE, or
EXECUTABLE. At the time of this writing, these are the three supported types.

■ JOB_ACTION If the JOB_TYPE is a PLSQL_BLOCK, the string must be
an anonymous block. If JOB_TYPE is a STORED_PROCEDURE, the string
must be a stored procedure name. If JOB_TYPE is an EXECUTABLE, the
action must be a fully qualified string, including filename, pointing to
the executable file.

■ NUMBER_OF_ARGUMENTS The default value for this parameter is 0. Provide
an integer specifying the number of arguments for an inline program.

■ START_DATE The desired start date and time for the job. Note that the
data type is TIMESTAMP WITH TIMEZONE.

■ REPEAT_INTERVAL Provide either a calendar expression or datetime
expression specifying the frequency of the execution. This is discussed a
little later in this section.

■ END_DATE The date the job will be dropped (if AUTO_DROP is turned on)
or stopped. Note that the data type is TIMESTAMP WITH TIMEZONE.

■ JOB_CLASS The class the job should be associated with.

782 Oracle Database 10g PL/SQL Programming

Chapter 17: Scheduling Tasks 783

■ ENABLED If the value is TRUE, the job will be enabled immediately upon
creation. If left to the default of FALSE, the job must be explicitly enabled
using the DBMS_SCHEDULER.ENABLE procedure.

■ AUTO_DROP Also a Boolean parameter, if TRUE, the job will be dropped
automatically when the date specified for END_DATE is reached. If it is
FALSE, jobs must be dropped by running the DBMS_SCHEDULER.DROP_
JOB procedure.

■ COMMENTS This is simply a field to enter text describing the job. We
do recommend this field be used to document the jobs to make code
maintenance easier.

REPEAT_INTERVAL
The parameter called REPEAT_INTERVAL requires additional explanation, as you
might not be familiar with it yet. We mentioned that the parameter accepts either
calendar expressions or datetime expressions to determine the frequency of execution.
We’ll begin with the latter since it matches most closely the examples used for
DBMS_JOB.

A valid datetime expression is one that returns a date, but since the parameter
is of type VARCHAR2, the expression is enclosed in single quotes. Valid values
might include

'SYSTIMESTAMP + 30': Repeat every thirty days.
'SYSDATE + 1/24': Repeat every hour.

Example 1 from the “DBMS_JOB” section sets the interval equal to 'SYSDATE + 1/
48'. This is a valid datetime expression to use with DBMS_SCHEDULER.

Calendar expressions, though possibly less cryptic for those new to Oracle, are
a big departure from traditional datetime expressions. They are now considered the
standard method of setting the REPEAT_INTERVAL, so it is time to get accustomed
to the names and conventions.

The syntax for setting the REPEAT_INTERVAL is as follows:

'FREQ=frequency [,INTERVAL=interval [;specifier=specifier_value]]'

Frequency is required and can be any of the following values:

■ YEARLY

■ MONTHLY

784 Oracle Database 10g PL/SQL Programming

■ WEEKLY

■ DAILY

■ HOURLY

■ MINUTELY

■ SECONDLY

If frequency is set to DAILY, for example, and no other parameters are specified,
the job will execute one time per day.

Interval operates on the frequency and can be any integer from 1 to 999. The
default is 1. If frequency were set to DAILY, and interval set to 7, the job would be
run once every seven days.

Frequency and interval give direction to how often a job should be run, but not
when it should be run. The specifier uses the calendar and clock to provide detailed
direction on when the job should run. Valid specifiers include

■ BYMONTH

■ BYWEEK

■ BYYEARDAY

■ BYMONTHDAY

■ BYDAY

■ BYHOUR

■ BYMINUTE

■ BYSECOND

If the specifier is used, so must the specifier_value. Valid values are far too
numerous to include in this text, but they can be any month abbreviated to three
letters (such as JAN or FEB), day of the month, week of the year, etc.

Here are a couple of examples of repeat intervals:

Every 30 minutes

'FREQ=MINUTELY; INTERVAL=30;'

Chapter 17: Scheduling Tasks 785

Every hour at 45 minutes past the hour

'FREQ=HOURLY;BYMINUTE=45'

Every other Sunday at 8:00 P.M.

'FREQ=WEEKLY;INTERVAL=2;BYDAY=SUN;BYHOUR=20'

You will no doubt master calendar expressions in no time. We have found it
easier to use calendar expressions than datetime expressions when needing to
create complex intervals.

Migrating from DBMS_JOB
Migrating from DBMS_JOB to DBMS_SCHEDULER is relatively painless. The new
package does not remove functionality, so any additional steps in the creation
process go to improve the way the job scheduling works. In this section we recreate
the jobs shown in the DBMS_JOB.SUBMIT section, this time using DBMS_
SCHEDULER.CREATE procedure.

Example 1: Procedure Execution on 30-Minute Interval
If you recall, we created a job that executes the EMAIL_MANAGER.SMTP procedure
at 30-minute intervals. While we can convert the job to use UTL_SMTP, we will
instead use the new UTL_MAIL package provided in Oracle 10g. For this example,
create the job as the PLSQL user created earlier in the chapter with the CreateUser.sql
script. If you are not running Oracle 10g, the examples will not work in your
environment.

–– Available online as part of CreateJob.sql
BEGIN

DBMS_SCHEDULER.CREATE_JOB (JOB_NAME => 'EXAMPLE1',
JOB_TYPE => 'STORED_PROCEDURE',
JOB_ACTION => 'EMAIL_MANAGER.INLINE_EMAIL',
START_DATE => TRUNC(SYSTIMESTAMP + 1),
REPEAT_INTERVAL => 'FREQ=MINUTELY;INTERVAL=30',
END_DATE => SYSTIMESTAMP+300,
ENABLED => TRUE,
AUTO_DROP => TRUE,
COMMENTS => 'Send E-Mail on 30 min intervals ');

END;
/

786 Oracle Database 10g PL/SQL Programming

This creates the job successfully, but we cannot use the GET_JOB_DETAILS
procedure created earlier, since it is specific to data dictionary views for DBMS_
JOB. We created a similar procedure called GET_SCHEDULER_DETAILS that we
can use instead:

–– Available online as part of CreateJob.sql
CREATE OR REPLACE PROCEDURE get_scheduler_details(

i_job_name IN VARCHAR2,
cv_job_details IN OUT SYS_REFCURSOR)

IS
BEGIN

OPEN cv_job_details FOR
SELECT job_name, state, comments, next_run_date
FROM dba_scheduler_jobs
WHERE job_name = UPPER(i_job_name);

EXCEPTION
WHEN OTHERS
THEN

DBMS_OUTPUT.PUT_LINE(SQLERRM);
END get_scheduler_details;
/

Using this procedure, we get the following detail:

JOB_NAME STATE
–––––––––––––––––––––––––––––– ––––––––-––
COMMENTS
––
NEXT_RUN_DATE
––
EXAMPLE1 SCHEDULED
Send E-Mail on 30 min intervals
28-JUN-04 12.00.00.000000 AM -07:00

The start date is at 12 midnight as was expected, and the status is SCHEDULED
due to our setting ENABLED=TRUE in the creation.

Example 2: Purge the E-Mail Table Once Per Week
In this example we create a job that runs a DELETE statement. It is scheduled to run
every Sunday at 11:45 P.M. We will recreate it using the DBMS_SCHEDULER.CREATE_
JOB procedure.

–– Available online as part of CreateJob.sql
DECLARE

Chapter 17: Scheduling Tasks 787

v_instance_number NUMBER;
v_statement VARCHAR2(500);
v_dbid NUMBER;

BEGIN
–– Get the instance number
SELECT instance_number
INTO v_instance_number
FROM v$instance;

v_statement := 'DELETE FROM email_tbl WHERE date_sent IS NOT NULL;';

–– Submit a job to begin today, and execute
–– ever Sunday at 11:45 PM.
DBMS_SCHEDULER.CREATE_JOB (JOB_NAME => 'EXAMPLE2',

JOB_TYPE => 'PLSQL_BLOCK',
JOB_ACTION => v_statement,
START_DATE => SYSTIMESTAMP,
REPEAT_INTERVAL => 'FREQ=WEEKLY;BYDAY=SUN; BYHOUR=23; BYMINUTE=45',
END_DATE => SYSTIMESTAMP+300,
ENABLED => TRUE,
AUTO_DROP => TRUE,
COMMENTS => 'Delete e-mails once per week at 23:45 Sunday');

COMMIT;
END;
/

Checking the job in the using GET_SCHEDULER_DETAILS, we receive the following
information:

JOB_NAME STATE
–––––––––––––––––––––––––––––– ––––––––––––––-
COMMENTS
––
NEXT_RUN_DATE
––
EXAMPLE2 SCHEDULED
Delete e-mails once per week at 23:45 Sunday
04-JUL-04 11.45.58.900000 PM -07:00

The time is scheduled correctly, and the job is enabled. Keep in mind that with
both Scheduler and DBMS_JOB, all job executions are resource dependent. If there
is no available process to execute the job, the NEXT_RUN_DATE does not matter.
The advantage to using Scheduler is that we now have the ability to apply resource
plans and priority to tasks that were not available previously.

Removing a Job
There are two ways in which a job can be removed from Scheduler. The first depends
on the value specified for the AUTO_DROP parameter at job creation. In the two
examples shown earlier, AUTO_DROP was set to true. This means that if the END_
DATE is reached, the jobs will be dropped automatically.

In our case, the END_DATE is not close enough. If we need to drop a job right
away, we can use the DBMS_SCHEDULER.DROP_JOB procedure. The following
example drops both example jobs from the scheduler:

EXEC DBMS_SCHEDULER.DROP_JOB('EXAMPLE1');
EXEC DBMS_SCHEDULER.DROP_JOB('EXAMPLE2');

That’s all there is to it!

Summary
This chapter introduced job scheduling using DBMS_JOB. It included discussions
about DBMS_JOB features and demonstrated how to create, modify, and remove
jobs from the job queue. The second half of the chapter focused on the new 10g
scheduling package called DBMS_SCHEDULER that is slated to replace DBMS_JOB.
We compared the job creation using both packages and recreated the DBMS_JOB
examples using the DBMS_SCHEDULER procedure CREATE_JOB. You also saw
examples of UTL_SMTP and UTL_MAIL, and how they can be used to provide e-mail
functionality to your applications and database implementation.

788 Oracle Database 10g PL/SQL Programming

PART
III

Appendixes

Copyright © 2004 by The McGraw-Hill Companies, Inc. Click here for terms of use.

This page intentionally left blank

appendix
A

PL/SQL Reserved
Words

Copyright © 2004 by The McGraw-Hill Companies, Inc. Click here for terms of use.

792 Oracle Database 10g PL/SQL Programming

T
he words listed in this appendix are reserved by PL/SQL. Reserved
words have special syntactic meaning in the language and thus can’t
be used as identifiers (for variable names, procedure names, and so
on). Some of these words are reserved by SQL as well and thus can’t
be used to name database objects such as tables, sequences, and views.

Table of Reserved Words
The following table lists the reserved words for PL/SQL, up to and including
Oracle10gR1. The reserved word list was increased for 9iR1 and is the same
for 9iR2 and 10gR1. In the table, words not reserved in 8iR1 are in bold, while
those reserved by SQL have an asterisk (*). You should avoid using any of these
words to minimize potential conflicts.

You should also avoid creating a package with the same name as the Oracle
predefined packages described in Appendix B, or a procedure with the same
name as one defined in the STANDARD package.

ALL* ALTER* AND* ANY*

ARRAY AS* ASC* AT

AUTHID AVG BEGIN BETWEEN*

BINARY_INTEGER BODY BOOLEAN BULK

BY* CASE CHAR* CHAR_BASE

CHECK* CLOSE CLUSTER* COALESCE

COLLECT COMMENT* COMMIT COMPRESS*

CONNECT* CONSTANT CREATE* CURRENT*

CURRVAL CURSOR DATE* DAY

DECLARE DECIMAL* DEFAULT* DELETE*

DESC* DISTINCT* DO DROP*

ELSE* ELSIF END EXCEPTION

EXCLUSIVE* EXECUTE EXISTS* EXIT

EXTENDS EXTRACT FALSE FETCH

FLOAT* FOR* FORALL FROM*

FUNCTION GOTO GROUP* HAVING*

HEAP HOUR IF IMMEDIATE*

IN* INDEX* INDICATOR INSERT*

INTEGER* INTERFACE INTERSECT* INTERVAL

INTO* IS* ISOLATION JAVA

LEVEL* LIKE* LIMITED LOCK*

LONG* LOOP MAX MIN

MINUS* MINUTE MLSLABEL* MOD

MODE* MONTH NATURAL NATURALN

NEW NEXTVAL NOCOPY NOT*

NOWAIT* NULL* NULLIF NUMBER*

NUMBER_BASE OCIROWID OF* ON*

OPAQUE OPEN OPERATOR OPTION*

OR* ORDER* ORGANIZATION OTHERS

OUT PACKAGE PARTITION PCTFREE*

PLS_INTEGER POSITIVE POSITIVEN PRAGMA

PRIOR* PRIVATE PROCEDURE PUBLIC*

RAISE RANGE RAW* REAL

RECORD REF RELEASE RETURN

REVERSE ROLLBACK ROW* ROWID*

ROWNUM* ROWTYPE SAVEPOINT SECOND

SELECT* SEPARATE SET* SHARE*

SMALLINT* SPACE SQL SQLCODE

SQLERRM START* STDDEV SUBTYPE

SUCCESSFUL* SUM SYNONYM* SYSDATE*

TABLE* THEN* TIME TIMESTAMP

TIMEZONE_
REGION

TIMEZONE_
ABBR

TIMEZONE_
MINUTE

TIMEZONE_
HOUR

TO* TRIGGER* TRUE TYPE

UID* UNION* UNIQUE* UPDATE*

Appendix A: PL/SQL Reserved Words 793

USE USER* VALIDATE* VALUES*

VARCHAR* VARCHAR2* VARIANCE VIEW*

WHEN WHENEVER* WHERE* WHILE

WITH* WORK WRITE YEAR

ZONE

If you want to use a reserved word, it must be enclosed in double quotation
marks, as in this example:

DECLARE
"BEGIN" NUMBER;

BEGIN
"BEGIN" := 7;

END;

Although this block is legal, it is not recommended.

794 Oracle Database 10g PL/SQL Programming

Appendix
B

Guide to Supplied
Packages

Copyright © 2004 by The McGraw-Hill Companies, Inc. Click here for terms of use.

O
racle-supplied packages, or built-in packages, give programmers
access to functionality that greatly improves our ability to perform
complex issues. Some of the packages are written in C, providing
fast execution and direct access to the kernel (now also available
to user-defined packages with Native Compilation). Others are

extremely complex, with cross-package dependencies, and would take the best
PL/SQL programmers many weeks if they had to write it from scratch.

The first section describes the supplied packages owned by the SYS schema and
provides the package descriptions, the scripts used to create them, and the release
at which they first became available.

The second section provides information about the packages owned by the
CTXSYS user, which is the Oracle Text schema. Oracle Text has become a major
component of the database, and a huge feature for Application Developers. The
package definitions have the same information as the SYS-owned packages, but
we also include descriptions of package procedures and functions. We added this
detail to the CTXSYS packages because they are so useful, yet they have very little
coverage in other texts.

SYS-Owned Built-in Packages
The built-in packages listed in this section are owned by the user SYS. Each package
has a public synonym. The synonym allows you to call the package without using
the schema name (SYS) as a prefix. They are created using the catproc.sql
script during database creation, which is run automatically if you are using the
Database Configuration Assistant (DBCA). In order to use these packages, EXECUTE
permissions must be granted to your user.

The list of packages compiled here is based on version 10.1.0.2.0 of the database.
To determine the version you have, run the following:

SELECT *
FROM v$version;

BANNER
––––––––––––––––––––––––––––––––
Oracle Database 10g Enterprise Edition Release 10.1.0.2.0 - Prod
PL/SQL Release 10.1.0.2.0 - Production
CORE 10.1.0.2.0 Production
TNS for 32-bit Windows: Version 10.1.0.2.0 - Production
NLSRTL Version 10.1.0.2.0 - Production

While catproc.sql is the script that is run at database creation, it is actually a
summary script that calls other files. Catproc.sql and the scripts it calls to create

796 Oracle Database 10g PL/SQL Programming

the packages are located in your $ORACLE_HOME/rdbms/admin directory. Each
object creation script is stored separately, and the filenames for the specification
and body are included with the descriptions that follow. The *.sql scripts used
to create the specifications are not encrypted and provide additional descriptive
information regarding the package. The *.plb scripts, which create the package
bodies, are encrypted.

Not all supplied packages are shown. Many of the packages are covered in
detail in the rest of the book, and reference is made to the chapters where they are
used. We selected some of the most useful packages related to PL/SQL operation
and Application Developer needs. Should you require information that is not
included, please refer to the PL/SQL Packages and Types Reference available on
http://otn.oracle.com.

DBMS_ADVANCED_REWRITE
This package, new to 10gR1, is great for third-party applications in particular. It
allows you to define source and destination statements, so when a SQL statement
is run, it can be changed automatically to be something different. This allows you
to redefine how a query runs without changing the source code!

For example, suppose you have an application that has a statement that does
not work the way you want it to. Using DBMS_ADVANCED_REWRITE, you can
enter this statement as a source query, and create an alternate destination query that
works how you want. When the source query is executed, Oracle automatically
replaces the source query with your custom destination query.

Creation Scripts
prvtxrmv.plb (includes package spec and body)

Release Available
Oracle 10gR1

DBMS_ADVISOR
The new DBMS_ADVISOR package can help tune SQL and materialized views for
query rewrite. DBMS_ADVISOR is required for another 10g tuning feature, called
Automatic Database Diagnostic Monitor (ADDM), that is implemented through 10g
Enterprise Manager. The DBMS_ADVISOR package can be either used through
ADDM in Enterprise Manager, used through the $ORACLE_HOME/rdbms/admin/
addmrpt.sql script, or manually called via SQL (you must have the ADVISOR
role granted in order to use this package).

Appendix B: Guide to Supplied Packages 797

Oracle uses ADDM to analyze SQL and make recommendations on how to tune
the statement or dependent objects for optimum performance. Always, always test
out the recommendations it makes before implementing!

Creation Scripts
dbmsadv.sql/dbmsadv.plb

Release Available
Oracle 10gR1

DBMS_ALERT
Use DBMS_ALERT to send event notifications between database sessions. If a session
wishes to receive an alert, it must request it using the REGISTER procedure. One
of the most common uses of this package is to alert a user to a data change. If data
is modified, an alert can be issued via a trigger on the modified table. Alerts are
transaction based and are not sent until the transaction is committed. This package
is discussed and demonstrated in Chapter 11.

Creation Scripts
dbmsalrt.sql/prvtalrt.plb

Release Available
Pre–Oracle 8i

DBMS_APPLICATION_INFO
This package allows the application developer to assign a module name to a process
and an action being performed within that process. The module names and actions
can be queried from the V$SESSION and V$SQLAREA views. This assists the developer
and the DBA by allowing module- and action-specific session information to be
tracked by name. DBMS_APPLICATION_INFO also allows the registration of a
process to V$SESSION_LONGOP, which can track the process as a long-running
module.

Creation Scripts
dbmsapin.sql/prvtapin.plb

Release Available
Pre–Oracle 8i

798 Oracle Database 10g PL/SQL Programming

DBMS_APPLY_ADM
The DBMS_APPLY_ADM package is the administration package for an APPLY
process. The APPLY process is part of the Oracle Streams functionality. It is a
background process that is responsible for handling events that are part of Streams.
Additional information regarding streams and the APPLY process can be found in
the Oracle Streams Concepts and Administrator’s Guide at http://otn.oracle.com.

Creation Scripts
dbmsapp.sql/prvtbapp.plb

Release Available
Oracle 9iR2

DBMS_AQ
There are actually a number of packages available for Oracle Streams Advanced
Queuing. DBMS_AQ is the operational package for Advanced Queuing, and it
provides features such as registration for messages and defining listeners for messages
in the queue.

Creation Scripts
dbmsaq.plb/prvtaq.plb (In this case, the specification (dbmsaq.plb) is
encrypted as well.)

Release Available
Pre–Oracle 8i

DBMS_BACKUP_RESTORE
The database consists of redo logs, data files, and control files (the instance is the
memory structures). The ARCH background process writes redo logs to archive
redo logs for recovery purposes. The DBMS_BACKUP_RESTORE package uses
information contained in the control file to create backups of the redo/archive
logs and data files, and restore them. This package does not support MTS (Multi-
Threaded Server).

Creation Scripts
dbmsbkrs.sql/prvtbkrs.plb

Appendix B: Guide to Supplied Packages 799

Release Available
Pre–Oracle 8.1.7

DBMS_CAPTURE_ADM
Like the DBMS_APPLY_ADM package, DBMS_CAPTURE_ADM is an administrative
package for an Oracle Streams process. The CAPTURE process is an Oracle
background process that picks up changes defined by predefined rules, and then
acts on them accordingly. Additional information regarding streams and the CAPTURE
process can be found in the Oracle Streams Concepts and Administrator’s Guide at
http://otn.oracle.com.

Creation Scripts
dbmscap.sql/prvtbcap.plb

Release Available
Oracle 9iR2

DBMS_CRYPTO
This package provides industry-standard encryption and is a replacement for the
DBMS_OBFUSCATION_TOOLKIT package that was used in Oracle 8i and 9i. It
supports multiple character sets and can use the following algorithms:

■ DES (Data Encryption Standard)

■ AES (Advanced Encryption Standard, meant to replace DES)

■ RC4

■ 3DES

■ 3DES-2KEY

The following cryptographic and keyed algorithms are also supported:

■ MD4

■ MD5

■ SHA-1

■ HMAC_MD5 (MAC stands for Message Authentication Code)

■ HMAC_SH1

800 Oracle Database 10g PL/SQL Programming

Creation Scripts
dbmsobtk.sql/prvtobtk.plb

Release Available
Oracle 10gR1

DBMS_DATA_MINING,
DBMS_DATA_MINING_TRANSFORM
These PL/SQL APIs, new to Oracle 10gR1, add a PL/SQL interface to the data
mining engine. Data mining capabilities include classification and clustering of
data. By identifying patterns in text, you can improve the quality of information
in your application and turn existing data stores into knowledge repositories.

Creation Scripts
Data mining creation scripts are located in $ORACLE_HOME/dm/admin.

DBMS_DATA_MINING: dbmsdm.plb/prvtdm.plb
DBMS_DATA_MINING_TRANSFORM: dbmsdmxf.sql (contains package

spec and body)

Release Available
Oracle 10gR1

DBMS_DATAPUMP
This new package makes it easy to move data (and metadata) between databases. If
you have worked extensively with import/export, you know the problems associated
with exporting on one platform and importing to another. DBMS_DATAPUMP allows
the movement of all or part of a database from one system to another, regardless of
OS and hardware.

Creation Scripts
dbmsdp.sql/prvtdp.plb

Release Available
Oracle 10gR1

DBMS_DDL
This package includes functions and procedures that give access to a small number
of DDL capabilities such as compiling and analyzing objects. Since execution of

Appendix B: Guide to Supplied Packages 801

this package in turn executes other commands, the privileges of the executing user
are enforced rather than those of the package owner, SYS.

Creation Scripts
dbmsutil.sql/prvtutil.plb

Release Available
Pre–Oracle 8i

DBMS_DEBUG
DBMS_DEBUG was designed primarily for vendors wishing to debug server-side
code. It is the interface for the PL/SQL Probe debugger. It requires two sessions to
work, with one session executing the code to be debugged, and the other producing
the debug output. Breakpoints can be set that allow you to step through code.

Creation Scripts
dbmspb.sql/prvtpb.plb

Release Available
Oracle 8i

DBMS_DEFER
This package is used with Oracle’s Advanced Replication option. It is the interface
used to create deferred calls to procedures on a remote system (referred to as Remote
Procedure Calls, or RPC). With DBMS_DEFER, you can define the target instance for
the deferred transaction, call the remote procedure, and commit the work.

Creation Scripts
dbmsdefr.sql/prvtdefr.plb

Release Available
Pre–Oracle 8i

DBMS_DESCRIBE
The DBMS_DESCRIBE package provides parameter information for other procedures
in your database. One procedure in the package, called DESCRIBE_PROCEDURE,
returns detailed information related to each parameter of the object name passed as
an argument.

802 Oracle Database 10g PL/SQL Programming

Creation Scripts
dbmsdesc.sql/prvtdesc.plb

Release Available
Pre–Oracle 8i

DBMS_DIMENSION
This package is used primarily in the context of a data warehouse and provides a
method of displaying dimension information. A dimension is like a category. Real-
world terms are used to break data up into logical structures that match real-world
business concepts of what the object is. In a data warehouse for a bookstore, for
example, a book or CD could be a dimension. Dimensions are also hierarchical, so
the dimension book can roll up into the dimension called bookstore. The DBMS_
DIMENSION package retrieves information about the dimension, and validates the
defined relationships.

Creation Scripts
dbmssum.sql/prvtsum.plb

Release Available
Oracle 10gR1

DBMS_DISTRIBUTED_TRUST_ADMIN
This package helps determine whether a database specified by a database link is on
the trusted servers list. If a database specified in the link is not on the list, the link is
refused. The package is also responsible for maintaining the list.

Creation Scripts
dbmstrst.sql/prvttrst.plb

Release Available
Pre–Oracle 8.1.7

DBMS_FGA
FGA stands for Fine-Grained Audit. The DBMS_FGA package provides administrative
procedures to add, drop, enable, and disable policies related to auditing. Auditing
captures user actions, including SQL that is used by the schema/object being audited.

Appendix B: Guide to Supplied Packages 803

Creation Scripts
dbmsfga.sql/prvtfga.plb

Release Available
Oracle 9iR1

DBMS_FILE_TRANSFER
DBMS_FILE_TRANSFER is a great package for those using BFILES. It can create
copies of a file and transfer it between the file systems of remote databases. Local
and remote copies can be made, and files on a remote database’s file system can
be retrieved back to the local file system.

Creation Scripts
dbmsxfr.sql/prvtxfr.plb

Release Available
Oracle 10gR1

DBMS_FLASHBACK
The DBMS_FLASHBACK package provides the ability to restore specific data
according to an SCN captured by a snapshot. The flashback is session based and
can restore to an SCN that is passed as an argument. This is different from two-
phase commit (2PC) and the ability to rollback a change, since flashback can
happen even if a commit has been done.

NOTE
SCN, which stands for System Change Number, is
an Oracle internal numbering scheme that identifies
changes to the database. SCNs allow recovery to a
specific change, as each SCN is unique and acts as
an identifier for point-in-time recovery.

Creation Scripts
dbmstran.sql/prvttran.plb

Release Available
Oracle 9iR1

804 Oracle Database 10g PL/SQL Programming

DBMS_HS
Related to Oracle Heterogeneous Services (HS), the DBMS_HS package is an interface
to non-Oracle databases. It allows you to run ANSI-standard SQL against supported
databases. For additional information on Heterogeneous Services, see the Oracle
Distributed Database Systems manual on http://otn.oracle.com.

Creation Scripts
dbmshs.sql/prvths.sql

Release Available
Pre–Oracle 8i

DBMS_HS_PASSTHROUGH
This package, which is part of the Oracle Transparent Gateway, allows you to send
SQL to non-Oracle databases without it being interpreted by the local server. The
remote system must be registered with Heterogeneous Services. For additional
information on Heterogeneous Services, see the Oracle Distributed Database
Systems manual on http://otn.oracle.com.

Creation Scripts
dbmshs.sql/prvths.sql

Release Available
Pre–Oracle 8i

DBMS_JAVA
PL/SQL can access Java features using the DBMS_JAVA package. Use DBMS_JAVA
for loading Java stored procedures into the database and granting permissions on
Java objects to users. DBMS_JAVA also helps redirect the display for output using
the SET_OUTPUT procedure. Increasing the size of the SQL*Plus buffer, for example,
may allow output to display in the SQL*Plus window, where the buffer is quite low
by default (2K).

Creation Scripts
initdbj.sql

The installation of the Oracle JVM actually creates the package.

Appendix B: Guide to Supplied Packages 805

Release Available
Oracle 8i

DBMS_JOB
DBMS_JOB has been deprecated in Oracle 10gR1, though it is still present for
backward compatibility. DBMS_SCHEDULER has replaced this heavily used package.

The DBMS_JOB package schedules and runs jobs at predefined intervals. One
common use is to schedule a job to automatically execute Statspack snapshots. You
submit a job, specifying the task to be performed and the frequency with which it
should be executed, and the job is placed in the queue. The init.ora parameter
job_queue_processes controls the number of jobs that can be queued in the
system. This package is discussed in depth in Chapter 17.

Creation Scripts
dbmsjob.sql/prvtjob.plb

Release Available
Pre–Oracle 8i

DBMS_LDAP
The Lightweight Directory Access Protocol, or LDAP, is a communication standard
that is used most extensively in Oracle with its Internet Directory. The DBMS_LDAP
package allows us to access LDAP servers in SSL or non-SSL modes. If using TCP/IP,
non-SSL is used by default.

Creation Scripts
dbmsldap.sql/prvtldap.plb

Prior to Oracle 10gR1, this package was not loaded at database creation
time. For earlier database releases, the script $ORACLE_HOME/rdbms/admin/
catldap.sql must be run.

Release Available
Oracle 8i

DBMS_LOB
This package is the way to work with LOBs in PL/SQL. It provides capabilities
to open, close, load, retrieve, and manipulate all types of LOBs. Please refer to
Chapter 16 for complete coverage of the DBMS_LOB package.

806 Oracle Database 10g PL/SQL Programming

Creation Scripts
dbmslob.sql/prvtlob.plb

Release Available
Pre–Oracle 8i

DBMS_LOCK
Use DBMS_LOCK to obtain locks in the system. Unlike transaction-based locks,
a lock obtained with DBMS_LOCK is not released on commit. You must explicitly
release the lock using the RELEASE function.

Creation Scripts
dbmslock.sql/prvtlock.plb

Release Available
Pre–Oracle 8i

DBMS_LOGMNR
When Log Miner registers a redo log (done using the ADD_LOGFILE procedure),
DBMS_LOGMNR can analyze the log files, extract data from the log files, and
populate the database views used by the Log Miner utility.

Creation Scripts
dbmslm.sql/prvtlm.plb

Release Available
Oracle 8i

DBMS_METADATA
DBMS_METADATA retrieves metadata from the data dictionary about an object
and outputs the information in either XML or DDL. You can then load the XML
or run the DDL to re-create that object.

Creation Scripts
dbmsmeta.sql/prvtmeta.plb

Release Available
Oracle 9iR1

Appendix B: Guide to Supplied Packages 807

DBMS_MONITOR
This is useful for providing advanced tracing and statistical data on a client,
session, module, or action. These parameter values can be retrieved from the
V$SESSION view.

Creation Scripts
dbmsmtr.sql/prvtmtr.plb

Release Available
Oracle 10gR1

DBMS_OBFUSCATION_TOOLKIT
The DBMS_OBFUSCATION_TOOLKIT has been deprecated in Oracle 10gR1 in
favor of the DBMS_CRYPTO package. It is still available for backward compatibility.

This package provides industry-standard encryption. Although it has the ability
to encrypt data and generate encryption keys, it cannot maintain them. The keys
provide the access to the controlled data, so storage and transport of the keys over
the network should be of primary concern when you’re using this utility.

Creation Scripts
dbmsobtk.sql/prvtobtk.plb

Release Available
Oracle 8i

DBMS_ODCI
The ESTIMATE_CPU_UNITS function in this package provides an estimate for
the number of CPU instructions, or cycles, that will be used for the execution of
a user function. It calculates the CPU cost in terms of the time it takes to execute
(in seconds). The time is passed as input to the function.

Creation Scripts
catodci.sql/prvtodci.plb

Release Available
Oracle 9iR1

808 Oracle Database 10g PL/SQL Programming

DBMS_OFFLINE_OG
DBMS_OFFLINE_OG is a replication package that provides the ability to manage
replicated environments. Instantiation of master groups is done using this package.

Creation Scripts
dbmsofln.sql/prvtofln.plb

Release Available
Oracle 8i

DBMS_OLAP
The DBMS_OLAP package helps you analyze Trace files to help optimize
materialized views. As of Oracle 10gR1, this package is deprecated. It is actually
a synonym in release 10gR1 for the replacement package, DBMS_SUMMARY.

Creation Scripts
dbmssum.sql (creates the synonym in Oracle 10gR1)

Release Available
Oracle 8i (deprecated in release 10gR1)

DBMS_OUTLN
DBMS_OUTLN has replaced OUTLN_PKG for the management of stored outlines.
The Cost-Based Optimizer (CBO) has been dramatically improved in recent releases,
but every once in a while you will find a bad plan being chosen when you know a
different plan should be used. Inconsistency of plan choice can also be problematic.

Stored outlines provide a way for you to ensure the plan selection is consistent,
and they provide the means through DBMS_OUTLN and DBMS_OUTLN_EDIT to
manage the plans.

Stored outlines are different than pinning the statement in a couple of ways:

■ Pinning requires you to re-pin the statement when an instance is bounced,
but stored outlines do not.

■ Pinning still requires that the statement be parsed and the explain plan
generated. This is not good if you can’t get the correct plan at all. Stored
outlines provide the means for you to alter the plan.

Appendix B: Guide to Supplied Packages 809

Creation Scripts
dbmsol.sql/prvtol.plb

Release Available
Oracle 8i

DBMS_OUTLN_EDIT
This package provides additional stored outline management capabilities than are
present with the DBMS_OUTLN package, including the ability to modify the join
position of hints for private outlines.

Creation Scripts
dbmsol.sql/prvtol.plb

Release Available
Oracle 9i

DBMS_OUTPUT
DBMS_OUTPUT is great for debugging. Take care to not rely on this package
too heavily for reporting or writing to files, however. There is a limitation of 255
characters per line that can cause you some headaches. A simple workaround is
to use the SUBSTR function as follows:

SET SERVEROUTPUT ON
DECLARE

v_string VARCHAR2(500);
v_length NUMBER(10);

BEGIN
SELECT text, text_length
INTO v_string, v_length
FROM dba_views
WHERE view_name = 'DBA_COL_PRIVS';

DBMS_OUTPUT.PUT_LINE('View DBA_COL_PRIVS is '||v_length||'
bytes');

DBMS_OUTPUT.PUT_LINE('TEXT');
DBMS_OUTPUT.PUT_LINE('====');
DBMS_OUTPUT.PUT_LINE(SUBSTR(v_string, 1, 250));
DBMS_OUTPUT.PUT_LINE(SUBSTR(v_string, 251, 500));

END;
/

810 Oracle Database 10g PL/SQL Programming

Appendix B: Guide to Supplied Packages 811

This is a not terribly pretty, but effective way around this problem. It is recommended
that you create a custom wrapper for DBMS_OUTPUT to more effectively handle this
if you use the package for more than debugging purposes.

Creation Scripts
dbmsotpt.sql/prvtotpt.sql

Release Available
Pre–Oracle 8i

DBMS_PIPE
DBMS_PIPE provides the ability for different sessions, in the same database, to
communicate. Similar to DBMS_ALERT, it is discussed in great detail in Chapter 11.

Creation Scripts
dbmspipe.sql/prvtpipe.plb

Release Available
Pre–Oracle 8i

DBMS_PROFILER
The DBMS_PROFILER API is used to gather, store, and analyze Profiler data. The
Profiler is used by Oracle to track performance of PL/SQL. Before you enable
the profiler for application code, it is recommended that your application be run
at least once to remove system overhead associated with a first run. Use DBMS_
PROFILER to start the profiler, run your application, and then stop the profiler.

Creation Scripts
dbmspbp.sql/prvtpbp.plb

Release Available
Oracle 8i

DBMS_PROPAGATION_ADM
DBMS_PROPAGATION_ADM is an Oracle Streams package used to create,
alter, and drop propagations. The CREATE_PROPAGATION procedure creates a
propagation and takes the source and destination queues as well as rule set name

to associate with it as an argument. The DROP_PROPAGATION procedure simply
drops the propagation. The ALTER_PROPAGATION procedure allows you to
add, drop, or modify the rule set assigned to a propagation.

Creation Scripts
dbmsprp.sql/prvtprp.plb

Release Available
Oracle 9iR2

DBMS_RANDOM
Oracle includes a C-based random number generator. This built-in package takes
advantage of this generator, so it is much faster than PL/SQL-based generators.
User-defined PL/SQL-based generators can closely match the speed if native
compilation is used.

Creation Scripts
dbmsrand.sql/prvtrand.plb

Release Available
Pre–Oracle 8i

DBMS_REDEFINITION
The DBMS_REDEFINITION package is an API that performs online redefinition of
tables. The redefinition can include column and column name changes. During the
process, interim tables are used. Using the SYNC_INTERIM_TABLE procedure,
the interim table that was redefined is synchronized with the original table.

Creation Scripts
dbmshord.sql/prvtbord.sql

Release Available
Oracle 9iR1

DBMS_REFRESH
This package creates groups of materialized views for a more consistent (and easier)
refresh. Materialized views need to be refreshed in order for their data to be consistent.

812 Oracle Database 10g PL/SQL Programming

Appendix B: Guide to Supplied Packages 813

Instead of refreshing them independently, risking an out-of-sync situation, create a
refresh group and do them at one time.

Creation Scripts
dbmssnap.sql/prvtsnap.plb

Release Available
Pre–Oracle 8i

DBMS_REPAIR
Primarily a package for database administrators, the DBMS_REPAIR package detects
corrupt table and index blocks and helps to repair them. This is one of the few packages
that does not have a public synonym granted to public. It is owned by SYS, and
permission must be granted to any other user you wish to have access to it.

Creation Scripts
dbmsrpr.sql/prvtrpr.plb

Release Available
Oracle 8i

DBMS_REPCAT
For Oracle Replication, the master site maintains a replication catalog. DBMS_
REPCAT is the package to use for maintaining this catalog.

Creation Scripts
dbmshrep.sql/prvtbrep.plb

Release Available
Pre–Oracle 8i

DBMS_RESOURCE_MANAGER/
DBMS_RESOURCE_MANAGER_PRIVS
Primarily used by database administrators, these packages provide a way to maintain
resource plans.

Creation Scripts
DBMS_RESOURCE_MANAGER: dbmsrmad.sql/prvtrmad.plb

DBMS_RESOURCE_MANAGER_PRIVS: dbmsrmpr.sql/prvtrmpr.plb

Release Available
Oracle 8i

DBMS_RESUMABLE
The DBMS_RESUMABLE package provides you with the ability to manage resources
by operation. Limits on space used can be set so that if they are exceeded, the
operation/transaction will be suspended for a specified period of time. Should
the operation reach the limit and be suspended, the problem can be fixed and the
transaction resumed, or it can be aborted.

Creation Scripts
dbmsres.sql/prvtres.plb

Release Available
Oracle 9iR1

DBMS_ROWID
Using DBMS_ROWID, you can create ROWIDs or retrieve information about them
that would otherwise be very difficult to obtain. Of particular use to us over the
years is the ROWID_BLOCK_NUMBER function.

TIP
We’ve used this function on a number of occasions
to track down the block number of a specific row or
set of rows. Using this function, you can determine
which rows share the same blocks (handy for
detecting block contention related to initrans). Select
the block number, rowid, and primary key into a
temporary table for sorting.

Creation Scripts
dbmsutil.sql/prvtutil.plb

Release Available
Pre–Oracle 8i

814 Oracle Database 10g PL/SQL Programming

DBMS_RULE, DBMS_RULE_ADM
The “read” portion of the script names shown here stands for Rules Engine Admin.
Rules are defined for Oracle Streams. These packages provide the administrative
tools to create and manage the rules and rule sets. They can also be used to monitor
the rules that are created for particular events.

Creation Scripts
dbmsread.sql/prvtread.plb (creates both packages)

Release Available
Oracle 9iR2

DBMS_SCHEDULER
This package supersedes DBMS_JOB. DBMS_SCHEDULER creates, maintains,
schedules, and classifies jobs that are needed. Jobs might include user-defined
processes such as the collection of statspack snapshots (or ADDM snapshots), or the
execution of a specific procedure. DBMS_SCHEDULER can also be used by internal
tools, such as Enterprise Manager, for the collection of data on a regular interval.
See Chapter 17 for a discussion of this package.

Creation Scripts
dbmssch.sql/prvtsch.plb

Release Available
Oracle 10gR1

DBMS_SCHEMA_COPY
This package allows you to clone a source schema to a destination schema and
clean up after the process is complete. This package is not documented anywhere
in Oracle’s documentation, so we’ve played with it a bit more than normal to fully
test. It successfully handled everything we threw at it, including executing code in
the source schema while running the clone procedure.

Creation Scripts
prvtupg.plb (contains both spec and body)

Release Available
Oracle 10gR1

Appendix B: Guide to Supplied Packages 815

DBMS_SERVER_ALERT
This package generates alerts based on predefined thresholds. You can set the
critical nature of each threshold so that severe threshold violations are treated
differently than warning levels.

Creation Scripts
dbmsslrt.sql/prvtslrt.plb

Release Available
Oracle 10gR1

DBMS_SERVICE
This is a Real Application Cluster (RAC) package that lets you maintain services.
Capabilities include the ability to create, delete, disconnect, start, and stop
services for a single instance.

Creation Scripts
dbmssrv.sql/prvtsrv.plb

Release Available
Oracle 10gR1

DBMS_SESSION
This session-specific utility allows you to modify parameters much as you can with
the ALTER SESSION command. You can modify NLS settings, turn session tracing
on or off, set roles, and more.

Creation Scripts
dbmsutil.sql/prvtutil.plb

Release Available
Pre–Oracle 8i

DBMS_SHARED_POOL
This is a memory management package for the shared pool (part of the SGA memory
area). DBMS_SHARED_POOL can display SQL that is larger than the size specified,
and it can pin (KEEP) or unpin (UNKEEP) SQL in the shared pool.

816 Oracle Database 10g PL/SQL Programming

Creation Scripts
dbmspool.sql/prvtpool.plb

Release Available
Pre–Oracle 8i

DBMS_SPACE
The DBMS_SPACE package is useful for trend analysis, providing forecasts of space
requirements based on current growth patterns. It also provides current segment
space statistics for objects.

Creation Scripts
dbmsutil.sql/prvtutil.plb

Release Available
Pre–Oracle 8i

DBMS_SQL
The DBMS_SQL package is useful for executing SQL from PL/SQL (including DDL
that cannot be run normally). Native Dynamic SQL (NDS) has reduced the need
for this package significantly with its ability to run SQL with the command
EXECUTE IMMEDIATE.

Creation Scripts
dbmssql.sql/prvtsql.plb

Release Available
Pre–Oracle 8i

DBMS_SQLTUNE
The DBMS_SQLTUNE package creates Profiles and SQL Sets used in analyzing
multiple SQL statements for performance. The package can collect statistical
information from the Workload Repository regarding SQL statements, and it
displays tuning results.

Creation Scripts
dbmssqlt.sql/prvtsqlt.plb

Appendix B: Guide to Supplied Packages 817

Release Available
Oracle 10gR1

DBMS_STANDARD, STANDARD
These packages are very similar to each other. They implement basic built-in
functions used by application developers, such as RAISE_APPLICATION_ERROR.
To use the functions in these packages, you do not need to prefix the call with the
package name!

Creation Scripts
DBMS_STANDARD: dbmsstdx.sql

STANDARD: stdspec.sql/stdbody.sql

Release Available
Pre–Oracle 8i

DBMS_STAT_FUNCS
This package provides data distribution analysis for exponential, normal, Poisson,
uniform, and Weibull distributions.

Creation Scripts
dbmsstts.sql/prvtstts.plb

Release Available
Oracle 10gR1

DBMS_STATS
The DBMS_STATS package allows you to gather, retrieve, and modify statistics
on columns, indexes, tables, schemas, and your entire system. The Cost-Based
Optimizer (CBO) uses statistics to evaluate the cost of various explain plans. It
is critical that your stats are up-to-date and correct for the CBO to accurately
determine the lowest-cost plan. If you are familiar with the Oracle E-Business
Suite, you should be using the FND_STATS package or Gather Schema Statistics
concurrent program instead.

Creation Scripts
dbmsstats.sql/prvtstats.plb

818 Oracle Database 10g PL/SQL Programming

Release Available
Oracle 8i

DBMS_SUMMARY
DBMS_SUMMARY is the replacement for DBMS_OLAP. It helps analyze trace files
to optimize materialized views.

Creation Scripts
dbmssum.sql/prvtsum.plb

Release Available
Oracle 10gR1

DBMS_TRACE
Stop and start PL/SQL tracing with DBMS_TRACE. Trace output generated by
DBMS_TRACE is found in your user_dump_dest location (udump directory).
You can also specify the level of the trace, pause the trace while it is running,
and then resume it again when you are ready.

Creation Scripts
dbmspbt.sql/prvtpbt.plb

Release Available
Oracle 8i

DBMS_TRANSACTION
This package provides transaction control statements such as commit and rollback.
There are SQL equivalents for most of the procedures and functions.

Creation Scripts
dbmsutil.sql/prvtutil.plb

Release Available
Pre–Oracle 8i

Appendix B: Guide to Supplied Packages 819

DBMS_TRANSFORM
This is a Oracle Advanced Queuing package that allows you to maintain
transformations. Procedures include CREATE_TRANSFORMATION, MODIFY_
TRANSFORMATION, and DROP_TRANSFORMATION.

Creation Scripts
dbmstxfm.sql/prvttxfm.plb

Release Available
Oracle 9iR1

DBMS_TYPES
The DBMS_TYPES package contains a specification only—no body. It contains
constants only and is primarily used with other packages. Use this package in
your programs when working with the “ANY” types.

Creation Scripts
dbmsany.sql

Release Available
Oracle 9iR1

DBMS_UTILITY
DBMS_UTILITY includes miscellaneous procedures and functions such as
COMPILE_SCHEMA, which compiles all objects in the schema, and DB_VERSION,
which returns version information for the current instance.

Creation Scripts
dbmsutil.sql/prvtutil.plb

Release Available
Pre–Oracle 8i

DBMS_WARNING
This wonderful new package provides advanced warning capabilities for your
PL/SQL code. Depending on the warning level you set, you can get informational
messages, see warnings of potential performance problems, restrict warnings to
severe warnings only, or get all warnings, and the package does this at compile

820 Oracle Database 10g PL/SQL Programming

time. This is great for code development and unit-testing your code (assuming you
do unit-test as all developers should!). It can give you advanced warning on
problems that will not show up until execution.

Creation Scripts
dbmsplsw.sql/prvtplsw.plb

Release Available
Oracle 10gR1

DBMS_WORKLOAD_REPOSITORY
This is an administrative package for the Workload Repository. The AWR, or
Automatic Workload Repository, stores snapshots for use in monitoring system
performance. The DBMS_WORKLOAD_REPOSITORY package is used to create
snapshots and generate reports (text or HTML format) across snapshots.

Creation Scripts
dbmsawr.sql/prvtawr.plb

Release Available
Oracle 10gR1

DBMS_XMLGEN, DBMS_XMLQUERY
These packages take an SQL statement as input and return XML output as a CLOB
(XMLType). Oracle recommends the DBMS_XMLGEN package be used when
possible, since it is written in C and precompiled. DBMS_XMLQUERY requires
interpretation by the kernel at run time.

Creation Scripts
DBMS_XMLGEN: dbmsxml.sql/prvtxml.plb

Release Available
Oracle 9iR1

DBMS_XPLAN
The DBMS_XPLAN package provides a number of ways to display explain plan
output for a SQL statement. Using this package, you can display the number of rows
accessed by each line of the explain plan, the cost (and percent of CPU) associated

Appendix B: Guide to Supplied Packages 821

with each line, the number of bytes accessed by each line, the time associated with
each line, and the order of evaluation for each line of the explain plan. In short, it
shows you what the Cost-Based Optimizer (CBO) uses to evaluate this plan vs.
others it generates.

Creation Scripts
dbmsxplan.sql/prvtxplan.plb

Release Available
Oracle 9iR2

UTL_COLL
The UTL_COLL package contains a single subprogram. The IS_LOCATOR function
returns either TRUE or FALSE, depending on whether the collection item is a locator.

Creation Scripts
utlcoll.plb/prvtcoll.plb

Release Available
Oracle 8i

UTL_COMPRESS
This package provides piecewise compression and uncompression of binary data.
Similar in function to Zip or gzip utilities, it is able to compress data of type bfile,
blob, and raw.

Creation Scripts
utlcomp.sql/prvtcomp.plb

Release Available
Oracle 10gR1

UTL_DBWS
This package provides support for database web services. With this package, you
can create services, retrieve services as specified by the WSDL document, and
remove services.

822 Oracle Database 10g PL/SQL Programming

Creation Scripts
utldbws.sql/prvtdbws.plb

Release Available
Oracle 10gR1

UTL_ENCODE
This package includes the ability to encode and decode raw text, such as e-mail
messages.

Creation Scripts
utlenc.sql/prvtenc.plb

Release Available
Oracle 9iR1

UTL_FILE
Write to and read from files on the operating system. UTL_FILE can write to any
directory the Oracle user has write permissions to, as long as the directory is listed
as a value for the UTL_FILE_DIR init.ora parameter.

Creation Scripts
utlfile.sql/prvtfile.plb

Release Available
Pre–Oracle 8i

UTL_HTTP
Use UTL_HTTP to access data on the Internet. PL/SQL can communicate with web
servers with HTTP. It also supports HTTPS and FTP.

Creation Scripts
utlhttp.sql/prvthttp.plb

Release Available
Pre–Oracle 8i

Appendix B: Guide to Supplied Packages 823

UTL_I18N
I18N stands for internationalization (there are 18 letters between the I and N in
InternationalizatioN). This package is used for globalization and, more specifically,
the Globalization Development Kit. UTL_I18N is useful for character conversions,
mapping different types of character sets, and determining the name of an Oracle
character set given the language used. It is often used in conjunction with the
DBMS_CRYPTO package for encryption.

Creation Scripts
utli18n.sql/prvti18n.plb

Release Available
Oracle 10gR1

UTL_INADDR
This package includes two functions used with Internet addressing. The first, GET_
HOST_ADDRESS, gets the IP address of the machine name specified. The second,
GET_HOST_NAME, retrieves the name of the host when provided an IP address.

Creation Scripts
utlinad.sql/prvtinad.plb

Release Available
Oracle 9iR1

UTL_LMS
This package was designed primarily for globalization support. It includes two
functions: one to get a message in another language, and the second to format
the message retrieved.

Creation Scripts
utllms.sql/prvtlms.plb

Release Available
Oracle 10gR1

824 Oracle Database 10g PL/SQL Programming

UTL_MAIL
This is a mail management package that includes standard e-mail features, such as
attachments. Use this package whenever you need to design e-mail management
features, for example, with a workflow application. UTL_MAIL is demonstrated in
Chapter 17.

Creation Scripts
utlmail.sql/prvtmail.plb

Release Available
Oracle 10gR1

UTL_RAW
This package provides some SQL function support for the RAW datatype. Supported
functions include CONCAT, COMPARE, LENGTH, etc.

Creation Scripts
utlraw.sql/prvtraw.plb

Release Available
Pre–Oracle 8i

UTL_RECOMP
This utility provides a means to recompile, by dependency, all objects in the database.

Creation Scripts
utlrcmp.sql/prvtrcmp.plb

Release Available
Oracle 10gR1

UTL_REF
The UTL_REF package performs various actions against an object instance given a
reference to it. The six procedures included in the package perform tasks such as
retrieving an object instance, locking an object, updating an object, and more. See
Chapter 15 for more information on this package.

Appendix B: Guide to Supplied Packages 825

Creation Scripts
utlref.sql/prvtref.plb

Release Available
Pre–Oracle 8i

UTL_SMTP
The UTL_SMTP package is used for PL/SQL programs that must send e-mail using
SMTP. This package is demonstrated in Chapter 17.

Creation Scripts
utlsmtp.sql/prvtsmtp.plb

Release Available
Oracle 8i

UTL_TCP
This package is used primarily with applications that access the Internet. It enables
the application to communicate with servers that use TCP/IP as a protocol.

Creation Scripts
utltcp.sql/prvttcp.plb

Release Available
Oracle 8i

UTL_URL
Two procedures in this package allow you to escape and un-escape when referring
to a URL. URLs contain reserved characters, and this provides a means to handle
them during both load and read operations.

Creation Scripts
utlurl.sql/prvturl.plb

Release Available
Oracle 9iR1

826 Oracle Database 10g PL/SQL Programming

CTXSYS-Owned Built-in Packages
CTXSYS is the Oracle Text (formerly called interMedia) schema. Oracle Text
provides full-text information retrieval and full text management. It is included with
both the Standard and Enterprise editions of the data server at no additional charge.

NOTE
The CTX prefix you see on many Oracle Text
objects is a holdover from the early days of the text
component. Version 8 of the data server had an
option available (which required separate licensing)
called ConText, abbreviated as CTX. The ConText
Cartridge and ConText Server were rolled into
interMedia in Oracle 8i. The text component split
out on its own again in Oracle 9iR1, where it was
called Oracle Text. One of the indexes still available
in Oracle Text is the CONTEXT index.

The built-in packages listed here are owned by CTXSYS. In order to use them,
EXECUTE permissions must be granted to your user. This list is based on version
10.1.0.2.0 of the context dictionary. To determine the version you have, run the
following from the CTXSYS schema:

conn ctxsys/<<password>>

SELECT *
FROM ctx_version;

VER_DICT VER_CODE
––––– ––––––-
10.1.0.2.0 10.1.0.2.0

Scripts used to create the packages are located in your $ORACLE_HOME/ctx/
admin directory. Each object creation script is stored separately, and the filenames
are included with the descriptions that follow. Package creation scripts are
separated between spec and body. Scripts for the spec end in *.plh, while the
body scripts have the extension *.plb. The plb files are encrypted so that they
cannot be viewed. The plh files are not encrypted.

Appendix B: Guide to Supplied Packages 827

CTX_ADM
This is the maintenance and administration package for Oracle Text. This has seen
a bit of an evolution over time as text indexing operations moved away from the
ConText cartridge and server to built-in functionality.

Creation Scripts
dr0adm.pkh/plb

Public Synonym
None

Contents

■ Procedure SHUTDOWN This procedure is obsolete in Oracle 10gR1 but
exists to prevent errors in code that still calls it. It hearkens back to the days
of the ConText server and separate administration of the server from the
Oracle database.

■ Procedure RECOVER The recover procedure recovers the data dictionary.

■ Procedure SET_PARAMETER Sets parameters for the system.

■ Procedure TEST_EXTPROC Success when running this indicates that
extproc can be invoked. For more information on extproc, see the Oracle
Concepts Manual on the OTN web site (http://otn.oracle.com).

■ Procedure MARK_FAILED This procedure is UNPUBLISHED. Use it to
mark an index as FAILED if its current status is INPROGRESS. If you try
to ALTER an index that is marked as INPROGRESS, it will fail. Marking
the index as FAILED allows the ALTER to succeed.

■ Procedure DROP_USER_OBJECTS This procedure is used when dropping
a user to clean up text objects such as lexers and preferences. It is not
generally called individually.

CTX_CLS
This package provides procedures for classification and training. Classification
groups similar documents together. Training performs automatic classification based
on an initial set of sample documents and categories. Rules are created according to
this sample documentation set, and future documents are classified automatically.

828 Oracle Database 10g PL/SQL Programming

Creation Scripts
dr0cls.pkh/plb

Public Synonym
CTX_CLS

Contents

■ Procedure CLUSTERING Overloaded procedure that clusters a collection
of documents.

■ Procedure TRAIN Automatically generates rules based on a training set,
or sample set, of documents that are already classified.

CTX_DDL
The most used CTXSYS package, CTX_DDL maintains preferences, policies, stoplists,
section groups, and attributes. It provides a means to add sublexers to the multi_
lexer, syncs CONTEXT indexes that may be out-of-sync, and optimizes indexes by
reducing fragmentation.

Creation Scripts
dr0ddl.pkh/plb

Public Synonym
CTX_DDL

Contents

■ Procedure ADD_ATTR_SECTION Specifies attribute sections that should
be indexed within an XML document.

■ Procedure ADD_FIELD_SECTION Adds a new field to an existing section
group. Sections are detected by tags. Similar to ADD_ZONE_SECTION.

■ Procedure ADD_INDEX Adds an index to an existing index set.

■ Procedure ADD_MDATA Adds mdata values to documents.

■ Procedure ADD_MDATA_SECTION Adds a new mdata section to an
existing section group.

Appendix B: Guide to Supplied Packages 829

■ Procedure ADD_SPECIAL_SECTION Adds a new special section to an
existing section group. Special sections are detected in the text, not the tags.

■ Procedure ADD_STOPCLASS Adds a new stopclass to an existing stoplist.

■ Procedure ADD_STOP_SECTION Stop sections define the sections that
should not be indexed in a document (HTML or XML, for example). This
adds a new stop section to an existing stoplist.

■ Procedure ADD_STOPTHEME Adds a new stoptheme to an existing stoplist.

■ Procedure ADD_STOPWORD Adds a new word to an existing stoplist.

■ Procedure ADD_SUB_LEXER Adds a sublexer under a multilexer.
Multilexers allow multiple languages to be indexed in the same index.
The sublexers are the individual languages supported by the multilexer.

■ Procedure ADD_ZONE_SECTION Adds a new section to an existing
section group. Sections are detected by tags. Similar to ADD_FIELD_
SECTION.

■ Procedure COPY_POLICY Creates a new policy based on an existing policy.

■ Procedure CREATE_INDEX_SET Creates an index set that can have text
indexes added to it using the ADD_INDEX procedure.

■ Procedure CREATE_POLICY Creates a policy for use with the
ORA:CONTAINS operator and XML documents.

■ Procedure CREATE_PREFERENCE Creates preferences that tell Oracle
Text how an object is to be customized.

■ Procedure CREATE_SECTION_GROUP Creates a section group that
specifies how document sections are defined (such as HTML and XML).
A section group might be the header in an HTML file, for example.

■ Procedure CREATE_STOPLIST Creates a stoplist or a list of words that
should not be indexed.

■ Procedure DROP_INDEX_SET Drops the supplied index set.

■ Procedure DROP_POLICY Drops the supplied policy.

■ Procedure DROP_PREFERENCE Drops the supplied preference.

■ Procedure DROP_SECTION_GROUP Drops the supplied section group.

■ Procedure DROP_STOPLIST Drops the supplied stoplist.

830 Oracle Database 10g PL/SQL Programming

■ Procedure OPTIMIZE_INDEX Allows index optimization in parallel, and
supports full or partial optimization with a limit on the amount of time to
devote to the optimization process.

■ Procedure REMOVE_INDEX Removes an index from an index set.

■ Procedure REMOVE_MDATA Removes mdata values from a document.

■ Procedure REMOVE_SECTION Removes a section from a section group
without removing the section group.

■ Procedure REMOVE_STOPCLASS Removes a stopclass from a section
group without removing the section group.

■ Procedure REMOVE_STOPTHEME Removes a stoptheme from a section
group without removing the section group.

■ Procedure REMOVE_STOPWORD Add a new word to an existing stoplist.

■ Procedure REMOVE_SUB_LEXER Removes a sublexer without removing
the multilexer preference.

■ Procedure REPLACE_INDEX_METADATA Removes mdata values from a
document. Similar to REMOVE_MDATA.

■ Procedure SET_ATTRIBUTE Defines attributes for preferences at preference
creation time. The types of attributes available are dependent on the type of
preference being created.

■ Procedure SYNC_INDEX Synchronizes a CONTEXT index without
rebuilding the index. Oracle 10g now supports automatic synchronization
of CONTEXT indexes.

■ Procedure UNSET_ATTRIBUTE Removes an attribute setting from a
preference without removing the preference.

■ Procedure UPDATE_POLICY Updates the preferences of the supplied policy.

CTX_DOC
This package is used for specialty text indexing and display features such as theme
and gist creation, and highlighting of keywords in a search. All POLICY procedures
can perform their tasks without an index.

Creation Scripts
dr0doc.pkh/plb

Appendix B: Guide to Supplied Packages 831

Public Synonym
CTX_DOC

Contents

■ Procedure FILTER Overloaded procedure that takes a document or
document reference as input and returns the filtered text. The results are
returned either to a physical table (the text is stored as a CLOB) or as a
CLOB locator. The ability to filter certain documents is controlled by the
type of filter you use. The default INSO filter can extract text from more
than 150 different document types.

■ Procedure GIST Overloaded procedure that generates the theme and
gist of a document and returns the results to either a physical table or a
CLOB locator.

■ Procedure HIGHLIGHT Overloaded procedure that returns offset terms
for a document based on the query specified. The results are returned either
in-memory or to a physical table.

■ Procedure IFILTER Filters binary data to plain text.

■ Procedure MARKUP Overloaded procedure that returns the markup of
a document to a table or as a CLOB locator. The output can be HTML or a
text document.

■ Function PKENCODE Used in conjunction with other CTX_DOC procedures,
this function creates a composite key based on a list of PK strings.

■ Procedure POLICY_FILTER Overloaded procedure that filters policies and
returns the text to a CLOB locator. It accepts documents as VARCHAR2 or
any type of LOB.

■ Procedure POLICY_GIST Overloaded procedure that generates the theme
and gist of a document and returns the results to a CLOB locator. The
document can be VARCHAR2 or any type of LOB.

■ Procedure POLICY_HIGHLIGHT Overloaded procedure that returns offset
terms for a document based on the query specified. It allows you to make
the terms used in the search stand out from the rest of the text. It accepts
documents as VARCHAR2 or any type of LOB and returns the results to a
PL/SQL table.

■ Procedure POLICY_MARKUP Overloaded procedure returns the CLOB
locator of markup text. It takes documents as VARCHAR2 or any LOB type.

832 Oracle Database 10g PL/SQL Programming

■ Procedure POLICY_THEMES Overloaded procedure that takes documents
either as VARCHAR2 or any type of LOB value and returns themes to a
PL/SQL table.

■ Procedure POLICY_TOKENS Overloaded procedure that returns tokens to
a PL/SQL table of a document. The document can be VARCHAR2 or any
type of LOB.

■ Procedure SET_KEY_TYPE Changes the value of parameter CTX_DOC_
KEY_TYPE.

■ Procedure THEMES Overloaded procedure. One version generates themes
for documents in the specified index, while the other returns the themes to
a PL/SQL table.

■ Procedure TOKENS Overloaded procedure that returns tokens for a
document to either a PL/SQL table or a physical table.

CTX_OUTPUT
Provides output services, including log files and trace files for Oracle Text.

Creation Scripts
dr0out.pkh/plb

Public Synonym
CTX_OUTPUT

Contents

■ Procedure ADD_EVENT Adds an event to the log creation to improve
the level of debug information.

■ Procedure ADD_TRACE Begins tracing and provides a user-defined
trace_id value.

■ Procedure END_LOG Stops generating logs for index and document
service requests.

■ Procedure END_QUERY_LOG Stops generating logs for queries against
Text indexes.

■ Function GET_TRACE_VALUE Returns the value of the trace_id
specified.

Appendix B: Guide to Supplied Packages 833

■ Procedure LOG_TRACES The contents of all traces are placed in a log file.

■ Function LOGFILENAME Returns the current log file name.

■ Procedure REMOVE_EVENT Stops logging the specified event information
to the log file.

■ Procedure REMOVE_TRACE Stops tracing the specified trace_id.

■ Procedure RESET_TRACE Clears the trace, specified by trace_id, and
resets it to 0.

■ Procedure START_LOG Creates a log file in the location specified by the
LOG_DIRECTORY parameter for index and document service requests.

■ Procedure START_QUERY_LOG Logs queries against Text indexes,
including the success or failure of the query in finding results. The results
can be used in conjunction with CTX_REPORT.QUERY_LOG_SUMMARY
to determine the most popular queries that do/do not find the desired
information for the user. Queries and data can be adjusted in accordance
with the data logged to provide better information for the end user.

CTX_QUERY
CTX_QUERY returns information regarding the query terms you specify. It allows for
storage of Text query expressions and returns count information when provided a
query expression. One of the more interesting procedures is HFEEDBACK, which
gives detailed hierarchical information related to the search terms specified. The
results are based on the knowledge base of your system.

Creation Scripts
dr0query.pkh/plb

Public Synonym
CTX_QUERY

Contents

■ Procedure BROWSE_WORDS Returns the words before, after, or
around the word passed to the procedure. It also returns the count of
the documents that include each word.

■ Function CHK_TXNQRY_DISBL_SWITCH Returns a 0 or 1, depending
on the current system value.

834 Oracle Database 10g PL/SQL Programming

■ Function CHK_XPATH Oracle Text must process an XPATH expression in
a particular format. This function takes an XPATH expression and returns
results in a format understood by Oracle.

■ Function COUNT_HITS Function that returns the number of hits for a
specified query.

■ Procedure EXPLAIN Returns the explain plan for a Text query.

■ Function FCONTAINS Returns the score of a query using the CONTAINS
operator. Works with POLICIES.

■ Procedure HFEEDBACK When given a text query, this procedure writes
information from the knowledge base to a results table that shows terms
and categories related to the terms you specified in your call to the
procedure. The results are dependent on your knowledge base.

■ Procedure REMOVE_SQE Removes a stored query.

■ Procedure STORE_SQE Stores query expressions under the name supplied.

CTX_REPORT
This very useful package retrieves information to assist in both maintenance and
tuning of Oracle Text indexes. It retrieves statistical information about existing
indexes, including storage and fragmentation details. It delivers summary reports for
query logs to determine how frequently certain queries are run, highlighting ways in
which we can improve application queries for improved results.

Creation Scripts
dr0repor.pkh/plb

Public Synonym
CTX_REPORT

Contents

■ Procedure/Function CREATE_INDEX_SCRIPT Overloaded. This report
output includes a script to fully create an index and all preferences,
stoplists, and section groups.

■ Procedure/Function CREATE_POLICY_SCRIPT Overloaded. Identical
to CREATE_INDEX_SCRIPT, but the focus is on POLICIES rather
than INDEXES.

Appendix B: Guide to Supplied Packages 835

836 Oracle Database 10g PL/SQL Programming

■ Procedure/Function DESCRIBE_INDEX Overloaded. Use this when
troubleshooting indexes. It provides metadata regarding the index,
including the type of lexer used, storage clauses, and stoplists. In 10gR1,
output can be in XML format or formatted text.

■ Procedure/Function DESCRIBE_POLICY Overloaded. Identical to
DESCRIBE_INDEX, but for POLICIES rather than INDEXES. In 10gR1,
output can be in XML format or formatted text.

■ Procedure/Function INDEX_SIZE Overloaded. Useful for DBAs in
monitoring space usage of indexes and index tables. The report displays
primarily information about tablespace usage for Text components.
In 10gR1, output can be in XML format or formatted text.

■ Procedure INDEX_STATS One of the most useful reports for tuning
Text index performance. It includes statistics about index fragmentation,
number of documents indexed, and more. In 10gR1, output can be in
XML format or formatted text.

■ Procedure QUERY_LOG_SUMMARY Analyze the effectiveness of your
indexes with this report. You can determine the most common queries
made, the most common unsuccessful queries, query frequency, etc.
In 10gR1, output can be in XML format or formatted text.

■ Procedure/Function TOKEN_INFO Overloaded. Provides information to
determine if an index is corrupt. In 10gR1, output can be in XML format
or formatted text.

■ Function TOKEN_TYPE Function that returns a number. This function
is used with other procedures and functions that have a TOKEN_TYPE
parameter, like TOKEN_INFO.

CTX_THES
This package provides a way to manage thesauri. Oracle Text allows for the creation
of thesauri for improved search capabilities. For example, if a term is commonly
referred to as a “widget” but the contents are stored as a “gadget” and it means the
same thing, a thesaurus can link the two terms together. Search on ”widget” and
results containing “gadget” are returned.

Creation Scripts
dr0thes.pkh/plb

Public Synonym
CTX_THES

Contents

■ Procedure ALTER_PHRASE This procedure alters a phrase in a thesaurus.

■ Procedure ALTER_THESAURUS Truncate or rename a thesaurus using
this procedure.

■ Procedures/Functions BT Overloaded. BT stands for Broader Terms. This
procedure/function returns the broader terms as defined in the thesaurus.
Terms or phrases are related to each other in a hierarchical fashion. This
procedure allows you specify the hierarchy level to drill down to.

■ Procedure/Function BTG Overloaded. BTG stands for Broader Terms
Generic. Similar to BT.

■ Procedure/Function BTI Overloaded. BTI stands for Broader Terms
Instance. Similar to BT.

■ Procedure/Function BTP Overloaded. BTP stands for Broader Terms
Partitive. Similar to BT.

■ Procedure CREATE_PHRASE This procedure adds phrases to existing
thesauri.

■ Procedure CREATE_RELATION Phrases can be related to one another.

■ Procedure CREATE_THESAURUS The CREATE_THESAURUS procedure
creates an empty thesaurus.

■ Procedure CREATE_TRANSLATION Phrases can be created in multiple
languages and related to each other for cross-language support.

■ Procedure DROP_PHRASE This procedure drops the specified phrase
from a thesaurus.

■ Procedure DROP_RELATION This procedure drops the specified
relationship from a thesaurus.

■ Procedure DROP_THESAURUS This procedure drops the specified
thesaurus.

■ Procedure DROP_TRANSLATION This procedure drops the specified
translation of a phrase.

■ Function HAS_RELATION The HAS_RELATION function tests whether
a phrase has the specified relationship. It returns a Boolean value.

■ Procedure/Function NT Overloaded. This is the reverse of BT. NT (which
stands for Narrower Terms), and it returns the narrower terms of a phrase.

Appendix B: Guide to Supplied Packages 837

■ Procedure/Function NTG Overloaded. NTG stands for Narrower Terms
Generic. NTG is similar to NT.

■ Procedure/Function NTI Overloaded. NTI stands for Narrower Terms
Instance. NTI is similar to NT.

■ Procedure/Function NTP Overloaded. NTP stands for Narrower Terms
Partitive. NTP is similar to NT.

■ Procedure OUTPUT_STYLE This procedure sets the type of output shown
in expansion functions.

■ Procedure/Function PT Overloaded. PT stands for Preferred Term. It returns
the preferred term from the thesaurus based on the specified term or phrase.

■ Procedure/Function RT Overloaded. RT stands for Related Terms. It returns
the related terms from the thesaurus based on the specified term or phrase.

■ Function SN SN stands for Scope Note. This function returns the scope
note or comment.

■ Procedure/Function SYN Overloaded. SYN stands for SYNonym. This
function returns the synonyms from the thesaurus based on the specified
term or phrase.

■ Procedure THES_TT TT stands for Top Term. This procedure finds all top
terms, or terms that have narrower, but not broader, terms. It finds all
top terms, not specific to any term or phrase.

■ Procedure/Function TR Overloaded. TR stands for TRanslation. Provided a
phrase, this procedure/function finds the foreign language translation based
on the language relationships defined in the thesaurus.

■ Procedure/Function TRSYN Overloaded. TR stands for TRanslation and
SYN stands for SYNonym. This procedure/function returns the foreign
language translation of a given phrase, and the foreign language synonym
of that phrase.

■ Procedure/Function TT Overloaded. TT stands for Top Term. This differs
from THES_TT in that TT returns the top terms based on a specific term
or phrase.

■ Procedure UPDATE_TRANSLATION Procedure to update an existing
translation in a thesaurus.

838 Oracle Database 10g PL/SQL Programming

Index

! (exclamation point), 32

A

abandoned cursors, 149

ABORTED_REQUEST_THRESHOLD,
441-442

ACID, 118-119

Advanced Queuing facility, 500

Agent Control utility, 557-559

agtctl, 557-559

alerts. See DBMS_ALERT

American National Standards Institute.
See ANSI

anonymous blocks, 15-16, 49-51

running, 51-52

See also blocks; named blocks

ANSI, 6

APPEND, 734-736

arithmetic operators, 100

See also operators

assignment operator, 101-102

See also operators

associative arrays, 217, 261-262

initializing, 267-277

as PL/SQL program constructs,
262-267

using with BULK COLLECT and
FORALL, 277-282

assumptions, 19-20

atomicity, 118

attribute chaining, 663-666, 677-680

attributes, 5, 16, 639-641

cursor, 149-151

audience, 18

automatic recompilation, 396-397

autonomous transactions, 125-128

B

bang, 32

839

Copyright © 2004 by The McGraw-Hill Companies, Inc. Click here for terms of use.

BFILE, 716, 729-730

FILECLOSE/CLOSE/
FILECLOSEALL, 748-752

FILEEXISTS, 744-746

FILEISOPEN/ISOPEN, 747-748

FILEOPEN/OPEN, 746

LOADFROMFILE, 752-758

bind variables, 622-631

DDL and DML without, 588-597,
618-622

DML and a known list of,
598-601

BLOBs, 715

LOADBLOBFROMFILE, 752-758

blocks, 16, 46

anonymous, 15-16, 49-52

basic structure, 46-49

declaration section, 47-48

enclosing, 323-324

exception section, 48-49

execution section, 48

named, 52-61

nested, 62-63

Boolean data types, 83-84

Boolean literals, 71-72

Boolean variables, 72

break points, setting, 40

BULK COLLECT, 277-282

bulk processing, 587, 601, 602

C

C shared library, 560

defining, 560-562

PL/SQL library definition, 563

PL/SQL library wrapper, 562,
563-568

caching data, 721

CALL statement, 364-366

case sensitivity, 65

CASE statements, 107-108

searched CASE, 108-110

character functions, 172, 173

character literals, 68-69

character operator, 101

See also operators

character semantics, 13, 77-78, 641

character spacing, 75-76

character/string data types, 77-81

circular execution, 110-113

CLOBs, 715, 728-729

LOADCLOBFROMFILE, 752-758

closing cursors, 149

Codd, Dr. E.F., 6

Collection API. See Oracle 10g
Collection API

collections

associative arrays, 217

defined, 214

nested tables, 217

set operators for, 216-217

840 Oracle Database 10g PL/SQL Programming

types, 215

varrays, 217-237

working with, 214-217

See also Oracle 10g
Collection API

column objects, 682-683

accessing, 689-691

columns, 7

comments, 51, 73-75

COMMIT, 122

communication skills, 6

COMPARE, 736-738

comparison operators, 100

See also operators

compile errors, 53-56

Composite data types, 87

concatenation operator, 102

See also operators

conditional evaluation, 103-110

consistency, 119

constants, as actual parameters,
347-348

constraining tables, 488

CONSTRUCTOR method, 643-644

CONTAINS operator, 140-141

context area, 143

CONTEXT index, 140-142, 760-765

control structures, 102-103

circular execution, 110-113

conditional evaluation, 103-110

sequential navigation using
GOTO, 113-114

conventions, 20

conversion functions, 175-176, 177

CONVERTTOBLOB/
CONVERTTOCLOB, 738-744

correlation identifiers, 454-458

COUNT method, 287

CTX_ADM, 828

CTX_CLS, 828-829

CTX_DDL, 829-831

CTX_DOC, 831-833

CTX_OUTPUT, 833-834

CTX_QUERY, 834-835

CTX_REPORT, 835-836

CTX_THES, 836-838

CTXSYS-owned built-in packages,
827-838

cursor sharing, 96

cursors, 142-143

abandoned, 149

attributes, 149-151

closing, 149

cursor for-loops, 153

declaring, 146-147

explicit, 146-153

fetching records from, 148-149

how they work, 143-146

implicit, 146, 153-154

navigating with loops, 151-153

open, 157-158

opening, 147-148

subqueries, 146, 156-157

variables, 146, 154-156

Index 841

D

Data Definition Language. See DDL

data dictionary

stored subprograms and, 382-385

triggers and, 486-488

views, 487

Data Manipulation Language. See
DML

data query language. See DQL

data retrieval, 130

hierarchical, 132-134

pattern matching, 134-138

SELECT statement, 130-134

data types, 77

BINARY_FLOAT and BINARY_
DOUBLE, 14

Boolean Scalar, 83-84

character/string, 77-81

Composite, 87

Date/Time, 84-87

defining and using nested tables
as column data types, 249-261

LOB, 89

mapping to C, 564-565

number, 80-81

NUMBER, 81-83

Reference, 87-88

Scalar, 77

SQL and Java, 573-574

that regular expressions work
with, 136

varrays as column data types in
tables, 227-228

database events, 469-471

databases

defined, 7

See also relational databases

date functions, 174-175

DATE types, 84

Date/Time data types, 84-87

Date/Time literals, 72-73

DBMS_ADVANCED_REWRITE, 797

DBMS_ADVISOR, 797-798

DBMS_ALERT, 501-502, 530-531, 798

building a trigger to signal an
alert, 535-537

defining, 531-534

registering interest in an alert,
537-538

transaction-based alerts, 541-542

triggering an alert, 539-541

waiting on an alert, 538-539

DBMS_APPLICATION_INFO, 798

DBMS_APPLY_ADM, 799

DBMS_AQ, 799

DBMS_BACKUP_RESTORE, 799-800

DBMS_CAPTURE_ADM, 800

DBMS_CRYPTO, 800-801

DBMS_DATAPUMP, 801

DBMS_DDL, 801-802

DBMS_DEBUG, 802

DBMS_DEFER, 802

DBMS_DIMENSION, 803

842 Oracle Database 10g PL/SQL Programming

DBMS_DISTRIBUTED_TRUST_
ADMIN, 803

DBMS_FGA, 803-804

DBMS_FILE_TRANSFER, 804

DBMS_FLASHBACK, 804

DBMS_HS, 805

DBMS_HS_PASSTHROUGH, 805

DBMS_JAVA, 805-806

DBMS_JOB, 768-770, 806

BROKEN, 774-776

CHANGE, 777-779

migrating to DBMS_
SCHEDULER, 785-787

REMOVE, 779-780

RUN, 776-777

SUBMIT, 770-774

DBMS_LDAP, 806

DBMS_LOB, 730-758, 806-807

DBMS_LOCK, 807

DBMS_LOGMNR, 807

DBMS_METADATA, 807

DBMS_MINING, 801

DBMS_MINING_TRANSFORM, 801

DBMS_MONITOR, 808

DBMS_OBFUSCATION_TOOLKIT, 808

DBMS_ODCI, 808

DBMS_OFFLINE_OG, 809

DBMS_OLAP, 809

DBMS_OUTLN, 809-810

DBMS_OUTLN_EDIT, 810

DBMS_OUTPUT, 810-811

DBMS_PIPE, 501-505, 811

creating pipes, 512-516

defining, 505-509

putting a wrapper around,
526-530

sending to and receiving from the
local pipe or buffer, 510-512

writing to and reading from
pipes, 516-526

DBMS_PROFILER, 811

DBMS_PROPAGATION_ADM,
811-812

DBMS_RANDOM, 812

DBMS_REDEFINITION, 812

DBMS_REFRESH, 812-813

DBMS_REPAIR, 813

DBMS_REPCAT, 813

DBMS_RESOURCE_MANAGER,
813-814

DBMS_RESOURCE_MANAGER_
PRIVS, 813-814

DBMS_RESUMABLE, 814

DBMS_ROWID, 814

DBMS_RULE, 815

DBMS_RULE_ADM, 815

DBMS_SCHEDULER, 780-781, 815

CREATE_JOB procedure,
781-783

migrating from DBMS_JOB,
785-787

removing a job, 788

REPEAT_INTERVAL, 783-785

Index 843

DBMS_SCHEMA_COPY, 815

DBMS_SERVER_ALERT, 816

DBMS_SERVICE, 816

DBMS_SESSION, 816

DBMS_SHARED_POOL, 440-442, 816

DBMS_SPACE, 817

DBMS_SQL, 609, 817

DDL and DML without bind
variables, 618-622

DML and a known list of bind
variables, 622-631

DQL, 631-634

errors, 622-623

procedures, 610-617

DBMS_SQLTUNE, 817-818

DBMS_STANDARD, 818

DBMS_STAT_FUNCS, 818

DBMS_STATS, 818-819

DBMS_SUMMARY, 819

DBMS_TRACE, 819

DBMS_TRANSACTION, 819

DBMS_TRANSFORM, 820

DBMS_TYPES, 820

DBMS_UTILITY, 820

DBMS_UTILITY.FORMAT_ERROR_
BACKTRACE, 317-318

DBMS_UTILITY.FORMAT_ERROR_
STACK, 317

DBMS_WARNING, 60-61, 820-821

DBMS_WORKLOAD_REPOSITORY,
821

DBMS_XMLGEN, 821

DBMS_XMLQUERY, 821

DBMS_XPLAN, 821-822

DDL, 46, 158-159

events, 469-471

pre-compilation, 159

without bind variables, 588-597,
618-622

declarations, forward, 369, 371,
389-391

declaring cursors, 146-147

DEFAULT keyword, 432-433

definer's rights procedures, 418-424

DELETE method, 288-290

DELETE statements, 163-164, 727

delimiters, 67-68

dependencies, 394-406

invalidations, 401-406

of package run-time state,
411-412

packages and, 397-400

DEREF, 696

deterministic table functions, 437-438

DML, 46, 158-159

and a known list of bind
variables, 598-601, 622-631

manipulating data with, 160-163

pre-compilation, 159

without bind variables, 588-597,
618-622

DML triggers, 445-446

correlation identifiers in row-
level triggers, 454-458

creating, 449-461

order of firing, 451-454

844 Oracle Database 10g PL/SQL Programming

predicates, 459-461

types of, 450

documentation, comments, 51, 73-75

DQL, 230-231, 601-609, 631-634

durability, 119

dynamic method dispatch, 660-662

dynamic polymorphism. See dynamic
method dispatch

Dynamic SQL, 305, 584-585

introduction to, 164, 585-586

See also Native Dynamic SQL

E

enclosing blocks, 323-324

error functions, 176-177

errors, 304

compile, 53-56

See also exceptions

event attribute functions, 473-478

examples, 20-21

exception handlers, 310-313

OTHERS exception handler,
313-314

exceptions, 304-306

avoiding unhandled exceptions,
331-332

coding styles, 334

as control statements, 334

DBMS_UTILITY.FORMAT_
ERROR_BACKTRACE,
317-318

DBMS_UTILITY.FORMAT_
ERROR_STACK, 317

declaring, 306-308

examining the error stack,
314-318

exception semantics with
NOCOPY, 354

EXCEPTION_INIT pragma, 318

guidelines, 329-334

handling, 310-318

masking location of the error,
332-333

predefined, 307-308

propagation, 323-329

RAISE_APPLICATION_ERROR,
319-322, 334

raised inside subprograms,
352-353

raised in the declarative section,
326-327

raised in the exception section,
327-329

raised in the executable section,
323-325

raising, 309-310

scope of, 330-331

SQLCODE and SQLERRM,
314-317

and transactions, 333-334

user-defined, 306-307

exclamation point (!), 32

EXECUTE IMMEDIATE, 587

classes available, 588

Index 845

EXECUTE privilege, 413-415

execution plans, 30

EXISTS method, 290-293

explain plans, 30

explicit cursors, 146-153

expressions, 100-102

EXTEND method, 293-295

external procedures, 544-545

C shared library, 560-568

defining extproc Oracle Net
Services configuration,
548-556

defining the extproc architecture,
545-548

defining the multithreaded agent,
556-559

Java shared library, 568-575

extproc

defining Oracle Net Services
configuration, 548-556

defining the architecture,
545-548

defining the multithreaded agent,
556-559

listener is incorrectly configured
or not running, 577-578

options for EXTPROC_DLLS, 551

separate listener, 578

F

FETCH, 148-149

FINAL keyword, 654

FIRST method, 295-297

FOR loops, numeric, 111-112

FORALL, 277-282

formal parameters, 342-343

constraints on, 349-351

default values, 428

forward declarations, 369, 371,
389-391

forward type declaration, 695-696

functions, 16

character, 172, 173

conversion functions,
175-176, 177

creating, 339-341

date, 174-175

dropping, 341-342

error, 176-177

event attribute functions,
473-478

multiple-valued, 435-439

with no parameters, 358-359

numeric, 172-174

other, 178-179

overloaded, 434-435

procedures and, 336-337, 367

purity levels, 428-435

returning record types from, 205

single-valued, 424-435

SQL built-in functions,
172-179

stored functions and SQL
statements, 424-439

846 Oracle Database 10g PL/SQL Programming

syntax, 340-341

table functions, 435-439

See also subprograms

G

GOTO, sequential navigation using,
113-114

H

hiding code, 97-100

hierarchical data retrieval, 132-134

host computer name, 26

hosts file, 26

I

IBM, 6

identifiers, 65-67

IF-THEN statements, 103-104

IF-THEN-ELSE statements, 104-105

IF-THEN-ELSIF statements, 105-107

implicit cursors, 146, 153-154

indentation, 76

indexing

CONTEXT index, 140-142,
760-765

LOBs, 759-765

Oracle Text, 139-142,
759-761, 765

indirect dependency, 394

See also dependencies

information retrieval, 138-142

inheritance, 14, 677-680

object type, 652-662

inline comments, 73-74

See also comments

inline views, 171-172

INSERT statements, 160-161, 725-727

INSTANTIABLE keyword, 654

instead-of triggers, 446-448, 461

example, 462-469

modifiable vs. nonmodifiable
views, 461-462

interpreted mode, 17

intersession communication, 500

not requiring permanent or
semipermanent structures,
501-502

requiring permanent or
semipermanent structures,
500-501

INTERVAL types, 86-87

invoker's rights subprograms, 418-421

resolution with, 421-422

roles and, 422-423, 424

triggers and views, 423

IP address, 26

IR. See information retrieval

Index 847

IS DANGLING, 696-697

IS OF, 701-702

isolation, 119

iSQL*Plus, 30-31

J

Java shared library, 568-569

defining, 569-572

PL/SQL library wrapper, 573-575

Java vs. PL/SQL, 11-12

jDeveloper

connecting to the database,
35-36

displaying line numbers, 38-39

editing stored code, 37-39

features, 34

installing, 34-36

Smart Data view, 41-42

starting, 35

stepping through PL/SQL
code, 40-43

working with PL/SQL in, 36-43

K

KEEP, 440, 441

keywords

DEFAULT, 432-433

FINAL, 654

INSTANTIABLE, 654

TRUST, 433-434

L

labels, loops and, 113

languages

introduction to, 4-6

rules and conventions, 64-76

structure, 5

large objects. See LOBs

LAST method, 297

lexical units, 64, 65

character spacing and white
space, 75-76

comments, 73-75

delimiters, 67-68

identifiers, 65-67

literals, 68-73

LIKE operator, 134-135

LIMIT method, 297-299

listener

configuration, 576-580

extproc listener is incorrectly
configured or not running,
577-578

EXTPROC_DLLS value problem,
576-577

file path problem, 576

incorrect ENV parameter, 576

848 Oracle Database 10g PL/SQL Programming

PL/SQL wrapper defined
incorrect NAME value,
579-580

separate extproc listener, 578

literals, 68

as actual parameters, 347-348

Boolean, 71-72

character, 68-69

Date/Time, 72-73

number, 70-71

string, 69-70

LOBs, 89, 712-713

APPEND, 734-736

BFILE, 716, 729-730

BLOBs, 715

caching data, 721

CHUNK storage option, 721

CLOBs, 715, 728-729

COMPARE, 736-738

CONVERTTOBLOB/
CONVERTTOCLOB, 738-744

DBMS_LOB, 730-758

DELETE statement, 727

enabling/disabling storage, 722

external, 713, 715-716, 722-723

features, 713, 714

FILECLOSE/CLOSE/
FILECLOSEALL, 748-752

FILEEXISTS, 744-746

FILEISOPEN/ISOPEN, 747-748

FILEOPEN/OPEN, 746

indexing, 759-765

initialization, 725

INSERT statement, 725-727

internal, 713, 715, 718-722

LOADFROMFILE, 752-758

LOB locators, 713-714

logging, 722

migrating from LONGs to,
724-725

NCLOBs, 715, 728-729

PCTVERSION, 721

and PL/SQL, 730-758

RETENTION parameter, 721

RETURNING clause, 758-765

SELECT statement, 727-729

SQL for internal persistent LOBs,
725-729

storage, 718-724

structure, 717-718

support of large LOBs, 14

tablespace, 720

temporary storage, 723-724

types of, 713-717

types that are stored as, 716-717

UPDATE statement, 727

VARRAY, 716-717

XMLType, 717

local subprograms, 382, 385-387

location of, 388-389

Index 849

overloading, 391-392

as part of stored subprograms,
387-388

See also subprograms

locking, transactions, 119-121

LOGGING, 722

logical operators, 100

See also operators

LONGs, migrating to LOBs from,
724-725

loops

cursor for-loops, 153

and labels, 113

navigating cursors with, 151-153

numeric FOR loops, 111-112

simple loops, 110-111, 152

WHILE loops, 112-113, 152-153

M

MAP method, 648-650

MEMBER method, 642

metacharacters, 136

methods, 5, 17, 64, 641-644

CONSTRUCTOR method,
643-644

MAP method, 648-650

MEMBER method, 642

ORDER method, 648-649,
650-652

STATIC method, 642-643

modifiable views, 461-462

multiline comments, 74-75

See also comments

multiple-valued functions, 435-439

mutating tables, 488-491

example, 491-492

workaround for the error,
492-495

N

named blocks, 52-61

See also anonymous blocks;
blocks

named notation, 359-362

named pipes, 500

named procedures, 16

National Character Set large objects.
See NCLOBs

native compilation, 14, 17, 439-440

Native Dynamic SQL, 48, 164-165

advantages of NDS over DBMS_
SQL, 587

and assignment operators,
101-102

DDL and DML without bind
variables, 588-597

DML and a known list of bind
variables, 598-601

DQL, 601-609

working with, 586-588

NCLOBs, 715, 728-729

850 Oracle Database 10g PL/SQL Programming

NDS. See Native Dynamic SQL

nested blocks, 62-63

See also blocks

nested tables, 217, 231, 237-238

defining and using as column
data types in tables, 249-261

defining and using as object
types in PL/SQL, 243-249

defining as object types as PL/
SQL program constructs,
238-243

net service name, 25

:new, 456

NEXT method, 299

NOCOPY, 354

benefits of, 356-358

exception semantics with,
354-355

restrictions, 355-356

NOLOGGING, 722

nonmodifiable views, 461-462

normalization, 227

notation, positional and named,
359-362

number data types, 80-83

numeric FOR loops, 111-112

numeric functions, 172-174

numeric literals, 70-71

O

object identifiers, 681

Object layer, 636-637

object references, 693

object relational database management
systems (ORDBMS), 227

object tables, 674, 685-689

attribute chaining, 677-680

column objects, 682-683,
689-691

creating, 675-677

describing, 680-681

inheritance, 677-680

object identifiers (OIDs), 681

synonyms, 682

object types, 16-17, 64, 87

altering and dropping types,
669-672

body of, 645-652

complex, 640

creating, 638-652

defining and using as parameters,
202-205

defining and using as return
values, 207-210

defining and using nested tables
as in PL/SQL, 243-249

defining and using varrays as in
PL/SQL, 223-227

defining nested tables as
PL/SQL program constructs,
238-243

explicit record definition as,
190-198

inheritance, 652-662

and overloading, 377-378

overview, 637-638

Index 851

specification, 638-645

type evolution, 14, 666-672,
705-709

object views, 683-685

accessing, 691-693

inserting and updating, 693

retrieving rows, 692

objective, 18

object-oriented languages, 4-5

object-oriented programming.
See OOP

objects, 4-5

accessing persistent objects using
SQL and PL/SQL, 685-705

declaring and initializing,
644-645

invalidations, 401-406

maintaining persistent objects,
705-709

object-related functions and
operators, 693-705

pinning, 440-442

scope of in the package body,
372-373

See also LOBs

oerr tool, 250

OIDs. See object identifiers

:old, 456

OOP, 64, 636

data and the procedural
abstraction, 636-637

open cursors, 157-158

opening cursors, 147-148

operators, 100-101

CONTAINS operator, 140-141

LIKE operator, 134-135

Oracle 10g Collection API, 282-286

COUNT method, 287

DELETE method, 288-290

exceptions, 286

EXISTS method, 290-293

EXTEND method, 293-295

FIRST method, 295-297

LAST method, 297

LIMIT method, 297-299

NEXT method, 299

PRIOR method, 299

TRIM method, 300-302

Oracle Net Services, configuring,
548-556

Oracle Scheduler

terminology, 780, 781

using DBMS_SCHEDULER,
780-788

Oracle Text, 139-142, 759-761, 765

ORDER BY, using ROWNUM with,
169-172

ORDER method, 648-649, 650-652

OTHERS exception handler, 313-314

overloading, 660

functions, 434-435

local subprograms, 391-392

packaged subprograms, 374-378

See also dynamic method
dispatch

852 Oracle Database 10g PL/SQL Programming

P

packages, 16, 367

body of, 369-371, 372-373

CTX_ADM, 828

CTX_CLS, 828-829

CTX_DDL, 829-831

CTX_DOC, 831-833

CTX_OUTPUT, 833-834

CTX_QUERY, 834-835

CTX_REPORT, 835-836

CTX_THES, 836-838

CTXSYS-owned built-in, 827-838

DBMS_ADVANCED_REWRITE,
797

DBMS_ADVISOR, 797-798

DBMS_ALERT, 501-502, 530-
542, 798

DBMS_APPLICATION_INFO,
798

DBMS_APPLY_ADM, 799

DBMS_AQ, 799

DBMS_BACKUP_RESTORE,
799-800

DBMS_CAPTURE_ADM, 800

DBMS_CRYPTO, 800-801

DBMS_DATAPUMP, 801

DBMS_DDL, 801-802

DBMS_DEBUG, 802

DBMS_DEFER, 802

DBMS_DESCRIBE, 802-803

DBMS_DIMENSION, 803

DBMS_DISTRIBUTED_TRUST_
ADMIN, 803

DBMS_FGA, 803-804

DBMS_FILE_TRANSFER, 804

DBMS_FLASHBACK, 804

DBMS_HS, 805

DBMS_HS_PASSTHROUGH,
805

DBMS_JAVA, 805-806

DBMS_JOB, 768-780, 806

DBMS_LDAP, 806

DBMS_LOB, 730-758, 806-807

DBMS_LOCK, 807

DBMS_LOGMNR, 807

DBMS_METADATA, 807

DBMS_MINING, 801

DBMS_MINING_TRANSFORM,
801

DBMS_MONITOR, 808

DBMS_OBFUSCATION_
TOOLKIT, 808

DBMS_ODCI, 808

DBMS_OFFLINE_OG, 809

DBMS_OLAP, 809

DBMS_OUTLN, 809-810

DBMS_OUTLN_EDIT, 810

DBMS_OUTPUT, 810-811

DBMS_PIPE, 501-530, 811

DBMS_PROFILER, 811

DBMS_PROPAGATION_ADM,
811-812

DBMS_RANDOM, 812

Index 853

DBMS_REDEFINITION, 812

DBMS_REFRESH, 812-813

DBMS_REPAIR, 813

DBMS_REPCAT, 813

DBMS_RESOURCE_MANAGER,
813-814

DBMS_RESOURCE_MANAGER_
PRIVS, 813-814

DBMS_RESUMABLE, 814

DBMS_ROWID, 814

DBMS_RULE, 815

DBMS_RULE_ADM, 815

DBMS_SCHEDULER,
780-788, 815

DBMS_SCHEMA_COPY, 815

DBMS_SERVER_ALERT, 816

DBMS_SERVICE, 816

DBMS_SESSION, 816

DBMS_SHARED_POOL, 440-
442, 816

DBMS_SPACE, 817

DBMS_SQL, 609-634, 817

DBMS_SQLTUNE, 817-818

DBMS_STANDARD, 818

DBMS_STAT_FUNCS, 818

DBMS_STATS, 818-819

DBMS_SUMMARY, 819

DBMS_TRACE, 819

DBMS_TRANSACTION, 819

DBMS_TRANSFORM, 820

DBMS_TYPES, 820

DBMS_UTILITY, 820

DBMS_WARNING, 60-61,
820-821

DBMS_WORKLOAD_
REPOSITORY, 821

DBMS_XMLGEN, 821

DBMS_XMLQUERY, 821

DBMS_XPLAN, 821-822

and dependencies, 397-400

headers, 367

initialization, 378-380

instantiated, 378

overloading packaged
subprograms, 374-378

run-time state, 406-412

and scope, 371-373

serially reusable, 409-411

specifications, 367-369

STANDARD, 818

SYS-owned built-in, 796-826

UTL_COLL, 822

UTL_COMPRESS, 822

UTL_DBWS, 822-823

UTL_ENCODE, 823

UTL_FILE, 823

UTL_HTTP, 823

UTL_I18N, 824

UTL_INADDR, 824

UTL_LMS, 824

UTL_MAIL, 825

UTL_RAW, 825

UTL_RECOMP, 825

UTL_REF, 703-705, 825-826

854 Oracle Database 10g PL/SQL Programming

UTL_SMTP, 826

UTL_TCP, 826

UTL_URL, 826

parameters

default values, 362-364

ENV, 576

formal, 342-343, 349-351

literals or constants as actual
parameters, 347-348

modes, 342-348

NOCOPY, 354-358

OUT parameters, 345-346

IN OUT parameters, 346-347

IN parameters, 344-345, 348

passing by reference and value,
353-358

procedure parameters, 350-351

RETENTION parameter, 721

SELF parameter, 646-648

parser, shared, 13

pattern matching, 134-138

p-code, 382

triggers, 488

persistence, 674

accessing persistent objects using
SQL and PL/SQL, 685-705

maintaining persistent objects,
705-709

PGA. See Process Global Area

pipelined functions, 438-439

pipes, 501-502

creating, 512-516

writing to and reading from,
516-526

See also DBMS_PIPE

PL/SQL

anonymous blocks, 15-16, 49-52

blocks, 16, 46-64

as both a procedural and object-
oriented language, 5

data types, 77-89

defined, 6

delimiters, 67-68

errors, 304

hiding code, 97-100

history, 12-15

identifiers, 65-67

vs. Java, 11-12

lexical units, 64-76

named blocks, 52-61

native compilation, 439-440

nested blocks, 62-63

output to the screen, 33

programs, 16

vs. SQL, 9-11

statement processing, 17

stepping through code in
jDeveloper, 40-43

triggers, 63-64

variables, 89-97

version 10.0, 14-15

version 1.x, 12-13

version 2.x, 13

version 8.0, 13

Index 855

version 8.1, 13

version 9.0, 13-14

version 9.2, 14

working with in jDeveloper,
36-43

PL/SQL library wrapper

C shared library, 562, 563-568

configuration, 580-581

Java shared library, 573-575

PL/SQL Wrapper utility, 98-100, 442

PLSQL_WARNINGS parameter, 57-59

polymorphism, 585

static, 660

port number, 26

positional notation, 359-362

pragmas, 125

EXCEPTION_INIT, 318

precision, 81

predicates, 459-461

PRIOR method, 299

privileges

EXECUTE privilege, 413-415

and stored subprograms, 412-424

triggers, 486

procedural languages, 4

procedures, 16

ABORTED_REQUEST_
THRESHOLD, 441-442

body of, 338-339

creating, 337-339

definer's rights, 418-424

dropping, 341-342

and functions, 336-337, 367

KEEP, 440, 441

with no parameters, 358-359

SIZES, 441

UNKEEP, 440-441

See also external procedures;
subprograms

Process Global Area, 143

program flow, controlling, 102-114

programmers, beginning, 5-6

programming languages

introduction to, 4-6

rules and conventions, 64-76

structure, 5

pseudokeys, 227

pseudorecords, 455, 457

purity levels, 428-435

initialization section, 431

Q

quoted identifiers, 66

See also identifiers

quotes, in string literals, 69

R

RAISE_APPLICATION_ERROR,
319-322, 334

RDBMS, 7

RE. See regular expressions

856 Oracle Database 10g PL/SQL Programming

records

compound record types, 187-190

defined, 182

defining implicitly with
%ROWTYPE, 184-185

defining record types, 183-198

explicit definition as object types,
190-198

explicit definition as PL/SQL
structures, 185-190

record types as formal
parameters, 198-202

record types as return values,
205-207

returning record types from
functions, 205

verifying work with record types,
210-211

working with, 182-183

REF, 88, 694-695

Reference data types, 87

REF, 88, 694-695

REF CURSOR, 88

reference, passing parameters by,
353-358

REFERENCING clause, 457-458

regular expressions, 135-138

data types, 136

metacharacters, 136

support for, 14

relational database management
systems. See RDBMS

relational databases, overview, 7-9

reserved words, 66-67, 792-794

See also identifiers

RESTRICT_REFERENCES, 428-435

retrieving data, 130

hierarchical data retrieval,
132-134

pattern matching, 134-138

SELECT statement, 130-134

RETURN statement, 341

RETURNING clause, 758-765

roles, stored subprograms and,
415-418

ROLLBACK, 122-123

partial ROLLBACK using
SAVEPOINT, 123-124

ROWID, 165-166

and performance, 167-169

row-level triggers, 454-458

ROWNUM, 169

using with ORDER BY, 169-172

rows, 7

%ROWTYPE, 90-91, 639-640

defining implicitly with, 184-185

run-time construction, 197

run-time polymorphism. See dynamic
method dispatch

S

SAVEPOINT, partial ROLLBACK using,
123-124

Scalar data types, 77

Index 857

scale, 81

scheduling tasks

DBMS_JOB, 768-780

Oracle Scheduler, 780-788

procedure execution on 30-
minute interval, 771-773,
785-786

purging e-mail table, 773-774,
786-787

schemas, 7

scope, 18-19

searched CASE statements, 108-110

SELECT statement, 130-134, 727-729

pattern matching, 134-138

SELF parameter, 646-648

sequential navigation using GOTO,
113-114

serially reusable packages, 409-411

See also packages

service name (SID), 26

SET TRANSACTION, 128-129

shared libraries

C, 560-568

configuration, 580-581

Java, 568-575

troubleshooting, 575-581

shared pool, pinning, 440-442

SHOW ERRORS, 385

SID, 26

signature model, 405-406

signatures, 209, 516

simple loops, 110-111, 152

single-valued functions, 424

default parameters, 428

purity levels and RESTRICT_
REFERENCES, 428-435

restrictions, 424-428

SIZES, 441

spacing, 75-76

special characters, 66

See also identifiers

SQL, 6-7

benefits of static SQL statements,
585, 586

built-in functions, 172-179

CALL statement, 364-366

character functions, 172, 173

conversion functions,
175-176, 177

date functions, 174-175

error functions, 176-177

functions, 178-179

numeric functions, 172-174

operators, 101

vs. PL/SQL, 9-11

retrieving data, 130-142

SELECT statement, 130-134

transaction processing, 118-129

See also Dynamic SQL

SQL operators

See also operators

SQL Server, 8

SQL*Plus, 6-7, 24

changing session settings, 31

858 Oracle Database 10g PL/SQL Programming

command line, 28-30

connecting to the instance, 25-26

editing commands, 29-30

GUI, 30

host computer name, 26

hosts file, 26

implementations, 28

IP address, 26

iSQL*Plus, 30-31

Net Assistant, 25

Net Manager, 25

net service name, 25

output to the screen, 33

port number, 26

running a script from a file, 31-33

service name (SID), 26

SHOW ERRORS, 385

testing the connection, 26-28

Worksheet, 30

SQLCODE, 314-317

SQLERRM, 314-317

STANDARD, 818

statement processing, 17

STATIC method, 642-643

static polymorphism, 660

stored procedures, 16

stored subprograms. See subprograms

string literals, 69-70

customization, 14-15

Structured Query Language. See SQL

subprograms, 336

%TYPE and procedure
parameters, 350-351

assigning values to IN OUT
parameters, 346-347

assigning values to IN
parameters, 344-345

assigning values to OUT
parameters, 345-346

automatic recompilation,
396-397

CALL statement, 364-366

constraints on formal parameters,
349-351

creating, 337-342

and the data dictionary, 382-385

definer's rights, 418-424

dependencies, 394-406

exceptions raised inside, 352-353

invoker's rights, 418-424

literals or constants as actual
parameters, 347-348

local, 382, 385-389, 391-392

local vs. stored, 392-393

locations, 382

modification of IN
parameters, 348

with no parameters, 358-359

NOCOPY, 354-358

overloading packaged
subprograms, 374-378

parameter modes, 342-348

passing parameters by reference
and value, 353-358

Index 859

positional and named notation,
359-362

privileges and stored
subprograms, 412-424

stored subprograms and roles,
415-418

stored vs. local, 392-393

See also functions; procedures

synonyms, 682

SYS_TYPEID, 703

SYS-owned built-in packages, 796-826

system triggers, 448-449

creating, 469-479

database vs. schema triggers,
471-473

DDL and database events,
469-471

event attribute functions,
473-478

and transactions, 478-479

and the WHEN clause, 479

T

table functions, 435-437

deterministic, 437-438

pipelined, 438-439

tables

constraining, 488

defined, 7

defining varrays in database
tables, 228-229

mutating, 488-495

using varrays in database tables,
229-237

TIMESTAMP, 84-85

timestamp model, 405

TIMESTAMP WITH LOCAL TIME
ZONE, 85-86

TIMESTAMP WITH TIME ZONE, 85

tkprof utility, 94

tnsping, 556

tokenizing, 503-504

transactions, 118-119

autonomous, 125-128

COMMIT, 122

and locking, 119-121

main, 125

parent, 125

pragmas, 125

ROLLBACK, 122-124

SET TRANSACTION, 128-129

and system triggers, 478-479

TREAT, 697-700

triggers, 63-64

body of, 449, 481-486

building to signal an alert,
535-537

and the data dictionary, 486-488

DML, 445-446, 449-461

dropping and disabling, 487-488

instead-of, 446-448, 461-469

and invoker's rights, 423

names, 479-480

860 Oracle Database 10g PL/SQL Programming

p-code, 488

predicates, 459-461

privileges, 486

restrictions, 480-481

row-level, 454-458

syntax, 449

system, 448-449, 469-479

types of, 444

uses for, 444

See also mutating tables

TRIM method, 300-302

TRUST keyword, 433-434

%TYPE, 90, 639-640

and procedure parameters,
350-351

type evolution, 14, 666-672, 705-709

U

UNKEEP, 440-441

UPDATE statements, 161-163, 727

UTL_COLL, 822

UTL_COMPRESS, 822

UTL_DBWS, 822-823

UTL_ENCODE, 823

UTL_FILE, 823

UTL_HTTP, 823

UTL_I18N, 824

UTL_INADDR, 824

UTL_LMS, 824

UTL_MAIL, 825

UTL_RAW, 825

UTL_RECOMP, 825

UTL_REF, 703-705, 825-826

UTL_SMTP, 826

UTL_TCP, 826

UTL_URL, 826

V

VALUE, 700-701

value, passing parameters by, 353-358

variables

%ROWTYPE, 90-91

%TYPE, 90

bind variables, 93-97, 588-597,
598-601, 618-622, 622-631

cursor sharing, 96

cursor variables, 146, 154-156

declaring, 89-90

local variables and binds, 96-97

scope, 91

visibility, 92-93

VARRAY, 716-717

varrays, 217

as column data types in tables,
227-228

defining in database tables,
228-229

Index 861

as object types in PL/SQL,
223-227

as PL/SQL program constructs,
218-223

using in database tables, 229-237

views

data dictionary, 487

inline, 171-172

and invoker's rights, 423

modifiable vs. nonmodifiable,
461-462

W

warnings, 14

compile-time, 56-61

DBMS_WARNING package,
60-61

PLSQL_WARNINGS parameter,
57-59

warning messages, 56-57

WHEN clause, 458

system triggers and, 479

WHILE loops, 112-113, 152-153

white space, 75-76

wrapper utility. See PL/SQL Wrapper
utility

X

XMLType, 717

862 Oracle Database 10g PL/SQL Programming

INTERNATIONAL CONTACT INFORMATION

AUSTRALIA
McGraw-Hill Book Company
Australia Pty. Ltd.
TEL +61-2-9900-1800
FAX +61-2-9878-8881
http://www.mcgraw-hill.com.au
books-it_sydney@mcgraw-hill.com

CANADA
McGraw-Hill Ryerson Ltd.
TEL +905-430-5000
FAX +905-430-5020
http://www.mcgraw-hill.ca

GREECE, MIDDLE EAST, & AFRICA
(Excluding South Africa)
McGraw-Hill Hellas
TEL +30-210-6560-990
TEL +30-210-6560-993
TEL +30-210-6560-994
FAX +30-210-6545-525

MEXICO (Also serving Latin America)
McGraw-Hill Interamericana Editores
S.A. de C.V.
TEL +525-1500-5108
FAX +525-117-1589
http://www.mcgraw-hill.com.mx
carlos_ruiz@mcgraw-hill.com

SINGAPORE (Serving Asia)
McGraw-Hill Book Company
TEL +65-6863-1580
FAX +65-6862-3354
http://www.mcgraw-hill.com.sg
mghasia@mcgraw-hill.com

SOUTH AFRICA
McGraw-Hill South Africa
TEL +27-11-622-7512
FAX +27-11-622-9045
robyn_swanepoel@mcgraw-hill.com

SPAIN
McGraw-Hill/
Interamericana de España, S.A.U.
TEL +34-91-180-3000
FAX +34-91-372-8513
http://www.mcgraw-hill.es
professional@mcgraw-hill.es

UNITED KINGDOM, NORTHERN,
EASTERN, & CENTRAL EUROPE
McGraw-Hill Education Europe
TEL +44-1-628-502500
FAX +44-1-628-770224
http://www.mcgraw-hill.co.uk
emea_queries@mcgraw-hill.com

ALL OTHER INQUIRIES Contact:
McGraw-Hill/Osborne
TEL +1-510-420-7700
FAX +1-510-420-7703
http://www.osborne.com
omg_international@mcgraw-hill.com

	Contents at a Glance
	Contents
	Acknowledgments
	Introduction
	What’s New
	How to Use This Book

	Part I - Introduction
	Introduction to PL/SQL
	Introduction to Programming Languages
	Note to Beginning Programmers

	PL/What?
	Structured Query Language (SQL)
	Relational Database Overview
	PL/SQL vs. SQL
	PL/SQL vs. Java
	PL/SQL History and Features

	Language Fundamentals
	Anonymous Blocks
	Procedures
	Functions
	Packages
	Object Types

	PL/SQL Statement Processing
	Interpreted
	Native Compilation

	Getting the Most from This Book
	Audience
	Objective
	Scope
	Assumptions
	Conventions
	Examples

	Summary

	Using SQL*Plus and JDeveloper
	SQL*Plus
	Connecting to the Instance
	Testing the Connection
	Using SQL*Plus
	Changing SQL*Plus Session Settings
	Running a Script from a File
	Output to the Screen Using SQL*Plus and PL/SQL

	JDeveloper
	Installing JDeveloper
	Working with PL/SQL in JDeveloper

	Summary

	PL/SQL Basics
	The PL/SQL Block
	The Basic Structure
	Anonymous Blocks
	Named Blocks
	Nested Blocks
	Triggers
	Object Types

	Language Rules and Conventions
	Lexical Units

	PL/SQL Data Types
	Scalar
	Character/String
	NUMBER Data Type
	Boolean
	Date/Time
	Composite
	Reference
	LOB

	Using Variables
	%TYPE
	%ROWTYPE
	Variable Scope
	Bind Variables

	Hiding Code
	Expressions
	Assignment Operator
	Concatenation Operator

	Controlling Program Flow
	Conditional Evaluation
	Circular Execution
	Sequential Navigation using GOTO

	Summary

	Using SQL with PL/SQL
	Transaction Processing
	Transactions and Locking
	Autonomous Transactions
	Set Transaction

	Retrieving Data
	SQL SELECT Statement
	Pattern Matching
	Information Retrieval

	Cursors
	How Cursors Work
	Explicit Cursors
	Implicit Cursors
	Cursor Variables
	Cursor Subqueries
	Open Cursors

	DML and DDL
	Pre-Compilation
	Manipulating Data with DML
	DELETE
	Introduction to Dynamic SQL

	Using ROWID and ROWNUM
	ROWID
	ROWNUM

	Built-in SQL Functions
	Character Functions
	Numeric Functions
	Date Functions
	Conversion Functions
	Error Functions
	Other Functions

	Summary

	Records
	Introducing Records
	What Is a Record?
	Working with Records
	Defining Record Types
	Defining and Using Record Types as Formal Parameters
	Defining and Using Object Types as Parameters
	Returning Record Types from Functions
	Defining and Using Record Types as Return Values
	Defining and Using Object Types as Return Values
	Verifying Work with Record Types

	Summary

	Collections
	Introducing Collections
	What Is a Collection?

	Working with Collections
	Working with Varrays
	Working with Nested Tables
	Working with Associative Arrays

	Oracle 10gCollection API
	COUNT Method
	DELETE Method
	EXISTS Method
	EXTEND Method
	FIRST Method
	LAST Method
	LIMIT Method
	NEXT Method
	PRIOR Method
	TRIM Method

	Summary

	Error Handling
	What Is an Exception?
	Declaring Exceptions
	Raising Exceptions
	Handling Exceptions
	The EXCEPTION_INIT Pragma
	Using RAISE_APPLICATION_ERROR

	Exception Propagation
	Exceptions Raised in the Executable Section
	Exceptions Raised in the Declarative Section
	Exceptions Raised in the Exception Section

	Exception Guidelines
	Scope of Exceptions
	Avoiding Unhandled Exceptions
	Masking Location of the Error
	Exceptions and Transactions

	Summary

	Creating Procedures, Functions, and Packages
	Procedures and Functions
	Subprogram Creation
	Subprogram Parameters
	The CALL Statement
	Procedures vs. Functions

	Packages
	Package Specification
	Package Body
	Packages and Scope
	Overloading Packaged Subprograms
	Package Initialization

	Summary

	Using Procedures, Functions, and Packages
	Subprogram Locations
	Stored Subprograms and the Data Dictionary
	Local Subprograms
	Stored vs. Local Subprograms

	Considerations of Stored Subprograms and Packages
	Subprogram Dependencies
	Package Run-Time State
	Privileges and Stored Subprograms

	Stored Functions and SQL Statements
	Single-Valued Functions
	Multiple-Valued Functions

	Native Compilation
	Pinning in the Shared Pool
	KEEP
	UNKEEP
	SIZES
	ABORTED_REQUEST_THRESHOLD
	The PL/SQL Wrapper

	Summary

	Database Triggers
	Types of Triggers
	DML Triggers
	Instead-of Triggers
	System Triggers

	Creating Triggers
	Creating DML Triggers
	Creating Instead-of Triggers
	Creating System Triggers
	Other Trigger Issues
	Triggers and the Data Dictionary

	Mutating Tables
	Mutating Table Example
	Workaround for the Mutating Table Error

	Summary

	Part II - Advanced PL/ SQL Features
	Intersession Communication
	Introducing Intersession Communication
	Requiring Permanent or Semipermanent Structures
	Not Requiring Permanent or Semipermanent Structures

	The DBMS_PIPE Built-in Package
	Introducing the DBMS_PIPE Package
	Defining the DBMS_PIPE Package
	Working with the DBMS_PIPE Package

	DBMS_ALERT Built-in Package
	Introducing the DBMS_ALERT Package
	Defining the DBMS_ALERT Package
	Working with the DBMS_ALERT Package

	Summary

	External Routines
	Introducing External Procedures
	Working with External Procedures
	Defining the
	Architecture
	Defining
	Oracle Net Services Configuration
	Defining the Multithreaded External Procedure Agent
	Working with a C Shared Library
	Working with a Java Shared Library

	Troubleshooting the Shared Library
	Configuration of the Listener or Environment
	Configuration of the Shared Library or PL/SQL Library Wrapper

	Summary

	Dynamic SQL
	Introducing Dynamic SQL
	Working with Native Dynamic SQL
	Working with DDL and DML Without Bind Variables
	Working with DML and a Known List of Bind Variables
	Working with DQL

	Working with the Oracle DBMS_SQL Built-in Package
	Working with DDL and DML Without Bind Variables
	Working with DML and a Known List of Bind Variables
	Working with DQL

	Summary

	Introduction to Objects
	Introduction to Object-Oriented Programming
	Data and Procedural Abstraction

	Object Type Overview
	Creating Object Types
	Object Type Specification
	Object Type Body

	Object Type Inheritance
	Dynamic Method Dispatch

	Attribute Chaining
	Making Changes
	Type Evolution

	Summary

	Objects in the Database
	Introduction to Objects in the Database
	Object Tables
	Column Objects
	Object Views

	Accessing Persistent Objects Using SQL and PL/SQL
	Object Tables
	Accessing Column Objects
	Accessing Object Views
	Object Related Functions and Operators

	Maintaining Persistent Objects
	Type Evolution

	Summary

	Large Objects
	Introduction to Large Objects
	Features Comparison
	Types of LOBs
	LOB Structure
	Internal LOB Storage
	External LOB Storage
	Temporary LOB Storage
	Migrating from LONGs to LOBs

	LOBs and SQL
	SQL for Internal Persistent LOBs
	External LOB … BFILE

	LOBs and PL/SQL
	DBMS_LOB

	Performance Considerations
	Returning Clause

	Summary

	Scheduling Tasks
	Introducing DBMS_JOB
	SUBMIT
	BROKEN
	RUN
	CHANGE
	REMOVE

	Oracle Scheduler
	Terminology
	Using DBMS_SCHEDULER
	Migrating from DBMS_JOB
	Removing a Job

	Summary

	Part III - Appendixes
	PL/SQL Reserved Words
	Table of Reserved Words

	Guide to Supplied Packages
	SYS-Owned Built-in Packages
	DBMS_ADVANCED_REWRITE
	DBMS_ADVISOR
	DBMS_ALERT
	DBMS_APPLICATION_INFO
	DBMS_APPLY_ADM
	DBMS_AQ
	DBMS_BACKUP_RESTORE
	DBMS_CAPTURE_ADM
	DBMS_CRYPTO
	DBMS_DATA_MINING, DBMS_DATA_MINING_TRANSFORM
	DBMS_DATAPUMP
	DBMS_DDL
	DBMS_DEBUG
	DBMS_DEFER
	DBMS_DESCRIBE
	DBMS_DIMENSION
	DBMS_DISTRIBUTED_TRUST_ADMIN
	DBMS_FGA
	DBMS_FILE_TRANSFER
	DBMS_FLASHBACK
	DBMS_HS
	DBMS_HS_PASSTHROUGH
	DBMS_JAVA
	DBMS_JOB
	DBMS_LDAP
	DBMS_LOB
	DBMS_LOCK
	DBMS_LOGMNR
	DBMS_METADATA
	DBMS_MONITOR
	DBMS_OBFUSCATION_TOOLKIT
	DBMS_ODCI
	DBMS_OFFLINE_OG
	DBMS_OLAP
	DBMS_OUTLN
	DBMS_OUTLN_EDIT
	DBMS_OUTPUT
	DBMS_PIPE
	DBMS_PROFILER
	DBMS_PROPAGATION_ADM
	DBMS_RANDOM
	DBMS_REDEFINITION
	DBMS_REFRESH
	DBMS_REPAIR
	DBMS_REPCAT
	DBMS_RESOURCE_MANAGER/ DBMS_RESOURCE_MANAGER_PRIVS
	DBMS_RESUMABLE
	DBMS_ROWID
	DBMS_RULE, DBMS_RULE_ADM
	DBMS_SCHEDULER
	DBMS_SCHEMA_COPY
	DBMS_SERVER_ALERT
	DBMS_SERVICE
	DBMS_SESSION
	DBMS_SHARED_POOL
	DBMS_SPACE
	DBMS_SQL
	DBMS_SQLTUNE
	DBMS_STANDARD, STANDARD
	DBMS_STAT_FUNCS
	DBMS_STATS
	DBMS_SUMMARY
	DBMS_TRACE
	DBMS_TRANSACTION
	DBMS_TRANSFORM
	DBMS_TYPES
	DBMS_UTILITY
	DBMS_WARNING
	DBMS_WORKLOAD_REPOSITORY
	DBMS_XMLGEN, DBMS_XMLQUERY
	DBMS_XPLAN
	UTL_COLL
	UTL_COMPRESS
	UTL_DBWS
	UTL_ENCODE
	UTL_FILE
	UTL_HTTP
	UTL_I18N
	UTL_INADDR
	UTL_LMS
	UTL_MAIL
	UTL_RAW
	UTL_RECOMP
	UTL_REF
	UTL_SMTP
	UTL_TCP
	UTL_URL

	CTXSYS-Owned Built-in Packages
	CTX_ADM
	CTX_CLS
	CTX_DDL
	CTX_DOC
	CTX_OUTPUT
	CTX_QUERY
	CTX_REPORT
	CTX_THES

	Index

