ORACLE

Oracle® Database
Migration Guide

12c Release 1 (12.1)
E22508-11

February 2014

Describes the installation, configuration, and administration
tasks for all activities related to migrating applications to
Oracle Database from other databases, including DB2,
MySQL, and Sybase.

Oracle Database Migration Guide, 12c Release 1 (12.1)

E22508-11

Copyright © 2011, 2014, Oracle and/or its affiliates. All rights reserved.

Primary Author: Roza Leyderman

Contributing Authors: Maitreyee Chaliha, Tanmay Choudhury, Tulika Das, Sue Pelski

Contributors: Peter Castro, Christopher Jones, Shoaib Lari, Tom Laszewski, Aman Manglik, Robert Pang,
Rajendra Pingte, Jeff D. Smith, Andrei Souleimanian

Contributor: The Oracle Database 12c documentation is dedicated to Mark Townsend, who was an
inspiration to all who worked on this release.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users
are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and
adaptation of the programs, including any operating system, integrated software, any programs installed on
the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to
the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle
Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your
access to or use of third-party content, products, or services.

Contents

PUOIACE ... et s et s e e xiii
AN S Lo = VT SPR R RRRT Xiii
Documentation AcCesSSIDIlitycccooiiiiiiiiiiiiiii e Xiii
Related DOCUITIEIESveoviieeiieceeeeeeeeeee ettt ettt eat e ete e eaaeeteesaeeeseesseseseeenseesseessesenseensessnssanseeans Xiii
CONMVEIILIONS ..oeitveeiiee ettt ettt e e eeet e e e e e et e e e e e eate e e e s essaaaeeeeesasaaaeeeesesasseessessaseseesesnassaeeeesssseseesssnssenesesons Xiii

Introduction to Tools and Products that Support Migration

Migration OVEIVIEWccoiiiiiiiiiiiiiicc s 1-1
Oracle Database 12¢ Release 1 Features for Migration Support ..., 1-1
SQL Translation FrameWOTIKc.ccvcvviiiiiiiieecieceectecre ettt ettt et eeae et este e eveereeteereenneensennes 1-2
Support for MySQL Applications...........cceueiiiueieiiiiieiecci e 1-2
Identity COIUMISc.couiiiiiiiiiiicic e 1-3
Implicit Statement RESULLSc.cccociuiiiiiiiiiiiiiccecccceeee e 1-3
JDBC Support for Implicit RESULES.........cocueiiiicieiiicc 1-4

OCI Support for Implicit RESUILS........ccccuiiiiiiriiiiiiii e 1-4

ODBC Support for Implicit RESULES.........c.coiiiiiiiiiiiiiicceeccccceeeeee e 1-5
Enhanced SQL to PL/SQL Bind Handling...........cccccceiiiiiiiiiiiiiiiiicenens 1-7
Native SQL Support for Query Row Limits and Row Offsetscccocoueviiiiiiiiiicccines 1-8
JDBC Driver Support for Application Migrationcccooviiiiiiiiiiiiiiccccccnnes 1-8
ODBC Driver Support for Application Migrationccccoeeeiiiiiiiieniiiceceeee 1-8
Other Oracle Products that Enable Migration...............cccccocoiiiiiiiiiicccecc 1-9
OEM Tuning and Performance Packs..........c.ccooiiiiiiiii e, 1-9
Oracle GOldenGate...........cccciiiiiiiiiiiiiiii s 1-9
Oracle Database GateWaysccccccucuiiiiiiiiiiiiiiiiiiiiiics e 1-9
Oracle SQL DeVeIOPETccviiiiiiiiiiiiiieiitiicicice s 1-9
Migration Support for Other Database Vendors..............cccccovviviiiiinniinni 1-10

SQL Translation Framework Overview and Architecture

When to Use SQL Translation Frameworkcccocoiiiiiiiiiininiiniseeee e 2-1
What is SQL Translation Frameworkccocooioiiiriiieiieiieicieieeeeeesete ettt 2-2
Architecture of SQL Translation FrameworkK.............cccoccoivieviieieniiecieriicieeeeeseeee et 2-3
How to Use SQL Translation Framework...........cccoocoiiiiiiiiiiiieiiieiteeseeee et 2-3

SQL Translation Framework Configuration
Installing and Configuring SQL Translation Framework with Oracle SQL Developer............ 3-1

Overview of Oracle SQL Developer Migration SUPPOTt ..o, 3-1

Setting Up Oracle SQL Developer 3.2 for Windows..........ccoovieieiiiiieiiiicicccee 3-2
Setting Up Oracle SQL Developer 3.2 Startupcccococeeeuceeueiceieicieeeeeieeieeeeeeeeneeeeeeenns 3-2
Starting Oracle SQL DeVeloper ...t s 3-2

Creating a Connection to Oracle Database............ccccueuiiiiiiiiiiiiiicc 3-3

Testing SQL Translation..........ccccccieiiiiiiriricceeeeeeeeeee e 3-4

Creating a Translation Profile and Installing SQL Translator..............ccoceviiiineiiicicienen, 3-5
Installing SQL Translator...........oocueiiii e 3-5
Creating a Translation Profile ... 3-8

Using the SQL Translator Profile...........ccoiioiiiiiic e 3-8

Installing and Configuring SQL Translation Framework from Command Line...................... 3-10

Installing Oracle Sybase Translator ... 3-10

Setting up a SQL Translation Profile.............ooiviiiiiii e 3-10

Setting Up a Database Service to Use the SQL Translation Profileccccovvininnninn 3-11
Setting Up a Database Service in Oracle Real Application Clustersccccccccucueuneeee. 3-11

Testing Sybase SQL Translation Using the SQL Translation Profile..........c.ccccoooieiiinnnnnn. 3-11

Granting Necessary Permissions for Installing the SQL Translator..............ccccccoeiinnccnne. 3-12

4 SQL Translation of JDBC and ODBC Applications

SQL Translation of JDBC Applications ..o 4-1
SQL Translation PrOfileccioiiiiiieeieeeee ettt ettt ere ettt et eae e eteesesteersereensenseessennas 4-1
Error Message Translation.............coiiioiiiiiiii 4-1
Converting JDBC Standard Parameter Markers...........cccoooiiiiiiiiciiiiiccce e, 4-2
Executing the Translated Oracle Dialect QUETYccccceuiiiiiiiiiiiiiiiicicccceeeecceeee e 4-2
Error Translation ... 4-3
SQL Translation Using a JDBC DIiVercccouoiiiiiiiiicecc i 4-3

SQL Translation of ODBC APPLicationsc..cccoeiriiiiriiniiiniineeeteeeeeeeee e 4-5
SQL Translation Profile ... 4-5
Error Message Translation ..o 4-5
Translating EIror MeSSagescciviiiiiiiiiiiiiiiiiicc e 4-5

5 Application Migration Using SQL Translation Framework Example

Migrating a Sybase JDBC Application ... 5-1
APPLCAtION OVEIVIEWovviiiiiiiiiiieicie e 5-2
Setting Up MiIrationc.couiiiiiiiiiiiiiii s 5-2
Capturing MIGTation.........ccccviiiiiiiiiiiiiii s 5-4
Converting Migration........cccueuiiiiiiiiicieie e 5-7
Generating a Migrationcccoovuiiiiiiiiiiic e 5-9

Creating a Target Oracle USET.........c.ccccciuiiiiiiiiiiiicieiciiccieeeieeeeeeee e 5-10
MOVING the Data......ccueuiiiiiiic 5-11
Generating Migration Reports..............ccoooiiiiiiiiiiiic s 5-12

6 MySQL Client Library Driver for Oracle

Introduction to MySQL Client Library Driver for Oracle...............cccccccoeiiiiiiiiniiiiiie, 6-1
Installation and First Use of MySQL Client Library Driver for Oracleccccccocovvininnnn. 6-2
Overview of Migration with MySQL Client Library Driver for Oracle.............c.ccccoevviinnnnnn. 6-2

Using MySQL Client Library Driver for Oraclecccocoovinininniini, 6-3

Relinking the Application with the liboramysql Driver ..., 6-3
Connecting to Oracle Databaseccccieuiiiiiieiiicecceeeeee e eneenes 6-5
Supported PIatfOrms.........ccoiiiiiiiiiiiiiiiii s 6-5
Error Handling ..o 6-5
GLODALIZATION ...ttt 6-5
Expected DIfferences ... 6-5

7 API Reference for Oracle MySQL Client Library Driver

Mapping Data TYPeS.......ccoiuiiiiiiiiiiiiiici 7-1
Mapping Oracle Data Types to MySQL Data Typescccooeieiiiiiriieiiiiccicecceece e 7-1
Data Type Conversions for MySQL Program Variable Data Types........cccocovvvrrrnnncncncncnce. 7-2

MYSQL_TYPE _BLOB.......oooiiiiiiiiiiiiiii s 7-3
MYSQL_TYPE _DATEocoiiiiiiiiiiiicrc s s 7-3
MYSQL_TYPE_DATETIMEcoceooiiiiiiiiiiiicec s 7-4
MYSQL_TYPE _DOUBLE........ccccoiiiiiiiiiiniiiiiiiiiiscr s ssssans 7-4
MYSQL_TYPE _FLOAT ..ottt s 7-4
MYSQL_TYPE_LONGooviiiiiiiiiiiicii s 7-4
MYSQL_TYPE _LONG_BLOB.......ccccoooiiiiiiiiiiiiis s 7-4
MYSQL_TYPE_LONGLONGccoosiiiiiiiiiiniiiiiiriiie s sens 7-4
MYSQL_TYPE_MEDIUM_BLOBcccecoiimiiiiiiiiiii s 7-4
MYSQL_TYPE_ NEWDECIMAL.......ccccoeiviiiiiiiiins s 7-5
MYSQL_TYPE _SHORTceoviiiiiiiiiiiriiieiiece s 7-5
MYSQL_TYPE_STRINGceoetiiriiiiiiiiiiiceeinec s 7-5
MYSQL_TYPE _TIMEc.coceiiiiiiiiiiiiniiii s 7-5
MYSQL_TYPE_TIMESTAMPccceviiiiiiniiiiiiicenrnie e 7-5
MYSQL_TYPE_TINY ...coiiiiiiiiiiiicec s 7-6
MYSQL_TYPE_TINY_BLOBccoiiiiiiiiiiiicis s 7-6
MYSQL_TYPE _VAR_STRING......cccoiiiiriiiiiiiiiicice s 7-6
Data Type Conversions for MySQL External Data Types (LOB Data Type Descriptors)....... 7-6
Data Type Conversions for Datetime and Interval Data Types........ccccooviieieiiriieiiicicne, 7-7

Error Handling ... 7-7

Available MySQL APIS ..o 7-7
INY_ANE() coovirireieieieiieeee s 7-11
mysql_affected_TOWS()cccooiuiiiiiiiiiiic s 7-11
MYSGL_AUTOCOMIMIE() ..vvvrreieieieieieieieieieece et 7-12
MYSGlL_change_USET()covuiviuiriiiiiiiiiiiiicccc s 7-12
mysql_character_set_Name()cccceeeururiiiiiiiiiiiiii s 7-12
INYSGL_CLOSE() oo s 7-12
MYSGL_COMMUIL()..voviviviiiiiiiicicieiic s 7-12
MYSGL_CONNECE()..vvviiiiiiiiiec s 7-18
MYSGL_CTeate_db() ...ouiiiiiiiiicc s 7-13
mysql_data_seek().......ccouiiiiiiiiiiii 7-13
MYSGLAEDUZ() cv.vvviiiiciiicic s 7-18
MYSGL_debUG_INEO() ..vvvririiiiiiiiiiciciieccecr s 7-13
MYSGL_drop_db() ..c.ceveiiiiiiiiii 7-13
mysql_dump_debug_info() ... 7-13

vi

MYSGL_EOF() cvviviriiiiiiiieicieice s 7-14

INYSAL_EITIIO() . certtiiiiiieieict e 7-14
INYSGL_EITOT() oottt 7-14
MYSGL_eSCAPE_SEIING() ..voveviviviriririiiiiiiiiiitcicie s 7-14
mysql_fetch_field() ..o 7-14
mysql_fetch_field dir€ct()cccoeoeueueeiiiiiiiiicicc s 7-15
mysql_fetch_fields()........ccviiiiiiiiiiii s 7-15
mysql_fetch_1engths().......cccooovi 7-15
MYSGL_EECR_TOW() 1.vviiiiiiciiciccc e s 7-15
mMysql_field_cOUNt()ocoeveviiiiiiiiiiiiiicc s 7-15
MySql_field_SEEK()ccecvviriiiiiiiiiiiiiiiii 7-15
MYSGL_field_TI1()....cmimiiiiiiiiiiiccce s 7-16
MYSGL_free_reSult()cooiiiiiiiiiiiic s 7-16
mysql_get_character_set_info().........ccoooeviiiiiiiiii 7-16
mysql_get_client INfO()coooeeiiiiiiiiicccce s 7-16
mysql_get_client Version()........ccocueeiriiiiiiiiiicci s 7-16
mysql_get_host_info() ... 7-16
Mysql_get_Proto_info() ... 7-17
mysql_get_server_info() ... 7-17
mysql_get_Server_version().........cccouiiiiiiiiiiiii s 7-17
mMysql_get_SSI_CIPRer()ccceiiiiccccce s 7-17
MYSGL_NeX_STING()..veveveviviriiiiiiiiiiiiiccicc s 7-17
MYSQLNLO() coerrrreiieeee e 7-17
IYSGLINTE() 1ottt 7-18
MYSGL_iNSert_id().....cocoeiririiiiiiiiiiiii s 7-18
IYSALKILL() woeieiiiic e 7-18
MYSGL_IDTATY_€NA()..eveviimiiiiiiiiiiiciceeccce et 7-18
MySqL_Ibrary_Init() ..o 7-18
MYSGL_LIST_ADS() wvvviiiiiiiiiiic 7-18
MYSGL_LST_FIELAS() cvvvvrrnemeieieieieccce s 7-19
MYSGL_LISt_PTOCESSES() ..vvviviviriiiiiiiiiiiiiieiecete s 7-19
MYSGL_LSt_taDIES()....cvviviiiiiiiiiiiiiiicicc s 7-19
MYSGL_MOTE_TESUIES() c..vevviiiiciciiicieieiiece e 7-19
MYSGL_NEXE_TESULE() .vveviviiiiiiiiiiiiiiicc s 7-19
MysqL_NUM_fIElAS() ...ovevevimiiiiiiiiiiiiiic s 7-20
MYSGL_NUIMN_TOWS() cvevviiieieiiicieirieeeeie ettt eees 7-20
MYSGL_OPHIONS() cvvvviviiriiiiiicieii s 7-20
IYSGLPING() 1vvvriiieiiieieieicteei s 7-20
INYSGL_QUETY() vttt 7-20
mysql_read_quUery_resSult()........cccouiiiiiiiiiiiii s 7-20
MYSl_real CONMECH()......cceiuiiiiiiiiiiiiiiiiicc s 7-21
mysql_real_escape_STIING()cccceeueueuriimeuiiieieeieeeeee s 7-21
MYSGL_real_qUETY() ...covvevireriieiiiciiiciciciciee s 7-21
MYSGL_TEfTESN() ..o s 7-21
MYSGL_TEL0AAN) c..vvveeiieieiciceece s 7-21
MYSGL_TOIIDACK() ...oviviviiiiiiiiiiii s 7-21
MYSGL_TOW_SEEK() c..vviviiiiiiiiiciiiicc s 7-22

MYSGL_TOW_tELL().vveviviieiiiiiiiiiiiici s 7-22

MYSGL_Select_db().....ccciiiiiiiiiii 7-22
MYSGL_SENA_GUETY() cvevvviieieiiiiciciieieieeee et 7-22
MYSGL_SEIVET_end().....ccceiriviiiiiiiiiiiiiiiicicc s 7-22
MYSGL_SETVET_INIE() c.oviviviviiiiiiiiiiiiiiciiicc s 7-22
Mysql_set_character_SEt()ccceeuiiiiiiiiiicccicecc s 7-23
mysql_set_local_infile_default()ccccocoiiiiiiiiiiiiiii 7-23
mysql_set_local_infile_handler()cccccooiiiiiiiiiiiiiii 7-23
MYSql_set_SEIVer_OPHION()....ccccceueueueueuiuiicieieicieieieteteeiete et 7-23
MYSGL_ShULAOWN() oo 7-23
MYSALSGISTATE() ..vviieieieiiee e 7-23
INYSGLSSLUSEL() vttt s 7-24
MYSGLSTAL() ovvveviiiiiicieicicce s 7-24
mysql_stmt_affected_TOWS()cccceviiiiiiiiiiiiiiii 7-24
MYSGL_STME_Attr_ZEE()..c.ovemeueieieiiiiicciccccc s 7-24
Mysql_stmt_attr_Set()cocoviiiiiiiiiiiiii 7-24
mysql_stmt_bind_param().........ccccceceiiiiiiiii 7-24
mysql_stmt_bind_reSULE()ccciiiiiiiiiiicieeeece s 7-24
MYSGL_SME_CLOSE()..vviviviviriiiiiiiiiiiiciciciccc s 7-25
mysql_stmt_data_seek()........cceoeiriiiiiiiiiii 7-25
MYSGL_STME_ETTTIO() +vvvriieieieieieicieieieee et 7-25
MYSGL_STME_ETTOI() cvvvvieieieieieicicce s 7-25
Mysql_stmt_eXecute()ccovviiiiiiiiiiiiiii 7-25
MYSGL_STME_FEECH().oviiicicicicccccc s 7-25
mysql_stmt_fetch_column()cccooviiiiiiiii 7-25
mysql_stmt_field count() ..o 7-26
mMysql_stmt_free_reSUlt()ccoooiiiiiiiiicce s 7-26
MYSGL_STME_INTE() ovoviviviiiiiiiiiee 7-26
mysql_stmt_insert id() ... 7-26
Mysql_stmt_NeXt_TeSUL()......ccoeimiiiiiiiiiiccec s 7-26
MySGlL_StMt_NUMN_TOWS() coovoviviiiiiiiiiiiiiieicicc s 7-26
mysql_stmt_param_COUNE()........cooeueuruiiuiiiiiiiiiiiieceeecee s 7-26
mysql_stmt_param_metadata()ccccceeeeiiiiiiii s 7-27
MYSGL_STME_PIEPATE()....cviviviviriiiiiiiiiiiiiiieiic s 7-27
MYSGL_STME_TESEL() . vvvviiiiiiiciciiccc s 7-27
mysql_stmt_result_metadata).........cccceeeeiiiiiiiicc s 7-27
Mysql_stmt_rOW_SEek()cccouvviiiiiiiiiiiiiiiiic 7-27
MYSGL_StMt_TOW_tEI1()...c.oviviiiiiiiiiiiiiiiiiiii s 7-27
mysql_stmt_send_long_data()ccccceeeiiiiiiiii s 7-27
mysql_stmt_sqlstate()cccoveiiiiiiii 7-28
mMysql_stmt_store_TeSULL()........ccoevruririiiiiiiiiiiiiiccc s 7-28
MYSGL_STOTe_TESULL() c..vovviiiiiiiicicicieiciccccee e 7-28
mysql_thread_end()........ccoooiiiiiiiiiniiii 7-28
mysql_thread_1d()......ccccoiiiiiiiii s 7-28
mMysql_thread _INit()........cccoeieiiiiiiice s 7-28
mysql_thread_safe()..........cccoviiiiiiiiiiii 7-29
MYSGL_USE_TESULE() ...ovviiiiiiiiiccicc s 7-29

Vii

Mysql_Warning_ COUNT()ocoovueririiiiiiiiiiiiiiiieiieee s 7-29

8 API Reference for SQL Translation of JDBC Applications

Translation Properties............ccooiiiiiiiiiiiic e 8-2
SQITranslationProfile...........ccoiiiiiiiiiiiii s 8-3
SQIErrorTranslationFile........c.cccociiiiiiiiiiiicece e 8-4

OracleTranslatingConnection Interface...............ccocooiiiiiiiiii e 8-5
SAITranslationNVersion ...t 8-6
Loy X=Xt L <) 0 =3 0 L () OSSR 8-7
PIePareCall() ..o s 8-10
prepareStatemMent()........ccooiiiiiiiii s 8-13
getSQLTranslationVersions()ccococeeieueeuiimicieieiceeieieieeeieiete et seaeees 8-17

Error Translation Configuration File.............ccccoooiiiiiiiii e 8-18

Glossary
Index

viii

List of Examples

1-1 How to create an identity COIUMINcocooiiiiiii e 1-3
1-2 Retrieving and Processing Implicit Results from PL/SQL BIockscccccoeviviniiiiininininns 1-4
1-3 Using OCIStmtGetNextResult() to Process Implicit Resultsccoouoiiriieiiiiiiinnnnnn, 1-5
1-4 Using ODBC to retrun implicit results with DBMS_SQL.RETURN_RESULT 1-6
1-5 Using ODBC to return implicit results with SQLMoreResults............ccccoeirriiinirriininne, 1-6
1-6 Invoking a subprogram with a nested table formal parametercccccccoeviiiiiinnns 1-7
1-7 How to limit bulk Selectioncccccceiiiiiiiiiiiiniiiiii e 1-8
4-1 Translating Non-Oracle SQL Statements to Oracle SQL Dialect Using JDBC Driver 4-4
4-2 Translating Non-Oracle SQL to Oracle SQL Dialect Using ODBC Driver...........cccccu..... 4-5
6-1 Connecting to MySQL and Inserting a New ROWcoooueviiiiiiiiii 6-2
8-1 Using the createStatement() method............ccooiiiiiiiiiis 8-8
8-2 Using the prepareCall() methodcccooiiiiiii 8-11
8-3 Using the prepareStatement() method............ccooiiii 8-14

List of Figures

2—-1 SQL Translation Framework at RUNEMEcooeiiiiiiieiiiceecee e 2-3
3-1 Checking JDBC Configuration for Oracle SQL Developercccooeueiniiiiiiiiinciecne. 3-3
3-2 Creating an Oracle Database CONNeCtioN...........cccouoiiiiiiiiiiiciic 3-3
3-3 Setting Up Migration Preferences in Oracle SQL Developer ..o, 3-4
5-1 Sybase Application Running Against Oracle Databaseccccccoooeriiieiniiciiiiicce 5-1
5-2 Setting JTDS JDBC DIIVETcevivuiiiieiiieiicieiciei s 5-2
5-3 Associating a User with Migration Repositoryccccoeeeieiiiiiiciiiiiiccc 5-3
5-4 Creating a Connection to the Sybase Databaseccccooooii 5-3
5-5 Starting Capture Phase of Migration Processcococeueiiiiiiiiiiiiciiciicccccc 5-4
5-6 Migration Wizard Introduction Screen............occuoioiiiiiiiiiiiiiiiccc 5-5
5-7 Choosing the Migration RepositOrycccceeuoiiuiiiiiiiiicieicec 5-5
5-8 Specifying Project Name and Output Directorycccooeoieieiiiicieiciiiiceecccc 5-6
5-9 Selecting the Database Connection and Modeccccoeiiiiiiiiiniiiiiicccc 5-6
5-10 Selecting the Database to be Migrated..........cccooeuoioiririoiiiiiiii 5-7
5-11 Setting Migration Preferences ... 5-7
5-12 Setting Migration Preferences ... 5-8
5-13 Starting Convert Phase of Migration Processccoceueiiiiiiiiiicciciicccecc e 5-8
5-14 Converting the Migrated Data.........ccccoooiriiiiiiiiiii 5-9
5-15 Selecting the Database Modeccoouoiiiiiiiiii s 5-10
5-16 Creating Oracle Database Connection for Target User dbo_simpledemol2c................. 5-10
5-17 Targeting an Oracle USerccoooiiiiiiiiiiieiic s 5-11
5-18 Moving the Data from Sybase Database to Oracle Databasecccccccevviviviiinnnnnnn 5-11
5-19 Generating Migration RePOItsccoeuiiiiiiiiiiiiiiiic 5-12
5-20 Migration Analysis RepoOrtcccooriiiiiiiiiii s 5-12
5-21 Target Status RePOrtcccceuiiiiiiiiiiiiiii s 5-13
6-1 MySQL Application Code Using liboramysql Driver to Connect to Oracle...................... 6-1

xi

List of Tables

Xii

1-1
1-2
7-1
7-2
7-3
7-4
81
82
8-3

Supported Database Versions for Migration Using Oracle SQL Developer 1-10
Supported Applications in Databases...........c.cccceviiiiiiiiiiiiiiii e, 1-10
Mapping Oracle Data Types to MySQL Data Typesccccooumrieiniiiiciiiicieecae 7-1
Converting MySQL Program Variable Data Types to Oracle Column Data Types......... 7-3
Data Type Conversions for LOB Data Type Descriptors.........c.cccoceviuiieiiiiiiiiieeieienennen, 7-6
Data Conversions for Datetime and Internal Data Typecccooeveiiiiiiiiiiiiiiic 7-7
Translation Properties ... s 8-2
OracleTranslatingConnection ENUMETrationcccceuiiiieiiiiiiicieiiccc 8-5
OracleTranslatingConnection Methods............ccooiiiiiiiiii 8-5

Audience

Preface

This guide describes the installation, configuration, and administration tasks for all
activities related to migrating applications developed for non-Oracle databases, such
as DB2, MySQL, Sybase, and legacy applications, to Oracle Database. This guide also
provides migration scenarios that users may implement in sequence.

This guide is for database administrators and application developers who are
interested in migrating from databases other than Oracle to an Oracle Database.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers have access to electronic support through My Oracle Support. For
information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or
visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing
impaired.

Related Documents

For more information, see the following documents in the Oracle Database Release
12.1 documentation set:

» Oracle Database SQL Language Reference
» Oracle Database Administrator's Guide
» Oracle Database Development Guide

» Oracle Database Reference

Conventions

The following text conventions are used in this document:

xiii

Xiv

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code

in examples, text that appears on the screen, or text that you enter.

1

Introduction to Tools and Products that
Support Migration

This chapter contains the following sections:

s Migration Overview

s Oracle Database 12c Release 1 Features for Migration Support
» Other Oracle Products that Enable Migration

» Migration Support for Other Database Vendors

Migration Overview

Before migrating your application to Oracle Database, you must be aware of several
key points that are described in Oracle Database Concepts.

When discussing the migration of a database-centered enterprise, it is useful to keep in
mind that the actual migration of database schema and data is only a part of the
process. The migration of a core business solution often involves several databases and
applications that work together to deliver the product and services that drive the
revenue of an organization. For more information about preparing a migration plan,
see Oracle SQL Developer User’s Guide.

Oracle Database 12¢ Release 1 Features for Migration Support

The following features introduced in Oracle Database 12c Release 1, collectively
enhance the migration process of non-Oracle database applications to Oracle Database:

s SQL Translation Framework

= Support for MySQL Applications

s Identity Columns

= Implicit Statement Results

= Enhanced SQL to PL/SQL Bind Handling

= Native SQL Support for Query Row Limits and Row Offsets
= JDBC Driver Support for Application Migration

s ODBC Driver Support for Application Migration

Introduction to Tools and Products that Support Migration 1-1

Oracle Database 12c Release 1 Features for Migration Support

SQL Translation Framework

A key part of migrating non-Oracle databases to Oracle Database involves the
conversion of non-Oracle SQL statements to SQL statements that are acceptable to
Oracle Database. The conversion of the non-Oracle SQL statements of the applications
is a manual and tedious process. To minimize the effort, or to eliminate the necessity
for converting these statements, Oracle Database Release 12¢ introduces a new feature
called SQL Translation Framework using which these SQL statements can be accepted
from client applications and then can be translated at run-time before execution.

Inside the Database, the SQL statements are translated by the SQL Translator,
registered with the SQL Translation Profile, to handle the translation for the
non-Oracle client application. If an error occurs while a SQL statement is executed,
then the SQL Translator can also translate the Oracle error code and the ANST
SQLSTATE to the vendor-specific values expected by the application. The translated
statements are then saved in the SQL Translation Profile, so that you can examine and
edit at your discretion.

The advantages of SQL Translation Framework are the following;:

s The translation of SQL statements, Oracle error codes, and ANSI SQLSTATE is
automatic.

s The translations are centralized and examinable.

= You can extract the translations and insert them back to the applications at a later
point.

Support for MySQL Applications

Oracle Database driver for MySQL eases migration of applications initially developed
to work with MySQL database. This feature has two key benefits:

= It enables the enterprise to reuse the same application to use data stored in both
MySQL Database and Oracle Database

= It reduces the cost and complexity of migrating MySQL applications to Oracle
Database

Oracle Database supports all MySQL functions in the client interface with the same
semantics. SQL statements are translated with the following restrictions:

s The following SQL constructs are ignored:

- ENGINE specification for a table as there is only one storage engine, namely
Oracle

— The ENUM and SET types are used as VARCHAR2. Therefore, these values are not
converted to their index value if retrieved in a numeric context.

= The following SQL constructs give an error, so that the application is forced to
recode:

— Creation of tables with spatial datatypes such as GEOMETRY, POINT, LINESTRING,
POLYGON, GEOMETRYCOLLECTION, MULTILINESTRING, MULTIPOINT, and
MULTIPOLYGON

- MySQL-specific NLS commands

s The following SQL commands give Oracle-specific output or have Oracle-specific
effect:

— SHOW DATABASES shows only one database, namely oracle

1-2 Migration Guide

Oracle Database 12c Release 1 Features for Migration Support

— SHOW ENGINES shows the Oracle engine only

— CREATE PROCEDURE must follow Oracle PL/SQL specification in Oracle
Database 12c Release 1.

s The following data types have different behavior:

— Columns of ENUM data types are created as VARCHAR2 (4000) . No validation is
performed for insertion.

— Columns of SET data types are created as VARCHAR2 (64) . No validation is
performed for insertion.

For further details, see Chapter 6, "MySQL Client Library Driver for Oracle" and
Chapter 7, "API Reference for Oracle MySQL Client Library Driver".

Identity Columns

Oracle Database 12c Release 1 implements ANSI-compliant IDENTITY columns.
Migration from database systems that use identity columns is simplified and can take
advantage of this new functionality.

This feature implements auto increment by enhancing DEFAULT or DEFAULT ON NULL
semantics for use by SEQUENCE . NEXTVAL and SYS_GUID, supports built-in functions and
implicit return of default values.

Example 1-1 creates a table with an identity column, which generated by default.
When explicit nulls are inserted into the identity column, the default behavior is to
use the sequence generator. For further details, see Oracle Database SQL Language
Reference.

Example 1-1 How to create an identity column

CREATE TABLE tl (cl NUMBER GENERATED BY DEFAULT ON NULL AS IDENTITY,
c2 VARCHAR2 (10));

INSERT INTO tl(c2) VALUES (‘abc’);

INSERT INTO tl (cl, c2) VALUES (null, ‘xyz’);

SELECT cl, c2 FROM tl1;

Implicit Statement Results

Starting with Oracle Database 12c Release 1, Oracle supports results of SQL statements
executed in a stored procedure to be returned implicitly to the client applications
without the necessity to explicitly use a REF CURSOR. This feature eliminates the
overhead of re-writing the client-side code.

Implicit statement results enable you to write a stored procedure, where each intended
query (the statement after the FOR keyword) is part of the OPEN cursor variable. The
PL/SQL layer adds the equivalent capability and enables SELECT statements to pass
the results to the client, when code is migrated to Oracle Database from other vendors
environments. The stored procedures can return the results directly to the client with
the DBMS_SQL . RETURN_RESULT procedure. The SQL*Plus FORMAT command and its
variations may be invoked to customize the output.

For information about the DBMS_SQL package, see Oracle Database PL/SQL Packages and
Types Reference. For information about how to use format output, SQL*Plus User's
Guide and Reference.

Introduction to Tools and Products that Support Migration 1-3

Oracle Database 12c Release 1 Features for Migration Support

JDBC Support for Implicit Results

Starting with Oracle Database 12c Release 1, JDBC applications provide support for
implicit results through the following new functions:

m getMoreResults
m getMoreResults(int)
m getResultSet

You can use these methods to retrieve and process the implicit results returned by
PL/SQL procedures or blocks, as demonstrated in Example 1-2.

Example 1-2 Retrieving and Processing Implicit Results from PL/SQL Blocks
Suppose you have a procedure called foo:

create procedure foo as
cl sys_refcursor;
c2 sys_refcursor;

begin
open cl for select * from hr.employees;
dbms_sqgl.return_result(cl); --return to client

-- open 1 more cursor

open c2 for select * from hr.departments;

dbms_sqgl.return_result (c2); --return to client
end;

The following code demonstrates how to retrieve the implicit results returned by
PL/SQL procedures using the JDBC getMoreResults methods:

String sgl = "begin foo; end;";

Connection conn = DriverManager.getConnection(jdbcURL, user, password);

try {
Statement stmt = conn.createStatement ();
stmt .executeQuery (sql);

while (stmt.getMoreResults())

{
ResultSet rs = stmt.getResultSet();
System.out.println("ResultSet");
while (rs.next())

/* get results */

}

For more information, see Oracle Database [DBC Developer’s Guide

OCI Support for Implicit Results

Starting with Oracle Database 12c Release 1, Oracle Call Interface (OCI) provides
support for implicit results through a new function, 0OCIStmtGetNextResult (). Itis
called iteratively by C applications to retrieve each implicit result from stored
procedures and anonymous blocks. Implicit results consume rows directly from a
stored procedure without going through a RefCursor.

Example 1-3 shows how to use the 0CIStmtGetNextResult () function to retrieve and
process the implicit results returned by either a PL/SQL stored procedure or an
anonymous block:

1-4 Migration Guide

Oracle Database 12c Release 1 Features for Migration Support

Example 1-3 Using OCIStmtGetNextResult() to Process Implicit Results
OCIStmt *stmthp;

ubd rsetent;

void *result;

ubd rtype;

char *sgql = "begin foo; end;";

OCIHandleAlloc((void *)envhp, (void **)&stmthp,
OCI_HTYPE_STMT, 0, (void **)0);

/* Prepare and execute the PL/SQL procedure. */
OCIStmtPrepare (stmthp, errhp, (oratext *)sgl, strlen(sql),
OCI_NTV_SYNTAX, OCI_DEFAULT);

OCIStmtExecute(svchp, stmthp, errhp, 1, 0,
(const OCISnapshot *)O0,
(OCISnapshot *)0, OCI_DEFAULT);

/* Now check if any implicit results are available. */
OCIAttrGet((void *)stmthp, OCI_HTYPE_STMT, &rsetcnt, 0,
OCI_ATTR_IMPLICIT RESULT_COUNT, errhp);

/* Loop and retrieve the implicit result-sets.
* ResultSets are returned in the same order as in the PL/SQL
* procedure/block.
*/
while (OCIStmtGetNextResult (stmthp, errhp, &result, &rtype,
OCI_DEFAULT) == OCI_SUCCESS)

/* Check the type of implicit ResultSet, currently
* only supported type is OCI_RESULT_TYPE_SELECT
*/
if (rtype == OCI_RESULT_TYPE_SELECT)

OCIStmt *rsethp = (OCIStmt *)result;

/* Perform normal OCI actions to define and fetch rows. */

}
else
printf ("unknown result type %d\n", rtype);

/* The result set handle should not be freed by the user. */

OCIHandleFree (stmthp, OCI_HTYPE_STMT); /* All implicit result-sets are also
freed. */

See Also: Oracle Call Interface Programmer’s Guide

ODBC Support for Implicit Results

Starting with Oracle Database 12c Release 1, ODBC applications provide support for
implicit results through a new function, SQLMoreResults (). ODBC driver is enhanced
to make use of the following new OCI APIs that enhance the migration process:

m OCIStmtGetNextResult () function
s OCI_ATTR_IMPLICIT RESULT_COUNT attribute

s OCI_RESULT_TYPE_SELECT attribute

Introduction to Tools and Products that Support Migration 1-5

Oracle Database 12c Release 1 Features for Migration Support

ODBC support for implicit results enables the migration of Sybase and SQL Server
applications that use multiple result sets bundled in the stored procedures. Oracle
achieves this by sending the statements or procedures to the server, where the
non-Oracle SQL is translated to Oracle syntax. Example 1-4 and Example 1-5
demonstrate how to retrieve implicit results in ODBC. See Oracle Call Interface
Programmer’s Guide for more information on this topic.

Example 1-4 Using ODBC to retrun implicit results with DBMS_SQL.RETURN_RESULT

create or replace procedure foo
is
cl sys_refcursor;
c2 sys_refcursor;
begin
open cl for select employee_id, first_name from employees where employee_
1d=7369;
dbms_sqgl.return_result(cl);
open c2 for select department_id, department_name from departments where rownum
<=2;
dbms_sqgl .return_result(c2);
end;
/

Example 1-5 Using ODBC to return implicit results with SQLMoreResults

SQLLEN enind, jind;

SQLUINTEGER eno = 0;

SQLCHAR empname [STR_LEN] = "";

//Allocate HENV, HDBC, HSTMT handles

rc = SQLPrepare (hstmt, "begin foo(); end;", SQL_NTS);

rc SQLExecute (hstmt) ;

//Bind columns for the first SELECT query in the procedure foo()
rc = SQLBindCol (hstmt, 1, SQL_C_ULONG, &eno, 0, &jind);

rc = SQLBindCol (hstmt, 2, SQL_C_CHAR, empname, sizeof (empname),
&enind) ;

//so on for all the columns that needs to be fetched as per the SELECT
//query in the procedure.

//Fetch all results for first SELECT query

while ((rc = SQLFetch (hstmt)) != SQL_NO_DATA)

{

//do something

}

//Again check if there are any results available by calling
//SQLMoreResults. SQLMoreResults will return SQL_SUCCESS if any
//results are available else returns errors appropriately as explained
//in MSDN ODBC spec.

rc = SQLMoreResults (hstmt);

if(rc == SQL_SUCCESS)

{

//If the columns for the second SELECT query are different the rebind
//the columns for the second SELECT SQL statement.

rc = SQLBindCol (hstmt, 1,..);

rc = SQLBindCol (hstmt, 2,..);

//Fetch the second result set
while ((rc = SQLFetch (hstmt)) != SQL_NO_DATA)
//do something

}
SQLFreeStmt (hstmt, SQL_DROP) ;

1-6 Migration Guide

Oracle Database 12c Release 1 Features for Migration Support

SQLDisconnect (hdbc);

SQLFreeConnect (hdbc) ;
SQLFreeEnv (henv) ;

Enhanced SQL to PL/SQL Bind Handling

In earlier releases of Oracle Database, a SQL expression could not invoke a PL/SQL
function that had a formal parameter or return type that was not a SQL data type.

Starting with Oracle Database Release 12¢, a PL/SQL anonymous block, a SQL CALL
statement, or a SQL query can invoke a PL/SQL function that has parameters of the
following types:

s Boolean
= Record declared in a package specification
s Collection declared in a package specification

Also, the SQL TABLE operator is enhanced, so that you can query on PL/SQL
collections of locally scoped types as an argument to TABLE operator. Here, the
collections can be of nested table types, VARRAY, or PL/SQL index table that are
indexed by PLS_INTEGER.

This feature, in particular, the extended flexibility of the TABLE operator enables
non-Oracle stored procedure code to be easily migrated to PL/SQL.

Example 1-6 shows how to dynamically call a subprogram with a nested table formal
parameter. See Oracle Database PL/SQL Language Reference for more information on this
topic.

Example 1-6 Invoking a subprogram with a nested table formal parameter
CREATE OR REPLACE PACKAGE pkg AUTHID CURRENT USER AS

TYPE names IS TABLE OF VARCHAR2(10);

PROCEDURE print_names (x names);

END pkg;

/

CREATE OR REPLACE PACKAGE BODY pkg AS
PROCEDURE print_names (x names) IS
BEGIN

FOR i IN x.FIRST .. x.LAST LOOP
DBMS_OUTPUT.PUT_LINE(x(1));
END LOOP;
END;

END pkg;

/

DECLARE
fruits pkg.names;
dyn_stmt VARCHAR2 (3000) ;

BEGIN
fruits := pkg.names('apple', 'banana', 'cherry');
dyn_stmt := 'BEGIN print_names(:x); END;';
EXECUTE IMMEDIATE dyn_stmt USING fruits;

END;

Introduction to Tools and Products that Support Migration 1-7

Oracle Database 12c Release 1 Features for Migration Support

Native SQL Support for Query Row Limits and Row Offsets

Starting with this release, Oracle Database provides a row limiting clause that enables
native SQL support for query row limits and row offsets. If your application has
queries that limit the number of rows returned or offset the starting row of the results,
this feature significantly reduces SQL complexity for such queries.

Example 1-7 shows how to limit bulk selection with the FETCH FIRST clause. See
Oracle Database SQL Language Reference for more information on this topic.

Example 1-7 How to limit bulk selection

DECLARE
TYPE SallList IS TABLE OF employees.salary$TYPE;
sals SallList;
BEGIN
SELECT salary BULK COLLECT INTO sals FROM employees
WHERE ROWNUM <= 50;

SELECT salary BULK COLLECT INTO sals FROM employees
SAMPLE (10);

SELECT salary BULK COLLECT INTO sals FROM employees
FETCH FIRST 50 ROWS ONLY;
END;
/

JDBC Driver Support for Application Migration

Many applications that you want to migrate to Oracle Database from other databases
have Java applications that use JDBC to connect to the database. To facilitate SQL
translation, Oracle Database 12c Release 1 introduces a new set of JDBC APIs that are
specific to SQL translation.

See Also:
= "SQL Translation of JDBC Applications" on page 4-1

» Chapter 8, "API Reference for SQL Translation of JDBC
Applications"

m http://www.oracle.com/technetwork/database/enterprise-editi
on/jdbc-112010-090769.html for an updated list of JDBC drivers

ODBC Driver Support for Application Migration

ODBC driver supports the migration of third-party applications to Oracle Databases
by using the SQL Translation Framework. This enables non-Oracle database SQL
statements to run against Oracle Database. See "How to Use SQL Translation
Framework" on page 2-3 before migratng third-party ODBC application to Oracle
Database.

To use this feature with an ODBC application, you must specify the service name,
which was created as part of SQL Translation Framework setup, as the ServerName=
entry in the .odbc. ini file.

If you require support for translation of Oracle errors (ORA errors) to your the native
database, once your application starts running against Oracle Database, then you must
enable the SQLTranslateErrors=T entry in the . odbc. ini file. See "SQL Translation of
ODBC Applications" on page 4-5 for more information on this topic.

1-8 Migration Guide

Other Oracle Products that Enable Migration

Other Oracle Products that Enable Migration

Oracle recommends the use of the following products as part of an overall migration
strategy:

s OEM Tuning and Performance Packs
s Oracle GoldenGate
= Oracle Database Gateways

s Oracle SQL Developer

OEM Tuning and Performance Packs

For every type of migration, a few of the SQL statements used in the application must
change, and some indexes must be re-built. Oracle SQL Tuning and Performance Packs
provide guidance for the optimization step of the application migration.

Oracle GoldenGate

Oracle GoldenGate is a comprehensive software package for enabling the replication
of data in heterogeneous data environments. The product set enables high availability
solutions, real-time data integration, transactional change data capture, data
replication, transformations, and verification between operational and analytical
enterprise systems.

Oracle GoldenGate enables the exchange and manipulation of data at the transaction
level among multiple, heterogeneous platforms across the enterprise. Its modular
architecture provides the flexibility to extract and replicate selected data records,
transactional changes, and changes to DDL (data definition language) across a variety
of topologies.

When you migrate very large databases, the actual process of copying data from one
database to another is time-consuming. During this time, the enterprise must continue
delivering services using the old solution, which changes some of the data. These
run-time changes must be captured and propagated to Oracle Database. Oracle
GoldenGate captures these changes and enables side-by-side testing to ensure that the
new solution performs as planned.

Oracle Database Gateways

Oracle Database Gateways address the needs of disparate data access. In a
heterogeneously distributed environment, Gateways make it possible to integrate with
any number of non-Oracle systems from an Oracle application. They enable
integration with data stores such as IBM DB2, Microsoft SQL Server and Excel,
transaction managers like IBM CICS and message queuing systems like IBM
WebSphere MQ.

For more information about Oracle Database Gateways, see
http://www.oracle.com/technetwork/database/gateways/index.html

Oracle SQL Developer

Oracle SQL Developer, as described in Oracle SQL Developer User’s Guide, has a large
suite of features that enable migration, including the following features:

= Support for database migration, such as schema, data, and server-side objects,
from non-Oracle databases to Oracle Database (Migration Wizard)

Introduction to Tools and Products that Support Migration 1-9

Migration Support for Other Database Vendors

= Support for application migration, including SQL statement pre-processing and
data type translation support (Application Migration Assistant)

Migration Support for Other Database Vendors

Oracle provides migration support for applications running on various databases.
Table 1-1 lists the supported database versions for migration using Oracle SQL
Developer; this is not a comprehensive list. SQL translation may not work properly for

every database.

Table 1-1 Supported Database Versions for Migration Using Oracle SQL Developer

RDBMS Supported Versions
SQL Server 7.0, 2000, 2005,2008
Sybase Adaptive Server 12,15

(ASE)

Access 97,2000, 2002 and 2003
MySQL 34,5

DB2 AS400 V4R3, V4R5
DB2 LUW 8,9

Teradata 12

Informix 7.3,9.1,9.2,9.3,9.4

Table 1-2 provides information about the applications supported in several third-party

databases. Note that while translation framework is available for DB2 LUW, a

translator for DB2 is not available.

Table 1-2 Supported Applications in Databases

sSQL DB2 Sybase
Application Server DB2 LUW AS400 ASE Teradata Informix
Oracle SQL Developer Yes Yes No Yes Yes No
Oracle Migration Workbench No No Yes No No Yes
SQL Translation Framework Yes Yes Yes Yes Yes Yes
(SQL Translation Profile)
SQL Translation Framework yes Partial No Yes No No
(SQL Translator)

1-10 Migration Guide

2

SQL Translation Framework Overview and
Architecture

This chapter describes the overview and architecture of SQL Translation Framework in
the following sections:

s When to Use SQL Translation Framework
s What is SQL Translation Framework
» Architecture of SQL Translation Framework

s How to Use SQL Translation Framework

When to Use SQL Translation Framework

Use SQL Translation to migrate a client application that uses SQL statements with
vendor-proprietary SQL syntax.

Currently, SQL Translators are available only for Sybase and SQL Server, and there is limited
support for DB2.

SQL Translation Framework is designed for use with open API applications, such as
ODBC or JDBC, and applications that use SQL statements that may be translated into
semantically-equivalent Oracle syntax. These applications must relink to the Oracle
ODBC or JDBC driver and then execute through the translation service.

Following are the possible scenarios for the connection mechanism:

» If the application uses ODBC, JDBC, OLE DB or .NET driver, or data provider to
connect to the database, then the driver or data provider for Oracle must be
replaced.

» If the application uses MySQL client library to connect to MySQL, then the library
with Mysql Client Library Driver for Oracle must be replaced.

= No direct translator is available for DB2. For more information, refer to "Migration
Support for Other Database Vendors" on page 1-10.

If the application uses IBM DRDA network protocol to connect to DB2, then the
database connection settings must be changed to connect to Oracle through DRDA
Application Server for Oracle.

» If the application uses a vendor-proprietary C client API (the case of Sybase), then
the API calls must be replaced with appropriate Oracle OCI APlIs.

SQL Translation Framework Overview and Architecture 2-1

What is SQL Translation Framework

What is SQL Translation Framework

Various client-side applications, designed to work with non-Oracle Databases, cannot
be used with Oracle Database without significant alterations. This is because SQL
dialect varies among vendors of database technologies and different vendors use
different syntaxes to express SQL queries and statements.

Starting with Oracle Database Release 12¢, there is a new mechanism called SQL
Translation Framework that translates the SQL statements of a client program from a
foreign (non-Oracle) SQL dialect into the SQL dialect used by the Oracle Database SQL
compiler.

In addition to translating non-Oracle SQL statements, the SQL Translation Framework
can also be used to substitute an Oracle SQL statement with another Oracle statement
to address a semantic or a performance issue. In this way, you can address an
application issue without patching the client application.

The SQL translation framework consists of the following two components:
s The SQL Translator
s The SQL Translation Profile

The SQL Translator

The SQL Translator is a software component, provided by Oracle or third-party
vendors, which can be installed in Oracle Database. It translates the SQL statements of
a client program before they are processed by the Oracle Database SQL compiler. If an
error results from translated SQL statement execution, then Oracle Database SQL
compiler generates an Oracle error message.

The SQL Translator automatically translates non-Oracle SQL to Oracle SQL, thereby
enabling the existing client-side application code to run largely unchanged against an
Oracle Database. This reduces the cost of migration to Oracle Database storage
significantly. As a corollary, the translation feature may be used in other scenarios,
where it may be expedient to intervene between the original SQL statement submitted
by the client and its actual execution.

The SQL Translation Profile

The SQL Translation Profile is a database object that contains the set of captured
non-Oracle SQL statements, and their translations or translation errors. The SQL
Translation Profile is used to review, approve, and modify translations. A profile is
associated to a single translator. However, a translator can be used in one or more SQL
Translation Profiles. Typically, there is one SQL Translation Profile per application,
otherwise applications can share translated queries. You can export profiles among
various databases.

Figure 2-1 illustrates the run-time overview the SQL Translation Framework.

2-2 Migration Guide

How to Use SQL Translation Framework

Figure 2-1 SQL Translation Framework at Runtime

SQL Translation
Framework

Oracle Database

Non-Oracle SQL SQL Translator
Results el
Application - u Translation
Profile

Architecture of SQL Translation Framework

The key component of SQL Translation Framework is the SQL Translation Profile. The
profile is a collection of non-Oracle statements that are processed through the
translator. The application sets the profile to use when connecting to the Oracle
Database. The translator handles the actual translation work.

In most cases, the non-Oracle SQL statements and errors are translated by a SQL
Translator registered in the profile. The translator may be supplied by Oracle or by a
third-party vendor. If the translator does not have a translation for a particular SQL
statement or error, then you may register your own custom translation to fill its place.
You may also register your own custom translation if you want to override the
translation of the translator with customized translation.

How to Use SQL Translation Framework
Perform the following steps for using SQL Translation Framework:

1. Install a SQL Translator, either from Oracle or a third-party vendor, in Oracle
Database.

2. Create a SQL Translation Profile and register the SQL Translator with the profile.

3. Create a Database service and specify the SQL Translation Profile as a service
attribute to which the application can connect.

Note that setting the SQL Translation Profile at the service level ensures that
everything running through that listener service is translated automatically.

The translator can also be activated at connection level by using the ALTER
SESSION statement or the LOGON triggers.

4. Link the application with an Oracle driver to connect the application to Oracle
Database. You must also change the connection settings to connect to the Database
service with the SQL Translation Profile.

5. Test all functionalities of the application against Oracle Database. As the
application runs, the SQL Translation Profile translates SQL statements of the
application from the third-party SQL dialect to semantically-equivalent Oracle
syntax and register them in the profile.

SQL Translation Framework Overview and Architecture 2-3

How to Use SQL Translation Framework

If the translator does not have a translation for a particular SQL statement or error,
then you may register your own translation to fill its place.

6. Verify the custom translations and edit them, if required, or register new ones to
ensure that the application performs as intended until testing is complete.

Oracle recommends establishing a test environment and rigorously testing the
application, ideally through a regression test suite.

7. Set up the server-side application objects and data in the production Oracle
Database for deployment to a production environment.

8. Create a database service with the profile set as a service attribute and change the
connection settings of the application, so that it connects to the database service in
the production database. The application is expected to run as tested.

Oracle recommends that the application be monitored to guard against the possibility
of errors due to unavailability of translation of any SQL statement. You must first
disable the automatic translation of new and unseen SQL statements in the profile;
when any such statement is encountered, it raises an error that is logged. In cases of
alerts for mis-translation, you must make adjustments to the profile.

See Also:

s The new DBMS_SQL_TRANSLATOR PL/SQL package and updated
DBMS_SQL and DBMS_SERVICE PL/SQL packages in the Oracle
Database PL/SQL Packages and Types Reference.

» Updated GRANT and REVOKE statements and new system privileges
in the Oracle Database SQL Language Reference.

» Oracle Database PL/SQL Packages and Types Reference

s Oracle Database Administrator’s Guide

2-4 Migration Guide

3

SQL Translation Framework Configuration

This chapter discusses the following topics:

= Installing and Configuring SQL Translation Framework with Oracle SQL
Developer

= Installing and Configuring SQL Translation Framework from Command Line

= Granting Necessary Permissions for Installing the SQL Translator

Installing and Configuring SQL Translation Framework with Oracle SQL

Developer

You can use the DBA Navigator in Oracle SQL Developer 3.2 to install and manage the
translator and translation profile.

This section contains the following topics:

= Overview of Oracle SQL Developer Migration Support

s Setting Up Oracle SQL Developer 3.2 for Windows

s Creating a Connection to Oracle Database

n Testing SQL Translation

» Creating a Translation Profile and Installing SQL Translator

s Using the SQL Translator Profile

Overview of Oracle SQL Developer Migration Support

The SQL Translation framework is installed as part of Oracle Database installation.
However, it must be configured to recognize the non-Oracle SQL dialect of the
application and you must install at least one translator to fully utilize the framework.

Before using the SQL Translation feature, you must migrate your data, schema, stored
procedures, triggers, and views. Oracle implements database schema migration and
data migration through Oracle SQL Developer functionality. Oracle SQL Developer
simplifies the process of migrating a non-Oracle database to an Oracle Database
through the use of Migration Wizard. The Migration wizard provides convenient and
comprehensive guidance through the phases involved in migrating a database.

Oracle SQL Developer captures information from the source non-Oracle database and
displays it in a captured model, which is a representation of the structure of the source
database. This representation is stored in a migration repository, which is a collection
of schema objects that Oracle SQL Developer uses to store migration information.

SQL Translation Framework Configuration 3-1

Installing and Configuring SQL Translation Framework with Oracle SQL Developer

The information in the repository is used to generate the converted model, which is a
representation of the structure of the destination database as it will be implemented in
the Oracle database. You can then use the information in the captured model and the
converted model to compare database objects, identify conflicts with Oracle reserved
words, and manage the migration progress. When you are ready to migrate, generate
the Oracle schema objects, and then migrate the data.

This section describes how to perform the subsequent tasks that enable automatic
run-time migration. These examples use SQL Translator with a JDBC application that
runs against a Sybase database; they can be easily adapted for other client/database
configurations. Note that Oracle SQL Developer is shipped with an installed Sybase
translator.

See Oracle SQL Developer User’s Guide for more information.

Setting Up Oracle SQL Developer 3.2 for Windows

Oracle SQL Developer 3.2 is shipped with Oracle Database 11g JDBC drivers and there
is no client for Windows in this release. If you are using a Windows system, then you
must enable Oracle SQL Developer 3.2 to use Oracle Database 12¢ JDBC driver, so that
all the features of the current release are enabled. Perform the following steps to
achieve this:

s Rename the sqldeveloper\jdbc\1ib folder to sqldeveloper\jdbc\lib_11g.
» Create a new empty folder as sqldeveloper\jdbc\1lib.

= Unzip Oracle Database 12¢ Release 1 JDBC JAR files into the new
sgldeveloper\jdbc\1lib folder.

See Oracle Database JDBC Developer’s Guide for more information about Oracle
Database 12c Release 1 JDBC files.

Setting Up Oracle SQL Developer 3.2 Startup

Oracle SQL Developer automatically uses JDBC drivers found in any ORACLE_
HOME\client directory. To override this behavior and make Oracle SQL Developer use
JDBC drivers in the sqldeveloper\jdbc\1ib directory, create a new sqldeveloper.bat
file in the sqldeveloper directory:

set ORACLE_HOME=%CD%
start sgldeveloper.exe

Starting Oracle SQL Developer
Run the sgldeveloper.bat file to run Oracle SQL Developer.

To check the JDBC driver configuration:
1. Select About from Help menu.

2. Select Properties. It must display the configuration as shown in Figure 3-1:

3-2 Migration Guide

Installing and Configuring SQL Translation Framework with Oracle SQL Developer

Figure 3—-1 Checking JDBC Configuration for Oracle SQL Developer

3} About Oracle SQL Developer

Oradle SQL Developer (3.2.09)

(About | Version | Properties | Extensions

Name

java.vm.spedification.name
java.vm.spedfication.vendor
java.vm.spedfication.version
java.vm,vendor

java.vm.version

jdbc.driver home

[jdbe.library

line.separator

log.file.name

oradle.home

orade.ide.util. AddinPolicyUtils. OVERRIDE_FLAG
oracle.jdbc.mapDateToTimestamp
orade. translated.locales

orade. xdkjava.compatibility. version
=g

] /D: fsqldevfsqldev_3.2_prod_otn/sqldeveloper fidbcflibfojdbcé. jar
¥in
D:\sqldev\sgldev_3.2_prod_otn\sqldeveloper\sgldeveloper\extensic
D:\sqldev\sgldev_3.2_prod_otn\sqideveloper |
true

Value

Java Virtual Machine Spedification
Orade Corporation

1.7

Orade Corporation

23.0-b21

[D: /sqldev/sqldev_3.2_prod_otn/sqldeveloper/

Ex5
Q
A

false
de,es, fr,it,ja ko,pt_BR,zh_CN,zh_TW
9.0.4

Creating a Connection to Oracle Database

Create a connection to the Database with the credentials as shown in Figure 3-2:

Figure 3-2 Creating an Oracle Database Connection

[New / Select Database Connection

Connection Name Connection Details

Connection Name |l v S I EL=p]

12c2_pdb1_vm_db... dbo_orade12g@/f... | Username

[system

12c2_pdb1_vm_mi... migrep@/flocalhost...

[1222 5 1_vm . Ersiemfocabes...

12c2_vm_system system@/flocalhos. . | [¥] Saue Password

Hostname

Password {

Oradle Access

Connection Type Basic

~| Role [defauit ¥

|Iaca}host

Port

[5521

[9}] |

(@) Service name | gy

Status :

[] 05 Authentication || Kerberos Authentication [| Proxy Connection

Conect | [cancel }

You can use the following command to check the database you are connected to and

the JDBC driver being used:

show jdbc

Setting Up Migration Preferences
You must set up the migration preferences in the following way:

1. Select Preferences from the Tools menu.

2. Select Generation Options from Migration option on the left panel, as shown in

Figure 3-3.

SQL Translation Framework Configuration 3-3

Installing and Configuring SQL Translation Framework with Oracle SQL Developer

Figure 3-3 Setting Up Migration Preferences in Oracle SQL Developer

3 Preferences (=)
) Migration: Generation Options
& Environment | File Creation Opbions
& Change Management Paran @ &
@ Code Editor Ol .
Compare snd Merge) A Fie per Chiect
& Data Mner General Options
- Data Modeler [¥] Generate Comments
& Debugger
Extensions. [mast Privilage Schema Migration
External Editor [[] Generate Data Move Liser
|l Tipes [Generate Faded Objects
- Miyation [#] Generate Stored Procedure for Mgrate Blobs Offine
taMwe Opliors [¥] Generate Separate Emulation User
e Do ot T i 3
Tradvis [Use all Orache Daabase 12¢ faatures in Miration
Mouseaver Popups
Shorteut Keys
UritTest Parameters
- Versoning
Wieb Browser and Proxy |
AL Schemas i~
¢ >
[] =] o]

Testing SQL Translation

Perform the following steps to determine whether Sybase SQL Translator is properly
installed or not:

1. Open Oracle SQL Developer.

2. From the Tools menu, select Migration, and then select Translation Scratch
Editor.

a Oracle SQL Developer

File Edit View MNavigate Run Versioning QIGLS Help Automation

=8 Q e N B Oo-© & Migration Migrate...
B} Unit Test 4 Repository Management ¥
Sj a = @RE * | * Q <@ . Microsoft Access Exporter »
= % m \ 4 % Data Miner 3 _
@ i3 Create Database Capture Scripts...
g #1253 Edions a Database Copy... R ————
2 @] Java [a Database Diff... D __fansanon ocralc o
E a Database Export...
2 Menitor SQL...

Meonitor Sessions...
SQL Worksheet Alt-F10

External Tools...

3. In the Scratch Editor toolbar, select Sybase T_SQL To PL/SQL option, which is the
Sybase translator.

A scratch Editor * |
& 3 & sybase T-5QL To PL/SQL NF e

Worksheet Query Builder

4. In the left panel of the Scratch Editor, enter the following query in Sybase SQL
dialect:

select top 10 * from dual

5. Click the Translate icon.

3-4 Migration Guide

Installing and Configuring SQL Translation Framework with Oracle SQL Developer

The translated query text is displayed in the right panel of the editor.

%A scratch Editor * (]
& 3 (B sybase TSQLToPLSQL Er|rEaea 3R &2ed B
Worksheet Query Builder Worksheet Query Builder
l| =elect top 10 * from duall l| SELECT *
2 FROM dual YHERE ROVMUM <= 10:
.

Creating a Translation Profile and Installing SQL Translator

Oracle SQL Developer is installed with Oracle Database Release 12c. It loads Java
classes of the Sybase Translator, approximately 15 MB, into Oracle Database. Due to
the size and the number of Java classes loaded, Oracle recommends you to install the
translator locally, and not over a WAN.

If the translator is installed under a user profile that has a pre-existing migration
repository, the translator picks up the context of the database, such as name changes.
Therefore, you must create a new user with the following specifications:

= CONNECT, RESOURCE, and CREATE VIEW privileges

m Access to storage in the SYSTEM and/or USER tablespace

Installing SQL Translator
To install SQL Translator:

1. Log into the database using ADMIN privileges.
2. At the command line, enter the following commands.

GRANT CONNECT, RESOURCE, CREATE VIEW TO TranslUser identified by TranslUser;
ALTER USER TranslUser QUOTA UNLIMITED ON SYSTEM;

3. From the View menu, select DBA.

1 Cracle 56 Droncpr: s miguation e onnectiom 1] et s mipepd =3 |
pe (o [e B vy ok g
BEE| Deeide are q
oo i sipents wran LR
8 (I ComponPalty Cal L e o St st et e Frge s ot Gty W Comgaras ks -.
o mw . " npecwmatic: 2. = Sorer: 1% o | Tapmt ||] 1kt m e » i e) v hctrn..
<@g e R § eamme 1 sowarusoes|] reamaes | mn] mns
] ?E’ = gt dematda} 00} [waromers) 4_pangledenaiis- i] T
' ' nig
:g lum ! 3 § BT
» E S Lt
§ g o
& 8 1 0 oo bwragerrart
& 0y Lorwsian
B
: g:" [[
3 B v Ot
B e
| I o B Digecn
Pagraion @ g s
B 3 Mg Piges
[oz Output
H';":ﬁ Bicomi Ohges
' B figta
& 5 Haoy "
8 fageet
B Tk progeem
B faten

becardemlic). [dbo [items] fbe_sinpimdemclic. it

SN SR THE T E0_Nng el 10 b

* Show tn ln

g T

SQL Translation Framework Configuration 3-5

Installing and Configuring SQL Translation Framework with Oracle SQL Developer

4. In the DBA Navigator, right-click Connections and select Add Connection.

File [t Wiew Navigste Run WVerigeing JTooh Help Automastion
FoEg 96 XEm -0 &)
Rcomecoons = [Gaeos x I = [

5. In the Select Connection box, select the connection if you want to use an existing
connection. If you want to create a new connection, then add the information for
transluser discussed in step 2.

6. Click Connect.

7. In the DBA navigator, right-click the connection created in the preceding steps,
and select Install SQL Translator.

3-6 Migration Guide

Installing and Configuring SQL Translation Framework with Oracle SQL Developer

R VLTS P RN e

Hle Edit Miew Run Versigning Tooks Help Automation
B0 90 XERO-O- &
x:ﬁwuxh;jx E

H
|e§

Egg

i angerfa]

|
;

The Install SQL Translator dialog box opens.

You must have special permissions to install the SQL Translator and create a SQL
Translation Profile. You will be prompted to provide the SYS password, so that
these privileges can be granted. Refer to "Granting Necessary Permissions for
Installing the SQL Translator" on page 3-12 for more information about these
privileges.

8. Create a SQL Translation Profile, following steps described in "Creating a
Translation Profile" on page 3-8.

9. Verify that the user has sufficient privileges to run the translation profile.

You may have to login as SYS user to grant additional privileges.

~

GRAHT CEEATE S0L TEANZLATION PROFILE TO Transiliser

v
< L

I Yes I [Mo]

10. Install SQL Translator.

SQL Translator Install (Running)

@ I | @

[00:08] Loading file:C: \workspace\transiator fite_ name jar

| RuninBadground | | Cancel Task |

11. To ensure that both the Profile and Translator are properly installed, verify
whether the appropriate package and Java class files are present or not in the
Connections pane.

SQL Translation Framework Configuration 3-7

Installing and Configuring SQL Translation Framework with Oracle SQL Developer

F*RTE
:llE Editioning Views
Jﬁa Indexes
b Packages
-4 SYBASE_TSQL_TRANSLATOR
=8 ' |sYBASE_TSQL_TRANSLATOR Body
----- ﬂ translate_sql
----- ﬂ translate_error

Creating a Translation Profile
To create a translation profile:

1. From the SQL Translator drop-down box, select Sybase or SQL Translator.

2
3.
4

Check Create New Profile.
Enter SYBASE PROFILE in Profile Name field.

In Profile Schema, select the name of the user created in section "Creating a
Translation Profile and Installing SQL Translator" on page 3-5.

5. Click Apply.

a Install SQL Translator @
S0L Translator Sybase SQL Translator -
Create New Profile

S0L Profile

Profile Name sybazeProfile

Profile Schema a SI0_Transiliser -
Help [apply || cancel

Using the SQL Translator Profile
To test the SQL Translation Profile, use SQL Worksheet:

1.
2
3.

3-8 Migration Guide

Right-click the SYBASE_PROFILE node.
Select Open SQL Worksheet with Profile.

Enter a T-SQL statement that you want to translate.

Installing and Configuring SQL Translation Framework with Oracle SQL Developer

g

e Edit iw

L it

Mavigate Run Werdgnisg ook Heln

Bedd @ NE0I0 -0 & =
BAssrresis ¢ (s [B st m s * | Elsmsn eoran + [ERame poom |
+-BTS FuREn B0 Eued [|

T, Corvetnons

E 1T] e o, pempiacimy | 22
] 15T gulal v _mgren
L] L2 ulh]_vis_siviles

| Hoes = |
L LT

T, Corvemors
5[L gt v _the i 1

4. Click SYBASE_PROFILE and select the SQL Translation tab to inspect the profile and
view the translated statement.

B2 9® XD O O &- E
Bcmmecres =] Brmrs * Q) Bt m e RN IRORA | (B mores 5]
+-BTS Detals 50U TransleSons Error Code Trarclators

AL L ey
-] o == [TRAMSLATID, TEXT r

3 EFLICT TOP <TRAILITERAL TYRE-INT IBeix * FRCM ALL SAJECTS SELECT = FROM ALL OBJECTS FEICH FIRST <ORAILITERAL TYPE=1

[e
& 13 132 pcbi_vm._sho_smplecema 12
Tatstar

An alternative way to view the profile SQL in a better way when you double-click
on it, the fingerprint and template open in a Translation Scratch Editor as shown in
the following images:

SQL Translation Framework Configuration 3-9

Installing and Configuring SQL Translation Framework from Command Line

e P g, [~

[l Edit Yerw Hovigate Run Verigeisg Jook Help

GoEg 9™ XuM 0 O & 3

[Conractore = |RRemorty * G a2 st vm s+ [EHSYRASI_PROALE & | 2. cris morze © =],

*-UTR Datal L Transafione Ermar Code Tearslatiors

[pe— A BARD B e, < hetorn.. |
& e _mmgiedena 13 TRANRATID TET

- 1ALITISAL TYPE-INT ID=i» » FROM ALL OBJECTS | FROM AL OBXCTY |Fd|

T8 Dunche 501 Developer - AR =
fBe Ldit Yerw Hovigete Run Venigning Jook Help

FoEd 90 XG0 0-0 &- E

B correctors = (awperts = O] B pebt m mgen | Elmacn peornr « (@8 screbch teber.t | 5 sworzs ©

+-UTR ek ~-a-»3 (] JrENeR RO Suod (@

Ao * [wtahont oy mder Worlcheet Query Buer
: SELECT TP <ORAILITERAL TAPESINT Ebek» * FRSS ALL_ORECTS s
rem

seaTCTs

Installing and Configuring SQL Translation Framework from Command
Line
The following sections describe how to install and configure the SQL Translation
Framework from the command line:

s Installing Oracle Sybase Translator

= Setting up a SQL Translation Profile

» Setting Up a Database Service to Use the SQL Translation Profile
» Testing Sybase SQL Translation Using the SQL Translation Profile

Installing Oracle Sybase Translator

To install Oracle Sybase Translator, Use Oracle SQL Developer as described in
"Installing and Configuring SQL Translation Framework with Oracle SQL Developer"
on page 3-1.

Setting up a SQL Translation Profile

Perform the following steps to set up a SQL Translation Profile through a
command-line interface:

1. Login as a system user.

3-10 Migration Guide

Installing and Configuring SQL Translation Framework from Command Line

> sglplus system/<password>

Grant create privileges to the standard user.
This allows the standard user to create a SQL Translation Profile.

SQL> grant create sqgl translation profile to <user>;

Login as a standard user.

sqglplus <user>/<password>

Invoke the methods of DBMS_SQL_TRANSLATOR PL/SQL package to create and
configure the translation profile.

SQL> exec dbms_sqgl_translator.create_profile('sybase_profile')

SQL> exec dbms_sqgl_translator.set_attribute('sybase_profile',
dbms_sqgl_translator.attr_translator,
'migration_repo.sybase_tsqgl_translator')

Grant all privileges for the SQL Translation Profile to Oracle Sybase translation
schema.

SQL> grant all on sqgl translation profile sybase_profile to migration_repo;

Setting Up a Database Service to Use the SQL Translation Profile

This section describes how to add a database service in a standard environment and in
an Oracle Real Application Clusters environment.

Setting Up a Database Service in a Standard Environment
To set up a database service in a standard environment:

1.
2.

Login as a DBA

Issue the following commands to use the DBMS_SERVICE PL/SQL package to create
and invoke the database service:

SQL> declare
params dbms_service.svc_parameter_array;

begin
params (' SQL_TRANSLATION_PROFILE') := 'user.sybase_profile';
dbms_service.create_service('sybase_service', 'network name', params);
dbms_service.start_service('sybase_service');

end;

/

Setting Up a Database Service in Oracle Real Application Clusters
To set up a database service in Oracle Real Application Clusters:

1.

Add the database service:

srvctl add service -db db_name -service sybase_service
-sql_translation_profile user.sybase_profile

Start the database service:

srvctl start service -db db_name -service sybase_service

Testing Sybase SQL Translation Using the SQL Translation Profile

Perform the following steps to test the translation:

SQL Translation Framework Configuration 3-11

Granting Necessary Permissions for Installing the SQL Translator

1. Login as a standard user:

sqlplus user/password

2. Specify the SQL Translation Profile at the SQL prompt:

SQL> alter session set sgl_translation_profile = sybase_profile;

3. Force the database to treat SQL*Plus as a foreign SQL application:

SQL> alter session set events = '10601 trace name context forever, level 32';

4. Runa SQL query that uses Sybase SQL dialect. For example:

select top 3 * from emp;

5. The query returns the following results:

EMPNO ENAME JOB MGR HIREDATE SAL coMM DEPTNO
7369 SMITH CLERK 7902 17-DEC-80 800 20
7499 ALLEN SALESMAN 7698 20-FEB-81 1600 300 30
7521 WARD SALESMAN 7698 22-FEB-81 1250 500 30

Granting Necessary Permissions for Installing the SQL Translator

This section discusses the privileges that you must have to install the SQL Translator.
The SYBASE_PROFILE created here has the following two users:

s MIGREP, where the translator is installed

= TARGET_USER, where the profile is installed

To grant privileges necessary for installing the SQL Translator:
1. Connect as SYS to grant the required privileges:

connect sys/oracle as sysdba

2. Allow MIGREP to create a view and have access to unlimited quota:

GRANT connect, resource, create view to MIGREP;
ALTER USER MIGREP QUOTA UNLIMITED ON USERS;

3. Allow TARGET_USER to create a view and have access to unlimited quota:

GRANT connect, resource, create view to TARGET_USER;
ALTER USER MIGREP QUOTA UNLIMITED ON TARGET_USER;

4. Allow MIGREP to load a SQL Translator:

BEGIN

DBMS_JAVA.GRANT_ PERMISSION (UPPER('MIGREP'),
'SYS:java.lang.RuntimePermission', 'getClassLoader',K '');
END;
/

5. Allow TARGET_USER to create profiles:

GRANT CREATE SQL TRANSLATION PROFILE TO TARGET_USER;

6. Allow TARGET_USER to explicitly alter the session to use a profile:

GRANT ALTER SESSION TO TARGET_USER;

3-12 Migration Guide

Granting Necessary Permissions for Installing the SQL Translator

This privilege is not granted in SQL Developer by default.
Allow the translator to make reference to the profile:

CONNECT TARGET_USER/TARGET_USER;
GRANT ALL ON SQL TRANSLATION PROFILE SYBASE_PROFILE TO MIGREP;

Allow the profile to make reference to the translator:

CONNECT MIGREP/MIGREP;
GRANT EXECUTE ON SYBASE_TSQL_TRANSLATOR TO TARGET_USER;

SQL Translation Framework Configuration 3-13

Granting Necessary Permissions for Installing the SQL Translator

3-14 Migration Guide

4

SQL Translation of JDBC and ODBC
Applications

This chapter discusses the following topics:
= SQL Translation of JDBC Applications
= SQL Translation of ODBC Applications

SQL Translation of JDBC Applications

This section describes the following concepts that you must understand to use a SQL
Translator with a JDBC application:

s SQL Translation Profile

» Error Message Translation

s Converting JDBC Standard Parameter Markers
= Executing the Translated Oracle Dialect Query

s Error Translation

SQL Translation Profile

A SQL Translation Profile is a database schema object that directs how SQL statements
in non-Oracle dialects are translated into Oracle SQL dialects. It also directs how
Oracle error codes and SQLSTATES are translated into the SQL dialect of other vendors.

When you want to migrate a client application written for a non-Oracle SQL database
to Oracle, you can create a SQL Translation Profile and configure it to translate the
SQL statements and errors for the application. At runtime, the application sets the
profile for the connection in Oracle Database to translate its SQL statements and
errors. This profile is set using the oracle.jdbc.sglTranslationProfile property.

When necessary, you can register custom translations of SQL statements and errors
with the SQL Translation Profile on the Server. When a SQL statement or error is
translated, then first, the custom translation is looked up and then, the translator is
invoked only if no match is found.

See "Architecture of SQL Translation Framework" on page 2-3 and "Setting up a SQL
Translation Profile" on page 3-10.

Error Message Translation

You may prefer receiving error messages in the form of messages that used to be
thrown by the native database. You must then use the error message translation file,

SQL Translation of JDBC and ODBC Applications 4-1

SQL Translation of JDBC Applications

which translates error messages when there is no valid connection to the database.
Once a connection to the database is established, the JDBC driver bypasses this file
completely and all errors are handled by the translator on the server. Similar to query
translation, you can also register custom error translations on the server.

The error message translation file is not written by a specific component. You must
provide the file for translation and specify the name of the file. You can also provide
the file path as the value of the corresponding connection property.

The error message translation file is in XML format; it contains a series of error
translations. Each error translation contains the following information:

Translation Error Type

ORA error number positive integer
Oracle error message String
Translated error code positive integer
Translated SQL State positive integer

Converting JDBC Standard Parameter Markers

The JDBC driver internally converts the JDBC standard parameter markers (?) into
Oracle style parameter markers of the format :b<n>, before submitting the SQL
statements for translation. Here, the naming format for the parameter markers is
:b<n>, where, n is an incremental number to specify the position of the (?) marker in
the JDBC PreparedStatement. For example, consider the UPDATE employees SET
salary = salary * ? WHERE employee_id = ? PreparedStatement statement, where,
the first parameter marker (?) will become :b1 and the second parameter marker (?)
will become :b2. So, after conversion, the driver sends the following query to the
server for translation:

UPDATE employees SET salary = salary * :bl WHERE employee_id = :b2

Note that any query that contains "?" as a parameter marker fails during the
connection translation phase if you change the value of the processEscapes property
to FALSE. For a successful translation, you must retain the default value of the
processEscapes property.

Conversion of parameter markers helps the driver to automatically reorder any
parameter changes that occurred at translation. During the conversion, if any custom
translation must be registered on the server, then it should be registered from the
Oracle style parameter marker version, in which the server receives the statements,
and not from the JDBC style parameter marker version. Also, the custom translation
must have the same number of parameter markers in the Oracle style as the number of
parameter markers in the original query.

For more information about supported JDBC APIs, Chapter 8, "API Reference for SQL
Translation of JDBC Applications".

Executing the Translated Oracle Dialect Query

After the JDBC standard parameter markers are converted into Oracle style parameter
markers, the driver makes a round-trip to the server for translating the query into
Oracle dialect. Once the translated query is received by the server, any reordering in
the parameters in handled transparently by the driver, and the query is executed as a
normal query.

4-2 Migration Guide

SQL Translation of JDBC Applications

If a query cannot be translated due to the unavailability of translation, then the server
can either raise an error or return a NULL, based on the value of the DBMS_SQL_
TRANSLATOR.ATTR_RAISE_TRANSLATION_ERROR profile attribute. If the server returns a
NULL, then the original untranslated query is assumed to be the query translated by the
driver and executed.

The driver keeps the translation in the local caches to save the future round-trip.

Note that the JDBC driver can support the translation errors (when the query cannot
be translated due to the unavailability of translation) set by either value of the DBMS_
SQL_TRANSLATOR.ATTR_RAISE_TRANSLATION_ERROR attribute. However, the value must
be set on the server before the connection is established. Because a change in the value
of this attribute in the middle of a session may result in inconsistent behavior, Oracle
recommends that you do not flip the value of this attribute during a session. See Oracle
Database PL/SQL Packages and Types Reference for more information about the
TRANSLATE_SQL procedure.

Error Translation

If any SQLException is thrown during the query execution, the driver transparently
makes a trip to the server and translates the exception from Oracle codes to the
original vendor-specific code. So, the resulting SQLException has both vendor-specific
code and SQLSTATE along with the Oracle-specific SQLException as the cause.

Similar to query translation, custom error translations can also be registered on the
server and given priority over standard translation. The DBMS_SQL_TRANSLATOR.ATTR_
RAISE_TRANSLATION_ERROR attribute has the same effect on custom error translation as
on query translation.

Note that the errors are translated only after a connection to the server is established.
So, for errors that occur before the connection to the server is established, Error
Message Translation is used.

SQL Translation Using a JDBC Driver

Example 4-1 demonstrates how to use a JDBC driver for SQL translation. You must
first grant the CREATE SQL TRANSLATION PROFILE privilege to HR as follows:

conn system/manager;
grant create sgl translation profile to HR;
exit

Now, connect to the database as HR and execute the following SQL statements:

drop table sample_tab;

create table sample_tab (cl number, c2 varchar2(100));

insert into sample_tab values (1, 'A');

insert into sample_tab values (1, 'A');

insert into sample_tab values (1, 'A');

commit;

exec dbms_sqgl_translator.drop_profile('FO0');

exec dbms_sgl_translator.create_profile('F00');

exec dbms_sqgl_translator.register_sqgl_translation('FO0', 'select row of select cl,
c2 from sample_tab

where cl=:bl and c2=:b2', 'select cl, c2 from sample_tab where cl=:bl and c2=:b2"');

Now, you can run the following program that translates SQL statements that use JDBC
standard parameter markers.

SQL Translation of JDBC and ODBC Applications 4-3

SQL Translation of JDBC Applications

Example 4-1 Translating Non-Oracle SQL Statements to Oracle SQL Dialect Using JDBC
Driver

public class SQLTransPstmt
{

static String url="jdbc:oracle:thin:@localhost:5521:jvxl";

static String user="HR", pwd="hr";

static String PROFILE = "FOO";

static String primitiveSgl = "select row of select cl, c¢2 from sample_tab where
cl=? and c2=?";

// Note that this query contains JDBC style parameter markers
// But the preceding custom translation registered in SQL is using Oracle style
markers

public static void main(String[] args) throws Exception
{
OracleDataSource ods = new OracleDataSource();
ods.setURL(url) ;

Properties props = new Properties();
props.put ("user", user);
props.put ("password", pwd) ;

// The Following connection property makes the connection translating

props.put (OracleConnection.CONNECTION_PROPERTY_SQL_TRANSLATION_PROFILE,
PROFILE) ;

ods.setConnectionProperties (props) ;

Connection conn = ods.getConnection();

System.out.println("connection for SQL translation: "+conn);

try{
// Any statements created using a translating connection are
// automatically translating. If you want to get a non-translating
// statement out of a translating connection please have a look at
// the oracle.jdbc.OracleTranslatingConnection Interface.
// Refer to "OracleTranslatingConnection Interface" on page 8-5
// for more information
PreparedStatement trStmt = conn.prepareStatement (primitiveSql);
trStmt.setInt (1, 1);
trStmt.setString (2, "A");
System.out.println("executeQuery for: "+primitiveSql);
ResultSet trRs = trStmt.executeQuery();
while (trRs.next())
System.out.println("Cl:"+trRs.getInt(1)+", C2:"+trRs.getString(2));
trRs.close();

trStmt.close();
}catch (Exception e) {
e.printStackTrace();

conn.close();

4-4 Migration Guide

SQL Translation of ODBC Applications

SQL Translation of ODBC Applications

This section describes the following concepts that you must to know to use a SQL
Translator with an ODBC application:

= SQL Translation profile
» Error Message Translation

s Translating Error Messages

SQL Translation profile

For ODBC applications, the SQL Translation Profile is set at the service level. So, you
do not require to set it in the . odbc. ini file.

Error Message Translation

You may prefer receiving error messages in the form of messages that used to be
thrown by the native database. In such cases, when the application is set to run on
Oracle Database, you must set the SQLTranslateErrors=T entry in the . odbc. ini file
to translate the ORA errors to their native form.

Translating Error Messages

Example 4-2 demonstrates how to use the ODBC driver in SQL translation. The SQL
statement used in the example uses Sybase TOP N syntax.

Note that you must set the ServerName= entry in the .odbc. ini file with the Database
service name created in "How to Use SQL Translation Framework" section on page 2-3.
Also, set the 'SQLTranslateErros=T entry in the .odbc. ini file, if you require
translation of Oracle errors to native database errors.

Example 4-2 Translating Non-Oracle SQL to Oracle SQL Dialect Using ODBC Driver

int main()

{

HENV m_henv; /* environment handle */

HDBC m_hdbc; /* connection handle */

HSTMT m_hstmt; /* statement handle */

int retCode; /* return code */

char dbdsn[100]; /* Initialize with the DSN name of connection */

const char szUID[10];/*Initialize with appropriate Username of DB */
const char szPWD[10]; /* Initialize with appropriate Password */

char queryl[100]="select top 3 coll from babel_tab3 order by coll";
SQLLEN paramInd = SQL_NTS;
SQLUINTEGER no = 0;

//Allocate HENV, HDBC, HSTMT handles
retCode = SQLAllocHandle (SQL_HANDLE ENV, SQL_NULL_HANDLE, &m_henv) ;
if (retCode != SQL_SUCCESS && retCode != SQL_SUCCESS_WITH_INFO)
{
printf ("SQLAllocHandle failed \n");
printSQLError (1, m_henv);
}

retCode = SQLSetEnvAttr (m_henv, SQL_ATTR_ODBC_VERSION, (void *) SQL_OV_ODBC3,

SQL_IS_INTEGER) ;
if (retCode != SQL_SUCCESS && retCode != SQL_SUCCESS_WITH_INFO)

SQL Translation of JDBC and ODBC Applications 4-5

SQL Translation of ODBC Applications

printf ("SQLSetEnvAttr failed\n");
printSQLError (1, m_henv);

retCode = SQLAllocHandle (SQL_HANDLE_DBC, m_henv, &m_hdbc);
if (retCode !'= SQL_SUCCESS && retCode != SQL_SUCCESS_WITH_INFO)
{

printf ("SQLAllocHandle failed\n");

printSQLError (2, m_hdbc);

retCode = SQLConnect (m_hdbc, (SQLCHAR *) dbdsn, SQL_NTS,
(SQLCHAR *) szUID, SQL_NTS,
(SQLCHAR *) szPWD, SQL_NTS);
if (retCode != SQL_SUCCESS && retCode != SQL_SUCCESS_WITH_INFO)
{
printf ("SQLConnect failed to connect\n");
printSQLError (2, m_hdbc);

retCode = SQLAllocHandle (SQL_HANDLE_STMT, m_hdbc, &m_hstmt);
if (retCode != SQL_SUCCESS && retCode != SQL_SUCCESS_WITH_INFO)
{
printf ("SQLAllocHandle with SQL_HANDLE_STMT failed\n");
printSQLError (3, m_hstmt);

/* Prepare and Execute the Sybase Top-N syntax SQL statements */

retCode = SQLPrepare (m_hstmt, (SQLCHAR *) queryl, SQL_NTS);
if (retCode != SQL_SUCCESS && retCode != SQL_SUCCESS_WITH_INFO)
{

printf ("SQLPrepare failed\n");

printSQLError (3, m_hstmt);

retCode=SQLExecute (m_hstmt) ;
if (retCode != SQL_SUCCESS && retCode != SQL_SUCCESS_WITH_INFO)
{

printf ("SQLExecute-failed\n");

printSQLError (3, m_hstmt);

while (retCode = SQLFetch (m_hstmt) !=SQL_NO_DATA)
{
retCode=SQLGetData (m_hstmt, 1, SQL_C_ULONG, &no, 0, ¶mInd);
if (retCode != SQL_SUCCESS && retCode != SQL_SUCCESS_WITH_INFO)
{
printf ("SQLFetch failed\n");
printSQLError (3, m_hstmt);
}

printf("vValue is %d\n",no);

retCode = SQLCloseCursor (m_hstmt);
if (retCode != SQL_SUCCESS && retCode != SQL_SUCCESS_WITH_INFO)
printf ("SQLCloseCursor failed\n");

printf ("cleanup()\n");

4-6 Migration Guide

SQL Translation of ODBC Applications

retCode = SQLFreeHandle (SQL_HANDLE_STMT, m_hstmt);
if (retCode != SQL_SUCCESS && retCode != SQL_SUCCESS_WITH_INFO)
{

printf ("SQLFreeHandle failed\n");

printSQLError (3, m_hstmt);

retCode = SQLDisconnect (m_hdbc);
if (retCode != SQL_SUCCESS && retCode != SQL_SUCCESS_WITH_INFO)
{

printf ("SQLDisconnect failed\n");

printSQLError (2, m_hdbc);

retCode = SQLFreeHandle (SQL_HANDLE DBC, m_hdbc) ;
if (retCode != SQL_SUCCESS && retCode != SQL_SUCCESS_WITH_INFO)
{

printf ("SQLFreeHandle failed\n");

printSQLError (2, m_hdbc);

retCode = SQLFreeHandle (SQL_HANDLE_ENV, m_henv) ;
if (retCode != SQL_SUCCESS && retCode != SQL_SUCCESS_WITH_INFO)
{

printf ("SQLFreeHandle failed\n");

printSQLError (1, m_henv);

SQL Translation of JDBC and ODBC Applications 4-7

SQL Translation of ODBC Applications

4-8 Migration Guide

O

Application Migration Using SQL Translation
Framework Example

This chapter contains the following migration examples:
= Migrating a Sybase JDBC Application

s Generating Migration Reports

Migrating a Sybase JDBC Application

Figure 5-1 illustrates how an application that is coded to query a Sybase database may
use SQL Translation Framework to query information stored in Oracle Database
instead.

Figure 5-1 Sybase Application Running Against Oracle Database

Oracle
App Tables
Custom SQL Auto and
Translations Translator s‘°"‘-‘s
Sybase ooocinRc Sybase SQL /
App Driver Translah‘on Profile _l: e
‘\ Custom Error-Code
i)
- Mappings)

This section contains the following information:
= Application Overview

» Setting Up Migration

s Capturing Migration

s Converting Migration

= Generating a Migration

= Moving the Data

Application Migration Using SQL Translation Framework Example 5-1

Migrating a Sybase JDBC Application

Application Overview

The Sybase database used in this example has three tables and five procedures and
includes the following features:

s IDENTITY columns

= INSERT statements into tables with IDENTITY columns

= VARCHAR columns with size greater than 4000 characters
= Multiple implicit result sets returned from procedures

A Java application connects to this Sybase database using JDBC.

Setting Up Migration
Perform the following steps to set up migration:
1. Download the JDBC driver JTDS 1.2.
2. Add]TDS as a third-party JDBC driver as follows:
a. Select Preferences from the Tools menu.

b. Select Third Party JDBC Driver from the Database option on the right panel,
as shown in Figure 5-2.

Figure 5-2 Setting JTDS JDBC Driver

.Q Preferences @

L] Database: Third Party JDBC Drivers

4 Environment Third-party JOBC Driver Path

& Change Management Paran

Code Editor

Compare and Merge

= - Database
Achvanced
AutotraceExplan Plan
Drag And Drop

E

] Objectiiewer =

PL/SQL Compler
Reparts
SO Editor Code Templi

- S0L Formatter
User Defined Extension

- Utiites
Workshest

- Data Miner

Data Modeler
by v Add Entry... EdtEntry... Remove
Help oK Cancel
- n -

3. Click Add Entry.

The Select Path Entry box is displayed.
Select the jtds-1.2.jar file and click Select.
Click OK.

Connect to the Oracle Database where you want to migrate the information.

N o a &

Verify that the connection is using Oracle Database 12¢ JDBC drivers, with the
following command:

show jdbc

8. Create a new user migrep in Oracle database, for the migration repository, with the
following command:

5-2 Migration Guide

Migrating a Sybase JDBC Application

GRANT CONNECT, RESOURCE, CREATE VIEW to migrep INDENTIFIED BY migrep;
ALTER USER migrep QUOTA UNLIMITED to users;

9. Connect to the database as the migrep user and associate the migration repository
with the user, as shown in Figure 5-3.

Figure 5-3 Associating a User with Migration Repository

Ble [dit View Mavigate Bun Versgaing Jook Help

Geag 9® XAn O -0 & kx
[Picomnections | (freports x [0 £ ratadtm s x| Ghizc pb) m mgrep © =
FWTH FEHBYA 30 ued 3 12c2 pb1 v sigren v
6 [g] 122 ocbilvm mioreo I
&g 2 .
@132 pisconnect
ET
K Deiete Culee
&ld to Folder v
Y zepy
Gemerate DB Doc...
Gather Scherma Statistscs
Fiecompile Schema ..
EML DB Protocol server configuration
Mansge Databaze
Opeen SOL Wovkshest
Schema Browser

10. Create a connection to the Sybase database, in this example, simpledemol2c, as
shown in Figure 54.

Figure 5-4 Creating a Connection to the Sybase Database

12c2_pdb1_vm_mi... migrep@jflocalhost... | Username ca
12¢2_pdb1_wvm_sy... system@/flocalhos... P g |
12¢2_vm_system system@/localhos... |

[] Use Default Password
[[] use Windows Authentication

Hostname lnralhnst

g

e
DM:H |

Application Migration Using SQL Translation Framework Example 5-3

Migrating a Sybase JDBC Application

Note: The migration process has four phases - Capture, Convert,
Generate, and Data Move. It is best practice to complete each phase of
the migration process, review any issues on the Summary page, and
then continue to the next phase. The Migration Wizard enables you to
complete each step in turn and then return back to the wizard to
complete further steps. To do this, after completing each phase, select
the Proceed to Summary Page check box and click Next.

Capturing Migration
Perform the following steps to capture migration:

1. Right-click on the simpledemol2c Sybase database and select the Migrate to
Oracle option, as shown in Figure 5-5.

Figure 5-5 Starting Capture Phase of Migration Process

3} Oracle 501 Develeper [=1a
file [dit Yiew MNavigate Rum Venigning Took Help

BoEd 90 XEm O -0 & s
([Aconmections =] (Gampots *) Bz ol wmsysim % | 21202 pdol e mgren * | Ehavbase = =
$-RTH FEBEA BO Erod & svbase -
= [swbase B Worksheet | Query Bulder

o [ugresicae?

e e~ .
se
T Anahe Databise..
1 Schems Browser
® @ L]
¢
1 Micraton Projects &]
By

=
2 Projects - 1202 pols L vm_mrep

This opens the Migration Wizard, as shown in Figure 5-6.

Click Next.

5-4 Migration Guide

Migrating a Sybase JDBC Application

Figure 5-6 Migration Wizard Introduction Screen

Introduction

raMgaﬁm-lW'md-Stq)ldD

This wizard enables the migration of third party database on to Oracle.
Datab. ?

v, Repository

—

it be carried out either in an Online or Off line Made.
You need a live to third party database to do an Online Migr

Migration involves the following steps.

1. Priming an Orade connection with the Migration Repositary.
2. Creating a Migration Project that serves a5 a contaner for the migration entites

3. Capturing the source database meta information into the Migration Repository.
4, Converting the captured meta information to Orade spedfic meta information.

6. Generated Orade DE Creation script.

Following connection privilege prerequisites.

L. Repository Connection - Connect, Resource and Create View
2. Target Connection for DB Creation -

[Skip this page on next launch.

Next >

5. Generating Orade Database creation script from the converted meta information.

7. Move the Data from the Source Database to the newly created Oracle Database.

=]

==

2. Choose the Migration Repository, as shown in Figure 5-7.

Click Next

Figure 5-7 Choosing the Migration Repository

T Migeation Wizwd - Step
Repository

EEEEEEE;%

§

ofd ==
a
&

Selecta P thes Migration Repository. Thadk Truncabe 1 resst the nepoatany b
0 emply pate.
Connectors | [L3c2_pebl_ve_migrep = & 7
| Truncate
[Proceed bo Summarny Fage

“fwck | Hexts || Bnsh || Concd |

Figure 5-8.

Click Next.

Enter a project name and specify an output directory to place files, as shown in

Application Migration Using SQL Translation Framework Example 5-5

Migrating a Sybase JDBC Application

Figure 5-8 Specifying Project Name and Output Directory

Es
(X Megration Wizard - Step 3 of @ =
[Project is & contamer for the migration enties. Al saripts wil be saved to the output drect...
T Tl -
4, Bepostory Ngme: SmpleDemo 12
s Project Descripbon:
A e Dutobiese [
o, Cabre
i, Corveert
v, Tarast Databie
o Mok Doty
 Summary
Quiput Drectory: |C:{Smplelemo 12c | Cheoge...
Eroceed to Summary Page
Hep <Back | test> || @rsh Cancel

4. Select the database connection and the mode, as shown in Figure 5-9.
Click Next.

Figure 5-9 Selecting the Database Connection and Mode

(0 MSgration Wizsrd - Step 4 of =
-
Source Database] ﬂ
Mode:
%) Qrilme () Offine
s
i | Chooss the Third Party Database fom which you are migrating.
. Source Database] ¢ 7
i | Connecton: sybase -
v, Caobre)
Avalable Scorce Platforms:
SQuServer
Sybase
Add the source platform with ched for updste or the ik below.
e <t) >] s

5. Select the database, in this case, simpledemol2c, by moving it from Available
Databases to Selected Databases, as shown in Figure 5-10.

Click Proceed to Summary Page to review the Capture phase before moving to the
next phase of the migration process.

Click Next.

5-6 Migration Guide

Migrating a Sybase JDBC Application

Figure 5-10 Selecting the Database to be Migrated

(3L Migration Wizaed - Step 5 of
Capture
B Select the database for defriton capbure,
T o Avaiable Databases Selected Databases
,.I- Besomtory bugiestease mrmpledemo 12c
‘ bugtestcases
S demo 120
s oo Dasabase. pubs2
¥ x]
Capture e
. Comvert
i, Torget Qatabsse)
‘v MoveData
w ey &
| Proceed to Summary Fage
e <fock | pext> Enizh Cancel

The capture phase saves a snapshot of the selected database at this point of time. Only
the object definitions are captured, not the actual table data. This captured snapshot
can be viewed in the Migration Projects navigator.

Note that the snapshot is not a connection to the database, and it only enables you to
browse through the information saved in the Migration Repository.

Converting Migration

Before starting the conversion phase, you must set the migration preferences. Perform
the following steps to achieve this:

s From the Tools menu, select Preferences, then Migration, and then Translators.
Select the Generate Compound Triggers option, as shown in Figure 5-11.

Figure 5-11 Setting Migration Preferences

a Preferences =|

& Migration: Translators

@ Environment Default Source Date Format dd fmm/fyyyy
- Change Management Paran Variable Name Prefix "
- Code Editor T
Compare and Merge In Parameter Prefix v_
Database Quary Assignment Translation -
Data Miner
Data Modeler Display AST
Debugger Generate Compound Triggers [v]
Extensions
External Editor
Fie Types
- Migration
Data Move Options
Generation Options
Identifier Options
Mouseover Popups
Shartout Keys
UnitTest Parameters
- Versioning
Web Browser and Proxy
XML Schemas

-8

Hep | o [cancel

s From the Tools menu, select Preferences, then Migration, and then Generation
Options. Select the Use all Oracle Database 12¢ features in Migration option, as
shown in Figure 5-12.

Application Migration Using SQL Translation Framework Example 5-7

Migrating a Sybase JDBC Application

Figure 5-12 Setting Migration Preferences

& o Migration: Generation Options

Environment | d File Creation Options

(@~ Change Management Paran

Code Editor QL ey 1o

- Compare and Merge () AFile per Object

Database "

@ Data Miner General Options

[#] Generate Comments

[r ntroling Seript

i [Least Privilege Schema Migration
["] Generate Data Move User
[] Generate Faded Objects
[¥] Generate Stored Procedure for Migrate Blobs Offine
Generate Separate Emulation User
(Sybase) To fndex Organized Tables [NONE =

[Use il Orade Database 12¢ features in Mgraton

Perform the following steps to start convert phase of the migration process:

1. Right-click the Capture Model node and choose Convert, as shown in Figure 5-13.

Figure 5-13 Starting Convert Phase of Migration Process

Fle £t View MNavigate Rum Verigeing ook Help
FoBd o0 XEm Q-0 & et
Bycomnectors x| (Heports = [[ostomers * | [mpltems x =
+-0TY s =
& sbase r CREATE FROCEDURE dbo. toplieas
3 bugrestcnse2 s
&) bugtestcases BEGTH
-3 demorze SELECT TOF 10 itess.name, itess.description, itess.price, Ltess.isage FROM itess
&) master SELECT TOF 50 items.name, items.description, items.price, items.imsge INTO fresp FROM it
W Y =t | VHATE TOF 5 dresp SET mase = “666°
@ [oubs2 SELECT ftesp.name, Stemp.description, step.price, Stewp.inage FROM fremp
w [putaz
= () sphedemaidc £ Adaptive Server has expanded all **' elements in the folloving statement M/ SELECT TOF
= i SELECT iteas.mane, 1Teny. deScIiption, items.peice, items. image
S £ Tabies FRON itens
- & [customens ION ALL "
& [itess: SELECT items.mane, items.description, items.price, items.image
[ssles FROK ivess) 35 ¥
R L 0]
¢ — ¥
[rtgratiom Profects = ol
=]
@) Projects - 1262 pebl_ym_mgrep.
= [Splebemo 12
= [2012-09-10_to-40-28
1=
s G I
T
([Tables
EREE ~
o Elems S H
< — o Messages Lo X

The Migration Wizard is opened at the Convert phase, as shown in Figure 5-14.

5-8 Migration Guide

Migrating a Sybase JDBC Application

Figure 5-14 Converting the Migrated Data

—
d Migration Wizard - Step 6 of 9 ==
Convert

Spedfy the conversion options.
Introduction ——— s
T Data Type Mapping || Object Naming |
/T\ Repository
/T\ Project [v] Show only data types used in source model
Source Database Source Data Type Orade Data Type Type
T DATETIME DATE System
Gp Capture IMAGE ELOB System
e, Convert INT NUMBER[12] System
| MOMEY MNUMEER[19,4] System
)T\ Target Database VARCHAR VARCHAR2 System
T Move Data
W SUmmary
Add New Rule |
[v] Proceed to Summary Page Advanced Options
Help | <Back || Mext> || Finish || Cancel |

2. Select Proceed to Summary Page and click Next.
3. Click Finish.

During the convert phase, object names are resolved to valid Oracle names. Data types
are converted to Oracle Database types and T-SQL defined objects like stored
procedures, views, and so on are converted to Oracle PL/SQL. A converted model is
created that can be browsed in the Migration Projects navigator. The converted
procedures can be reviewed in the converted model.

Note that the converted model is not an actual Oracle database, but a prototype of an
Oracle Database. The information is still stored only in the Migration Repository
tables.

Generating a Migration

The migration generation phase creates the objects in the target Oracle Database. A
script is created and it is run against a selected Oracle connection in the following two
ways:

s Inoffline mode, the scriptis opened in a SQL Worksheet and you have to select
the connection and run it manually.

= Inonline mode, you must provide the target connection in the wizard and the
wizard runs the script automatically.

The following steps demonstrate how to perform the generate phase of the migration
process in offline mode:

1. Right-click on Converted Database Objects in the Migration Projects panel and
select Generate Target.

2. Select offline as the database mode in the Migration Wizard, as shown in
Figure 5-15.

Click Next.

Application Migration Using SQL Translation Framework Example 5-9

Migrating a Sybase JDBC Application

Figure 5-15 Selecting the Database Mode

— ——
2 Migration Wizard - Step 7 of 9 =
et a— m
. Mode

Intreduction - -
T) orine (3) Offine
e Bepoatace
,I\ Project The offiine migration script will be generated in the project output directory.
,T\ Source Database Generated Saript Directory:C:\SimpleDemo 12c \ganerated
Capture
Convert,))
= Target Database L Grop Target Objects
| S
w Summary
[] Proceed to Summary Page’ Advanced Opbons
tep | (<ot | Hext> | [Erish | [Canesl |

3. Choose a connection in the target Oracle Database, as shown in Figure 5-16.

Figure 5-16 Creating Oracle Database Connection for Target User dbo_simpledemo12c

i & 10,108l el ks
e [dit View MHoigate Ben Veriging Tooh el
FoBd@ 9t XE0D 00 &- s
@comectorn © ltemn 0[] | Smpleeme 3. 3012-09-10_10-40-2ag) * | 2
& o ARl 33 Bueda L2 e L_yes_system =
bt Jusm
A To— (un Seigt e o
& [demotx ST DOFDE T i
" FROIT Cresting Bser Emulatisn ...
& [mocl CREATE R Enulation TBENTIFIED BY Ewalation DEFMAT TARLESFAE SYSTEN TEMMIRMY TAMESPAE TENF
& [l oz RINT CRERTE SESSION, PESOURCE, CRERTE VIEW, CREATE MATERIALIZYD VIEW, FERMTE SYMNOOM, COELTE MSL
= [obad §| | = som oer:
5 [eepledemsiac FROMIT Creating Weer dbo_sisgledesolle ...
5§ do CEATE USSR M B b Lc DEFELT TRELESPRCE SYSTEM TERNSEN
'S (3 Tabes CHAT CHERTE SESSION, VSSINRCE, CHERTE VIV, COEATE MATERIMLUSFD VIFW, CHENTE SONSSNALTER SESSIC
oy p— conanct Bwalation/Eaulatian:
T
Do = crvate or sewlace

PMKME UTILS A%

SULIERVER VAROGRE{10) 3
RSt VAROGRE{10) e 'FT
DATAIASE_TYPE VAROGRI{L0) e SYBAST;

THNTITY WBIEE (L0}
By projects - 1262 ot _wm_cren TRANCOTHT RBMR 40} i 01
0 B St e VAR_NURBER WS | L0) 1=01

FUNCTION BEGINTTOSE:|F_EXFR WNSER) RETURN VABCHER !
FUSCTION BECINTTOSEN|(P_EXPR BAN) RETISH VRRCHER::

FURCTEON BIT_NOR(P_BAVL BN P DAR BN RETASE RN v

The database objects are not created under the connection selected in this step.
However, this connection must have enough privileges to create other users and
objects.

Creating a Target Oracle User

Create a connection to the newly created user (described in step 3), as shown in
Figure 5-17. At this point, the Sybase database objects are migrated to Oracle
Database, but the data is not migrated till now.

5-10 Migration Guide

Migrating a Sybase JDBC Application

Figure 5-17 Targeting an Oracle User

[Mew / Select Datsbase Cannection =
E o | con [12¢2_pcb1_vm_dbo_smpledema12c 1
1262 _pet 1 _vm_mi... migrap@focabost... Usernams i"‘b"- 15
122 m_system sysiem®focshos... | Lo [premrsarsninans 4
base sa/jsicd ipap.us... | 7] Sage Passward

Oracke | access | SQuServer | Sybase
Connection Type [Baskc v| Role [defout v
Hostngme locaihost

Pogt [1s2s

Osp [
(=) Service nm;nﬂ:l.ewmie.om

| 05 Authentication || Kerberos Authentication || Proxy Connection

Starhus :

b [swe J[ge J[Tt][Cewect][coce

Moving the Data

Perform the following steps to move the data to Oracle Database:

1. Right-click the Converted Database Objects node and select Move Data, as
shown in Figure 5-18.

Click Next.

Figure 5-18 Moving the Data from Sybase Database to Oracle Database

Cvache 5L Developer ot-&]
e Bt View Moedgate Bon Verigming ook el
GoEg 90 Xah 0 -0 &- =3
Dycomectorn * [fiean 1) {reeres = |y@oow 0 = [
*-BTH Status Summary | Arulyes | Captre Tomms | Corverson S2stus | Comverson smues [Target Statis [Target Demsms |Dists Qualey [Modl Comparsl [%]
: E;"‘ - | B v hcra. =
o [b § moxcese |§ socesuee § ree § comes|§ conmmt|j coenae|f oaramoe
3 Packages b Hew Magreries
= (g Procedures 2 simpleDemollc 201J-05-10_10-40-1% SybarelSPlugin rpiet oreicte =g oxfrn

2. Select online as the data move mode in the Move Data screen.

You can select off1ine as the data move mode if the migration process involves
large amount of data.

3. Click Next. The Summary screen appears.
4. Click Finish.

You can browse the database objects to verify the data is moved to Oracle
database.

See Oracle SQL Developer User’s Guide for details.

Application Migration Using SQL Translation Framework Example 5-11

Generating Migration Reports

Generating Migration Reports

Oracle SQL Developer provides a number of reports on the migration process to help
identify tasks and issues to resolve. Click or double-click on the migrated project in the
Migration Projects navigator. A report will appear on the right panel with a number of
tabs and children reports, as shown in Figure 5-19.

Figure 5-19 Generating Migration Reports

1 Oracte 304 Devricper [E=o =]
fie [dit Yiew Hovigate Fun Verigeing Jooh fHelp
FEEE 90 XEM 0 O k" [y
i o] s 1 [Bmciebemarx = =
|¢ ATy Staten, Smmary | et | oot omums | Cormerson 2t [Corversion smums [Target Stais [Target mums Ot sty e Compare (1]
|- "— S R -
g e B consell] come |l soea |l oawene
vizn
10-40-20 SybaBelSFlogin el foiele el ol
[— 5]

The Analysis report provides information about the size of the migrated database like
the number of objects, line sizes, and so on, as shown in Figure 5-20.

Figure 5-20 Migration Analysis Report

2 oracke 501 s <2 pdtl v migreg/1 Foto
e it View Movigate Bon Vergaing ook Help
Goag 9ot Xam O0-0 & =y
Bycomectors & [lieers 1 [l rer——— =
AT Status [Summary Arulyss Captire Tomums | Corvrmon S2stn | Comesrson ismues | Target Stats | Target {smsms |Ciats Couslty [Model Compars 41 2]
Y— | A e
5 I 2o e do sroiederot | PROXCTME | MODEMAME § ocatapases § usees | Tames | vaoes | mocaRs | eeocDuees | corew

() T e (Fierec]) 1 1 3) & s

& @ !

ol £13-59-20_30- -2 1 1 3

= [@mome

() vens:

(4 Edaonrg vews -

Ll bedens SOUSire(hart] 5o Somfueary | 50 SeeOetsk | Cobers | MamaCrages | Cepmdmon Tompe.

A Packages B memhs -

1) Peocedaes

8 Furcnons

1B Quanses Totes

§
!
H
a

B Progecns - 1322 seb_vm_ugren
]

| 122 pabl v mgyen | MIGREP | MD_PROJECTS E:Sors

The Target Status report provides information about the status of the migrated objects
in the Target database. First, select a target connection with enough privileges to view
the status of other schema objects and then select refresh. Objects that are present in
the converted model, but are missing from the target Oracle Database, are listed as
missing. These objects can be either valid or invalid.

5-12 Migration Guide

Generating Migration Reports

Figure 5-21 Target Status Report

[e

e [iew MNavigate Bun Verseig ook Help
GoRgd 92 XA 0-O &

Byconnecsos © (FlReors * |1 smplebematar + |
QTS

L
=

Stanse Summary | Aryss | Captre Iomues | Comveron Saun | Converson osaes | Taget 5 Targes omaes [D02a Quaity [Mociel Compars 417
Target: L2 pdb] v, syt

<] - Actera..

L y " e &a_rimpiesensiac QATMERE D 100 WRaTD
tde

By broects - 132 e 1_vm e
[Smpleema1

[

A comctors -l
5 Q) 132 b1 o smoiederor: | [§ Tve g osxernee i soowwe § wo | e § e
c z:;-ﬂ""'ﬂ [FROCEDTRE MD_STERED_FROGRAKS 1 8
3 mn“ i TARE M0_TARES ;
[Seees
Griee s
e TN T)
& (M Edvorwg vews. TRIGGIR MD_TRIGGIRS :
w L renes
& L Packeges =
= () Procesires etk
& B Furcoors B eken -
& Queves CAECT W (] SOBMAuE || chEcmise f stans|
& 91 Qe Tatks B e _cemcr e g I | roma|

| 13c3 b _migren]| MIGREF| MO FROEE

The Data Quality tab provides information about the number of rows in the target
Oracle Database compared with the source database. Perform the following steps to

compare the databases:

1. Select a converted model, a source connection, and a target connection.

2. Click Analyse.
3. Click Refresh.

This performs a count (*) function on each table in the source and the target
database. So, it is advisable not to perform this operation on production data.

Application Migration Using SQL Translation Framework Example 5-13

Generating Migration Reports

5-14 Migration Guide

6

MySQL Client Library Driver for Oracle

This chapter discusses MySQL Client Library Driver for Oracle Database, and its use
in migrating applications from MySQL to Oracle.

This chapter contains the following topics:
s Introduction to MySQL Client Library Driver for Oracle
» Overview of Migration with MySQL Client Library Driver for Oracle
= Using MySQL Client Library Driver for Oracle
See Also: Chapter 7, "API Reference for Oracle MySQL Client

Library Driver" for more information about MySQL programmatic
support

Introduction to MySQL Client Library Driver for Oracle

MySQL Client Library Driver for Oracle Database 12c Release 1, 1iboramysql, is a
drop-in replacement for MySQL Commercial Connector/C 6.0 client library. The
liboramysql driver implements a similar API, enabling C-based applications and tools
developed for MySQL to connect to Oracle Database. The driver may be used to
migrate applications from MySQL to Oracle Database with minimal changes to the
application code.

The 1liboramysql driver uses Oracle Call Interface (OCI) to connect to Oracle Database.

Figure 6—-1 MySQL Application Code Using liboramysql Driver to Connect to Oracle

Application Application
using using
MySQLs C API MySQLs C API

liboramysq|
libmysqlclient
OClI
MySQL DB (Oracle DB

MySQL Client Library Driver for Oracle 6-1

Installation and First Use of MySQL Client Library Driver for Oracle

The C code snippet in Example 6-1 demonstrates how to connect to MySQL and how
to insert a row into a table. After updating the connection credentials, this code can
run unchanged against Oracle Database when the executable is linked using the
liboramysql library, instead of the libmysglclient library.

Example 6-1 Connecting to MySQL and Inserting a New Row

c = mysqgl_init (NULL);

mysqgl_real_connect(c, "myhost", "myun", "mypw", "mydb", 0, NULL, 0);
mysgl_query(c, "insert into mytable values (1,2)");

mysqgl_close(c);

Although the database schema and data must be migrated to Oracle separately, and
although the liboramysql library does not translate SQL statements, considerable
amount of effort is conserved when migrating to Oracle Database because no changes
have to be made to the application code.

Custom C applications can use the 1iboramysql library to easily migrate to Oracle
Database.

Installation and First Use of MySQL Client Library Driver for Oracle

The MySQL Client Library Driver for Oracle is provided as a file in the
liboramysql.so shared library for Linux and as the oramysgl.dll dynamic link
library (DLL) for Windows. The driver is also packaged as part of the Oracle Instant
Client Basic and Basic Lite packages for download from OTN. See
http://www.oracle.com/technetwork/topics/linuxsoft-082809.html and
http://www.oracle.com/technetwork/topics/winsoft-085727.html.

The driver must be installed in the same directory as the Oracle Client Shared Library,
that is, 1ibclntsh.so for Linux and oci.dll for Windows. Typically, you must set the
operating system environment variable (LD_LIBRARY_ PATH on Linux or PATH on
Windows) to include this installation directory.

For ORACLE_HOME installations, the driver library is installed in the $ORACLE_HOME/1ib
directory for Linux and the $ORACLE_HOME%\bin directory for Windows. For Instant
Client ZIP files, the library is in the instantclient_12_1 directory. For Instant Client
RPM installations, the library is in the /usr/1ib/oracle/12.1/client/1ib or
/usr/lib/oracle/12.1/client64/1ib directory on 32-bit and 64-bit Linux platforms,
respectively.

Overview of Migration with MySQL Client Library Driver for Oracle

Migrating a C-based MySQL application to Oracle Database involves the following
steps:

1. Confirm that the application runs against MySQL Database.
This ensures that the migration process starts at a known baseline of functionality.
2. Replace the 1libmysqglclient library with the liboramysql library.

The application must be relinked to use the 1iboramysql library instead of the
libmysglclient library.

3. Migrate the application schema to Oracle Database.

The schema must be migrated to use Oracle DDL and types. Oracle SQL
Developer assists in this process.

6-2 Migration Guide

Using MySQL Client Library Driver for Oracle

See Oracle SQL Developer User’s Guide for further details.
4. Review all SQL statements used by the application.

If necessary, change the SQL statements of the application to use Oracle syntax, or
implement a SQL Translator to automatically perform the conversion at
application run time. Rewrite any logic that depends on MySQL features that are
not supported by Oracle Database.

See Chapter 4, "SQL Translation of JDBC and ODBC Applications".
5. Update the connection string of the application to connect to Oracle Database.

Use Oracle Easy Connect syntax or a tnsnames . ora connect identifier in the host
parameter of the connection call.

6. Test the application with Oracle Database.
Verify the application against Oracle Database.

Using MySQL Client Library Driver for Oracle

The 1iboramysgl API is compatible with MySQL Commercial Connector/C 6.0.
MySQL Driver for Oracle Database, liboramysq], translates MySQL API calls to Oracle
Call Interface (OCI) calls, and between Oracle and MySQL data types.

Existing MySQL-based applications may be relinked to use the 1iboramysql driver,
making Oracle Database the new data source. Note that the 1iboramysql driver
supports connections only to Oracle Database. Simultaneous connections to both
MySQL Database and Oracle Database in the same application are not possible.

See Chapter 7, "API Reference for Oracle MySQL Client Library Driver" for details on
data type mapping and API compatibility. Additional information may also be found
in Oracle SQL Developer User’s Guide.

The liboramysqgl driver does not translate SQL statements. You must rewrite the
statements that are not valid for Oracle Database. You can do this directly in the
application, or by using a SQL Translator. The application schema and data must also
be migrated separately. Oracle SQL Developer automates this process.

Whenever cross-version OCI connectivity exists for older versions of Oracle Database,
you can use the 1iboramysqgl driver to connect to these older versions.

The following sections discusses these topics:

= Relinking the Application with the liboramysql Driver
s Connecting to Oracle Database

= Supported Platforms

s Error Handling

= Globalization

= Expected Differences

Relinking the Application with the liboramysql Driver

The fundamental step of using the 1iboramysqgl library is to relink the application to
use the new library. The 1iboramysql library is compatible with the
libmysglclient.so library from MySQL Commercial Connector/C 6.0.2 package, so
you must build and verify version-sensitive applications with MySQL Commercial
Connector/C 6.0.2 before migrating to Oracle Database.

MySQL Client Library Driver for Oracle 6-3

Using MySQL Client Library Driver for Oracle

The installation scripts of public software compiled from source code typically expect
MySQL components to follow a predefined system directory structure. You can use the
setuporamysql. sh script in the demo directory of Instant Client SDK to achieve this.

Depending on the application, you can use one or more of the following ways to relink
the application with the liboramysql library:

Build directly with the liboramysql library.

You can update your build scripts to use the 1iboramysql library and build
custom applications directly with this Oracle library.

Use the liboramysql library to emulate a MySQL Commercial Connector/C
directory

The setuporamysql. sh library in the Instant Client SDK shows how a directory
structure emulating a MySQL Commercial Connector/C installation can be
created. You may build applications using this emulated directory.

Use the LD_PRELOAD environment variable.

Preconfigured programs may be able to use the LD_PRELOAD environment variable
to link with the 1iboramysql library. However, changing the value of this
environment variable may not work if the program uses the dlopen () method.

Duplicate the 1iboramysql library.

Perform the following steps to rename the liboramysql library to the MySQL
client library name used by the application:

1. Use the 1dd command to identify the MySQL library with which the
application is linked:

$ 1dd yourprogram

libmysglclient.so.16 => /usr/lib/libmysglclient.so.16 (0x00007£9004e7£000)

2. Create the following symbolic link as the Oracle software owner user:
$ 1n -s SORACLE_HOME/lib/liboramysqgll2.so SORACLE_
HOME/lib/libmysglclient.so.16

3. Add $ORACLE_HOME/1ib to the LD_LIBRARY_PATH environment variable for any
application that formerly used the 1ibmysglclient library:

$ export LD_LIBRARY_ PATH=$ORACLE_HOME/lib

Replace the system MySQL client library.

Rename the target system MySQL client library and link the new library in its
place. Because this option affects every application on the system that uses
MySQL, and should be done only if absolutely necessary.

mv /usr/lib64/libmysglclient.so.16 /usr/lib64/libmysglclient.so.16.backup
1n -s SORACLE_HOME/lib/liboramysqgll2.so /usr/lib64/libmysqglclient.so.16

If MySQL applications are not rebuilt from the source code, then you must first link
the applications against the 1ibmysglclient.so library from MySQL Commercial
Connector/C 6.0.2 package. This ensures binary compatibility with the data structures
in the liboramysql library.

6-4 Migration Guide

Using MySQL Client Library Driver for Oracle

Connecting to Oracle Database

To connect to Oracle Database with the 1iboramysql library, use Oracle Easy Connect
syntax or a tnsnames.ora connect identifier in the host parameter of the connection
call:

mysqgl_real_connect (c, "localhost/pdborcl", "myun", "mypw", NULL, 0, NULL, 0);

Supported Platforms

Error Handling

Globalization

MySQL Client Library Driver for Oracle is available on platforms that support the
Oracle Instant Client.

See the list of supported platforms on the Oracle Support Certification site:
https://support.oracle.com

All errors generated by OCI client code or the Oracle server are passed to the
application when either the mysql_errno () method or the mysql_error () method is
invoked after an error.

The date format expected by the application may be set using NLS_DATE_FORMAT
environment variable of Oracle Database, or changed with the equivalent ALTER
SESSION command after connecting. The NLS_DATE_FORMAT environment variable is
only used if NLS_LANG is also set in the environment.

Expected Differences

Some APIs in the 1iboramysql library necessarily return different results because of
the underlying differences between MySQL Database and Oracle Database. Existing
applications that use these APIs may require logic changes. For details of these

differences, see Chapter 7, "API Reference for Oracle MySQL Client Library Driver".

MySQL Client Library Driver for Oracle 6-5

Using MySQL Client Library Driver for Oracle

6-6 Migration Guide

7

API Reference for Oracle MySQL Client
Library Driver

This chapter describes APIs that support migration from MySQL, which are available
starting with Oracle Database Release 12c.

This chapter contains the following topics:

s Mapping Data Types

= Available MySQL APIs

s Error Handling

For documentation of MySQL C APIs, refer to MySQL 5.5 documentation.

Mapping Data Types

Oracle database types are described in the Internal Data Types section of Oracle Call
Interface Programmer’s Guide.

MySQL data types are fully described in MySQL documentation.

MySQL C APIs use MYSQL_TYPE_symbols to process data to and from MySQL
database. These type symbols are mapped to MySQL data types in the server.

For instance, MYSQL_TYPE_VAR_STRING is mapped to VARCHAR in the server.

Mapping Oracle Data Types to MySQL Data Types

This table shows the value of the type field in MYSQL_FIELD parameter returned from
mysql_fetch_field_* calls. The Oracle database type is mapped to a MySQL C API
data type.

For example: A VARCHAR2 column is represented by MYSQL_TYPE_VAR_STRING.

It is recommended that users use this table when migrating MySQL applications to
Oracle. The MySQL Client Library driver for Oracle will perform Data type
conversions between MySQL and Oracle.

Table 7-1 Mapping Oracle Data Types to MySQL Data Types

Oracle Data Type Maps to MySQL Data Type
CHAR MYSQL_TYPE_VAR_STRING
NCHAR MYSQL_TYPE_VAR_STRING
NVARCHAR2 MYSQIL,_TYPE_VAR_STRING

API| Reference for Oracle MySQL Client Library Driver 7-1

Mapping Data Types

Table 7-1 (Cont.) Mapping Oracle Data Types to MySQL Data Types
Maps to MySQL Data Type

Oracle Data Type

VARCHAR2 MYSQL_TYPE_VAR_STRING
NUMBER MYSQL_TYPE_NEWDECIMAL
LONG MYSQL_TYPE_BLOB

CLOB MYSQL_TYPE_BLOB

NCLOB MYSQL_TYPE_BLOB

DATE MYSQL_TYPE_DATETIME
RAW MYSQL_TYPE_VAR_STRING
BLOB MYSQL_TYPE_BLOB

LONG RAW MYSQL_TYPE_BLOB

ROWID MYSQL_TYPE_VAR_STRING
UROWID MYSQL_TYPE_VAR_STRING

BINARY FLOAT

MYSQL_TYPE_FLOAT

BINARY DOUBLE

MYSQL_TYPE_DOUBLE

User-defined type (object type, VARRAY, Not supported
Nested Table)

REF Not supported

BFILE MYSQL_TYPE_BLOB
TIMESTAMP MYSQL_TYPE_DATETIME

TIMESTAMP WITH TIME ZONE

MYSQL_TYPE_DATETIME

TIMESTAMP WITH LOCAL TIME ZONE

MYSQL_TYPE_DATETIME

INTERVAL YEAR TO MONTH

MYSQL_TYPE_VAR_STRING

INTERVAL DAY TO SECOND

MYSQL_TYPE_VAR_STRING

Data Type Conversions for MySQL Program Variable Data Types

The calls to mysql_stmt_bind_param() and mysql_stmt_bind_result() may be used to
convert between C program variables and database column values. Similarly, OCI
provides rich conversion support from server data types to many client data types.

Input conversions from a C program value to a database column value are handled by
invoking mysql_stmt_bind_param(). Output to a C program value is handled through
a call to mysql_stmt_bind_result().

Table 7-2 summarizes viable conversions between MySQL program variable data
types and Oracle column data types. The possible values in the table are:

= I:input conversion is supported

= O: output conversion is supported

= I/0:both input and output conversion is supported
= -:conversion is not supported.

Be sure to read the corresponding notes for each data type before finalizing conversion
choices.

7-2 Migration Guide

Mapping Data Types

Table 7-2 Converting MySQL Program Variable Data Types to Oracle Column Data Types

MySQL Program

Variable Data LONG
Types CHAR VARCHAR2 NUMBER LONG ROWID UROWID DATE RAW RAW
MYSQL_TYPE_TINY 1/0 1/0 1/0 I - - - - -
MYSQL_TYPE_SHORT I/0 I/0 I/0 I - - - - -
MYSQL_TYPE_LONG 1/0 I/0 1/0 I - - - - -
MYSQL_TYPE_ 1/0 1/0 1/0 I - - - - -
LONGLONG

MYSQL_TYPE_FLOAT I/0 I/0 I/0 I - - - - -
MYSQL_TYPE_DOUBLE I/0 1/0 1/0 I - - - - -
MYSQL_TYPE_DATE 1/0 I/0 - I - - /0 - -
MYSQL_TYPE_TIME I/0 I/0 - I - - /0 - -
MYSQL_TYPE_ 1/0 1/0 - I - - /0 - -
DATETIME

MYSQL_TYPE_ 1/0 1/0 - I - - /0 - -
TIMESTAMP

MYSQL_TYPE_STRING I/0 I/0 I/0 I/0 I/0 1/0 I/0 I1/0 I/0
MYSQL_TYPE_VAR_ 0 0 0 0 0 0 0 0 0
STRING

MYSQL_TYPE_BLOB I/0 I/0 - I/0 - - - I/0 I/0
MYSQL_TYPE_TINY O 0 - 0 - - - 0 0
BLOB

MYSQL_TYPE_ 0 0 - 0 - - - 0 0
MEDIUM_BLOB

MYSQL_TYPE_LONG_ O 0 - 0 - - - 0 0
BLOB

MYSQL_TYPE_ 0 0 0 - - - - - -
NEWDECIMAL

MYSQL_TYPE_BLOB

CHAR and VARCHAR2: Conversion is valid for input or output. On input, column
value is stored in hexadecimal format.

LONG: Conversion is valid for input or output. On input, column value is stored in
hexadecimal format.

Raw: Conversion is valid for input or output.
LONG RAW: Conversion is valid for input or output.

Conversion is not supported for NUMBER, ROWID, UROWID, and DATE.

MYSQL_TYPE_DATE

CHAR and VARCHAR2: Conversion is valid for input or output. For input, host string
must be in Oracle DATE character format. For output, column value is returned in
Oracle DATE format.

DATE: Conversion is valid for input or output.
LONG: Conversion valid for input to database column value.

Conversion not supported for NUMBER, ROWID, UROWID, RAW, and LONG RAW.

API| Reference for Oracle MySQL Client Library Driver 7-3

Mapping Data Types

MYSQL_TYPE_DATETIME

CHAR and VARCHAR2: Conversion is valid for input or output. For input, host string
must be in Oracle DATE character format. For output, column value is returned in
Oracle DATE format.

DATE: Conversion is valid for input or output.
LONG: Conversion valid for input to database column value.

Conversion not supported for NUMBER, ROWID, UROWID, RAW, and LONG RAW.

MYSQL_TYPE_DOUBLE

CHAR and VARCHAR2: Conversion is valid for input or output. For output, column
value must represent a valid number.

NUMBER: Conversion is valid for input or output.
LONG: Conversion valid for input to database column value.

Conversion not supported for ROWID, UROWID, DATE, RAW, and LONG RAW.

MYSQL_TYPE_FLOAT

CHAR and VARCHAR2: Conversion is valid for input or output. For output, column
value must represent a valid number.

NUMBER: Conversion is valid for input or output.
LONG: Conversion valid for input to database column value.

Conversion not supported for ROWID, UROWID, DATE, RAW, and LONG RAW.

MYSQL_TYPE_LONG

CHAR and VARCHAR2: Conversion is valid for input or output. For output, column
value must represent a valid number.

NUMBER: Conversion is valid for input or output.
LONG: Conversion valid for input to database column value.

Conversion not supported for ROWID, UROWID, DATE, RAW, and LONG RAW.

MYSQL_TYPE_LONG_BLOB

CHAR, VARCHAR2, LONG, RAW, and LONG RAW: Conversion is valid for output.

Conversion is not supported for NUMBER, ROWID, UROWID, and DATE.

MYSQL_TYPE_LONGLONG

CHAR and VARCHAR2: Conversion is valid for input or output. For output, column
value must represent a valid number.

NUMBER: Conversion is valid for input or output.
LONG: Conversion valid for input to database column value.

Conversion not supported for ROWID, UROWID, DATE, RAW, and LONG RAW.

MYSQL_TYPE_MEDIUM_BLOB

7-4 Migration Guide

CHAR, VARCHAR2, LONG, RAW, and LONG RAW: Conversion is valid for output.

Conversion is not supported for NUMBER, ROWID, UROWID, and DATE.

Mapping Data Types

MYSQL_TYPE_NEWDECIMAL

= CHAR and VARCHAR2: Conversion is valid for output. Column value must represent
a valid number.

= NUMBER: Conversion is valid for output to C program value.

= Conversion is not supported for LONG, ROWID, UROWID, DATE, RAW, and LONG RAW.

MYSQL_TYPE_SHORT

= CHAR and VARCHAR2: Conversion is valid for input or output. For output, column
value must represent a valid number.

= NUMBER: Conversion is valid for input or output.
= LONG: Conversion valid for input to database column value.

= Conversion not supported for ROWID, UROWID, DATE, RAW, and LONG RAW.

MYSQL_TYPE_STRING
= CHAR and VARCHAR2: Conversion is valid for input or output.

= NUMBER: Conversion is valid for input or output. For input, the host string must
represent a valid number.

= LONG: Conversion valid for input or output.

= ROWID: Conversion is valid for input or output. For input, the host string must be
in Oracle ROWID format. For output, column value is returned in Oracle ROWID
format.

= UROWID: Conversion is valid for input or output. For input, the host string must be
in Oracle UROWID format. For output, column value is returned in Oracle UROWID
format.

= DATE: Conversion is valid for input or output. For input, host string must be in
Oracle DATE character format. For output, column value is returned in Oracle DATE
format.

= Raw: Conversion is valid for input or output. For input, host string must be in
hexadecimal format.

= LONG RaW: Conversion is valid for input or output. For input, host string must be in
hexadecimal format.

MYSQL_TYPE_TIME

= CHAR and VARCHAR2: Conversion is valid for input or output. For input, host string
must be in Oracle DATE character format. For output, column value is returned in
Oracle DATE format.

= DATE: Conversion is valid for input or output.
= LONG: Conversion valid for input to database column value.

s Conversion not supported for NUMBER, ROWID, UROWID, RAW, and LONG RAW.

MYSQL_TYPE_TIMESTAMP

= CHAR and VARCHAR2: Conversion is valid for input or output. For input, host string
must be in Oracle DATE character format. For output, column value is returned in
Oracle DATE format.

= DATE: Conversion is valid for input or output.

API| Reference for Oracle MySQL Client Library Driver 7-5

Mapping Data Types

LONG: Conversion valid for input to database column value.

Conversion not supported for NUMBER, ROWID, UROWID, RAW, and LONG RAW.

MYSQL_TYPE_TINY

CHAR and VARCHAR2: Conversion is valid for input or output. For output, column
value must represent a valid number.

NUMBER: Conversion is valid for input or output.
LONG: Conversion valid for input to database column value.

Conversion not supported for ROWID, UROWID, DATE, RAW, and LONG RAW.

MYSQL_TYPE_TINY_BLOB

CHAR, VARCHAR2, LONG, RAW, and LONG RAW: Conversion is valid for output.

Conversion is not supported for NUMBER, ROWID, UROWID, and DATE.

MYSQL_TYPE_VAR_STRING

CHAR and VARCHAR2: Conversion is valid for output to C program value.
NUMBER: Conversion is valid for output to C program value.
LONG: Conversion is valid for output to C program value.

ROWID: Conversion is valid for output to C program value. On output, column
value is returned in Oracle ROWID format.

UROWID: Conversion is valid for output to C program value. On output, column
value is returned in Oracle UROWID format.

DATE: Conversion is valid for output to C program value. On output, column value
is returned in Oracle DATE format.

RaW: Conversion is valid for output to C program value.

LONG RAW: Conversion is valid for output to C program value.

Data Type Conversions for MySQL External Data Types (LOB Data Type Descriptors)

The external data types Table 7-3 may be converted to the specified Oracle internal
data types.

Table 7-3 Data Type Conversions for LOB Data Type Descriptors

ORACLE INTERNAL ORACLE INTERNAL

MySQL External Data Types CLOB/NCLOB BLOB
MYSQL_TYPE_BIT I/0 I/0
MYSQL_TYPE_STRING I/0 I/0
MYSQL_TYPE_VAR_STRING 0 0
MYSQL_TYPE_BLOB I/0 I/0
MYSQL_TYPE_TINY_ BLOB (@) 0
MYSQL_TYPE_MEDIUM_BLOB (@) 0
MYSQL_TYPE_LONG_BLOB (@) 0

7-6 Migration Guide

Available MySQL APIs

Data Type Conversions for Datetime and Interval Data Types

When working with a DATETIME or INTERVAL columns, it is possible to use one of the
character data types to define a host variable used in a FETCH or INSERT operation The
driver automatically converts between the character data type and DATETIME or
INTERVAL data type.

Table 74 lists external data types that may be converted to the specified internal
Oracle data types.

Table 7-4 Data Conversions for Datetime and Internal Data Type
INTERVAL INTERVAL

External/Internal VARCHAR, YEARTO DAY TO
Types CHAR DATE TS TSTZ TSLTZ MONTH SECOND
MYSQL_TYPE_STRING I/0 I/0 I/0 I/0 I/0 I/0 I/0
MYSQL_TYPE_VAR_ 0 0 0 0 0 0 0

STRING

MYSQL_TYPE_DATE I/0 I/0 I/0 I/0 I/O - -
MYSQL_TYPE_TIME I/0 I/0 I/0 I/0 I/0 - -
MYSQL_TYPE_DATETIME I/0 I/0 I/0 1/0 I/0 - -
MYSQL_TYPE_TIMESTAMP 1I/0 I/0 I/0 I/0 I/0 - -

Error Handling

All errors generated by OCI or Oracle server pass to the application when methods
mysql_errno() or mysql_error() are invoked after an error. The application receives an
Oracle-specific error. Oracle error messages are more specific then MySQL error codes,
and are therefore more pertinent to resolving the error condition.

The errors that are generated by the driver itself are in an error range reserved for the
MySQL driver in the OCI error space.

The mysql_sqlstate() call attempts to map the error to the appropriate SQLSTATE
whenever possible. In most cases, it returns HY000, which corresponds to the general
error state.

Possible SQLSTATE values are:
n 00000 success
s HY000 all other errors

However, this also means that client applications that expect more specific SQLSTATE
errors must be partially re-written.

Available MySQL APIs

This section documents functional groupings of the APIs and provides links to more
extensive information. However, it does not provide full documentation of function
behavior and parameters.

Oracle MySQL driver implements the APIs listed in MySQL C API documentation.
Please note the following:

= Some MySQL functions have changed behavior, typically due to not having an
equivalent behavior in Oracle; the description notes the changed behavior.

API| Reference for Oracle MySQL Client Library Driver 7-7

Available MySQL APIs

= Some MySQL functions are not supported; the description marks them
accordingly. The driver returns an error for these functions, and prompts the
application to work around the unsupported functionality.

Client Library Initialization and Termination
The following interfaces support client library initialization and termination:

= mysql_library_end()
= mysql_library_init()
= mysql_server_end()

= mysql_server_init()

Connection Management
The following interfaces support connection management.

= my_init()

= mysql_change_user()

= mysql_close()

= mysql_connect()

= mysql_get_character_set_info()
= mysql_get_ssl_cipher()

= mysql_init()

= mysql_options()

= mysql_ping()

= mysql_real_connect()

= mysql_select_db()

= mysql_set_character_set()

= mysql_ssl_set()

Error Reporting
The following interfaces support error reporting.

= mysql_errno()
= mysql_error()

= mysql_sqlstate()

Statement Construction and Execution
The following interfaces support statement construction and execution.

= mysql_affected_rows()
= mysql_escape_string()
= mysql_hex_string()

= mysql_kill()

= mysql_query()

= mysql_real escape_string()

7-8 Migration Guide

Available MySQL APIs

mysql_real_query()
mysql_reload()

Result Set Processing
The following interfaces support result set processing.

mysql_data_seek()
mysql_eof()
mysql_fetch_field()

mysql_fetch_field_direct()

mysql_fetch_fields()
mysql_fetch_lengths()
mysql_fetch_row()
mysql_field_count()
mysql_field_seek()
mysql_field_tell()
mysql_free_result()
mysql_insert_id()
mysql_list_dbs()
mysql_list_fields()
mysql_list_processes()
mysql_list_tables()
mysql_more_results()
mysql_next_result()
mysql_num_fields()
mysql_num_rows()
mysql_row_seek()
mysql_row_tell()
mysql_store_result()

mysql_use_result()

Prepared Statements
The following interfaces support statement preparation.

mysql_stmt_affected_rows()

mysql_stmt_attr_get()
mysql_stmt_attr_set()

mysql_stmt_bind_param()
mysql_stmt_bind_result()

mysql_stmt_close()

mysql_stmt_data_seek()

API| Reference for Oracle MySQL Client Library Driver 7-9

Available MySQL APIs

mysql_stmt_errno()
mysql_stmt_error()
mysql_stmt_execute()
mysql_stmt_fetch()
mysql_stmt_fetch_column()
mysql_stmt_field_count()
mysql_stmt_free_result()
mysql_stmt_init()
mysql_stmt_insert_id()
mysql_stmt_next_result()
mysql_stmt_num_rows()
mysql_stmt_param_count()
mysql_stmt_param_metadata()
mysql_stmt_prepare()
mysql_stmt_reset()
mysql_stmt_result_metadata()
mysql_stmt_row_seek()
mysql_stmt_row_tell()
mysql_stmt_send_long_data()
mysql_stmt_sqlstate()

mysql_stmt_store_result()

Transaction Control
The following interfaces support transaction control

mysql_autocommit()
mysql_commit()

mysql_rollback()

Information Routines
The following interfaces support information routines.

7-10 Migration Guide

mysql_character_set_name()
mysql_get_client_info()
mysql_get_client_version()
mysql_get_host_info()
mysql_get_proto_info()
mysql_get_server_info()
mysql_get_server_version()
mysql_info()

mysql_stat()

Available MySQL APIs

s mysql_thread_id()

s mysql_warning_count()

Administrative Routines
The following interfaces support administrative routines.

= mysql_refresh()

= mysql_set_server_option()

= mysql_set_local_infile_default()
= mysql_set_local_infile_handler()

s mysql_shutdown()

Miscellaneous Routines
The following interfaces support all remaining routines.

= mysql_create_db()

= mysql_debug()

= mysql_debug_info()

= mysql_drop_db()

s mysql_dump_debug_info()
= mysql_read_query_result()
= mysql_send_query()

s mysql_thread_end()

s mysql_thread_init()

= mysql_thread_safe()

my_init()
This function is a no-op function. It is called by my_init macro in my_sys.h file. All
initializations are done by the mysql_library init().

Return Value
0

mysql_affected_rows()

Returns the number of rows processed for INSERT, UPDATE, and DELETE statements
executed.

For UPDATE statements, note that the semantics of MySQL do not report rows where
the new value is the same as the old value. In contrast, Oracle reports that rows are
affected, even if the new value is the same as the old value. This function implements
Oracle semantics. Therefore, existing applications that rely on this call may have to
make programmatic changes.

For SELECT statement, the return is (my_ulonglong) -1.

API| Reference for Oracle MySQL Client Library Driver 7-11

Available MySQL APIs

Return Value

A number of rows that were processed by DML statement; >0. 0 indicates no updates
were made by the statement. -1 indicates that the statement was a query (SELECT), or
an error.

mysql_autocommit()

Sets auto commit mode to ON or OFF.

Return Value

0, if the auto commit mode is changed successfully. Non-zero if an error occurred in
the process.

mysql_change_user()

Changes the user, including user name, password, and database on the same or
different host. In Oracle Database 12¢ Release 1, change of the database is not
supported, so the value entered for the db parameter is ignored.

A call to mysql_change_user () rolls back any active transactions, ends the current
session, and then re-establishes a new connection based on information stored in the
host parameter.

Existing applications must make necessary application logic changes to implement this

behavior in Oracle Database 12¢ Release 1.

Return Value

0 if connection can be reestablished with the original host for the supplied user name
and password. Non-zero if an error occurred.

mysql_character_set_name()

Not supported in Oracle Database 12c Release 1. Applications that rely on results of
this call must change their application logic.

Return Value
Empty string.

mysql_close()

Closes the connection and frees all associated data structures.

Return Value
none

mysql_commit()
Commits the transaction currently associated with the service context.

A mysgl_commit () call supports the default mode in Oracle Database 12c Release 1. It
therefore ignores the completion type system variable.

Existing applications that use this API to perform MySQL-specific completion type
operations must change their application logic.

7-12 Migration Guide

Available MySQL APIs

Return Value
0 if successful, non-zero otherwise.

mysql_connect()

Deprecated; use mysql_real_connect().

Return Value
Initialized MYSQL structure. NULL if an error occurred.

mysql_create_db()

Not supported in Oracle Database 12c Release 1. Applications that rely on results of
this call must change their application logic.

Return Value
0 if successful; non-zero if an invalid MYSQL structure is passed in.

mysql_data_seek()
Seeks to a row in a result set based on the value specified in the offset parameter.

Offset value, being a row number, can range from 0 to mysgl_num_rows (result) -1.

Return Value
None

mysql_debug()

Not supported in Oracle Database 12c Release 1. Applications that rely on results of
this call must change their application logic.

mysql_debug_info()

Not supported in Oracle Database 12c Release 1. Applications that rely on results of
this call must change their application logic.

Return Value
0 if successful; non-zero if invalid MYSQL structure.

mysql_drop_dh()

Not supported in Oracle Database 12c Release 1. Applications that rely on results of
this call must change their application logic.

Return Value
0 if successful; non-zero if invalid MYSQL structure.

mysql_dump_debug_info()

Not supported in Oracle Database 12c Release 1. Applications that rely on results of
this call must change their application logic.

API| Reference for Oracle MySQL Client Library Driver 7-13

Available MySQL APIs

mysql_eof()

mysql_errno()

mysql_error()

Return Value
0 if successful; non-zero if an invalid MYSQL structure is passed in.

DEPRECATED. Use mysql_errno() or mysql_error() instead.

Determines if the last row of a result set has been read.

Return Value
1 if fetched the last row; otherwise 0.

Returns Oracle error number of the last error on the connection or the global context.

If the previous call did not have an established connection, pass in NULL; this returns
the last error number on global context.

Return Value

Last error number on the MYSQL connection, or the last error number on the global
context.

Returns Oracle error messages for the last error on the connection or the global
context.

If the previous call did not have an established connection, pass in NULL; this returns
the last error message on global context.

Return Value

Last error message on the MYSQL connection, or the last error message on the global
context.

mysql_escape_string()

Encodes the string in the source (from parameter), places it in the destination (to
parameter), and appends a terminating NULL.

Supports encoding of only one character, '\” using the current character set in the
connection.

See mysql_real_escape_string().

Return Value
The length of the value placed into to, excluding the terminating NULL.

mysql_fetch_field()

Returns the definition of one column of a result set as a MYSQL_FIELD structure.

Only the following attributes of the MYSQL_FIELD structure are supported: £lag, name,
name_length, org_name, org_name_length, type, and max_length.

» The flag attribute supports only the following values: NOT_NULL_FLAG, NUM_FLAG,
and BINARY_FLAG.

7-14 Migration Guide

Available MySQL APIs

m The attribute org_name is set to have the same value as name attribute.
s The attribute org_name_length is set to have the same value as name_length
attribute.

Return value
The MYSQL_FIELD structure for the current column. NULL if no columns are left.

mysql_fetch_field_direct()
Retrieves the column’s field definition for a specified field number as a MYSQL_FIELD

structure.

Return Value

Field definition for the specific field. NULL if an error occurred, or if field number
fieldnr is not in range.

mysql_fetch_fields()

Returns an array of all MYSQL_FIELD structures for a result set. Each MYSQL_FIELD
structure gives the field definition for one column of the result set.

Return Value
NULL if an error occurred.

mysql_fetch_lengths()

Returns an array of lengths of the column on the current row.

Return Value

An array of unsigned long integers that represent the size of each column. NULL if an
error occurred.

mysq|l_fetch_row()
Retrieves the next row of a result set.
Return Value

A MYSQL_ROW structure for the next row. NULL if there are no more rows to retrieve
or if an error occurred.

mysq|l_field_count()

Returns the number of columns in the result set for the recent query on the connection.

Return Value
Number of fields in the result set within the MYSQL structure.; 0 if an error occurred.

mysql_field_seek()

Sets the field cursor to the specified offset.

Return Value
The offset to the field set

API| Reference for Oracle MySQL Client Library Driver 7-15

Available MySQL APIs

mysq|l_field_tell()

Returns the position of the field; used for the current field.

Return Value
Offset of the current field

mysql_free_result()

Frees the memory allocated for the result set.

Return Value
None

mysql_get_character_set_info()

Not supported in Oracle Database 12c Release 1. Applications that rely on results of
this call must change their application logic.

Return Value
None

mysql_get_client_info()

Returns MySQL version number defined by MYSQL_SERVER_VERSION macro in mysql_
version.h header file, in string format. The macro definition is used in the mysqgl_
version.h file that builds oramysql library; it is not the mysql_version.h file used
by the application.

Return Value
A character string that represents MySQL client library version.

mysql_get_client_version()

Returns current MySQL version, as defined by MYSQL_VEERSION_ID macro in the
mysqgl_version.h header file. The macro definition is used in the mysql_version.h
file that builds oramysql library; it is not the mysgl_version.h file used by the
application.

Return Value

An unsigned long integer for MySQL version stored in the MYSQL_VERSION_ID macro.
The macro definition is used in the mysql_version.h file that builds oramysqgl
library; it is not the mysql_version.h file used by the application.

mysql_get_host_info()

Returns the host name used to connect to the database.

Return Value
A character string of host name. NULL in case of an error.

7-16 Migration Guide

Available MySQL APIs

mysql_get_proto_info()

This is a no-op under Oracle environment. Applications that rely on results of this call
must change their application logic.

Return Value
0

mysql_get_server_info()

Returns the Oracle server version in text string format, such as "12.1.0.1.0".

Applications that rely on results of this call must change their application logic.

Return Value
A character string that represents Oracle Server Number. NULL if an error occurred.

mysql_get_server_version()

Returns Oracle Database version number, such as 120100. This is in integer XXvvzZz
format, where XX represents the major version, YY represents the minor version, and zz
represents the version within the release level.

Return Value
Oracle Database version number. 0 if an error occurred.

mysql_get_ssl_cipher()

This is a no-op API. Applications that rely on results of this call must change their
application logic.

Return Value
NULL

mysql_hex_string()

mysql_info()

Encodes string specified by from parameter to hexadecimal format. Each character is
encoded as two hexadecimal digits. The result is placed in the to parameter, with a
terminal NULL byte.

The to buffer should have a minimum size equal to length*2+1 bytes.
Return Value

Length of the value placed into to parameter, excluding the terminating NULL
character.

This is a no-op API. Applications that rely on results of this call must change their
application logic.

Return Value
NULL

API| Reference for Oracle MySQL Client Library Driver 7-17

Available MySQL APIs

mysql_init()

Allocates a MYSQL structure if NULL is passed. Otherwise, this call initializes the passed
in MYSQL structure.

Return Value
Initialized MYSQL structure. NULL if MYSQL structure cannot be allocated or initialized.

mysql_insert_id()
This is a no-op API. Applications that rely on results of this call must change their
application logic.

Return Value
0

mysql_kill()
This is a no-op API. Applications that rely on results of this call must change their
application logic.

Return Value
0, and non-zero if an invalid MYSQL structure is passed in.

mysql_library_end()

Terminates oramysql library.

Return Value
none

mysql_library_init()

Initializes oramysql library.

Return Value
0 if successful, non-zero in case of a failure to initialize MySQL library.

mysq|l_list_dbs()
Returns a list of database names that match the wild parameter on the server.

To use this API, the DBA creates the oramysql_dbs_view view, and grants privileges to
PUBLIC.

For Oracle Database 12¢

For Oracle Database 12¢ Release 1, view oramysqgl_dbs_view is based on the
VS$DATABASE and V$PDBS system objects.

When connecting to Oracle Database 12c and subsequent versions, use the following
SQL script to create the view oramysqgl_dbs_view in Oracle Database 12c:

create view oramysqgl_dbs_view(name) as select left.name from vSpdbs left
union select right.name from v$database right;

create public synonym oramysql_dbs_view for oramysql_dbs_view;

grant select on oramysgl_dbs_view to public;

7-18 Migration Guide

Available MySQL APIs

If oramysqgl_dbs_view view does not exist when an application calls the mysql_list_
dbs () function, the information is retrieved from the v$ PDBS and V$ DATABASE tables.
However, this generates errors if the user does not have privileges to access these
tables.

For Oracle Databases prior to Oracle Database 12¢

Use the following SQL script to create the view oramysqgl_dbs_view in the Oracle
Database:

create view oramysqgl_dbs_view(name) as select name form vSdatabase;
create public synonym oramysql_dbs_view for oramysqgl_dbs_view;
grant select on oramysgl_dbs_view to public;

If the view does not exist, the wild parameter is ignored, and the call executes the
following SQL statement:

select SYS_CONTEXT('USERENV’, ’'DB_NAME’) from DUAL;

Return Value
NULL if an error occurs, a MYSQL_RES result set if successful.

mysql_list_fields()

Returns the column names that match the wild parameter for a specified table.

Return Value
NULL if an error occurred, a MySql result set if successful.

mysq|_list_processes|()

This is a no-op API. Applications that rely on results of this call must change their
application logic.

Return Value
NULL

mysq|l_list_tables()

This is a no-op function. Applications that rely on results of this call must change their
application logic.

Return Value
NULL

mysql_more_results()

Verifies if more results are available from the currently executing statement.

Return Value
TRUE if more results exist; FALSE if no more result sets exist.

mysql_next_result()

Gets the next result set.

API| Reference for Oracle MySQL Client Library Driver 7-19

Available MySQL APIs

Returns Value

0 if successful and there are more results; -1 if successful and there are no more results;
>0 if an error occurred.

mysql_num_fields()

Returns the number of columns in a result set.

Return Value

An unsigned integer that represents the number of columns in the result set; returns 0
if not successful.

mysql_num_rows()

Returns the number of rows in the result set.

Return Value
The number of rows in the result set; otherwise 0.

mysql_options()
This is a no-op function. Applications that rely on results of this call must change their

application logic.

Return Value
0 if successful, non-zero if an invalid MYSQL structure is passed in.

mysql_ping()
If the server cannot be accessed, returns an error with connection failure details.

Return Value
0 if success, non-zero if error occurred.

mysql_query()
Executes the SQL statement pointed to by the null-terminated string.

Return Value
0 if successful, non-zero if an error occurred.

mysql_read_query_result()

This is a no-op function; query results from mysql_send_query () are available when
that call completes.

Return Value
0

7-20 Migration Guide

Available MySQL APIs

mysql_real_connect()

The db parameter is not used in Oracle Database 12c Release 1. Existing applications
using this parameter to connect to a db must supply the connection identifier or
service name in the host parameter. The connection string has the following format:

[//1host|:port] [/service_name] [:server] [/instance_name]
For instance, the host parameter would appear as: ca-tools3.us.oracle.com/orcl3,
when connecting to host ca-tools3.us.oracle.com with SID orcl3.

The parameters db, port, unix_socket, and client_flag are not in use. When the user
must specify the port, it has to be in the syntax method used for host parameter.

Return Value
MYSQL structure initialized if successful. NULL in case initialization does not work.

mysql_real_escape_string()

Encodes the string in the source (from parameter) and the result is placed in the
destination (to parameter) and a terminating null byte is appended.

Note that only single-quote characters are escaped. Each single-quote is escaped using
Oracle semantics. The to buffer should have a minimum size of length*2+1 bytes.
Each single quote in the original string is replaced by two consecutive single quotes.

See mysql_escape_string().

Return Value

The length of the value placed into to buffer, excluding the terminating NULL. 0
otherwise.

mysql_real_query()

This function executes the query string.

Return Value
0 if successful, non-zero in case of an error.

mysql_refresh()
This is a no-op API. Applications that rely on results of this call must change their
application logic.

Return Value
0 if successful. Non-zero if an invalid MySQL structure was passed in.

mysql_reload()

Reloads the grant tables. This function is deprecated, and has not been implemented.
Use mysql_query() instead. Applications that rely on results of this call must change
their application logic.

mysq|l_rollback()

Rolls back the current transaction defined as the set of statements executed after the
last mysql_commit() or mysql_real_connect() call. If the application is running under

API| Reference for Oracle MySQL Client Library Driver 7-21

Available MySQL APIs

object mode, the modified or updated objects in the object cache for this transaction are
also rolled back.

A mysgl_rollback() call supports the default mode in Oracle Database 12¢ Release 1.
It therefore ignores the completion type system variable.

Existing applications that use this API to perform MySQL-specific completion type
operations must change their application logic.

Return Value
Error if an attempt is made to roll back a global transaction that is not currently active.

mysql_row_seek()

Sets to a particular row and returns offset of previous row.

Return Value
Offset of previous row in MYSQL_ROW_OFFSET structure.

mysql_row_tell()

Gives the current row position in the result set.

Return Value
Offset of current row in MYSQL_ROW_OFFSET structure. NULL if an error occurred.

mysql_select_db()

This is a no-op API. Applications that rely on results of this call must change their
application logic.

Return Value
0

mysql_send_query()

Sends a query. This function is not asynchronous in oramysql library. Instead, the call
blocks until the query is executed.

Return Value
0 if successful, non-zero if an error occurred.

mysql_server_end()

Terminates and cleans up oramysql library.

Return Value
none

mysql_server_init()

Initializes the oramysql client library before any connections are created. The function
mysqgl_library init() macro is defined to be mysqgl_server_init() inmysqgl.h
header file. This call is not thread-safe. Only one thread is expected to call it.

7-22 Migration Guide

Available MySQL APIs

Return Value
0 if successful, non-zero if an error occurred.

mysql_set_character_set()

This is a no-op API. Applications that rely on results of this call must change their
application logic.

Return Value
0

mysql_set_local_infile_default()
This is a no-op API. Applications that rely on results of this call must change their
application logic.

Return Value
0

mysql_set_local_infile_handler()
This is a no-op API. Applications that rely on results of this call must change their
application logic.

Return Value
0

mysql_set_server_option()
This is a no-op API. Applications that rely on results of this call must change their
application logic.

Return Value
0

mysql_shutdown()

Helps shutdown an Oracle Database instance. Before using the mysql_shutdown API,
the C program must connect to server with SYSDBA or SYSOPER session.

The parameters mysql_shutdown_level and mysgl_enum_shutdown_level are ignored.
Internally, the 0CIDBShutdown () call is executed in the OCI_DEFAULT mode.

Return Value
0 if successful. Non-zero if an error occurred.

mysql_sqlstate()

Returns SQLSTATE string which is not null-terminated. There are many SQLSTATE codes
in MySQL which are not in use.

Return Value
SQLSTATE code: 00000 - Success, or HY000 - All other errors.

API| Reference for Oracle MySQL Client Library Driver 7-23

Available MySQL APIs

mysql_ssl_set()
This is a no-op API. Applications that rely on results of this call must change their
application logic.

Return Value
0 if successful. Non-zero if an invalid MYSQL structure was passed.

mysql_stat()
This is a no-op API. Applications that rely on results of this call must change their
application logic.

Return Value
A string of 4 blanks (" ") if successful. NULL if an invalid MYSQL structure was passed.

mysql_stmt_affected_rows()

This function returns the number of rows affected by the execution on the prepared
statement.

Return Value

Number of rows affected by the DML operation if successful. (my_ulonglong) -1 if an
error occurred, or a SELECT statement was executed.

mysql_stmt_attr_get()

This is a no-op API. Applications that rely on results of this call must change their
application logic.

Return Value
0

mysql_stmt_attr_set()

This is a no-op API. Applications that rely on results of this call must change their
application logic.

Return Value
0

mysql_stmt_bind_param()

This function binds all the parameters in the prepared statement.

Return Value
0 if parameters are bound successfully. Non-zero if an error occurred.

mysql_stmt_bind_result()

Binds program variables for all SELECT list columns of a prepared statement.

Return Value
0 if successful. Non-zero if an error occurred.

7-24 Migration Guide

Available MySQL APIs

mysql_stmt_close()
Closes a MYSQL_STMT object.

Return Value
0

mysql_stmt_data_seek()

This function seeks to get data for a particular row.

Return Value
None

mysql_stmt_errno()

Returns error number for the last error that occurred on the MYSQL_STMT object.

Return Value
none

mysql_stmt_error()

This function returns error message for the last error that occurred on the MYSQL_STMT
object.

Return Value
A const *char error message.

mysql_stmt_execute()

This function executes the prepared statement.

Return Value
0 if the statement executed successfully; non-zero if an error occurred.

mysql_stmt_fetch()

This function fetches one row in program variables bound by the mysqgl_stmt_bind_
result call.

Return Value

0 if one row is successfully fetched. MYSQL_NO_DATA if no more rows/data exists.
MYSQL_DATA_TRUNCATED if data truncation occurred. 1 if an error occurred.

mysql_stmt_fetch_column()

This function fetches one column from the current result set row.

Return Value
0 if the value was fetched successfully. Non-zero if an error occurred.

API| Reference for Oracle MySQL Client Library Driver 7-25

Available MySQL APIs

mysql_stmt_field_count()
Fetches the number of fields in the MYSQL_STMT object.

Return Value

0 if an error occurred; otherwise, the number of fields in the result set associated with
the MYSQL_STMT object.

mysql_stmt_free_result()
Frees the result set associated with the MYSQL_STMT object.

Return Value
0

mysql_stmt_init()

Creates a new MYSQL_STMT object from the MYSQL connection object.

Return Value
MYSQL_STMT object if successful. NULL if an error occurred.

mysql_stmt_insert_id()
This is a no-op API. Applications that rely on results of this call must change their
application logic.

Return Value
0

mysql_stmt_next_result()

This function is not implemented. Applications that rely on results of this call must
change their application logic.

Return Value
0

mysql_stmt_num_rows()

Returns the number of rows in a stored result set. In case of a non-stored (unbuffered
result set), it returns the total number of rows fetched so far.

Return Value
0 if an error occurred in fetching the number of rows.

mysql_stmt_param_count()

Returns the number of bind parameters in the prepared statement.

Return Value
0 if an error occurred in returning the number of bind parameters.

7-26 Migration Guide

Available MySQL APIs

mysql_stmt_param_metadata()
This function is cast to MySql result set (MYSQL_RES *) NULL

Return Value
NULL

mysql_stmt_prepare()

Prepares a statement in the MYSQL_STMT for execution.

Return Value
0 if successful, non-zero if an error occurred.

mysql_stmt_reset()
Resets the prepared statement in the MYSQL_STMT.

Return Value
0

mysql_stmt_result_metadata()

Returns the metadata for the result of a SELECT statement that is executed through a
MYSQL_STMT object.

Return Value

A result set that describes the metadata of the prepared SELECT statement. NULL if an
error occurred.

mysql_stmt_row_seek()

Seeks to a row position and returns the offset of the previous row.

Return Value
An offset of the previous row in MYSQL_ROW_OFFSET structure.

mysql_stmt_row_tell()

Gives the current row position in the result set.

Return Value
Current row position. NULL if an error occurred.

mysql_stmt_send_long_data()
Sends parameter data to the server in parts.

The function mysql_stmt_bind_param() must be called first, then mysql_stmt_send_
long_data(), followed by mysql_stmt_execute().

The function can be called multiple times to send parts of a character or binary data
value for a column.

API| Reference for Oracle MySQL Client Library Driver 7-27

Available MySQL APIs

Return Value
0 if the data is sent to the server successfully, non-zero if an error occurred.

mysql_stmt_sqlstate()

Returns SQLSTATE string for the recent prepared statement. There are many SQLSTATE
codes in MySQL that are not used.

Return Value
SQLSTATE codes: "00000" - Success, or "HY0000" - All other errors.

mysql_stmt_store_result()

Stores the result set from the last query.

If the last query was a SELECT, a result set is returned. If the last statement was a
non-SELECT or error, a NULL result set is returned.

Return Value
A valid result set if successful, NULL if an error occurred, or a non-SELECT statement.

mysql_store_result()

Stores the result set from the last query.
If the last query was SELECT, returns a result set.

If the last statement was a non-SELECT or an error, a NULL result set is returned.

Return Value
A valid result set if successful; otherwise, NULL for errors or non-SELECT statements.

mysql_thread_end()

This is a no-op API. Applications that rely on results of this call must change their
application logic.

Return Value
none

mysql_thread_id()

Returns Oracle session identifier (SID) for the connection. This is obtained internally
by executing the following SQL statement:

select SYS_CONTEXT ('USERENV’, ’'SID’) from DUAL;

Applications that rely on results of this call must change their application logic.

Return Value
Oracle session identifier (SID). 0 if an error occurs.

mysql_thread_init()

This is a no-op API. Applications that rely on results of this call must change their
application logic.

7-28 Migration Guide

Available MySQL APIs

Return Value
0

mysql_thread_safe()

The oramysql library is thread-safe, so this function always returns TRUE.

Return Value
TRUE

mysql_use_result()

Initiates a result set retrieval.

Return Value
NULL if an error occurred, a valid result set if successful.

mysql_warning_count()
This is a no-op API. Applications that rely on results of this call must change their
application logic.

Return Value
0 if successful, non-zero if an error occurred.

API| Reference for Oracle MySQL Client Library Driver 7-29

Available MySQL APIs

7-30 Migration Guide

8

API Reference for SQL Translation of JDBC
Applications

These APIs are part of the oracle.jdbc package. This chapter describes only the
elements of oracle.jdbc that are specific to SQL translation.

This chapter contains the following topics:
s Translation Properties
s OracleTranslatingConnection Interface

s Error Translation Configuration File

See Also:

= Complete documentation of the oracle.jdbc package in Oracle
Database J]DBC Java API Reference

API Reference for SQL Translation of JDBC Applications 8-1

Translation Properties

Translation Properties

The translation properties are listed in Table 8-1

Table 8—1 Translation Properties

Property Description
sqlTranslationProfile Specifies the name of the transaction profile
sqlErrorTranslationFile Specifies the path of the SQL error translation file

8-2 Migration Guide

Translation Properties

sqlTranslationProfile

The property oracle.jdbc.sglTranslationProfile specifies the name of the
transaction profile.

Declaration

oracle.jdbc.sglTranslationProfile

Constant
OracleConnection.CONNECTION_PROPERTY_SQL_TRANSLATON_PROFILE

The value of the constant is oracle.jdbc.sglTranslationProfile. This is also the
property name.

Property Value
The value is a string. There is no default value.

Remarks

The property sqlTranslationProfile can be set as either a system property or a
connection property. The property is required to use SQL translation. If this property is
set then all statements created by the connection have SQL translation enabled unless
otherwise specified.

API Reference for SQL Translation of JDBC Applications 8-3

sqlErrorTranslationFile

sqlErrorTranslationFile

The property oracle.jdbc.sglErrorTranslationFile specifies the path of the SQL
error translation file.

Declaration

oracle.jdbc.sglErrorTranslationFile

Constant
Oracle.connection.CONNECTION_PROPERTY_SQL_ERROR_TRANSLATION_FILE.

Property Value
The value is a path name. It has no default value.

Exceptions

An error in establishing a connection results in a SQLException but without a valid
connection. However the SQL error translation file path is available either as a system
property or connection property and will be used to translate the error.

Remarks

This file is used only for translating errors which occur when connection establishment
fails. Once the connection is established this file is bypassed and is not considered
even if it contains the translation details for any error which occurs after the
connection is established. The property sqlErrorTranslationFile can be either a
system property or a connection property. The content of this file is used to translate
Oracle SQLExceptions into foreign SQLExceptions when there is no valid connection.

8-4 Migration Guide

OracleTranslatingConnection Interface

OracleTranslatingConnection Interface

This interface is only implemented by a Connection object that supports SQL
Translation. The main purpose of this interface is to get non-translating statements
(including preparedStatement and CallableStatement) from a translating connection.

The public interface oracle.jdbc.OracleTranslatingConnection defines the factory
methods for creating translating and non-translating Statement objects.

The OracleTranslatingConnection enumerations are listed in Table 8-2:

Table 8-2 OracleTranslatingConnection Enumeration

Name Description

SqlTranslationVersion Provides the Keys to the map

The OracleTranslatingConnection methods are listed in Table 8-3:

Table 8-3 OracleTranslatingConnection Methods

Name Description

createStatement() Creates a Statement object with option to translate or not
translate SQL.

prepareCall() Creates a CallableStatement object with option to translate or

not translate SQL.

prepareStatement() Creates a PreparedStatement object with option to translate or
not translate SQL.

getSQLTranslationVersions() | Returns a map of all the translation versions of the query
during SQL Translation.

API Reference for SQL Translation of JDBC Applications 8-5

SqlTranslationVersion

SqlTranslationVersion

The sqlTranslationVersion enumerated values specify the keys to the
getSQLTranslationVersions() method.

Syntax
public enum SglTranslationVersion {
ORIGINAL_SQL,
JDBC_MARKER_CONVERTED,
TRANSLATED
}

The following table lists all the SqlTranslationVersion enumeration values with a
description of each enumerated value.

Member Name Description

ORIGINAL_SQL Specifies the original vendor specific sql

JDBC_MARKER_CONVERTED Specifies that JDBC parameter markers ('?") is replaced with Oracle
style parameter markers (:b<n>'). Hence consecutive '?'s will be
converted to :bl, :b2, :b3 and so on. This change is required to
take care of any changes in the order of parameters during
translation. This version is sent to the server for translation. Hence
any custom translations on the server must be registered from this
version and not the ORIGINAL_SQL version.

TRANSLATED Specifies the translated query returned from the server

8-6 Migration Guide

OracleTranslatingConnection Interface

createStatement()

This group of methods create a Statement object, and specify whether the statement
supports SQL translation. If the value of parameter translating is TRUE, then the
returning statement supports translation and is identical to the corresponding version
in the java.sql.Connection interface without the translating argument. If the value is
FALSE, then the returning statement does not support translation.

Syntax Description
public Statement createStatement (Creates a Statement object with option to
boolean translating) translate or not translate SQL.

throws SQLException;

public Statement createStatement (Creates a Statement object with the given
int resultSetType, type and concurrency with option to
int resultSetConcurrency, translate or not translate SQL.

boolean translating)
throws SQLException;

public Statement createStatement (Creates a Statement object with the given
int resultSetType, type, concurrency, and holdability with
int resultSetConcurrency, option to translate or not translate SQL.

int resultSetHoldability,
boolean translating)
throws SQLException;

Parameters
Parameter Description
resultSetType Specifies the int value representing the result set type.

resultSetConcurrency Specifies the int value representing the result set concurrency type.
resultSetHoldability Specifies the int value representing the result set holdability type.

translating Specifies whether or not the statement supports translation.

Return Value
The createStatement () method returns a Statement object.

Exceptions
The createStatement () method throws SQLException.

Example
Import the following packages before running the example:
import java.sqgl.*;

import java.util.Properties;

import oracle.jdbc.OracleConnection;
import oracle.jdbc.OracleTranslatingConnection;
import oracle.jdbc.pool.OracleDataSource;

Run the following SQL statements:

conn system/manager;
grant create sqgl translation profile to HR;

API Reference for SQL Translation of JDBC Applications 8-7

createStatement()

conn
drop
crea

HR/hr;
table sample_tab;
te table sample_tab (cl number, c2 varchar2(100));

insert into sample_tab values (1, 'A');
insert into sample_tab values (2, 'B');

comm
exec
exec
exec
from

it;

dbms_sqgl_translator.drop_profile('F00"');
dbms_sqgl_translator.create_profile('F00');
dbms_sqgl_translator.register_sqgl_translation('FO0', 'select row of (cl, c2)
sample_tab', 'select cl, c2 from sample_tab');

Example 8-1 Using the createStatement() method

publ
{
st
st
st
st

pu
{

ic class SQLTransStmt

atic String url="jdbc:oracle:thin:@localhost:5521:0rcl";

atic String user="HR", pwd="hr";

atic String PROFILE = "FOO";

atic String primitiveSgl = "select row of (cl, c2) from sample_tab";

blic static void main(String[] args) throws Exception

OracleDataSource ods = new OracleDataSource();
ods.setURL(url) ;

Properties props = new Properties();

props.put ("user", user);

props.put ("password", pwd);

props.put (OracleConnection.CONNECTION_PROPERTY_SQL_TRANSLATION_PROFILE,

PROFILE) ;

ods.setConnectionProperties (props) ;
Connection conn = ods.getConnection();
System.out.println("connection for SQL translation: "+conn);

try{
OracleTranslatingConnection trConn = (OracleTranslatingConnection) conn;
System.out.println("Call:

oracle.jdbc.OracleTranslatingConnection.createStatement (true)");

Statement trStmt = trConn.createStatement (true);
System.out.println("executeQuery for: "+primitiveSql);
ResultSet trRs = trStmt.executeQuery (primitiveSql);
while (trRs.next())
System.out.println("Cl:"+trRs.getInt(1)+", C2:"+trRs.getString(2));
trRs.close();
trStmt.close();
}catch (Exception e) {
e.printStackTrace();

try{
OracleTranslatingConnection trConn = (OracleTranslatingConnection) conn;
System.out.println("Call:

oracle.jdbc.OracleTranslatingConnection.createStatement (false)");

8-8 Migration Guide

Statement trStmt = trConn.createStatement (false);
System.out.println("executeQuery for: "+primitiveSql);
ResultSet trRs = trStmt.executeQuery (primitiveSql);
while (trRs.next())

System.out.println("Cl:"+trRs.getInt(1)+", C2:"+trRs.getString(2));
trRs.close();

OracleTranslatingConnection Interface

trStmt.close();
}catch (Exception e) {
System.out.println("expected Exception: "+e.getMessage());

try{

OracleTranslatingConnection trConn = (OracleTranslatingConnection) conn;

System.out.println("Call: oracle.jdbc.OracleTranslatingConnection.
createStatement (ResultSet.TYPE_SCROLL_SENSITIVE, ResultSet.CONCUR_UPDATABLE,
true)");

Statement trStmt = trConn.createStatement (ResultSet.TYPE_SCROLL_SENSITIVE,
ResultSet.CONCUR_UPDATABLE, true);

System.out.println("executeQuery for: "+primitiveSql);

ResultSet trRs = trStmt.executeQuery (primitiveSql);

while (trRs.next())

System.out.println("Cl:"+trRs.getInt(1)+", C2:"+trRs.getString(2));
System.out.println("move resultset back to 2nd row...");
trRs.absolute(2);
while (trRs.next())

System.out.println("Cl:"+trRs.getInt(1)+", C2:"+trRs.getString(2));
trRs.close();
trStmt.close();

}catch (Exception e) {
e.printStackTrace() ;

try{

conn.setAutoCommit (false) ;

OracleTranslatingConnection trConn = (OracleTranslatingConnection) conn;

System.out.println("Call:
oracle.jdbc.OracleTranslatingConnection.createStatement (ResultSet.TYPE_SCROLL_
SENSITIVE, ResultSet.CONCUR_UPDATABLE,
ResultSet .HOLD_CURSORS_OVER_COMMIT, true)");

Statement trStmt = trConn.createStatement (ResultSet.TYPE_SCROLL_SENSITIVE,
ResultSet.CONCUR_UPDATABLE, ResultSet.HOLD_CURSORS_OVER_COMMIT, true);

System.out.println("executeQuery for: "+primitiveSql);

ResultSet trRs = trStmt.executeQuery (primitiveSql);

trRs.last();

System.out.println("Cl:"+trRs.getInt(1)+", C2:"+trRs.getString(2));

trRs.updateString (2, "Hello");

trRs.updateRow() ;

conn.commit () ;

System.out.println("accept the update and list all of the rows again...");

trRs.beforeFirst () ;

while (trRs.next())

System.out.println("Cl:"+trRs.getInt(1)+", C2:"+trRs.getString(2));
trRs.close();
trStmt.close();
}catch (Exception e) {
e.printStackTrace();

conn.close();

API Reference for SQL Translation of JDBC Applications 8-9

prepareCall()

prepareCall()

This group of methods create a CallableStatement object, and specify whether the
statement supports SQL translation. If the value of parameter translating is TRUE,
then the returning statement supports translation. If the value is FALSE, then the
returning statement does not support translation.

Syntax

Description

public CallableStatement prepareCall (
String sql,
boolean translating)

throws SQLException;

public CallableStatement prepareCall (
String sql,
int resultSetType,
int resultSetConcurrency,
boolean translating)
throws SQLException;

public CallableStatement prepareCall (
String sql,
int resultSetType,
int resultSetConcurrency,
int resultSetHoldability,
boolean translating)
throws SQLException;

Creates a CallableStatement object with
option to translate or not translate SQL

Creates a CallableStatement object with the
given type and concurrency with option to
translate or not translate SQL

Creates a CallableStatement object with the
given type, concurrency, and holdability
with option to translate or not translate SQL

Parameters

Parameter Description

sql Specifies the string SQL statement value to be sent to the
database; may contain one or more parameters

resultSetType Specifies the int value representing the result set type

resultSetConcurrency Specifies the int value representing the result set concurrency
type

resultSetHoldability Specifies the int value representing the result set holdability type

translating Specifies whether or not the statement supports translation

Return Value

The prepareCall () method returns a CallableStatement object.

Exceptions

The prepareCall () method throws SQLException.

Example

Import the following packages before running the example:

import java.sqgl.*;
import java.util.Properties;

8-10 Migration Guide

OracleTranslatingConnection Interface

import oracle.jdbc.OracleConnection;
import oracle.jdbc.OracleTranslatingConnection;
import oracle.jdbc.pool.OracleDataSource;

Run the following SQL statements:

conn system/manager;
grant create sgl translation profile to HR;

conn HR/hr;

create or replace procedure sample_proc (p_num number, p_vchar in out varchar2) AS

begin

p_vchar := 'p_num'||p_num||', p_vchar'||p_vchar;
end;
/

exec dbms_sqgl_translator.drop_profile('FO0');

exec dbms_sqgl_translator.create_profile('F00');

exec dbms_sqgl_translator.register_sqgl_translation('FO0', 'exec sample_proc(:bl,
:b2) ', '{call sample_proc(:bl, :b2)}');

Example 8-2 Using the prepareCall() method

public class SQLTransCstmt
{
static String url="jdbc:oracle:thin:@localhost:5521:0rcl";
static String user="HR", pwd="hr";
static String PROFILE = "FOO";
static String primitiveSgl = "exec sample_proc(:bl, :b2)";

public static void main(String[] args) throws Exception
{
OracleDataSource ods = new OracleDataSource();
ods.setURL (url) ;

Properties props = new Properties();

props.put ("user", user);

props.put ("password", pwd) ;

props.put (OracleConnection.CONNECTION_PROPERTY_SQL_TRANSLATION_PROFILE,
PROFILE) ;

ods.setConnectionProperties (props) ;

Connection conn = ods.getConnection();

System.out.println("connection for SQL translation: "+conn);

try{
OracleTranslatingConnection trConn = (OracleTranslatingConnection) conn;
System.out.println(

"Call: oracle.jdbc.OracleTranslatingConnection.prepareCall (sql, true)");
CallableStatement trStmt = trConn.prepareCall (primitiveSqgl, true);
trStmt.setInt ("bl", 1);
trStmt.setString("b2", "A");
trStmt.registerOutParameter ("b2", Types.VARCHAR) ;
System.out.println("execute for: "+primitiveSql);
trStmt.execute() ;

System.out.println("out param: "+trStmt.getString("b2"));

trStmt.close();
}catch (Exception e) {
e.printStackTrace() ;

API Reference for SQL Translation of JDBC Applications 8-11

prepareCall()

try{
OracleTranslatingConnection trConn = (OracleTranslatingConnection) conn;
System.out.println(

"Call: oracle.jdbc.OracleTranslatingConnection.prepareCall (sql, false)");
CallableStatement trStmt = trConn.prepareCall (primitiveSqgl, false);
trStmt.setInt (1, 1);
trStmt.setString (2, "A");

System.out.println("execute for: "+primitiveSql);
ResultSet trRs = trStmt.executeQuery();
while (trRs.next())

System.out.println("Cl:"+trRs.getInt(1)+", C2:"+trRs.getString(2));

trRs.close();

trStmt.close();
}catch (Exception e) {
System.out.println("expected Exception: "+e.getMessage());

conn.close();

8-12 Migration Guide

OracleTranslatingConnection Interface

prepareStatement)

This group of methods create a PreparedStatement object, and specify whether the
statement supports SQL translation. If the value of parameter translating is TRUE,
then the returning statement supports translation. If the value is FALSE, then the

returning statement does not support translation.

Syntax

Description

public PreparedStatement prepareStatement (
String sql,
boolean translating)

throws SQLException;

public PreparedStatement prepareStatement (
String sql,
int resultSetType,
int resultSetConcur,
boolean translating)
throws SQLException;

public PreparedStatement prepareStatement (
String sql,
int resultSetType,
int resultSetConcur,
int resultSetHold,
boolean translating)
throws SQLException;

Creates a PreparedStatement object
with option to translate or not translate

SQL

Creates a PreparedStatement object
with the given type and concurrency
with option to translate or not translate

SQL

Creates a PreparedStatement object
with the given type, concurrency, and
holdability with option to translate or
not translate SQL

Parameter Description

sql Specifies the String SQL statement value to be sent to the
database; may contain one or more parameters

resultSetType Specifies the int value representing the result set type

resultSetConcur Specifies the int value representing the result set concurrency
type

resultSetHold Specifies the int value representing the result set holdability type

translating Specifies whether or not the statement supports translation

Return Value

The prepareStatement () method returns a PreparedStatement object.

Usage Notes

When the "?" placeholder is used with the prepareStatement () method, the driver
internally changes the "?" to Oracle-style parameters because the server side translator
can only work with Oracle-style markers. This is necessary to distinguish the bind
variables. If not, any change in the order of the bind variables will be
indistinguishable. The replaced oracle style markers follow the format :b<n> where
<n> is an incremental number. For example, exec sample_proc(?,?) becomes exec

sample_proc(:bl, :b2).

API Reference for SQL Translation of JDBC Applications 8-13

prepareStatement()

To further exemplify, consider a scenario of a vendor format where the vendor query
selecting top three rows is SELECT * FROM employees WHERE first_name=? AND
employee_1id=? TOP 3. The query has to be converted to oracle dialect. In this case the
following translation is to be registered on the server:

From:

SELECT * FROM employees WHERE first_name=:bl AND employee_id=:b2 TOP 3

To:

SELECT * FROM employees WHERE first_name=:bl AND employee_id=:b2 AND ROWNUM <= 3

See SqlTranslationVersion and "SQL Translation of JDBC Applications" on page 4-1 for
more information.

Exceptions
The prepareStatement () method throws SQLException.

Example
Import the following packages before running the example:

import java.sql.*;
import java.util.Properties;

import oracle.jdbc.OracleConnection;
import oracle.jdbc.OracleTranslatingConnection;
import oracle.jdbc.pool.OracleDataSource;

Run the following SQL statements:

conn system/manager;
grant create sql translation profile to HR;

conn HR/hr;

drop table sample_tab;

create table sample_tab (cl number, c2 varchar2(100));

insert into sample_tab values (1, 'A');

insert into sample_tab values (1, 'A');

insert into sample_tab values (1, 'A');

commit;

exec dbms_sqgl_translator.drop_profile('F00');

exec dbms_sqgl_translator.create_profile('F00');

exec dbms_sqgl_translator.register_sqgl_translation('FOO0', 'select row of select cl,
c2 from sample_tab

where cl=:bl and c2=:b2', 'select cl, c2 from sample_tab where cl=:bl and
c2=:02");

Example 8-3 Using the prepareStatement() method

public class SQLTransPstmt
{
static String url="jdbc:oracle:thin:@localhost:5521:0rcl";
static String user="HR", pwd="hr";
static String PROFILE = "FOO";
static String primitiveSgl = "select row of select cl, c2 from sample_tab
where cl=:bl and c2=:b2";

public static void main(String[] args) throws Exception

{

OracleDataSource ods = new OracleDataSource();

8-14 Migration Guide

OracleTranslatingConnection Interface

ods.setURL (url) ;

Properties props = new Properties();

props.put ("user", user);

props.put ("password", pwd) ;

props.put (OracleConnection.CONNECTION_PROPERTY_SQL_TRANSLATION_PROFILE,
PROFILE) ;

ods.setConnectionProperties (props) ;

Connection conn = ods.getConnection();

System.out.println("connection for SQL translation: "+conn);

try{
OracleTranslatingConnection trConn = (OracleTranslatingConnection) conn;
System.out.println("Call:
oracle.jdbc.OracleTranslatingConnection.prepareStatement (sqgl, true)");
PreparedStatement trStmt = trConn.prepareStatement (primitiveSqgl, true);
trStmt.setInt (1, 1);
trStmt.setString (2, "A");
System.out.println("executeQuery for: "+primitiveSql);
ResultSet trRs = trStmt.executeQuery();
while (trRs.next())
System.out.println("Cl:"+trRs.getInt(1)+", C2:"+trRs.getString(2));
trRs.close();
trStmt.close();
}catch (Exception e) {
e.printStackTrace();

try{
OracleTranslatingConnection trConn = (OracleTranslatingConnection) conn;
System.out.println("Call:
oracle.jdbc.OracleTranslatingConnection.prepareStatement (sql, false)");
PreparedStatement trStmt = trConn.prepareStatement (primitiveSgl, false);
trStmt.setInt (1, 1);
trStmt.setString (2, "A");
System.out.println("executeQuery for: "+primitiveSql);
ResultSet trRs = trStmt.executeQuery();
while (trRs.next())
System.out.println("Cl:"+trRs.getInt(1)+", C2:"+trRs.getString(2));
trRs.close();

trStmt.close();
}catch (Exception e) {
System.out.println("expected Exception: "+e.getMessage());

}

try{
OracleTranslatingConnection trConn = (OracleTranslatingConnection) conn;
System.out.println("Call:
oracle.jdbc.OracleTranslatingConnection.prepareStatement (
sql, ResultSet.TYPE_SCROLL_SENSITIVE, ResultSet.CONCUR_UPDATABLE, true)");
PreparedStatement trStmt = trConn.prepareStatement (
primitiveSqgl, ResultSet.TYPE_SCROLL_SENSITIVE,
ResultSet.CONCUR_READ_ONLY, true);
trStmt.setInt (1, 1);
trStmt.setString (2, "A");
System.out.println("executeQuery for: "+primitiveSql);
ResultSet trRs = trStmt.executeQuery();
while (trRs.next())
System.out.println("Cl:"+trRs.getInt(1)+", C2:"+trRs.getString(2));

API Reference for SQL Translation of JDBC Applications 8-15

prepareStatement()

System.out.println("trRs.beforeFirst and show resultSet again...");
trRs.beforeFirst () ;
while (trRs.next())
System.out.println("Cl:"+trRs.getInt(1)+", C2:"+trRs.getString(2));
trRs.close() ;
trStmt.close();
}catch (Exception e) {
e.printStackTrace();

}

conn.close();

}

8-16 Migration Guide

OracleTranslatingConnection Interface

getSQLTranslationVersions()

Returns a map of all the translation versions of the query during SQL Translation. In
case of an exception, and if suppressExceptions is true, then the translated version in
the map is NULL.

Syntax

public Map<SglTranslationVersion, String> getSglTranslationVersions (
String sql,
boolean suppressExceptions)

throws SQL Exception;

Return Value

Map with all translation versions of a query. See SqlTranslationVersion enum for more
details about returning versions.

Exception

This method throws SQLException if there is a problem in query translation, provided
suppressExceptions is false.

API Reference for SQL Translation of JDBC Applications 8-17

Error Translation Configuration File

Error Translation Configuration File

An XML configuration file (path) is provided as a value of the
oracle.jdbc.sqglErrorTranslationFile property. This file contains the translations
information for errors. These errors occur when a connection to the server cannot be
established and thus translation cannot happen on the server. Error messages are of
the type that define the state of the database that prevents the connection from being
established.

The structure of the configuration XML file is defined in the DTD as follows:

<!DOCTYPE LocalTranslationProfile][

<!ELEMENT LocalTranslationProfile (Exception+)>
<!ELEMENT Exception (ORAError, ErrorCode, SQLState)>
<!ELEMENT ORAError (#PCDATA)>

<!ELEMENT ErrorCode (#PCDATA)>

<!ELEMENT SQLState (#PCDATA)>

1>

where,

= ORAError is an int value and specifies the error code for the oracle error.

= ErrorCodeis an int value and specifies the vendor error code, that is, the
translated code.

= SQLStateis a String value and specifies the vendor SQL state.

8-18 Migration Guide

Glossary

adapter

A real-time, proprietary tool used to enable access to data stored in one database from
another database. Adapters are commonly used to translate SQL, map data types, and
facilitate the integration of SQL statements, triggers, and stored procedures.

custom SQL translation

A scenario in which users can register their customer-specific translations of SQL
statements with the SQL Translation Profile. During the translation of non-Oracle
statements, the profile looks up the custom translations first. Then, if no match is
found, it invokes the SQL Translator.

data integration

The exchange of data between different databases, either asynchronously in real-time
transactions or synchronously as batch processes.

data integration framework

A set of tools and processes used to enable data exchanges between different
databases. Traditional frameworks include many nightly processes such as large batch
extractions and feeds, and bulk loading of data. Newer frameworks can include small
daily processes and feeds occurring in near real time.

database schema migration

The process of identifying and converting tables, columns, and other objects in a
non-Oracle schema to conform to the naming, size, and other conventions required by
Oracle Database.

error translation

A scenario in which users can register vendor-specific translations of error codes and
messages with the SQL Translation Profile. During SQL execution, client applications
rely on vendor-specific error codes and messages. When errors occur, the translated
error codes and messages are returned instead of the Oracle error codes and messages.

migration

The process of modifying a non-Oracle application, including all of its components
(such as architecture, data, SQL code, and client) to use the Oracle RDBMS rather than
a proprietary database management system.

migration repository

A data store in Oracle Database that Oracle SQL Developer uses to manage the
metadata for the source and target schema models during a migration. Multiple

Glossary-1

Oracle Database Gateways

Glossary-2

migration repositories can be used to migrate from several databases to Oracle
Database at the same time.

Oracle Database Gateways

A set of Oracle products that support data integration with non-Oracle systems
synchronously using consistent APIs.

Oracle GoldenGate

An Oracle product that supports modular, transaction-level data integration between
diverse data sources that are stored in SQL Server, Sybase, DB2, Oracle, and other
databases.

Oracle SQL*Loader

A fast, flexible, and free Oracle utility that supports loading data from flat files into
Oracle Database. It supports several data formats and many different encodings. It
also supports parallel data loading.

Oracle SQL Developer Migration Wizard

An Oracle tool that enables the migration of a third-party database to an Oracle
database in batch mode. Migration includes data, schemas, objects, triggers, and stored
procedures.

SQL dialect

A variation or extension of SQL implemented by a database vendor. When migrating
client applications from third-party databases to Oracle, all non-Oracle SQL statements
must be translated into Oracle SQL. Because these non-Oracle SQL statements are
embedded within the source code of client applications, locating and translating them
is a time-consuming, manual task. This release enhances the Oracle database to accept
non-Oracle SQL statements from external vendors, and translate them automatically at
run time before execution.

SQL Translation Profile

A database schema object that directs how non-Oracle SQL statements are translated
into Oracle SQL dialects. This schema also contains translations of error codes,
SQLSTATES, and error messages to be returned when errors occur during the SQL
execution.

When migrating a client application with non-Oracle SQL statements to Oracle, the
user creates a SQL Translation Profile and configures it to translate the SQL statements
and errors for the application. At run time, the application sets the translation profile
in the Oracle database to translate its SQL statements and errors.

SQL Translator

The SQL Translator is a software component, provided by Oracle or third-party
vendors, which can be installed in Oracle Database. It translates the SQL statements of
a client program before they are processed by the Oracle Database SQL compiler. If an
error results from translated SQL statement execution, then Oracle Database SQL
compiler generates an Oracle error message.

SQLSTATE

A status parameter defined by the ANSI SQL standard. It is a 5-character string that
indicates the status of a SQL operation. Some of these values are:

= 00xxx: Unqualified Successful Completion

SQLSTATE

01xxx: Warning

02xxX: No Data

07xxx: Dynamic SQL Error
08xxx: Connection Exception

09xxx: Triggered Action Exception

Glossary-3

SQLSTATE

Glossary-4

A

administrative routines APIs, 7-11
ATTR_RAISE_TRANSLATION_ERROR, 4-3

Cc

client library initialization and termination APIs, 7-8
connection management APIs, 7-8
createStatement(), 8-7

D

data types,mapping, 7-1
datetime and interval data types, 7-7

E

EFAULT, 1-3

enhanced SQL to PL/SQL bind handling, 1-7
error handling, 7-7

error reporting APlIs, 7-8

F

features supporting migration, 1-1

G

getSQLTranslationVersions(), 8-17

identity columns, 1-3

implicit statement results, 1-3

information routines APIs, 7-10

interface
OracleTranslatingConnection, 8-5

J

JDBC API, 8-1
configuration file, 8-18
SQLErrorTranslation.xml, 8-18
methods
createStatement(), 8-7
getSQLTranslationVersions(), 8-17

Index

prepareCall(), 8-10
prepareStatement(), 8-13
OracleTranslatingConnection interface, 8-5
translation properties, 8-2
sqlErrorTranslationFile, 8-4
sqlTranslationProfile, 8-3
JDBC driver support for application migration, 1-8
JDBC support for implicit results, 1-4

L

liboramysql driver, 6-1

liboramysgql library
connecting, 6-2
connecting to Oracle Database, 6-5
error handling, 6-5
expected differences, 6-5
globalization, 6-5
migration overview, 6-2
supported platforms, 6-5
usage, 6-3

M

mapping data types, 7-1
Oracle MySQL client library driver, 7-1
mapping Oracle data types to MySQL data
types, 7-1
methods
createStatement(), 8-7
getSQLTranslationVersions(), 8-17
prepareCall(), 8-10
prepareStatement(), 8-13
Migrating a Sybase JDBC application, 5-1
capturing migration, 5-4
converting migration, 5-7
generating migration, 5-9
moving the data, 5-11
setting up migration, 5-2
migration support for other database vendors, 1-10
miscellaneous APIs, 7-11
my_init(), 7-11
MySQL APIs, 7-7
MySQL client library driver
installation, 6-2
mysql_affected_rows(), 7-11

Index-1

mysql_autocommit(), 7-12
mysql_change_user(), 7-12
mysql_character_set_name(), 7-12
mysql_close(), 7-12
mysql_commit(), 7-12
mysql_connect(), 7-13
mysql_create_db(), 7-13
mysql_data_seek(), 7-13
mysql_debug_info(), 7-13
mysql_debug(), 7-13
mysql_drop_db(), 7-13
mysql_dump_debug_info(), 7-13
mysql_eof(), 7-14
mysql_errno(), 7-14
mysql_error(), 7-14
mysql_escape_string(), 7-14
mysql_fetch_field_direct(), 7-15
mysql_fetch_field(), 7-14
mysql_fetch_fields(), 7-15
mysql_fetch_lengths(), 7-15
mysql_fetch_row(), 7-15
mysql_field_count(), 7-15
mysql_field_seek(), 7-15
mysql_field_tell(), 7-16
mysql_free_result(), 7-16
mysql_get_character_set_info(), 7-16
mysql_get_client_info(), 7-16
mysql_get_client_version(), 7-16
mysql_get_host_info(), 7-16
mysql_get_proto_info(), 7-17
mysql_get_server_info(), 7-17
mysql_get_server_version(), 7-17
mysql_get_ssl_cipher(), 7-17
mysql_hex_string(), 7-17
mysql_info(), 7-17
mysql_init(), 7-18
mysql_insert_id(), 7-18
mysql_kill(), 7-18
mysql_library_end(), 7-18
mysql_library_init(), 7-18
mysql_list_dbs(), 7-18
mysql_list_fields(), 7-19
mysql_list_processes(), 7-19
mysql_list_tables(), 7-19
mysql_more_results(), 7-19
mysql_next_result(), 7-19
mysql_num_fields(), 7-20
mysql_num_rows(), 7-20
mysql_options(), 7-20
mysql_ping(), 7-20
mysql_query(), 7-20
mysql_read_query_result(), 7-20
mysql_real_connect(), 7-21
mysql_real_escape_string(), 7-21
mysql_real_query(), 7-21
mysql_refresh(), 7-21
mysql_reload(), 7-21
mysql_rollback(), 7-21
mysql_row_seek(), 7-22
mysql_row_tell(), 7-22

Index-2

mysql_select_db(), 7-22
mysql_send_query(), 7-22
mysql_server_end(), 7-22
mysql_server_init(), 7-22
mysql_set_character_set(), 7-23
mysql_set_local_infile_default(), 7-23
mysql_set_local_infile_handler(), 7-23
mysql_set_server_option(), 7-23
mysql_shutdown(), 7-23
mysql_sqlstate(), 7-23

mysql_ssl_set(), 7-24

mysql_stat(), 7-24
mysql_stmt_affected_rows(), 7-24
mysql_stmt_attr_get(), 7-24
mysql_stmt_attr_set(), 7-24
mysql_stmt_bind_param(), 7-24
mysql_stmt_bind_result(), 7-24
mysql_stmt_close(), 7-25
mysql_stmt_data_seek(), 7-25
mysql_stmt_errno(), 7-25
mysql_stmt_error(), 7-25
mysql_stmt_execute(), 7-25
mysql_stmt_fetch_column(), 7-25
mysql_stmt_fetch(), 7-25
mysql_stmt_field_count(), 7-26
mysql_stmt_free_result(), 7-26
mysql_stmt_init(), 7-26
mysql_stmt_insert_id(), 7-26
mysql_stmt_next_result(), 7-26
mysql_stmt_num_rows(), 7-26
mysql_stmt_param_count(), 7-26
mysql_stmt_param_metadata(), 7-27
mysql_stmt_prepare(), 7-27
mysql_stmt_reset(), 7-27
mysql_stmt_result_metadata(), 7-27
mysql_stmt_row_seek(), 7-27
mysql_stmt_row_tell(), 7-27
mysql_stmt_send_long_data(), 7-27
mysql_stmt_sqlstate(), 7-28
mysql_stmt_store_result(), 7-28
mysql_store_result(), 7-28
mysql_thread_end(), 7-28
mysql_thread_id(), 7-28
mysql_thread_init(), 7-28
mysql_thread_safe(), 7-29
MYSQL_TYPE_BLOB data type, 7-3
MYSQL_TYPE_DATE data type, 7-3
MYSQL_TYPE_DATETIME data type, 7-4
MYSQL_TYPE_DOUBLE data type, 7-4
MYSQL_TYPE_FLOAT data type, 7-4
MYSQL_TYPE_LONG data type, 7-4
MYSQL_TYPE_LONG_BLOB data type, 7-4
MYSQL_TYPE_LONGLONG data type, 7-4
MYSQL_TYPE_MEDIUM_BLOB data type, 7-4
MYSQL_TYPE_NEWDECIMAL data type, 7-5
MYSQL_TYPE_SHORT data type, 7-5
MYSQL_TYPE_STRING data type, 7-5
MYSQL_TYPE_TIME data type, 7-5
MYSQL_TYPE_TIMESTAMP data type, 7-5
MYSQL_TYPE_TINY data type, 7-6

MYSQL_TYPE_TINY_BLOB data type, 7-6
MYSQL_TYPE_VAR_STRING data type, 7-6
mysql_use_result(), 7-29
mysql_warning_count(), 7-29

N

native SQL support for query row limits and row
offsets, 1-8

(o)

OCI support for implicit results, 1-4

ODBC driver support for application migration, 1-8

ODBC support for implicit results, 1-5

OEM tuning and performance packs, 1-9

Oracle Database Gateways, 1-9

Oracle GoldenGate, 1-9

Oracle MySQL client library driver, 7-1

Oracle SQL Developer, 1-9

Oracle SQL developer
migration support, 3-1
setup, 3-2

OracleTranslatingConnection interface, 8-5
createStatement() method, 8-7
getSQLTranslationVersions() method, 8-17
prepareCall() method, 8-10
prepareStatement() method, 8-13

P

permissions for installing the SQL translator, 3-12
prepareCall(), 8-10

prepared statements APIs, 7-9
prepareStatement(), 8-13

products supporting migration, 1-9

R

result set processing APIs, 7-9

S

SQL translation framework, 1-2
architecture, 2-3
configuration, 3-1, 3-10
installation, 3-1, 3-10
SQL translation profile, 2-2
SQL translator, 2-2
use, 2-3
when to use, 2-1
SQL translation of JDBC aplications, 4-1
SQL translation of JDBC applications, 4-1
error message translation, 4-1
error translation, 4-3
execution of translated Oracle dialect query, 4-2
parameter marker conversion, 4-2
SQL translation profile, 4-1
SQL translation of ODBC applications, 4-1, 4-5
error message translation, 4-5
SQL translation profile, 4-5

SQL translation profile

setup, 3-10
sqlErrorTranslationFile, 8-4
SQLErrorTranslation.xml, 8-18
sqlTranslationProfile, 8-3
SqlTranslationVersion enumerated values, 8-6
statement construction and execution APIs, 7-8

T

transaction control APIs, 7-10

translation properties
sqlErrorTranslationFile, 8-4
sqlTranslationProfile, 8-3

Index-3

Index-4

	Contents
	List of Examples
	List of Figures
	List of Tables
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	1 Introduction to Tools and Products that Support Migration
	Migration Overview
	Oracle Database 12c Release 1 Features for Migration Support
	SQL Translation Framework
	Support for MySQL Applications
	Identity Columns
	Implicit Statement Results
	JDBC Support for Implicit Results
	OCI Support for Implicit Results
	ODBC Support for Implicit Results

	Enhanced SQL to PL/SQL Bind Handling
	Native SQL Support for Query Row Limits and Row Offsets
	JDBC Driver Support for Application Migration
	ODBC Driver Support for Application Migration

	Other Oracle Products that Enable Migration
	OEM Tuning and Performance Packs
	Oracle GoldenGate
	Oracle Database Gateways
	Oracle SQL Developer

	Migration Support for Other Database Vendors

	2 SQL Translation Framework Overview and Architecture
	When to Use SQL Translation Framework
	What is SQL Translation Framework
	Architecture of SQL Translation Framework
	How to Use SQL Translation Framework

	3 SQL Translation Framework Configuration
	Installing and Configuring SQL Translation Framework with Oracle SQL Developer
	Overview of Oracle SQL Developer Migration Support
	Setting Up Oracle SQL Developer 3.2 for Windows
	Setting Up Oracle SQL Developer 3.2 Startup
	Starting Oracle SQL Developer

	Creating a Connection to Oracle Database
	Testing SQL Translation
	Creating a Translation Profile and Installing SQL Translator
	Installing SQL Translator
	Creating a Translation Profile

	Using the SQL Translator Profile

	Installing and Configuring SQL Translation Framework from Command Line
	Installing Oracle Sybase Translator
	Setting up a SQL Translation Profile
	Setting Up a Database Service to Use the SQL Translation Profile
	Setting Up a Database Service in Oracle Real Application Clusters

	Testing Sybase SQL Translation Using the SQL Translation Profile

	Granting Necessary Permissions for Installing the SQL Translator

	4 SQL Translation of JDBC and ODBC Applications
	SQL Translation of JDBC Applications
	SQL Translation Profile
	Error Message Translation
	Converting JDBC Standard Parameter Markers
	Executing the Translated Oracle Dialect Query
	Error Translation
	SQL Translation Using a JDBC Driver

	SQL Translation of ODBC Applications
	SQL Translation profile
	Error Message Translation
	Translating Error Messages

	5 Application Migration Using SQL Translation Framework Example
	Migrating a Sybase JDBC Application
	Application Overview
	Setting Up Migration
	Capturing Migration
	Converting Migration
	Generating a Migration
	Creating a Target Oracle User

	Moving the Data

	Generating Migration Reports

	6 MySQL Client Library Driver for Oracle
	Introduction to MySQL Client Library Driver for Oracle
	Installation and First Use of MySQL Client Library Driver for Oracle
	Overview of Migration with MySQL Client Library Driver for Oracle
	Using MySQL Client Library Driver for Oracle
	Relinking the Application with the liboramysql Driver
	Connecting to Oracle Database
	Supported Platforms
	Error Handling
	Globalization
	Expected Differences

	7 API Reference for Oracle MySQL Client Library Driver
	Mapping Data Types
	Mapping Oracle Data Types to MySQL Data Types
	Data Type Conversions for MySQL Program Variable Data Types
	MYSQL_TYPE_BLOB
	MYSQL_TYPE_DATE
	MYSQL_TYPE_DATETIME
	MYSQL_TYPE_DOUBLE
	MYSQL_TYPE_FLOAT
	MYSQL_TYPE_LONG
	MYSQL_TYPE_LONG_BLOB
	MYSQL_TYPE_LONGLONG
	MYSQL_TYPE_MEDIUM_BLOB
	MYSQL_TYPE_NEWDECIMAL
	MYSQL_TYPE_SHORT
	MYSQL_TYPE_STRING
	MYSQL_TYPE_TIME
	MYSQL_TYPE_TIMESTAMP
	MYSQL_TYPE_TINY
	MYSQL_TYPE_TINY_BLOB
	MYSQL_TYPE_VAR_STRING

	Data Type Conversions for MySQL External Data Types (LOB Data Type Descriptors)
	Data Type Conversions for Datetime and Interval Data Types

	Error Handling
	Available MySQL APIs
	my_init()
	mysql_affected_rows()
	mysql_autocommit()
	mysql_change_user()
	mysql_character_set_name()
	mysql_close()
	mysql_commit()
	mysql_connect()
	mysql_create_db()
	mysql_data_seek()
	mysql_debug()
	mysql_debug_info()
	mysql_drop_db()
	mysql_dump_debug_info()
	mysql_eof()
	mysql_errno()
	mysql_error()
	mysql_escape_string()
	mysql_fetch_field()
	mysql_fetch_field_direct()
	mysql_fetch_fields()
	mysql_fetch_lengths()
	mysql_fetch_row()
	mysql_field_count()
	mysql_field_seek()
	mysql_field_tell()
	mysql_free_result()
	mysql_get_character_set_info()
	mysql_get_client_info()
	mysql_get_client_version()
	mysql_get_host_info()
	mysql_get_proto_info()
	mysql_get_server_info()
	mysql_get_server_version()
	mysql_get_ssl_cipher()
	mysql_hex_string()
	mysql_info()
	mysql_init()
	mysql_insert_id()
	mysql_kill()
	mysql_library_end()
	mysql_library_init()
	mysql_list_dbs()
	mysql_list_fields()
	mysql_list_processes()
	mysql_list_tables()
	mysql_more_results()
	mysql_next_result()
	mysql_num_fields()
	mysql_num_rows()
	mysql_options()
	mysql_ping()
	mysql_query()
	mysql_read_query_result()
	mysql_real_connect()
	mysql_real_escape_string()
	mysql_real_query()
	mysql_refresh()
	mysql_reload()
	mysql_rollback()
	mysql_row_seek()
	mysql_row_tell()
	mysql_select_db()
	mysql_send_query()
	mysql_server_end()
	mysql_server_init()
	mysql_set_character_set()
	mysql_set_local_infile_default()
	mysql_set_local_infile_handler()
	mysql_set_server_option()
	mysql_shutdown()
	mysql_sqlstate()
	mysql_ssl_set()
	mysql_stat()
	mysql_stmt_affected_rows()
	mysql_stmt_attr_get()
	mysql_stmt_attr_set()
	mysql_stmt_bind_param()
	mysql_stmt_bind_result()
	mysql_stmt_close()
	mysql_stmt_data_seek()
	mysql_stmt_errno()
	mysql_stmt_error()
	mysql_stmt_execute()
	mysql_stmt_fetch()
	mysql_stmt_fetch_column()
	mysql_stmt_field_count()
	mysql_stmt_free_result()
	mysql_stmt_init()
	mysql_stmt_insert_id()
	mysql_stmt_next_result()
	mysql_stmt_num_rows()
	mysql_stmt_param_count()
	mysql_stmt_param_metadata()
	mysql_stmt_prepare()
	mysql_stmt_reset()
	mysql_stmt_result_metadata()
	mysql_stmt_row_seek()
	mysql_stmt_row_tell()
	mysql_stmt_send_long_data()
	mysql_stmt_sqlstate()
	mysql_stmt_store_result()
	mysql_store_result()
	mysql_thread_end()
	mysql_thread_id()
	mysql_thread_init()
	mysql_thread_safe()
	mysql_use_result()
	mysql_warning_count()

	8 API Reference for SQL Translation of JDBC Applications
	Translation Properties
	sqlTranslationProfile
	sqlErrorTranslationFile

	OracleTranslatingConnection Interface
	SqlTranslationVersion
	createStatement()
	prepareCall()
	prepareStatement()
	getSQLTranslationVersions()

	Error Translation Configuration File

	Glossary
	Index
	A
	C
	D
	E
	F
	G
	I
	J
	L
	M
	N
	O
	P
	R
	S
	T

