
Oracle Forms Developer 10g:
Build Internet Applications
Electronic Presentation

D17251GC10
Edition 1.0
June 2004
D39562

®

Copyright © Oracle Corporation, 2004. All rights reserved.

This documentation contains proprietary information of Oracle Corporation. It is provided under a
license agreement containing restrictions on use and disclosure and is also protected by copyright
law. Reverse engineering of the software is prohibited. If this documentation is delivered to a U.S.
Government Agency of the Department of Defense, then it is delivered with Restricted Rights and the
following legend is applicable:

Restricted Rights Legend

Use, duplication or disclosure by the Government is subject to restrictions for commercial computer
software and shall be deemed to be Restricted Rights software under Federal law, as set forth in
subparagraph (c)(1)(ii) of DFARS 252.227-7013, Rights in Technical Data and Computer Software
(October 1988).

This material or any portion of it may not be copied in any form or by any means without the express
prior written permission of the Education Products group of Oracle Corporation. Any other copying is
a violation of copyright law and may result in civil and/or criminal penalties.

If this documentation is delivered to a U.S. Government Agency not within the Department of
Defense, then it is delivered with “Restricted Rights,” as defined in FAR 52.227-14, Rights in Data-
General, including Alternate III (June 1987).

The information in this document is subject to change without notice. If you find any problems in the
documentation, please report them in writing to Worldwide Education Services, Oracle Corporation,
500Oracle Parkway, Box SB-6, Redwood Shores, CA 94065. Oracle Corporation does not warrant
that this document is error-free.

Oracle and all references to Oracle Products are trademarks or registered trademarks of Oracle
Corporation.

All other products or company names are used for identification purposes only, and may be
trademarks of their respective owners.

Author

Pam Gamer

Technical Contributors and
Reviewers

Alena Bugarova
Purjanti Chang
Laurent Dereac
Punita Handa
Mark Pare
Jasmin Robayo
Bryan Roberts
Divya Sandeep
Raza Siddiqui
John Soltani
Lex van der Werff

Editors

Nishima Sachdeva
Elizabeth Treacy

Publisher
Giri Venugopal

Copyright © 2004, Oracle. All rights reserved.

Introduction to Oracle Forms Developer
and Oracle Forms Services

Copyright © 2004, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to do
the following:
• Define grid computing
• Explain how Oracle 10g products implement grid

computing
• Describe the components of Oracle Application

Server 10g and Oracle Developer Suite 10g
• Describe the features and benefits of Oracle

Forms Services and Oracle Forms Developer
• Describe the architecture of Oracle Forms

Services
• Describe the course application

Copyright © 2004, Oracle. All rights reserved.

Internet Computing Solutions

Application Type
and Audience

Enterprise applications,
Business developers

Java components,
Component developers

Product
Approach

Repository-based
modeling & generation,

Declarative

Oracle
Products

Oracle Designer,
Oracle Forms Developer,
& Oracle Forms Services

Two-way coding,
Java and JavaBeans

Oracle JDeveloper
Oracle Application Server 10g

Browser-based,
Dynamic HTML

Self-service applications &
content management,
Web site developers

Oracle Portal
Oracle Database Server

Dynamic Web
reporting, Drill,

Analyzing, Forecasting

Reporting and
analytical applications,
MIS & business users

Oracle Reports Developer,
Oracle Reports Services,

Oracle Discoverer, &
Oracle Express

Copyright © 2004, Oracle. All rights reserved.

Plugging into the Grid

Grid computing is:
• Software infrastructure that uses low-cost servers

and modular storage to:
– Balance workloads
– Provide capacity on demand

• Made possible by innovations in hardware
• Powered by software

Copyright © 2004, Oracle. All rights reserved.

Oracle Enterprise Grid Computing

Oracle's grid infrastructure products:
• Oracle Database 10g
• Oracle Application Server 10g
• Oracle Enterprise Manager 10g

Grid Control

Copyright © 2004, Oracle. All rights reserved.

Oracle 10g Products and Forms
Development

Forms Services Forms Developer

Copyright © 2004, Oracle. All rights reserved.

Oracle Application Server 10g
Architecture

Copyright © 2004, Oracle. All rights reserved.

Oracle Application Server 10g
Components

Oracle Application Server
Forms Services

Copyright © 2004, Oracle. All rights reserved.

Oracle Forms Services Overview

A component of Oracle
Application Server that
deploys Forms applications
to Java clients in a Web
environment

Oracle Application Server
Forms Services

Copyright © 2004, Oracle. All rights reserved.

Forms Services Architecture

JRE

Application
logic layer

Data manager/
PL/SQL engine

User interface
layer

Forms Listener
Servlet

Forms Servlet

Forms Runtime

Client Tier Database Tier
Middle Tier:

Application Server

Incrementally
downloaded

File containing
application code

Net
Services

Java applet

DB

Copyright © 2004, Oracle. All rights reserved.

Benefits and Components of Oracle
Developer Suite 10g

•OWB
•Discoverer
•Reports

•JDeveloper
•Forms
•Designer
•SCM

Business Intelligence

Application Development

Copyright © 2004, Oracle. All rights reserved.

Oracle Developer Suite 10g
Application Development

Copyright © 2004, Oracle. All rights reserved.

Oracle Developer Suite 10g
Business Intelligence

Copyright © 2004, Oracle. All rights reserved.

Oracle Forms Developer Overview

Oracle Forms Developer:
• Is a productive development environment

for Internet business applications
• Provides for:

– Data entry
– Queries

Copyright © 2004, Oracle. All rights reserved.

Oracle Forms Developer: Key Features

• Tools for rapid application development
• Application partitioning
• Flexible source control
• Extended scalability
• Object reuse

Copyright © 2004, Oracle. All rights reserved.

Summit Office Supply Schema

Order Entry
Application

Copyright © 2004, Oracle. All rights reserved.

Summit Application

CV_Customer Canvas

CUSTOMERS Block

CV_Order Canvas

ORDERS Block

ORDER_ITEMS Block
CV_Inventory Canvas

INVENTORIES
Table

CUSTOMERS
Table

ORDERS
Table

ORDER_ITEMS
Table

Customers
Form

Orders Form

INVENTORIES Block

Copyright © 2004, Oracle. All rights reserved.

Summary

In this lesson, you should have learned that:
• Grid computing makes computing power available

without regard to its source
• Oracle 10g products provide the software to

implement enterprise grid computing
• Oracle Application Server 10g provides services

for building and deploying Web applications
• Oracle Developer Suite 10g includes components

for application development and business
intelligence

Copyright © 2004, Oracle. All rights reserved.

Summary

• Benefits of Oracle Forms Services include:
– Optimized Web deployment of Forms applications
– Rich Java UI without Java coding
– Generic Java applet to deploy any Forms

application
• Oracle Forms Services consists of the Forms

client, the Forms Servlet, the Forms Listener
Servlet, and the Forms Runtime Engine.

• Benefits of Oracle Forms Developer include rapid
application development, application partitioning,
flexible source control, extended scalability, and
object reuse.

• The course application is a customer and order
entry application for Summit Office Supply.

Copyright © 2004, Oracle. All rights reserved.

Running a Forms
Developer Application

Copyright © 2004, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to do
the following:
• Start OC4J
• Describe the run-time environment
• Describe the elements in a running form
• Navigate a Forms application
• Describe the two main modes of operation
• Run a form in a Web browser

– Retrieve both restricted and unrestricted data
– Insert, update, and delete records
– Display database errors

Copyright © 2004, Oracle. All rights reserved.

Testing a Form: OC4J Overview

Oracle Application Server Containers for J2EE (OC4J)
is:
• Preferred to run Forms applications
• Included with Oracle Developer Suite to enable

testing

Copyright © 2004, Oracle. All rights reserved.

Testing a Form: Starting OC4J

• On NT, run batch file to start
OC4J: startinst.bat.

• OC4J starts in DOS window:
– Minimize window
– Closing window aborts OC4J

• Run batch file to stop OC4J: stopinst.bat.

Copyright © 2004, Oracle. All rights reserved.

Running a Form

Oracle Forms Services deployment:

Browser URL

Java Applet

Copyright © 2004, Oracle. All rights reserved.

Running a Form: Browser

http://summit.com:8889/forms90/f90servlet
?form=customers.fmx&userid=username/password@database
&buffer_records=NO&debug_messages=NO&array=YES
&query_only=NO

http://summit.com:8889/forms90/f90servlet?form=customers.fmx&userid=

How do I
access this
application?

Copyright © 2004, Oracle. All rights reserved.

The Java Runtime Environment

• The Forms applet runs in a Java Runtime
Environment (JRE) on the client machine.

• Types of JREs:
– Java-enabled browser (native)
– JInitiator (Oracle-supplied plug-in to Web browser)

that provides:
Incremental Java archive (JAR) file downloading
JAR file caching
Applet instance caching
Automatic Java security configuration

Copyright © 2004, Oracle. All rights reserved.

Starting a Run-Time Session

URL http://summit.com:8889/forms90/f90

Static HTML files
OC4J
or HTTP Server

Forms Servlet

Forms Listener Servlet

Forms Runtime Engine

Web Browser1
2

3

DB PLX filesMMX files

Forms Application Executables

FMX files

Web Server

Forms Services

Client Tier Middle Tier: Application Server

Copyright © 2004, Oracle. All rights reserved.

Static HTML files
OC4J
or HTTP Server

Forms Servlet

Forms Listener Servlet

Forms Runtime Engine

URL http://summit.com:8889/forms90/f90

Web Browser

Starting a Run-Time Session

4

5Applet started 6

DB PLX filesMMX files

Forms Application Executables

FMX files

Web Server

Forms Services

Middle Tier: Application ServerClient Tier

Copyright © 2004, Oracle. All rights reserved.

Web Server
Static HTML files
OC4J
or HTTP Server

Forms Servlet

Forms Listener Servlet

Forms Runtime Engine

Forms Services

8

URL http://summit.com:8889/forms90/f90

Web Browser

Starting a Run-Time Session

Middle Tier: Application Server

8

7

DB PLX filesMMX files

Forms Application Executables

FMX files

Client Tier

Copyright © 2004, Oracle. All rights reserved.

Forms Client
Base HTML files
Forms Servlet
Forms Listener Servlet
Forms Runtime Engine

Application Server

Static HTML files
HTTP Server or OC4J

The Forms Servlet

Dynamic
HTML file is

created

Desktop Client

URL PARAMETERS:
?form=customers.fmx
&userid=un/pw@db
&buffer_records=NO
...

URL Pointing to Forms Servlet

basejini.html

formsweb.cfg

http://summit.com:8889/forms90/f90servlet?form=customers.f

Web Server

Forms Services

Copyright © 2004, Oracle. All rights reserved.

The Forms Client

• Generic Java applet
• Responsibilities:

– Displays the form’s user interface
– Processes user interaction back to

Forms Services
– Processes incoming messages

from Forms Services Generic
Java applet

Forms Client

Desktop Client

Copyright © 2004, Oracle. All rights reserved.

The Forms Listener Servlet

Java Servlet that:
• Creates Forms

Runtime process
for each client

• Stops the Runtime process at session end
• Manages network communications between client

and Forms Runtime process
• Communicates through Web server process

HTTP Server
or

OC4J

Middle Tier

HTTP/
HTTPS

Forms
Listener
Servlet

Forms
Runtime
Process

Copyright © 2004, Oracle. All rights reserved.

The Runtime Engine

The Forms Runtime Engine:
• Is a process (ifweb90) that runs on the

Application Server
• Manages application logic and processing
• Communicates with the client browser and the

database

Copyright © 2004, Oracle. All rights reserved.

What You See at Run Time

1
3

4

5 2

Copyright © 2004, Oracle. All rights reserved.

Identifying the Data Elements

51 2 7 864 93 10

Copyright © 2004, Oracle. All rights reserved.

Modes of Operation: Enter-Query Mode

Allows:
• Unrestricted and

restricted queries
• Query/Where dialog

box
• Record count by using

Query > Count Hits

Does not allow:
• Navigation out of

current data block
• Exiting run-time

session
• Certain functions
• Insert, update, delete

Copyright © 2004, Oracle. All rights reserved.

Modes of Operation: Normal Mode

Allows:
• Unrestricted queries
• Insert, update, delete
• Commit (Save)
• Navigation out of

current data block
• Exiting run-time

session

Does Not Allow:
• Restricted queries
• Query/Where dialog

box

Copyright © 2004, Oracle. All rights reserved.

Retrieving Data

1

3
4

2

A B C D
1
2

Restricted query

A B C D

A B C D
1
2
3
4

Unrestricted query

A B C D
1
2
3
4

Copyright © 2004, Oracle. All rights reserved.

Retrieving Restricted Data

• Do not use quotation marks with character and
date items.

• The LIKE operator is implied with % or _.
• Use hash (#) in front of SQL operators.
• Use Query/Where for complex query conditions.
• Use default date format (DD-MON-RR) in

Query/Where.
• Use quotes around literals in Query/Where.

Copyright © 2004, Oracle. All rights reserved.

Query/Where Dialog Box

• Invoke by:
– Entering :variable_name
– Executing query

• Used to write:
– Complex search conditions
– Queries with OR predicates
– ORDER BY clause

Copyright © 2004, Oracle. All rights reserved.

Query/Where Dialog Box

:i

:n

:i = 104 OR :n BETWEEN ‘F’ and ‘H’

Copyright © 2004, Oracle. All rights reserved.

Inserting, Updating, and Deleting

Form module

Deletes

Updates

Inserts

Memory

Copyright © 2004, Oracle. All rights reserved.

Making Changes Permanent

• Select Action > Save to
make changes
permanent.

• Select Action > Clear
All to discard changes.

or
Toolbar

Menu

To commit or
rollback:

Deletes

Updates

Inserts

Memory

Copyright © 2004, Oracle. All rights reserved.

Displaying Errors

• Use to view Oracle errors
• Select Help > Display Error
• Shows Database Error window:

– SQL statement
– Error information

Copyright © 2004, Oracle. All rights reserved.

Summary

In this lesson, you should have learned that:
• You can use OC4J on the development machine to

run a Forms application in a Web browser
• At run time:

– The Forms Client is downloaded
– The Forms Servlet creates a start HTML file
– The Forms Listener Servlet starts a run-time

session and maintains communication between it
and the Forms Client

– The Runtime Engine carries out application logic
and maintains a database connection on behalf of
the Forms Client

Copyright © 2004, Oracle. All rights reserved.

Summary

• When you run a form you see a Java applet
running in a browser and displaying a menu, menu
toolbar, console, and several kinds of data
elements.

• Users navigate a Forms application using the
menu, toolbar, the mouse, buttons, or function
keys.

• The two main modes of operation are Normal
mode and Enter-Query mode.

• Executing a query returns all records, unless the
query is restricted by search criteria.

Copyright © 2004, Oracle. All rights reserved.

Summary

• In normal mode you can insert, update, and delete
records and commit changes to the database.

• You display database errors from the menu
(Help > Display Error)

Copyright © 2004, Oracle. All rights reserved.

Practice 2 Overview

This practice covers the following topics:
• Starting OC4J
• Running the course application:

– Querying records
– Inserting a record
– Updating a record
– Deleting a record
– Displaying a database error

Copyright © 2004, Oracle. All rights reserved.

Working in the Forms
Developer Environment

Copyright © 2004, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to do
the following:
• Describe Forms Builder components
• Navigate the Forms Builder interface
• Identify the main objects in a form module
• Customize the Forms Builder session
• Use the online help facilities
• Identify the main Forms executables
• Describe the Forms module types
• Set environment variables for design and run time
• Run a form from within Forms Builder

Copyright © 2004, Oracle. All rights reserved.

Forms Builder Key Features

With Forms Builder you can:
• Provide an interface for users to insert, update,

delete, and query data
• Present data as text, image, and custom controls
• Control forms across several windows and

database transactions
• Use integrated menus
• Send data to Oracle Reports

Copyright © 2004, Oracle. All rights reserved.

Forms Builder Components:
Object Navigator

• Client-side and
server-side
objects
displayed
hierarchically

• Toolbar
to create,
delete or
unload, expand
or contract

• Icons to
represent
objects

• Fast
search
feature

Copyright © 2004, Oracle. All rights reserved.

Toolbar

Tool
palette

Forms Builder Components:
Layout Editor

Copyright © 2004, Oracle. All rights reserved.

Getting Started in the Forms
Builder Interface

• Start Forms Builder
• Connect to the database:

– Menu:
Select File > Connect

Or
– Toolbar:

Click Connect

Copyright © 2004, Oracle. All rights reserved.

Forms Builder: Menu Structure

Copyright © 2004, Oracle. All rights reserved.

Blocks, Items, and Canvases

Canvas 1 Canvas 2

Items Items

Block A Block B

Copyright © 2004, Oracle. All rights reserved.

Navigation in a Block

Canvas 1 Canvas 2

Copyright © 2004, Oracle. All rights reserved.

Data Blocks

A B C

A B C

Master Data Block

D

X Y Z

Detail Data Block
X Y Z

Table

Table

4

3

6

2

1
5

Copyright © 2004, Oracle. All rights reserved.

Forms and Data Blocks

Block 1

Block 4

Block 1

Block 2

Block 1

Block 1

Single Form
Module

Multiple Form Modules

Form A Form B

Open
Form

Open Form
Form C

Block 2

Block 3

Copyright © 2004, Oracle. All rights reserved.

Form Module Hierarchy

Module

DatabaseTable

Column

Canvas

Window

TriggerTrigger

Program
Units
Program

units

Trigger
Trigger

Blocks

Frame
Item
Item
Item

Copyright © 2004, Oracle. All rights reserved.

Customizing Your Forms Builder Session

Copyright © 2004, Oracle. All rights reserved.

Saving Preferences

Existing
Preferences File

Updated, merged
Preferences File

Motif:
prefs.ora
Windows:
cauprefs.ora

Modified
preferences

Copyright © 2004, Oracle. All rights reserved.

Using the Online Help System

Copyright © 2004, Oracle. All rights reserved.

Forms Developer Executables

Forms Compiler Forms
Services

Definitions

Run files

Forms Builder

Copyright © 2004, Oracle. All rights reserved.

Forms Developer Module Types

PL/SQL
Library

Object
Library

Menus Forms

Oracle Forms Developer
components

Data sources Database

Libraries

Copyright © 2004, Oracle. All rights reserved.

Defining Forms Environment Variables
for Run Time

Set on middle-tier machine (used at run time):
• FORMS90_PATH

• ORACLE_PATH

• CLASSPATH

For Forms deployment,
the settings in the
environment control file
override system settings.

Copyright © 2004, Oracle. All rights reserved.

Defining Forms Environment Variables
for Design Time

Set on Developer Suite machine (used by Forms
Builder):
• FORMS90_BUILDER_CLASSPATH

• UI_ICON

• UI_ICON_EXTENSION

• FORMS90_HIDE_OBR_PARAMS

Windows: Modify in
Registry

(REGEDIT.EXE or
REGEDT32.EXE)

Copyright © 2004, Oracle. All rights reserved.

Environment Variables and
Y2K Compliance

• NLS_DATE_FORMAT

• FORMS90_USER_DATE_FORMAT

• FORMS90_USER_DATETIME_FORMAT

• FORMS90_OUTPUT_DATETIME_FORMAT

• FORMS90_OUTPUT_DATETIME_FORMAT

• FORMS90_ERROR_DATE_FORMAT

• FORMS90_ERROR_DATETIME_FORMAT

Copyright © 2004, Oracle. All rights reserved.

Forms Files to Define Run-Time
Environment Variables

Environment control file:
• \forms90\server\default.env or
• Other file specified in Forms configuration file

Forms configuration file:
• \forms90\server\formsweb.cfg or other
• Used to specify:

– System parameters, such as envFile and
workingDirectory

– User parameters, such as form and user ID
– Settings for the Java client
– Other settings

Copyright © 2004, Oracle. All rights reserved.

Testing a Form: The Run Form Button

• With the Run Form menu command
or button, you can:
– Run a form from Forms Builder
– Test the form in a three-tier environment

• The Run Form command takes its settings
from Preferences:
– Edit > Preferences
– Runtime tab
– Set Web Browser

Location if desired
– Set Application Server

URL to point to Forms
Servlet:
http://127.0.0.1:8889/forms90/f90servlet

Copyright © 2004, Oracle. All rights reserved.

Summary

In this lesson, you should have learned that:
• Forms Builder includes the Object Navigator, the

Property Palette, the Layout Editor, and the
PL/SQL Editor

• You can use the Object Navigator or the menu and
its associated toolbar icons to navigate around
the Forms Builder interface

• The main objects in a form module are blocks,
items, and canvases

• The Edit > Preferences dialog box enables you to
customize the Forms Builder session

Copyright © 2004, Oracle. All rights reserved.

Summary

• The Help menu enables you to use the online help
facilities to look up topics, or you can invoke
context-sensitive help

• The Forms Developer executables are the Forms
Builder and the Forms Compiler

• The Forms Developer module types are forms,
menus, and libraries

• You can set environment variables in the Forms
environment file (for run time) or on the
development machine (for design time).

• You can use the Run Form button to run a form
from within Forms Builder

Copyright © 2004, Oracle. All rights reserved.

Practice 3 Overview

This practice covers the following topics:
• Becoming familiar with the Object Navigator
• Setting Forms Builder preferences
• Using the Layout Editor to modify the appearance

of a form
• Setting run-time preferences to use OC4J to test

applications
• Running a form application from within Forms

Builder
• Setting environment variables so the Layout

Editor in Forms Builder displays .gif images on
iconic buttons

Copyright © 2004, Oracle. All rights reserved.

Creating a Basic Form Module

Copyright © 2004, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to do
the following:
• Create a form module
• Create a data block
• Save and compile a form module
• Identify Forms file formats and their characteristics
• Describe how to deploy a form module
• Explain how to create documentation for a Forms

application

Copyright © 2004, Oracle. All rights reserved.

Create data blocks and items

Apply standards

Fine-tune layout

Set object properties

Add code

Creating a New Form Module

Test form module

Create an empty module

Copyright © 2004, Oracle. All rights reserved.

Creating a New Form Module

Choose one of the following methods:
• Use wizards:

– Data Block Wizard
– Layout Wizard

• Build module manually
• Use template form

Copyright © 2004, Oracle. All rights reserved.

Form Module Properties

Name
property

Coordinate
System property

Copyright © 2004, Oracle. All rights reserved.

Creating a New Data Block

• Use Forms Builder Wizards:
– Data Block Wizard: Create a data block with

associated data source quickly and easily
– Layout Wizard: Lay out data block contents for

visual presentation
• Create manually

Copyright © 2004, Oracle. All rights reserved.

Creating a New Data Block

Enter data
source

Launch Layout
Wizard

Lay out data
block contents

New Data Block

Reentrant mode

Reentrant mode

Launch Data
Block Wizard

Copyright © 2004, Oracle. All rights reserved.

Navigating the Wizards

Exit
without saving

Invoke
online help

Save
without exiting

Save
and exit

Previous
screen

Next
screen

Available only
in reentrant mode

Tabbed Interface:
Available only in reentrant mode

Copyright © 2004, Oracle. All rights reserved.

Launching the Data
Block Wizard

In Forms Builder, do one of the
following:
• Select Tools > Data Block

Wizard.
• Right-click and select Data

Block Wizard.
• Select the Data Blocks node

and click Create icon; select
Use the Data Block Wizard
option.

• Use the Data Block Wizard
button on the toolbar in the
Layout Editor.

Copyright © 2004, Oracle. All rights reserved.

Data Block Wizard: Type Page

Copyright © 2004, Oracle. All rights reserved.

Data Block Wizard: Table Page

Copyright © 2004, Oracle. All rights reserved.

Data Block Wizard: Finish PageData Block Wizard: Finish Page

Copyright © 2004, Oracle. All rights reserved.

Layout Wizard: Items Page

Copyright © 2004, Oracle. All rights reserved.

Layout Wizard: Style Page

Copyright © 2004, Oracle. All rights reserved.

Layout Wizard: Rows Page

Copyright © 2004, Oracle. All rights reserved.

Data Block Functionality

Once you create a data block with the wizards, Forms
Builder automatically creates:
• A form module with database functionality

including query, insert, update, delete
• A frame object
• Items in the data block
• A prompt for each item
• Triggers needed to enforce database constraints if

“Enforce data integrity” is checked

Copyright © 2004, Oracle. All rights reserved.

Template Forms

Copyright © 2004, Oracle. All rights reserved.

Saving a Form Module

To save the form module:
• Select File > Save

OR
Click the Save icon

• Enter a filename
• Navigate to

desired location
• Click Save

Copyright © 2004, Oracle. All rights reserved.

Compiling a Form Module

1

3

2

4

Copyright © 2004, Oracle. All rights reserved.

Module Types and Storage Formats

Form
Module

Menu
Module

PL/SQL
Library

Object
Library

.fmb .fmx .fmt

.mmb .mmx .mmt

.pll .plx .pld

.olb .olt

Copyright © 2004, Oracle. All rights reserved.

Deploying a Form Module

1. Move module files to
middle tier

2. Generate module on
middle tier

3. Run in browser using
Forms Services on
middle tier

1 2

3

.fmx

.fmb

Copyright © 2004, Oracle. All rights reserved.

Text Files and Documentation

• Convert a binary file to a text file.
• Create an ASCII file for a form module.

Copyright © 2004, Oracle. All rights reserved.

Summary

In this lesson, you should have learned that:
• To create a form module, you create an empty

module, then add data blocks and other elements
• You can create a data block manually or with the

Data Block Wizard and Layout Wizard
• You can save and compile a form module using

the File and Program menus or from the toolbar
• You can store form, menu, and library modules in

text format (useful for documentation), in a
portable binary format, or a non-portable binary
executable format

• To deploy a form module, you move it to the
application server machine and generate it

Copyright © 2004, Oracle. All rights reserved.

Practice 4 Overview

This practice covers the following topics:
• Creating a new form module
• Creating a data block by using Forms Builder

wizards
• Saving and running the form module

Copyright © 2004, Oracle. All rights reserved.

Creating a Master-Detail Form

Copyright © 2004, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to do
the following:
• Create data blocks with relationships
• Modify a data block
• Modify the layout of a data block
• Run a master-detail form

Copyright © 2004, Oracle. All rights reserved.

Form Block Relationships

Master

Detail

Master

Detail ↑
Master ↓

Master

Detail Detail

Detail

Copyright © 2004, Oracle. All rights reserved.

CustomersOrders

Items

Form Block Relationships

Orders

Items

Orders Account Rep

Customers

Copyright © 2004, Oracle. All rights reserved.

Data Block Wizard:
Master-Detail Page

Copyright © 2004, Oracle. All rights reserved.

Relation Object

• New relation object
created in Object
Navigator under
master data block
node

• Default name
assigned:
MasterDataBlock_
DetailDataBlock

• Triggers and program
units generated
automatically

Copyright © 2004, Oracle. All rights reserved.

Creating a Relation Manually

Copyright © 2004, Oracle. All rights reserved.

Join Condition

• The join condition creates primary-foreign key link
between blocks

• Define a join condition using:
– Block and item names (not table and column

names)
– Do not precede names with colon
– SQL equijoin syntax

Copyright © 2004, Oracle. All rights reserved.

Deletion Properties

Isolated: Only master
is deleted

Cascading: Master and
all details are deleted

Non-isolated: If no detail
record, master is deleted

Non-isolated: Master is
not deleted if there are
any detail records

= Deleted

Master-Detail
Records

Copyright © 2004, Oracle. All rights reserved.

Modifying a Relation

Copyright © 2004, Oracle. All rights reserved.

Coordination Properties

Default Deferred
with auto query

Deferred
without

auto query

Copyright © 2004, Oracle. All rights reserved.

Running a Master-Detail Form Module

• Automatic block linking
for:
– Querying
– Inserting

• Default deletion rules:
Cannot delete master
record if detail records
exist

Copyright © 2004, Oracle. All rights reserved.

Modifying the Structure of a Data Block

• Reentrant Data Block Wizard:
1. Select frame or object in Layout

Editor, or data block or frame in
Object Navigator

2. Select Tools > Data Block
Wizard OR
Right-click and select Data
Block Wizard OR
Click Data Block Wizard

• Object Navigator:
– Create or delete items
– Change item properties

• Block Property Palette: Change
property values

Copyright © 2004, Oracle. All rights reserved.

Modifying the Layout of a Data Block

• Reentrant Layout Wizard:
– Select frame in Object

Navigator or Layout Editor
– Select Tools > Layout Wizard
– OR
– Right-click and select Layout

Wizard OR
– Click Layout Wizard

• Layout Editor:
– Select Tools > Layout Editor
– Make changes manually

• Frame Property Palette: Change
property values

Copyright © 2004, Oracle. All rights reserved.

Summary

In this lesson, you should have learned that:
• You can create data blocks with relationships by

using the Data Block Wizard or by manually
creating a Relation object

• When you run a master-detail form, block
coordination is automatic depending on
properties of the Relation object

• You can modify a data block manually or with the
Data Block Wizard in reentrant mode

• You can modify the layout manually or with the
Layout Wizard in reentrant mode

Copyright © 2004, Oracle. All rights reserved.

Practice 5 Overview

This practice covers the following topics:
• Creating a master-detail form module
• Modifying data block layout by using the Layout

Wizard in reentrant mode
• Saving and running the form module

Copyright © 2004, Oracle. All rights reserved.

Working with Data Blocks and Frames

Copyright © 2004, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to do
the following:
• Identify the components of the Property Palette
• Manage object properties
• Create and use Visual Attributes
• Control the behavior and appearance of data

blocks
• Control frame properties
• Create blocks that do not directly correspond to

database tables
• Delete data blocks and their components

Copyright © 2004, Oracle. All rights reserved.

Managing Object Properties

• Reentrant Wizard
– Data Block Wizard
– Layout Wizard

• Layout Editor
• Property Palette

1 2

3

Copyright © 2004, Oracle. All rights reserved.

Displaying the Property Palette

To display the Property Palette, use
one of the following methods:
• Select Tools > Property Palette (or

use the shortcut key).
• Double-click the object icon in the

Object Navigator.
• Double-click the object in the

Layout Editor.
• Right-click the object icon in

the Object Navigator.
• Right-click the object in the

Layout Editor.

Copyright © 2004, Oracle. All rights reserved.

Property Palette: Features

Property
name

Property
value

Toolbar

Expand/
collapse

Find field

Search
backward

Search
forward

Help:
Press [F1]

Copyright © 2004, Oracle. All rights reserved.

Property Controls

Text field

LOV window

Pop-up list

More button

Copyright © 2004, Oracle. All rights reserved.

Property Controls

Changed

Default

Overridden

Inherited

Copyright © 2004, Oracle. All rights reserved.

Visual Attributes

A Visual Attribute
is a named set of
properties defining:
• Font
• Color
• Pattern

Copyright © 2004, Oracle. All rights reserved.

How to Use Visual Attributes

1. Create a Visual Attribute.
2. Set the Visual Attribute–related property of an

object to the desired Visual Attribute.
3. Run the form to see the effect.

21

3

Copyright © 2004, Oracle. All rights reserved.

Font, Pattern, and Color Pickers

Copyright © 2004, Oracle. All rights reserved.

Controlling Data Block Behavior
and Appearance

Data Block Property Groups:
• General
• Navigation
• Records
• Database
• Advanced Database
• Scrollbar
• Visual Attributes
• Color
• International

Copyright © 2004, Oracle. All rights reserved.

Navigation Properties

ORDERS
Order

Item
Same
Record
Next
Record

Previous Navigation Data Block

Next Navigation Data Block

Copyright © 2004, Oracle. All rights reserved.

Records Properties

Item

Number

of Records

Displayed

Current Record

Copyright © 2004, Oracle. All rights reserved.

Records Properties

Vertical Record Orientation

Horizontal Record Orientation

Copyright © 2004, Oracle. All rights reserved.

Database Properties

Use properties in the Database
group to control:
• Type of block—data or

control block
• Query, insert, update, and

delete operations on the
data block

• Data block’s data source
• Query search criteria and

default sort order
• Maximum query time
• Maximum number of

records fetched

Copyright © 2004, Oracle. All rights reserved.

SELECT

WHERE Clause

[ORDER BY Clause]

Database Properties

Work file

Block display

Records
fetched

Records buffered

Copyright © 2004, Oracle. All rights reserved.

Scroll Bar Properties

Record

Scroll Bar X/Y
Position

Scroll Bar Width

Scroll
Bar
Height

Copyright © 2004, Oracle. All rights reserved.

Controlling Frame Properties

Copyright © 2004, Oracle. All rights reserved.

Controlling Frame Properties

Item

Form
Layout
Style

Tabular
Layout
Style

Distance
between
records

Order

Copyright © 2004, Oracle. All rights reserved.

Displaying Multiple Property Palettes

Two Palettes for Two Items: Two Palettes for One Item:

Copyright © 2004, Oracle. All rights reserved.

Setting Properties on Multiple Objects

Intersection/
Union

Copyright © 2004, Oracle. All rights reserved.

Copying Properties

Copy Paste

Source objects Destination objects

Properties

Name ITEMS
Query All Records Yes
Query Allowed Yes
Insert Allowed Yes
Update Allowed No
Delete Allowed Yes

Query All Records No
Query Allowed Yes
Insert Allowed Yes
Update Allowed Yes
Delete Allowed Yes

Copyright © 2004, Oracle. All rights reserved.

Creating a Control Block

• Click the Data Blocks node
• Click the Create icon

OR
Select Edit > Create.

• Select the “Build a new data
block manually” option in the
New Data Block dialog box.

Copyright © 2004, Oracle. All rights reserved.

Deleting a Data Block

• Select a data block for deletion
• Click the Delete icon

OR
Press [Delete]

• Click Yes in the alert box.

Copyright © 2004, Oracle. All rights reserved.

Summary

In this lesson, you should have learned that:
• The Property Palette:

– Contains property names and values that enable you to
modify Forms objects

– Has tools to search for properties, inherit properties,
expand or collapse property categories, and pop up lists
and dialog boxes for various properties

– Shows different icons for default, changed, inherited, and
overridden properties

• Block properties control the behavior and appearance
of data blocks

• Frame properties control how block items are arranged
• You can create blocks that do not directly correspond

to database tables by choosing to create the block
manually rather than using the Data Block Wizard

• Deleting a data block deletes all of its components

Copyright © 2004, Oracle. All rights reserved.

Practice 6 Overview

This practice covers the following topics:
• Creating a control block
• Creating a Visual Attribute
• Invoking context-sensitive help from the Property

Palette
• Modifying data block properties
• Modifying frame properties

Copyright © 2004, Oracle. All rights reserved.

Working with Text Items

Copyright © 2004, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to do
the following:
• Describe text items
• Create a text item
• Modify the appearance of a text item
• Control the data in a text item
• Alter the navigational behavior of a text item
• Enhance the relationship between the text item

and the database
• Add functionality to a text item
• Display helpful messages

Copyright © 2004, Oracle. All rights reserved.

Text Item Overview

What is a text item?
• Default item type
• Interface object for:

– Querying
– Inserting
– Updating
– Deleting

• Behavior defined in
the Property Palette

Copyright © 2004, Oracle. All rights reserved.

Creating a Text Item
Canvas selection Block selection

Copyright © 2004, Oracle. All rights reserved.

Modifying the Appearance of a Text Item:
General and Physical Properties

Copyright © 2004, Oracle. All rights reserved.

Modifying the Appearance of a Text Item:
Records Properties

Distance
between
records

Number
of items
displayed

Orders

Items

Copyright © 2004, Oracle. All rights reserved.

Modifying the Appearance of a Text Item:
Font and Color Properties

Use properties in the Font
and Color groups to
specify an item’s:
• Visual attributes
• Font name, size,

weight, style,
color, andpattern

Copyright © 2004, Oracle. All rights reserved.

Modifying the Appearance of a Text Item:
Prompts

• A prompt specifies
the text label that is
associated with an
item.

• Several properties are
available to arrange
and manage prompts.

• Use prompt
properties to change
the appearance of an
item prompt.

Copyright © 2004, Oracle. All rights reserved.

Associating Text with an Item Prompt

1

2

3

4

Copyright © 2004, Oracle. All rights reserved.

Controlling the Data of a Text Item

Use properties in Data group
to control the data:
• Type
• Length
• Format
• Value

1 2 3 4 5US7ASCII
VARCHAR2(5 CHAR)

1 2 3 4 5JA16SJIS
VARCHAR2(5 CHAR)

1 2 3UTF8
VARCHAR2(5 CHAR)

Copyright © 2004, Oracle. All rights reserved.

Controlling the Data of a Text Item:
Format

Format masks:
• Standard SQL formats

– Dates FXDD-MON-YY
– Numbers L099G990D99

• Nonstandard formats
Use double quotes for
embedded characters
“(“099”)”099“-”0999

Note: Allow for format mask’s
embedded characters when
defining Width property.

Copyright © 2004, Oracle. All rights reserved.

Initial Values:
• Are used for every new record
• Can be overwritten
• Must be compatible with item’s data type
• Use:

– Raw value
– System variable
– Global variable
– Form parameter
– Form item
– Sequence

Controlling the Data of a Text Item:
Values

Copyright © 2004, Oracle. All rights reserved.

ORDERS

Sales

1Region Id

Name

Id Last Name First Name Title Dept Id
3 Nagayama Midori VP, Sales 31
11 Magee Colin Sales Rep 31

Employee

31Id

Controlling the Data of a Text Item:
Copy Value from Item

<data_block_name>.<item_name>Dept

Copyright © 2004, Oracle. All rights reserved.

Controlling the Data of a Text Item:
Synchronize with Item

Copyright © 2004, Oracle. All rights reserved.

Altering Navigational Behavior of
Text Items

• Established by order of
entries in Object Navigator

• Alter by:
– Keyboard Navigable
– Previous Navigation Item
– Next Navigation Item

Copyright © 2004, Oracle. All rights reserved.

Enhancing the Relationship Between Text
Item and Database

Use properties in the Database
group to control:
• Item’s data source—base

table item or control item
• Query, insert, and update

operations on an item
• Maximum query length
• Query case

Copyright © 2004, Oracle. All rights reserved.

Adding Functionality to a Text Item

Item

Id Product Id Price Quantity Item Total
10011 135 500 67,500.00

10013 380 400 152,000.00

1
2

Order
CREDITOrder Id 100

Enabled=No

Case
Restriction=
Upper

Justification = Start

Justification = Right

Payment
Type

Copyright © 2004, Oracle. All rights reserved.

Adding Functionality to a Text Item:
Conceal Data Property

Copyright © 2004, Oracle. All rights reserved.

Adding Functionality to a Text Item:
Keyboard Navigable and Enabled

• Set both properties to
allow or disallow
navigation and interaction
with text item.

• When Enabled is set to
Yes, Keyboard Navigable
can be set to Yes or No.

• When Enabled is set to No,
the item is always
nonnavigable.

Copyright © 2004, Oracle. All rights reserved.

Adding Functionality to a Text Item:
Multi-line Text Items

Text

Text

Text

Text

Width

Height

Total text = Maximum length

Copyright © 2004, Oracle. All rights reserved.

Displaying Helpful Messages:
Help Properties

Hint

Tooltip

Copyright © 2004, Oracle. All rights reserved.

Summary

In this lesson, you should have learned that:
• Text items are interface objects that usually

correspond to database columns
• You can create a text item with:

– The Text Item tool in the Layout Editor
– The Create icon in the Object Navigator
– The Data Block Wizard

Copyright © 2004, Oracle. All rights reserved.

Summary

• You can modify a text item in its Property Palette:
– General, Records, and Physical properties control

the appearance of the text item
– Data properties control the length, datatype, format,

and other aspects of the data.
– Navigation properties control how to navigate to

and from a text item.
– Database properties specify the relationship

between the text item and its corresponding
database column.

– Functional properties control how the text item
functions.

– Help properties specify the display of helpful
messages.

Copyright © 2004, Oracle. All rights reserved.

Practice 7 Overview

This practice covers the following topics:
• Deleting text items
• Modifying text item properties
• Creating text items

Copyright © 2004, Oracle. All rights reserved.

Creating LOVs and Editors

Copyright © 2004, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to do
the following:
• Describe LOVs and editors
• Design, create, and associate LOVs with text items

in a form module
• Create editors and associate them with text items

in a form module

Copyright © 2004, Oracle. All rights reserved.

Overview of LOVs and Editors

Text item

Editor

Text item Text item

LOV

Supporting data
record group

Copyright © 2004, Oracle. All rights reserved.

Overview of LOVs and Editors

• LOVs
– List of values for text items
– Dynamic or static list
– Independent of single text items
– Flexible and efficient

• Editors
– Override default editor
– Used for special requirements such as larger

editing window, position, color, and title

Copyright © 2004, Oracle. All rights reserved.

LOVs and Record Groups

Text item

LOV

Text item

LOV

Database

Record group Record groupRecord group
based on

static data

Query-based
record
group

OR
SQL

Copyright © 2004, Oracle. All rights reserved.

LOVs and Record Groups

EMPLOYEES
table

SELECT employee_id, first_name ||
' '|| last_name NAME,
phone_number
FROM employees
WHERE job_id = 'SA_REP'
ORDER BY last_name

Employee_id Name
Sales Rep record group

Sales Representatives LOV

Copyright © 2004, Oracle. All rights reserved.

Creating an LOV Manually

1

2

3

4

Copyright © 2004, Oracle. All rights reserved.

Creating an LOV with the LOV Wizard:
SQL Query Page

Edit query
if needed

Copyright © 2004, Oracle. All rights reserved.

Creating an LOV with the LOV Wizard:
Column Selection Page

Copyright © 2004, Oracle. All rights reserved.

Creating an LOV with the LOV Wizard:
Column Properties Page

Copyright © 2004, Oracle. All rights reserved.

Creating an LOV with the LOV Wizard:
Display Page

Copyright © 2004, Oracle. All rights reserved.

Creating an LOV with the LOV Wizard:
Advanced Properties Page

Copyright © 2004, Oracle. All rights reserved.

Creating an LOV with the LOV Wizard:
Assign to Item Page

Copyright © 2004, Oracle. All rights reserved.

LOV Properties

Filter Before
Display

?

(X,Y)

Automatic
Select

Automatic
Skip

Width

Height

LOV

Column Mapping

Return Items

Copyright © 2004, Oracle. All rights reserved.

Setting LOV Properties

LOV

Column Mapping

Automatic
Position

Automatic
Column Width

Return Items

Copyright © 2004, Oracle. All rights reserved.

LOVs: Column Mapping

Employee_id

orders.sales_rep_id orders.sales_rep_name orders.salesrep_phone

Hidden
column

Phone number
1-415-555-6281

Copyright © 2004, Oracle. All rights reserved.

Defining an Editor

Copyright © 2004, Oracle. All rights reserved.

Setting Editor Properties

Copyright © 2004, Oracle. All rights reserved.

Associating an Editor with a Text Item

• Associate one of two
types of editors with a
text item.

• Set text item’s Editor
property to one of the
following:
– Null (default Forms

Builder editor)
– Editor name

(customized editor)

Copyright © 2004, Oracle. All rights reserved.

Summary

In this lesson, you should have learned that:
• An LOV is a scrollable pop-up window that

enables a user to pick the value of an item from a
multicolumn dynamic list

• The easiest way to design, create, and associate
LOVs with text items is to use the LOV Wizard

• An Editor is a separate window that enables the
user to view multiple lines of a text item
simultaneously, search and replace text in it, and
modify the text

• You create editors in the Object Navigator and
associate them with text items in the item's
Property Palette

Copyright © 2004, Oracle. All rights reserved.

Practice 8 Overview

This practice covers the following topics:
• Creating an LOV and attaching the LOV to a text

item
• Creating an Editor and attaching it to a text item

Copyright © 2004, Oracle. All rights reserved.

Creating Additional Input Items

Copyright © 2004, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to do
the following:
• Identify the item types that allow input
• Create a check box
• Create a list item
• Create a radio group

Copyright © 2004, Oracle. All rights reserved.

Input Items Overview

What are input items?
• Item types that accept user input include:

– Check boxes
– List items
– Radio groups

• Input items enable insert, update, delete, and
query.

Copyright © 2004, Oracle. All rights reserved.

Check Boxes Overview

What Are Check Boxes?
• Two-state interface object:

– Checked
– Unchecked

• Not limited to two values

Copyright © 2004, Oracle. All rights reserved.

Creating a Check Box

• Convert an existing item.
• Use the Check Box tool in the Layout Editor.
• Use the Create icon in the Object Navigator.

Copyright © 2004, Oracle. All rights reserved.

Converting an Existing Item into a
Check Box

Convert text item
to check box

Copyright © 2004, Oracle. All rights reserved.

Creating a Check Box in the Layout Editor

Use check box tool
in Layout Editor

Copyright © 2004, Oracle. All rights reserved.

Setting Check Box Properties

• Data Type
• Label
• Access Key
• Value When Checked
• Value When Unchecked
• Check Box Mapping of

Other Values
• Mouse Navigate

Copyright © 2004, Oracle. All rights reserved.

Check Box Mapping of Other Values

Y

Y

N

Null

A

Order_Mode Checked

Unchecked

Check Box Mapping of
Other Values
Unchecked

Y

N

Copyright © 2004, Oracle. All rights reserved.

What Are List Items?
• Set of mutually exclusive choices, each

representing a different value
• Three list styles available:

• Space-saving alternative to a radio group
• Smaller-scale alternative to an LOV

List Items Overview

Poplist Combo BoxTlist

Copyright © 2004, Oracle. All rights reserved.

Creating a List Item

• Convert an existing item.
• Use the List Item tool in the Layout Editor.
• Use the Create icon in the Object Navigator.

Copyright © 2004, Oracle. All rights reserved.

Converting an Existing Item into a
List Item

Copyright © 2004, Oracle. All rights reserved.

Creating a List Item in the Layout Editor

Use list item tool
in Layout Editor

Copyright © 2004, Oracle. All rights reserved.

Setting List Item Properties

• Elements in List:
– List elements
– List item value

• List Style
• Mapping of Other Values
• Mouse Navigate

Copyright © 2004, Oracle. All rights reserved.

List Item Mapping of Other Values

Order_Status

10

4

2
0

12

CREDIT order paid

New CASH order

List Elements

Mapping of Other
Values = 11 (Unknown)

Unknown

CASH backorder

New CREDIT order

Values for Forms Items Displayed Values

Copyright © 2004, Oracle. All rights reserved.

Radio Groups Overview

What are radio groups?
• Set of mutually exclusive radio buttons, each

representing a value
• Use:

– To display two or more static choices
– As an alternative to a list item
– As an alternative to a check box

Copyright © 2004, Oracle. All rights reserved.

Creating a Radio Group

• Convert an existing item.
• Create a new radio button in the Layout Editor.
• Use the Create icon in the Object Navigator.

Copyright © 2004, Oracle. All rights reserved.

Converting Existing Item to Radio Group

Change Item Type and
set other properties

Create radio buttons for
the radio group

Copyright © 2004, Oracle. All rights reserved.

Creating Radio Group in Layout Editor

Copyright © 2004, Oracle. All rights reserved.

Setting Radio Properties

Radio group: Radio button:

Copyright © 2004, Oracle. All rights reserved.

Radio Group Mapping
of Other Values

Credit_Limit

500

2000
Null

5000

List Elements

LOW_BUTTON
Low

MEDIUM_BUTTON
Medium

HIGH_BUTTON
High

Mapping of
Other Values

2000

Values for Forms Items Displayed Values

Copyright © 2004, Oracle. All rights reserved.

Summary

In this lesson, you should have learned that:
• Check boxes, list items, and radio groups are the

item types that allow input
• You create these items by:

– Changing the item type of an existing item
– Using the appropriate tool in the Layout Editor

• You can use a check box for items that have only
two possible states

• You can use a list item to enable users to pick
from a list of mutually exclusive choices

• You can use a radio group for two or three
mutually exclusive alternatives

Copyright © 2004, Oracle. All rights reserved.

Practice 9 Overview

This practice covers the following topics:
• Converting a text item into a list item
• Converting a text item into a check box item
• Converting a text item into a radio group
• Adding radio buttons to the radio group

Copyright © 2004, Oracle. All rights reserved.

Creating Noninput Items

Copyright © 2004, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to do
the following:
• Identify item types that do not allow input
• Create a display item
• Create an image item
• Create a button
• Create a calculated item
• Create a hierarchical tree item
• Create a bean area item

Copyright © 2004, Oracle. All rights reserved.

Noninput Items Overview

Item types that do not accept direct user input include:
• Display items
• Image items
• Buttons
• Calculated items
• Hierarchical tree items
• Bean area items

Copyright © 2004, Oracle. All rights reserved.

Display Items

Display items:
• Are similar to text items.
• Cannot:

– Be edited
– Be queried
– Be navigated

to
– Accept user

input
• Can display:

– Nonbase table information
– Derived values

Copyright © 2004, Oracle. All rights reserved.

Creating a Display Item

Copyright © 2004, Oracle. All rights reserved.

Image Items

Use image items to display images:
• From file system—supported file type
• From database—LONG RAW column or a BLOB

column

Copyright © 2004, Oracle. All rights reserved.

Image File Formats

Image item

Image files Image files

Read Write

PICT

TPIC

CALS

TIFF

GIF

JFIF

BMP

RAS

CALS

GIF

BMP

RAS

JPEG

TIFF

JFIF

JPEG

PICT

TPIC

Copyright © 2004, Oracle. All rights reserved.

Creating an Image Item

Copyright © 2004, Oracle. All rights reserved.

Setting Image-Specific Item Properties

• Image Format
• Image Depth
• Compression Quality
• Display Quality
• Sizing Style
• Show Horizontal

Scroll Bar
• Show Vertical

Scroll Bar

Copyright © 2004, Oracle. All rights reserved.

Push Buttons

Push buttons:
• Cannot display or represent data
• Are used to initiate an action
• Display as:

– Text button
– Iconic

Copyright © 2004, Oracle. All rights reserved.

Push Button Actions

Use buttons to:
• Move input focus
• Display an LOV
• Invoke an editor
• Invoke another window
• Commit data
• Issue a query
• Perform calculations

Copyright © 2004, Oracle. All rights reserved.

Creating a Push Button

Copyright © 2004, Oracle. All rights reserved.

Setting Push Button Properties

• Label
• Iconic
• Icon Filename
• Default Button
• Mouse Navigate
• Tooltip
• Tooltip Visual

Attribute Group

Copyright © 2004, Oracle. All rights reserved.

Calculated Items

What are calculated items?
• They accept item values that are based on

calculations.
• They are read-only.
• They can be expressed as:

– Formula
– Summary

Copyright © 2004, Oracle. All rights reserved.

Creating a Calculated Item by
Setting Properties

• Formula
– A calculated item value is the result of a horizontal

calculation.
– It involves bind variables.

• Summary
– A calculated item value is a vertical calculation.
– A summary is performed on values of a single item

over all rows in a block.

Copyright © 2004, Oracle. All rights reserved.

Setting Item Properties for the
Calculated Item

• Formula
– Calculation Mode
– Formula

• Summary
– Calculation Mode
– Summary Function
– Summarized Block
– Summarized Item

Copyright © 2004, Oracle. All rights reserved.

Summary Functions

• AVG
• COUNT
• MAX
• MIN
• STDDEV
• SUM
• VARIANCE

Copyright © 2004, Oracle. All rights reserved.

Calculated Item Based on a Formula

ORDERS

Item#
Prod

Id
Unit
Price Quantity

Item
Total

1
2

4
3

200
120
50
25

5
4
9
3

1,000
480
450
75

NVL((:order_items.unit_price *

:order_items.quantity),0)

Formula
item

Orders

Items

Description

Copyright © 2004, Oracle. All rights reserved.

Rules for Calculated Item Formulas

Create calculated item formulas according to the
following rules:
• A formula item must not invoke restricted built-

ins.
• A formula item cannot execute any DML

statements.
• Do not terminate a PL/SQL expression with a

semicolon.
• Do not enter a complete PL/SQL statement in

assignment expressions.

Copyright © 2004, Oracle. All rights reserved.

Calculated Item Based on a Summary

ORDERS

1
2

4
3

200
120
50
25

5
4
9
3

1,000
480
450
75

2,005Order Total

Summarized
item

Summary
item

Item#
Prod

Id
Unit
Price Quantity

Item
TotalDescription

Orders

Items

Copyright © 2004, Oracle. All rights reserved.

Rules for Summary Items

• Summary item must reside in:
– The same block as the summarized item
– A control block with Single Record property set to

Yes
• Summarized item must reside in:

– A data block with Query All Records property or
Precompute Summaries property set to Yes

– A control block
• Datatype of summary item must be Number,

unless using MAX or MIN

Copyright © 2004, Oracle. All rights reserved.

Creating a Hierarchical Tree Item

Copyright © 2004, Oracle. All rights reserved.

Setting Hierarchical Tree Item Properties

• Allow empty branches
• Multi selection
• Show lines
• Show symbols
• Record group
• Data query

Copyright © 2004, Oracle. All rights reserved.

Bean Area Items

The Bean Area item enables you to:
• Add a JavaBean to a form
• Extend Forms functionality
• Interact with client machine
• Reduce network traffic

Copyright © 2004, Oracle. All rights reserved.

Creating a Bean Area Item

Create bean area
in Layout Editor

Convert existing item
to bean area

Copyright © 2004, Oracle. All rights reserved.

Setting Bean Area Item Properties

Copyright © 2004, Oracle. All rights reserved.

The JavaBean at Run Time

Copyright © 2004, Oracle. All rights reserved.

Summary

In this lesson, you should have learned that:
• The following item types do not allow input:

– Display items
– Image items
– Push buttons
– Calculated items
– Hierarchical tree items
– Bean area items

• You create noninput items by:
– Changing the type of an existing item and setting

certain properties
– Using the appropriate tool in the Layout Editor

Copyright © 2004, Oracle. All rights reserved.

Summary

• You can use:
– A display item to show nonbase table information
– An image item to display an image
– A push button to initiate action
– A calculated item to display the results of a formula

or a summary function of another item
– A hierarchical tree item to display related data in a

hierarchical fashion
– A bean area item to execute client-side Java code

Copyright © 2004, Oracle. All rights reserved.

Practice 10 Overview

This practice covers the following topics:
• Creating display items
• Creating an image item
• Creating iconic buttons
• Creating calculated items:

– Formula
– Summary

• Creating a bean area item

Copyright © 2004, Oracle. All rights reserved.

Creating Windows and Content Canvases

Copyright © 2004, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to do
the following:
• Describe the relationship between windows and

content canvases
• Create windows and content canvases
• Display a form module in multiple windows
• Display a form module on multiple layouts

Copyright © 2004, Oracle. All rights reserved.

Windows and Canvases

• Window: Container for
Forms Builder visual
objects

• Canvas: Surface on
which you “paint”
visual objects

• To see a canvas and its
objects, display the
canvas
in a window.

Copyright © 2004, Oracle. All rights reserved.

Window, Canvas, and Viewport

MDI
parent
window

Document
window

Canvas

Copyright © 2004, Oracle. All rights reserved.

The Content Canvas

• “Base” canvas
• View occupies entire window
• Default canvas type
• Each window should have at least one content

canvas

Copyright © 2004, Oracle. All rights reserved.

Relationship Between Windows and
Content Canvases

Canvas 2 Canvas 3

Canvas 1

Window

Copyright © 2004, Oracle. All rights reserved.

The Default Window

WINDOW1:
• Created by default with each

new form module
• Is modeless
• You can delete, rename, or

change its attributes

Copyright © 2004, Oracle. All rights reserved.

Displaying a Form Module in
Multiple Windows

• Use additional windows to:
– Display two or more content canvases at once
– Switch between canvases

without replacing the
initial one

– Modularize form
contents

– Take advantage of
the window manager

• Two types of windows:
– Modal
– Modeless

Copyright © 2004, Oracle. All rights reserved.

Creating a New Window
Object Navigator: Click Create
with Windows node selected

Property Palette:
Set properties

Copyright © 2004, Oracle. All rights reserved.

Setting Window Properties

3

5

4

1 2

Copyright © 2004, Oracle. All rights reserved.

GUI Hints

• GUI hints are recommendations to the window
manager about window appearance and
functionality.

• If the window manager supports a specific GUI
Hint and its property is set to Yes, it will be used.

• Functional properties for GUI Hints:
– Close Allowed
– Move Allowed
– Resize Allowed
– Maximize Allowed
– Minimize Allowed
– Inherit Menu

Copyright © 2004, Oracle. All rights reserved.

Displaying a Form Module on
Multiple Layouts

PROPERTIES:

Canvas
CV_ORDER

Window:
WIN_ORDERS

Canvas
CV_INVENTORY

Window:
WIN_INVENTORY

Copyright © 2004, Oracle. All rights reserved.

Creating a New Content Canvas

• Explicitly:

• Implicitly:

1

2

Copyright © 2004, Oracle. All rights reserved.

Setting Content Canvas Properties

Viewport
X/Y Position
on Canvas

CanvasViewport

Copyright © 2004, Oracle. All rights reserved.

Summary

In this lesson, you should have learned that:
• Windows can display multiple content canvases,

but can display only one canvas at a time
• Content canvases are displayed only in the

window to which they are assigned
• You must assign at least one content canvas to

each window in your application
• You create windows in the Object Navigator; one

is created by default with each new module
• You create canvases in the Object Navigator, by

using the Layout Wizard, or by invoking the
Layout Editor in a module without a canvas

• You can display a multiple layouts by assigning
canvases to different windows.

Copyright © 2004, Oracle. All rights reserved.

Practice 11 Overview

This practice covers the following topics:
• Changing a window size, position, name, and title
• Creating a new window
• Displaying data block contents in the new window

Copyright © 2004, Oracle. All rights reserved.

Working with Other Canvas Types

Copyright © 2004, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to do
the following:
• Describe the different types of canvases and their

relationships to each other
• Identify the appropriate canvas type for different

scenarios
• Create an overlay effect by using stacked

canvases
• Create a toolbar
• Create a tabbed interface

Copyright © 2004, Oracle. All rights reserved.

Content canvas

Overview of Canvas Types

Stacked
canvas

Horizontal toolbar

Vertical
toolbar

x y zTab

Tab
page

Copyright © 2004, Oracle. All rights reserved.

The Stacked Canvas

• Displayed on top of a content canvas
• Shares a window with a content canvas
• Size:

– Usually smaller than the content canvas in the same
window

– Determined by viewport size
• Created in:

– Layout Editor
– Object Navigator

Copyright © 2004, Oracle. All rights reserved.

The Stacked Canvas

1

5

2

4

3

Copyright © 2004, Oracle. All rights reserved.

Creating a Stacked Canvas

Copyright © 2004, Oracle. All rights reserved.

Setting Stacked Canvas Properties

Copyright © 2004, Oracle. All rights reserved.

The Toolbar Canvas

• Special type of canvas for tool items
• Two types:

– Vertical toolbar
– Horizontal toolbar

• Provide:
– Standard look and feel
– Alternative to menu or function key operation

Copyright © 2004, Oracle. All rights reserved.

The MDI Toolbar

Form property:

Runtime parameter: Window property:
otherparams=useSDI=no

Copyright © 2004, Oracle. All rights reserved.

Creating a Toolbar Canvas

1. Create:
– Click Create in Object Navigator
– Change Canvas Type
– Set other properties as required

2. Add functionality
3. Resize the canvas (not the view)
4. Assign to window and/or form

Copyright © 2004, Oracle. All rights reserved.

Setting Toolbar Properties

• Canvas properties:
– Canvas Type
– Window
– Width or Height

• Window properties:
– Horizontal Toolbar

Canvas
– Vertical Toolbar

Canvas
• Form Module properties:

– Form Horizontal Toolbar Canvas
– Form Vertical Toolbar Canvas

Copyright © 2004, Oracle. All rights reserved.

The Tab Canvas

• Enables you to organize and display related
information on separate tabs

• Consists of one or more tab pages
• Provides easy access to data

Copyright © 2004, Oracle. All rights reserved.

Creating a Tab Canvas

• Create in:
– Object Navigator
– Layout Editor

• Define tab pages
• Place items on tab pages

Copyright © 2004, Oracle. All rights reserved.

Creating a Tab Canvas in the Object
Navigator

Create new Canvas Set Canvas Type Create Tab Pages

Copyright © 2004, Oracle. All rights reserved.

Setting Tab Canvas, Tab Page,
and Item Properties

2

3

1

Copyright © 2004, Oracle. All rights reserved.

Placing Items on a Tab Canvas

• Place items on each tab page for user interaction.
• Set the item properties:

– Canvas
– Tab Page

Copyright © 2004, Oracle. All rights reserved.

Summary

In this lesson, you should have learned:
• Canvas types other than content canvases:

– Stacked: Overlays and shares window with content
canvas; use to create cascading or revealing effect
within a single window, display additional
information, display or hide information
conditionally, or display context-sensitive help

– Toolbar: Area that displays at the top or to the left
of a content canvas; use to to hold buttons and
other frequently used GUI elements with a standard
look and feel across canvases displayed in the
same window

– Tab: Has multiple pages where you navigate using
tabs; use to organize and display related
information on different tabs

Copyright © 2004, Oracle. All rights reserved.

Summary

• You can create these in Object Navigator and
change the canvas type, then set properties.

• You can create stacked or tab canvases with the
appropriate tool in the Layout Editor.

• You can attach a Toolbar canvas to single
window, or to entire form if using MDI.

• After creating a tab canvas, create tab pages and
place related items on them.

Copyright © 2004, Oracle. All rights reserved.

Practice 12 Overview

This practice covers the following topics:
• Creating a toolbar canvas
• Creating a stacked canvas
• Creating a tab canvas
• Adding tab pages to the tab canvas

Copyright © 2004, Oracle. All rights reserved.

Introduction to Triggers

Copyright © 2004, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to do
the following:
• Define triggers
• Identify the different trigger categories
• Plan the type and scope of triggers in a form
• Describe the properties that affect the behavior of

a trigger

Copyright © 2004, Oracle. All rights reserved.

Trigger Overview

Event

Trigger types

Queries

Validation

Navigation

Interaction

Internal event

Errors/Messages

Others

PL/SQL

Fire
PL/SQL

PL/SQL

Which trigger would you use to perform complex calculations
after a user enters data into an item?

Copyright © 2004, Oracle. All rights reserved.

Grouping Triggers into Categories

Triggers may be grouped
into functional categories:
• Block processing

triggers
• Interface event triggers
• Master-detail triggers
• Message handling

triggers
• Navigational triggers
• Query-time triggers
• Transactional triggers
• Validation triggers

Triggers may be grouped
into categories based on
name:
• When-Event triggers
• On-Event triggers
• Pre-Event triggers
• Post-Event triggers
• Key triggers

Copyright © 2004, Oracle. All rights reserved.

Defining Trigger Components

What event? What action?

What level?

Type
Code

Scope

Copyright © 2004, Oracle. All rights reserved.

Trigger Type

• Pre-
• Post-
• When-
• On-
• Key-
• User-named

Type

Code

Scope

What event?

Copyright © 2004, Oracle. All rights reserved.

Trigger Type

Forms Builder Trigger Types

Copyright © 2004, Oracle. All rights reserved.

Trigger Code

• Statements
• PL/SQL
• User

subprograms
• Built-in

subprograms

Type

Code

Scope

What action?

Copyright © 2004, Oracle. All rights reserved.

Trigger Scope

Levels
• Form
• Block
• Item

Code

Scope

Type

What level?

Copyright © 2004, Oracle. All rights reserved.

Trigger Scope

EventEvent

Event

Order
Date

Copyright © 2004, Oracle. All rights reserved.

Specifying Execution Hierarchy

Form
level

Block
level

Item
level

On-Message

On-Message

On-Message

On-Error

On-Error

EH = After

EH = After

EH = Before

EH = Override

1

2

3

4

Event

Event

Copyright © 2004, Oracle. All rights reserved.

Summary

In this lesson, you should have learned that:
• Triggers are event-activated program units
• You can categorize triggers based on function or

name to help you understand how they work
• Trigger components are:

– Type: Defines the event that fires the trigger
– Code: The actions a trigger performs
– Scope: Specifies the level (form, block, or item) at

which the trigger is defined
• The Execution Hierarchy trigger property alters

the firing sequence of a trigger

Copyright © 2004, Oracle. All rights reserved.

Producing Triggers

Copyright © 2004, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to do
the following:
• Write trigger code
• Explain the use of built-in subprograms in Forms

applications
• Describe the When-Button-Pressed trigger
• Describe the When-Window-Closed trigger

Copyright © 2004, Oracle. All rights reserved.

Creating Triggers in Forms Builder

To produce a trigger:
1. Select a scope in the Object Navigator.
2. Create a trigger and select a name from the

Trigger LOV, or use the SmartTriggers menu
option.

3. Define code in the PL/SQL Editor.
4. Compile.

Copyright © 2004, Oracle. All rights reserved.

Creating a Trigger

Step One:

Select Trigger Scope.

Form level

Block level

Item level

Copyright © 2004, Oracle. All rights reserved.

Creating a Trigger

Step Two:

Invoke the
Trigger LOV.

Copyright © 2004, Oracle. All rights reserved.

Creating a Trigger

Step Three:

Use the PL/SQL Editor to define the trigger code.
Name

ItemObjectType

Source
Pane

Toolbar

Step Four:

Compile.

Copyright © 2004, Oracle. All rights reserved.

Setting Trigger Properties

Copyright © 2004, Oracle. All rights reserved.

PL/SQL Editor Features

Split view

Split Bars

5

1 432

Copyright © 2004, Oracle. All rights reserved.

PL/SQL Editor Features

The
Syntax
Palette

Copyright © 2004, Oracle. All rights reserved.

The Database Trigger Editor

Copyright © 2004, Oracle. All rights reserved.

Writing Trigger Code

BEGIN

END;

A PL/SQL Block

Copyright © 2004, Oracle. All rights reserved.

• PL/SQL variables must be declared in a trigger or
defined in a package

• Forms Builder variables
– Are not formally declared in PL/SQL
– Need a colon (:) prefix in reference

Using Variables in Triggers

Copyright © 2004, Oracle. All rights reserved.

Forms Builder Variables

Variable
Type

Items

Global
variable

System
variables

Parameters

Purpose

Presentation and
user interaction

Session-wide
character variable

Form status and
control

Passing values in
and out of module

Syntax

:block_name.item_name

:GLOBAL.variable_name

:SYSTEM.variable_name

:PARAMETER.name

Copyright © 2004, Oracle. All rights reserved.

Adding Functionality with
Built-In Subprograms

Built-ins belong to either:
• The Standard Extensions

package where no prefix is
required

• Another Forms Builder
package where a prefix is
required

Copyright © 2004, Oracle. All rights reserved.

Limits of Use

• Unrestricted built-ins are allowed in any trigger or
subprogram.

• Restricted built-ins are allowed only in certain
triggers and subprograms called from such
triggers.

• Consult the Help
system.

Compiles:

Run-time error when
trigger fires:

Copyright © 2004, Oracle. All rights reserved.

1

Using Built-In Definitions

4

2

3

Copyright © 2004, Oracle. All rights reserved.

Useful Built-Ins

• EDIT_TEXTITEM

• ENTER_QUERY, EXECUTE_QUERY
• EXIT_FORM

• GET_ITEM_PROPERTY, SET_ITEM_PROPERTY
• GO_BLOCK, GO_ITEM
• MESSAGE

• SHOW_ALERT, SHOW_EDITOR, SHOW_LOV
• SHOW_VIEW, HIDE_VIEW

Copyright © 2004, Oracle. All rights reserved.

Using Triggers:
When-Button-Pressed Trigger

• Fires when the operator clicks a button
• Accepts restricted and unrestricted built-ins
• Use to provide convenient navigation, to display

LOVs and many other frequently used functions

GO_BLOCK(‘Stock’);
EXECUTE_QUERY;

Copyright © 2004, Oracle. All rights reserved.

Using Triggers:
When-Window-Closed Trigger

• Fires when the operator closes a window by using
a window manager-specific close command.

• Accepts restricted and unrestricted built-ins.
• Used to programmatically close a window when

the operator issues a window manager-specific
close command. You can close a window by using
built-ins.

Why can't I close
this window?

Copyright © 2004, Oracle. All rights reserved.

Summary

In this lesson, you should have learned that:
• You can use the PL/SQL Editor to write trigger

code
• Trigger code has three sections:

– Declaration section (optional)
– Executable statements section (required)
– Exception handlers section (optional)

• You can add functionality by calling built-in
subprograms from triggers

• Restricted built-ins are not allowed in triggers that
fire while navigation is occurring

Copyright © 2004, Oracle. All rights reserved.

Summary

• The When-Button-Pressed trigger fires when the
user presses a button

• The When-Window-Closed trigger fires when the
user closes a window

Copyright © 2004, Oracle. All rights reserved.

Practice 14 Overview

This practice covers the following topics:
• Using built-ins to display LOVs
• Using the When-Button-Pressed and

When-Window-Closed triggers to add
functionality to applications

• Using built-ins to display and hide the Help stack
canvas

Copyright © 2004, Oracle. All rights reserved.

Debugging Triggers

Copyright © 2004, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to do
the following:
• Describe the components of the Debug Console
• Use the Run Form Debug button to run a form

module in debug mode
• Debug PL/SQL code

Copyright © 2004, Oracle. All rights reserved.

The Debugging Process

Monitor and debug triggers by:
• Compiling and

correcting errors in
the PL/SQL Editor

• Displaying debug
messages at run
time

• Invoking the
PL/SQL Debugger

Copyright © 2004, Oracle. All rights reserved.

The Debug Console

• Stack
• Variables
• Watch
• Form Values
• PL/SQL

Packages
• Global and

System Variables
• Breakpoints

Dock/
Undock

Click
bar for
Pop-up
Menu

Copyright © 2004, Oracle. All rights reserved.

The Debug Console: Stack Panel

• Stack
• Variables
• Watch
• Form Values
• PL/SQL

Packages
• Global and

System Variables
• Breakpoints

Copyright © 2004, Oracle. All rights reserved.

The Debug Console: Variables Panel

• Stack
• Variables
• Watch
• Form Values
• PL/SQL

Packages
• Global and

System Variables
• Breakpoints

Read-only:
Modifiable:

Copyright © 2004, Oracle. All rights reserved.

The Debug Console: Watch Panel

• Stack
• Variables
• Watch
• Form Values
• PL/SQL

Packages
• Global and

System Variables
• Breakpoints

Copyright © 2004, Oracle. All rights reserved.

The Debug Console: Form Values Panel

• Stack
• Variables
• Watch
• Form Values
• PL/SQL

Packages
• Global and

System Variables
• Breakpoints

Copyright © 2004, Oracle. All rights reserved.

The Debug Console:
PL/SQL Packages Panel

• Stack
• Variables
• Watch
• Form Values
• PL/SQL

Packages
• Global and

System Variables
• Breakpoints

Copyright © 2004, Oracle. All rights reserved.

The Debug Console:
Global/System Variables Panel

• Stack
• Variables
• Watch
• Form Values
• Loaded PL/SQL

Packages
• Global and

System Variables
• Breakpoints

Copyright © 2004, Oracle. All rights reserved.

The Debug Console: Breakpoints Panel

• Stack
• Variables
• Watch
• Form Values
• Loaded PL/SQL

Packages
• Global and

System Variables
• Breakpoints

Copyright © 2004, Oracle. All rights reserved.

The Debug Console

• Stack
• Variables
• Watch
• Form Values
• Loaded PL/SQL

Packages
• Global and

System Variables
• Breakpoints

Copyright © 2004, Oracle. All rights reserved.

Setting Breakpoints in Client Code

Breakpoints:
• Suspend form

execution
• Return control

to the debugger
• Remain in effect

for the Forms
Builder session

• May be enabled
and disabled

• Are set in the
PL/SQL Editor
on executable
lines of code

Before setting breakpoint:

After setting breakpoint:

Copyright © 2004, Oracle. All rights reserved.

Setting Breakpoints in Stored Code

• Can set on stored program units:
– Expand Database Objects node
– Expand <schema> node
– Expand PL/SQL Stored Program Units node
– Double-click program unit
– Set breakpoint in PL/SQL Editor

• Cannot set on database triggers or stored PL/SQL
libraries

• Compile with debug information

Copyright © 2004, Oracle. All rights reserved.

Debugging Tips

• Connect to the database for SQL compilation.
• The line that fails is not always responsible.
• Watch for missing semicolons and quotation

marks.
• Define triggers at the correct level.
• Place triggers where the event will happen.

Copyright © 2004, Oracle. All rights reserved.

Running a Form in Debug Mode

Run Form
Debug

Contains source
code and

executable run file
.FMX

(Compiles automatically)

(Runs automatically)

Runs Form in
Debug Mode on
Server specified

in Runtime
Preferences

Copyright © 2004, Oracle. All rights reserved.

Stepping Through Code

Step over

Step
out

Stop

GO

Step
into

Pause

Copyright © 2004, Oracle. All rights reserved.

Debug Example

…calls...

The results are: ??WHEN-BUTTON-
PRESSED

1

Procedure XYZ;

Function ABC;

2

3

4

5

Debug Example

Copyright © 2004, Oracle. All rights reserved.

Summary

In this lesson, you should have learned that:
• The Debug Console consists of panes to view the

call stack, program variables, a user-defined
watch list, Form values, loaded PL/SQL packages,
global and system variables, and breakpoints

• You use the Run Debug button to run a form
module in debug mode within Forms Builder

• You can set breakpoints in the PL/SQL Editor by
double-clicking to the left of an executable line of
code

• The debug buttons in the Forms Builder toolbar
enable you to step through code in various ways

Copyright © 2004, Oracle. All rights reserved.

Practice 15 Overview

This practice covers the following topics:
• Running a form in debug mode from Forms

Builder
• Setting breakpoints
• Stepping through code
• Viewing variable values while form is running

Copyright © 2004, Oracle. All rights reserved.

Adding Functionality to Items

Copyright © 2004, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to do
the following:
• Supplement the functionality of input items by

using triggers and built-ins
• Supplement the functionality of noninput items by

using triggers and built-ins

Copyright © 2004, Oracle. All rights reserved.

Item Interaction Triggers

When-List-Changed

When-List-Activated

When-Tree-Node-Activated

When-Tree-Node-Expanded

When-Tree-Node-Selected

When-Button-Pressed

When-Checkbox-Changed

When-Custom-Item-Event

When-Radio-Changed

When-Image-Pressed

When-Image-Activated

Copyright © 2004, Oracle. All rights reserved.

Coding Item Interaction Triggers

• Valid commands:
– SELECT statements
– Standard PL/SQL constructs
– All built-in subprograms

• Do not fire during:
– Navigation
– Validation (use When-Validate-“object” to code

actions to take place during validation)

Copyright © 2004, Oracle. All rights reserved.

Interacting with Check Boxes

When-Checkbox-Changed
IF CHECKBOX_CHECKED('CONTROL.case_sensitive') THEN
SET_ITEM_PROPERTY('CUSTOMERS.cust_first_name',
CASE_INSENSITIVE_QUERY, PROPERTY_FALSE);

SET_ITEM_PROPERTY('CUSTOMERS.cust_last_name',
CASE_INSENSITIVE_QUERY, PROPERTY_FALSE);

ELSE
SET_ITEM_PROPERTY('CUSTOMERS.cust_first_name',
CASE_INSENSITIVE_QUERY, PROPERTY_TRUE);

SET_ITEM_PROPERTY('CUSTOMERS.cust_last_name',
CASE_INSENSITIVE_QUERY, PROPERTY_TRUE);

END IF;

Copyright © 2004, Oracle. All rights reserved.

Changing List Items at Run Time

Triggers:
• When-List-Changed
• When-List-Activated

Built-ins:
• ADD_LIST_ELEMENT

• DELETE_LIST_ELEMENT

Excellent

Excellent

Good

Poor

Index

1

2

3

Copyright © 2004, Oracle. All rights reserved.

Displaying LOVs from Buttons

• Uses:
– Convenient alternative for accessing LOVs
– Can display independently of text items

• Needs:
– When-Button-Pressed trigger
– LIST_VALUES or SHOW_LOV built-in

Copyright © 2004, Oracle. All rights reserved.

LOVs and Buttons

IF SHOW_LOV(’myLov’)

THEN...

When-Button-Pressed

Name
Roel
Glenn
Gary
Michael
Jeff
Lynn
Kate
Patrice
Pam

ID
101
102
103
104
105
106
107
108
109

105

Employees (LOV)

105
Employee_IdLOV button

Copyright © 2004, Oracle. All rights reserved.

v

^

Populating Image Items

Database

Fetch on query

Image file
(in the application server file system)

WRITE_IMAGE_FILE

READ_IMAGE_FILE

Copyright © 2004, Oracle. All rights reserved.

Loading the Right Image

READ_IMAGE_FILE

(TO_CHAR(:ORDER_ITEMS.product_id)||’.JPG’,

’JPEG’,’ORDER_ITEMS.product_image’);

READ_IMAGE_FILE

Image file
in the application server file system

Copyright © 2004, Oracle. All rights reserved.

Populating Hierarchical Trees

SET_TREE_PROPERTY

Database

When-Button-Pressed

CREATE_GROUP_FROM_QUERY

Record Group

Car
Ford
Volvo
VW
Toyota

-

Copyright © 2004, Oracle. All rights reserved.

Displaying Hierarchical Trees

When-Button-Pressed
rg_emps := create_group_from_query('rg_emps',

'select 1, level, last_name, NULL,

to_char(employee_id) ' ||

'from employees ' ||

'connect by prior employee_id = manager_id '||

'start with job_id = ''AD_PRES''');

v_ignore := populate_group(rg_emps);

ftree.set_tree_property('block4.tree5',

ftree.record_group, rg_emps);

Copyright © 2004, Oracle. All rights reserved.

Interacting with JavaBeans

• Tell Forms about the bean: Register
• Communication from Forms to JavaBean:

– Invoke Methods
– Get/Set Properties

• Communication from JavaBean to Forms: Events

Methods
Properties
Events

Copyright © 2004, Oracle. All rights reserved.

Interacting with JavaBeans

The FBEAN package provides built-ins to:

• Register the bean
• Invoke methods of the

bean
• Get and set properties on

the bean
• Subscribe to bean events

Copyright © 2004, Oracle. All rights reserved.

Interacting with JavaBeans

• Register a listener for the event:
FBEAN.ENABLE_EVENT('MyBeanArea',1,'mouseListener'
, true);

• When an event occurs on the bean:
– The When-Custom-Item-Event trigger fires.
– The name and information are sent to Forms in:

:SYSTEM.CUSTOM_ITEM_EVENT

:SYSTEM.CUSTOM_ITEM_EVENT_PARAMETERS

2

4
31

Copyright © 2004, Oracle. All rights reserved.

Interacting with JavaBeans

The JavaBean may:
• Not have a visible component
• Not communicate via events
• Return a value to the form when invoked (use like

a function)

2

4

3

1

51,255,255

Copyright © 2004, Oracle. All rights reserved.

Summary

In this lesson, you should have learned that:
• You can use triggers to supplement the

functionality of:
– Input items:

When-[Checkbox | Radio]-Changed
When-List-[Changed | Activated]

– Noninput items:
When-Button-Pressed
When-Image-[Pressed | Activated]
When-Tree-Node-[Activated | Expanded | Selected]
When-Custom-Item-Event

Copyright © 2004, Oracle. All rights reserved.

Summary

• You can call useful built-ins from triggers:
– CHECKBOX_CHECKED

– [ADD | DELETE]_LIST_ELEMENT

– SHOW_LOV

– [READ | WRITE]_IMAGE_FILE

– FTREE: POPULATE_TREE, ADD_TREE_DATA,
[GET | SET]_TREE_PROPERTY

– FBEAN: [GET | SET]_PROPERTY, INVOKE,
REGISTER_BEAN, ENABLE_EVENT

Copyright © 2004, Oracle. All rights reserved.

Practice 16 Overview

This practice covers the following topics:
• Writing a trigger to check whether the customer’s

credit limit has been exceeded
• Creating a toolbar button to display and hide

product images
• Coding a button to enable users to choose a

canvas color for a form

Copyright © 2004, Oracle. All rights reserved.

Run Time Messages and Alerts

Copyright © 2004, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to do
the following:
• Describe the default messaging behavior of a form
• Handle run-time failure of built-in subprograms
• Identify the different types of Forms messages
• Control system messages
• Create and control alerts
• Handle database server errors

Copyright © 2004, Oracle. All rights reserved.

Run-Time Messages and Alerts Overview

System
Application

Alerts

Messages
Informative

Error
Working

Application

Copyright © 2004, Oracle. All rights reserved.

Detecting Run-Time Errors

• FORM_SUCCESS

– TRUE: Action successful
– FALSE: Error/Fatal error occurred

• FORM_FAILURE

– TRUE: A nonfatal error occurred
– FALSE: Action successful or a fatal error occurred

• FORM_FATAL

– TRUE: A fatal error occurred
– FALSE: Action successful or a nonfatal error

occurred

Copyright © 2004, Oracle. All rights reserved.

Errors and Built-Ins

• Built-In failure does not cause an exception.
• Test built-in success with FORM_SUCCESS function.

IF FORM_SUCCESS THEN . . .
OR IF NOT FORM_SUCCESS THEN . . .

• What went wrong?
– ERROR_CODE, ERROR_TEXT, ERROR_TYPE
– MESSAGE_CODE, MESSAGE_TEXT, MESSAGE_TYPE

Copyright © 2004, Oracle. All rights reserved.

Message Severity Levels

>25

20

15

10

5

0

25

All (default)

More critical

Define by:

:SYSTEM.MESSAGE_LEVEL

Copyright © 2004, Oracle. All rights reserved.

Suppressing Messages

:SYSTEM.MESSAGE_LEVEL := ’5’;

UP;

IF NOT FORM_SUCCESS THEN

MESSAGE(’Already at the first Order’);

END IF;

:SYSTEM.MESSAGE_LEVEL := ’0’;

:SYSTEM.SUPPRESS_WORKING := ’TRUE’;

Copyright © 2004, Oracle. All rights reserved.

The FORM_TRIGGER_FAILURE Exception
BEGIN

-
-
RAISE form_trigger_failure;
-
-

EXCEPTION

-
-
WHEN <exception> THEN
RAISE form_trigger_failure;
-
-

Fail trigger

END;

Copyright © 2004, Oracle. All rights reserved.

Triggers for Intercepting
System Messages

• On-Error:
– Fires when a system error message is issued
– Is used to trap Forms and Oracle Server errors, and

to customize error messages
• On-Message:

– Fires when an informative system message is
issued

– Is used to suppress or customize specific
messages

Copyright © 2004, Oracle. All rights reserved.

Handling Informative Messages

• On-Message trigger
• Built-in functions:

– MESSAGE_CODE

– MESSAGE_TEXT

– MESSAGE_TYPE

Copyright © 2004, Oracle. All rights reserved.

Setting Alert Properties

1

2

6543 7

Alert Styles:

Caution

Stop

Note

Copyright © 2004, Oracle. All rights reserved.

Planning Alerts
Yes/No

questions
Yes/No/Cancel

questions

Caution
messages

Informative
messages

Copyright © 2004, Oracle. All rights reserved.

Controlling Alerts

SET_ALERT_PROPERTY

SET_ALERT_BUTTON_PROPERTY

Copyright © 2004, Oracle. All rights reserved.

SHOW_ALERT Function

IF SHOW_ALERT(’del_Check’)=ALERT_BUTTON1 THEN

. . .

Alert_Button1
Alert_Button2

Alert_Button3

Copyright © 2004, Oracle. All rights reserved.

Directing Errors to an Alert

PROCEDURE Alert_On_Failure IS

n NUMBER;

BEGIN

SET_ALERT_PROPERTY(’error_alert’,

ALERT_MESSAGE_TEXT,ERROR_TYPE||

’-’||TO_CHAR(ERROR_CODE)||

’: ’||ERROR_TEXT);

n := SHOW_ALERT(’error_alert’);

END;

Copyright © 2004, Oracle. All rights reserved.

Causes of Oracle Server Errors

Base table block

Implicit DML

Trigger/PU

Explicit DML

Stored PU call

Declarative
constraint

Database
trigger

Stored
program unit

Form Oracle Server

Copyright © 2004, Oracle. All rights reserved.

Trapping Server Errors

Base table block

On-Error:
DBMS_ERROR_CODE
DBMS_ERROR_TEXT

Explicit DML/PU call

When Others:
SQLCODE
SQLERRM

Constraint

DB trigger

Stored PU

Form Oracle Server

Predefined
message

RAISE_
APPLICATION_

ERROR

RAISE_
APPLICATION_

ERROR

Copyright © 2004, Oracle. All rights reserved.

Summary

In this lesson, you should have learned that:
• Forms displays messages at run time to inform

the operator of events that occur in the session.
• You can use FORM_SUCCESS to test for run-time

failure of built-ins.
• There are four types of Forms messages:

– Informative
– Error
– Working
– Application

Copyright © 2004, Oracle. All rights reserved.

Summary

• You can control system messages with built-ins
and triggers:
– MESSAGE_LEVEL

– SUPPRESS_WORKING

– On-[Error | Message] triggers
– [ERROR | MESSAGE]_[CODE | TEXT | TYPE]

• Types of alerts: Stop, Caution, Note
• Alert built-ins:

– SHOW_ALERT

– SET_ALERT_PROPERTY

– SET_ALERT_BUTTON_PROPERTY

Copyright © 2004, Oracle. All rights reserved.

Summary

• Handle database server errors:
– Implicit DML: Use DBMS_ERROR_CODE and

DBMS_ERROR_TEXT in On-Error trigger
– Explicit DML: Use SQLCODE and SQLERRM in WHEN

OTHERS exception handler

Copyright © 2004, Oracle. All rights reserved.

Practice 17 Overview

This practice covers the following topics:
• Using an alert to inform the operator that the

customer’s credit limit has been exceeded
• Using a generic alert to ask the operator to

confirm that the form should terminate

Copyright © 2004, Oracle. All rights reserved.

Query Triggers

Copyright © 2004, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to do
the following:
• Explain the processes involved in querying a data

block
• Describe query triggers and their scope
• Write triggers to screen query conditions
• Write triggers to supplement query results
• Control trigger action based on the form’s query

status

Copyright © 2004, Oracle. All rights reserved.

Construct SELECT...

Perform query

Fetch a row into a new record

Mark record as valid

Validate any record changes

Abort query
on failure

Query Processing Overview

Flush
record

on failure

Fire Pre-Query trigger

Fire Post-Query trigger

Copyright © 2004, Oracle. All rights reserved.

SELECT Statements Issued During
Query Processing

SELECT base_column, ..., ROWID

INTO :base_item, ..., :ROWID

FROM base_table

WHERE (default_where_clause OR

onetime_where_clause)

AND (example_record_conditions)

AND (query_where_conditions)

ORDER BY default_order_by_clause |

query_where_order_by

Slightly different for COUNT

Copyright © 2004, Oracle. All rights reserved.

WHERE Clause

• Four sources for the WHERE clause:
– WHERE Clause block property
– ONETIME_WHERE block property
– Example Record
– Query/Where dialog box

• WHERE clauses are combined by the AND operator,
except that WHERE and ONETIME_WHERE are
combined with the OR operator.

Copyright © 2004, Oracle. All rights reserved.

ONETIME_WHERE Property

Initially shows
restricted query

2nd Execute_Query
not restricted

Copyright © 2004, Oracle. All rights reserved.

ORDER BY Clause

• Two sources for the ORDER BY clause:
– ORDER BY Clause block property
– Query/Where dialog box

• Second source for ORDER BY clause overrides the
first one

Copyright © 2004, Oracle. All rights reserved.

Writing Query Triggers: Pre-Query Trigger

• Defined at block level
• Fires once, before query is performed

IF TO_CHAR(:ORDERS.ORDER_ID)||

TO_CHAR(:ORDERS.CUSTOMER_ID)

IS NULL THEN

MESSAGE(’You must query by

Order ID or Customer ID’);

RAISE form_trigger_failure;

END IF;

Copyright © 2004, Oracle. All rights reserved.

Writing Query Triggers:
Post-Query Trigger

• Fires for each fetched record (except during array
processing)

• Use to populate nondatabase items and calculate
statistics

SELECT COUNT(order_id)

INTO :ORDERS.lineitem_count

FROM ORDER_ITEMS

WHERE order_id = :ORDERS.order_id;

Copyright © 2004, Oracle. All rights reserved.

Writing Query Triggers:
Using SELECT Statements in Triggers

• Forms Builder variables are preceded by a colon.
• The query must return one row for success.
• Code exception handlers.
• The INTO clause is mandatory, with a variable for

each selected column or expression.
• ORDER BY is not relevant.

Copyright © 2004, Oracle. All rights reserved.

Query Array Processing

• Reduces network traffic
• Enables Query Array processing:

– Enable Array Processing option
– Set Query Array Size property

• Query Array Size property
• Query All Records property

Copyright © 2004, Oracle. All rights reserved.

Coding Triggers for
Enter-Query Mode

• Some triggers may fire in Enter-Query mode.
• Set the Fire in Enter-Query Mode property.
• Test mode during execution with :SYSTEM.MODE

– NORMAL

– ENTER-QUERY

– QUERY

Copyright © 2004, Oracle. All rights reserved.

Coding Triggers for
Enter-Query Mode

• Example

• Some built-ins are illegal.
• Consult online Help.
• You cannot navigate to another record in the

current form.

IF :SYSTEM.MODE = ’NORMAL’

THEN ENTER_QUERY;

ELSE EXECUTE_QUERY;

END IF;

Copyright © 2004, Oracle. All rights reserved.

Overriding Default Query Processing

Do-the-Right-Thing Built-in

COUNT_QUERY

FETCH_RECORDS

SELECT_RECORDS

Trigger

On-Close

On-Count

On-Fetch

Pre-Select

On-Select

Post-Select

Additional Transactional Triggers for Query Processing

Copyright © 2004, Oracle. All rights reserved.

Overriding Default Query Processing

• On-Fetch continues to fire until:
– It fires without executing

CREATE_QUERIED_RECORD.
– The query is closed by the user or by ABORT_QUERY.
– It raises FORM_TRIGGER_FAILURE.

• On-Select replaces open cursor, parse, and
execute phases.

Copyright © 2004, Oracle. All rights reserved.

Obtaining Query Information at Run Time

• SYSTEM.MODE

• SYSTEM.LAST_QUERY

– Contains bind variables (ORD_ID = :1) before
SELECT_RECORDS

– Contains actual values (ORD_ID = 102) after
SELECT_RECORDS

Copyright © 2004, Oracle. All rights reserved.

Obtaining Query Information at Run Time

• GET_BLOCK_PROPERTY
SET_BLOCK_PROPERTY

– Get and set:
DEFAULT_WHERE
ONETIME_WHERE
ORDER_BY
QUERY_ALLOWED
QUERY_HITS

– Get only:
QUERY_OPTIONS
RECORDS_TO_FETCH

Copyright © 2004, Oracle. All rights reserved.

Obtaining Query Information at Run Time

• GET_ITEM_PROPERTY

• SET_ITEM_PROPERTY

– Get and set:
CASE_INSENSITIVE_QUERY
QUERYABLE
QUERY_ONLY

– Get only:
QUERY_LENGTH

Copyright © 2004, Oracle. All rights reserved.

Summary

In this lesson, you should have learned that:
• Query processing includes the following steps:

1. Pre-Query trigger fires
2. SELECT statement constructed
3. Query performed
4. Record fetched into block
5. Record marked Valid
6. Post-Query trigger fires
7. Item and record validation if the record has

changed (due to a trigger)
8. Steps 4 through 7 repeat till all fetched

Copyright © 2004, Oracle. All rights reserved.

Summary

• The query triggers, which must be defined at block
or form level, are:
– Pre-Query: Use to screen query conditions (set

ONETIME_WHERE or DEFAULT_WHERE properties, or
assign values to use as query criteria)

– Post-Query: Use to supplement query results
(populate nonbase table items, perform
calculations)

• You can use transactional triggers to override
default query processing.

• You can control trigger action based on the form’s
query status by checking SYSTEM.MODE values:
NORMAL, ENTER-QUERY, or QUERY

Copyright © 2004, Oracle. All rights reserved.

Practice 18 Overview

This practice covers the following topics:
• Populating customer names and sales

representative names for each row of the ORDERS
block

• Populating descriptions for each row of the
ORDER_ITEMS block

• Restricting the query on the INVENTORIES block
for only the first query on that block

• Disabling the effects of the Exit button and
changing a radio group in Enter-Query mode

• Adding two check boxes to enable case-sensitive
and exact match query

Copyright © 2004, Oracle. All rights reserved.

Validation

Copyright © 2004, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to do
the following:
• Explain the effects of the validation unit upon a

form
• Control validation:

– Using object properties
– Using triggers
– Using Pluggable Java Components

• Describe how Forms tracks validation status
• Control when validation occurs

Copyright © 2004, Oracle. All rights reserved.

The Validation Process

Forms validates at the following levels:

Form level

Block level

Record level Item level

Copyright © 2004, Oracle. All rights reserved.

The Validation Process

Validation occurs when:
• [Enter] key or ENTER Built-in is

obeyed
• Operator or trigger leaves the validation unit

(includes a Commit)

Copyright © 2004, Oracle. All rights reserved.

Controlling Validation Using Properties:
Validation Unit

Copyright © 2004, Oracle. All rights reserved.

Controlling Validation Using Properties:
Validate from List

LOV

TERRY
Full list

MART
Partial list

Valid

Auto complete
AL

ALAN

HDATE

20-FEB-1981
22-FEB-1981
06-MAR-1996
06-FEB-1995

08-SEP-1981

ENAME

MARTIN
MARTINEZ
SEDAT
WARD

ALAN

WARD

Copyright © 2004, Oracle. All rights reserved.

Controlling Validation Using Triggers

• Item level:
When-Validate-Item

• Block level:
When-Validate-Record

IF :ORDERS.order_date > SYSDATE THEN

MESSAGE(Order Date is later than today!’);

RAISE form_trigger_failure;

END IF;

Copyright © 2004, Oracle. All rights reserved.

Example: Validating User Input

Trigger failure?

When-Validate-Item

Customer ID

SELECT . . .

WHERE customer_id =

:ORDERS.customer_id

104

Copyright © 2004, Oracle. All rights reserved.

Using Client-Side Validation

• Forms
validation:
– Occurs on

middle tier
– Involves

network
traffic

• Client-side
validation:
– Improves

performance
– Implemented

with PJC

Attempt to enter alphabetic characters

Using number datatype

Using KeyFilter PJC

Copyright © 2004, Oracle. All rights reserved.

Using Client-Side Validation

To use a PJC:
1. Set the item’s Implementation Class property

2. Set properties for the PJC
SET_CUSTOM_PROPERTY('order_items.quantity',

1,'FILTER_TYPE','NUMERIC');

Copyright © 2004, Oracle. All rights reserved.

Tracking Validation Status

• NEW
– When a record is created
– Also for Copy Value from Item or Initial Value

• CHANGED
– When changed by user or trigger
– When any item in new record is changed

• VALID
– When validation has been successful
– After records are fetched from database
– After a successful post or commit
– Duplicated record inherits status of source

Copyright © 2004, Oracle. All rights reserved.

Controlling When Validation Occurs with
Built-Ins

• CLEAR_BLOCK, CLEAR_FORM, EXIT_FORM
• ENTER

• SET_FORM_PROPERTY

– (..., VALIDATION)
– (..., VALIDATION_UNIT)

• ITEM_IS_VALID item property
• VALIDATE (scope)

Copyright © 2004, Oracle. All rights reserved.

Summary

In this lesson, you should have learned that:
• The validation unit specifies how much data is

entered before validation occurs.
• You can control validation using:

– Object properties: Validation Unit (form); Validate
from List (item)

– Triggers: When-Validate-Item (item level); When-
Validate-Record (block level)

– Pluggable Java Components for client-side
validation

Copyright © 2004, Oracle. All rights reserved.

Summary

• Forms tracks validation status of items and
records, which are either NEW, CHANGED, or VALID.

• You can use built-ins to control when validation
occurs:
– CLEAR_BLOCK

– CLEAR_FORM

– EXIT_FORM

– ENTER

– ITEM_IS_VALID

– VALIDATE

Copyright © 2004, Oracle. All rights reserved.

Practice 19 Overview

This practice covers the following topics:
• Validating the Sales Representative item value by

using an LOV
• Writing a validation trigger to check that online

orders are CREDIT orders
• Populating customer names, sales representative

names, and IDs when a customer ID is changed
• Writing a validation trigger to populate the name

and the price of the product when the product ID
is changed

• Restricting user input to numeric characters using
a Pluggable Java Component

Copyright © 2004, Oracle. All rights reserved.

Navigation

Copyright © 2004, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to do
the following:
• Distinguish between internal and external

navigation
• Control navigation with properties
• Describe and use navigation triggers to control

navigation
• Use navigation built-ins in triggers

Copyright © 2004, Oracle. All rights reserved.

Navigation Overview

• What is the navigational unit?
– Outside the form
– Form
– Block
– Record
– Item

• Entering and leaving objects
• What happens if navigation fails?

Copyright © 2004, Oracle. All rights reserved.

v

^
x

Understanding Internal Navigation

Next Record

Exit item

Exit record

Enter record

Enter item

Copyright © 2004, Oracle. All rights reserved.

Using Object Properties to Control
Navigation

• Block
– Navigation Style
– Previous Navigation Data Block
– Next Navigation Data Block

• Item
– Enabled
– Keyboard Navigable
– Mouse Navigate
– Previous Navigation Item
– Next Navigation Item

Copyright © 2004, Oracle. All rights reserved.

Using Object Properties to Control
Navigation

• Form module
– Mouse

Navigation Limit
– First Navigation

Data Block

Copyright © 2004, Oracle. All rights reserved.

v

^

Mouse Navigate Property

x

MOUSE NAVIGATE = YES

Exit item

Exit record

Exit block

Enter block

Enter record

Enter item

Copyright © 2004, Oracle. All rights reserved.

v

^
x

Writing Navigation Triggers

Pre- and Post-

When-New-<object>-Instance

Copyright © 2004, Oracle. All rights reserved.

Navigation Triggers

When-New-<object>-Instance

Fire after navigation

Fire even when validation unit is
higher than the trigger object

Allow restricted and
unrestricted built-ins

Are not affected by failure

Pre- and Post-

Fire during navigation

Do not fire if validation unit
is higher than trigger object

Allow unrestricted built-ins

Handle failure by returning to
initial object

Copyright © 2004, Oracle. All rights reserved.

When-New-<object>-Instance Triggers

• When-New-Form-Instance
• When-New-Block-Instance
• When-New-Record-Instance
• When-New-Item-Instance

Copyright © 2004, Oracle. All rights reserved.

SET_<object>_PROPERTY Examples

SET_FORM_PROPERTY(FIRST_NAVIGATION_BLOCK,

’ORDER_ITEMS’);

SET_BLOCK_PROPERTY(’ORDERS’, ORDER_BY,

’CUSTOMER_ID’);

SET_RECORD_PROPERTY(3, ’ORDER_ITEMS’, STATUS,

QUERY_STATUS);

SET_ITEM_PROPERTY(’CONTROL.stock_button’,

ICON_NAME, ’stock’);

Copyright © 2004, Oracle. All rights reserved.

The Pre- and Post-Triggers

• Pre/Post-Form
• Pre/Post-Block
• Pre/Post-Record
• Pre/Post-Text-Item

Copyright © 2004, Oracle. All rights reserved.

Post-Block Trigger Example

Disabling Stock button when leaving the ORDER_ITEMS
block:

SET_ITEM_PROPERTY(’CONTROL.stock_button’,

enabled, property_false);

Copyright © 2004, Oracle. All rights reserved.

v

^

The Navigation Trap

A Post-Text-Item

Pre-Text-Item

Pre-Text-Item

B

Copyright © 2004, Oracle. All rights reserved.

Using Navigation Built-Ins in Triggers

GO_FORM

GO_BLOCK

GO_ITEM

GO_RECORD

NEXT_BLOCK

NEXT_ITEM

NEXT_KEY

NEXT_RECORD

NEXT_SET

UP

DOWN

PREVIOUS_BLOCK

PREVIOUS_ITEM

PREVIOUS_RECORD

SCROLL_UP

SCROLL_DOWN

Copyright © 2004, Oracle. All rights reserved.

IF CHECKBOX_CHECKED(’ORDERS.order_mode’) --Online

THEN -- order

ORDERS.order_status := 4; --Credit order

GO_ITEM(‘ORDERS.order_status’);

END IF;

IF CHECKBOX_CHECKED(’ORDERS.order_mode’) --Online

THEN -- order

ORDERS.order_status := 4; --Credit order

GO_ITEM(‘ORDERS.order_status’);

END IF;

Using Navigation Built-Ins in Triggers

• When-New-Item-Instance

• Pre-Text-Item

Copyright © 2004, Oracle. All rights reserved.

Summary

In this lesson, you should have learned that:
• External navigation is visible to the user, while

internal navigation occurs behind the scenes.
• You can control navigation with properties of the

form, block, or item:
– Set in Navigation category of the Property Palette
OR
– Use SET_[FORM | BLOCK | ITEM]_PROPERTY

Copyright © 2004, Oracle. All rights reserved.

Summary

• Navigation triggers:
– Those that fire during navigation (watch out for the

navigation trap):
[Pre | Post] - [Form | Block | Item]

– Those that fire after navigation:
When-New- [Form | Block | Record | Item] -Instance

• You can use navigation built-ins in triggers
(except for triggers that fire during navigation):
– GO_[FORM | BLOCK | RECORD | ITEM]
– NEXT_[BLOCK | RECORD | ITEM | KEY | SET]
– UP
– DOWN
– PREVIOUS_[BLOCK | RECORD | ITEM]
– SCROLL_[UP | DOWN]

Copyright © 2004, Oracle. All rights reserved.

Practice 20 Overview

This practice covers the following topics:
• Registering the bean area’s JavaBean at form

startup
• Setting properties on a Pluggable Java

Component at form startup
• Executing a query at form startup
• Populating product images when cursor arrives on

each record of the ORDER_ITEMS block

Copyright © 2004, Oracle. All rights reserved.

Transaction Processing

Copyright © 2004, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to do
the following:
• Explain the process used by Forms to apply

changes to the database
• Describe the commit sequence of events
• Supplement transaction processing
• Allocate sequence numbers to records as they are

applied to tables
• Implement array DML

Copyright © 2004, Oracle. All rights reserved.

Transaction Processing Overview

Transaction (Begin)

FORM A
Action Edit

Block#1

Block#2

New Record
Updated Record

Deleted Record
Updated Record

Commit work;

INSERT INTO Table1

UPDATE Table1

DELETE FROM Table2

UPDATE Table2

Transaction (End)

Save

Copyright © 2004, Oracle. All rights reserved.

Transaction Processing Overview

Transaction processing includes two phases:
• Post:

– Writes record changes to base tables
– Fires transactional triggers

• Commit: Performs database commit
Errors result in:
• Rollback of the database changes
• Error message

Copyright © 2004, Oracle. All rights reserved.

The Commit Sequence of Events

Validate the block

Pre-Commit

Pre-Delete

Delete row

Post-Delete

More
records?

1

On-Delete

Validate the form

2

Copyright © 2004, Oracle. All rights reserved.

The Commit Sequence of Events

Check uniqueness

On-Insert Insert row

Post-Insert Post-Update

More
blocks?

Post-Forms-Commit

INSERT UPDATE

Stop

2

More
records?

Pre-Insert

Copy value from item

Pre-Update

Check uniqueness

On-Update Update row

1

Post-Database-Commit
Commit changes

Copyright © 2004, Oracle. All rights reserved.

Characteristics of Commit Triggers

• Pre-Commit: Fires once if form changes are made
or uncommitted changes are posted

• Pre- and Post-DML
• On-DML: Fires per record, replacing default DML

on row
Use DELETE_RECORD, INSERT_RECORD,
UPDATE_RECORD built-ins

Copyright © 2004, Oracle. All rights reserved.

Characteristics of Commit Triggers

• Post-Forms-Commit: Fires once even if no
changes are made

• Post-Database-Commit: Fires once even if no
changes are made

Note: A commit-trigger failure causes a rollback to the
savepoint.

Copyright © 2004, Oracle. All rights reserved.

Common Uses for Commit Triggers

Pre-Commit

Pre-Delete

Pre-Insert

Pre-Update

Check user authorization; set up special locking

Journaling; implement foreign-key delete rule

Generate sequence numbers; journaling;
automatically generated columns; check
constraints

Journaling; implement foreign-key update rule;
auto-generated columns; check constraints

Copyright © 2004, Oracle. All rights reserved.

Common Uses for Commit Triggers

On-Insert/Update/Delete

Post-Forms-Commit

Post-Database-Commit

Replace default block
DML statements

Check complex multirow
constraints

Test commit success;
test uncommitted posts

Copyright © 2004, Oracle. All rights reserved.

ColumnItem

Life of an Update

Query
Rollback

Data20 20

Locked
Query

30 20Update record in form

[Save] 30 20[Save]

Pre-Update 30 20

Row Updated 30 30 20Row updated

Post-Update 30 30 20

30 30

Post-Update

Pre-Update

Commit

Copyright © 2004, Oracle. All rights reserved.

Delete Validation

• Pre-Delete trigger
• Final checks before row deletion
DECLARE

CURSOR C1 IS
SELECT ’anything’ FROM ORDERS
WHERE customer_id = :CUSTOMERS.customer_id;

BEGIN
OPEN C1;
FETCH C1 INTO :GLOBAL.dummy;
IF C1%FOUND THEN

CLOSE C1;
MESSAGE(’There are orders for this

customer!’);
RAISE form_trigger_failure;

ELSE
CLOSE C1;

END IF;
END;

Copyright © 2004, Oracle. All rights reserved.

Assigning Sequence Numbers

Pre-Insert Insert

Database

601 Value Value

ID

Sequence

SELECT ORDERS_SEQ.nextval

INTO :ORDERS.order_id

FROM SYS.dual;

601

602

Copyright © 2004, Oracle. All rights reserved.

Keeping an Audit Trail

• Write changes to nonbase tables.
• Gather statistics on applied changes.

Post-Insert example:

:GLOBAL.insert_tot :=

TO_CHAR(TO_NUMBER(:GLOBAL.insert_tot)+1);

Copyright © 2004, Oracle. All rights reserved.

Testing the Results of Trigger DML

• SQL%FOUND

• SQL%NOTFOUND

• SQL%ROWCOUNT

UPDATE ORDERS

SET order_date = SYSDATE

WHERE order_id = :ORDERS.order_id;

IF SQL%NOTFOUND THEN

MESSAGE(’Record not found in database’);

RAISE form_trigger_failure;

END IF;

Copyright © 2004, Oracle. All rights reserved.

Testing the Results of Trigger DML

• SQL%FOUND

• SQL%NOTFOUND

• SQL%ROWCOUNT

UPDATE S_ORD

SET date_shipped = SYSDATE

WHERE id = :S_ORD.id;

IF SQL%NOTFOUND THEN

MESSAGE(’Record not found in database’);

RAISE form_trigger_failure;

END IF;

Copyright © 2004, Oracle. All rights reserved.

DML Statements Issued
During Commit Processing

INSERT INTO base_table (base_column, base_column,...)

VALUES (:base_item, :base_item, ...)

UPDATE base_table

SET base_column = :base_item, base_column =

:base_item, ...

WHERE ROWID = :ROWID

DELETE FROM base_table

WHERE ROWID = :ROWID

Copyright © 2004, Oracle. All rights reserved.

DML Statements Issued During
Commit Processing

Rules:
• DML statements may fire database triggers.
• Forms uses and retrieves ROWID.
• The Update Changed Columns Only and Enforce

Column Security properties affect UPDATE
statements.

• Locking statements are not issued.

Copyright © 2004, Oracle. All rights reserved.

Overriding Default Transaction Processing

Additional transactional triggers:

On-Check-Unique

On-Column-Security

On-Commit

On-Rollback

On-Savepoint

On-Sequence-Number

CHECK_RECORD_UNIQUENESS

ENFORCE_COLUMN_SECURITY

COMMIT_FORM

ISSUE_ROLLBACK

ISSUE_SAVEPOINT

GENERATE_SEQUENCE_NUMBER

Trigger Do-the-Right-Thing Built-in

Note: These triggers are meant to be used when connecting to
data sources other than Oracle.

Copyright © 2004, Oracle. All rights reserved.

Overriding Default Transaction Processing

Transactional triggers for logging on and off:

Pre-Logon

Pre-Logout

On-Logon

On-Logout

Post-Logon

Post-Logout

-

-

LOGON

LOGOUT

-

-

Trigger Do-the-Right-Thing Built-in

Copyright © 2004, Oracle. All rights reserved.

Running Against Data Sources
Other than Oracle

• Two ways to run against data sources other than
Oracle:
– Oracle Transparent Gateways
– Write appropriate transactional triggers

Copyright © 2004, Oracle. All rights reserved.

Running Against Data Sources
Other than Oracle

• Connecting with Open Gateway:
– Cursor and Savepoint mode form module properties
– Key mode and Locking mode block properties

• Using transactional triggers:
– Call 3GL programs
– Database data block property

Copyright © 2004, Oracle. All rights reserved.

Getting and Setting the
Commit Status

• Commit status: Determines how record will be
processed

• SYSTEM.RECORD_STATUS:
– NEW
– INSERT (also caused by control items)
– QUERY
– CHANGED

• SYSTEM.BLOCK_STATUS:
– NEW (may contain records with status INSERT)
– QUERY (also possible for control block)
– CHANGED (block will be committed)

• SYSTEM.FORM_STATUS: NEW, QUERY, CHANGED

Copyright © 2004, Oracle. All rights reserved.

Getting and Setting the
Commit Status

• System variables versus built-ins for commit
status

• Built-ins for getting and setting commit status:
– GET_BLOCK_PROPERTY

– GET_RECORD_PROPERTY

– SET_RECORD_PROPERTY

Copyright © 2004, Oracle. All rights reserved.

Getting and Setting the
Commit Status

• Example: If the third record of block ORDERS is a
changed database record, set the status back to
QUERY.

• Warnings:
– Do not confuse commit status with validation

status.
– The commit status is updated during validation.

Copyright © 2004, Oracle. All rights reserved.

Array DML

• Performs array inserts, updates, and deletes
• Vastly reduces network traffic

Fewer round trips
(exact number depends

on array size)
2 inserts

2 updates

1 delete
Database

Empno Ename Job Hiredate

1234 Jones Clerk 01-Jan-1995
1235 Smith Clerk 01-Jan-1995

1236 Adams Clerk 01-Jan-1995
1237 Clark Clerk 01-Jan-1995

Copyright © 2004, Oracle. All rights reserved.

Effect of Array DML
on Transactional Triggers

Array DML Size = 1 Array DML Size > 1

Fires
Fires for each
insert, update,
delete

Fires for each
insert, update,
delete

Repeated
for each
insert,
update,
delete

POST-

PRE-

DML

Fires

DML

POST-

PRE-

Copyright © 2004, Oracle. All rights reserved.

Implementing Array DML

1. Enable the Array Processing option.
2. Specify a DML Array Size of greater than 1.
3. Specify block primary keys.

Copyright © 2004, Oracle. All rights reserved.

Summary

In this lesson, you should have learned that:
• To apply changes to the database, Forms issues

post and commit.
• The commit sequence of events:

1. Validate the form.
2. Process savepoint.
3. Fire Pre-Commit.
4. Validate the block (performed for all blocks in

sequential order).

Copyright © 2004, Oracle. All rights reserved.

Summary

5. Perform the DML:
Delete records: Fire Pre-Delete, delete row or fire
On-Delete, fire Post-Delete trigger
Insert records: Copy Value From Item, fire
Pre-Insert, check record uniqueness, insert row or
fire On-Insert, fire Post-Insert
Update records: Fire Pre-Update, check record
uniqueness, update row or fire On-Update, fire
Post-Update

6. Fire Post-Forms-Commit trigger.
If the current operation is COMMIT, then:

7. Issue an SQL-COMMIT statement.
8. Fire the Post-Database-Commit trigger.

Copyright © 2004, Oracle. All rights reserved.

Summary

• You can supplement transaction processing with
triggers:
– Pre-Commit: Fires once if form changes are made

or uncommitted changes are posted
– [Pre | Post] – [Update | Insert | Delete]
– On- [Update | Insert | Delete]:

Fires per record, replacing default DML on row
Perform default functions with built-ins:
[UPDATE|INSERT|DELETE]_RECORD

Copyright © 2004, Oracle. All rights reserved.

Summary

• Use the Pre-Insert trigger to allocate sequence
numbers to records as they are applied to tables.

• Check or change commit status:
– GET_BLOCK_PROPERTY, [GET |

SET]_RECORD_STATUS

– :SYSTEM.[FORM | BLOCK | RECORD]_STATUS

• Use transactional triggers to override or augment
default commit processing.

• Reduce network roundtrips by setting DML Array
Size block property to implement Array DML.

Copyright © 2004, Oracle. All rights reserved.

Practice 21 Overview

This practice covers the following topics:
• Automatically populating order IDs by using a

sequence
• Automatically populating item IDs by adding the

current highest order ID
• Customizing the commit messages in the

CUSTOMERS form
• Customizing the login screen in the CUSTOMERS

form

Copyright © 2004, Oracle. All rights reserved.

Writing Flexible Code

Copyright © 2004, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to do
the following:
• Describe flexible code
• State the advantages of using system variables
• Identify built-in subprograms that assist flexible

coding
• Write code to reference objects:

– By internal ID
– Indirectly

Copyright © 2004, Oracle. All rights reserved.

What Is Flexible Code?

Flexible code:
• Is reusable
• Is generic
• Avoids hard-coded object names
• Makes maintenance easier
• Increases productivity

Copyright © 2004, Oracle. All rights reserved.

Using System Variables for
Current Context

• Input focus:
– SYSTEM.CURSOR_BLOCK

– SYSTEM.CURSOR_RECORD

– SYSTEM.CURSOR_ITEM

– SYSTEM.CURSOR_VALUE

IF :SYSTEM.CURSOR_BLOCK = ’ORDERS’ THEN

GO_BLOCK(’ORDER_ITEMS’);

ELSIF :SYSTEM.CURSOR_BLOCK = ’ORDER_ITEMS’ THEN

GO_BLOCK(’INVENTORIES’);

ELSIF :SYSTEM.CURSOR_BLOCK = ’INVENTORIES’ THEN

GO_BLOCK(’ORDERS’);

END IF;

Copyright © 2004, Oracle. All rights reserved.

Using System Variables for
Current Context

• Trigger focus:
– SYSTEM.TRIGGER_BLOCK

– SYSTEM.TRIGGER_RECORD

– SYSTEM.TRIGGER_ITEM

Copyright © 2004, Oracle. All rights reserved.

System Status Variables

When-Button-Pressed

ENTER;

IF :SYSTEM.BLOCK_STATUS = ’CHANGED’ THEN

COMMIT_FORM;

END IF;

CLEAR_BLOCK;

Copyright © 2004, Oracle. All rights reserved.

GET_<object>_PROPERTY
Built-Ins

• GET_APPLICATION_PROPERTY

• GET_FORM_PROPERTY

• GET_BLOCK_PROPERTY

• GET_RELATION_PROPERTY

• GET_RECORD_PROPERTY

• GET_ITEM_PROPERTY

• GET_ITEM_INSTANCE_PROPERTY

Copyright © 2004, Oracle. All rights reserved.

GET_<object>_PROPERTY
Built-Ins

• GET_LOV_PROPERTY

• GET_RADIO_BUTTON_PROPERTY

• GET_MENU_ITEM_PROPERTY

• GET_CANVAS_PROPERTY

• GET_TAB_PAGE_PROPERTY

• GET_VIEW_PROPERTY

• GET_WINDOW_PROPERTY

Copyright © 2004, Oracle. All rights reserved.

SET_<object>_PROPERTY
Built-Ins

• SET_APPLICATION_PROPERTY

• SET_FORM_PROPERTY

• SET_BLOCK_PROPERTY

• SET_RELATION_PROPERTY

• SET_RECORD_PROPERTY

• SET_ITEM_PROPERTY

• SET_ITEM_INSTANCE_PROPERTY

Copyright © 2004, Oracle. All rights reserved.

SET_<object>_PROPERTY
Built-Ins

• SET_LOV_PROPERTY

• SET_RADIO_BUTTON_PROPERTY

• SET_MENU_ITEM_PROPERTY

• SET_CANVAS_PROPERTY

• SET_TAB_PAGE_PROPERTY

• SET_VIEW_PROPERTY

• SET_WINDOW_PROPERTY

Copyright © 2004, Oracle. All rights reserved.

Referencing Objects by Internal ID

lov_id := FIND_LOV(’my_lov’)

...SHOW_LOV(lov_id)

...SHOW_LOV(’my_lov’)

Finding the object ID:

Referencing an object by ID:

Referencing an object by name:

ID

ID

Copyright © 2004, Oracle. All rights reserved.

FIND_ Built-Ins

• FIND_ALERT

• FIND_BLOCK

• FIND_CANVAS

• FIND_EDITOR

• FIND_FORM

• FIND_ITEM

• FIND_LOV

• FIND_RELATION

• FIND_VIEW

• FIND_WINDOW

ID

Copyright © 2004, Oracle. All rights reserved.

Using Object IDs

• Declare a PL/SQL variable of the same data type.
• Use the variable for any later reference to the

object.
• Use the variable within the current PL/SQL block

only.

Copyright © 2004, Oracle. All rights reserved.

Using Object IDs

Example:

DECLARE

item_var item;

BEGIN

item_var := FIND_ITEM(:SYSTEM.CURSOR_ITEM);

SET_ITEM_PROPERTY(item_var,position,30,55);

SET_ITEM_PROPERTY(item_var,prompt_text,’Cur

rent’);

END;

Copyright © 2004, Oracle. All rights reserved.

Increasing the Scope of Object IDs

• A PL/SQL variable has limited scope.
• An .id extension:

– Broadens the scope
– Converts to a numeric format
– Enables assignment to a global variable
– Converts back to the object data type

Copyright © 2004, Oracle. All rights reserved.

Referencing Objects Indirectly

Direct reference

Indirect reference

ITEM A
Welles

ITEM B
ITEM A

ITEM A
Welles

Copyright © 2004, Oracle. All rights reserved.

Referencing Objects Indirectly

The NAME_IN function:
• Returns:

– The contents of variable
– Character string

• Use conversion functions for NUMBER and DATE

Copyright © 2004, Oracle. All rights reserved.

Referencing Objects Indirectly

The COPY procedure allows:
• Direct copy:

• Indirect copy:

COPY('Welles','CUSTOMERS.cust_last_name');

COPY('Welles',NAME_IN('global.customer_name_item'));

Copyright © 2004, Oracle. All rights reserved.

Summary

In this lesson, you should have learned that:
• Flexible code is reusable, generic code that you

can use in any form module in an application.
• With system variables you can:

– Perform actions conditionally based on current
location (SYSTEM.CURSOR_[RECORD | ITEM |
BLOCK])

– Use the value of an item without knowing its name
(SYSTEM.CURSOR_VALUE)

– Navigate to the initial location after a trigger
completes: (SYSTEM.TRIGGER_[RECORD | ITEM |
BLOCK])

– Perform actions conditionally based on commit
status: SYSTEM.[RECORD | BLOCK |
FORM]_STATUS

Copyright © 2004, Oracle. All rights reserved.

Summary

• The [GET | SET]_<object>_PROPERTY built-ins are
useful in flexible coding.

• Code that references objects is more efficient and
generic:
– By internal ID: Use FIND_<object> built-ins
– Indirectly: Use COPY and NAME_IN built-ins

Copyright © 2004, Oracle. All rights reserved.

Practice 22 Overview

This practices covers the following topics:
• Populating product images only when the image

item is displayed.
• Modifying the When-Button-Pressed trigger of

the Image_Button in order to use object IDs
instead of object names.

• Write generic code to print out the names of the
blocks in a form.

Copyright © 2004, Oracle. All rights reserved.

Sharing Objects and Code

Copyright © 2004, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to do
the following:
• Describe the various methods for reusing objects

and code
• Inherit properties from property classes
• Group related objects for reuse
• Explain the inheritance symbols in the Property

Palette
• Reuse objects from an object library
• Reuse PL/SQL code

Copyright © 2004, Oracle. All rights reserved.

Benefits of Reusing Objects and Code

• Increases productivity
• Decreases maintenance
• Increases modularity
• Maintains standards
• Improves application performance

Copyright © 2004, Oracle. All rights reserved.

What Are Property Classes?

LOV

properties

Block

properties

Canvas

properties

Relation

properties

Item

properties

Copyright © 2004, Oracle. All rights reserved.

Creating a Property Class

Add Property Inherit Property

Property ClassDelete Property

Copyright © 2004, Oracle. All rights reserved.

Property palette

Default property

Inheriting from a Property Class

Default property
Default property

Property palette

Default property
Default property

Changed propertyChangeDefault property

Property
class

Apply

Property palette

Inherited property

Inherited property

Property palette

Inherited property

Inherited property

Variant property
Change

Inherited property
Inherit

Inherited property

Copyright © 2004, Oracle. All rights reserved.

Inheriting from a Property Class

• Set the Subclass Information property.
• Convert an inherited property to a variant

property.
• Convert a variant property to an inherited

property.
• Convert a changed property to a default property.

Inherited Property
Variant Property
Default Property

Changed Property

Copyright © 2004, Oracle. All rights reserved.

What Are Object Groups?

Object groups:
• Are logical containers
• Enable you to:

– Group related objects
– Copy multiple objects in one operation

Copyright © 2004, Oracle. All rights reserved.

Creating and Using Object Groups

• Blocks include:
– Items
– Item-level triggers
– Block-level triggers
– Relations

• Object groups cannot include other object groups
• Deleting an object group does not affect the

objects
• Deleting an object affects the object group

Copyright © 2004, Oracle. All rights reserved.

Copying and Subclassing Objects and Code

Copyright © 2004, Oracle. All rights reserved.

Subclassing

Company Name:
Company Code:
Balance:

Company Name:
Company Code:

Balance:

Address:
Code:

Ability
to inherit
changes

Ability
to add to
child object

Ability
to alter
properties
of child
object

Company Name:
Company Code:

Balance:

Company Name:
Company Code:

Balance:

Copyright © 2004, Oracle. All rights reserved.

What Are Object Libraries?

An Object Library:
• Is a convenient container of objects for reuse
• Simplifies reuse in complex environments
• Supports corporate, project,

and personal standards
• Simplifies the sharing of

reusable components
• Is separate from the

form module

Copyright © 2004, Oracle. All rights reserved.

Benefits of the Object Library

• Simplifies the sharing and reuse of objects
• Provides control and enforcement of standards
• Promotes increased network performance
• Eliminates the need to maintain multiple

referenced forms

Copyright © 2004, Oracle. All rights reserved.

Working with Object Libraries

Object Libraries:
• Appear in the Navigator if

they are open
• Are used with a simple

tabbed interface
• Are populated by

dragging Form objects to
tab page

• Are saved to .olb file

Copyright © 2004, Oracle. All rights reserved.

What Is a SmartClass?

• A SmartClass:
– Is an object in an object

library that is frequently
used as a class

– Can be applied easily and
rapidly to existing objects

– Can be defined in many
object libraries

– Is the preferred method to
promote similarity among
objects for performance

• You can have many
SmartClasses of a given
object type.

Check indicates
a SmartClass

Check indicates
a SmartClass

Copyright © 2004, Oracle. All rights reserved.

Working with SmartClasses

1. Right-click an object in
the Layout Editor or
Navigator.

2. From the pop-up menu,
select SmartClasses.

3. Select a class from
the list.

Copyright © 2004, Oracle. All rights reserved.

Reusing PL/SQL

• Triggers:
– Copy and paste text
– Copy and paste within a module
– Copy to or subclass from another module
– Move to an object library

• PL/SQL program units:
– Copy and paste text
– Copy and paste within a module
– Copy to or subclass in another module
– Create a library module
– Move to an object library

Copyright © 2004, Oracle. All rights reserved.

What Are PL/SQL Libraries?

Applications

Form modules
Menu modules
Report modules

.pll file

Procedures

Functions

Packages

Library

Copyright © 2004, Oracle. All rights reserved.

Writing Code for Libraries

• A library is a separate module, holding
procedures, functions, and packages.

• Direct references to bind variables are not
allowed.

• Use subprogram parameters for passing bind
variables.

• Use functions, where appropriate,
to return values.

Copyright © 2004, Oracle. All rights reserved.

Creating Library Program Units

TEST

Copyright © 2004, Oracle. All rights reserved.

Attach Library Dialog Box

Copyright © 2004, Oracle. All rights reserved.

Calls and Searches

procedure ();

...function...

package.call ();
•Program Units

PROCA

PROCB

•Attached Libraries
•Database

Calls

Searches

Copyright © 2004, Oracle. All rights reserved.

Summary

In this lesson, you should have learned that:
• You can reuse objects or code in the following

ways:
– Property Classes
– Object Groups
– Copying and subclassing
– Object Libraries and SmartClasses

• To inherit properties from a property class, set an
item’s Subclass Information property.

• You can create an object group in one module to
make it easy to reuse related objects in other
modules.

Copyright © 2004, Oracle. All rights reserved.

Summary

• Inheritance symbols in the Property Palette show
whether the value is changed, inherited,
overridden, or the default.

• You can drag objects from an object library or
mark them as SmartClasses for even easier reuse.

• You can reuse PL/SQL code by:
– Copying and pasting in the PL/SQL Editor
– Copying or subclassing
– Defining program units to call the same code at

multiple places within a module
– Creating PL/SQL library to call the same code from

multiple forms

Copyright © 2004, Oracle. All rights reserved.

Practice 23 Overview

This practice covers the following topics:
• Creating an object group and using this object

group in a new form module
• Using property classes
• Creating an object library and using this object

library in a new form module
• Modifying an object in the object library and

observing the effect on subclassed objects
• Setting and using SmartClasses
• Creating a PL/SQL program unit to be called from

multiple triggers

Copyright © 2004, Oracle. All rights reserved.

Using WebUtil to Interact with the Client

Copyright © 2004, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to do
the following:
• Describe the benefits of the WebUtil utility
• Integrate WebUtil into a form
• Use WebUtil to interact with a client machine

Copyright © 2004, Oracle. All rights reserved.

WebUtil Overview

WebUtil is a utility that:
• Enables you to provide client-side functionality on

Win32 clients

• Consists of:
– Java classes
– Forms objects
– PL/SQL library

Forms
built-Ins

WebUtil
built-Ins

Copyright © 2004, Oracle. All rights reserved.

Benefits of the WebUtil Utility

Why use WebUtil?
• Developer has only to code in PL/SQL (no Java

knowledge required)
• Free download (part of Forms 10g in a patch set)
• Easy to integrate into a Forms application
• Extensible
• WebUtil provides:

– Client-server parity APIs
– Client-server added value functions
– Public functions
– Utility functions
– Internal functions

Copyright © 2004, Oracle. All rights reserved.

Integrating WebUtil into a Form

Library

Step 1:
Attach the

WEBUTIL library.

Copyright © 2004, Oracle. All rights reserved.

Integrating WebUtil into a Form

Object
Library

Object
group

Alert

Items

Canvas

Window

Step 2:
Subclass the

WEBUTIL object group.

Copyright © 2004, Oracle. All rights reserved.

When to Use WebUtil Functionality

Pre-Form
When-New-Form-Instance

When-New-Block-Instance
(first block)

Form starts
JavaBeans are instantiated

Any trigger after form starts
and while form is running

Copyright © 2004, Oracle. All rights reserved.

Interacting with the Client

Forms Built-Ins / Packages
HOST

GET_FILE_NAME

READ_IMAGE_FILE

WRITE_IMAGE_FILE

OLE2

TEXT_IO

TOOL_ENV

WebUtil Equivalents
CLIENT_HOST

CLIENT_GET_FILE_NAME

CLIENT_IMAGE.READ

(WRITE)_IMAGE_FILE

CLIENT_OLE2

CLIENT_TEXT_IO

CLIENT_TOOL_ENV

Copyright © 2004, Oracle. All rights reserved.

Example: Opening a File Dialog
on the Client

DECLARE

v_file VARCHAR2(250):= CLIENT_GET_FILE_NAME('','',
'Gif Files|*.gif|JPEG Files|*.jpg|',
'Select a photo to upload',open_file,TRUE);

Copyright © 2004, Oracle. All rights reserved.

Example: Reading an Image File into
Forms from the Client

DECLARE

v_file VARCHAR2(250):= CLIENT_GET_FILE_NAME('','',
'Gif Files|*.gif|JPEG Files|*.jpg|',
'Select a photo to upload',open_file,TRUE);

it_image_id ITEM := FIND_ITEM
('employee_photos.photo');

BEGIN

CLIENT_IMAGE.READ_IMAGE_FILE(v_file,'',it_image_id);

END;

Copyright © 2004, Oracle. All rights reserved.

Example: Writing Text Files
on the Client

DECLARE

v_dir VARCHAR2(250) := 'c:\temp';

ft_tempfile CLIENT_TEXT_IO.FILE_TYPE;

begin

ft_tempfile := CLIENT_TEXT_IO.FOPEN(v_dir ||

'\tempdir.bat','w');

CLIENT_TEXT_IO.PUT_LINE(ft_tempfile,'dir ' ||

v_dir || '> '|| v_dir || '\mydir.txt');

CLIENT_TEXT_IO.PUT_LINE(ft_tempfile,

'notepad ' || v_dir || '\mydir.txt');

CLIENT_TEXT_IO.PUT_LINE(ft_tempfile,'del '||
v_dir || '\mydir.*');

CLIENT_TEXT_IO.FCLOSE(ft_tempfile);

CLIENT_HOST('cmd /c ' || v_dir || '\tempdir');

END;

1

2

4

3

Copyright © 2004, Oracle. All rights reserved.

DECLARE

v_dir VARCHAR2(250) := 'c:\temp';

ft_tempfile CLIENT_TEXT_IO.FILE_TYPE;

begin

ft_tempfile := CLIENT_TEXT_IO.FOPEN(v_dir ||

'\tempdir.bat','w');

CLIENT_TEXT_IO.PUT_LINE(ft_tempfile,'dir ' ||

v_dir || '> '|| v_dir || '\mydir.txt');

CLIENT_TEXT_IO.PUT_LINE(ft_tempfile,

'notepad ' || v_dir || '\mydir.txt');

CLIENT_TEXT_IO.PUT_LINE(ft_tempfile,'del '||
v_dir || '\mydir.*');

CLIENT_TEXT_IO.FCLOSE(ft_tempfile);

CLIENT_HOST('cmd /c ' || v_dir || '\tempdir');

END;

Example: Executing Operating System
Commands on the Client

Copyright © 2004, Oracle. All rights reserved.

Example: Performing OLE Automation
on the Client

CLIENT_OLE2.OBJ_TYPE

CLIENT_OLE2.LIST_TYPE

CLIENT_OLE2.CREATE_OBJ

CLIENT_OLE2.SET
_PROPERTY

CLIENT_OLE2.GET_OBJ
_PROPERTY

CLIENT_OLE2.INVOKE_OBJ

CLIENT_OLE2.CREATE
_ARGLIST

CLIENT_OLE2.ADD_ARG

CLIENT_OLE2.INVOKE

CLIENT_OLE2.DESTROY
_ARGLIST

CLIENT_OLE2.RELEASE_OBJ

You can use the following for OLE automation:

Copyright © 2004, Oracle. All rights reserved.

Example: Obtaining Environment
Information about the Client

CLIENT_TOOL_ENV.GETVAR(:control.env_var,

:control.env_value);

Copyright © 2004, Oracle. All rights reserved.

Summary

In this lesson, you should have learned that:
• WebUtil is a free extensible utility that enables you

to interact with the client machine
• Although WebUtil uses Java classes, you code in

PL/SQL
• You integrate WebUtil into a form by attaching its

PL/SQL library and using an object group from its
object library; then you can use its functions after
the form has started and while it is running

• With WebUtil, you can do the following on the
client machine: open a file dialog box, read and
write image or text files, execute operating system
commands, perform OLE automation, and obtain
information about the client machine

Copyright © 2004, Oracle. All rights reserved.

Practice 24 Overview

This practice covers the following topics:
• Integrating WebUtil with a form
• Using WebUtil functions to:

– Open a file dialog box on the client
– Read an image file from the client into the form
– Obtain the value of a client environment variable
– Create a file on the client
– Open the file on the client with Notepad
– Use OLE automation to create a form letter on the

client

Copyright © 2004, Oracle. All rights reserved.

Introducing Multiple Form Applications

Copyright © 2004, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to do
the following:
• Call one form from another form module
• Define multiple form functionality
• Share data among open forms

Copyright © 2004, Oracle. All rights reserved.

Multiple Form Applications Overview

• Behavior:
– Flexible navigation between windows
– Single or multiple database connections
– Transactions may span forms, if required
– Commits in order of opening forms, starting with

current form
• Links:

– Data is exchanged by global variables, parameter
lists, global record groups, or PL/SQL variables in
shared libraries

– Code is shared as required, through libraries and
the database

Copyright © 2004, Oracle. All rights reserved.

Multiple Form Session

Form A

Forms
Runtime

Global variables
Global record groups

PL/SQL variables

Form B
Open

Form C

Open

Form D

Open

(Parameters)

(Parameters)

(Parameters)

Copyright © 2004, Oracle. All rights reserved.

Benefits of Multiple Form Applications

Breaking your application into multiple forms offers
the following advantages:
• Easier debugging
• Modularity
• Performance and scalability

Module broken
into subsets based
on user navigation

Path 1
(Module 1)

Path 2
(Module 2)

Copyright © 2004, Oracle. All rights reserved.

Starting Another Form Module

MDI

FORM A

MDI

FORM A

Modeless

FORM B
OPEN_FORM

OPEN_FORM

Copyright © 2004, Oracle. All rights reserved.

Defining Multiple Form Functionality

Summit application scenario:
• Run the CUSTOMERS and ORDERS forms in the

same session, navigating freely between them.
• You can

make
changes in
the same
transaction
across forms.

• All forms are
visible
together.

Copyright © 2004, Oracle. All rights reserved.

Defining Multiple Form Functionality

Actions:
1. Define windows and positions for each form.
2. Plan shared data, such as global variables and

their names.
3. Implement triggers to:

– Open other forms
– Initialize shared data from calling forms
– Use shared data in opened forms

Copyright © 2004, Oracle. All rights reserved.

Conditional Opening

Example

IF ID_NULL(FIND_FORM(’ORDERS’)) THEN

OPEN_FORM(’ORDERS’);

ELSE

GO_FORM(’ORDERS’);

END IF;

Copyright © 2004, Oracle. All rights reserved.

Closing the Session

“Will the last one out please turn off the lights?”

Form A

Form B

Run-time
session

Form C

Copyright © 2004, Oracle. All rights reserved.

Closing a Form with EXIT_FORM

• The default functionality is the same as for the
Exit key.

• The Commit_Mode argument defines action on
uncommitted changes.

ENTER;

IF :SYSTEM.FORM_STATUS = ’CHANGED’ THEN

EXIT_FORM(DO_COMMIT);

ELSE

EXIT_FORM(NO_COMMIT);

END IF;

Copyright © 2004, Oracle. All rights reserved.

Other Useful Triggers

Maintain referential links and synchronize data
between forms:
• In the parent form:

– When-Validate-Item

– When-New-Record-Instance

• In opened forms: When-Create-Record
• In any form: When-Form-Navigate

Copyright © 2004, Oracle. All rights reserved.

Sharing Data Among Modules

You can pass data between modules using:
• Global variables
• Parameter lists
• Global record groups
• PL/SQL package variables in shared libraries

Copyright © 2004, Oracle. All rights reserved.

Linking by Global Variables

ORDERS

Customer_ID
Order

CUSTOMERS

Customer

ID

GLOBAL.CUSTOMERID

Copyright © 2004, Oracle. All rights reserved.

Global Variables: Opening Another Form

Example

Notes
• Control passes immediately to the ORDERS form—

no statements after OPEN_FORM are processed.
• If the Activate_Mode argument is set to

NO_ACTIVATE, you retain control in the current
form.

• The transaction continues unless it was explicitly
committed before.

:GLOBAL.customerid := :CUSTOMERS.customer_id;

OPEN_FORM(’ORDERS’);

Copyright © 2004, Oracle. All rights reserved.

Global Variables: Restricted Query
at Startup

Execute_Query;

:ORDERS.customer_id := :GLOBAL.customerid;

When-New-Form-Instance

Pre-Query

Copyright © 2004, Oracle. All rights reserved.

Assigning Global Variables
in the Opened Form

• DEFAULT_VALUE ensures the existence of globals.
• You can use globals to communicate that the form

is running.

DEFAULT_VALUE(’’, ’GLOBAL.customerid’);

Pre-Form example:

Copyright © 2004, Oracle. All rights reserved.

http://myhost:8889/forms90/f90servlet
?form=emp.fmx&otherparams=deptno=140

Linking by Parameter Lists

Parameters:
• Are form module objects
• Properties:

– Name
– Parameter Data Type
– Maximum Length
– Parameter Initial Value

• Can optionally receive a new value:

EMP_FORM

Copyright © 2004, Oracle. All rights reserved.

Example:
DECLARE

pl_id ParamList;

pl_name VARCHAR2(10) := 'tempdata';

BEGIN

pl_id := GET_PARAMETER_LIST(pl_name);

IF ID_NULL(pl_id) THEN

pl_id := CREATE_PARAMETER_LIST(pl_name);

ELSE

DELETE_PARAMETER(pl_id,'deptno');

END IF;

ADD_PARAMETER(pl_id,'deptno',TEXT_PARAMETER,
to_char(:departments.department_id));

OPEN_FORM('called_param',ACTIVATE,NO_SESSION,pl_id);

END;

Linking by Parameter Lists

1

2
3

Copyright © 2004, Oracle. All rights reserved.

Linking by Parameter Lists

Example:
Called form

Create parameter
in the form

IF :parameter.deptno IS NOT NULL THEN
SET_BLOCK_PROPERTY('employees',

DEFAULT_WHERE,'department_id =
'||:parameter.deptno);

SET_WINDOW_PROPERTY('window1',
TITLE,'Employees in Department ‘
||:parameter.deptno);

END IF;
GO_BLOCK('employees');
EXECUTE_QUERY;

Use parameter name
preceded by :parameter

When-New-Form-Instance Trigger

Copyright © 2004, Oracle. All rights reserved.

Linking by Global Record Groups

1. Create record group with global scope:
DECLARE

rg_name VARCHAR2(40) := 'LIST';
rg_id RecordGroup;
Error_Flag NUMBER;

BEGIN
rg_id := FIND_GROUP(rg_name);
IF ID_NULL(rg_id) THEN
rg_id := CREATE_GROUP_FROM_QUERY('LIST',
'Select last_name, to_char(employee_id)
from employees',GLOBAL_SCOPE);

END IF;

2. Populate record group:
Error_Flag := POPULATE_GROUP(rg_id);

3. Use record group in any form.

Copyright © 2004, Oracle. All rights reserved.

Linking by Shared PL/SQL Variables

Advantages:
• Use less memory than global variables
• Can be of any data type

To use:
1. Create a PL/SQL library.
2. Create a package specification with variables.
3. Attach the library to multiple forms.
4. Set variable values in calling form.
5. OPEN_FORM with SHARE_LIBRARY_DATA option.
6. Use variables in opened form.

Copyright © 2004, Oracle. All rights reserved.

Linking by Shared PL/SQL Variables

OPEN_FORM(‘called_lib’,ACTIVATE,
NO_SESSION,SHARE_LIBRARY_DATA);

Copyright © 2004, Oracle. All rights reserved.

Summary

In this lesson, you should have learned that:
• OPEN_FORM is the primary method to call one form

from another form module
• You define multiple form functionality such as:

– Whether all forms run in the same session
– Where the windows appear
– Whether multiple forms should be open at once
– Whether users should be able to navigate among

open forms
– How data will be shared among forms

Copyright © 2004, Oracle. All rights reserved.

Summary

• You can share data among open forms with:
– Global variables, which span sessions
– Parameter lists, for passing values between specific

forms
– Record groups created in one form with global

scope
– PL/SQL variables in shared libraries

Copyright © 2004, Oracle. All rights reserved.

Practice 25 Overview

This practice covers the following topics:
• Using a global variable to link ORDERS and

CUSTOMERS forms
• Using built-ins to check whether the ORDERS form

is running
• Using global variables to restrict a query in the

ORDERS form

Copyright © 2004, Oracle. All rights reserved.

Introduction to Query Builder

Copyright © 2004, Oracle. All rights reserved.

Query Builder Features

• Easy-to-use data access tool
• Point-and-click graphical user interface
• Distributed data access
• Powerful query building

Copyright © 2004, Oracle. All rights reserved.

Query Builder Features

• Easy-to-use data access tool
• Point-and-click graphical user interface
• Distributed data access
• Powerful query building

Copyright © 2004, Oracle. All rights reserved.

Query Builder Window

2 3

1

Copyright © 2004, Oracle. All rights reserved.

Building a New Query

Copyright © 2004, Oracle. All rights reserved.

Datasource Components

Datasource
name

Object
type

Column
datatype

Recursive
relationship

Comment

Primary Key

Column name

Foreign Key

Copyright © 2004, Oracle. All rights reserved.

Refining a Query

Copyright © 2004, Oracle. All rights reserved.

Sorting Data

Copyright © 2004, Oracle. All rights reserved.

Viewing and Saving Queries

Copyright © 2004, Oracle. All rights reserved.

Including Additional Tables

Copyright © 2004, Oracle. All rights reserved.

Viewing Comments

Copyright © 2004, Oracle. All rights reserved.

Including Related Tables

Copyright © 2004, Oracle. All rights reserved.

Creating a User-Defined Relationship

Copyright © 2004, Oracle. All rights reserved.

Unmatched Rows

Copyright © 2004, Oracle. All rights reserved.

Conditions

Copyright © 2004, Oracle. All rights reserved.

Operators

Arithmetic
• Perform calculations on numeric and date

columns
• Examples: +, -, x, /

Logical
• Combine conditions
• Examples: AND, OR, NOT

Comparison
• Compare one expression with another
• Examples: =, <>, <, IN, IS NULL,

BETWEEN ... AND

Copyright © 2004, Oracle. All rights reserved.

Multiple Conditions

Copyright © 2004, Oracle. All rights reserved.

Deactivating a Condition

Copyright © 2004, Oracle. All rights reserved.

Defining Columns Using an Expression

Copyright © 2004, Oracle. All rights reserved.

Defining Columns Using a Function

Copyright © 2004, Oracle. All rights reserved.

Locking in Forms

Copyright © 2004, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to do
the following:
• Identify the locking mechanisms in Forms
• Write triggers to invoke or intercept the locking

process
• Plan trigger code to minimize overheads

on locking

Copyright © 2004, Oracle. All rights reserved.

Locking

Table in (RX)

Row in (X)

Row in (X)

Insert, update, or delete

Insert, update, or delete

Query

Copyright © 2004, Oracle. All rights reserved.

Default Locking in Forms

Insert record

Update record

Delete record

SaveAction

No locks

RS on table

RS on table

RX on above

Copyright © 2004, Oracle. All rights reserved.

Concurrent Updates and Deletes

• When users compete for the same record, normal
locking protection applies.

• Forms tells the operator if another user has
already locked the record.

Copyright © 2004, Oracle. All rights reserved.

User A: Step 1

Copyright © 2004, Oracle. All rights reserved.

User B: Step 2

Copyright © 2004, Oracle. All rights reserved.

User A: Step 3

Copyright © 2004, Oracle. All rights reserved.

User B: Step 4

Copyright © 2004, Oracle. All rights reserved.

Locking in Triggers

Achieved by:
• SQL data manipulation language
• SQL explicit locking statements
• Built-in subprograms
• DML statements

Copyright © 2004, Oracle. All rights reserved.

Locking with Built-Ins

• ENTER_QUERY (FOR_UPDATE)
• EXECUTE_QUERY (FOR_UPDATE)

Copyright © 2004, Oracle. All rights reserved.

On-Lock Trigger

Example

IF USER = 'MANAGER' THEN

LOCK_RECORD;

ELSE

MESSAGE('You are not authorized to change

records here');

RAISE form_trigger_failure;

END IF;

Copyright © 2004, Oracle. All rights reserved.

Summary

• Default locking
– Locks rows during update and delete
– Informs user of concurrent update and delete

• Locking in triggers
– Use SQL and certain built-ins
– On-Lock trigger: LOCK_RECORD built-in available

Copyright © 2004, Oracle. All rights reserved.

Oracle Object Features

Copyright © 2004, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to do
the following:
• Describe the Oracle scalar datatypes
• Describe object types and objects
• Describe object tables, object columns, and object

views
• Describe the INSTEAD-OF triggers
• Describe object REFs
• Identify the display of objects in the Object

Navigator

Copyright © 2004, Oracle. All rights reserved.

Oracle Scalar Datatypes

• Automatically converted:
– FLOAT
– NLS types

NCHAR
NVARCHAR2

• Unsupported:
– Timestamp
– Interval

Copyright © 2004, Oracle. All rights reserved.

Object Types

Attributes

po_no
custinfo

line_items
amount

Methods

Ship

Cancel

Hold

Check status

ORDER

Copyright © 2004, Oracle. All rights reserved.

Object Tables

Object table based on object type

Copyright © 2004, Oracle. All rights reserved.

Object Columns

Object column based on object type

Copyright © 2004, Oracle. All rights reserved.

Object Views

Object views based on object types

Object
view

Object-oriented
application

Relational
table

Copyright © 2004, Oracle. All rights reserved.

INSTEAD-OF Triggers

INSTEAD-OF
Trigger

Nonupdatable
view

DECLARE

BEGIN

EXCEPTION

END;

Copyright © 2004, Oracle. All rights reserved.

References to Objects

OID

REF

Copyright © 2004, Oracle. All rights reserved.

Object Types in Object Navigator

Copyright © 2004, Oracle. All rights reserved.

Object Type Wizard

Copyright © 2004, Oracle. All rights reserved.

Object Tables and Columns
in Object Navigator

Copyright © 2004, Oracle. All rights reserved.

Object Views in Object Navigator

Copyright © 2004, Oracle. All rights reserved.

INSTEAD-OF Trigger Dialog Box

Copyright © 2004, Oracle. All rights reserved.

Object REFs in Object Navigator

Copyright © 2004, Oracle. All rights reserved.

Summary

• Oracle8 introduced three scalar datatypes.
• Objects and object types allow representation of

complex data.
• Three kinds of objects are object tables, object

columns, and object views.

Copyright © 2004, Oracle. All rights reserved.

Summary

• INSTEAD-OF triggers allow DML on object views.
• Object REFs store the object identifier of certain

types of objects.
• The Object Navigator can display certain types of

objects.

Copyright © 2004, Oracle. All rights reserved.

Using the Layout Editor

Copyright © 2004, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to do
the following:
• Control the position and size of objects in a layout
• Add lines and geometric shapes
• Define the colors and fonts used for text
• Color the body and boundaries of objects
• Import images onto the layout

Copyright © 2004, Oracle. All rights reserved.

Using the Layout Editor

Common features:
• Moving and resizing objects and text
• Defining colors and fonts
• Importing and manipulating images and drawings
• Creating geometric lines and shapes
• Layout surface: Forms canvas view

Copyright © 2004, Oracle. All rights reserved.

Invoking the Layout Editor

Copyright © 2004, Oracle. All rights reserved.

Layout Editor: Components

1

Copyright © 2004, Oracle. All rights reserved.

Layout Editor: Components

2

5

3

4

6

9

8 7

Copyright © 2004, Oracle. All rights reserved.

Tool Palette

1

2

3

5

6

7

8

9

10

11

12

13

4

Copyright © 2004, Oracle. All rights reserved.

Selecting Objects

Copyright © 2004, Oracle. All rights reserved.

Manipulating Objects

Expand/contract
in one direction

Expand/contract
diagonally

Copyright © 2004, Oracle. All rights reserved.

Moving, Aligning, and Overlapping

Copyright © 2004, Oracle. All rights reserved.

Groups in the Layout

• Groups allow several objects to be repeatedly
treated as one.

• Groups can be colored, moved, or resized.
• Tool-specific operations exist for groups.
• Groups have a single set of selection handles.
• Members can be added or removed.

Copyright © 2004, Oracle. All rights reserved.

Edit and Layout Menus

Copyright © 2004, Oracle. All rights reserved.

Color and Pattern Tools

2
3

1

4

Copyright © 2004, Oracle. All rights reserved.

Importing Images

Copyright © 2004, Oracle. All rights reserved.

Summary

• You can create objects by:
– Choosing a palette tool
– Clicking and dragging on a layout region

• There are color palette tools for fill area, lines, and
text.

• View, Edit, and Layout menus display additional
options for layout.

• Objects can be grouped for operations.
• You can import images by using Edit > Import.

	Cover Page
	01 Introduction to Oracle Forms Developer and Oracle Forms Services
	02 Running a Forms Developer Application
	03 Working in the Forms Developer Environment
	04 Creating a Basic Form Module
	05 Creating a Master-Detail Form
	06 Working with Data Blocks and Frames
	07 Working with Text Items
	08 Creating LOVs and Editors
	09 Creating Additional Input Items
	10 Creating Noninput Items
	11 Creating Windows and Content Canvases
	12 Working with Other Canvas Types
	13 Introduction to Triggers
	14 Producing Triggers
	15 Debugging Triggers
	16 Adding Functionality to Items
	17 Run Time Messages and Alerts
	18 Query Triggers
	19 Validation
	20 Navigation
	21 Transaction Processing
	22 Writing Flexible Code
	23 Sharing Objects and Code
	24 Using WebUtil to Interact with the Client
	25 Introducing Multiple Form Applications
	Appendix C: Introduction to Query Builder
	Appendix D: Locking in Forms
	Appendix E: Oracle Object Features
	Appendix F: Using the Layout Editor

