
 

 
 

 
 

Oracle Fusion Middleware 12c  

Integrating Oracle Reports with Oracle Forms 

O R A C L E  W H I T E  P A P E R   |   M A Y  2 0 1 6  

 



 
 

 

 

1  |  INTEGRATING ORACLE REPORTS 12C WITH ORACLE FORMS 12C 

Table of Contents  

Introduction 2 

Oracle Forms 2 

Oracle Reports 3 

The Oracle Forms RUN_REPORT_OBJECT Built-in 3 

How to use RUN_REPORT_OBJECT 4 

RUN_REPORT_OBJECT Examples 4 

Using a Parameter List with RUN_REPORT_OBJECT 7 

Calling Reports that Display a Parameter Form 8 

Solving the Problem with “PFACTION” 8 

Using PL/SQL Functions to Encode URL Parameters 9 

Building a Procedure to Call Reports with Parameter Forms 10 

Examples of How to Call the Generic Procedure 13 

The Oracle Forms WEB.SHOW_DOCUMENT Built-in 14 

WEB.SHOW_DOCUMENT Syntax 14 

Calling Reports using WEB.SHOW_DOCUMENT 15 

Hiding the Username and Password 16 

Conclusion 17 

 

 

 

 



 

 

 

2  |   INTEGRATING ORACLE REPORTS 12C WITH ORACLE FORMS 12C 

Introduction 

This paper discusses how to integrate Oracle Reports with Oracle Forms.  After reading this 

whitepaper you will: 

» Understand how to use the Oracle Forms RUN_REPORT_OBJECT built-in. 

» Understand how a report is requested from an Oracle Forms application. 

» Understand how to retrieve a completed report from Oracle Forms. 

» Understand how to call reports which include a Reports parameter form. 

» Understand how to call Oracle Reports from Oracle Forms when single sign-on (SSO) is enabled. 

 

This document is intended for individuals with a working knowledge of how to write Oracle Forms 

application code and understand the basic functionality in Oracle Forms and Reports on the middle 

tier.  Some understanding of HTTP Server and WebLogic Server functionality will also be helpful.  The 

sample code found within this document is provided for illustration and educational purposes only.  

This code should not be used in production applications without first performing thorough and 

complete testing prior to use. 

Oracle Forms 

Oracle Forms consists of two high level components:  the Oracle Forms Developer design-time component (aka the 

Form Builder) and Oracle Fusion Middleware – Forms Services deployment (aka Forms Runtime) component.  For 

the purpose of this document, we will only be discussing those features and built-ins that are necessary to call a 

report from an Oracle Forms application. 

There are two Oracle Forms built-ins which are supported for calling Oracle Reports from Oracle Forms: 

 

» RUN_REPORT_OBJECT 

» WEB.SHOW_DOCUMENT 

 

These built-ins are explained in more detail within the Oracle Forms Builder Online help.  An explanation of how 

these will be used to call Oracle Reports will be explained later in this paper.  More information about deploying 

Oracle Forms can be found in the “Oracle Forms Deployment Guide”, which is included in the Fusion Middleware 

12c documentation library on the Oracle Technology Network (OTN).   

If your application is being migrated from an earlier version of Oracle Forms, specifically version 6.x or older and the 

built-in RUN_PRODUCT was used for Oracle Forms and Oracle Reports integration and you are not able or willing 

to rewrite your code to use RUN_REPORT_OBJECT, please refer to the documentation which discusses how to 

use the Forms Migration Assistant (FMA).  This information can be found in the Fusion Middleware documentation 

library in the document titled, “Oracle Forms Upgrading Oracle Forms 6i to Oracle Forms 12c”.  

http://www.oracle.com/technetwork/middleware/docs/middleware-093940.html


 

 

 

3  |   INTEGRATING ORACLE REPORTS 12C WITH ORACLE FORMS 12C 

Oracle Reports 

Like Oracle Forms, Oracle Reports consists of a primary design-time tool commonly referred to as the Oracle 

Reports Builder and the Oracle Fusion Middleware – Reports Server component for deployment.  The deployment 

component within Fusion Middleware is referred to as Oracle Reports Services or Server.  Throughout this paper, 

the terms Reports Services and Reports Server are used interchangeably for the same component(s). 

 

More information about deploying Oracle Reports can be found in the Oracle Reports deployment guide, titled “Publishing Reports with Oracle Reports 

Services” which is included in the Fusion Middleware 12c documentation library on OTN. 

The Oracle Forms RUN_REPORT_OBJECT Built-in 

The most secure approach for calling Oracle Reports from Oracle Forms is to use the RUN_REPORT_OBJECT 

built-in.  Because the user’s database connection is implicitly passed from Oracle Forms to Oracle Reports on the 

middle tier server, there is no risk of interception as when passed such information in a URL.   

Before Oracle Forms can make calls to Oracle Reports, it will be necessary to set a new environment variable in the 

Forms environment settings file (e.g. default.env).  Set COMPONENT_CONFIG_PATH to the fully qualified path of 

the Reports Tools Component.  For example: 

COMPONENT_CONFIG_PATH=DOMAINHOME/config/fmwconfig/components/ReportsToolsComponent/<reports_tools_component_name>  

In Oracle Forms Builder, to use the RUN_REPORT_OBJECT built-in, you will need to create a new Reports object 

under the “Reports” node in the Object Navigator. Each Reports object has a logical name, which is used within 

Forms to call the report from PL/SQL. You can optionally create a new Reports object for each physical Reports file. 

One Reports object can also be used with many physical Reports files.  The attributes of this object can be set in the 

Builder’s Property Palette at design-time or can be set programmatically at runtime. 

 
 

Figure 1:  Oracle Forms Object Navigator and Property Palette.  Note that the “Reports” node includes the objects “MYREPORT1”, “REPTEST”, and 

“RP2RRO”.  The physical Oracle Reports file referenced by the “MYREPORT1” object is defined as “reptest.rdf”.  The Oracle Reports runtime settings 

below the “Reports” node in the Property Palette can be overwritten at runtime using SET_REPORT_OBJECT_PROPERTY. 

 



 

 

 

4  |   INTEGRATING ORACLE REPORTS 12C WITH ORACLE FORMS 12C 

How to use RUN_REPORT_OBJECT 

To access a remote Reports Server using RUN_REPORT_OBJECT, Oracle Reports Services must be accessible 

for the Report object in Oracle Forms. You can do this dynamically, using the 

SET_REPORT_OBJECT_PROPERTY built-in, or statically, by entering the Oracle Reports Server name string into 

the Property Palette of the Report object. 

It is also important to note that Oracle Forms Services and Oracle Reports Services must reside within the same 

network subnet in order to work properly.  If they are not, either the Oracle Reports Naming Service or Oracle 

Reports Bridge can be used to overcome this particular configuration limitation.  Refer to the “Publishing Reports 

with Oracle Reports Services” document previously mentioned for more information about using the Reports Naming 

Service or a Bridge. 

 

RUN_REPORT_OBJECT Examples 

Example 1 

The following example runs a report using the Oracle Forms built-in RUN_REPORT_OBJECT.  Note that at this 

point we are only requesting that a report be run.  The data retrieved (i.e. report output) will not be returned to the 

end-user at this point.  This may be desirable in some cases.  If so, set the DESTYPE to “FILE” in order to 

permanently store the file on the server for later use. 

In this example, the Reports object name is “MyReport1”. A user defined Reports parameter, “p_deptno”, is passed 

using the value of the “dept.deptno” field. The parameter form is suppressed using “paramform=no”. 

 

DECLARE 

report_id Report_Object; 

ReportServerJob VARCHAR2(254); 

BEGIN 

report_id := find_report_object(‘MyReport1’); 

SET_REPORT_OBJECT_PROPERTY(report_id,REPORT_COMM_MODE,SYNCHRONOUS); 

SET_REPORT_OBJECT_PROPERTY(report_id,REPORT_DESTYPE,CACHE); 

SET_REPORT_OBJECT_PROPERTY(report_id, REPORT_DESFORMAT, ‘PDF’); 

SET_REPORT_OBJECT_PROPERTY(report_id,REPORT_SERVER,’Repsrv’); 

SET_REPORT_OBJECT_PROPERTY(report_id,REPORT_OTHER,’p_deptno=‘||:Dept.Deptno||’ paramform=no’); 

ReportServerJob := run_report_object(report_id); 

END; 
 

Figure 2:  General use of RUN_REPORT_OBJECT 

 

Example 2 

The following example uses a synchronous call to RUN_REPORT_OBJECT to run a report. It expects the Reports 

object name, the Reports Server name, and the desired output format (PDF, HTML, HTMLCSS, etc) to be passed 

as parameters.  It will also attempt to verify that the report was successfully generated, and then display the results 

to the end user in a browser.  The use of a procedure such as this is recommended in cases where the application is 

likely to call out to Reports from various places within the application. 



 

 

 

5  |   INTEGRATING ORACLE REPORTS 12C WITH ORACLE FORMS 12C 

Figure 3: Using RUN_REPORT_OBJECT for integrating calls to Oracle Reports 

 

 

 

 

 

 

PROCEDURE RUN_REPORT_OBJECT_PROC (vc_reportoj Varchar2, vc_reportserver varchar2, vc_runformat varchar2) IS 

 v_report_id Report_Object; 

 vc_ReportServerJob VARCHAR2(100); /* unique id for each Report request */ 

 vc_rep_status VARCHAR2(100); /* status of the Report job */ 

 vjob_id VARCHAR2(100); /* job_id as number only string*/ 

BEGIN 

/* Get a handle to the Report Object  */ 

 v_report_id:= FIND_REPORT_OBJECT(vc_reportoj); 

 

/* Define the report output format and the name of the Reports Server as well as a user-defined parameter.  

Pass the department number from Forms to Reports.  There is no need for a parameter form to be displayed, 

so paramform is set to “no”.*/ 

 

 SET_REPORT_OBJECT_PROPERTY(v_report_id,REPORT_DESFORMAT,vc_runformat); 

 SET_REPORT_OBJECT_PROPERTY(v_report_id,REPORT_DESTYPE,CACHE); 

 SET_REPORT_OBJECT_PROPERTY(v_report_id,REPORT_COMM_MODE,SYNCHRONOUS); 

 SET_REPORT_OBJECT_PROPERTY(v_report_id,REPORT_SERVER,vc_reportserver); 

 SET_REPORT_OBJECT_PROPERTY(v_report_id,REPORT_OTHER,’p_deptno=‘||:dept.deptno||’paramform=no’); 

 

 vc_ReportServerJob:=RUN_REPORT_OBJECT(v_report_id); 

 vjob_id :=  substr(vc_ReportServerJob,instr(vc_ReportServerJob,’_’,-1)+1); 

 

/* Check the report  status.  Because this was a synchronous call ( REPORT_COMM_MODE),  

the status check will only return FINSIHED or an error.  If COMM_MODE is set to “asynchronous”, a timer  

should be used to periodically change the status of the running report before attempting to display it.  */ 

 vc_rep_status := REPORT_OBJECT_STATUS(vc_ReportServerJob); 

 IF vc_rep_status = ‘FINISHED’ THEN 

 

/* Call the Reports output to be displayed in the browser.  The URL for relative addressing is valid  

only when the Reports Server resides on the same host as the Forms Server and is accessed via the same port.  

For accessing a remote Reports environment, you must use a fully qualified URL (i.e.  http://hostname:port ) */ 

 

  WEB.SHOW_DOCUMENT (‘/reports/rwservlet/getjobid’|| vjob_id ||’?server=’||vc_reportserver,’_blank’); 

 ELSE 

  message (‘Report failed with error message ‘||vc_rep_status); 

 END IF; 

END; 



 

 

 

6  |   INTEGRATING ORACLE REPORTS 12C WITH ORACLE FORMS 12C 

If you are upgrading from Oracle Forms or Oracle Reports 6i, when calling WEB.SHOW_DOCUMENT you will need 

to modify the Reports job_ID that is retrieved by the RUN_REPORT_OBJECT built-in so that the Reports Server 

name is not included. 

To use the procedure described above, you would pass the following information in a “When-Button-Pressed” trigger 

or other appropriate trigger: 

RUN_REPORT_OBJECT_PROC (<‘REPORT_OBJECT’’>, <‘REPORT_SERVER_NAME’>‘, <‘FORMAT’>) 

 

REPORT_OBJECT   Forms Report object name containing the rdf filename for the Report 

REPORT_SERVER_NAME Name of the Reports Server 

FORMAT   Any of these formats:  html | html | css | pdf | xml | delimited | rtf   
 

Figure 4:  Parameters needed to use RUN_REPORT_OBJECT_PROC 

 

A synchronous call to Reports will cause the user to wait while the report is processed on the server. 

For long-running Reports, it is best that the report be run asynchronously by setting the REPORT_COMM_MODE 

property to asynchronous and the REPORT_EXECUTION_ MODE to batch.  For example: 

SET_REPORT_OBJECT_PROPERTY(report_id,REPORT_EXECUTION_MODE,BATCH); 

SET_REPORT_OBJECT_PROPERTY(report_id,REPORT_COMM_MODE,ASYNCHRONOUS); 

 

After calling RUN_REPORT_OBJECT, you must create a timer to run periodic checks on the current 

REPORT_OBJECT_STATUS in a When-Timer-Expired trigger. After the report is generated, the “When-Timer-

Expired” trigger calls the WEB.SHOW_DOCUMENT built-in to display the Reports output file, identified by its unique 

job_ID, to the client’s browser. 

Here is an example of how the report status can be checked from the When-Timer-Expired trigger: 

 

(...) 

/* :global.vc_ReportServerJob needs to be global because the information about the Report job_id is shared  

between the trigger code that starts the report and the trigger code When-Timer-Expired that checks the Report  status. */ 

 

 vc_rep_status:= REPORT_OBJECT_STATUS(:global.vc_ReportServerJob); 

 IF vc_rep_status=’FINISHED’ THEN 

  vjob_id := 

  substr(:global.vc_ReportServerJob,length(reportserver)+2,length(:global.vc_ReportServerJob)); 

  WEB.SHOW_DOCUMENT (‘/reports/rwservlet/getjobid’||:vjob_id||'?server=’||vc_reportserver,'_blank'); 

 DELETE_TIMER (timer_id);  -- Report done.  No need to check any more. 

 ELSIF vc_rep_status not in (‘RUNNING’,’OPENING_REPORT’,’ENQUEUED’) THEN 

  message (vc_rep_status||’ Report output aborted’); 

 DELETE_TIMER (timer_id);  -- Report failed.  No need to check any more. 

 END IF; 

(...) 
 

Figure 5:  Performing asynchronous call to Reports and checking its status from When-Timer-Expired 

 

 



 

 

 

7  |   INTEGRATING ORACLE REPORTS 12C WITH ORACLE FORMS 12C 

Using a Parameter List with RUN_REPORT_OBJECT 

With the RUN_PRODUCT1 built-in (no longer supported for use in Oracle Forms), Reports system parameters and 

user-defined parameters are passed in a parameter list. The same parameter lists can be used with 

RUN_REPORT_OBJECT, with the exception of the system parameters, which need to be set with the 

SET_REPORT_OBJECT_PROPERTY built-in.   

 

REPORT_EXECUTION_MODE   BATCH or RUNTIME
2
 

REPORT_COMM_MODE   SYNCHRONOUS | ASYNCHRONOUS 

REPORT_DESTYPE    FILE | PRINTER | MAIL | CACHE
3
 

REPORT_DESFORMAT   HTML | HTMLCSS | PDF | RTF | XML | DELIMITED | SPREADSHEET
3
 

REPORT_FILENAME    The report filename 

REPORT_DESNAME    The report destination name 

REPORT_SERVER    The Report Server name 

 

Figure 6:  List of system parameters used by RUN_REPORT_OBJECT.   

 

If your existing parameter list already contains definitions for system parameters, you may experience errors. To 

prevent such problems from occurring, modify the parameter list itself, either by removing the entries for DESNAME 

and DESTYPE, or by adding 

DELETE_PARAMETER (<parameter list>,’<name>‘); 

 

to your code before using SET_REPORT_OBJECT_PROPERTY.  The syntax for using parameter lists in 

RUN_REPORT_OBJECT is as follows: 

ReportServerJob := RUN_REPORT_OBJECT (report_id,paramlist_id); 

 

Note that having DESTYPE defined both in the parameter list and in SET_REPORT_OBJECT _PROPERTIES 

should not prevent the module from compiling, but may prevent it from running. 

 

 

 

 

 

 

_________________________________ 

1.  Using RUN_PRODUCT to generate Reports output is not supported in Oracle Forms 9.0.4 and greater.  Forms module containing integrated calls to 

Reports using RUN_PRODUCT will not compile.  Refer to the Forms Upgrade Guide for information on how to use the Forms Migration Assistance 

(FMA) or consider updating your code as discussed in this paper. 

2.  Report_Execution_Mode is a client/ server feature and no longer used in Oracle Forms. However, setting the value to either BATCH or RUNTIME is 

required. 

3.  Additional DESTYPE and DESFORMAT values can be found in the Oracle Reports deployment guide, titled “Publishing Reports with Oracle Reports 

Services” 



 

 

 

8  |   INTEGRATING ORACLE REPORTS 12C WITH ORACLE FORMS 12C 

Calling Reports that Display a Parameter Form 

Using the previous examples, a report’s parameter form will not work when called from RUN_ REPORT_OBJECT 

because the <ACTION> attribute in the generated report HTML parameter form is empty.  RUN_REPORT_OBJECT 

calls are sent directly to Oracle Reports on the server. Therefore, Oracle Reports cannot access the web 

environment to obtain the information required to populate the action attribute when generating the HTML parameter 

form.   

The <ACTION> attribute is part of the standard HTML <FORM> tag that defines what to do when a user presses the 

submit button. The <ACTION> attribute in the Oracle Reports parameter form should contain hidden runtime 

parameters that are required to process the request after the user presses the submit button. Additional code is 

required to overcome this condition. 

 

Solving the Problem with “PFACTION” 

“PFACTION” is a command line parameter in Oracle Reports that can be used to add the hidden runtime parameter 

to a report’s parameter form when calling Oracle Reports from Oracle Forms, using RUN_REPORT_OBJECT.  The 

syntax for the value “pfaction” parameter looks like this: 

<request URL_to_rwservlet>?_hidden_<encoded_original_url_query_string> 

 

The “request URL_to_rwservlet” portion contains the protocol, the host name, the port, the Oracle Reports web 

context path and the Oracle Reports Servlet name. For example: 

http://someDomain.com:8888/reports/rwservlet 

 

The “encoded_original_url_query_string” portion is a duplicate of all Oracle Reports system and application 

parameters passed from Oracle Forms to Oracle Reports using SET_REPORT_OBJECT_PROPERTY, encoded in 

a URL.  For example, these Reports command line parameters, 

destype=cache desformat=htmlcss userid=scott/tiger@orcl 

 

would be added as a value to the “pfaction” parameter like this, 

destype=cache%20desformat=htmlcss%20userid=scott%2Ftiger%40orcl 

 

In order to call a report containing a parameter form using RUN_REPORT_OBJECT, do the following: 

 

1. Provide the protocol, the host name of the server, and the server port 

2. Provide the virtual path and name of the Oracle Reports Servlet 

3. URL encode the parameter value of the “pfaction” command parameter 

 

The following Forms built-in will be used to pass the “pfaction” command from Oracle Forms Services to Reports: 

SET_REPORT_OBJECT_PROPERTY (rep_id,REPORT_OTHER, ’pfaction ...’); 

Note that if you are using the REPORT_OTHER built-in to pass application parameters to Oracle Reports, the 

application parameters must also be contained in the pfaction parameter. 

 



 

 

 

9  |   INTEGRATING ORACLE REPORTS 12C WITH ORACLE FORMS 12C 

Using PL/SQL Functions to Encode URL Parameters 

Because the “pfaction” parameter is added as an ACTION parameter to the Oracle Reports HTML parameter form, it 

is important to ensure that no un-encoded characters are included or errors may result.  One example that may 

cause problems when embedded in a URL is a blank (space). Therefore, most developers URL-encode blank as 

“%20”. The PL/SQL function “ENCODE”, as listed below, is an example that encodes the following characters: “;”, “/ 

”, ”?”, ”:”, ”@”, ”+”, ”$”, ”,” and “ “ (semicolon, forward slash, question mark, colon, at, plus sign, dollar sign, comma, 

and blank space).  

 

FUNCTION ENCODE (URL_PARAMS_IN Varchar2) RETURN VARCHAR2 IS 

 v_url   VARCHAR2(2000) := URL_PARAMS_IN; -- Url string 

 v_url_temp  VARCHAR2(4000) :=‘‘; -- Temp URL string 

 v_a   VARCHAR2(10); -- conversion variable 

 v_b   VARCHAR2(10); -- conversion variable 

 c   CHAR; 

 i   NUMBER(10); 

BEGIN 

 FOR i IN 1..LENGTH(v_url) LOOP 

  c:= substr(v_url,i,1); 

  IF c in (‘;’, ‘/’,’?’,’:’,’@’,’+’,’$’,’,’,’ ‘) THEN 

   v_a := ltrim(to_char(trunc(ascii(substr(v_url,i,1))/16))); 

   IF v_a = ‘10’ THEN v_a := ‘A’; 

    ELSIF v_a = ‘11’ THEN v_a := ‘B’; 

    ELSIF v_a = ‘12’ THEN v_a := ‘C’; 

    ELSIF v_a = ‘13’ THEN v_a := ‘D’; 

    ELSIF v_a = ‘14’ THEN v_a := ‘E’; 

    ELSIF v_a = ‘15’ THEN v_a := ‘F’; 

   END IF; 

   v_b := ltrim(to_char(mod(ascii(substr(v_url,i,1)),16))); 

   IF v_b = ‘10’ THEN v_b := ‘A’; 

    ELSIF v_b = ‘11’ THEN v_b := ‘B’; 

    ELSIF v_b = ‘12’ THEN v_b := ‘C’; 

    ELSIF v_b = ‘13’ THEN v_b := ‘D’; 

    ELSIF v_b = ‘14’ THEN v_b := ‘E’; 

    ELSIF v_b = ‘15’ THEN v_b := ‘F’; 

   END IF; 

   v_url_temp := v_url_temp||’%’||v_a||v_b; 

  ELSE 

   v_url_temp :=v_url_temp||c; 

  END IF; 

 END LOOP; 

 return v_url_temp; 

END; 
 

Figure 7:  PL/SQL function to URL-encode strings 

 

 

 



 

 

 

10  |   INTEGRATING ORACLE REPORTS 12C WITH ORACLE FORMS 12C 

Building a Procedure to Call Reports with Parameter Forms 

Calling Oracle Reports using RUN_REPORT_OBJECT is best handled by a generic PL/SQL procedure in Forms.  

To successfully call a report from Oracle Forms, the following minimum information needs to be passed to the 

Reports pfaction command: 

 

» Desformat, to determine the Reports output format 

» Destype, to determine the output device, (printer or cache) 

» Userid, to connect Reports to the database 

» Reports file name, to specify the Reports module to be executed 

» Paramform = yes, to enable the Reports parameter form to be shown in the client browser 

The generic PL/SQL procedure handling calls to Oracle Reports using RUN_REPORT_OBJECT requires a Reports 

Object node to be created in Forms as mentioned earlier in this paper. One Reports Object node can be used to run 

any Report. 

The following arguments are expected by this procedure: 

report_id The Report Object as obtained by a call to 

FIND_REPORT _OBJECT(‘<name>‘); 

report_server_name The name of the Reports Server, for example:  “repserv11g” 

report_format HTML, HTMLCSS, PDF, RTF, XML
4
  

report_destype_name CACHE, FILE, MAIL, PRINTER
4 

report_file_name The Reports source module with or without extension 

report_other_param Any other parameter like paramform or custom application parameters. If printing 

to FILE or MAIL, desname needs to be provided as ‘otherparam’ 

report_servlet The virtual path for the Reports Servlet. The virtual path, if not specified as 

relative, must contain the protocol (http or https), the host name, the port, the 

Reports context root (i.e. /reports) and the name of the Servlet (i.e. rwservlet). 

 

Figure 8:  Parameters passed in by the generic procedure example 

 

 

 

 

 

 

_________________________________ 

4.  Additional DESTYPE and DESFORMAT values can be found in the Oracle Reports deployment guide, titled “Publishing Reports with Oracle Reports 

Services” 



 

 

 

11  |   INTEGRATING ORACLE REPORTS 12C WITH ORACLE FORMS 12C 

PROCEDURE RUN_REPORT_OBJECT_PROC ( 

  report_id   REPORT_OBJECT, 

  report_server_name  VARCHAR2, 

  report_format  VARCHAR2, 

  report_destype_name NUMBER, 

  report_file_name  VARCHAR2, 

  report_otherparam  VARCHAR2, 

  reports_servlet  VARCHAR2)  IS 

 report_message  VARCHAR2(100) :=‘‘; 

 rep_status   VARCHAR2(100) :=‘‘; 

 vjob_id   VARCHAR2(4000) :=‘‘; 

 hidden_action  VARCHAR2(2000) :=‘‘; 

 v_report_other  VARCHAR2(4000) :=‘‘; 

 i   number (5); 

 c   char; 

 c_old   char; 

 c_new   char; 

BEGIN 

 -- Set up Reports runtime parameters 

 SET_REPORT_OBJECT_PROPERTY(report_id,REPORT_COMM_MODE,SYNCHRONOUS); 

 SET_REPORT_OBJECT_PROPERTY(report_id,REPORT_FILENAME,report_file_name); 

 SET_REPORT_OBJECT_PROPERTY(report_id,REPORT_SERVER,report_server_name); 

 SET_REPORT_OBJECT_PROPERTY(report_id,REPORT_DESTYPE,report_destype_name); 

 SET_REPORT_OBJECT_PROPERTY(report_id,REPORT_DESFORMAT,report_format); 

 

 -- Set up string for pfaction parameter 

 hidden_action := hidden_action ||’&report=‘|| 

   GET_REPORT_OBJECT_PROPERTY(report_id,REPORT_FILENAME); 

 hidden_action := hidden_action||’&destype=‘|| 

   GET_REPORT_OBJECT_PROPERTY(report_id,REPORT_DESTYPE); 

 hidden_action := hidden_action||’&desformat=‘|| 

   GET_REPORT_OBJECT_PROPERTY (report_id,REPORT_DESFORMAT); 

  

 -- Note that the username and password information will be visible within the html source 

 -- of the parameter form.  This can be prevented by enabling single sign-on.  

 IF get_application_property (sso_userid) IS NULL Then 

  -- No SSO user 

  hidden_action := hidden_action||’&userid=‘|| 

   get_application_property(username)||’/’|| 

   get_application_property(password)||’@’|| 

   get_application_property(connect_string); 

 ELSE 

  -- SSO user identified 

  hidden_action := hidden_action || ‘&ssoconn=‘ ||  get_application_property(config); 

 End if; 

-- The Reports “other” parameters are passed as key value pairs.  For example:   “key1=value1 key2=value2…” 
 

Figure 9:  Generic procedure to call reports which use parameter forms. (part 1 of 2) 

 



 

 

 

12  |   INTEGRATING ORACLE REPORTS 12C WITH ORACLE FORMS 12C 

-- The following loop replaces the delimited blank with an “&” used on the web.  This replacement only works for 

-- values that don’t include blanks themselves.  If this is a requirement, then you need to customize this code accordingly. 

 

 -- c_old is initialized with a dummy value 

 c_old :=’@’; 

 FOR i IN 1..LENGTH(report_otherparam) LOOP 

  c_new:= substr(report_otherparam,i,1); 

  IF (c_new =‘ ‘) THEN 

   c:=‘&’; 

  ELSE 

   c:= c_new; 

  END IF; 

 -- eliminate multiple blanks 

  IF (c_old =‘ ‘ and c_new = ‘ ‘) THEN 

   null; 

  ELSE 

   v_report_other := v_report_other||c; 

  END IF;  

 -- save current value as old value 

  c_old := c_new;  

 END LOOP; 

 

 hidden_action := hidden_action ||’&’|| v_report_other; 

 

 --“reports_servlet” contains the path to the Reports Servlet 

 -- Example 1: 

 -- Forms and Reports are on the same host and accessed using the same port (e.g. 8888) 

 -- reports_servlet := ‘/reports/rwservlet’ 

 -- Example 2: 

 -- Forms and Reports are on separate hosts and/or are accessed using a different port (e.g. 9001 & 9002) 

 -- reports_servlet := ‘http://host:port/reports/rwservlet’ 

 

 hidden_action := reports_servlet||’?_hidden_server=‘||report_server_name|| encode(hidden_action); 

 SET_REPORT_OBJECT_PROPERTY  (report_id,REPORT_OTHER,’pfaction=‘|| 

     hidden_action||’ ‘||report_otherparam); 

 -- call Reports 

 report_message := run_report_object(report_id); 

 rep_status := report_object_status(report_message); 

 IF rep_status=‘FINISHED’ THEN 

  vjob_id :=substr(report_message,length(report_server_name)+2,length(report_message)); 

  WEB.SHOW_DOCUMENT(reports_servlet||’/getjobid’||vjob_id||’?server=‘||report_server_name,’ _blank’); 

 ELSE 

 -- handle errors here 

    message(rep_status); 

 END IF; 

END; 
 

Figure 10:  Generic procedure to call reports which use parameter forms. (part 2 of 2) 

 



 

 

 

13  |   INTEGRATING ORACLE REPORTS 12C WITH ORACLE FORMS 12C 

Examples of How to Call the Generic Procedure 

Assuming that a Reports Object “reptest” exists in the Forms module, the following code can be used in a WHEN-

BUTTON-PRESSED trigger to execute a Report that has a parameter form. 

The generic PL/SQL procedure requires the Reports Object to be passed as an argument. The Reports Object of a 

given Reports Object name can be obtained using the FIND_REPORT_OBJECT built-in. 

Because it is assumed that the server running Forms Services also hosts the Reports Services, no host name needs 

to be passed as an argument for the Reports Servlet path variable. Instead ‘/reports/ rwservlet’ can be used as a 

relative path.  Paramform=yes makes Reports first expose its parameter form. The parameter form will always 

display in HTML even if the Reports destination format is PDF. 

 

(...) 

-- Find the id of the Reports Object in Forms 

 report_id:=FIND_REPORT_OBJECT(‘reptest’); 

--  Call the generic PL/SQL procedure to run the Reports 

--  Remember that, in this example the value of reports_server can only be a  

--   relative path if the same host and port are used to access both Forms and Reports. 

 RUN_REPORT_OBJECT_PROC( report_id, 

    ‘repserv1-pc’, 

    ‘HTMLCSS’, 

    CACHE, 

    ‘REPTEST’, 

    ‘paramform=yes’, 

    ‘/reports/rwservlet’); 

(...) 
 

Figure 10:  Generic procedure to call reports which use parameter forms. 

 

In the example below, an additional parameter is passed to Reports. Note that the delimiter is a blank character 

between the first key-value pair and the second. 

(...) 

-- Find the id of the Reports Object in Forms 

 report_id:=FIND_REPORT_OBJECT(‘reptest’); 

--  Call the generic PL/SQL procedure to run the Reports 

--  Remember that, in this example the value of reports_server can only be a  

--   relative path if the same host and port are used to access both Forms and Reports. 

 RUN_REPORT_OBJECT_PROC( report_id, 

    ‘repserv1-pc’, 

    ‘HTMLCSS’, 

    CACHE, 

    ‘REPTEST’, 

    ‘paramform=no p_deptno=10’, 

    ‘/reports/rwservlet’); 

(...) 
 

Figure 11:  Calling a report that has no parameter form, but requires p_deptno to be passed as a runtime parameter. 

 



 

 

 

14  |   INTEGRATING ORACLE REPORTS 12C WITH ORACLE FORMS 12C 

If Reports Services runs on a different machine or with a different port number than Forms Services, you will need to 

provide the fully qualified URL for the Reports Servlet.  Note that these examples work with the PL/SQL procedure 

RUN_REPORT_OBJECT_PROC, which is explained earlier in this document. You are free to create your own 

PL/SQL code to handle the “pfactions” command in your applications. 

(...) 

-- Find the id of the Reports Object in Forms 

 report_id:=FIND_REPORT_OBJECT(‘reptest’); 

--  Call the generic PL/SQL procedure to run the Reports 

--  Remember that, in this example the value of reports_server can only be a  

--   relative path if the same host and port are used to access both Forms and Reports. 

 RUN_REPORT_OBJECT_PROC( report_id, 

    ‘repserv1-pc’, 

    ‘HTMLCSS’, 

    CACHE, 

    ‘REPTEST’, 

    ‘paramform=yes’, 

    ‘http://someServer:9002/reports/rwservlet’); 

(...) 
 

Figure 12:  Calling a report which has a parameter form, but whose Reports Servlet listens on a different port (or host). 

 

The Oracle Forms WEB.SHOW_DOCUMENT Built-in 

Use the WEB.SHOW_DOCUMENT built-in to access any web site (URL) from a Forms application.  This built-in 

passes the provided URL to the client’s default web browser.  Oracle Forms has no control over the receiving 

browser.  The built-in simply passes the URL to the browser.  It is recommended that only web protocols be used 

with this built-in although it is possible to access some local content.  For example, this built-in works best with 

protocols like HTTP, HTTPS, FTP, etc.  You can use others such as, MAIL, MAILTO, FILE, but these are not 

recommended.  These others should be accessed using other means such as WebUtil.  Refer to the Forms Builder 

Online Help for information about WebUtil. 

 

WEB.SHOW_DOCUMENT Syntax 

WEB.SHOW_DOCUMENT (URL, DESTINATION); 

 

URL The URL is passed as a string (‘http://www.oracle.com’), in a variable, or as a 

combination of both. If the addressed web page is located on the same host as 

the Forms Server, a relative path could be used (‘/virtual_path/’). 

DESTINATION (aka TARGET) Definition of the target where the addressed web page should be displayed.  

Values must be single-quoted and lower case. 

 

_blank (default)  

Loads the document into a new, unnamed top-level window. 

‘windowName’.  Displays the document in a window named 



 

 

 

15  |   INTEGRATING ORACLE REPORTS 12C WITH ORACLE FORMS 12C 

windowName. This window is created if necessary.  

_self 

Loads the document into the same frame or window as the source 

_parent  

Load the document into the parent window or frameset containing the 

hypertext reference. If the reference is in a window or top-level 

frame, it is equivalent to the target _self.  

_top  

Loads the document into the window containing the hypertext link, 

replacing any frames currently displayed in the window.  

<target name> 

Displays the Web page in a frame specified by the target_name. 

 

Figure 13:  WEB.SHOW_DOCUMENT syntax 

 

Calling Reports using WEB.SHOW_DOCUMENT 

In the previous examples, it was illustrated how RUN_REPORT_OBJECT could be used to request that a report be 

generated then have its output opened by calling the Reports GETJOBID command in a WEB.SHOW_DOCUMENT 

call.  For example: 

WEB.SHOW_DOCUMENT(reports_servlet||’/getjobid’||vjob_id||’?server=‘||report_server_name,’ _blank’); 

 

Another option for calling Oracle Reports from Oracle Forms is to access the Reports Servlet directly using the form 

using WEB.SHOW_DOCUMENT.  The necessary URL would use the following syntax example: 

http://<hostname>:<port>/reports/rwservlet?server=<reportserver>&report=<report>.rdf&desformat=[htmlcss|pdf|xml|delimited|]

&destype=cache&userid=<user/pw@database>&paramform=[no|yes] 

 

The following example calls a report from a form. It assumes that the user parameter “p_deptno” is read from a 

form’s item “deptno” in the block “dept.”. 

 

/* WHEN-BUTTON-PRESSED */ 

DECLARE 

 vc_url varchar2(200); 

BEGIN 

 vc_url:=‘http://<hostname><port>/reports/rwservlet?server=‘|| 

 ‘Repsrv&report=reptest.rdf&desformat=htmlcss&destype=cache‘|| 

 ‘&userid=user/pw@database&p_deptno=‘||:dept.deptno||’&paramform=no’; 

 WEB.SHOW_DOCUMENT(vc_url,’_blank’); 

END; 

 

Figure 14:  General use of WEB.SHOW_DOCUMENT calling the Reports Servlet 

 

 



 

 

 

16  |   INTEGRATING ORACLE REPORTS 12C WITH ORACLE FORMS 12C 

 

Here is an example of how to use relative addressing if the Oracle Reports Server is installed on the same host as 

Oracle Forms. 

/* WHEN-BUTTON-PRESSED */ 

DECLARE 

 vc_url varchar2(100); 

BEGIN 

 vc_url:=‘/reports/rwservlet?server=Repsrv&report=reptest.rdf&desformat=htmlcss’|| 

 ‘&destype=cache&userid=user/pw@database&p_deptno=‘||:dept.deptno||’&paramform=no’; 

 WEB.SHOW_DOCUMENT(vc_url,’_blank’); 

END; 

 

Figure 15:  Using a relative path to access the Reports Servlet from Forms 

 

Hiding the Username and Password 

To execute a report in this manner, the database connect information must be passed as part of the request URL.  

Adding sensitive user information to any URL request is a serious security issue because all URLs requested by a 

user can be looked up in the Browser’s URL history or easily captured in network traffic.  To avoid this, implement 

single sign-on and omit the username and password from the request. 

For more information on how to implement a single sign-on solution, refer to the Fusion Middleware documentation library for your version. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

17  |   INTEGRATING ORACLE REPORTS 12C WITH ORACLE FORMS 12C 

 

Conclusion 

Oracle Forms and Oracle Reports can be integrated using either the RUN_REPORT_OBJECT built-in or the Forms 

WEB.SHOW_DOCUMENT built-in. Use the RUN_REPORT_OBJECT built-in to securely pass reports parameters 

to Oracle Reports Services.  Using RUN_REPORT_OBJECT is also a good way to seamlessly request reports 

which will not immediately provide output to the end-user.  WEB.SHOW_DOCUMENT is preferred for simple 

requests and those which do not require the passing of any sensitive data or user information. 

Using single sign-on, users are automatically authenticated to run Oracle Reports Services if they have already 

been authenticated to access the Oracle Forms application which called the report.   

Additional information about this topic can be found in the Forms Builder Online Help and the Forms Deployment 

Guide. 

 

 

 

 



 
 

 

  

 

 

Oracle Corporation, World Headquarters  Worldwide Inquiries 

500 Oracle Parkway Phone: +1.650.506.7000 

Redwood Shores, CA 94065, USA Fax: +1.650.506.7200 

 

 

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. This document is provided for information purposes only, and the 

contents hereof are subject to change without notice. This document is not warranted to be error-free, nor subject to any other 
warranties or conditions, whether expressed orally or implied in law, including implied warranties and conditions of merchantability or 
fitness for a particular purpose. We specifically disclaim any liability with respect to this document, and no contractual obligations are 
formed either directly or indirectly by this document. This document may not be reproduced or transmitted in any form or by any 
means, electronic or mechanical, for any purpose, without our prior written permission.  
 
Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners. 
 
Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and 
are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are 
trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group. 0116 
 
White Paper Title 
May 2016 
Author: Oracle Product Management 
Contributing Authors: Michael Ferrante, Frank Nimphius 

 

 
 

 

C O N N E C T  W I T H  U S  

 
blogs.oracle.com/oracle 

 
facebook.com/oracle 

 
twitter.com/oracle 

 
oracle.com 


