
Oracle HRMS�
Implementation
Guide
Release 11.0
Part No. A58331–01

Enabling the Information Age�

Important revisions have been made to this user's guide. Please choose the corresponding "Updates" link from the Oracle Applications Release 11 documentation table.

Oracle HRMS Implementation Guide, Release 11.0

Part No. A58331–01
Copyright � Oracle Corporation 1997

All rights reserved. Printed in the U.S.A.

Major Contributors: Louise Raffo and Robert Rose

Contributors: Peter Attwood, John Cafolla, Juliette Fleming, Michael O’Shea and John
Thuringer

This software was not developed for any use in nuclear, aviation, mass transit, medical,
or other inherently dangerous applications. It is the customer’s responsibility to take
all appropriate measures to insure the safe use of such applications if the programs are
used for such purposes.

This software/documentation contains proprietary information of Oracle Corporation; it
is provided under a license agreement containing restrictions on use and disclosure and is
also protected by copyright law. Reverse engineering of the software is prohibited.

If this software/documentation is delivered to a U.S. Government Agency of the
Department of Defense, then it is delivered with Restricted Rights and the following
legend is applicable:

Restricted Rights Legend
Use, duplication, or disclosure by the Government is subject to restrictions
as set forth in subparagraph (c)(1)(ii) of DFARS 252.227–7013, Rights in
Technical Data and Computer Software (October 1988).

Oracle Corporation, 500 Oracle Parkway, Redwood City, CA 94065.

If this software/documentation is delivered to a U.S. Government Agency not within the
Department of Defense, then it is delivered with ”Restricted Rights,” as defined in FAR
52.227–14, Rights in Data – General, including Alternate III (June 1987).

The information in this document is subject to change without notice. If you find any
problems in the documentation, please report them to us in writing. Oracle Corporation
does not warrant that this document is error–free.
No part of this document may be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without the express written permission of
Oracle Corporation.

ORACLE, Oracle Alert, Oracle Financials, SQL*Forms, SQL*Plus, SQL*QMX, SQL*Re-
port, and SQL*ReportWriter are registered trademarks of Oracle Corporation

Oracle Application Object Library, Oracle Applications, Oracle Applications Window
Manager, Oracle Assets, Oracle Bills of Material, Oracle Business Manager, Oracle
Engineering, Oracle General Ledger, Oracle Government Financials, Oracle Human
Resources, Oracle Inventory, Oracle*Mail, Oracle Manufacturing, Oracle Master
Scheduling/MRP, Oracle Order Entry, Oracle Payroll, Oracle Payables, Oracle Personnel,
Oracle Project Accounting, Oracle Purchasing, Oracle Receivables, Oracle Training
Administration and Oracle Work in Process are trademarks of Oracle Corporation.

 iContents

Contents

Preface Preface i.
About This User’s Guide ii.
Finding the Latest Information ii.
Assumptions iii.
Do Not Use Database Tools to Modify Oracle
Applications Data iii.
Finding Your Way Around the System iv.
Other Information Sources iv.
About Oracle viii.
Thank You ix.

Chapter 1 Planning Your Implementation 1 – 1.
Implementing Oracle HRMS 1 – 2.
Implementation Flowcharts 1 – 4.
Implementation Checklists 1 – 13.

Basic Administration Checklist 1 – 13.
Work Structures Checklist 1 – 14.
Compensation and Benefits Checklist 1 – 15.
People and Assignments Checklist 1 – 16.
Career Management Checklist 1 – 17.
Specific Business Functions Checklist 1 – 18.
Control Checklist 1 – 19.

 ii Oracle HRMS Implementation Guide

Chapter 2 Implementation Steps 2 – 1.
Implementation Steps: Basic Administration 2 – 2.
Implementation Steps: Administration 2 – 17.
Implementation Steps: Application Data Export (ADE)
and Hierarchy Diagrammers 2 – 19.
Implementation Steps: Work Structures 2 – 20.
Implementation Steps: Compensation and Benefits 2 – 29.
Implementation Steps: People and Assignments 2 – 37.
Implementation Steps: Recruitment 2 – 42.
Implementation Steps: Career Management 2 – 43.
Implementation Steps: Specific Business Functions 2 – 48.
Implementation Steps: Control 2 – 56.

Appendix A Technical Essays A – 1.
How DateTrack Works A – 2.

Behavior of DateTracked Forms A – 2.
Table Structure for DateTracked Tables A – 4.
Creating a DateTracked Table and View A – 6.

How to Create and Modify DateTrack History Views A – 8.
What Happens When You Request DateTrack History A – 8.
DateTrack History in Forms 2 A – 9.
DateTrack History in Forms 4 A – 9.
Rules for Creating or Modifying DateTrack History Views A – 10.
List of DateTrack History Views A – 12.

The FastFormula Application Dictionary A – 13.
Entities in the Dictionary A – 13.
Defining New Database Items A – 16.

Extending Security in Oracle Human Resources A – 25.
Security Profiles A – 25.
Security Processes A – 30.
Securing Custom Tables A – 33.

Creating Control Totals for the Batch Element Entry Process A – 35. . .
Introduction A – 35.

APIs in Oracle HRMS A – 39.
API Overview A – 39.
Understanding the Object Version Number (OVN) A – 42.
API Parameters A – 44.
API Parameters A – 54.
API Features A – 69.
Flexfields with APIs A – 70.
Alternative APIs A – 74.

 iiiContents

API Errors and Warnings A – 75.
Example PL/SQL Batch Program A – 77.
WHO Columns and Oracle Alert A – 80.
API User Hooks A – 81.
Using APIs as Building Blocks A – 103.
Handling Object Version Numbers in Oracle Forms 4.5 A – 104. . . .
HRMS Table Locking Ladder A – 110.

Balances in Oracle Payroll A – 115.
Overview of Balances A – 115.
Latest Balances A – 116.

Balance Dimensions A – 118.
Initial Balance Loading for Oracle Payroll A – 122.

Introduction A – 122.
Differences from Release 9 A – 122.
Steps A – 123.
Overview A – 123.
Latest Balances A – 125.
Setup an Element to Feed Initial Balances A – 126.
Setup the Initial Balance Values A – 127.
Running the Initial Balance Upload Process A – 130.
Balance Initialization Steps A – 135.

Including Balance Values in Reports A – 138.
The Balance Function A – 138.

Including Balance Values in Reports (U.K. Only) A – 141.
Advantages A – 141.
The Balance Function A – 141.

Legislative Balance Initialization (U.K. Only) A – 143.
Balance Initialization Elements A – 143.

Pay Advice Report (U.K. Only) A – 149.
Parameter Values A – 149.
Queries A – 149.
Groups A – 150.
Triggers A – 150.
Layout A – 150.
Dynamic Sort Order A – 151.

Balance View Usage A – 152.

Appendix B Technical Essay on Payroll Processes B – 1.
Overview B – 2.

PYUGEN B – 2.

 iv Oracle HRMS Implementation Guide

Payroll Action Parameters B – 3.
Overview of the Payroll Processes B – 3.
Assignment Level Interlocks B – 5.

Payroll Run Process B – 6.
Determine Assignments and Elements B – 6.
Process Each Assignment B – 7.
Create Run Results and Values B – 9.
Set Up Contexts B – 9.
Element Skip Rules B – 10.
Element Entry Processing Modes B – 10.

Balances and Latest Balances B – 12.
Expiry Checking of Latest Balances B – 12.
Expiry Checking and Performance B – 12.
Creation and Maintenance of In Memory Latest Balances B – 13. .
Creation of New In Memory Balances B – 13.
Run Results Added to In Memory Balances B – 14.
Writing of In Memory Balances B – 15.
Formula Processing B – 15.

Pre–Payments Process B – 20.
Setting Up Payment Methods B – 20.
Preparing Cash Payments (U.K. Only) B – 21.
Prenotification (Prenoting) B – 22.
Consolidation Sets B – 22.
Third Party Payments B – 23.
Exchange Rates B – 23.
Overriding Payment Method B – 23.
The Process B – 24.

Payment Processes B – 26.
Magnetic Tape Process B – 27.

The Process B – 27.
Magnetic Tape Structure B – 28.
Database Items B – 29.
Parameter Values B – 29.
Magnetic Tape Formats B – 31.
Magnetic Tape Payments B – 31.
Magnetic Tape Reports B – 33.
SRS Definitions B – 34.
The PL/SQL Driving Procedure B – 35.
The Generic PL/SQL B – 36.
The Formula Interface B – 41.
FastFormula Errors B – 43.

 vContents

Error Handling B – 44.
Cheque Writer/Check Writer Process B – 49.

The Process B – 49.
Cheque Numbering B – 52.
Voiding and Reissuing Cheques B – 53.
Mark for Retry B – 54.
Rolling Back the Payments B – 54.
SRW2 Report B – 54.
Using or Changing the PL/SQL Procedure B – 56.

Cash Process B – 58.
Costing Process B – 59.

Example of Payroll Costs Allocation B – 59.
Example of Employer Charge Distribution B – 60.

Transfer to the General Ledger Process B – 63.
Assignment Level Interlocks B – 64.

Action Classifications B – 64.
Rules For Rolling Back and Marking for Retry B – 67.

Payroll Action Parameters B – 69.
Action Parameter Values B – 69.
Summary of Action Parameters B – 69.
Parallel Processing Parameters B – 70.
Array Select, Update and Insert Buffer Size Parameters B – 71. . . .
Magnetic Tape Specific Parameters B – 72.
Error Reporting Parameters B – 72.
Rollback Specific Parameters B – 73.
Payroll Process Logging B – 73.
Logging Parameters B – 75.
Miscellaneous Parameters B – 76.
System Management of QuickPay Processing B – 77.

Appendix C Post Install Steps C – 1.
Post Install Steps for Oracle Human Resources C – 2.
Post Install Steps for Oracle Payroll (UK) C – 4.
Post Install Steps for Oracle Training Administration C – 5.
Post Install Steps for Oracle SSP/SMP C – 6.

Glossary

Index

 vi Oracle HRMS Implementation Guide

W

 iPreface

Preface

elcome to Release 11.0 of the Oracle HRMS Implementation Guide.

This guide contains a summary of the steps you should follow to
implement all of the functionality available in Oracle HRMS. The
detailed information you need to support your implementation
decisions is contained in your product user’s guide

This preface explains how this guide is organized and introduces other
sources of information that can help you.

 ii Oracle HRMS Implementation Guide

About This User’s Guide

There are two chapters and three appendixes in this guide:

• Chapter 1 is designed to help you plan your implementation. It
contains flowcharts showing the major stages of an
implementation and a summary checklist for each stage, listing
the implementation steps.

• Chapter 2 contains a step–by–step implementation sequence
summarizing the decisions and tasks required for each stage.

• Appendix A includes essays that address important technical
issues relating to your HRMS implementation.

• Appendix B includes an essay on several topics specifically
relating to your Payroll implementation.

• Appendix C describes any post install steps you must perform
before you implement Oracle HRMS.

The HRMS user’s guides are available online

All Oracle Applications user’s guides are available online, in both
HTML and Adobe Acrobat format. Most other Oracle Applications
documentation is available in Adobe Acrobat format.

The HTML version of the HRMS user’s guides are optimized for
onscreen reading, and enable you to follow hypertext links for easy
access to guides across our entire library. You can also search for
words and phrases if your national language is supported by Oracle’s
Information Navigator. The HTML documentation is available from
the Oracle Applications toolbar, or from a URL provided by your
system administrator. Note that the HTML documentation is
translated into over twenty languages.

You can order an Oracle Applications Documentation Library CD
containing Adobe Acrobat versions of each guide in the Oracle
Applications documentation set. Using this CD, you can search for
information, read it onscreen, and print individual pages, sections, or
entire books. When you print from Adobe Acrobat, the resulting
printouts look just like pages from an Oracle Applications hardcopy
guide.

 iiiPreface

Finding the Latest Information

For information about any new features that were not available when
this guide was printed, look at the What’s New? section on the main
help menu. This information is updated for each new release of Oracle
HRMS HTML help.

Assumptions

This guide assumes you have a working knowledge of the following:

• the principles and customary practices of your business area

• Oracle HRMS

If you have never used Oracle HRMS, we suggest you attend one
or more of the Oracle HRMS training classes available through
Oracle Education.

• the Oracle Applications graphical user interface

To learn more about the Oracle Applications graphical user
interface, read the Oracle Applications User’s Guide.

See Other Information Sources for more information about Oracle
Applications product information.

Do Not Use Database Tools to Modify Oracle Applications Data

Oracle provides powerful tools you can use to create, store, change,
retrieve and maintain information in an Oracle database. But if you use
Oracle tools like SQL*Plus to modify Oracle Applications data, you risk
destroying the integrity of your data and you lose the ability to audit
changes to your data.

Because Oracle Applications tables are interrelated, any change you
make using an Oracle Applications form can update many tables at
once. But when you modify Oracle Applications data using anything
other than Oracle Applications forms, you may change a row in one
table without making corresponding changes in related tables. If your
tables get out of synchronization with each other, you risk retrieving
erroneous information and you risk unpredictable results throughout
Oracle Applications.

 iv Oracle HRMS Implementation Guide

When you use Oracle Applications forms to modify your data, Oracle
Applications automatically checks that your changes are valid. Oracle
Applications also keeps track of who changes information. But, if you
enter information into database tables using database tools, you may
store invalid information. You also lose the ability to track who has
changed your information because SQL*Plus and other database tools
do not keep a record of changes.

Consequently, we STRONGLY RECOMMEND that you never use
SQL*Plus, Oracle Data Browser, database triggers, or any other tool to
modify Oracle Applications tables, unless we tell you to do so in our
guides.

Finding Your Way Around the System

Oracle HRMS is delivered with a set of default menus and task flows
that give you access to all windows on the system. A full listing of the
default menus is provided in appendix A of your product user’s guide.
Read the Customizing Windows and Menus chapter of that guide to find
out how to set up your own menus and task flows for users at your
site.

To read more about the interface and standard features of Oracle
HRMS, refer to your product user’s guide.

Other Information Sources

You can choose from many sources of information, including
documentation, training and support services, to increase your
knowledge and understanding of Oracle HRMS.

Most Oracle Applications documentation is available in Adobe Acrobat
format on the Oracle Applications Documentation Library CD. We supply
this CD with every software shipment.

If this guide refers you to other Oracle Applications documentation,
use only the Release 11 versions of those guides unless we specify
otherwise.

Oracle Applications User’s Guide

This guide explains how to navigate, enter data, query, run reports, and
introduces other basic features of the graphical user interface (GUI)

 vPreface

available with this release of Oracle HRMS (and any other Oracle
Applications product). This guide also includes information on setting
user profiles, as well as running and reviewing reports and concurrent
requests.

You can also access this user’s guide online by choosing ”Getting
Started with Oracle Applications” from any Oracle Applications help
file.

Related User’s Guides

Oracle HRMS shares business and setup information with other Oracle
Applications products. Even if you have not installed them as separate
products, your Oracle HRMS application includes some forms and
functionality from other Oracle Applications. Therefore, you may want
to refer to other user’s guides when you set up and use Oracle HRMS.

If you do not have the hardcopy versions of these guides, you can read
them by choosing Library from the Help menu, or by reading from the
Oracle Applications Document Library CD, or by using a web browser
with a URL that your system administrator provides.

Oracle Human Resources User’s Guide

This guide contains the information you need to set up Oracle Human
Resources to meet the requirements of your enterprise. It describes
how you can represent your enterprise structures, policies, and people
on the system and use this information to manage your human
resources.

It should be read by anyone involved in setting up or managing Oracle
Human Resources.

Oracle Payroll User’s Guide

This guide contains the information you need to set up Oracle Payroll
to meet the requirements of your enterprise. It describes how to use
the earnings, deductions, and tax calculations that come with the
system, how to initiate additional earnings and deductions in
accordance with your own compensation and benefits policies, and
how to manage payroll runs and post–run processing.

Oracle Applications Flexfields Guide

This guide provides flexfields planning, setup, and reference
information for the Oracle HRMS implementation team, as well as for

 vi Oracle HRMS Implementation Guide

users responsible for the ongoing maintenance of Oracle Applications
product data. This guide also provides information on creating custom
reports on flexfields data.

Oracle Workflow Guide

This guide explains how to define new workflow business processes as
well as customize existing Oracle Applications–embedded workflow
processes. You also use this guide to complete the setup steps
necessary for any Oracle Applications product that includes
workflow–enabled processes.

Oracle Alert User’s Guide

Use this guide to define periodic and event alerts that monitor the
status of your Oracle Applications data.

Oracle Applications Implementation Wizard User’s Guide

If you are implementing more than one Oracle product, you can use the
Oracle Applications Implementation Wizard to coordinate your setup
activities. This guide describes how to use the wizard.

Oracle Applications Developer’s Guide

This guide contains the coding standards followed by the Oracle
Applications development staff. It describes the Oracle Application
Object Library components needed to implement the Oracle
Applications user interface described in the Oracle Applications User
Interface Standards. It also provides information to help you build your
custom Developer/2000 forms so that they integrate with Oracle
Applications.

Oracle Applications User Interface Standards

This manual contains the user interface (UI) standards followed by the
Oracle Applications development staff. It describes the UI for the
Oracle Applications products and how to apply this UI to the design of
an application built by using Oracle Forms 4.5.

 viiPreface

Installation and System Administration

Oracle Applications Installation Manual

This manual and the accompanying release notes provide information
you need to successfully install Oracle Financials, Oracle Government
Financials, Oracle Manufacturing or Oracle Training Administration in
your specific hardware and operating system software environment.

Oracle Applications Upgrade Manual

This manual explains how to prepare your Oracle Applications
products for an upgrade. It also contains information on finishing the
upgrade procedure for each product. Refer to this manual and the
Oracle Applications Installation Manual when you plan to upgrade your
products.

Oracle Applications Product Update Notes

These notes describe the new features added to Oracle HRMS, and also
describe the changes made to database objects, seed data and profile
options for the same interval.

Oracle Applications System Administrator’s Guide

This guide provides planning and reference information for the Oracle
Applications System Administrator. It contains information on how to
define security, customize menus and online help, and manage
processing.

Oracle HRMS Technical Reference Manual

The Oracle HRMS Technical Reference Manual contains database
diagrams and a detailed description of Oracle HRMS and related
applications database tables, forms, reports, and programs. This
information helps you convert data from your existing applications,
integrate Oracle HRMS with non–Oracle applications, and write
custom reports for Oracle HRMS.

You can order a technical reference manual for any product you have
licensed. Technical reference manuals are available in paper format
only.

 viii Oracle HRMS Implementation Guide

Other Information

Training

Oracle Education offers a complete set of training courses to help you
and your staff master Oracle Applications. We can help you develop a
training plan that provides thorough training for both your project
team and your end users. We will work with you to organize courses
appropriate to your job or area of responsibility.

Training professionals can show you how to plan your training
throughout the implementation process so that the right amount of
information is delivered to key people when they need it the most. You
can attend courses at any one of our many Educational Centers, or you
can arrange for our trainers to teach at your facility. In addition, we
can tailor standard courses or develop custom courses to meet your
needs.

Support

From on–site support to central support, our team of experienced
professionals provides the help and information you need to keep
Oracle HRMS working for you. This team includes your Technical
Representative, Account Manager, and Oracle’s large staff of
consultants and support specialists with expertise in your business
area, managing an Oracle server, and your hardware and software
environment.

About Oracle

Oracle Corporation develops and markets an integrated line of
software products for database management, applications
development, decision support and office automation, as well as Oracle
Applications, an integrated suite of more than 45 software modules for
financial management, supply chain management, manufacturing,
project systems, human resources and sales and service management.

Oracle products are available for mainframes, minicomputers, personal
computers, network computers, and personal digital assistants,
enabling organizations to integrate different computers, different
operating systems, different networks, and even different database
management systems, into a single, unified computing and information
resource.

 ixPreface

Oracle is the world’s leading supplier of software for information
management, and the world’s second largest software company. Oracle
offers its database, tools, and application products, along with related
consulting, education and support services, in over 140 countries
around the world.

Thank You

Thank you for using Oracle HRMS and this user’s guide.

We value your comments and feedback. At the end of this guide is a
Reader’s Comment Form you can use to explain what you like or
dislike about Oracle HRMS or this user’s guide. Mail your comments
to the following address or call us directly at (650) 506–7000.

Oracle Applications Documentation Manager
Oracle Corporation
500 Oracle Parkway
Redwood Shores, CA 94065
U.S.A.

 x Oracle HRMS Implementation Guide

C H A P T E R

1
T

1 – 1Planning Your Implementation

Planning Your
Implementation

his chapter contains flowcharts and check lists to help you plan
and manage your implementation of Oracle Human Resources and
Oracle Payroll.

Each flowchart and check list corresponds to the implementation of one
area of the system. Some of these areas are required; others are
optional. You can use this information to plan a phased
implementation.

☞

1 – 2 Oracle HRMS Implementation Guide

Implementing Oracle HRMS
Implementation takes place after a successful installation and post
installation of the system, and describes the process you follow to
customize Oracle HRMS to meet your own specific business needs.

Warning: Before you begin implementing Oracle HRMS, you
must ensure your legislation–specific startup data is installed.
The installation is normally done by the MIS Manager.

You must confirm the startup data is installed before you use
Elements, Payment Methods or Legislation Specific Flexfield
Structures.

For more information on installing Oracle HRMS, consult your Oracle
Applications Installation Manual and Post Install Steps: page C – 2.

Following a Plan

With Oracle HRMS you choose the functions you want to implement
initially. You implement other functions when you need to use them.

For example, you might decide to implement initially for HR users and
then to add payroll processing capabilities in a subsequent phase.
Alternatively, you might decide to implement payroll functions during
your initial phase. You could choose to extend your range of HR
information and functions later.

The flexibility of Oracle HRMS lets you develop an implementation
project plan which meets your own specific business needs for both
Oracle Human Resources and Oracle Payroll.

Attention: Decision making is an important part of any
implementation process and before you begin to customize
Oracle HRMS you must decide how you want to use the
system.

Adopting a staged, or incremental, approach to implementation
lets you focus on those areas of the system you want to use.

Working in partnership with Oracle you can call on skilled consultants
to provide you with all of the training, and technical and professional
expertise you need. Together you can successfully implement a HRMS
system that matches your specific business needs in the most efficient
and cost–effective manner.

Oracle Applications Implementation Wizard

You may want to use the Oracle Applications Implementation Wizard
to manage your setup activities. The Implementation Wizard guides

1 – 3Planning Your Implementation

you through the setup steps for the applications you have installed,
suggesting a logical sequence that satisfies cross–product
implementation dependencies and reduces redundant setup steps. The
Wizard also identifies steps you can complete in parallel to help you
manage your implementation process most efficiently. For Oracle
HRMS, the Wizard follows the steps documented in the following
Implementation Steps topic.

The Implementation Wizard also gives you a graphical overview of the
setup steps and lets you keep a record of comments with each step for
future reference and review.

1 – 4 Oracle HRMS Implementation Guide

Implementation Flowcharts

The flowcharts provide you with a summary of the logical sequence
you might follow in any implementation of all the functional areas of
Oracle Human Resources and Oracle Payroll. It is not the only
sequence you could follow but this one takes account of all the
dependencies which exist in the system.

The functional areas of the system that you implement depend on your
own specific business needs. Steps that are required for all
implementations are marked as required.

Some functions have been seeded with default data. The steps where
you can use data supplied with the system are marked as seeded.

After you complete your implementation, you are ready to enter your
personal, assignment and pay and benefits information into your
system.

Figure 1 – 1
Legend for Following
Setup Diagrams

Seeded Step

Optional Step

Required Step

������
��� ��

����� �
��� ��	��	��

1 – 5Planning Your Implementation

Figure 1 – 2
Implementation Flowchart for Basic Administration

Specify Key
Flexfield Structures
for Business Group

Step 1

BASIC ADMINISTRATION

Define Descriptive
FlexfieldDefine Key Flexfield

Define Job
Flexfield

Step 2

Define
Position
Flexfield

Step 3

Specify Descriptive
Flexfield Contents

Step 7

Administration

Enable
Currencies

Step 9

Define
View All

HRMS User

Step 10

Define
QuickCode

Values

Step 11

ADE

Set Up ADE

Step 12

Control Access to
the Hierarchy
Diagrammers

Step 13

Define
Cost Allocation

Flexfield

Step 6

Define
People Group

Flexfield

Step 5

Define
Grade

Flexfield

Step 4

Define
Descriptive
Flexfields

Step 8

1 – 6 Oracle HRMS Implementation Guide

Figure 1 – 3
Implementation Flowchart for Work Structures

Define
Locations

Step 1

Define
Business
Group

Step 2

Define Organization
Structures

Create
View All Access to

the Business Group

Step 3

Define Roles

Define
Organizations

Step 4

Define Grade
Related Information

Define Jobs

Step 6

Define
Grades

Step 9

Define Payroll
 Information

Define
Grade Rates

Step 10

Define
Payment
Methods

Step 14

Define
Consolidation

Sets

Step 15

WORK STRUCTURES

Define
Payroll Groups

Step 16

Define
Grade Scales

Step 13

Define
Organization
 Hierarchies

Step 5

Define
Positions

Step 7

Define Primary
Position Reporting

Hierarchy

Step 8

Define
Pay Scales

Step 11

Define
Progression Point

Values

Step 12

1 – 7Planning Your Implementation

Figure 1 – 4
Implementation Flowchart for
Compensation and Benefits

Define New
QuickCode

Types

Step 1

Define Input Value
Validation

Define
QuickCode

Values

Step 2

Define Element
Validation
Formulas

Step 4

Define
Elements and
Input Values

Step 5

Define
Element

Links

Step 6

COMPENSATION AND BENEFITS

Balances, Formulas,
Results for Payroll

Compensation and
Benefits (Info Only)

Define or
Customize Payroll

Balances

Step 7

Define
Formula Result

Rules

Step 9

Define
Element Links

for
Salary

Step 13

Salary
Administration

Define
Salary
Bases

Step 12

Element Sets

Define
Element

Sets

Step 14

Define
User Tables

Step 3

Write Payroll
Formulas

Step 8

Define Proposal
Reasons and
Performance

 Ratings

Step 10

Activate Salary

Step 11

1 – 8 Oracle HRMS Implementation Guide

Figure 1 – 5
Implementation Flowchart for People and Assignments

Define
Person
Types

Step 1

Define Assignment
Statuses for
Employees

Step 2

PEOPLE AND ASSIGNMENTS

Special Personal
 Information

Person Types and
Assignment Statuses

Define Personal
Analysis Key

Flexfield
Structures

Step 3

Register Special
 Information Types
for Business Group

Recruitment

Define
Assignment Statuses

for Applicants

Step 5

Step 4

1 – 9Planning Your Implementation

Figure 1 – 6
Implementation Flowchart for Career Management

Create Rating
Scales

Step 1

CAREER MANAGEMENT

Create
Competencies

Step 2

Group
 Competencies

Step 3

Create
Schools and Colleges

Step 7

Create Templates for
Competence–Based

Assessment

Step 8

Career Managment

Create
Qualification

Types

Step 6

Define
Competence

Requirements

Step 4

Create Templates for
Appraisals

Step 10

Create Appraisal
Questionnaire Pages

Step 9

Competence
Requirements

 Define Functions
(OTA)

Qualification Types
and Establishments

Create
Qualification

Types

Step 4

Define Functions to
Implement Compe-

tence Approach
(OTA)

Step 5

Assessment and
 Appraisal

1 – 10 Oracle HRMS Implementation Guide

Figure 1 – 7
Implementation Flowchart for Specific Business Functions

Define an Absence
Element to Record

Time Taken

Step 1

Define Element
Links for the

Absence Element

Step 2

SPECIFIC BUSINESS FUNCTIONS 1

Define Accrual Plan
with an

Absence Element

Step 3

Define Element
Links for the Accrual

Elements

Step 4

Absence
 Management

Define
QuickCode

Values

Step 7

Define
Period
Types

Step 8

Define
Budgetary
Calendars

Step 9

Define
Budgets

Step 10

Human Resource
Budgets

Define
Absence Reasons

Step 5

Associate an
Absence Type with

the Absence Element

Step 6

1 – 11Planning Your Implementation

Figure 1 – 8
Implementation Flowchart for Specific Business Functions 2

SPECIFIC BUSINESS FUNCTIONS 2

Evaluation Details

Define
Evaluation

Types

Step 11

Define
Valid Grades

for Jobs

Step 12

Define
Requirements

for Jobs

Step 14

Requirements
 Matching

Career and
Succession Planning

Modelling Career
and Succession Plan-
ning Based on Posi-

tions

Step 17

Modelling Career
and Succession Plan-
ning Based on Jobs

Step 16

Define
Valid Grades
for Positions

Step 13

Define
 Requirements
for Positions

Step 15

1 – 12 Oracle HRMS Implementation Guide

Figure 1 – 9
Implementation Flowchart for Control

Write
New

Reports

Step 1

Reports and Letters

CONTROL

Register Reports as
Concurrent Pro-
grams with SRS

Step 2

Define
Report

Sets

Step 3

User Security Define Audit
Requirements

Create Standard
Letters for use with-
Concurrent Proces-

sing

Step 4

Create Standard
Letters for use with

ADE

Step 5

Create Standard
Letters for use with

Microsoft Word

Step 6

Create
New Oracle

IDs

Step 7

Register
ORACLE

IDs

Step 8

Define
 Security
Profiles

Step 9

Run Generate Secure
User Process

(SECGEN)

Step 10

Run Security List
Maintenance

Process (LISTGEN)

Step 11

Define Form
 Customizations

Step 12

Estimate File
Sizing and

Management
Needs

Step 21

Define
Audit

Installations

Step 22

Define
Audit Tables
and Columns

Step 23

Define
Audit

Groups

Step 24

Activate
AuditTrail

Update Tables
Process

Step 25

Define
Task Flows

Step 14

Define
Menu

Functions

Step 15

Define
Menus

Step 16

Define
 Report Security

Groups

Step 17

Define
 Responsibilities

Step 18

Define
Application

User

Step 19

Define Task Flow
Nodes

Step 13

Define
HR User Profile

Options

Step 20

1 – 13Planning Your Implementation

Implementation Checklists

Use the following checklists to record which parts of Oracle HRMS you
want to use. This will help you to complete the appropriate steps in the
correct order for your implementation.

Note: Refer to the Post Install Steps: page C – 2 to see any
steps you must perform before you implement Oracle HRMS.

Basic Administration Checklist

❑ Define Key Flexfields

❑ 1 Specify Key Flexfield Structures for Business Group

❑ 2 Define Job Flexfield

❑ 3 Define Position Flexfield

❑ 4 Define Grade Flexfield

❑ 5 Define People Group Flexfield

❑ 6 Define Cost Allocation Flexfield

❑ Define Descriptive Flexfields

❑ 7 Specify Descriptive Flexfield Contexts

❑ 8 Define Descriptive Flexfields

❑ Administration

❑ 9 Enable Currencies

❑ 10 Define ’View All’ HRMS User

❑ 11 Define QuickCode Values

❑ Application Data Export (ADE) and Hierarchy Diagrammers

❑ 12 Set Up ADE

❑ 13 Control Access to the Hierarchy Diagrammers

1 – 14 Oracle HRMS Implementation Guide

Work Structures Checklist

❑ Define Organization Structures

❑ 14 Define Locations

❑ 15 Define Business Group

❑ 16 Create ’View–All’ access to the Business Group

❑ 17 Define Organizations

❑ 18 Define Organization Hierarchies

❑ Define Roles

❑ 19 Define Jobs

❑ 20 Define Positions

❑ 21 Define Primary Position Reporting Hierarchy

❑ Define Grade Related Information

❑ 22 Define Grades

❑ 23 Define Grade Rates

❑ 24 Define Pay Scales

❑ 25 Define Progression Point Values

❑ 26 Define Grade Scales

❑ Define Payroll Information

❑ 27 Define Payment Methods

❑ 28 Define Consolidation Set

❑ 29 Define Payroll Groups

1 – 15Planning Your Implementation

Compensation and Benefits Checklist

❑ Define Input Value Validation

❑ 30 Define New QuickCode Types

❑ 31 Define QuickCode Values

❑ 32 Define User Tables

❑ 33 Define Element Validation Formulas

❑ Define Compensation and Benefits for Information

❑ 34 Define Elements and Input Values

❑ 35 Define Element Links

❑ Define Balances, Formulas and Results for Payroll Processing

❑ 36 Define or Customize Payroll Balances

❑ 37 Write Payroll Formulas

❑ 38 Define Formula Result Rules

❑ Salary Administration

❑ 39 Define Proposal Reasons and Performance Ratings

❑ 40 Activate Salary

❑ 41 Define Salary Bases

❑ 42 Define Element Links for Salary

❑ Element Sets

❑ 43 Define Element Sets

1 – 16 Oracle HRMS Implementation Guide

People and Assignments Checklist

❑ Person Types and Assignment Statuses

❑ 44 Define Person Types

❑ 45 Define Assignment Statuses for Employees

❑ Special Personal Information

❑ 46 Define Personal Analysis Key Flexfield Structures

❑ 47 Register Special Info Types for the Business Group

❑ Recruitment

❑ 48 Define Assignment Statuses for applicants

1 – 17Planning Your Implementation

Career Management Checklist

❑ Methods of Measurement and Creating Competencies

❑ 49 Create Rating Scales

❑ 50 Create Competencies

❑ 51 Group Competencies into Types

❑ Competence Requirements

❑ 52 Create Competence Requirements

❑ Define Functions to Implement the Competence Approach (OTA)

❑ 53 Define Functions to Implement the Competence
Approach (OTA)

❑ Qualification Types and Establishments

❑ 54 Create Qualification Types

❑ 55 Create Establishments

❑ Assessment and Appraisal

❑ 56 Create Assessment Templates

❑ 57 Create Appraisal Questionnaires

❑ 58 Create Appraisal Templates

1 – 18 Oracle HRMS Implementation Guide

Specific Business Functions Checklist

❑ Absence Management /Accruals of Paid Time Off (PTO)

❑ 59 Define an Absence Element to Record Time Taken

❑ 60 Define Element Links for the Absence Element

❑ 61 Define the Accrual Plan with an Absence Element

❑ 62 Define Element Links for the Accrual Elements

❑ 63 Define Absence Reasons

❑ 64 Associate an Absence Type with the Absence Element

❑ Human Resource Budgets

❑ 65 Define QuickCode Values

❑ 66 Define Period Types

❑ 67 Define Budgetary Calendars

❑ 68 Define Budgets

❑ Evaluation Systems

❑ 69 Define Evaluation Types

❑ 70 Define Valid Grades for Jobs

❑ 71 Define Valid Grades for Positions

❑ Requirements Matching

❑ 72 Define Requirements for Jobs

❑ 73 Define Requirements for Positions

❑ Career and Succession Planning

❑ 74 Modelling Career and Succession Planning Based on
Jobs

❑ 75 Modelling Career and Succession Planning Based on
Positions

1 – 19Planning Your Implementation

Control Checklist

❑ Define Reports and Generate Standard Letters

❑ 76 Write New Reports

❑ 77 Register Reports as Concurrent Programs with SRS

❑ 78 Define Report Sets

❑ 79 Create Standard Letters for use with Concurrent
Processing

❑ 80 Create Standard Letters for use with Application Data
Export (ADE)

❑ 81 Create Standard Letters for use with Microsoft Word

❑ Define User Security

❑ 82 Create Oracle IDs

❑ 83 Register Oracle IDs

❑ 84 Define Security Profiles

❑ 85 Run Generate Secure User Process

❑ 86 Run Security List Maintenance Process

❑ 87 Define Form Customizations

❑ 88 Define Task Flow Nodes

❑ 89 Define Task Flows

❑ 90 Define Menu Functions

❑ 91 Define Menus

❑ 92 Define Report Security Groups

❑ 93 Define Responsibilities

❑ 94 Define Application Users

❑ 95 Define HR User Profile Options

❑ Define Audit Requirements

❑ 96 Estimate file sizing and file management needs

❑ 97 Define Audit Installations

❑ 98 Define Audit Tables and Columns

1 – 20 Oracle HRMS Implementation Guide

❑ 99 Define Audit Groups

❑ 100 Activate AuditTrail Update Tables Process

C H A P T E R

2
T

☞

2 – 1Implementation Steps

Implementation Steps

his chapter expands the implementation steps in the checklist and
provides a summary of what you can set up in each functional area in
the sequence that you should follow. Every step gives you the names
of any forms or processes that you should use for that step.

Detailed task information for each step is included in the Oracle Human
Resources User’s Guide and the Oracle Payroll User’s Guide. You can
easily access this information using the online help system.

Attention: If you try to implement functionality in Oracle
HRMS before you are familiar with it you may make mistakes.
Before you do each step you should read any topic information
that is referenced.

Step 1

2 – 2 Oracle HRMS Implementation Guide

Implementation Steps: Basic Administration

Note: Refer to the Post Install Steps: page C – 2 to see any
steps you must perform before you implement Oracle HRMS.

The administration steps are usually performed by the System
Administrator. Sign on to the system using your System Administrator
username and password. Contact your DBA if you do not know this
information.

Define Key Flexfields

See:Appendix B Key and Descriptive Flexfields,
Costing in Oracle HRMS,
(Oracle Payroll or Human Resources User’s Guide)

Specify Key Flexfield Structures for Business Group

There are 5 Key Flexfield Structures you must define before you can
define a Business Group in Oracle HRMS. These are:

• Job

• Position

• Grade

• People Group

• Cost Allocation

Before you begin your implementation of these 5 key flexfields you
must clearly specify your requirements. This specification must
include the following details for each key flexfield:

• The Structure Name and the number of Segments

• The Flexfield Segment Names, Order, Validation Options and
Qualifiers

• The Flexfield Value Sets to be used and any lists of values

The sequence which you follow to implement each Flexfield is:

• Define Flexfield Value Sets

• Define Key Flexfield Segments

• Define Flexfield Segment Values

• Define Key Flexfield Cross–Validation Rules

• Define Key Flexfield Aliases

• Freeze and Compile Key Flexfield Structure

Step 2

2 – 3Implementation Steps

When you have completed the definition of a key flexfield you can run
a special concurrent process to generate Database Items for the
individual segments of the Flexfield. This applies to your Job, Position,
Grade and People Group Key Flexfields only.

• Run Create Key Flexfield Database Items process

Define Job Flexfield

After you have specified your requirements to take best advantage of
the flexibility of Oracle HRMS for recording and reporting Job
information in your enterprise, the implementation sequence which
you follow is:

1. Define Job Flexfield Value Sets

If you want to validate the values which a user can enter for any
segment you must define a specific Value Set.

The attributes of the Value Set will control the type of values that
can be entered, and how many characters each segment can hold.
The attributes of the Value Set will also control how the values are
to be validated.

Value Sets can be shared by different segments of the same
flexfield, or by segments of any other flexfield.

Define Value Set

2. Define Job Flexfield Segments

Define a structure for your Job Flexfield which contains the
segments you want to use for your Business Group. You will use
this structure to create your unique Job Names in the Job window.

You must enter Yes in the Allow Dynamic Inserts field. If you enter
No, you will not be able to create new job name combinations in
the Job window.

Note: You do not need to use a Value Set to validate a
segment. If you do not specify a Value Set then a user can enter
any alphanumeric value up to a limit of 150 characters.

Define Key Flexfield Segments

3. Define Job Flexfield Segment Values

If you have chosen Independent or Dependent validation for a
Value Set used by a Job Flexfield Segment, you must define your
list of valid values for the Value Set.

Define Segment Values

Step 3

2 – 4 Oracle HRMS Implementation Guide

4. Define Job Flexfield Cross Validation Rules

Define any Cross Validation Rules you want to use to control the
combinations of segment values which a user can enter.

You define Rules to Include or Exclude combinations of segment
values. For each segment, you can define a Low to High range of
values.

Define Cross–Validation Rules

5. Define Job Flexfield Aliases

Define Aliases for common combinations of segment values if you
want to provide these as default options.

Define Shorthand Aliases

6. Freeze and Compile Your Job Flexfield Structure

You are now ready to freeze your Job Flexfield definition. Navigate
to the Define Key Flexfield Segments window. Enter Yes in the
Freeze Flexfield Definition field and save your changes. Oracle
Human Resource Management Systems now freezes and compiles
your Job Flexfield definition. Compiling the flexfield definition
enables the Job Flexfield window with the defaults, values and
rules that you have defined.

Define Key Flexfield Segments

7. Run Create Key Flexfield Database Items process

If you want to make use of the individual segments of the flexfield
as separate Database Items you can run this concurrent process
from the Submit a New Request window. The only parameter
associated with this process is the Key Flexfield Name.

Submit a New Request

Define Position Flexfield

After you have specified your requirements to take best advantage of
the flexibility of Oracle Human Resource Management Systems for
recording and reporting Position information in your enterprise, the
implementation sequence which you follow is:

1. Define Position Flexfield Value Sets

2 – 5Implementation Steps

If you want to validate the values which a user can enter for any
segment you must define a specific Value Set.

The attributes of the Value Set will control the type of values that
can be entered, and how many characters each segment can hold.
The attributes of the Value Set will also control how the values are
to be validated.

Value Sets can be shared by different segments of the same
flexfield, or by segments of any other flexfield.

Define Value Set

2. Define Position Flexfield Segments

Define a structure for your Position Flexfield which contains the
segments you want to use for your Business Group. You will use
this structure to create your unique Position Names in the Position
window.

You must enter Yes in the Allow Dynamic Inserts field. If you enter
No, you will not be able to create new position name combinations
in the Position window.

Note: You do not need to use a Value Set to validate a
segment. If you do not specify a Value Set then a user can enter
any alphanumeric value up to a limit of 150 characters.

Define Key Flexfield Segments

3. Define Position Flexfield Segment Values

If you have chosen Independent or Dependent validation for a
Value Set used by a Position Flexfield Segment, you must define
your list of valid values for the Value Set.

Define Segment Values

4. Define Position Flexfield Cross Validation Rules

Define any Cross Validation Rules you want to use to control the
combinations of segment values which a user can enter.

You define Rules to Include or Exclude combinations of segment
values. For each segment, you can define a Low to High range of
values.

Define Cross–Validation Rule

Step 4

2 – 6 Oracle HRMS Implementation Guide

5. Define Position Flexfield Aliases

Define Aliases for common combinations of segment values if you
want to provide these as default options.

Define Shorthand Aliases

6. Freeze and Compile Your Position Flexfield Structure

You are now ready to freeze your Position Flexfield definition.
Navigate to the Define Key Flexfield Segments window. Enter Yes
in the Freeze Flexfield Definition field and save your changes.
Oracle Human Resource Management Systems now freezes and
compiles your Position Flexfield definition. Compiling the flexfield
definition enables the Position Flexfield window with the defaults,
values and rules that you have defined.

Define Key Flexfield Segments

7. Run Create Key Flexfield Database Items process

If you want to make use of the individual segments of the flexfield
as separate Database Items you can run this concurrent process
from the Submit a New Request window. The only parameter
associated with this process is the Key Flexfield Name.

Submit a New Request

Define Grade Flexfield

After you have specified your requirements to take best advantage of
the flexibility of Oracle Human Resource Management Systems for
recording and reporting Grade information in your enterprise, the
implementation sequence which you follow is:

1. Define Grade Flexfield Value Sets

If you want to validate the values which a user can enter for any
segment you must define a specific Value Set.

The attributes of the Value Set will control the type of values that
can be entered, and how many characters each segment can hold.
The attributes of the Value Set will also control how the values are
to be validated.

Value Sets can be shared by different segments of the same
flexfield, or by segments of any other flexfield.

Define Value Set

2 – 7Implementation Steps

2. Define Grade Flexfield Segments

Define a structure for your Grade Flexfield which contains the
segments you want to use for your Business Group. You will use
this structure to create your unique Grade Names in the Grades
window.

You must enter Yes in the Allow Dynamic Inserts field. If you enter
No, you will not be able to create new grade name combinations in
the Grades window.

Note: You do not need to use a Value Set to validate a
segment. If you do not specify a Value Set then a user can enter
any alphanumeric value up to a limit of 150 characters.

Define Key Flexfield Segments

3. Define Grade Flexfield Segment Values

If you have chosen Independent or Dependent validation for a
Value Set used by a Grade Flexfield Segment, you must define your
list of valid values for the Value Set.

Define Segment Values

4. Define Grade Flexfield Cross Validation Rules

Define any Cross Validation Rules you want to use to control the
combinations of segment values which a user can enter.

You define Rules to Include or Exclude combinations of segment
values. For each segment, you can define a Low to High range of
values.

Define Cross–Validation Rule

5. Define Grade Flexfield Aliases

Define Aliases for common combinations of segment values if you
want to provide these as default options.

Define Shorthand Aliases

6. Freeze and Compile Your Grade Flexfield Structure

You are now ready to freeze your Grade Flexfield definition.
Navigate to the Define Key Flexfield Segments window. Enter Yes
in the Freeze Flexfield Definition field and save your changes.

Step 5

2 – 8 Oracle HRMS Implementation Guide

Oracle Human Resource Management Systems now freezes and
compiles your Grade Flexfield definition. Compiling the flexfield
definition enables the Grade Flexfield window with the defaults,
values and rules that you have defined.

Define Key Flexfield Segments

7. Run Create Key Flexfield Database Items process

If you want to make use of the individual segments of the flexfield
as separate Database Items you can run this concurrent process
from the Submit a New Request window. The only parameter
associated with this process is the Key Flexfield Name.

Submit a New Request

Define People Group Flexfield

People Group information is associated with employee assignments
and is used to identify special groups of employees in your enterprise,
such as members of a union.

Warning: In Oracle HRMS you must define at least one
segment for the People Group Key Flexfield.

If you do not, you will not be able to use the Assignment
window for employees or applicants.

After you have specified your requirements to take best advantage of
the flexibility of Oracle HRMS for recording and reporting People
Group information in your enterprise, the implementation sequence
you follow is:

1. Define People Group Flexfield Value Sets

If you want to validate the values which a user can enter for any
segment you must define a specific Value Set.

The attributes of the Value Set will control the type of values that
can be entered, and how many characters each segment can hold.
The attributes of the Value Set will also control how the values are
to be validated.

Value Sets can be shared by different segments of the same
flexfield, or by segments of any other flexfield.

Define Value Set

2. Define People Group Flexfield Segments

2 – 9Implementation Steps

Define a structure for your People Group Flexfield which contains
the segments you want to use for your Business Group. You will
use this structure to enter People Group details in the Assignment
window.

You must enter Yes in the Allow Dynamic Inserts field. If you enter
No, you will not be able to enter People Group information in the
Assignment window.

Note: You do not need to use a Value Set to validate a
segment. If you do not specify a Value Set then a user can enter
any alphanumeric value up to a limit of 150 characters.

Define Key Flexfield Segments

3. Define People Group Flexfield Segment Values

If you have chosen Independent or Dependent validation for a
Value Set used by a People Group Flexfield Segment, you must
define your list of valid values for the Value Set.

Define Segment Values

4. Define People Group Flexfield Cross Validation Rules

Define any Cross Validation Rules you want to use to control the
combinations of segment values which a user can enter.

You define Rules to Include or Exclude combinations of segment
values. For each segment, you can define a Low to High range of
values.

Define Cross–Validation Rule

5. Define People Group Flexfield Aliases

Define Aliases for common combinations of segment values if you
want to provide these as default options.

Define Shorthand Aliases

6. Freeze and Compile Your People Group Flexfield Structure

You are now ready to freeze your People Group Flexfield
definition. Navigate to the Define Key Flexfield Segments window.
Enter Yes in the Freeze Flexfield Definition field and save your
changes. Oracle Human Resource Management Systems now
freezes and compiles your People Group Flexfield definition.

Step 6

2 – 10 Oracle HRMS Implementation Guide

Compiling the flexfield definition enables the People Group
Flexfield window with the defaults, values and rules that you have
defined.

Define Key Flexfield Segments

7. Run Create Key Flexfield Database Items process

If you want to make use of the individual segments of the flexfield
as separate Database Items you can run this concurrent process
from the Submit a New Request window. The only parameter
associated with this process is the Key Flexfield Name.

Submit a New Request

Define Cost Allocation Flexfield

Cost Allocation information is normally used to record the details of
employee costing associated with payroll results. If you have installed
Oracle Payroll, you can accumulate the costs associated with your
payroll results and transfer these to your General Ledger system. If
you have not installed Oracle Payroll you can use the costing flexfield
to enter your cost allocation information.

See: Costing in Oracle HRMS,
(Oracle Payroll or Oracle Human Resources User’s Guide)

Warning: In Oracle HRMS you must define at least one
segment for the Cost Allocation Key Flexfield. If you do not,
you will experience problems using forms with the flexfield
window.

After you have specified your requirements to take best advantage of
the flexibility for recording and reporting costing information in your
enterprise, the implementation sequence which you follow is:

1. Define Cost Allocation Flexfield Value Sets

If you want to validate the values which a user can enter for any
segment you must define a specific Value Set.

The attributes of the Value Set will control the type of values that
can be entered, and how many characters each segment can hold.
The attributes of the Value Set will also control how the values are
to be validated.

Value Sets can be shared by different segments of the same
flexfield, or by segments of any other flexfield.

Define Value Set

2 – 11Implementation Steps

2. Define Cost Allocation Flexfield Segments and Qualifiers

Define a structure for your Cost Allocation Flexfield which
contains the segments you want to use for your Business Group.
You will use this structure to enter your payroll costing details in
Oracle HRMS.

You must enter Yes in the Allow Dynamic Inserts field. If you enter
No, you will not be able to enter Costing details anywhere on the
system.

Note: You do not need to use a Value Set to validate a
segment. If you do not specify a Value Set then a user can enter
any alphanumeric value up to a limit of 150 characters.

Define Key Flexfield Segments

The only key flexfield in Oracle HRMS which makes use of
Qualifiers is the Cost Allocation Flexfield. You use Segment
Qualifiers to control the level at which costing information can be
entered to the system. Each Qualifier determines the level at which
costing information can be entered. There are six possible choices
for each segment:

Qualifier Effect on window

Payroll Enter segment values in the Payroll window.

Link Enter segment values in the Element Link window.

Balancing Enter balancing segment values in the Element Link window.

Organization Enter segment values in the Costing Information window for the
Organization.

Assignment Enter segment values in the Costing window for the assignment.

Entry Enter segment values in the Element Entries window.

Table 2 – 1

3. Define Cost Allocation Flexfield Segment Values

If you have chosen Independent or Dependent validation for a
Value Set used by a Cost Allocation Flexfield Segment, you must
define your list of valid values for the Value Set.

Define Segment Values

4. Define Cost Allocation Flexfield Cross Validation Rules

Step 7

2 – 12 Oracle HRMS Implementation Guide

Define any Cross Validation Rules you want to use to control the
combinations of segment values which a user can enter.

You define Rules to Include or Exclude combinations of segment
values. For each segment, you can define a Low to High range of
values.

Define Cross–Validation Rule

5. Define Cost Allocation Flexfield Aliases

Define Aliases for common combinations of segment values if you
want to provide these as default options.

Define Shorthand Aliases

6. Freeze and Compile Your Cost Allocation Flexfield Structure

You are now ready to freeze your Cost Allocation Flexfield
definition. Navigate to the Define Key Flexfield Segments window.
Enter Yes in the Freeze Flexfield Definition field and save your
changes. Oracle HRMS now freezes and compiles your Cost
Allocation Flexfield definition. Compiling the flexfield definition
enables the Cost Allocation Flexfield window with the defaults,
values and rules that you have defined.

Define Key Flexfield Segments

Define Descriptive Flexfields

See: User Definable Descriptive Flexfields,
(Oracle Payroll or Oracle Human Resources User’s Guide)

Specify Descriptive Flexfield Contexts for Additional Details

Use descriptive flexfields in Oracle HRMS to define your own
additional fields to the standard windows. For example, if you want to
record Driver’s License Number for any person you can define a segment
of the Additional Personal Details flexfield to record this additional
information.

After this, you can enter a Driver’s License Number in the Person
window after the standard Personal details.

Warning: The descriptive flexfield is defined at the level of the
base–table. This means that any window which uses the
base–table will display the same descriptive flexfield segments.

☞

Step 8

2 – 13Implementation Steps

In this example, the Driver’s License Number will appear in the
Contact window, as well as the Person window.

Before you begin to implement any descriptive flexfield you must
clearly specify your requirements. You must include the following
details:

• The Context and the number of Segments for each Context

• The Flexfield Segment Names, Order and Validation Options

• The Flexfield Value Sets to be used and any lists of values

You can define two types of descriptive flexfield Segments:

• Global Segments

Segments always appear in the flexfield window.

• Context–Sensitive Segments

Segments appear only when a defined context exists. You can
prompt a user to enter the context, or you can provide the
context automatically from a reference field in the same region.

Suggestion: Often you can choose between using a code, a
’base–table’ field, and a field which contains a meaning or
description. You should always use base–table fields as
reference fields for Context–Sensitive segments. These fields
usually have the same name as the column in the base table.

Some of the Standard Reports supplied with the system include
descriptive segment values. If you follow this suggestion,
these reports will be able to use the prompts you define –
otherwise they will apply a generic prompt to the data.

Attention: If you want to include descriptive flexfield
Segment Values in the list of Values for DateTrack History you
will need to modify the DateTrack History Views that are
supplied with the system.

See: Oracle HRMS Technical Reference Manual

Define Descriptive Flexfields

The sequence which you follow to implement each descriptive flexfield
is:

• Register any field in the same block of the window as the
Context Reference Field. This field will supply the context for
any context sensitive segments.

• Define Flexfield Values Sets

• Define Descriptive Flexfield Segments

2 – 14 Oracle HRMS Implementation Guide

• Define Flexfield Segment Values

• Run the Create Descriptive Flexfields Database Items Process

The sub–steps that follow show you how to perform all these steps.

1. Register a Reference Field

You must use the Application Developer Responsibility to update the
definition of the descriptive flexfield.

Register Descriptive Flexfields

• Query the flexfield you want to update.

• Navigate to the Reference Fields block and enter the name of the
Reference Field you want to use.

• Save your choices.

Warning: Some descriptive flexfields are predefined and
protected. These are used to deal with specific legislative and
reporting needs of individual countries or industries.

Do not attempt to alter the definitions of these protected
flexfields. These definitions are a fundamental part of Oracle
HRMS. Any change to them may lead to errors in the
operating of the system.

It is possible that Oracle HRMS will use other segments of
these flexfields in the future. Therefore, do not add segments
to any protected flexfield. This can affect your ability to
upgrade your system in the future.

2. Define Flexfield Value Sets

If you want to validate the values which a user can enter for any
segment you must define a specific Value Set.

• The attributes of the Value Set will control the type of values that
can be entered, and how many characters each segment can
hold.

• The attributes of the Value Set will also control how the values
are to be validated.

Define Value Set

Note: Value Sets can be shared by different segments of the
same flexfield, or by segments of any other flexfield.

3. Define Descriptive Flexfield Segments.

2 – 15Implementation Steps

Define the segments of your descriptive flexfield for each Context.

• Use Global Context to define any segments which will always
appear in the flexfield window.

• Enter your own Context Name to define segments which will
appear only for that context.

Freeze and compile your descriptive flexfield definitions.

Define Descriptive Flexfield Segments

Note: You do not need to use a Value Set to validate a
segment. If you do not specify a Value Set then a user can enter
any alphanumeric value up to a limit of 150 characters.

Warning: If you define a segment as ’Required’, it will be
required for every record on the system. There are two
common problems you can encounter:

– If you define a ’Required’ segment after you have entered
records: Existing records will not have any value in this
segment and the system will prompt you with an error
when you query an existing record.

– Some descriptive flexfields are used in more than one block.
For example, any ’Required’ segments for Additional
Personal Details must be entered for every Employee,
Applicant or Contact.

4. Define Flexfield Segment Values

If you have chosen Independent validation for a Value Set used by
a descriptive flexfield Segment, you must define a list of valid
values for the Value Set.

Define Segment Values

5. Run Create Descriptive Flexfields Database Items Process

When you have defined your descriptive flexfields you should run
the Create Descriptive Flexfields Database Items process to create
database items for your non–context–sensitive descriptive flexfield
segments.

Submit a New Request

You should rerun this process whenever you create additional
non–context–sensitive descriptive flexfield segments.

2 – 16 Oracle HRMS Implementation Guide

Note: If you require Database Items for Context Sensitive
flexfield segments you should consult your Oracle Support
Representative for full details of how to add other Database
Items.

Step 9

Step 10

Step 11

2 – 17Implementation Steps

Implementation Steps: Administration

Enable Currencies

This is a task for your System Administrator.

All major currencies are predefined with Oracle Applications. The
codes used are the ISO standard codes for currencies. However, you
must enable the specific currencies you want to use for your base
currency, or for any compensation and benefit information.

The ’base currency’ is the default currency used by your Business
Group.

Currencies

Note: Extended precision is not used in Oracle HRMS. You
can control the precision in any calculation using a formula.

Define ’View All’ HRMS User

This is a task for your System Administrator.

Before you can access any of the HRMS forms you must create a new
Application User with access to one of the default Responsibilities
supplied with the system.

Users

1. Define a new Username and Password.

2. Pick the default Responsibility with a Start Date and save your
choice.

Note: After you have completed this step you can sign on and
use the new responsibility to run the Grant Permissions to
Roles process, define QuickCodes, Locations and your new
Business Group.

Define QuickCode Values

See: QuickCodes, (Oracle Payroll or Oracle Human Resources User’s Guide)

QuickCodes supply many of the lists of values in Oracle HRMS. For
example, both Title and Nationality in the Person window use
QuickCodes.

Some QuickCode Types have been predefined. You only need to define
values for these types.

QuickCode Values are the valid entries that appear in the list of values.
They make choosing information quick and easy, and they ensure that
users enter only valid data into Oracle HRMS.

2 – 18 Oracle HRMS Implementation Guide

You can add new QuickCodes Values at any time. You can set the
Enable Flag for a Value to No, so that it will no longer appear in the list
of values, or you can use the Start and End Dates to control when a
value will appear in a list.

Suggestion: You should use Start and End Dates to control
when values appear in a list. Using DateTrack you can change
your effective date to view and update information at any
point in time.

Also, when you add or change QuickCode Values you should
sign on again to use the new value.

QuickCodes

Step 12

Step 13

2 – 19Implementation Steps

Implementation Steps: Application Data Export (ADE) and Hierarchy
Diagrammers

You can set up Application Data Export (ADE) to export information
from your Oracle HRMS database to other applications.

You can also graphically create and maintain your Organisation and
Position hierarchies, known as Hierarchy diagrammers. Organisation
and Position hierarchies reflect reporting lines in your enterprise. The
Hierarchy diagrammers are launched within Oracle HRMS from
Application Data Export (ADE). You must have ADE installed to use
them.

Set Up ADE

You can use ADE to launch another application within Oracle HRMS.
Applications are invoked and run in another window on your desktop.

You can invoke ADE in three different ways:

• Standalone mode. ADE is invoked from your PC desktop and
run independently, without accessing your application.

• Application mode. ADE is invoked from a button on your
application toolbar and run within your application.

• Letter request mode. ADE is invoked from the Merge button in
the Request Letter window in Oracle HRMS or Oracle Training
Administration.

ADE comes with its own set of documentation and online help.

See: Setup Overview,
Oracle Application Data Export User’s Guide.

Control Access to the Hierarchy Diagrammers

If you want to graphically create and maintain your Organisation and
Position hierarchies, you must control access to the Hierarchy
diagrammers.

The Hierarchy diagrammers come with their own set of documentation
and online help.

Note: We provide online help only for this version of the
Hierarchy diagrammers. Refer to the online help to enable you
to control access to the Hierarchy diagrammers.

Step 14

Step 15

2 – 20 Oracle HRMS Implementation Guide

Implementation Steps: Work Structures

See: Work Structures, (Oracle Payroll or Oracle Human Resources User’s
Guide)

Define Organization Structures

Define Locations

Use this window to define each work location used by your enterprise.
You define each location and address once only. This saves you time if
you have several organizations with the same address.

Location

This window contains information that is shared with users of other
Oracle Applications, such as, ’Inventory Organization’.

Define Business Group

A Business Group is a special class of organization. Every Business
Group can have its own set of default values, with its own internal
organizations, grades, jobs, positions, payrolls, employees, applicants,
compensations and benefits.

Note: A ’Setup’ Business Group is supplied with Oracle
HRMS. This business group is used by the default
responsibility. You can use this business group with all of its
default definitions as the starting point for your own Business
Group, or you can define other business groups to meet your
own needs.

Organization

• Enter Business Group identification information and enter the
appropriate key flexfield structures.

• Enter any defaults that apply to the whole business group

• When you save a new business group the system will generate a
’view all’ security profile for this new group. This is linked to
the base–user of the Oracle HRMS tables.

Warning: If you intend to process payrolls in your business
group it is essential that you select a valid legislation code and
base currency. The system uses these values to copy in the data
it needs to comply with your payroll legislative requirements.

Step 16

Step 17

2 – 21Implementation Steps

You cannot change these definitions after they have been saved.

Create ’View All’ Access to the Business Group

This is a task for your System Administrator. If you are using the Setup
Business Group supplied with Oracle HRMS, you can omit this step.

See: Security in Oracle HRMS, (Oracle Payroll or Oracle Human Resources
User’s Guide)

System Profile Values

1. Select the default responsibility.

2. Query the HR:Security Profile option and enter the name of the
view–all security profile for your Business Group. By default this
is the name of your Business Group.

Warning: If you define a new Business Group you must
change the user profile option HR:Security Profile for your
default Responsibility to point at the view–all security profile
for your new group.

If you use more than one Business Group you must set up a
separate responsibility and user profile for each group.

Define Organizations

Organizations are the basic work structure of any enterprise. They
usually represent the functional, management, or reporting groups
which exist within a Business Group.

In addition to these internal organizations you can define other
organizations for tax and government reporting purposes, or for third
party payments.

Suggestion: When you install Oracle HRMS you will find a
predefined list of Organization Classifications. These values
are defined for the QuickCode Type ORG_CLASS, and provide
options for all users of the Organization window.

You can disable the QuickCode values you will not use in your
implementation in the QuickCodes window.

Organization

• Enter a unique name for every organization in the business
group.

• Enter classifications as appropriate

Step 18

Step 19

2 – 22 Oracle HRMS Implementation Guide

– Use HR Organization if you want to include this in any
employee assignment

– Enter default Work Schedule details to prorate pay for
employees who do not submit timecards for payroll.

• For Cost Center reporting you can enable a segment of the Cost
Allocation flexfield with a qualifier of Organization.

If you intend loading historic assignment details into Oracle HRMS,
make sure you enter valid dates. You cannot assign an employee to an
organization before the start date of the organization.

Suggestion: Consider using a fixed date as a default for your
initial setup, for example, 01–JAN–1901. This will simplify
your data–entry.

Define Organization Hierarchies

A Business Group can include any number of organizations. You can
represent your management or other reporting structures by arranging
these organizations into reporting hierarchies. An organization can
belong to any number of hierarchies, but it can only appear once in any
hierarchy.

Organization Hierarchy

Suggestion: You may find it easier to define the primary
reporting hierarchy using the top organization and one other.
Then you can add organizations into the hierarchy when you
make your definitions in the Organization window.

Organization reporting lines change often and you can generate a new
version of a hierarchy at any time with start and end dates. In this way,
you can keep the history of your organizational changes, and you can
also use this feature to help you plan future changes.

When you use DateTrack you see the ’current’ hierarchy for your
effective date.

Define Roles

Oracle HRMS lets you define the roles that employees perform as Jobs
or Positions, or a combination of both.

Define Jobs

Jobs can be generic or specific roles within your enterprise. By
definition they are independent of organization structures and are
generally used where there is flexibility in employee roles.

Job

Step 20

Step 21

2 – 23Implementation Steps

• A ’Job Name’ is a unique combination of values in the segments
of the job flexfield structure that you have linked to your
Business Group.

If you intend loading historic assignment details into Oracle HRMS,
make sure you enter valid start dates for your jobs.

You cannot assign an employee to a job before the start date of the job.

Suggestion: Consider using a fixed date as a default for your
initial setup, for example, 01–JAN–1901. This simplifies your
data entry.

Define Positions

In Oracle HRMS a position is a job within an organization. Positions
are generally used where roles are fixed within a single organization. If
you decide to use positions you may want to use jobs to identify the
common job groups of individual positions.

Position

• You must define jobs before you define positions.

• A ’Position Name’ is a unique combination of values in the
segments of the position flexfield structure that you have linked
to your Business Group.

• If you intend loading historic assignment details into Oracle
HRMS, make sure you enter valid start dates for your positions.

• You cannot assign an employee to a position before the start date
of the position.

Suggestion: Consider using a fixed date as a default for your
initial setup, for example, 01–JAN–1901. This will simplify
your data–entry.

Define Primary Position Reporting Hierarchy

You can structure positions into hierarchies to show detailed position
reporting structures. You can also use position hierarchies to define
security profile groups within your enterprise, or to define career
progression paths for positions.

Each position can belong to any number of hierarchies at the same
time, but can only appear once in any hierarchy.

You should define the primary reporting hierarchy as part of your
implementation of positions. The first version of your hierarchy should
show your reporting structures when you implement Oracle HR.

Position Hierarchy

Step 22

☞

Step 23

2 – 24 Oracle HRMS Implementation Guide

You can generate a new version of a position hierarchy at any time with
start and end dates. This allows you to keep the history of your
reporting structures, and to use the system to plan future changes. The
dates you enter are used to identify the ’current’ hierarchy for all
reporting and inquiry purposes. When you use DateTrack you see the
’current’ hierarchy.

Suggestion: You may find it easier to define the Hierarchy
using the top position and one other. Then you can add other
positions into the hierarchy when you make your definitions in
the Position window.

You always build a new hierarchy from the top down.

Define Grade Related Information

See:

Representing Grade Structures,
Grade Relationships to Compensation and Benefits,
(Oracle Payroll or Oracle Human Resources User’s Guide)

Define Grades

Grades show the relative status of employees within an enterprise and
are often used as the basis for eligibility to Compensation and Benefits.

The Grade Name is a unique combination of values in the segments of
the job flexfield structure that you have linked to your Business Group.

You can define Valid Grades for jobs or positions which will be used to
cross check the details a user enters as part of the Employee Assignment.

Grades

Attention: If you intend loading historic assignment details
into Oracle HRMS, make sure you enter valid start dates for
your grades. You cannot assign an employee to a grade before
the start date of the grade.

Suggestion: Consider using a fixed date as a default for your
initial setup, for example, 01–JAN–1901. This will simplify
your data–entry.

Define Grade Rates

See: Relating Pay to Grades Directly: Using Grade Rates,
(Oracle Payroll or Oracle Human Resources User’s Guide)

Grade rates are normally used to show valid rates of pay which are
directly related to grades. These can be expressed as a fixed value, or
as a range of values.

☞

Step 24

2 – 25Implementation Steps

When you define a grade rate you are setting up a table of values. You
can use these values with an employee’s grade to control, or compare,
the salary of the employee.

• You can use grade rate values in a formula to validate the input
value of any element for an employee.

• Grade rate values are used to calculate comparatio values in the
View Employee Grade Comparatio window and in the Salary
Administration window for salary validation.

Grade Rate

Attention: Grade rate values are DateTracked and you must
ensure you use the correct date to create your initial set of
values.

If you intend loading historic grade rate details into Oracle
HRMS, make sure you enter the correct start date for all your
history.

Define Pay Scales

See: Relating Pay to Grades Indirectly: Using Pay Scales,
(Oracle Payroll or Oracle Human Resources User’s Guide)

Pay scales are used commonly in government and regulated or
unionized enterprises where actual values of pay are defined as a ’pay
scale’, a ’schedule’, or a ’spine’. Characteristics of this functionality are:

• A single scale of points and values is used to establish the actual
pay for a grade group

• Each point in the pay scale has a single value

• Grades can have a number of distinct steps, with each step given
a single point in the pay scale

• An employee assignment to a grade includes a point, or step
value, and the point value determines the actual pay of the
employee

The first step in this process is to define the Pay Scales you want to use.
You can have any number of different pay scales in Oracle HRMS.
Each scale has its own set of points which may be characters or
numbers.

Pay Scale

In this environment it is common to find an automatic incrementing of
employee pay based on length of service or on a fixed date. When you

Step 25

☞

Step 26

☞

2 – 26 Oracle HRMS Implementation Guide

define the Pay Scale you define the points in the incrementing sequence
you want to use.

A predefined incrementing process is supplied with Oracle HRMS.
This will automatically increment step and point values for employees
using a fixed date.

Note: You can modify the process to meet your specific
business rules for incrementing.

Define Progression Point Values

You define a pay value for each point on the pay scale. These values
are DateTracked.

Scale Rate

Attention: You must use the correct date to create your initial
set of values. If you intend loading historic pay scale values
into Oracle HRMS, you must use correct dates for all your
history.

Define Grade Scales

Define the valid points for each grade as a numeric sequence of steps.

A grade can have any number of steps. Steps do not always have the
same interval as the pay scale points. For example, you may have a
pay scale with points from 1 to 10, and a Grade which has 5 steps with
points in the sequence 3, 5, 7, 8, and 9.

Grade Scale

Note: The steps you define are used in the auto–incrementing
process which will increment an employee’s grade point up to
a ceiling which you can define for the grade. Points above the
ceiling can be entered by users in the Grade Step Placement
window.

Define Payroll Information

See: Representing Payrolls, (Oracle Payroll or Oracle Human Resources
User’s Guide)

In Oracle HRMS payrolls define groups of employees who share a
common frequency of payroll processing.

Attention: You must include a payroll in the employee
assignment before you can make nonrecurring entries of any

Step 27

Step 28

Step 29

2 – 27Implementation Steps

element for an employee. Nonrecurring entries are only valid
for one payroll period.

Define Payment Methods

Standard categories of payment methods such as Cheque and Direct
Deposit are predefined with your system. You can define your own
names for each of these methods, and if you have installed Oracle
Payroll you can also use these methods to control payments to your
employees.

Organizational Payment Method

• You can define multiple payment methods for the same category.
For example, you might have different source bank accounts for
payments.

Note: After you define your Payment Methods you can enter
the available types for each payroll you define.

After you assign an employee to a payroll you can enter
payment details for each employee in the Personal Payment
Method window. For example, for employees who work
overseas, you may want to record more than one payment
method with different percentages, and currencies.

Define Consolidation Set

When you define your Business Group the system will automatically
generate a default Consolidation Set. If you have not installed Oracle
Payroll you can skip this step.

Consolidation sets are used by Oracle Payroll where you want to gather
the results from different payroll runs into a single set for reporting or
transfer to other systems. You can define any number of additional
consolidation sets.

Consolidation Sets

Define Payroll Groups

You define your own payroll groups to meet your business needs for
processing and payment. For example, you may have a monthly and a
weekly payroll but you might want to manage and process your
weekly payroll by plant location. In this case you could define one
monthly payroll and two weekly payrolls, one for each plant.

Payroll

2 – 28 Oracle HRMS Implementation Guide

• Select the Period Type and an End Date for the First Period

• Enter the number of years you want to generate

– You can increase this number when you need to generate
new calendar years

• The system automatically generates your payroll calendar with
the correct start and end dates for each pay period and year.
These dates are correct for the legislation of your Business Group
and you can modify the generated dates to take account of any
special holidays.

• Cut–off and payment dates are for information and reference
only. They do not determine when your payroll is processed or
when employees are paid. You control this when you set up and
administer your payroll processing.

• Enter all valid payment methods for employees on each payroll.
The method must be valid for the payroll before you can use it
for an employee.

Note: The payroll calendar is different from the budgetary
calendar in Oracle HR. You define your budgetary calendar for
headcount or staffing budgets.

Step 30

Step 31

Step 32

2 – 29Implementation Steps

Implementation Steps: Compensation and Benefits

Oracle HRMS uses elements to represent all types of earnings,
deductions and benefits. Elements hold the information you need to
manage compensation and benefit administration.

Warning: If you intend to process an element in a payroll run
you MUST plan all of your setup before you begin to define
the element. This includes the element attributes, processing
rules, input values, formulas, results and additional balances
you need for accurate payroll processing and payment.

See: Introducing Elements, (Oracle Payroll or Oracle Human Resources
User’s Guide)

Define Input Value Validation

Define New QuickCode Types

You define new QuickCode Types to create additional lists of values to
validate any element input value with a character datatype.

QuickCode Types

Note: You can also use QuickCode Types to validate a flexfield
segment. Use the Table Validation option for the Value Set and
use the Lookups table as the source of your list.

Define QuickCode Values

You add new QuickCodes Values at any time. You can set the Enable
Flag for a value to ’No’, so that value will no longer appear in any list
of values.

Suggestion: Use Start and End Dates to control when values
appear in a list. With DateTrack you change your effective date
to view and update information at any point in time. If you set
the Enable Flag to ’No‘ the value is never valid.

When you add or change QuickCode Values you should sign on again
to use the new value.

QuickCodes

Define User Tables

See: User–Defined Tables in Oracle HRMS, (Oracle Payroll or Oracle
Human Resources User’s Guide)

Step 33

☞

2 – 30 Oracle HRMS Implementation Guide

With Oracle HRMS you can set up any number of ’User–Defined
Tables’. A user–defined table is a ’matrix’ of columns that hold
different values for the same row.

For example, you may want to set up a single table to hold union pay
rates, deductions and benefit levels for different job groups. Use the
rows to hold ’Job Group’ and the columns to hold the specific values
for each job group.

Note: You can define exact row values or an inclusive range of
values.

Table Structure

• Use Match or Range comparison for row values

• Define column headings

• Enter row values

Table Values

• Enter column values for each row in the table

Note: You can access table values from any formula used for
input–value validation, payroll calculation or definition of
skip–rules, assignment sets or quickpaint reports.

You can access this information using the GET_TABLE_VALUE function
in any fastformula.

Define Element Validation Formulas

When you define input values you can use a formula to validate any
entry to that input value.

Attention: You must define the formula before you define the
element input value. The type of formula is Element Input
Validation with the following constraints:

• The formula has one Input only:

ENTRY_VALUE(char)

• The formula must return a predefined status code for success or
error:

FORMULA_STATUS = ’S’ or ’E’

• You can also return a message for the user, which is displayed in
a message window:

FORMULA_MESSAGE = ’ ... ’

Formula

Step 34

2 – 31Implementation Steps

Define Compensation and Benefits for Information

See:

Defining an Element (HR Users),
(Oracle Human Resources User’s Guide)

Defining an Element (Payroll Users),
(Oracle Payroll User’s Guide)

Define Elements and Input Values

Elements are the basic components of all compensation and benefit
types. You can also use elements to represent tangible items
distributed to employees, such as tools or safety equipment.

Element

Suggestion: Before you start defining an element you should
have made all of your decisions about the definition and the
rules of eligibility.

For each element you can:

• define up to 15 input values

• make one input value the ’Pay Value’ for the element

Note: If you set the Process In Run flag to ’Yes’ a pay value will
be created automatically.

You must set this flag to ’Yes’ if you want to process this type
of element in a payroll run.

• set validation options for each value

– a fixed value

– a value range

– a list of values using QuickCodes

– a formula

• set Hot and Cold Defaulting Rules

• use the Balance Feed window to modify the individual balances
that an element will feed.

Suggestion: If you plan to load details of employee entry
history you should consider using a fixed date as a default for
your initial setup, for example, 01–JAN–1901. This will
simplify your data–entry.

You cannot enter an element for an employee before the start
date of the element.

Step 35

2 – 32 Oracle HRMS Implementation Guide

Define Element Links

You can give an entry to an employee only when they are eligible for
that element. Employees are eligible for an element when their
assignment details match the link details.

You can link an element to any combination of organization, group,
grade, job, position, payroll, location, employment category or salary
basis.

Element Link

• A Standard link will automatically start entries for all eligible
employees. This will happen as soon as the employee
assignment matches the link.

• If the link is not standard, employees are eligible but you must
enter elements manually or through a batch process.

• An employee cannot be eligible for an element in two different
ways at the same time. For example, you cannot define a link
between Salary and Job and then define another link between
Salary and Grade.

Note: You can date effectively end a set of element links and
define a new set of links which take effect the next day. You
cannot enter an element for an employee before the start date
of the element link.

Suggestion: If you plan to load details of employee entry
history you should consider using a fixed date as a default for
your initial setup, for example, 01–JAN–1901. This will
simplify your data–entry.

Activating Predefined Elements

When you install Oracle HRMS a number of predefined elements are
installed. These elements represent the legislative deductions that are
processed in the payroll run. To activate these predefined elements you
need only define links for them.

– PAYE Details

– NI

– GAYE

– Court Orders

– EAS Court Order (Only applies in Scotland)

Step 36

☞

Step 37

Step 38

2 – 33Implementation Steps

– CMA Court Order (Only applies in Scotland)

If you have installed Oracle Payroll you will also have all of the
formulas and balances you need for processing these deductions. If
you have not installed Oracle Payroll, you can still use these elements
to record information for transfer to your own payroll system.

Warning: If you want to use the employee Tax window to
enter PAYE and NI details you should define a ’Standard’ link
to all Payrolls for both the PAYE and NI elements.

Suggestion: When you define links for the PAYE and NI
elements you will have to specify some default input values:

– Tax Code ’BR’

– Tax Basis ’Cumulative’

– NI Category ’A’ or ’D’ (Use category D if the majority of
your employees are enrolled in a company pension scheme.)

Define Balances, Formulas and Results for Payroll Processing

Define or Customize Payroll Balances

Attention: Oracle Payroll has many predefined balances
installed with the system. To protect the integrity of the payroll
processes you cannot change any of these balances.

You can define other balances. For example, you might want to define
a special balance to calculate a ’Stop Rule’ on a recurring deduction.
You might also need to define a special balance for calculating
retroactive payments.

Balance

Note: When you define a payroll balance you must specify the
feeds and the dimensions.

Write Payroll Formulas

You write the formula for every element that you want to process in a
payroll run.

Formula

• The formula type is ’Oracle Payroll’

Define Formula Result Rules

Step 39

2 – 34 Oracle HRMS Implementation Guide

When you process an element in a payroll run the system will calculate
the results using a formula. The results of the formula are the values
you include in the Return statement to end the formula. The result
rules define what will happen to each of the results produced by the
formula.

When you activate any earnings or deduction type the system will
generate the formula results and the rules for each result. If you
customize the formula you may also have to customize the results.

Formula Result Rules

You can calculate any number of different results in a single formula.
The different types of result are:

• Direct

• Indirect

• Message

• Stop Recurring

• Update Recurring

Note: There can be only one Direct result of a payroll
calculation. This would normally be the Pay Value of the entry.

Warning: If you allow users to enter the Pay Value of any
earnings or deduction type, this value will override any
formula calculation to provide the direct result for payment.

Salary Administration

See: Salary Administration and Performance Reviews,
(Oracle Payroll or Oracle Human Resources User’s Guide)

You can choose to administer ’Salary’ as a special type of entry using
the Salary Administration window to make use of your Grade Rate and
other definitions.

Define Proposal Reasons and Performance Ratings

You can associate salary administration with an employee evaluation
and performance review process. You enter this information in the
Salary Administration window.

• Define QuickCode values for PROPOSAL_REASON

• Define QuickCode values for PERFORMANCE_RATING

QuickCodes

Step 40

Step 41

Step 42

Step 43

2 – 35Implementation Steps

Activate Salary

If you have not already done this, you should define your Salary
element.

Element

Define Salary Bases

A Salary Basis defines a relationship between the input value of a
salary element and a grade rate. It also establishes the period for which
a salary is quoted.

Salary Basis

• You can have any number of salary administration groups with
different administration bases.

• Use meaningful names, such as Salaried or Waged.

• You can record Grade Rates at one frequency and salary amounts
at another. For example you might want to enter employee
salary as an annual amount but record rates as monthly values.

Define Element Links for Salary

You can use different elements to administer salary for different groups
of employees, for example ’hourly–paid’ and ’salaried’. You define the
eligibility rules for your different salary elements to make sure the right
element is always used.

You must enter the salary basis in the Assignment window for an
employee before you can use the Salary window to enter the value.

Note: You cannot enter a salary for an employee who is not
eligible for the salary element.

Element Link

• If appropriate enter costing information for each link.

Warning: Do not use the salary basis to define links for salary
unless you want to end the salary entry on a change of salary
basis.

Do not use the Standard checkbox for these links. It is unlikely
that you will have a default salary value for all employees.

Element Sets

Define Element Sets

2 – 36 Oracle HRMS Implementation Guide

In Oracle HRMS you can define a set of elements:

• to restrict access to elements using Form Customization

• to distribute costs across a Distribution Set of elements

• to process a restricted set in a Payroll Run

Element and Distribution Set

You define an element set as a named list of elements such as Salary, or
Salary and Bonus. You can also define an element set using the
classification. For example, you can restrict access to all elements in the
classification Earnings.

Step 44

Step 45

2 – 37Implementation Steps

Implementation Steps: People and Assignments

See:

Person Types,
Restricting the Data Displayed in a Window,
(Oracle Payroll or Oracle Human Resources User’s Guide)

Define Person Types

Oracle HRMS lets you define your own names to identify the ’types’ of
people in your system. These include all types of employees,
applicants and contacts, as well as current and ’ex–’ types.

Note: Person Type is a common option for Form
Customization.

A number of System Types have been predefined. These are:

User Name System Name Default

Applicant Applicant Yes

Applicant and Ex–applicant Applicant and Ex–applicant Yes

Contact External Yes

Employee Employee Yes

Employee and Applicant Employee and Applicant Yes

Ex–applicant Ex–applicant Yes

Ex–employee Ex–employee Yes

Ex–employee and Applicant Ex–employee and Applicant Yes

External External No

Table 2 – 2

Person Types

You can change these default names or define any number of new user
types. For example, you might want to use Person Type to identify
employees who are on a fixed term contract, or you might want to
record Special Information for dependants of employees who are a
special category of External Person Type.

Define Assignment Statuses for Employees

Step 46

2 – 38 Oracle HRMS Implementation Guide

With Oracle HRMS you can identify the status of employees in each
assignment using your own names. For example, you might want to
define a special status to identify assignments which have been
Suspended while the employee is temporarily assigned to another role.

Five employee user statuses are predefined. These are:

User Name System Name Default

Active Assignment Active Assignment Yes

End End Yes

Suspend Assignment Suspend Assignment Yes

Terminate Assignment Terminate Assignment Yes

Terminate Process Assignment Terminate Assignment No

Table 2 – 3

For each system status, you define as many user statuses as you
require. These user statuses help you track the current employment
circumstances of all your employees. You can also define secondary
user statuses having no associated system statuses. You can use these
for reporting purposes.

Assignment Statuses

Note: The User Statuses you define here will provide the list of
values for Status in the Assignment window for an employee.
If you want to change any of the seeded default values you
must overtype the User Name.

Special Personal Information

See: Entering Special Information,
(Oracle Payroll or Oracle Human Resources User’s Guide)

Define Personal Analysis Key Flexfield Structures

The Personal Analysis Key Flexfield is used to record special personal
information which is not included as standard information. Each type
of information is defined as a separate Structure of the flexfield. For
example, you might set up a structure to hold medical information.

This flexfield is used in the following areas:

• Special Information details for People

2 – 39Implementation Steps

• Matching requirements for Jobs and Positions

To take best advantage of the flexibility of Oracle HRMS for recording
and reporting special personal information in your enterprise the
implementation sequence which you follow is:

• Design your Personal Analysis Flexfield Structures.

• Define Flexfield Value Sets.

• Define Personal Analysis Flexfield Segments.

• Define Personal Analysis Flexfield Segment Values.

• Define your Personal Analysis Flexfield Cross–Validation Rules.

• Define your Personal Analysis Flexfield Aliases.

• Freeze and Compile your Personal Analysis Flexfield Structures.

Note: You cannot use the Create Key Flexfield Database Items
process to create database items for the segments of your
Personal Analysis Flexfield structures.

The sub–steps that follow show you how to perform all these steps.

1. Design your Personal Analysis Flexfield Structures

You need to design a Personal Analysis Flexfield Structure for each
Special Information Type you want to hold in Oracle HRMS. For
each structure you must include the following:

• The Structure Name and the number of Segments.

• The Flexfield Segment Names, Order and Validation Options.

• The Flexfield Value Sets to be used and any lists of values.

Defining the Flexfield Structure is a task for your System
Administrator.

2. Define Personal Analysis Flexfield Value Sets

If you want to validate the values which a user can enter for any
segment you must define a specific Value Set.

The attributes of the Value Set will control the type of values that
can be entered, and how many characters each segment can hold.
The attributes of the Value Set will also control how the values are
to be validated.

Value Sets can be shared by different segments of the same
flexfield, or by segments of any other flexfield.

Define Value Set

2 – 40 Oracle HRMS Implementation Guide

3. Define Personal Analysis Flexfield Segments

Define a structure for your Personal Analysis Flexfield which
contains the segments you want to use. You will use this structure
to enter details in the Special Information Types window.

You must enter Yes in the Allow Dynamic Inserts field. If you enter
No, you will not be able to enter new details in the Special
Information Types window.

Note: You do not need to use a Value Set to validate a
segment. If you do not specify a Value Set then a user can enter
any alphanumeric value up to a limit of 150 characters.

Define Key Flexfield Segments

4. Define Personal Analysis Flexfield Segment Values

If you have chosen Independent or Dependent validation for a
Value Set used by a Personal Analysis Flexfield Segment, you must
define your list of valid values for the Value Set.

Define Segment Values

5. Define Personal Analysis Flexfield Cross Validation Rules

Define any Cross Validation Rules you want to use to control the
combinations of segment values which a user can enter.

You define Rules to Include or Exclude combinations of segment
values. For each segment, you can define a Low to High range of
values.

Define Cross–Validation Rules

6. Define Personal Analysis Flexfield Aliases

Define Aliases for common combinations of segment values if you
want to provide these as default options.

Define Shorthand Aliases

7. Freeze and Compile Your Personal Analysis Flexfield Structure

You are now ready to freeze your flexfield definition. Navigate to
the Define Key Flexfield Segments window. Enter Yes in the Freeze
Flexfield Definition field and save your changes. Oracle Human
Resource Management Systems now freezes and compiles your

Step 47

2 – 41Implementation Steps

Personal Analysis Flexfield definition. Compiling the flexfield
definition enables the flexfield window with the defaults, values
and rules that you have defined.

Define Key Flexfield Segments

Register Special Information Types for the Business Group

After you have defined your Personal Analysis Flexfield Structures you
must link them to your Business Group.

You do this using your view–all responsibility.

Special Information Types

• Select each Information Type you want to use in this Business
Group.

• Select the categories for each type.

– Job for Job Requirements

– Position for Position Requirements

– Skills for use with Oracle Training Administration

– Other for use with Person Special Information

– ADA for use only in the US, for special information types
set up to record information about employees with
disabilities.

– OSHA for use only in the US, for a special information type
set up to record information about employees’ work–related
injuries or illnesses.

Suggestion: If you do not check the Other category, you
cannot use the type to hold information for a person. This
means that you could also use the Special Information Types to
hold any type of information for a Job or a Position only.

Step 48

2 – 42 Oracle HRMS Implementation Guide

Implementation Steps: Recruitment

See: The Recruitment Cycle,
(Oracle Human Resources User’s Guide)

Define Assignment Statuses for Applicants

See: Tracking Applicant Progress,
(Oracle Human Resources User’s Guide)

Assignment Statuses for applicants let you define the distinct stages of
your own recruitment processes.

With Oracle HRMS you can use your own names to identify these
stages. For example, you might want to define a special status to
identify applicants who have been invited to a First Interview and
applicants who have been Rejected on Application.

Four system statuses for applicants have been predefined. These are:

User Name System Name Default

Accepted Accepted Yes

Active Application Active Application Yes

Offer Offer Yes

Terminate Application Terminate Application Yes

Table 2 – 4

Assignment Statuses

• You can change the user names of the predefined statuses

• You can define as many new user statuses as you require to
describe the progress of an applicant in your enterprise.

These user statuses let you track the recruitment circumstances of all
your applicants.

Step 49

Step 50

2 – 43Implementation Steps

Implementation Steps: Career Management

If you are developing the competence approach as part of your
performance management system, you must set up your methods of
measurement, create your competencies and create your assessment
and appraisal templates.

See: Introducing Career Management Activities,
(Oracle Human Resources User’s Guide)

You must also perform other implementation activities, such as
configuring Oracle Workflow.

See: HRDA Configuration Guide.

Attention: This software should not be used as the sole method of
assessment for making judgements about hiring, performance or
deployment. Your company may be held liable if you rely on incorrect
computer data or computerized rules to make such judgements.

It is the customer’s responsibility to take all appropriate measures to
comply with the Data Protection and Privacy laws of the countries in
which they operate.

All personal information that you store or use with this software must
be up to date, accurate and relevant. You should confirm the details of
the restrictions that apply to the computerized storage and use of
personal information with your own legal department or
representative.

Methods of Measurement and Creating Competencies

Create Rating Scales

Create rating scales if you want to describe your enterprose’s
competencies in a general way.

Rating Scales

See: General Rating Scales,
(Oracle Human Resources User’s Guide)

Create Competencies

Create competencies that best meet the needs of your own enterprise. If
you are using the individual method, you need to set up the proficiency
levels for each competence you create.

Competencies

Step 51

Step 52

2 – 44 Oracle HRMS Implementation Guide

See: Competencies,
(Oracle Human Resources User’s Guide)

Group Competencies

You might want to group related competencies together, for example,
for advertising a vacancy, or for reporting purposes.

1. Create Competence Types

Create the competence types you require using the QuickCode
COMPETENCE_TYPE.

QuickCodes

See: Adding QuickCode Values,
(Oracle Human Resources User’s Guide)

2. Group Competencies into Types

Competence Types

See: Competence Types and Groupings,
(Oracle Human Resources User’s Guide)

Competence Requirements

Define Competence Requirements

To ensure your enterprise meets its current and future goals, you’ll
need to define your competence requirements.

1. Define Your Competence Requirements

Create your competence requirements to meet the needs of your
enterprise.

Competence Requirements

See: Competence Requirements,
(Oracle Human Resources User’s Guide)

2. Enter Work Choices for a Job

You can enter work choices that can affect an employee’s,
applicant’s, contractor’s, or ex–employee’s capacity to be deployed
within your enterprise (or a customer’s).

Work Choices

Step 53

Step 54

2 – 45Implementation Steps

See: Entering Work Choices for a Job or Position,
(Oracle Human Resources User’s Guide)

3. Enter Work Choices for a Position

You can enter work choices that can affect an employee’s,
applicant’s, contractor’s, or ex–employee’s capacity to be deployed
within your enterprise (or a customer’s).

Work Choices

See: Entering Work Choices for a Job or Position,
(Oracle Human Resources User’s Guide)

Define Functionss to Implement the Competence Approach (Oracle Training
Administration)

Define Functions to Implement the Competence Approach (OTA)

If you have Oracle Human Resources and OTA installed in your
enterprise, you can hold the qualifications, attributes and knowledge
that students can expect to attain by attending training activities as
competencies, skills or a mixture of both (competencies and skills).

You use parameters to enable you to phase in the delivery of
competencies through training activities. This enables you to indicate
whether users can enter skills, competencies, or both from the
Activities window. You also use parameters to enable selected users to
add competencies gained through an activity directly to a student’s
Competence Profile.

Form Functions

See: Defining Functions to Implement the Competence Approach,
(Oracle Human Resources User’s Guide)

Qualification Types and Establishments

Create Qualification Types

You can enter all the qualification types your enterprise recognises.

Qualification Types

See: Creating Qualification Types,
(Oracle Human Resources User’s Guide)

Step 55

Step 56

Step 57

☞

2 – 46 Oracle HRMS Implementation Guide

Create Schools and Colleges

You need to create schools and colleges that deliver the qualifications
your enterprise recognises. These are then used to record where a
person gained the qualification. If you have not automatically loaded
these schools and colleges into Oracle Human Resources, you can enter
them manually.

Note: Schools and colleges you enter are available to all
Business Groups you create, therefore only load or enter them
once.

Schools and Colleges

See: Creating Schools and Colleges,
(Oracle Human Resources User’s Guide)

Assessment and Appraisal

Create Templates for Competence–Based Assessments

You can create assessment templates for all the different assessments
your enterprise performs to enable users to perform assessments using
the web.

Assessment Template

See: Competence–Based Assessments,
(Oracle Human Resources User’s Guide)

Create Appraisal Questionnaire Pages

See: Appraisal Templates and Questionnaire Pages,
(Oracle Human Resources User’s Guide)

Oracle provides you with an easy to use method of designing and
formatting your own questionnaire pages for the appraisal using the
Web. You can identify the questions to use in the appraisal, and the
number, size and type of boxes in which to record the answers. You can
create as many different appraisal questionnaire pages as your
enterprise requires.

Attention: You create your appraisal questionnaire pages
using the Web, and not using Oracle forms.

The implementation sequence which you follow is:

1. Create the Questionnaire

Step 58

2 – 47Implementation Steps

Create the questionnaire which contains the categories,
sub–categories, sub–headings, questions and answer layouts.

See: Creating the Questionnaire,
(Oracle Human Resources User’s Guide)

2. Creating Categories

Create the heading text that you want to appear on your appraisal
questionnaire.

See: Creating Categories,
(Oracle Human Resources User’s Guide)

3. Assembling the Categories Within the Questionnaire

Assemble the categories you just created within the questionnaire.
You can update the questionnaire, if required.

See: Assembling the Categories Within the Questionnaire,
(Oracle Human Resources User’s Guide)

4. Define Answer Layout and Create Questions

Name your questions and to define how you want the answers to
questions to be recorded. For example, you can create text answer
boxes, checkboxes, and such. Once you have named your questions
and defined your answer layout, you can create your questions.

See: Defining Answer Layout and Creating Questions,
(Oracle Human Resources User’s Guide)

Create Templates for Appraisals

You can create appraisal templates to provide instructions to
appraisers, to identify which questions belong to which appraisal and
to identify which performance rating scale to use.

You can use one of the example appraisal templates we provide and
modify them to suit your own needs, or you can create your own.

Appraisal Template

See: Creating or Changing an Appraisal Templates,
(Oracle Human Resources User’s Guide)

Step 59

Step 60

Step 61

☞

2 – 48 Oracle HRMS Implementation Guide

Implementation Steps: Specific Business Functions

Absence Management/Accruals of Paid Time Off (PTO)

You can set up as many plans as you need to permit employees to
accrue PTO each calendar year, to use for vacation or sick leave. Each
plan has the units of Hours or Days, and can have its own start rules
and rules regarding length of service bands, accrual ceilings, and
accrual carryovers.

Define an Absence Element to Record Time Taken

For each of your accrual plans, you define a nonrecurring element and
input value to hold the actual time taken for vacation or sick leave.

Element

• Use a Classification of ’Information’

• Termination Rule is ’Actual Termination’

• Input Value must be ’Hours’ or ’Days’

Define Element Links for the Absence Element

You define the eligibility rules for each absence element.

Element Link

Define the Accrual Plan with an Absence Element

Accrual Plans

• Define the Accrual Plan and its start rule

• Associate your Absence Element with the Plan

• Define Accrual Bands

• Modify Net Calculation Rules

– The system will insert the default rules for the associated
absence element and for ’Carried Over’ absence. You can
include other element input values to add or subtract from
net according to your specific business needs.

Attention: When you save your plan definition the system
will automatically generate 3 additional Accrual Plan elements.
These elements are used in the calculation of PTO.

Step 62

Step 63

Step 64

Step 65

2 – 49Implementation Steps

– ’Accrual Plan’

– ’Carried Over’

– ’Residual’

The default effective start date for all of these is 01–JAN–0001.

Define Element Links for the Accrual Elements

You define the eligibility rules for the 3 accrual plan elements.

Element Link

Define Absence Reasons

If you plan to use absence types and you want to record absence
reasons for each occurrence of an absence type, you must define the
QuickCode values for ABSENCE_REASON.

QuickCodes

Associate an Absence Type with the Absence Element

If you decide to use the Absence Detail window you can enter more
detailed information for each occurrence of an absence. To use this
window you must first associate your Absence Element with an
Absence Type.

Absence Attendance Type

• Select ’Increasing’ to control the accumulation of the absence
balance.

– The system enters a positive value for the nonrecurring
element when you enter an absence.

Human Resource Budgets

See: Human Resource Budgets,
(Oracle Human Resources User’s Guide)

Define QuickCode Values

Headcount and Full–Time Equivalent budget measurement types are
already predefined in Oracle HRMS. You can change the names of
these predefined types or add any new types you might need.

Step 66

Step 67

Step 68

2 – 50 Oracle HRMS Implementation Guide

• Define values for BUDGET_MEASUREMENT_TYPES

QuickCode Values

Define Period Types

The most common period types are already predefined in Oracle
HRMS. You can change the names of these predefined types but
cannot add any new types.

Period Types

Define Budgetary Calendars

You use calendars to define the budget years for your staffing budgets.

Budgetary Calendar

• Once you define the calendar you cannot change the start date.
Set the start date to let you enter any budget history information
you want to enter.

• You cannot define years with an earlier start date than the start
of the calendar.

• In each calendar you define as many years as you require. You
do not create a new calendar for each year. You just add new
periods to the calendar.

Define Budgets

When you define staffing budgets you can use the system to measure
actual budget values of assignments against planned budget values.

Budget

• Define a budget for any combination of organization, job,
position or grade.

• Enter a budget value for every time period in your calendar.

Actual values for each budget type for an assignment are entered
in the Assignment Budget Values window.

Suggestion: Consider setting default assignment budget
values for the Business Group. If you want accurate values
you must make sure that assignments have budget values
entered.

Step 69

Step 70

Step 71

2 – 51Implementation Steps

An assignment which does not have an actual value is not
counted in the budget. Actual values for each budget type for
an assignment are entered in the Assignment Budget Values
window.

Evaluation Systems

See: Evaluating Jobs And Positions,
(Oracle Human Resources User’s Guide)

Define Evaluation Types

With Oracle HRMS you can record summary evaluation information
for Jobs, or Positions in the Evaluation window.

QuickCodes

• Define the name of your evaluation system as a value for the
QuickCode Type EVAL_SYSTEM.

To record detailed evaluation scores for the Hay System or any other
system you can enable the Additional Evaluation Details descriptive
flexfield to hold and validate this information.

You can also hold comment or review information for each evaluation
you undertake.

Note: If you use more than one evaluation system you may
want to define the segments as context sensitive to the System
Name.

Define Valid Grades for Jobs

Oracle HRMS lets you define Valid Grades for Jobs. These definitions
provide warning messages to users in the Assignment window when
you enter Job and Grade information.

Job

• Query the job and select the Valid Grades button

• Enter and save the valid grades for each job. You can enter a
single grade, or a set of grades.

Define Valid Grades for Positions

Step 72

2 – 52 Oracle HRMS Implementation Guide

Oracle HRMS lets you define Valid Grades for Positions. These
definitions will be used to provide warning messages in the
Assignment window when you enter Position and Grade information.

Position

• Query the position and click on the Valid Grades button

• Enter and save the valid grades for each position. You can enter
a single grade, or a set of grades.

Requirements Matching

If you have set up competencies, you can enter these as requirements
for jobs and positions and match them against people’s competency
profiles.

See: Implementation Steps: Career Management: page 2 – 43.

If you have other job and position requirements that you want to
record, but not define as competencies, you can set them up using the
Personal Analysis key flexfield. You can set up each type of
requirement as a Special Information Type, which is one instance of the
flexfield.

See: Defining Special Information Types
(Oracle Human Resources User’s Guide)

For each type, you can choose whether also to enable entry of
information for people. You do this by selecting categories in the
Special Information Type window. Enabling entry of information for
people allows you to match people against the job or position
requirements. A standard report (Skills Matching) has been provided
to match the requirements of a job and the Special Information details
of people in the system.

Define Requirements for Jobs

You can define the attributes required by any employee who is
assigned to a job. These attributes may be Essential or Desirable.

Definitions of requirements can use the same personal analysis flexfield
structures and segments you have defined for special personal
information.

Job

• Query the job and choose the Requirements button

Step 73

Step 74

2 – 53Implementation Steps

• Enter the combinations of attributes and details that are required
for this job. The pop–up flexfield window will apply the
defaults, values, and rules that you have defined for each special
information type.

Define Requirements for Positions

After you define positions in your enterprise, you can define the
attributes required by any employee assigned to that position. These
attributs may be Essential or Desirable. The requirements are based on
the same personal analysis flexfield structures you have defined for
special personal information.

Position

• Query the position and click on the Requirements button

• Enter the combinations of attributes and details which are
required for this position. The flexfield window will apply the
defaults, values and rules that you have defined for each special
information type.

Career and Succession Planning

See: Career and Succession Planning,
(Oracle Human Resources User’s Guide)

The flexibility provided by Oracle Human Resources means that you
can handle your enterprise’s career and succession plans using one of a
number of models. Which model you decide to use depends upon
whether your enterprise’s career and succession planning is based
upon jobs or positions, and whether your enterprise is using a
Windows interface only, or a mixture of the Web and Windows.

Career Paths show the progression paths which are available within
your enterprise. You can map out career paths for both jobs and
positions.

Modelling Career and Succession Planning Based on Jobs

If your enterprise’s career and succession planning is based upon jobs,
you can use career paths to show possible progressions to one job from
any number of other jobs.

See: Modelling Career and Succession Planning Based on Jobs,
Oracle Human Resources User’s Guide

1. Create the career paths and map career paths

Step 75

2 – 54 Oracle HRMS Implementation Guide

Career paths are based on the structures of your enterprise rather
than the people you employ. You may also want to record personal
aspirations and progression paths for individual employees. There
are several ways to do this.

Career Path Names
and Map Career Paths

See: Defining Career Paths,
Oracle Human Resources User’s Guide

2. Enter Work Choices

You can use work choices to help identify a person’s career plan.

Work Choices

See: Entering Work Choices for a Job or Position,
Oracle Human Resources User’s Guide

See: Entering Work Choices,
Oracle Human Resources User’s Guide

3. Create Your Appraisal Questionnaire (Line Manager Direct
Access users only)

If you are using the Web–based Line Manager Direct Access, you
can select a career path for a person as part of the appraisal
process.

See: Creatring Your Appraisal Questionnaire Web Pages,
Oracle Human Resources User’s Guide

4. Use Attachments or Special Information Types

If you are not doing step 3, consider holding succession plan
information against people as attachments or using a special
information type.

See: Defining Special Information Types,
Oracle Human Resources User’s Guide

Modelling Career and Succession Planning Based on Positions

If your enterprise’s career and succession planning is based upon
positions, you can create additional position hierarchies to show any
type of progression. These might represent existing line management
structures, or even cut across departmental or job–type boundaries.

See: Modelling Career and Succession Planning Based on Jobs,
Oracle Human Resources User’s Guide

2 – 55Implementation Steps

1. Create position hierarchies

Optionally, create position hierarchies to show career paths, if you
want to show typical career progression.

Position Hierarchy

Use the Position Hierarchy form.

See: Creating Position Hierarchies,
Oracle Human Resources User’s Guide

2. Enter Work Choices

Optionally, enter work choices to help identify a person’s career
plan.

Work Choices

See: Entering Work Choices for a Job or Position,
Oracle Human Resources User’s Guide

See: Entering Work Choices,
Oracle Human Resources User’s Guide

3. Use Succession {Planning (Line Manager Direct Access users
only)

If you are using the Web–based Line Manager Direct Access, use
the Succession Planning option to record one or more next
positions for each employee.

4. Use Attachments or Special Information Types

If you are not doing step 3, consider holding succession plan
information against people as attachments or using a special
information type.

See: Defining Special Information Types,
Oracle Human Resources User’s Guide

Step 76

☞

Step 77

2 – 56 Oracle HRMS Implementation Guide

Implementation Steps: Control

See: Predefined and User Defined Reports,
(Oracle Payroll or Oracle Human Resources User’s Guide)

Define Reports

Write New Reports

A number of standard reports are supplied with Oracle HRMS. These
reports have been written using Oracle Reports V.2 and registered as
concurrent programs with the Standard Requests Submission (SRS)
feature of Oracle Applications.

You can use these Standard Reports or write your own reports and
register these as additional reports which users can request from the
Submit a New Request window.

Attention: The P45 and the Pay Advice reports, supplied with
Oracle Payroll, are designed for use with preprinted stationery.
These reports use two special printer drivers to control the
print format.

– P45 paygbp45.prt

– Pay Advice paygbsoe.prt

If your printer does not accept the same control characters as
the DEC LN03 printer, you may need to modify the special
SRW driver files.

When you install Oracle Payroll the two sample files are stored
in the $PAY_TOP/srw directory. You should copy the files to
$FND_TOP/$APPLREP and then register them using the
Printer Drivers window.

Note: This is a task for your System Administrator.

See also: Overview of Printers and Printing,
Oracle Applications System Administrator’s Guide.

Register Reports as Concurrent Programs with SRS

After you have written your new reports and saved them in the correct
subdirectory, you must register the report as a concurrent program.
You also register the parameters which can be submitted with the
report. For example, you may have written a report to display
personal details and you want to submit employee name to limit the
output to include one person at a time.

Concurrent Programs

Step 78

Step 79

2 – 57Implementation Steps

Define Report Sets

You can define sets of Reports:

• To restrict user access to specific reports.

A set of reports can be linked to a Responsibility.

• To simplify requesting a report

You can run a report set in one request, rather than a request for
each report.

Request Set

Standard Letter Generation

You can use standard letters in HRMS to help you to manage your
enterprise’s recruitment or enrollments. You do this by issuing
standard letters to applicants or students, triggered by changes in
assignment or enrollment status.

Oracle HRMS provides you with two different methods to create
standard letters:

• Online using Application Data Export (ADE)

• Concurrent Processing

Before you start to set up your standard letters, you need to establish
which method best suits your needs.

See: Setting Up Standard Letters, Oracle Human Resources User’s Guide

Create Standard Letters for use with Concurrent Processing

There are two methods of using concurrent processing to create your
standard letters:

• Using word processors

• Using Oracle reports

You can use any word processor to produce standard letters from
Oracle HRMS. If you use a word processor, you can submit a
concurrent request in the Letter Request window to generate the mail
merge file. When the concurrent request is complete, you can use your
word processor’s mail merge facilities to create the merged letters.

See: Using a Word Processor, Oracle Human Resources User’s Guide

As an alternative to using a word processor to produce standard
letters, you can use the Standard Letter and Label features of Oracle

2 – 58 Oracle HRMS Implementation Guide

Reports. Use this method if you do not want use word processors to
print your letters (or if you do not have word processors).

See: Using Oracle Reports, Oracle Human Resources User’s Guide

Concurrent Processing – for use with Word Processors

The sub–steps below describe how to set up standard letters using
concurrent processing.

1. Plan

One of the first tasks you need to perform is to identify which data
you want to extract from the database to include in your standard
letters. You need to identify the select statements to use to provide
you with the the data as the content of your letters. Oracle HRMS
supplies you with SQL*Plus scripts as templates to help you do
this. You also need to identify the text that you want to include as
the body of your letters.

The next decision you need to make is to decide whether or not
you want to associate your standard letters with student
enrollment or applicant assignment statuses.

See: Planning (for, MultiMate or WordPerfect), Oracle Human
Resources User’s Guide

2. Write SQL*Plus script

The next step is to write the script that extracts the event and
enrollment details from the system. This SQL*Plus file must use
the correct delimiter for your word processor to recognize in the
mail merge routine.

See:

Writing a SQL*Plus Script for MultiMate or WordPerfect) Oracle
Human Resources User’s Guide

Template SQL*Plus Script PERWPMUS, Oracle Human Resources
User’s Guide

3. Register SQL*Plus script

After you have written the file to extract the data, you must
register it so that it can be run as a concurrent program. Name the
files PERWP***. You must use this prefix for the system to
recognise it as a type of letter.

Concurrent Programs

See: Concurrent Programs Window, Oracle Applications System
Administrator’s Guide

2 – 59Implementation Steps

4. Linking the SQL*Plus script with a letter

The next step is to link your SQL*Plus script to one or more
applicant or enrollment statuses.

Letter

See: Linking the SQL*Plus Script With a Letter for MultiMate or
WordPerfect) Oracle Human Resources User’s Guide

5. Write skeleton letter

You now need to write a skeleton letter using your word processor.

See: Writing a Skeleton Letter for MultiMate or WordPerfect, Oracle
Human Resources User’s Guide

6. Request Letter

You now run the SQL*Plus script to extract the data from the
database. You activate the SQL*Plus script through the Letter
Request window.

Request Letter

See: Requesting Letters for MultiMate or WordPerfect, Oracle
Human Resources User’s Guide

7. Merge Data File with standard letter

You need to merge the data in the data file with your skeleton
letters to create your standard letters.

See: Merging the Data File With the Standard Letter for MultiMate
or WordPerfect, Oracle Human Resources User’s Guide

Concurrent Processing – for use with Oracle Reports

The sub–steps below describe how to set up standard letters using
concurrent processing.

1. Plan Content and Layout

One of the first tasks you need to perform is to identify which data
you want to extract from the database to include in your standard
letters. You need to identify the select statements to use to provide
you with the the data as the content of your letters.

The next decision you need to make is to decide whether or not
you want to associate your standard letters with student
enrollment or applicant assignment statuses.

Step 80

2 – 60 Oracle HRMS Implementation Guide

See: Planning the Content and Layout, Oracle Human Resources
User’s Guide

2. Write Report

The next step is to write the report that extracts the event and
enrollment details from the system. You also need to write your
skeleton letter text and select statements.

See: Writing the Report, Oracle Human Resources User’s Guide

3. Register Report

After you have written the report, you must register it so that it can
be run as a concurrent program. Name it PERWP***. You must use
this prefix for the system to recognise it.

Concurrent Programs

See: Concurrent Programs Window, Oracle Applications System
Administrator’s Guide

4. Linking the report with a letter

The next step is to link your report to one or more applicant or
enrollment statuses.

Letter

See: Linking the Report With a Letter, Oracle Human Resources
User’s Guide

5. Running the Report

You now run the report to extract the data from the database. You
run the report by creating a pending letter request in the Letter
Request window.

Request Letter

See: Running the Report, Oracle Human Resources User’s Guide

Create Standard Letters Online for use with Application Data Export
(ADE)

You can generate your standard letters online, using ADE. ADE comes
with its own set of documentation and online help.

Note: We provide online help only for this version of ADE.
Refer to the online help to help you create standard letters
online for use with ADE.

Step 81

☞

2 – 61Implementation Steps

Create Standard Letters Online for use with Microsoft Word

If you use Microsoft Word as your word processor, not only can you
use the concurrent processing method to produce your standard letters,
but you can also generate letters online.

You can use either of two methods:

• Generate Microsoft Word letters using Object Linking and
Embedding (OLE)

• Application Data Export (ADE)

Attention: In future releases of Oracle HRMS, generating
Microsoft Word letters using Object Linking and Embedding
(OLE) will be replaced by ADE.

ADE comes with its own set of documentation and online help.

Note: We provide online help only for this version of ADE.
Refer to the online help to enable you to set up ADE.

If you are setting up standard letters using the concurrent processing
method, follow the same sequence as for MultiMate or WordPerfect.

See Flowchart for Setting Up Standard Letters Using MultiMate or
WordPerfect, Oracle Human Resources User’s Guide

If you are generating Microsoft Word letters using Object Linking and
Embedding (OLE), see Writing a SQL*Plus Script for Microsoft Wor ,
Oracle Human Resources User’s Guide

Step 82

2 – 62 Oracle HRMS Implementation Guide

Define User Security

See: Security in Oracle HRMS,
(Oracle Payroll or Oracle Human Resources User’s Guide)

Any system that holds human resource and payroll information must
be secured against unauthorized access. To reach employee
information you need the correct security clearance.

The responsibility for defining and maintaining the internal security of
your system is usually given to your system administrator.

Defining the access limits of each user is a multi–stage process which
defines which records a user can see and which forms and windows
they can see and use.

• A security profile limits access to records and is based on the
work structures you define in the system. These restrict access
to data using organization hierarchies, position hierarchies, and
payrolls.

Note: You can use security profiles to restrict the data visible
to people who use Oracle reporting tools to access the Oracle
HRMS database, as well as those who use forms. To do this,
you must create a new ORACLE User ID for each security
profile.

• The Main Menu determines the forms a user can see in a
Responsibility. Forms may be called in Query–Only mode which
will allow a user to inquire and see information but will not
allow any changes to be made.

• The HR:Query Only Mode user profile option restricts access to
view–only for all HR and Payroll forms on a menu.

• Form Customization lets you restrict the types of information a
user can access in a specific form or window.

• Task Flow lets you define the sequence of windows you want to
use when performing specific tasks.

Create New Oracle IDs

If you want reporting users to have the same restricted access to
records as your online users, ask your ORACLE Database
Administrator to create a new ORACLE User ID.

Reporting Users have read only access to data. This can be useful if
you want to permit access to the data from another system. For
example, reporting users might use Oracle Discoverer to report on
HRMS information.

Step 83

Step 84

Step 85

2 – 63Implementation Steps

Note: You need to inform Reporting Users of their Reporting
Username and Password.

Register ORACLE IDs

This is a task for your System Administrator.

After the DBA has created the ORACLE IDs you must register them
with Application Object Library.

Oracle Usernames

• Enter the username and password of your ORACLE ID.

• Enter the logical database details, for example, Application
Object Library, STANDARD.

• Enter Restricted in the Privilege field.

Define Security Profiles

Change to your ’View–All’ Responsibility to define restricted security
profiles within a Business Group.

Security Profile

The security profile defines the employees AND the applicants you can
see in a single responsibility. For example, when you define a profile to
have access to the records of one department you can say whether this
is for:

• employees to that department and all applicants, or

• applicants to that department and all employees, or

• employees and applicants to that department only

Run Generate Secure User Process (SECGEN)

The Generate Secure User process will grant permissions to the new
Reporting User ORACLE ID. Until you run this process, reporting
users cannot access Oracle HRMS data using this security profile.

Submit a New Request

• Select Generate Secure User.

• In the Parameters window, enter the security profile you created
for the ORACLE ID.

Step 86

☞

Step 87

☞

Step 88

2 – 64 Oracle HRMS Implementation Guide

• Submit your request.

A concurrent request ID appears in the ID field. You can check
the progress of your request on the View Concurrent Requests
window.

Run Security List Maintenance Process (LISTGEN)

Oracle HRMS uses the Security List Maintenance process to generate
the lists of organizations, positions, payrolls, employees and applicants
that each security profile can access.

Attention: When you initiate the Listgen process you must
enter the resubmission interval to run Listgen every night.

You must do this so that the system will automatically update
the lists with the data changes you make every day.

If a power or computer failure should disrupt this process, you
can initiate it manually from the Submit a New Request
window.

Submit a New Request

When this process has completed successfully you can sign on to the
system using the new username and responsibility.

Define Form Customizations

Form Customization lets you restrict the types of information a user
can access in a specific form or window.

The list of forms that you can customize is given in your User’s Guide.

Note: You can define your own form titles for any form
customization option. Remember that the user guides and the
online help use the default form names to identify forms.

Form Customization

Attention: You can call the customized form in two ways:

– define a customized node in a task flow

– add the customization as an argument to the menu function
which calls the form

HR_CUSTOMIZATION = ”customization name”

Define Task Flow Nodes

A task flow defines the selection of windows you want to use when
performing a specific task. These can be arranged in sequence or as

Step 89

Step 90

2 – 65Implementation Steps

branched groups of Nodes, and you can include ’customized’ windows
as nodes in your task flow.

Define Task Flow Nodes

Suggestion: If you want to use a customized form as the first
node in a task flow you should define this as a new node.

You could add both the task flow and the customization as
arguments to a single menu function but this may be more
difficult to maintain.

WORKFLOW_NAME = ”task flow name”

Define Task Flows

Arrange the nodes of your task flows in sequential or branched groups

Task Flow

Suggestion: When defining the navigation buttons in your
task flows:

– Don’t have long sequences where you cannot go back to the
previous step

– Use the same button names for the same nodes

– Use different button names for customized nodes

Note: Before you can include the task flow in a menu, you
must define a new menu function with the following argument
in the Argument field:

Define Menu Functions

This is a task for your System Administrator.

Menus are composed of submenus and functions and all Oracle
Applications are supplied with default functions and menus to give
you access to all of the available forms.

Function Security helps you to control the menu options you make
available to each responsibility. When you define a responsibility you
can restrict the submenus or functions for that responsibility.

In Oracle HRMS a function can be:

• a form

• a form called in query–only mode

• a form called with a customization

Step 91

2 – 66 Oracle HRMS Implementation Guide

• a form called with a task flow

Warning: You should not modify the default functions and
menus supplied with the system. On upgrade, these defaults
will be overwritten.

If you want to add form customization options or task flows
you should define your own menus.

Form Functions

Consider whether you want to define your own ’supermenus’ to
contain all of your task flow and customization ’functions’ as well as
the standard forms. The alternative is to define many menus.

Define Menus

This is a task for your System Administrator.

The supplied menus give you access to all of the available submenus.
However, a number of seeded functions are not enabled on these
menus. You need to add them for the responsibilities that should have
access to these functions:

• HR View Medical

This function causes the Medical Information alternative region
to display in the People window.

• HR View Background

This function causes the Background Information alternative
region to display in the People window.

• HR View Rehire

This function causes the Rehire Information alternative region to
display in the People window.

• Salary Administration: Approve

This function enables the user to approve salary proposals in the
Salary Administration window and the Salary Management
folder.

Menus

Warning: Oracle HRMS with DateTrack and task flows does
not fully support multiple active forms. When you define a
new menu for use with Oracle HRMS the top menu must
include the following function as a separate menu option:

Step 92

Step 93

Step 94

2 – 67Implementation Steps

Disable Multiform, Multisession

Define Report Security Groups

This is a task for your System Administrator.

You can define the groups of standard reports and processes that a user
can run from the Submit a New Request window. Every responsibility
can have access to one report group.

Report Groups

Define Responsibilities

This is a task for your System Administrator.

Define a Responsibility to bring together all of your Security
definitions:

Responsibilities

• Every responsibility has a unique Name.

• Select your customized Main Menu to restrict access to the
forms.

• Select the Report Security Group for the Responsibility.

• Exclude any submenus or functions you want to restrict.

Note: Before you can log on to Oracle HRMS using your new
secure Responsibility you must run the Security List
Maintenance process.

Define Application User

This is a task for your System Administrator.

You should define every user of the system with a unique username
and password. You can give the same responsibility to many different
users, but any data changes will be identified by the Application
Username.

Users

• To create a new User, enter a username and a password with the
correct Start Date.

Note: The first time you sign on as a new user the system will
force you to select your own private password.

Step 95

Step 96

2 – 68 Oracle HRMS Implementation Guide

• Select the responsibilities you want this user to access. Use the
Start and End Dates to control when each responsibility is
available to the user.

Define HR User Profile Options

This is a task for your System Administrator.

HR User Profile Options control some of the defaults which are used in
the online system. You must define the following profile values for
every new responsibility:

• HR:Security Profile

• HR:User Type

Note: The HR:Security Profile option determines the Business
Group for the responsibility. If you do not define this profile,
the setup business group will be used as the default.

In addition to these profiles you may want to set up other defaults for
groups of users or even for an individual user. For example, you may
want to set the default for the DateTrack:Prompt to always prompt new
users with their effective date.

System Profile Values

• Select the new responsibility.

• Select the HR:Security Profile option and enter the name of your
security profile.

• Select the HR:User Type option and enter the correct user type
for this responsibility.

– HR User if you have access to Oracle Human Resources but
not Oracle Payroll functions.

– HR and Payroll User if you have access to both Oracle
Human Resources and Oracle Payroll functions.

– Payroll User if you have access to Oracle Payroll but not
Oracle Human Resources functions.

Note: This option restricts the regions and fields that a user
can use in the windows. For example, an HR User cannot see
some of the payroll processing fields on the Element window.
Also, if Oracle Payroll is installed, HR Users cannot assign
employees to payrolls.

Define Audit Requirements

Estimate File Sizing and Management Needs

Step 97

Step 98

Step 99

2 – 69Implementation Steps

Whenever you choose to audit the actions of users of the system you
are deciding to keep the details of all the transactions which take place.
This will include before and after details as well as the details of who
made the change and when.

Turning Audit on has no noticeable effect on the performance of the
system and users will not be aware of any extra delay in committing
their transactions.

Warning: In normal use the auditing of data can soon
generate large volumes of audit data, which even when stored
in a compressed format will continue to grow in size until you
reach the limits imposed by your environment. If you reach the
limits during active use then users will be unable to use the
system until you remedy the problem.

You are strongly advised to consider the scope of your audit activities
and how you will use the data you accumulate. Also you should
consider how often you will report on the audit data, and when you
will archive and purge your audit data.

If you need more advice on this you should contact your Oracle
Support representative.

Note: The following tasks are the responsibility of your System
Administrator.

Define Audit Installations

If you have installed more than one Oracle Application you can audit
across multiple installations. For Oracle HRMS you should enable
auditing for the HR user and the APPLSYS user.

Audit Installations

Define Audit Tables and Columns

With Oracle Applications you can define the level of detail you want to
audit. You define the individual fields of each record that you want to
audit.

Define Audit Tables

• Query the Table you want to audit

• Enter the columns you want to audit for that table

Define Audit Groups

Step 100

2 – 70 Oracle HRMS Implementation Guide

You can define one or more Audit Groups for your installation. You
might find this useful if you have more than one Oracle Application
installed.

Audit Groups

Activate AuditTrail Update Tables Process

To start the AuditTrail activity you must submit the Activate AuditTrail
Update Tables Process.

Submit a New Request

A P P E N D I X

A
T

A – 1Technical Essays

Technical Essays

his appendix contains essays on the following topics:

• How DateTrack Works

• How to Create and Modify DateTrack History Views

• The FastFormula Application Dictionary

• Extending Security in Oracle Human Resources

• Creating Control Totals for the Batch Element Entry Process

• APIs in Oracle HRMS

• Balances in Oracle Payroll

• Balance Dimensions

• Initial Balance Loading for Oracle Payroll

• Including Balance Values in Reports

• Including Balance Values in Reports (U.K. only)

• Legislative Balance Initialization (U.K. only)

• Pay Advice Report (U.K. only)

• Balance View Usage

A – 2 Oracle HRMS Implementation Guide

How DateTrack Works

DateTrack adds the dimension of time to an application’s database.
The value of a DateTracked record depends on the date from which
you are viewing the data. For example, querying an employee’s annual
salary with an effective date of 12–JUL–1992 might give a different
value than a query with an effective date of 01–DEC–1992. However,
the application and the user see the employee’s pay as a single record.

Behavior of DateTracked Forms

This section describes the behavior of forms that incorporate
DateTracking.

When you begin to update or delete a record on a DateTracked form,
you are prompted with a number of choices. This section describes the
choices and their effect on the DateTracked table.

The term ”today” refers to the effective date set by the user.

Update

When a user first alters a field in a DateTracked block in the current
Commit unit, he or she sees a choice of Update prompts as follows:

• UPDATE – Updated values are written to the database as a new
row, effective from today until 31–DEC–4712. The old values
remain effective up to and including yesterday.

• CORRECTION – The updated values override the old record
values and inherit the same effective dates.

If the user selects UPDATE, DateTrack checks whether the record being
updated starts today. If it does, a message warns that the previous
values will be lost (because DateTrack can only store information on a
day by day basis). DateTrack then changes the mode for that record to
CORRECTION.

Next, if UPDATE was selected, DateTrack checks whether the record
being updated has already had future updates entered. If it has been
updated in the future, the user is further prompted for the type of
update, as follows:

• CHANGE INSERT – The changes that the user makes remain in
effect until the effective end date of the current record. At that
point the future scheduled changes take effect.

A – 3Technical Essays

• OVERRIDE – The user’s changes take effect from now until the
end date of the last record in the future. All future dated
changes are deleted.

In most forms, users are prompted for the update mode for each record
they update. In some forms, they are asked for the update mode for
only the first record they update. Any other rows updated take the
same update mode. Users are not prompted again, until they have
committed or cleared any outstanding changes.

Delete

When deleting a record, the user is prompted for the type of delete.
There are four options, as follows:

• DELETE – This is the DateTracked delete. The record that the
user is currently viewing has its effective end date set to today’s
date. The record disappears from the form although the user can
requery it.

• ZAP – This is the total delete. All records matching the key
value, whatever their date stamps, are deleted.

• FUTURE CHANGE – This choice causes any future dated
changes to the current record, including a future DateTracked
delete, to be removed. The current record has its effective end
date set to 31–DEC–4712.

The record can again be displayed by requerying.

• DELETE NEXT CHANGE – This choice causes the next change
to the current DateTracked record to be removed.

Where another future dated DateTracked row exists for this
record, it is removed and the current row has its effective end
date set to the effective end date of the deleted row.

Where no future DateTracked row exists, but the current row has
an end date other than 31–DEC–4712, then this option causes the
effective end date to be set to 31–DEC–4712. This means that a
date effective end is considered to be a change.

Notice that this option again removes the current row from the
form, though it can be displayed again by requerying.

A – 4 Oracle HRMS Implementation Guide

Insert

The user is not prompted for any modes when inserting a record
because the inserted record has its effective start date set to today
(Effective Date) and its effective end date set to 31–DEC–4712.

Table Structure for DateTracked Tables

A DateTracked (DT) record is what the application and the user see: a
single DT record for each key value. However, this DT record may
change over time, so it may correspond to one or more physical rows in
the database. The history for the record is held by storing a row when
the record is created, and an extra row every time the record changes.
To control these rows, you must add an extra two columns to every
DateTracked table.

EFFECTIVE_START_DATE DATE NOT NULL

EFFECTIVE_END_DATE DATE NOT NULL

The effective start date indicates when the record was inserted. The
effective end date indicates when the record was deleted or updated.
A deleted record has the highest end date of all the rows with that key,
but for an updated record there will be at least one row for this key
with a higher effective end date.

Notice that when a DT record has not been deleted in the future (the
normal case), then EFFECTIVE_END_DATE for the last row is set to
31–DEC–4712.

As time support is not provided, the effective start date commences at
0000 hours and the effective end date finishes at 2359 hours. This
means that a DT record can change at most once per day.

Example

EMPID EMPNAME SALARY EFFECTIVE_
START_DATE

EFFECTIVE_
END_DATE

3203 SMITH 17,000 12–MAR–1989 19–JUL–1989

3203 SMITH 18,200 20–JUL–1989 20–JUL–1989

3203 SMITH 18,400 21–JUL–1989 01–DEC–1989

Table A – 1 Example of DateTracked Table Contents (Page 1 of 1)

A – 5Technical Essays

The table above shows the physical table after the user has done the
following:

• Set the effective date to 12–MAR–1989. Inserted record for
SMITH.

• Set the effective date to 20–JUL–1989. Updated SMITH record
with new salary.

• Set the effective date to 21–JUL–1989. Again updated SMITH
record with new salary.

• Set the effective date to 1–DEC–1989. Deleted record for SMITH.

The table below shows what the user sees on querying the SMITH
record at different effective dates.

EFFECTIVE
DATE

EMPID EMPNAME SALARY

11–MAR–1989 ** no rows retrieved

12–JUN–1989 3203 SMITH 17,000

21–JUL–1989 3203 SMITH 18,200

02–DEC–1989 ** no rows retrieved

Table A – 2 Example of Query Results for a DateTracked Table (Page 1 of 1)

Because the primary key column in the table is no longer unique, any
indexes on the table that included the primary key column must now
also include the EFFECTIVE_START_DATE and
EFFECTIVE_END_DATE columns.

List of DateTracked Tables

To get a list of the DateTracked tables used in Oracle Human
Resources, select from the data dictionary as Application Short
Name%F where the appropriate short name is one of PER, PAY, SSP,
or FF.

For each of the DateTracked tables there is a DateTracked view called
<TABLE NAME> and a synonym pointing to the full table called
<TABLE NAME_F>.

A – 6 Oracle HRMS Implementation Guide

Creating a DateTracked Table and View

The previous section described the table structure of a DateTracked
table. This section describes the steps to go through to create a
DateTracked table and view.

You must use the following nomenclature for DateTracked tables:

Base table: <TABLE NAME_F>

DateTracked view: <TABLE NAME>

In addition to the DateTracked view, there is another view that shows
the rows in the table as of SYSDATE. The name of this view is derived
by replacing the _F at the end of the table name by _X.

Example

To incorporate DateTrack on to an existing table called EMPLOYEES,
follow these steps:

1. Create a new table called EMPLOYEES_F that is identical to
EMPLOYEES but with the columns EFFECTIVE_START_DATE
and EFFECTIVE_END_DATE added. Normally you would set the
EFFECTIVE_START_DATE and EFFECTIVE_END_DATE columns
to the maximum range.

CREATE TABLE EMPLOYEES_F AS

SELECT EMPLOYEES.*,

TO_DATE(’01–JAN–0001’,’DD–MON–YYYY’) EFFECTIVE_START_DATE,

TO_DATE(’31–DEC–4712’,’DD–MON–YYYY’) EFFECTIVE_END_DATE

FROM EMPLOYEES;

ALTER TABLE EMPLOYEES_F

MODIFY (EFFECTIVE_START_DATE NOT NULL,

EFFECTIVE_END_DATE NOT NULL);

Remove the old table.

DROP TABLE EMPLOYEES

If the old table already has the two new columns, just rename it.

RENAME EMPLOYEES TO EMPLOYEES_F;

2. Create the New Unique Indexes of the DateTracked Table by
dropping the old indexes, creating the new unique indexes as old
unique index + EFFECTIVE_START_DATE +
EFFECTIVE_END_DATE, and creating the new non–unique
indexes the same as the old non–unique indexes.

A – 7Technical Essays

3. Create a DateTracked view called EMPLOYEES. This view uses
the entry in FND_SESSIONS for the current user effective id for the
effective date.

CREATE VIEW EMPLOYEES AS

SELECT *

FROM EMPLOYEES_F

WHERE EFFECTIVE_START_DATE <=

(SELECT EFFECTIVE_DATE

FROM FND_SESSIONS

WHERE FND_SESSIONS.SESSION_ID = USERENV(’SESSIONID’))

AND EFFECTIVE_END_DATE >=

(SELECT EFFECTIVE_DATE

FROM FND_SESSIONS

WHERE FND_SESSIONS.SESSION_ID = USERENV(’SESSIONID’))

4. To create the view EMPLOYEES_X based on the table
EMPLOYEES_F, use the following SQL:

CREATE VIEW EMPLOYEES_X AS

SELECT *

FROM EMPLOYEES_F

WHERE EFFECTIVE_START_DATE <= SYSDATE

AND EFFECTIVE_END_DATE >= SYSDATE

A – 8 Oracle HRMS Implementation Guide

How to Create and Modify DateTrack History Views

DateTrack History is available in most windows where DateTrack is
available to enter information. It lets you track when changes have
been made to a record, which fields were changed, and by whom. You
can select the fields you want to focus on and view the changing values
of these fields over time.

DateTrack History is available from a button on the toolbar.

Additional Information: For more information on DateTrack,
refer to Introduction to Oracle HRMS.

When you request DateTrack History, the information is extracted
either from the base table or the DateTrack History view for the table, if
one exists. You can create new views or modify the existing views to
customize the information displayed. For example:

• You can create a view to join to other tables. This allows you to
use a meaningful table name as a column header. By contrast,
the base table can only display an ID of another table.

• You can decide which fields are displayed, by modifying the
views.

• You can modify views so that column names display an alias for
the meaningful names you have defined for descriptive flexfield
segments.

This essay provides the background information you require before
modifying or creating DateTrack History views.

What Happens When You Request DateTrack History

When you request DateTrack History from a DateTracked window, the
window passes the name of the base table, the name of the unique id
field, and the value of the unique id to DateTrack History.

Before the DateTrack History Change Field Summary window displays,
the code checks whether a DateTrack History view exists for the base
table. The name of the view is the same as that of the base table, except
that the suffix _f is replaced by _d. For example, if the base table is
per_people_f, the code looks for a view called per_people_d. If the
view exists, the code uses it; otherwise it extracts information from the
base table.

Figure A – 1
DateTrack History of People
View

A – 9Technical Essays

DateTrack History in Forms 2

If the information is extracted from a view, the title of the DateTrack
History menu contains the word ’View’, as shown in the following
figure. The DateTrack History code modifies the column names of the
table or view before presenting them in the menu. Underscores are
replaced by spaces and the first letter of each word appears in upper
case.

DateTrack History in Forms 4

When a view exists, information about the entity name and column
prompts is read from the datetrack tables (DT_TITLE_PROMPTS,
DT_DATE_PROMPTS and DT_COLUMN_PROMPTS). If the
information cannot be found in these tables or the _f table is used, the
information is extracted from the view/table definition. The DateTrack
History code modifies the column names of the table or view before
presenting them. Underscores are replaced by spaces and the first
letter of each word appears in upper case.

UT1 BG Enter Personal Information 01−JAN−94

Cafolla Employee

18−DEC−1993

 Person
 Last Name Type

 First Name Middle Names Known As

 Title Sex Social Security Number
 Employee Applicant
 Number Email Mail
 −−−−−−−−−−−−−−−−−−−−−−−−−−−− Personal Information −−−−−−−−−−−−−−−−−−−−−−−−−−−−
 Marital Status Birth Date Age Disabled

 Nationality Previous Last Name

 Work Telephone Date Last Verified
 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− Miscellaneous −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
 Comments []
 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− Effective Dates −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
 From To
 Additional Person Details

 ^ v Char Mode: Replace Page 1 Count: *4

Datetrack History of People View
Changes

Show changed fields
Values Help Down Up Left Right Top Bottom >

 Start Date End Date Summary of Changed Fields

 14–Feb–1986 24–May–1991

 25–May–1991 17–Dec–1993 Tax Code, Date Last Verified, Mail Desti

–>18–Dec–1993 Marital Status

A – 10 Oracle HRMS Implementation Guide

Figure A – 2
Change Field Summary

Rules for Creating or Modifying DateTrack History Views

All DateTrack History views must adopt the naming convention
described above. That is, they must have the same name as the
corresponding base table, except that the suffix _f is replaced by _d.

All views must contain the following columns:

• The primary key of the base table

• The effective start date of the base table

• The effective end date of the base table

• The last updated date column

• The last updated by column. (Obtain the actual user name by an
outer join to FND_USER_VIEW).

Note: There is a limit of 35 columns in Date Track History
views. The primary key, effective start date, and effective end
date columns must be present in the view but cannot be seen in
the DateTrack History windows.

You must not edit the supplied DateTrack History view creation
scripts. If you want to customize the supplied DateTrack History
views, copy the scripts and modify the copies. After an upgrade, you
should check that your customizations are consistent with the new
views supplied with the upgrade. If so, you can rerun your customized
view creation scripts to recreate your customized views.

Example of a DateTrack History View

In this example, the base table is pay_grade_rules_f.

create or replace view pay_grade_rules_d

(grade_rule_id,

A – 11Technical Essays

 effective_start_date,

 effective_end_date,

 maximum,

 mid_value,

 minimum,

 grade,

 rate_type,

 last_update_date,

 last_updated_by)

AS

select GRULE.grade_rule_id,

 GRULE.effective_start_date,

 GRULE.effective_end_date,

 GRULE.maximum,

 GRULE.mid_value,

 GRULE.minimum,

 GRADE.name,

 HR1.meaning,

 GRULE.last_update_date,

 FUSER.user_name

from pay_grade_rules_f GRULE

, per_grades GRADE

, hr_lookups HR1

, fnd_user_view FUSER

where GRADE.grade_id = GRULE.grade_or_spinal_point_id

and HR1.lookup_code (+)= GRULE.rate_type

and HR1.lookup_type (+)= ’RATE_TYPE’

and FUSER.user_id (+)= GRULE.last_updated_by

A – 12 Oracle HRMS Implementation Guide

List of DateTrack History Views

The supplied view creation scripts are as follows:

View Creation Script Based on

pedtasgn.sql PER_ASSIGNMENTS_F

pedtbbcf.sql BEN_BENEFIT_CONTRIBUTIONS_F

pedtccbf.sql PER_COBRA_COVERAGE_BENEFITS_F

pedtgrsp.sql PER_GRADE_SPINES_F

pedtpepl.sql PER_PEOPLE_F

pedtsppp.sql PER_SPINAL_POINT_PLACEMENTS_F

pedtspst.sql PER_SPINAL_POINT_STEPS_F

pydtbalf.sql PAY_BALANCE_FEEDS_F

pydtetyp.sql PAY_ELEMENT_TYPES_F

pydtexrt.sql PAY_EXCHANGE_RATES_F

pydtfmrr.sql PAY_FORMULA_RESULT_RULES_F

pydtgrdt.sql PAY_GRADE_RULES_F

pydtpaym.sql PAY_ORG_PAYMENT_METHODS_F

pydtpayr.sql PAY_PAYROLLS_F

pydtppym.sql PAY_PERSONAL_PAYMENT_METHODS_F

pydtstpr.sql PAY_STATUS_PROCESSING_RULES_F

pydtucin.sql PAY_USER_COLUMN_INSTANCES_F

pydtussrr.sql PAY_USER_ROWS_F

The supplied views are as follows:

View Name View Script

PAY_EXCHANGE_RATES_F pydtexrt.sql

PAY_USER_COLUMN_INSTANCES_F pydtucin.sql

PAY_USER_ROWS_F pydtussrr.sql

PER_COBRA_COVERAGE_BENEFITS_F pedtccbf.sql

PAY_FORMULA_RESULT_RULES_F pydtfmrr.sql

PAY_BALANCE_FEEDS_F pydtbalf.sql

BEN_BENEFIT_CONTRIBUTIONS_F pedtbbcf.sql

A – 13Technical Essays

The FastFormula Application Dictionary

The FastFormula Application Dictionary is designed to hide the
complexity of the application database from the FastFormula user.
When you write a formula, you reference database items. The
Dictionary contains the information that FastFormula requires to
generate the SQL and PL/SQL error checking code that extracts these
database items.

For example, in a formula you may refer to the database item
EMPLOYEE_LAST_NAME. When the formula is run, FastFormula
uses information in the Dictionary to build up a complete SELECT
statement to extract the name from the database.

Normally, you do not need to be aware of the contents of the
Dictionary. For example, when you define a new element, several
database items are generated automatically. The information that
enables FastFormula to extract these new items is generated at the
same time.

However, if you do need to define new database items directly in the
Dictionary, you must also load the associated information. The next
section describes the entities that you must create in the Dictionary.
The following section gives step–by–step instructions for defining new
database items.

Entities in the Dictionary

Suppose FastFormula is running a formula that references the database
item EMPLOYEE_LAST_NAME from the table PER_PEOPLE. The
SQL required to extract EMPLOYEE_LAST_NAME is as follows:

SELECT TARGET.last_name

FROM per_people TARGET

, per_assignments ASSIGN

WHERE TARGET.person_id = ASSIGN.person_id

AND ASSIGN.assignment_id = &B1

This section explains where this information is stored in the Dictionary
and how FastFormula builds it up to form the SQL statement.

Note that the Dictionary stores information at the physical level. That
is, it stores parts of the text of SQL statements, which are used by
FastFormula to build up the complete statements. It does not store
information about entities and relationships.

A – 14 Oracle HRMS Implementation Guide

Database Items and User Entities

EMPLOYEE_LAST_NAME is a value in the USER_NAME column of
table FF_DATABASE_ITEMS in the Dictionary. When FastFormula
runs a formula in which EMPLOYEE_LAST_NAME is a variable, it
accesses this table for two reasons:

• It gets the value in the DEFINITION_TEXT column. This is the
value that appears in the SELECT clause of the SQL. In our
example, it is PER_PEOPLE.LAST_NAME. (TARGET is an alias
for PER_PEOPLE.)

• It identifies the user entity of which the database item is a part.
A user entity is a group of one or more database items that can
be accessed by the same route. In our example, the user entity
might be EMPLOYEE_DETAILS.

Routes and Route Parameters

Using the user entity ID, FastFormula checks the table
FF_USER_ENTITIES to identify the route associated with the user
entity. The route is the text of the SQL statement following the FROM
keyword. It is held in the table FF_ROUTES. In our example, the
route is:

per_people TARGET,

per_assignments ASSIGN

WHERE TARGET.person_id = ASSIGN.person_id

AND ASSIGN.assignment_id = &B1

If several user entities use the same route, the route contains one or
more placeholders of the form &U# (where # is a sequence number).
Each placeholder references a parameter in table
FF_ROUTE_PARAMETERS. FastFormula identifies the parameter ID
from this table.

The values of the parameters are different for each user entity. Using
the parameter ID, FastFormula accesses the value of the parameter for
the relevant user entity in table FF_ROUTE_PARAMETER_VALUES.
Since each user entity has a different set of parameter values, the text of
the route is different for each user entity.

In our example, only one user entity uses the route so there are no route
parameters.

Contexts and Route Context Usage

The route may contain another type of placeholder of the form &B#
(where # is a sequence number). These placeholders reference contexts

A – 15Technical Essays

in the table FF_ROUTE_CONTEXT_USAGES. FastFormula identifies
the ID of the context from this table, and then the name of the context
from table FF_CONTEXTS. Contexts are predefined in FF_CONTEXTS
and you should not change them. Examples are Payroll ID,
Organization ID, and Date Earned.

The value of the context is not fixed. It is passed through by the
formula at run time.

In our example, the route requires one context, which is Assignment
ID.

Formula Types and Formula Type Context Usage

When you define a formula, you assign it to a formula type, such as
Payroll formulas or QuickPaint formulas. The type of the formula
determines the contexts for which it provides values. This is defined in
table FF_FTYPE_CONTEXT_USAGES.

For example, a QuickPaint formula feeds through values for the
contexts Assignment ID and Date Earned. Thus, when you define a
QuickPaint formula, you can use database items that require the
contexts Assignment ID and Date Earned. However, any database
items that use the other contexts in their routes are not available to you.
They do not appear on the QuickPick lists.

This is a mechanism to restrict the database items that a formula can
use. It can only use database items that are appropriate to the formula
context.

It follows that if a database item is based on a route that does not
require any contexts (for example, a SELECT from DUAL), then every
formula type in the system is able to access the database item.

Summary of How FastFormula Uses the Dictionary

1. FastFormula gets the value in the DEFINITION_TEXT column of
FF_DATABASE ITEMS and puts it in the SELECT clause of the
SQL.

2. It gets the user entity ID from FF_DATABASE ITEMS and uses it to
get the route ID from FF_USER_ENTITIES.

3. It uses the route ID to get the route text from FF_ROUTES and puts
it in the FROM clause of the SQL.

4. If the route contains a placeholder of the form &U#, FastFormula
accesses FF_ROUTE_PARAMETERS to identify the parameter ID.
Then it uses the parameter ID to get the value of the parameter for

A – 16 Oracle HRMS Implementation Guide

the relevant user entity in table
FF_ROUTE_PARAMETER_VALUES.

5. If the route contains a placeholder of the form &B#, FastFormula
accesses FF_ROUTE_CONTEXT_USAGES to identify the context
ID. Then it uses the context ID to get the name of the context in
table FF_CONTEXTS. This must be one of the contexts for which
the formula passes through values (determined by the formula type
in table FF_FTYPE_CONTEXT_USAGES).

Defining New Database Items

Before defining new items, you should consider the following issues:

• To which business group and legislation should the database
item be available?

• Can the database item have a null value? Can it be non–existent?

Availability of Database Items

The two attributes Business Group ID and Legislation Code are
associated with each user entity. These attributes determine the
availability of the database items belonging to the user entity. If the
Business Group ID is set to a particular value, then only formulas
operating under that business group can ’see’ the database item. If the
Business Group ID is set to null, the database item can be ’seen’ by all
business groups. The same principle applies to Legislation Code.

New database items that you define must be associated with a specific
business code and legislation. Generic startup items supplied as part of
the core system are available to all formulas. Your localization group
has added legislation–specific items that are available to all business
groups under that legislation.

Note: The name of the database item must be unique within a
business group.

Null & Not Found Conditions

To enable validation, you must define two flags in the FastFormula
Application Dictionary:

• The NULL_ALLOWED_FLAG is a column on the table
FF_DATABASE_ITEMS, and hence applies to each database

A – 17Technical Essays

item. If the SQL statement to extract the database item may
return a null value, you must set this flag to yes (Y). If you set
the flag to no and a null value is returned, FastFormula will
report an error.

• The NOTFOUND_ALLOWED_FLAG is a column on the table
FF_USER_ENTITIES, and hence applies to all the database items
belonging to a particular user entity. If the SQL statement to
extract database items may return no rows for any of the items,
you must set this flag to yes (’Y’). If you set the flag to no and
the SQL statement fails to return a row, FastFormula will report
an error.

The formula writer must provide a default for a database item used in
a formula, unless both of these flags are set to no. For more
information on defaults, refer to the Oracle FastFormula User Guide
(Appendix D of the Oracle Human Resources Reference Manual).

Steps To Generate A Database Item

To illustrate the steps to generate database items, we will use the
example of a user entity called GRADE_RATE_USER_ENTITY, which
comprises three database items:

• GRADE_VALUE

• GRADE_MINIMUM

• GRADE_MAXIMUM

This user entity may share its route (GRADE_ROUTE) with other user
entities. Each user entity uses a unique value for the route parameter
RATE_ID, so that the WHERE clause for each entity is different. If the
entities are in the same business group, the USER_NAME of each
database item must be unique. One way to achieve this is to include
the rate name in the USER_NAME; for example:
<RATE_NAME>_GRADE_VALUE.

In this example, we suppose that the value of RATE_ID for
GRADE_RATE_USER_ENTITY is 50012. For simplicity we consider
only one user entity for the route.

The three database items are stored in table PAY_GRADE_RULES. To
extract these items, FastFormula uses an assignment ID passed by the
formula. This is the formula context.

This is the SQL required to extract these database items:

SELECT <DEFINITION_TEXT>

FROM pay_grade_rules TARGET

A – 18 Oracle HRMS Implementation Guide

, per_assignments ASSIGN

WHERE TARGET.grade_or_spinal_point_id = ASSIGN.grade_id

AND TARGET.rate_type = ’G’

AND ASSIGN.assignment_id = &B1

AND TARGET.rate_id = &U1

<DEFINITION_TEXT> may be one of the three database items listed
below:

Database Item Name <DEFINITION_TEXT>

GRADE_VALUE TARGET.value

GRADE_MINIMUM TARGET.minimum

GRADE_MAXIMUM TARGET.maximum

The following steps describe how to load the information into the
Dictionary so that FastFormula can generate this SQL. An example of
PL/SQL that loads the information is given at the end of this section.

Step 1. Write the SQL

Write and test the SQL statement using SQL*Plus to ensure that the
statement is correct. The SQL statement must not return more than one
row because FastFormula cannot process multiple rows.

Step 2. Load the Route

This is best done using a PL/SQL routine. Wherever possible, use the
sequence value for the primary keys (such as
FF_ROUTES_S.NEXTVAL) to populate the table. The route is held in
the table FF_ROUTES as a ’long’ data type. So, using the example
above, you could assign the route to a long variable as follows:

set escape \

DECLARE

 l_text long;

BEGIN

 l_text := ’/* route for grade rates */

 pay_grade_rules TARGET,

 per_assignments ASSIGN

WHERE TARGET.grade_or_spinal_point_id = ASSIGN.grade_id

AND TARGET.rate_type = ’’G’’

AND ASSIGN.assignment_id = \&B1

AND TARGET.rate_id = \&U1’;

END;

Note the following changes from the original SQL that was given
earlier:

A – 19Technical Essays

• Each ’&’ is preceded with the escape character.

• The single quote mark is replaced with two single quote marks.

• A comment may be placed at the start of the route if required.

Step 3. Load the Contexts

The next step is to load the contexts into the table
FF_ROUTE_CONTEXT_USAGES. The columns in this table are as
follows:

Name Null? Type

–––

ROUTE_ID NOT NULL NUMBER(9)

CONTEXT_ID NOT NULL NUMBER(9)

SEQUENCE_NO NOT NULL NUMBER(9)

Use the current sequence number for the route ID. This is
FF_ROUTES_S.CURRVAL if you used the sequence
FF_ROUTES_S.NEXTVAL to populate the table FF_ROUTES. You can
obtain the context ID for the particular formula context (assignment ID
in our example) from the table FF_CONTEXTS. The sequence number
is simply the ’B’ number.

For the example, you would insert one row for the route into the table
FF_ROUTE_CONTEXT_USAGES (see the PL/SQL for the example, at
the end of this section).

Step 4. Insert Rows in the User Entity Table

For each route, insert at least one row in the table FF_USER_ENTITIES.
This table holds the Business Group ID, Legislation Code, the
ROUTE_ID, and the NOTFOUND_ALLOWED_FLAG.

Step 5. Insert Rows for Route Parameters

For each placeholder of the form &U# in the route, you must insert a
row into two tables:

• FF_ROUTE_PARAMETERS, which references the route, and

• FF_ROUTE_PARAMETER_VALUES, which contains the actual
value for the route parameter, and references the user entity.

The columns in these tables are as follows:

A – 20 Oracle HRMS Implementation Guide

SQL> desc ff_route_parameters

 Name Null? Type

 ––––––––––––––––––––––––––––––– –––––––– ––––

 ROUTE_PARAMETER_ID NOT NULL NUMBER(9)

 ROUTE_ID NOT NULL NUMBER(9)

 DATA_TYPE NOT NULL VARCHAR2(1)

 PARAMETER_NAME NOT NULL VARCHAR2(80)

 SEQUENCE_NO NOT NULL NUMBER(9)

SQL> desc ff_route_parameter_values

 Name Null? Type

 ––––––––––––––––––––––––––––––– –––––––– ––––

 ROUTE_PARAMETER_ID NOT NULL NUMBER(9)

 USER_ENTITY_ID NOT NULL NUMBER(9)

 VALUE NOT NULL VARCHAR2(80)

 LAST_UPDATE_DATE DATE

 LAST_UPDATED_BY NUMBER(15)

 LAST_UPDATE_LOGIN NUMBER(15)

 CREATED_BY NUMBER(15)

 CREATION_DATE DATE

The data type held in FF_ROUTE_PARAMETERS is either a number
(N) or a text value (T).

In our example, the route parameter is RATE_ID. For
GRADE_RATE_USER_ENTITY, its value is 50012. The values you
would insert into these tables for the example are shown in the sample
PL/SQL at the end of this section.

Step 6. Insert the Database Item

You can now insert the database items. For our example, there are
three rows in the table FF_DATABASE_ITEMS that refer to the same
user entity. The columns in this table are as follows:

SQL> desc ff_database_items

 Name Null? Type

 ––––––––––––––––––––––––––––––– –––––––– ––––

 USER_NAME NOT NULL VARCHAR2(80)

 USER_ENTITY_ID NOT NULL NUMBER(9)

 DATA_TYPE NOT NULL VARCHAR2(1)

 DEFINITION_TEXT NOT NULL VARCHAR2(240)

 NULL_ALLOWED_FLAG NOT NULL VARCHAR2(1)

 DESCRIPTION VARCHAR2(240)

 LAST_UPDATE_DATE DATE

 LAST_UPDATED_BY NUMBER(15)

 LAST_UPDATE_LOGIN NUMBER(15)

 CREATED_BY NUMBER(15)

 CREATION_DATE DATE

Example

A – 21Technical Essays

The USER_NAME must be unique within the business group.

The values you would insert into this table for the three example
database items are shown in the sample PL/SQL at the end of this
section.

When you create the database items, it is useful to populate the other
columns, such as LAST_UPDATE_DATE, and CREATION_DATE.

The following PL/SQL creates the database items in the example::

set escape \

DECLARE

 l_text long;

 l_user_entities_seq number;

 l_route_id number;

BEGIN

 ––

 –– assign the route to a local variable

 ––

l_text := ’/* route for grade rates */

 pay_grade_rules TARGET,

 per_assignments ASSIGN

WHERE TARGET.grade_or_spinal_point_id = ASSIGN.grade_id

AND TARGET.rate_type = ’’G’’

AND ASSIGN.assignment_id = \&B1

AND TARGET.rate_id = \&U1’;

––

–– insert the route into the table ff_routes

––

insert into ff_routes

 (route_id,

 route_name,

 user_defined_flag,

 description,

 text,

 last_update_date,

 creation_date)

values (ff_routes_s.nextval,

 ’GRADE_ROUTE’,

 ’Y’,

 ’Route for grade rates’,

 l_text,

 sysdate,

 sysdate);

––

–– load the context

––

A – 22 Oracle HRMS Implementation Guide

insert into ff_route_context_usages

 (route_id,

 context_id,

 sequence_no)

select ff_routes_s.currval,

 context_id,

 1

from ff_contexts

where context_name = ’ASSIGNMENT_ID’;

––

–– create a user entity

––

select ff_user_entities_s.nextval

into l_user_entities_seq

from dual;

––

select ff_routes_s.currval

into l_route_id

from dual;

––

insert into ff_user_entities

 (user_entity_id,

 business_group_id,

 legislation_code,

 route_id,

 notfound_allowed_flag,

 user_entity_name,

 creator_id,

 creator_type,

 entity_description,

 last_update_date,

 creation_date)

values (l_user_entities_seq,

 1, –– example business group id

 ’GB’, –– example legislation

 l_route_id,

 ’Y’,

 ’GRADE_RATE_USER_ENTITY’,

 50012, –– example creator id

 ’CUST’,

 ’Entity for the Grade Rates’,

 sysdate,

 sysdate);

––

–– insert the route parameters

––

insert into ff_route_parameters

 (route_parameter_id,

 route_id,

A – 23Technical Essays

 data_type,

 parameter_name,

 sequence_no)

select ff_route_parameters_s.nextval,

 l_route_id,

 ’N’,

 ’Grade Rate ID’,

 1

from dual;

––

insert into ff_route_parameter_values

 (route_parameter_id,

 user_entity_id,

 value,

 last_update_date,

 creation_date)

select ff_route_parameters_s.currval,

 l_user_entities_seq,

 50012,

 sysdate,

 sysdate

from dual;

––

–– insert the three database items

––

insert into ff_database_items

 (user_name,

 user_entity_id,

 data_type,

 definition_text,

 null_allowed_flag,

 description,

 last_update_date,

 creation_date)

values (’GRADE_VALUE’,

 l_user_entities_seq,

 ’T’,

 ’TARGET.value’,

 ’Y’,

 ’Actual value of the Grade Rate’,

 sysdate,

 sysdate);

––

insert into ff_database_items

 (user_name,

 user_entity_id,

 data_type,

 definition_text,

 null_allowed_flag,

A – 24 Oracle HRMS Implementation Guide

 description,

 last_update_date,

 creation_date)

values (’GRADE_MINIMUM’,

 l_user_entities_seq,

 ’T’,

 ’TARGET.minimum’,

 ’Y’,

 ’Minimum value of the Grade Rate’,

 sysdate,

 sysdate);

––

insert into ff_database_items

 (user_name,

 user_entity_id,

 data_type,

 definition_text,

 null_allowed_flag,

 description,

 last_update_date,

 creation_date)

values (’GRADE_MAXIMUM’,

 l_user_entities_seq,

 ’T’,

 ’TARGET.maximum’,

 ’Y’,

 ’Maximum value of the Grade Rate’,

 sysdate,

 sysdate);

END;

/

A – 25Technical Essays

Extending Security in Oracle Human Resources

Oracle Human Resources provides a flexible approach to controlling
access to tables, records, fields, forms and functions. You can match
each employee’s level of access to their responsibilities.

For a discussion of security in Oracle HRMS and how to set it up to
meet your requirements, refer to the chapter on Security in your
product user’s guide, and to the setup steps in the Oracle HRMS
Implementation Guide.

This essay does not repeat the definitions and description in your user
and implementation guides. It builds on that information to describe
the objects and processes that implement the security system. Read
this essay if you need to:

• add custom tables to the standard security system

• integrate your own security system with the supplied
mechanisms

Security Profiles

All Oracle Applications users access the system through a
Responsibility that is linked to a security profile via the HR:Security
Profile profile option.

There are two types of security profile:

• unrestricted

• restricted

Restricted security profiles are available only to users of Oracle Human
Resources and Oracle Payroll. Notice that Oracle Training
Administration does not make use of restricted security profiles.

A Responsibility with an unrestricted security profile has unrestricted
access to data in Oracle HRMS tables. It connects to the APPS Oracle
User. If you connect to an unrestricted security profile, the data you see
when you select from a secure view is the same data you see if you
select from the table on which the secure view is based.

When you connect to the APPS Oracle User with a restricted security
profile you can access the secure tables directly if you want to bypass
the security restrictions defined in your security profile. You might
want to do this to perform uniqueness checks, or to resolve foreign
keys.

A – 26 Oracle HRMS Implementation Guide

Restricted security profiles can optionally make use of read–only, or
reporting users. These are separate Oracle Users, one per restricted
security profile, that have read–only access to Oracle tables and views.
Reporting users do not have execute privilege on Oracle HRMS
PL/SQL packages, and do not have direct access to the secured Oracle
HRMS tables.

Restricted security profiles may restrict access to the following entities
(the exact restrictions are determined by the definition of the security
profiles):

• Organizations

• People

• Assignments

• Positions

• Vacancies

• Payrolls

All other entities are unrestricted; that is, restricted security profiles can
access all records of tables, views and sequences associated with these
entities.

Secure Tables and Views

The following Oracle HRMS tables are secured:

• HR_ALL_ORGANIZATION_UNITS

• PER_ALL_POSITIONS

• PER_ALL_VACANCIES

• PER_ALL_PEOPLE_F

• PER_ALL_ASSIGNMENTS_F

• PAY_ALL_PAYROLLS_F

Some of these tables (namely PER_ALL_PEOPLE_F,
PER_ALL_ASSIGNMENTS_F and PAY_ALL_PAYROLLS_F) are
Datetracked. The following table details the views that are based on the
secured tables listed above.

A – 27Technical Essays

Table or View Description

HR_ORGANIZATION_UNITS Secure view of Organization table

HR_ALL_ORGANIZATION_UNITS Organization table

PER_ORGANIZATION_UNITS Secure view of Organization view (HR Orgs only)

PER_ALL_ORGANIZATION_UNITS Unsecured view of Organization view (HR Orgs only)

PER_POSITIONS Secure view of Positions table

PER_ALL_POSITIONS Positions table

PER_VACANCIES Secure view of Vacancies table

PER_ALL_VACANCIES Vacancies table

PER_ASSIGNMENTS Secure view of Assignments table, effective at session date

PER_ASSIGNMENTS_F Secure view of Assignments table

PER_ASSIGNMENTS_X Secure view of Assignments table, effective at system date

PER_ALL_ASSIGNMENTS Unrestricted view of Assignments table, effective at session
date

PER_ALL_ASSIGNMENTS_F Assignments table

PER_PEOPLE Secure view of Person table, effective at session date

PER_PEOPLE_F Secure view of Person table

PER_PEOPLE_X Secure view of Person table, effective at system date

PER_ALL_PEOPLE Unrestricted view of Person table, effective at session date

PER_ALL_PEOPLE_F Person table

PAY_PAYROLLS Secure view of Payrolls table, effective at session date

PAY_PAYROLLS_F Secure view of Payrolls table

PAY_PAYROLLS_X Secure view of Payrolls table, effective at system date

PAY_ALL_PAYROLLS Unrestricted view of Payrolls table, effective at session
date

PAY_ALL_PAYROLLS_F Payrolls table

Table A – 3 Secure Tables and Views

A – 28 Oracle HRMS Implementation Guide

Accessing Oracle HRMS Data Through Restricted Security Profiles

When you connect to the APPS Oracle User you can access all Oracle
HRMS database objects without having to perform any additional
setup.

This is not the case for reporting users: two conditions must be met to
enable reporting users to access Oracle HRMS tables and views:

• A public synonym must exist for each table and view. Public
synonyms have the same name as the tables and views to which
they point. They are created during installation of Oracle HRMS.

• The reporting user must have been granted permissions to access
the tables and views by the SECGEN process. Reporting users
are granted SELECT permission only. See below for more
information about SECGEN.

How Secure Views Work

The information that is visible through a secure view is dependent on
the definition of the security profile through which the view is being
accessed.

If you have connected with a restricted security profile the information
you can see is derived from denormalized lists of organizations,
positions, people and payrolls.

The lists are used only when required. For example, the payroll list will
be empty for a security profile that can see all payrolls. And in the case
of a security profile that can see all applicants but a restricted set of
employees, the Person list contains employees but no applicants.

Here is the text of the HR_ORGANIZATION_UNITS secure view:

CREATE OR REPLACE VIEW HR_ORGANIZATION_UNITS AS

SELECT *

FROM HR_ALL_ORGANIZATIONS HOA

WHERE DECODE(HR_SECURITY.VIEW_ALL, ’Y’, ’Y’,

HR_SECURITY.SHOW_RECORD

(’HR_ALL_ORGANIZATION_UNITS’,HAO.ORGANIZATIONN_ID))=’Y’

Most HR security logic is encapsulated in a PL/SQL package,
HR_SECURITY.

HR_SECURITY.VIEW_ALL returns the value of the VIEW_ALL_FLAG
for the current security profile.

A – 29Technical Essays

HR_SECURITY.SHOW_RECORD is called if the current security profile
is a restricted security profile. It validates whether the row in question
is visible through the current security profile.

Security Context

The HR security context contains values for all the attributes of the
current security profiles. It is implemented using PL/SQL globals. The
current security profile is derived as follows:

1. If you have logged onto Oracle Applications using the Oracle
Applications sign–on screen, your security context is automatically
set as part of the Oracle Applications sign–on procedure. Your
current security_profile_id is taken from the HR:Security Profile
profile option.

2. If you have connected to an HR reporting user your current
security_profile_id is taken from the PER_SECURITY_PROFILES
table, where REPORTING_ORACLE_USERNAME matches the
name of the Oracle User to which you have connected.

3. If it is not possible to derive a security_profile_id by either of the
above two methods, the current security_profile_id is set to zero,
which corresponds to the View All security profile for the Setup
Business Group. In this latter case, you are given unrestricted
access to the data in the HRMS tables that are accessible by your
Oracle User.

So, if you connect directly to the APPS Oracle User through SQL*Plus,
you will have unrestricted access to the HRMS tables. But if you
connect to an HR reporting user, your access is restricted according to
the definition of your security profile.

You can simulate the security context for an Oracle Applications
session by calling FND_GLOBAL.APPS_INITIALIZE (user_id, resp_id
and resp_appl_id), passing the IDs of the user, responsibility and
application for the sign–on session you want to simulate.

Note: Neither FND_GLOBAL or HR_SECURITY are accessible
from HR reporting users.

Security Lists

The security profile list tables contain denormalized lists of people,
positions, organizations and payrolls. An additional security profile
list table (PER_PERSON_LIST_CHANGES) is populated on employee
and applicant termination to enable terminated employees and

A – 30 Oracle HRMS Implementation Guide

applicants to continue to be visible; the PERSON_LIST table references
only current employees and applicants.

Security profile lists are intersection tables between a security profile
and secured tables, as follows:

Security List Table Name Columns

PER_PERSON_LIST SECURITY_PROFILE_ID, PERSON_ID

PER_POSITION_LIST SECURITY_PROFILE_ID, POSITION_ID

PER_ORGANIZATION_LIST SECURITY_PROFILE_ID, ORGANIZATION_ID

PAY_PAYROLL_LIST SECURITY_PROFILE_ID, PAYROLL_ID

PER_PERSON_LIST_CHANGES SECURITY_PROFILE_ID, PERSON_ID

Table A – 4

These tables are periodically refreshed by the LISTGEN process. They
are also written to when some relevant business processes are
performed through Oracle HR. For employee, employee hire or
transfer.

Security Processes

Three processes are used to implement Oracle HRMS security:

• Grant Secure Role Permission (ROLEGEN)

• Generate Secure User (SECGEN)

• Create Security Lists (LISTGEN)

If you are not setting up reporting users, you need not run ROLEGEN
and SECGEN.

Refer to your Oracle HRMS user’s guides for details of how to submit
each process from the Submit Requests window. This section describes
how the processes work.

ROLEGEN: Grant Secure Role Permission Process

A role is a set of permissions that can be granted to Oracle users or to
other roles. Roles are granted to users by the SECGEN process (see
below).

A – 31Technical Essays

Before running SECGEN, you must run the ROLEGEN process. This
dynamically grants select permissions on Oracle HRMS tables and
views to the HR_REPORTING_USER role. This role must exist before
you run ROLEGEN.

The HR_REPORTING_USER role is created during the install of Oracle
HRMS. And ROLEGEN is run during the install of Oracle HRMS.

Note: As ROLEGEN is run as part of the installation process,
you do not need to manually run ROLEGEN. You only need to
manually run ROLEGEN if you have applied a patch which
adds new HRMS tables or views, and you need to make the
tables or views available to reporting users.

ROLEGEN performs the following actions:

• creates public synonyms for HRMS tables and views

• revokes all existing permissions from HR_REPORTING_USER
roles

• grants SELECT permissions to HR_REPORTING_USER role for
HRMS tables and views

SECGEN – Generate Secure User Process

SECGEN is run for a specified security profile. It grants the
HR_REPORTING_USER role to the Oracle User associated with the
security profile.

SECGEN must be run after ROLEGEN. Although once SECGEN has
been run for a particular security profile, you need nor rerun it even if
you subsequently rerun ROLEGEN.

SECGEN is a PRO*C process with embedded SQL statements. It is
initiated from the Submit Requests window.

LISTGEN – Create Security Lists Process

LISTGEN is run periodically (for example, nightly) to refresh the
security lists upon which the secure views are built.

LISTGEN is a PL/SQL procedure that you submit from the Submit
Requests window.

LISTGEN builds the security lists from the organization and position
hierarchies by performing tree walks on the
PER_ORG_STRUCTURE_ELEMENTS and
PER_POS_STRUCTURE_ELEMENTS tables. It uses the parent–child
relationship between the nodes and starts with the specified top node.

A – 32 Oracle HRMS Implementation Guide

It uses the current version of the hierarchy, as of the date passed to the
process as the effective run date.

For each security profile, LISTGEN checks that the organization named
as the top organization exists in the current version of the hierarchy. If
it does not, LISTGEN writes an error message to a log file and fails
with an error status. This might happen if a new version of a hierarchy
did not contain an organization referenced as a top organization in a
security profile.

A similar check is made for the top position, if specified.

For each security profile, LISTGEN performs the following steps:

1. If the View All flag is Y, LISTGEN ends leaving all security lists
empty for the specified security profile.

2. Builds a payroll list.

If the View All Payrolls flag is Y, LISTGEN leaves the payroll list
empty. If the View All Payrolls flag is N, LISTGEN checks the
Include Payroll flag. If this flag is Y, LISTGEN makes a list of all
payrolls in the pay_security_payrolls list. If the flag is N, LISTGEN
makes a list of all payrolls except those in the pay_security_payrolls
list. The pay_security_payrolls list is populated when you enter
payrolls on the Define Security Profile screen.

3. Builds an organization list.

If the View All Organizations flag is Y, LISTGEN leaves the
organization list empty. If this flag is N, LISTGEN builds a list of
all organizations below the top one you specified for the
organization hierarchy you chose on the Define Security Profile
screen. If the Include Top Organization flag is Y, the top
organization you specified is included in the list. The Business
Group is always included in the list to allow newly entered
employees and applicants to be visible before they are assigned to
an organization.

4. Builds a position list.

If the View All Positions flag is Y, LISTGEN builds a list of all
positions within the organizations on the organization list. If this
flag is N, LISTGEN builds a list of all positions below the top one
you specified for the position hierarchy you chose on the Define
Security Profile screen. If the Include Top Position flag is Y, the top
position you specified is included in the list. The list of positions is
built up for all organizations on the organization list, or for all
organizations if the View All Organizations flag is Y.

A – 33Technical Essays

5. Builds a person list.

If the View All Positions flag is N, LISTGEN builds a list of all
employees or applicants with current assignments to positions in
the position list, unless they are also assigned to a payroll excluded
from the payroll list. LISTGEN also includes people who are not
assigned to a position but are assigned to a payroll in the payroll
list, or to any payroll if the View All Payrolls flag is Y.

The people in the list have current assignments as of the date
passed into LISTGEN, or are the first assignments for a person
starting in the future who does not have a previously terminated
assignment. New starters in the future are therefore visible
through the secure view.

If the View All Organizations flag is N and the View All Positions
flag is Y, LISTGEN builds a list of all people with current
assignments to organizations in the organization list. If the View
All Payrolls flag is N, the list is restricted to people with
assignments to payrolls in the payroll list, or with no payroll
assignments.

People not yet assigned are included in the person list for every
security profile.

6. Adds person list changes.

Employees or applicants visible to security profiles at the point of
their termination should continue to be visible after termination.
To enable this, the termination forms insert a row into the person
list changes table for each security profile that can see the person at
termination.

LISTGEN adds a person to the person list if an entry exists in the
PER_PERSON_LIST_CHANGES TABLE, there is no current period
of service, and no current application for the person. It only adds
people if they are not already in the list.

Securing Custom Tables

If you have created your own custom tables, perform the following
steps to make them accessible to reporting users:

1. Create table.

Select a table name that does not conflict with any tables or views
that might exist in Oracle Applications.

A – 34 Oracle HRMS Implementation Guide

Do not use two or three character prefixes such as HR, PER, PAY,
FF, DT, SSP, GHR, BEN, OTA or HXT.

Consult Oracle Applications Coding Standards for information on
valid prefixes for custom code.

2. Grant select access on the table to HR_REPORTING_USER role,
from the user that owns the custom table.

GRANT SELECT ON custom_table TO hr_reporting_user;

You must repeat this step every time you run ROLEGEN.
However, you do not need to rerun SECGEN as existing reporting
users that have already been granted access to the
HR_REPORTING_USER role will automatically receive any new
permissions added to the role.

3. Create a synonym to the table.

If you use public synonyms, remember that the Oracle user from
which you create the public synonym must have CREATE PUBLIC
SYNONYM system privilege.

CREATE PUBLIC SYNONYM custom_table

 FOR base_table_account.custom_table;

A – 35Technical Essays

Creating Control Totals for the Batch Element Entry Process

Introduction

Batch control totals provide a mechanism for customizing the validation
of batch contents to meet particular user requirements. This validation
may be done for example, by doing total, or average operations on the
batch lines and matching the values with values entered by the user.

Batches may be entered, or viewed on the Batch Element Entry, (BEE),
window.

Setting up Control Totals

This is done in three parts:

1. Create a control total type in QuickCode Values under the type
CONTROL_TYPE. (Refer to User Manual for details of setting up
QuickCode values)

2. Create the SQL code necessary to perform the validation.

3. Add the control total name and expected value into the Control
Totals screen for the batch.

Task 2 is the most complex and is elaborated below.

Creating the SQL Code

When customising the BEE control total validation code, the code
should be added into the following procedure:

– Procedure: check_control

– Package: user_check

– File: pyusrchk.pkb

This procedure is delivered with a null statement in it which will need
to be replaced with the appropriate control total validation code.

Parameters

The check_control procedure is executed during the batch validation
phase of the MIX process. The parameters passed to this procedure are:

– p_batch_id The batch ID.

A – 36 Oracle HRMS Implementation Guide

– p_control_type The name of the control total.

– p_control_total The user entered value to match.

Two other parameters (p_status, p_message) are used in this procedure
to return an error code and message to the system if the batch control
total validation fails.

Batch Lines

Each line of batch data is stored as a record in the pay_batch_lines table.
The data is stored in the fields value_1 – value_15. The number of the
field corresponds to the column in the MIX Batch Line screen.

For example, if you wished to check the total value of the first column of
the lines you could achieve this by using the following PL/SQL code as
a basis:

PROCEDURE check_control

 (

 p_batch_id IN NUMBER,

 p_control_type IN VARCHAR2,

 p_control_total IN VARCHAR2,

 p_status IN OUT VARCHAR2,

 p_message OUT VARCHAR2

) IS

 total NUMBER;

BEGIN

–– Check the control type is the one we’re expecting

 IF p_control_type = ’TOT1’ THEN

–– Calculate the total

 SELECT SUM(value_1) INTO total FROM pay_batch_lines

 WHERE batch_id = p_batch_id;

–– Compare with the user entered value

 IF total <> p_control_total THEN

–– Create the error message to return and set the status to

E(rror)

 p_message := ’Control total TOT1 (’ || p_control_total ||

 ’does not match calculated value (’ || total ||

 ’)’;

 p_status := ’E’;

 ENDIF;

 ENDIF;

END check_control;

This, however, is a very simplistic example. If batch lines within the
same batch are entered for more than one element then the value
columns may vary between elements. Here is a more complex example
to total ”Pay Value”:

A – 37Technical Essays

PROCEDURE check_control

 (

 p_batch_id IN NUMBER,

 p_control_type IN VARCHAR2,

 p_control_total IN VARCHAR2,

 p_status IN OUT VARCHAR2,

 p_message OUT VARCHAR2

) IS

 CURSOR c1 IS

 SELECT DISTINCT element_name

 FROM pay_batch_lines

 WHERE batch_id = p_batch_id;

––

 r1 c1%ROWTYPE;

 gtotal NUMBER;

 total NUMBER;

 value_num NUMBER;

 sqlstr VARCHAR2(200);

 c2 INTEGER;

 ret INTEGER;

 BEGIN

––

–– Check the control type is the one we’re expecting

 IF p_control_type = ’TOT2’ THEN

 gtotal := 0;

––

–– Loop through each element in the batch lines

 FOR r1 IN c1 LOOP

––

–– Find out the value number that ’Pay Value’ is in

 SELECT display_sequence

 INTO value_num

 FROM pay_input_values iv,

 pay_batch_headers bh,

 pay_element_types_f et

 WHERE bh.batch_id = p_batch_id AND

 iv.business_group_id = bh.business_group_id AND

 et.element_name = r1.element_name AND

 iv.element_type_id = et.element_type_id AND

 iv.name = ’Pay Value’;

––

–– Create an SQL string to add the values

 sqlstr := ’SELECT SUM(value_’ || value_num || ’) ’ ||

 ’FROM pay_batch_lines ’ ||

 ’WHERE batch_id = ’ || p_batch_id || ’ AND ’

||

 ’element_name = ’’’ || r1.element_name

|| ’’’’;

––

A – 38 Oracle HRMS Implementation Guide

–– Call the string using dynamic SQL and put the value in ’total’

 c2 := dbms_sql.open_cursor;

 dbms_sql.parse (c2,sqlstr,dbms_sql.v7);

 dbms_sql.define_column (c2,1,total);

 ret := dbms_sql.execute (c2);

 ret := dbms_sql.fetch_rows (c2);

––

–– Check we got some values back

 if ret > 0 then

 dbms_sql.column_value (c2,1,total);

 else

 total := 0;

 end if;

––

 dbms_sql.close_cursor (c2);

––

–– Add the total to the grand total of all Pay Values

 gtotal := gtotal+total;

 END LOOP;

––

–– Check the grand total matches the user entered value and create

an error message

–– if it doesn’t

 IF gtotal <> p_control_total THEN

 p_message := ’Control Total ’ || p_control_type || ’

expected ’ ||

 p_control_total || ’ but got ’ || gtotal;

 p_status := ’E’;

 END IF;

 END IF;

 END check_control;

A – 39Technical Essays

APIs in Oracle HRMS

In common usage an Application Programmatic Interface, or API, is
usually a logical grouping of all external process routines. For the
Oracle HRMS products we have an API strategy that delivers a set of
pl/sql packaged procedures and functions that together provide an
open interface to the database. For convenience we have called each of
these procedures an API.

This document provides all the technical information you need to be
able to use these APIs and covers the following topics:

• API Overview

• Understanding the Object Version Number (OVN)

• API Parameters

• API Features

• Flexfields with APIs

• Alternative APIs

• API Errors and Warnings

• Example pl/sql Batch Program

• WHO Columns and Oracle Alert

• API User Hooks

• Using APIs as Building Blocks

• Handling Object Version Numbers in Oracle Forms 4.5

• HRMS Table Locking Ladder

API Overview

Fundamental to the design of all APIs in Oracle HRMS is that they
should provide an insulating layer between the user and the data–model
that would simplify all data–manipulation tasks and would protect
customer extensions on upgrade. They are parameterized and
executable pl/sql packages that provide full data validation and
manipulation.

The API layer allows us to capture and execute business rules within the
database – not just in the user interface layer. This layer supports the
use of alternative interfaces to HRMS, such as webpages or spreadsheets
and guarantees all transactions comply with the business rules that have

A – 40 Oracle HRMS Implementation Guide

been implemented in the system. It also simplifies integration of Oracle
HRMS with other systems or processes and provides supports for the
initial loading

Alternative User Interfaces

The supported APIs can be used as an alternative data entry point into
Oracle HRMS. Instead of manually typing in new information or
altering existing data using the online forms, you can implement other
programs to perform similar operations.

These other programs do not modify data directly in the database. They
call the APIs which will:

Alternative User Interfaces

The supported APIs can be used as an alternative data entry point into
Oracle HRMS. Instead of manually typing in new information or
altering existing data using the online forms, you can implement other
programs to perform similar operations.

These other programs do not modify data directly in the database. They
call the APIs which will:

1. Ensure it is appropriate to allow that particular business operation

2. Validate the data passed to the API

3. Insert/update/delete data in the HR schema

APIs are implemented on the server–side and can be used in many
ways. For example:

• Customers who want to upload data from an existing system.
Instead of employing temporary data entry clerks to type in data,
a program could be written to extract data from the existing
system and then transfer the data into Oracle HRMS by calling
the APIs.

• Customers who purchase a number of Applications from
different vendors to build a complete solution. In an integrated
environment a change in one application may require changes to
data in another. Instead of users having to remember to go into
each application repeating the change, the update to the HRMS
applications could be applied electronically. Modifications can be
made in batches or immediately on an individual basis.

• Customers who want to build a custom version of the standard
forms supplied with Oracle HRMS. An alternative version of one

A – 41Technical Essays

or more forms could be implemented using the APIs to manage
all database transactions.

• Customers who want to develop web–based interfaces to allow
occasional users to access and maintain HR information without
the cost of deploying or supporting standard Oracle HRMS
forms. This is the basis of most Self–Service functions that allow
employees to query and updating their own information, such as
change of name, address, marital status. This also applies to
managers who want to query or maintain details for the
employees they manage.

• Managers who are more familiar with spreadsheet applications
may want to export and manipulate data without even being
connected to the database and then upload modifications to the
HRMS database when reconnected.

In all these examples, the programs would not need to modify data
directly in the Oracle HRMS database tables. The specific programs
would call one or more APIs and these would ensure that invalid data is
not written to the Oracle HRMS database and that existing data is not
corrupted.

Advantages of Using APIs

Why use APIs instead of directly modifying data in the database tables?

Oracle does not support any direct manipulation of the data in any
Application using pl/sql. APIs provide you with many advantages:

• APIs allow you to maintain HR and Payroll information without
using Oracle forms.

• APIs insulate you from the need to fully understand every feature
of the database structure. They manage all the inter–table
relationships and updates.

• APIs are guaranteed to maintain the integrity of the database.
When necessary, database row level locks are used to ensure
consistency between different tables. Invalid data cannot be
entered into the system and existing data is protected from
incorrect alterations.

• APIs are guaranteed to apply all parts of a business process to the
database. When an API is called, either the whole transaction is
successful and all the individual database changes will be
applied. Or the complete transaction fails and the database is left
in the starting valid state, as if the API had not been called

A – 42 Oracle HRMS Implementation Guide

• APIs do not make these changes permanent by issuing a commit.
It is the responsibility of the calling program to do this. This
provides flexibility between individual record and batch
processing. It also ensures that the standard commit processing
carried out by client programs such as Forms is not affected.

• APIs help to protect any customer–specific logic from database
structure changes on upgrade. While we cannot guarantee that
any API will not change to support improvements or extensions
of functionality, we are committed to minimize the number of
changes and to provide appropriate notification and
documentation if such changes occur.

Note: Writing programs to call APIs in Oracle HRMS requires
knowledge of pl/sql version 2. The rest of this essay explains
how to call the APIs and assumes the reader has knowledge of
programming in pl/sql.

Understanding the Object Version Number (OVN)

Nearly every row in every database table is assigned an
object_version_number. When a new row is inserted, the API usually
sets the object version number to 1. Whenever that row is updated in the
database, the object version number is incremented. The row keeps that
object version number until it is next updated or deleted. The number is
not decremented or reset to a previous value.

Note: The object version number is not unique and does not
replace the primary key. There can be many rows in the same
table with the same version number. The object version number
indicates the version of a specific primary key row.

Whenever a database row is transferred (queried) to a client, the existing
object version number is always transferred with the other attributes. If
the object is modified by the client and saved back to the server, then the
current server object version number is compared with the value passed
from the client.

• If the two object version number values are the same, then the
row on the server is in the same state as when the attributes were
transferred to the client. As no other changes have occurred, the
current change request can continue and the object version
number is incremented.

• If the two values are different, then another user has already
changed and committed the row on the server. The current

A – 43Technical Essays

change request is not allowed to continue because the
modifications the other user made may be overwritten and lost.
(Database locks are used to prevent another user from
overwriting uncommitted changes.)

The object version number provides similar validation comparison to
the online system. Forms interactively compare all the field values and
displays the ”Record has been modified by another user” error message
if any differences are found. Object version numbers allow transactions
to occur across longer periods of time without holding long term
database locks. For example, the client application may save the row
locally, disconnect from the server and reconnect at a later date to save
the change to the database. Additionally, you do not need to check all
the values on the client and the server.

Example

Consider creating a new address for a Person. The create_person_address
API automatically sets the object_version_number to 1 on the new
database row. Then, two separate users query this address at the same
time. User A and user B will both see the same address details with the
current object_version_number equal to 1.

User A updates the Town field to a different value and calls the
update_person_address API passing the current object_version_number
equal to 1. As this object_version_number is the same as the value on
the database row the update is allowed and the object_version_number
is incremented to 2. The new object_version_number is returned to user
A and the row is committed in the database.

User B, who has details of the original row, notices that first line of the
address is incorrect. User B calls the update_person_address API,
passing the new first line and what he thinks is the current
object_version_number (1). The API compares this value with the
current value on the database row (2). As there is a difference the update
is not allowed to continue and an error is returned to user B.

To correct the problem, user B then re–queries this address, seeing the
new town and obtains the object_version_number 2. The first line of the
address is updated and the update_person_address API is called again.
As the object_version_number is the same as the value on the database
row the update is allowed to continue.

Therefore both updates have been applied without overwriting the first
change.

A – 44 Oracle HRMS Implementation Guide

Understanding the API Control Parameter p_object_version_number

Every published API has the p_object_version_number control
parameter.

• For create style APIs, this parameter is defined as an OUT and
will always be initialized.

• For update style APIs, the parameter is defined as an IN OUT and
is mandatory.

The API ensures that the object version number(s) match the current
value(s) in the database. If the values do not match, the application error
HR_7155_OBJECT_LOCKED is generated. At the end of the API call, if
there are no errors the new object version number is passed out.

For delete style APIs when the object is not DateTracked, it is a
mandatory IN parameter. For delete style APIs when the object is
DateTracked, it is a mandatory IN OUT parameter.

The API ensures that the object version number(s) match the current
value(s) in the database. When the values do not match, the application
error HR_7155_OBJECT_LOCKED is raised. When there are no errors
for DateTracked objects which still list, the new object version number is
passed out.

See:

Understanding the p_datetrack_update_mode control parameter

Understanding the p_datetrack_delete_mode control parameter

Handling Object Version Numbers in Forms 4.5

Detecting and Handling Object Conflicts

When the row being processed does not have the correct object version
number, the application error HR_7155_OBJECT_LOCKED is raised.
This error indicates that a particular row has been successfully changed
and committed since you selected the information. To ensure that the
other changes are not overwritten by mistake, re–select the information,
reapply your changes, and re–submit to the API.

API Parameters

This section describes parameter usage in Oracle HRMS.

A – 45Technical Essays

Locating Parameter Information

You can find the parameters for each API in one of two ways, either
looking at the documentation in the package header creation scripts or
by using SQL*Plus.

For a description of each API, including a list of IN parameters and OUT
parameters, refer to the documentation in the package header creation
scripts.

For the APIs which were included in the first version of Release 11, the
scripts are located in the operating system directories
$PER_TOP/admin/sql and $PAY_TOP/admin/sql. Refer to filenames
such as pe???api.pkh, hr???api.pkh, and py???api.pkh.

For example, details for all the APIs in the hr_employee_api package
can be found in the $PER_TOP/admin/sql/peempapi.pkh file.

New APIs which where not included in the first version of Release 11,
may be provided in different operating system directories.

Oracle only supports the APIs listed in the Release new features
documentation. That list is a reduced set of the server side code which
matches all of the following three criteria:

• The database package name ends with ”_API”.

• The package header creation script filename conforms to
pe???api.pkh, hr???api.pkh, or py???api.pkh naming standard.

• The individual API documentation has an ”Access” section with a
value of ”Public”.

Many other packages include procedures and functions, which may be
called from the API code itself. Direct calls to any other routines are not
supported, unless explicitly specified, because API validation and logic
steps will be by passed. Therefore, corrupting the data held within the
Oracle HRMS application suite.

If you simply want a list of pl/sql parameters, use SQL*Plus. At the
SQL*Plus prompt, use the describe command followed by the database
package name, period, and the name of the API. For example, to list the
parameters for the create_grade_rate_value API, enter the following at
the SQL> prompt:

describe hr_grade_api.create_grade_rate_value

Parameter Names

Each API has a number of parameters which may or may not be
specified. Most parameters map onto a database column in the HR

A – 46 Oracle HRMS Implementation Guide

schema. There are some control parameters which affect the processing
logic which are not explicitly held on the database.

Every parameter name starts with p_. If the parameter maps onto a
database column, the remaining part of the name is usually the same as
the column name. Some names may be truncated due to the 30 character
length limit. The parameter names have been made slightly different to
the actual column name, using a p_ prefix, to avoid coding conflicts
when a parameter and the corresponding database column name are
both referenced in the same section of code.

When a naming conflict occurs between parameters, a three–letter short
code (identifying the database entity) is included in the parameter name.
Sometimes there is no physical name conflict, but the three–letter short
code is used to avoid any confusion over the entity with which the
parameter is associated.

For example, create_employee contains examples of both these cases.
Part of the logic to create a new employee is to insert a person record
and insert an assignment record. Both these entities have an
object_version_number. The APIs returns both object_version_number
values using two OUT parameters. Both parameters cannot be called
p_object_version_number, so p_per_object_version_number holds the
value for the person record and p_asg_object_version_number holds the
value for the assignment record.

Both these entities can have text comments associated with them. When
any comments are passed into the create_employee API, they are only
noted against the person record. The assignment record comments are
left blank.

To avoid any confusion over where the comments have allocated in the
database, the API returns the id using the p_per_comment_id
parameter.

Parameter Named Notation

When calling the APIs, it is strongly recommended that you use
”Named Notation,” instead of ”Positional Notation.” Thus, you should
list each parameter name in the call instead of relying on the parameter
list order.

Using ”Named Notation” helps protect your code from parameter
interface changes. With future releases, it eases code maintenance when
parameters are added or removed from the API.

For example, consider the following procedure declaration:

A – 47Technical Essays

 procedure change_age

 (p_name in varchar2

 ,p_age in number

 ;

Calling by ’Named Notation’:

 begin

 change_age

 (p_name => ’Bloggs’

 ,p_age => 21

);

 end;

Calling by ’Positional Notation’:

 begin

 change_age

 (’Bloggs’

 ,21

);

 end;

Using Default Parameter Values

When calling an API it may not be necessary to specify every parameter.
Where a pl/sql default value has been specified it is optional to specify a
value.

If you want to call the APIs from your own Forms 4.5 code, then all
parameters in the API call must be specified. You cannot make use of the
pl/sql declared default values because the version of pl/sql in Forms 4.5
does not support this.

Default Parameters with Create Style APIs

For APIs which create new data in the HR schema, optional parameters
are usually identified with a default value of null. After validation has
been completed, the corresponding database columns will be set to null.
When calling the API, you must specify all the parameters which do not
a have a default value defined.

However, some APIs contain logic to derive some attribute values.
When you pass in the pl/sql default value the API determines a specific
value to set on the database column. You can still override this API logic
by passing in your own value instead of passing in a null value or not
specifying the parameter in the call.

☞

A – 48 Oracle HRMS Implementation Guide

Take care with IN OUT parameters, because you must always include
them in the calling parameter list. As the API can pass values out, you
must use a variable to pass values into this type of parameter.

These variables must be set with your values before calling the API. If
you do not want to specify a value for an IN OUT parameter, you
should set the variable used to set it to null before each call.

Attention: Check individual API documentation for details of
when each IN OUT parameter can and cannot be set with a null
value.

The create_employee API contains examples of all these different types
of parameter.

 procedure create_employee

 (

 ...

 ,p_sex in varchar2

 ,p_person_type_id in number

 default null

 ...

 ,p_email_address in varchar2

 default null

 ,p_employee_number in out varchar2

 ...

 ,p_person_id out number

 ,p_assignment_id out number

 ,p_per_object_version_number out number

 ,p_asg_object_version_number out number

 ,p_per_effective_start_date out date

 ,p_per_effective_end_date out date

 ,p_full_name out varchar2

 ,p_per_comment_id out number

 ,p_assignment_sequence out number

 ,p_assignment_number out varchar2

 ,p_name_combination_warning out boolean

 ,p_assign_payroll_warning out boolean

);

Because no pl/sql default value has been defined, the p_sex parameter
must be set. The p_person_type_id parameter can be passed in with the
ID of an Employee person type. If you do not provide a value, or
explicitly pass in a null value, the API sets the database column to the ID
of the active default employee system person type for the business
group. The individual API documentation more information.

The p_email_address parameter does not have to be passed in. If you do
not specify this parameter in your call, a null value is placed on the

A – 49Technical Essays

corresponding database column. (This is similar to the user of a form
leaving a displayed field blank.)

The p_employee_number parameter must be specified in each call.
When you do not want to set the employee number, the variable used in
the calling logic must be set to null. (For the p_employee_number
parameter, you must specify a value for the business group when the
method of employee number generation set to manual. Values are only
passed out when the generation method is automatic or national
identifier.)

Example 1

An example call to the create_employee API where the business group
method of employee number generation is manual, the default
employee person type is required and the e–mail attributes do not need
to be set.

 declare

 l_emp_num varchar2(30);

 l_person_id number;

 l_assignment_id number;

 l_per_object_version_number number;

 l_asg_object_version_number number;

 l_per_effective_start_date date;

 l_per_effective_end_date date;

 l_full_name varchar2(240);

 l_per_comment_id number;

 l_assignment_sequence number;

 l_assignment_number varchar2(30);

 l_name_combination_warning boolean;

 l_assign_payroll_warning boolean;

 begin

 ––

 –– Set variable with the employee number value,

 –– which is going to be passed into the API.

 ––

 l_emp_num := 4532;

 ––

 –– Put the new employee details in the database

 –– by calling the create_employee API

 ––

 hr_employee.create_employee

 (p_hire_date =>

 to_date(’06–06–1996’,’DD–MM–YYYY’)

 ,p_business_group_id => 23

 ,p_last_name => ’Bloggs’

 ,p_sex => ’M’

 ,p_employee_number => l_emp_num

A – 50 Oracle HRMS Implementation Guide

 ,p_person_id => l_person_id

 ,p_assignment_id => l_assignment_id

 ,p_per_object_version_number => l_per_object_version_number

 ,p_asg_object_version_number => l_asg_object_version_number

 ,p_per_effective_start_date => l_per_effective_start_date

 ,p_per_effective_end_date => l_per_effective_end_date

 ,p_full_name => l_full_name

 ,p_per_comment_id => l_per_comment_id

 ,p_assignment_sequence => l_assignment_sequence

 ,p_assignment_number => l_assignment_number

 ,p_name_combination_warning => l_name_combination_warning

 ,p_assign_payroll_warning => l_assign_payroll_warning

);

 end;

Note: The database column for employee_number is defined as
varchar2 to allow for when the business group method of
employee_number generation is set to National Identifier.

Example 2

An example call to the create_employee API where the business group
method of employee number generation is Automatic, a non–default
employee person type must be used and the email attribute details must
be held.

 declare

 l_emp_num varchar2(30);

 l_person_id number;

 l_assignment_id number;

 l_per_object_version_number number;

 l_asg_object_version_number number;

 l_per_effective_start_date date;

 l_per_effective_end_date date;

 l_full_name varchar2(240);

 l_per_comment_id number;

 l_assignment_sequence number;

 l_assignment_number varchar2(30);

 l_name_combination_warning boolean;

 l_assign_payroll_warning boolean;

 begin

 ––

 –– Clear the employee number variable

 ––

 l_emp_num := null;

 ––

 –– Put the new employee details in the database

 –– by calling the create_employee API

 ––

A – 51Technical Essays

 hr_employee.create_employee

 (p_hire_date =>

 to_date(’06–06–1996’,’DD–MM–YYYY’)

 ,p_business_group_id => 23

 ,p_last_name => ’Bloggs’

 ,p_sex => ’M’

 ,p_person_type_id => 56

 ,p_email_address => ’bloggsf@uk.uiq.com’

 ,p_employee_number => l_emp_num

 ,p_person_id => l_person_id

 ,p_assignment_id => l_assignment_id

 ,p_per_object_version_number => l_per_object_version_number

 ,p_asg_object_version_number => l_asg_object_version_number

 ,p_per_effective_start_date => l_per_effective_start_date

 ,p_per_effective_end_date => l_per_effective_end_date

 ,p_full_name => l_full_name

 ,p_per_comment_id => l_per_comment_id

 ,p_assignment_sequence => l_assignment_sequence

 ,p_assignment_number => l_assignment_number

 ,p_name_combination_warning => l_name_combination_warning

 ,p_assign_payroll_warning => l_assign_payroll_warning

);

 ––

 –– The l_emp_num variable is now set with the

 –– employee_number allocated by the HR system.

 ––

 end;

Default Parameters with Update Style APIs

With update style APIs the primary key and object version number
parameters are usually mandatory. In most cases it is not necessary
provide all the parameter values. You only need to specify any control
parameters and the attributes you are actually altering. It is not
necessary (but it is possible) to pass in the existing values of attributes
which are not being modified. Optional parameters have one of the
following pl/sql default values, depending on the datatype:

 Data Type Default value

 varchar2 hr_api.g_varchar2

 number hr_api.g_number

 date hr_api.g_date

These hr_api.g_ default values are constant definitions, set to special
values. They are not hard coded text strings. If you need to specify these
values, use the constant name, not the value. The actual values are
subject to change.

A – 52 Oracle HRMS Implementation Guide

Care must be taken with IN OUT parameters, because they must always
be included in the calling parameter list. As the API is capable of
passing values out, you must use a variable to pass values into this type
of parameter. These variables must be set with your values before
calling the API. If you do not want to explicitly modify that attribute
you should set the variable to the hr_api.g_... value for that datatype.
The update_emp_asg_criteria API contains examples of these different
types of parameters.

Sample Code

procedure update_emp_asg_criteria

(...

,p_assignment_id in number

,p_object_version_number in out number

...

,p_position_id in number

 default hr_api.g_number

...

,p_special_ceiling_step_id in out number

...

,p_employment_category in varchar2

 default hr_api.g_varchar2

,p_effective_start_date out date

,p_effective_end_date out date

,p_people_group_id out number

,p_group_name out varchar2

,p_org_now_no_manager_warning out boolean

,p_other_manager_warning out boolean

,p_spp_delete_warning out boolean

,p_entries_changed_warning out varchar2

,p_tax_district_changed_warning out boolean

);

Note: Only the parameters which are of particular interest have
been shown.

In the previous example, ellipses (...) indicate where irrelevant
parameters to this example have not been listed.

The p_assignment_id and p_object_version_number parameters are
mandatory and must be specified in every call. The p_position_id
parameter is optional. If you do not want to alter the existing value, then
exclude the parameter from your calling logic or pass in the
hr_api.g_varchar2 constant or pass in the existing value.

The p_special_ceiling_step_id parameter is IN OUT. With certain cases
the API sets this attribute to null on the database and the latest value is

A – 53Technical Essays

passed out of the API. If you do not want to alter this attribute, set the
calling logic variable to hr_api.g_number.

Sample Code

The following is an example call to the update_emp_asg_criteria API,
with which you do not want to alter the position_id and
special_ceiling_step_id attributes, but you do want to modify the
employment_category value.

 declare

 l_assignment_id number;

 l_object_version_number number;

 l_special_ceiling_step_id number;

 ...

 begin

 l_assignment_id := 23121;

 l_object_version_number := 4;

 l_special_ceiling_step_id := hr_api.g_number;

 hr_assignment_api.update_emp_asg_criteria

 (...

 ,p_assignment_id => l_assignment_id

 ,p_object_version_number => l_object_version_number

 ...

 ,p_special_ceiling_step_id => l_special_ceiling_step_id

 ...

 ,p_employment_category => ’FT’

 ...

);

 ––

 –– As p_special_ceiling_step_id is an IN OUT parameter the

 –– l_special_ceiling_step_id variable is now set to the same

 –– value as on the database. i.e. The existing value before

 –– the API was called or the value which was derived by the

 –– API. The variable will not be set to hr_api.g_number.

 ––

 end;

Default Parameters with Delete Style APIs

Most delete style APIs do not have default values for any attribute
parameters. In rare cases parameters with default values work in a
similar way to those of update style APIs. Understanding the API
Control Parameter p_object_version_number

Every published API has the p_object_version_number control
parameter.

A – 54 Oracle HRMS Implementation Guide

• • For create style APIs, this parameter is defined as an OUT and
will always be initialized.

• • For update style APIs, the parameter is defined as an IN OUT
and is mandatory.

The API ensures that the object version number(s) match the current
value(s) in the database. If the values do not match, the application error
HR_7155_OBJECT_LOCKED is generated. At the end of the API call, if
there are no errors the new object version number is passed out.

For delete style APIs when the object is not DateTracked, it is a
mandatory IN parameter. For delete style APIs when the object is
DateTracked, it is a mandatory IN OUT parameter.

The API ensures that the object version number(s) match the current
value(s) in the database. When the values do not match, the application
error HR_7155_OBJECT_LOCKED is raised. When there are no errors
for DateTracked objects which still list, the new object version number is
passed out.

See:

Understanding the p_datetrack_update_mode control parameter

Understanding the p_datetrack_delete_mode control parameter

Handling Object Version Numbers in Forms 4.5

Detecting and Handling Object Conflicts

When the row being processed does not have the correct object version
number, the application error HR_7155_OBJECT_LOCKED is raised.
This error indicates that a particular row has been successfully changed
and committed since you selected the information. To ensure that the
other changes are not overwritten by mistake, re–select the information,
reapply your changes, and re–submit to the API.

API Parameters

This section describes parameter usage in Oracle HRMS.

Locating Parameter Information

You can find the parameters for each API in one of two ways, either
looking at the documentation in the package header creation scripts or
by using SQL*Plus.

A – 55Technical Essays

For a description of each API, including a list of IN parameters and OUT
parameters, refer to the documentation in the package header creation
scripts.

For the APIs which were included in the first version of Release 11, the
scripts are located in the operating system directories
$PER_TOP/admin/sql and $PAY_TOP/admin/sql. Refer to filenames
such as pe???api.pkh, hr???api.pkh, and py???api.pkh.

For example, details for all the APIs in the hr_employee_api package
can be found in the $PER_TOP/admin/sql/peempapi.pkh file.

New APIs which where not included in the first version of Release 11,
may be provided in different operating system directories.

Oracle only supports the APIs listed in the Release new features
documentation. That list is a reduced set of the server side code which
matches all of the following three criteria:

• • The database package name ends with ”_API”.

• • The package header creation script filename conforms to
pe???api.pkh, hr???api.pkh, or py???api.pkh naming standard.

• • The individual API documentation has an ”Access” section
with a value of ”Public”.

Many other packages include procedures and functions, which may be
called from the API code itself. Direct calls to any other routines are not
supported, unless explicitly specified, because API validation and logic
steps will be by passed. Therefore, corrupting the data held within the
Oracle HRMS application suite.

If you simply want a list of pl/sql parameters, use SQL*Plus. At the
SQL*Plus prompt, use the describe command followed by the database
package name, period, and the name of the API. For example, to list the
parameters for the create_grade_rate_value API, enter the following at
the SQL> prompt:

describe hr_grade_api.create_grade_rate_value

Parameter Names

Each API has a number of parameters which may or may not be
specified. Most parameters map onto a database column in the HR
schema. There are some control parameters which affect the processing
logic which are not explicitly held on the database.

Every parameter name starts with p_. If the parameter maps onto a
database column, the remaining part of the name is usually the same as

A – 56 Oracle HRMS Implementation Guide

the column name. Some names may be truncated due to the 30 character
length limit. The parameter names have been made slightly different to
the actual column name, using a p_ prefix, to avoid coding conflicts
when a parameter and the corresponding database column name are
both referenced in the same section of code.

When a naming conflict occurs between parameters, a three–letter short
code (identifying the database entity) is included in the parameter name.
Sometimes there is no physical name conflict, but the three–letter short
code is used to avoid any confusion over the entity with which the
parameter is associated.

For example, create_employee contains examples of both these cases.
Part of the logic to create a new employee is to insert a person record
and insert an assignment record. Both these entities have an
object_version_number. The APIs returns both object_version_number
values using two OUT parameters. Both parameters cannot be called
p_object_version_number, so p_per_object_version_number holds the
value for the person record and p_asg_object_version_number holds the
value for the assignment record.

Both these entities can have text comments associated with them. When
any comments are passed into the create_employee API, they are only
noted against the person record. The assignment record comments are
left blank.

To avoid any confusion over where the comments have allocated in the
database, the API returns the id using the p_per_comment_id
parameter.

Parameter Named Notation

When calling the APIs, it is strongly recommended that you use
”Named Notation,” instead of ”Positional Notation.” Thus, you should
list each parameter name in the call instead of relying on the parameter
list order.

Using ”Named Notation” helps protect your code from parameter
interface changes. With future releases, it eases code maintenance when
parameters are added or removed from the API.

For example, consider the following procedure declaration:

 procedure change_age

 (p_name in varchar2

 ,p_age in number

 ;

Calling by ’Named Notation’:

A – 57Technical Essays

 begin

 change_age

 (p_name => ’Bloggs’

 ,p_age => 21

);

 end;

Calling by ’Positional Notation’:

 begin

 change_age

 (’Bloggs’

 ,21

);

 end;

Using Default Parameter Values

When calling an API it may not be necessary to specify every parameter.
Where a pl/sql default value has been specified it is optional to specify a
value.

If you want to call the APIs from your own Forms 4.5 code, then all
parameters in the API call must be specified. You cannot make use of the
pl/sql declared default values because the version of pl/sql in Forms 4.5
does not support this.

Default Parameters with Create Style APIs

For APIs which create new data in the HR schema, optional parameters
are usually identified with a default value of null. After validation has
been completed, the corresponding database columns will be set to null.
When calling the API, you must specify all the parameters which do not
a have a default value defined.

However, some APIs contain logic to derive some attribute values.
When you pass in the pl/sql default value the API determines a specific
value to set on the database column. You can still override this API logic
by passing in your own value instead of passing in a null value or not
specifying the parameter in the call.

Take care with IN OUT parameters, because you must always include
them in the calling parameter list. As the API can pass values out, you
must use a variable to pass values into this type of parameter.

These variables must be set with your values before calling the API. If
you do not want to specify a value for an IN OUT parameter, you
should set the variable used to set it to null before each call.

☞

A – 58 Oracle HRMS Implementation Guide

Attention: Check individual API documentation for details of
when each IN OUT parameter can and cannot be set with a null
value.

The create_employee API contains examples of all these different types
of parameter.

 procedure create_employee

 (

 ...

 ,p_sex in varchar2

 ,p_person_type_id in number

 default null

 ...

 ,p_email_address in varchar2

 default null

 ,p_employee_number in out varchar2

 ...

 ,p_person_id out number

 ,p_assignment_id out number

 ,p_per_object_version_number out number

 ,p_asg_object_version_number out number

 ,p_per_effective_start_date out date

 ,p_per_effective_end_date out date

 ,p_full_name out varchar2

 ,p_per_comment_id out number

 ,p_assignment_sequence out number

 ,p_assignment_number out varchar2

 ,p_name_combination_warning out boolean

 ,p_assign_payroll_warning out boolean

);

Because no pl/sql default value has been defined, the p_sex parameter
must be set. The p_person_type_id parameter can be passed in with the
ID of an Employee person type. If you do not provide a value, or
explicitly pass in a null value, the API sets the database column to the ID
of the active default employee system person type for the business
group. The individual API documentation more information.

The p_email_address parameter does not have to be passed in. If you do
not specify this parameter in your call, a null value is placed on the
corresponding database column. (This is similar to the user of a form
leaving a displayed field blank.)

The p_employee_number parameter must be specified in each call.
When you do not want to set the employee number, the variable used in
the calling logic must be set to null. (For the p_employee_number
parameter, you must specify a value for the business group when the
method of employee number generation set to manual. Values are only

A – 59Technical Essays

passed out when the generation method is automatic or national
identifier.)

Example 1

An example call to the create_employee API where the business group
method of employee number generation is manual, the default
employee person type is required and the e–mail attributes do not need
to be set.

 declare

 l_emp_num varchar2(30);

 l_person_id number;

 l_assignment_id number;

 l_per_object_version_number number;

 l_asg_object_version_number number;

 l_per_effective_start_date date;

 l_per_effective_end_date date;

 l_full_name varchar2(240);

 l_per_comment_id number;

 l_assignment_sequence number;

 l_assignment_number varchar2(30);

 l_name_combination_warning boolean;

 l_assign_payroll_warning boolean;

 begin

 ––

 –– Set variable with the employee number value,

 –– which is going to be passed into the API.

 ––

 l_emp_num := 4532;

 ––

 –– Put the new employee details in the database

 –– by calling the create_employee API

 ––

 hr_employee.create_employee

 (p_hire_date =>

 to_date(’06–06–1996’,’DD–MM–YYYY’)

 ,p_business_group_id => 23

 ,p_last_name => ’Bloggs’

 ,p_sex => ’M’

 ,p_employee_number => l_emp_num

 ,p_person_id => l_person_id

 ,p_assignment_id => l_assignment_id

 ,p_per_object_version_number => l_per_object_version_number

 ,p_asg_object_version_number => l_asg_object_version_number

 ,p_per_effective_start_date => l_per_effective_start_date

 ,p_per_effective_end_date => l_per_effective_end_date

 ,p_full_name => l_full_name

 ,p_per_comment_id => l_per_comment_id

A – 60 Oracle HRMS Implementation Guide

 ,p_assignment_sequence => l_assignment_sequence

 ,p_assignment_number => l_assignment_number

 ,p_name_combination_warning => l_name_combination_warning

 ,p_assign_payroll_warning => l_assign_payroll_warning

);

 end;

Note: The database column for employee_number is defined as
varchar2 to allow for when the business group method of
employee_number generation is set to National Identifier.

Example 2

An example call to the create_employee API where the business group
method of employee number generation is Automatic, a non–default
employee person type must be used and the email attribute details must
be held.

 declare

 l_emp_num varchar2(30);

 l_person_id number;

 l_assignment_id number;

 l_per_object_version_number number;

 l_asg_object_version_number number;

 l_per_effective_start_date date;

 l_per_effective_end_date date;

 l_full_name varchar2(240);

 l_per_comment_id number;

 l_assignment_sequence number;

 l_assignment_number varchar2(30);

 l_name_combination_warning boolean;

 l_assign_payroll_warning boolean;

 begin

 ––

 –– Clear the employee number variable

 ––

 l_emp_num := null;

 ––

 –– Put the new employee details in the database

 –– by calling the create_employee API

 ––

 hr_employee.create_employee

 (p_hire_date =>

 to_date(’06–06–1996’,’DD–MM–YYYY’)

 ,p_business_group_id => 23

 ,p_last_name => ’Bloggs’

 ,p_sex => ’M’

 ,p_person_type_id => 56

 ,p_email_address => ’bloggsf@uk.uiq.com’

 ,p_employee_number => l_emp_num

A – 61Technical Essays

 ,p_person_id => l_person_id

 ,p_assignment_id => l_assignment_id

 ,p_per_object_version_number => l_per_object_version_number

 ,p_asg_object_version_number => l_asg_object_version_number

 ,p_per_effective_start_date => l_per_effective_start_date

 ,p_per_effective_end_date => l_per_effective_end_date

 ,p_full_name => l_full_name

 ,p_per_comment_id => l_per_comment_id

 ,p_assignment_sequence => l_assignment_sequence

 ,p_assignment_number => l_assignment_number

 ,p_name_combination_warning => l_name_combination_warning

 ,p_assign_payroll_warning => l_assign_payroll_warning

);

 ––

 –– The l_emp_num variable is now set with the

 –– employee_number allocated by the HR system.

 ––

 end;

Default Parameters with Update Style APIs

With update style APIs the primary key and object version number
parameters are usually mandatory. In most cases it is not necessary
provide all the parameter values. You only need to specify any control
parameters and the attributes you are actually altering. It is not
necessary (but it is possible) to pass in the existing values of attributes
which are not being modified. Optional parameters have one of the
following pl/sql default values, depending on the datatype:

 Data Type Default value

 varchar2 hr_api.g_varchar2

 number hr_api.g_number

 date hr_api.g_date

These hr_api.g_ default values are constant definitions, set to special
values. They are not hard coded text strings. If you need to specify these
values, use the constant name, not the value. The actual values are
subject to change.

Care must be taken with IN OUT parameters, because they must always
be included in the calling parameter list. As the API is capable of
passing values out, you must use a variable to pass values into this type
of parameter. These variables must be set with your values before
calling the API. If you do not want to explicitly modify that attribute
you should set the variable to the hr_api.g_... value for that datatype.
The update_emp_asg_criteria API contains examples of these different
types of parameters.

A – 62 Oracle HRMS Implementation Guide

Sample Code

procedure update_emp_asg_criteria

(...

,p_assignment_id in number

,p_object_version_number in out number

...

,p_position_id in number

 default hr_api.g_number

...

,p_special_ceiling_step_id in out number

...

,p_employment_category in varchar2

 default hr_api.g_varchar2

,p_effective_start_date out date

,p_effective_end_date out date

,p_people_group_id out number

,p_group_name out varchar2

,p_org_now_no_manager_warning out boolean

,p_other_manager_warning out boolean

,p_spp_delete_warning out boolean

,p_entries_changed_warning out varchar2

,p_tax_district_changed_warning out boolean

);

Note: Only the parameters which are of particular interest have
been shown.

In the previous example, ellipses (...) indicate where irrelevant
parameters to this example have not been listed.

The p_assignment_id and p_object_version_number parameters are
mandatory and must be specified in every call. The p_position_id
parameter is optional. If you do not want to alter the existing value, then
exclude the parameter from your calling logic or pass in the
hr_api.g_varchar2 constant or pass in the existing value.

The p_special_ceiling_step_id parameter is IN OUT. With certain cases
the API sets this attribute to null on the database and the latest value is
passed out of the API. If you do not want to alter this attribute, set the
calling logic variable to hr_api.g_number.

Sample Code

The following is an example call to the update_emp_asg_criteria API,
with which you do not want to alter the position_id and
special_ceiling_step_id attributes, but you do want to modify the
employment_category value.

 declare

 l_assignment_id number;

A – 63Technical Essays

 l_object_version_number number;

 l_special_ceiling_step_id number;

 ...

 begin

 l_assignment_id := 23121;

 l_object_version_number := 4;

 l_special_ceiling_step_id := hr_api.g_number;

 hr_assignment_api.update_emp_asg_criteria

 (...

 ,p_assignment_id => l_assignment_id

 ,p_object_version_number => l_object_version_number

 ...

 ,p_special_ceiling_step_id => l_special_ceiling_step_id

 ...

 ,p_employment_category => ’FT’

 ...

);

 ––

 –– As p_special_ceiling_step_id is an IN OUT parameter the

 –– l_special_ceiling_step_id variable is now set to the same

 –– value as on the database. i.e. The existing value before

 –– the API was called or the value which was derived by the

 –– API. The variable will not be set to hr_api.g_number.

 ––

 end;

Default Parameters with Delete Style APIs

Most delete style APIs do not have default values for any attribute
parameters. In rare cases parameters with default values work in a
similar way to those of update style APIs.

Understanding the p_validate Control Parameter

Every published API includes the p_validate control parameter. When
this parameter is set to FALSE (the default value), the procedure
executes all validation for that business function. If the operation is
valid, the database rows/values are inserted or updated or deleted. Any
non warning OUT parameters, warning OUT parameters and IN OUT
parameters will all be set with specific values.

When the p_validate parameter is set to TRUE, the API only checks that
the operation is valid. It does so by issuing a savepoint at the start of the
procedure and rollbacking back to that savepoint at the end. You do not
have access to these internal savepoints. If the procedure is successful,
without raising any validation errors, then non–warning OUT
parameters are set to null, warning OUT parameters are set to a specific
value, and IN OUT parameters are reset to their IN values.

A – 64 Oracle HRMS Implementation Guide

In some cases you may want to write your pl/sql routines using the
public API procedures as building blocks. This allows you to write
routines specific to your business needs. For example, say that you have
a business requirement to apply a DateTracked update to a row and
then apply a DateTrack delete to the same row in the future. You could
write an ”update_and_future_del” procedure which calls two of the
standard APIs.

When calling each standard API, p_validate must be set to false. If true
is used the update procedure call is rolled back. So when the delete
procedure is called, it is working on the non–updated version the row.
However when p_validate is set to false, the update is not rolled back.
Thus, the delete call operates as if the user really wanted to apply the
whole transaction.

If you want to be able to check that the update and delete operation is
valid, you must issue your own savepoint and rollback commands. As
the APIs do not issue any commits, there is no danger of part of the
work being left in the database. It is the responsibility of the calling code
to issue commits. The following simulates some of the p_validate true
behavior.

Example

 savepoint s1;

 update_api_prc(.........);

 delete_api_prc(..........);

 rollback to s1;

You should not use our API procedure names for the savepoint names.
An unexpected result may occur if you do not use different names.

Understanding the p_effective_date Control Parameter

Most APIs which insert/update/delete data for at least one DateTrack
entity have a p_effective_date control parameter. This mandatory
parameter defines the date you want an operation to be applied from.
The pl/sql datatype of this parameter is date.

As the smallest unit of time in DateTrack is one day, the time portion of
the p_effective_date parameter is not used. This means that the change
always comes into affect just after midnight.

Some APIs have a more specific date for processing. For example, the
create_employee API does not have a p_effective_date parameter. The
p_hire_date parameter is used as the first day the person details come
into effect.

A – 65Technical Essays

Example 1

This example creates a new grade rate which starts from today.

 hr_grade_api.create_grade_rate_value

 (...

 ,p_effective_date => trunc(sysdate)

 ...);

Example 2

This example creates a new employee who will join the company at the
start of March 1997.

 hr_employee_api.create_employee

 (...

 ,p_hire_date => to_date(’01–03–1997’,’DD–MM–YYYY’)

 ...);

Some APIs which do not modify data in DateTrack entities still have a
p_effective_date parameter. The date value is not used to affect when
the changes take affect. It is used to validate QuickCode values. Each
QuickCodes value can have be specified with a valid date range. The
start date indicates when the value can first be used. The end date
shows the last date the value can be used on new records and set when
updating records. Existing records, which are not changed, can continue
to use the QuickCode after the end date.

Understanding the p_datetrack_update_mode Control Parameter

Most APIs which update data for at least one DateTrack entity have a
p_datetrack_update_mode control parameter. It allows you to define the
type of DateTrack change to be made. This mandatory parameter must
be set to one of the following values:

Value Description

––

UPDATE Keep history of existing information

CORRECTION Correct existing information

UPDATE_OVERRIDE Replace all scheduled changes

UPDATE_CHANGE_INSERT Insert this change before next

scheduled change

It may not be possible to use every mode in every case. For example, if
there are no existing future changes for the record you are changing, the
DateTrack modes UPDATE_OVERRIDE and
UPDATE_CHANGE_INSERT cannot be used.

A – 66 Oracle HRMS Implementation Guide

Some APIs which update DateTrack entities do not have a
p_datetrack_update_mode parameter. These APIs automatically
perform the DateTrack operations for that business operation.

Each dated instance for the same primary key has a different
object_version_number. When calling the API the
p_object_version_number parameter should be set to the value which
applies as of the date for the operation (i.e. p_effective_date).

Example

Assume the following grade rate values already exist in the
pay_grade_rules_f table:

Effective Effective_ Version_

Grade_rule_id Start_Date End_Date Number Value

12122 01–JAN–1996 20–FEB–1996 2 45

12122 21–FEB–1996 20–JUN–1998 3 50

Also assume that the grade rate value was updated to the wrong value
on the 21–FEB–1996. The update from 45 to 50 should have been 45 to 55
and you want to modify the error.

 declare

 l_object_version_number number;

 l_effective_start_date date;

 l_effective_end_date date;

 begin

 l_object_version_number := 3;

 hr_grade_api.update_grade_rate_value

 (p_effective_date => to_date(’21–02–1996’,’DD–MM–YYYY’)

 ,p_datetrack_update_mode => ’CORRECTION’

 ,p_grade_rule_id => 12122

 ,p_object_version_number => l_object_version_number

 ,p_value => 55

 ,p_effective_start_date => l_effective_start_date

 ,p_effective_end_date => l_effective_end_date

);

 –– l_object_version_number will now be set to the value

 –– as on database row, as of 21st February 1996.

 end;

Understanding the p_datetrack_delete_mode Control Parameter

Most APIs which delete data for at least one DateTrack entity have a
p_datetrack_delete_mode control parameter. It allows you to define the
type of DateTrack change to be made. This mandatory parameter must
be set to one of the following values:

p_datetrack_delete_mode Value Description

A – 67Technical Essays

––

 ZAP Completely remove from the database

 DELETE Set end date to effective date

 FUTURE_CHANGE Remove all scheduled changes

 DELETE_NEXT_CHANGE Remove next change

It may not be possible to use every mode in every case. For example, if
there are no existing future changes for the record you are changing, the
DateTrack modes FUTURE_CHANGE and DELETE_NEXT_CHANGE
cannot be used. Some APIs which update DateTrack entities do not have
a p_datetrack_delete_mode parameter. These APIs automatically
perform the DateTrack operations for that business operation. Refer to
the individual API documentation for further details.

Each dated instance for the same primary key has a different
object_version_number. When calling the API the
p_object_version_number parameter should be set to the value which
applies as of the date for the operation (i.e. p_effective_date).

Example

Assume that the following grade rate values already exist in the
pay_grade_rules_f table:

 Object_

 Effective_ Effective_ Version_

 Grade_rule_id Start_Date End_Date Number Value

 ––––––––––––– ––––––––––– ––––––––––– –––––––– –––––

 5482 15–JAN–1996 23–MAR–1996 4 10

 5482 24–MAR–1996 12–AUG–1996 8 20

Also assume that you want to remove all dated instances of this grade
rate value from the database.

Sample Code

 declare

 l_object_version_number number;

 l_effective_start_date date;

 l_effective_end_date date;

 begin

 l_object_version_number := 4;

 hr_grade_api.update_grade_rate_value

 (p_effective_date => to_date(’02–02–1996’, ’DD–MM–YYYY’)

 ,p_datetrack_delete_mode => ’ZAP’

 ,p_grade_rule_id => 5482

 ,p_object_version_number => l_object_version_number

 ,p_effective_start_date => l_effective_start_date

A – 68 Oracle HRMS Implementation Guide

 ,p_effective_end_date => l_effective_end_date

);

 –– As ZAP mode was used l_object_version_number now is null.

 end;

Understanding the p_effective_start_date and p_effective_end_date Parameters

Most APIs which insert/delete/update data for at least one DateTrack
entity have the p_effective_start_date and p_effective_end_date control
parameters.

Both of these parameters are defined as OUT.

The values returned correspond to the effective_start_date and
effective_end_date database column values for the row which is
effective as of p_effective_date.

These parameters are set to null when all the DateTracked instances of a
particular row are deleted from the database (that is, when a delete style
API is called with a DateTrack mode of ZAP).

Example

Assume that the following grade rate values already exist in the
pay_grade_rules_f table:

 Effective_ Effective_

 Grade_rule_id Start_Date End_Date

 ––

 17392 01–FEB–1996 24–MAY–1996

 17392 25–MAY–1996 01–SEP–1997

The update_grade_rate_value API is called to perform a DateTrack
mode of UPDATE_CHANGE_INSERT with an effective date of
10–MAR–1996. The API then modifies the database rows to the
following:

 Effective_ Effective_

 Grade_rule_id Start_Date End_Date

 ––

 17392 01–FEB–1996 09–MAR–1996

 17392 10–MAR–1996 24–MAY–1996

 17392 25–MAY–1996 01–SEP–1997

The API p_effective_start_date parameter is set to 10–MAR–1996 and
p_effective_end_date to 24–MAY–1996.

A – 69Technical Essays

API Features

Commit Statements

None of the HRMS APIs issue a commit. It is the responsibility of the
calling code to issue commit statements. This ensures that parts of
transaction are not left in the database. If an error occurs, the whole
transaction is rolled back. Therefore API work is either all completed or
none of the work is done. You can use the HRMS APIs as ”building
blocks” to construct your own business functions. This gives you the
flexibility to issue commits where you decide.

It also avoids conflicts with different client tools. For example, Oracle
Forms only issues a commit if all the user’s changes are not in error. This
could be one or more record changes which are probably separate API
calls.

Avoiding Deadlocks

If calling more than one API in the same commit unit, take care to
ensure deadlock situations do not happen. Deadlocks should be avoided
by accessing the tables in the order they are listed in the table locking
ladder. For example, you should update or delete rows in the table with
the lowest Processing Order first.

If more than one row in the same table is being touched, then lock the
rows in ascending primary key order. For example, if you are updating
all the assignments for one Person, then change the row with the lowest
assignment_id first.

If it is impossible or impractical for operations to be done in locking
ladder order, explicit locking logic is required. When a table is brought
forward in the processing order any table rows which have been jumped
and will be touched later must be explicitly locked in advance. Where a
table is jumped and none of the rows are going to be updated or deleted,
no locks should be taken on that table.

Example

Assume that the locking ladder order is as follows:

 Table Processing Order

 A 10

 B 20

 C 30

 D 40

Also assume that your logic has to update rows in the following order:

A – 70 Oracle HRMS Implementation Guide

 A 1st

 D 2nd

 C 3rd

Then your logic should:

1. Update rows in table A.

2. Lock rows in table C. (Only need to lock the rows which are going to
be updated in step 4.)

3. Update rows in table D.

4. Update rows in table C.

Table B is not locked because it is not accessed after D. Your code does
not have to explicitly lock rows in tables A or D, because locking is done
as one of the first steps in the API.

A summary of what to do follows. You must maintain the order in
which table rows are locked. You can only modify the order of the actual
updates or deletes which can be modified.

See: HRMS Table Locking Ladder

Flexfields with APIs

Due to technology constraints it has not been possible to use the
Flexfield definitions created using the Oracle Application Object Library
Forms, to validate customer specific Flexfield data maintained using the
APIs.

Oracle Applications expects these constraints to be removed in the near
future, so that the APIs will be able to perform Flexfield validation by
using the Flexfield definitions set–up using the Oracle Application
Object Library Forms. For that reason, it is strongly recommended that
you do not directly refer to any form fields in your value set definitions.
Those references cannot be resolved in an API call, so the validation will
not work in the future.

In the short and long term, APIs will not enforce value security. This can
only be done when using the Forms.

For each Descriptive Flexfield, Oracle Applications has defined a
structure column. In most cases the structure column name end with the
letters, or is called, “ATTRIBUTE_CATEGORY”. It is possible for the
implementation team to associate this structure column with a reference
field. The structure column value can affect which Flexfield structure is
will be used for validation. When reference fields are defined and you

A – 71Technical Essays

wish to call the APIs, it is your responsibility to populate the
attribute_category value with the reference field value.

Until the technology constraints are removed, if you wish to you
Flexfields and the APIs to create/update Flexfield data, then you need
to perform some additional set–up steps.

Skeleton Flexfield Validation Packages

For each entity which can be maintained using APIs, a skeleton Flexfield
validation package is provided. Your implementation team can modify
this skeleton code to perform your Flexfield validation using pl/sql.

The supplied validation raises a pl/sql exception if any of the Flexfield
attribute parameters are set. Therefore if you wish to use APIs to
maintain Flexfield data, you must implement your own validation in
place of the supplied validation.

Other example validation code has been listed to help your
implementation team. It has been placed between /* */pl/sql comment
statements so it is not executed.

The skeleton Flexfield validation package body creation scripts can be
found in the operating system directories $PER_TOP/admin/sql and
$PAY_TOP/admin/sql. Refer to the filenames such as: pe???fli.pkb,
hr???fli.pkb, and py???fli.pkb.

In these filenames, the ??? corresponds to a three letter entity short code.
For example, the Person entity Descriptive Flexfield API validation
package can be found in the $PER_TOP/admin/sql/peperfli.pkb file.

Skeleton Flexfield validation package creation scripts for new APIs,
which where not included in the first version of Release 11, may be
provided in different operating system directories.

Only the APIs will call these packages to validate Flexfield data. Forms
will still use the definitions set up in the Oracle Application Object
Library Forms. Hence, it is important for you to ensure that any changes
to the definitions and Flexfield validation packages are synchronized.

Modifying Flexfield Validation Packages

Make a copy of the skeleton file. A procedure called df should be edited
for Descriptive Flexfields and where applicable a procedure called kf
should be edited for Key Flexfields.

For Descriptive Flexfields the APIs will call the validation packages after
all the other attributes have been validated. Every attribute for the entity

A – 72 Oracle HRMS Implementation Guide

is passed to the df procedure in a single pl/sql record structure. The
components of the record structure cannot be modified; the values can
only be read.

It is recommended that you implement the validation for each Flexfield
segment structure in a separate procedure. Then modify the df
procedure to call the relevant validation procedure depending on the
structure column reference value.

For example, assume that the Person Descriptive Flexfield is being used
to hold additional information depending on the person’s marital status.
(The database reference field is per_people_f.marital_status.) If the
person is married, it is mandatory to hold the names of the towns where
the person was married and born.

First, write a validation procedure to check the segment values when a
person is married. Raise a pl/sql exception if there are any errors.

Sample Code

 procedure val_per_marital_status_m

 (p_rec in per_per_shd.g_rec_type

) is

 begin

 if p_rec.attribute1 is null then

 ––

 –– This person is married but the Town of where

 –– the marriage took place has not been entered

 ––

 dbms_standard.raise_application_error

 (num => –20999

 ,msg => ’Marriage Town must be entered’

);

 elsif p_rec.attribute2 is null then

 ––

 –– This person is married but the place

 –– of birth has not been entered

 ––

 dbms_standard.raise_application_error

 (num => –20999

 ,msg => ’Place of birth must be entered’

);

 end if;

 ––

 –– Implement validation for other Married

 –– Flexfield attributes fields here.

 ––

 end val_per_marital_status_m;

A – 73Technical Essays

Then modify the df procedure to call the validation procedure which
corresponds to each marital_status value, as follows:

 procedure df

 (p_rec in per_per_shd.g_rec_type

) is

 ––

 begin

 ––

 –– Check Context/Reference field value, then

 –– call relevant validation procedure.

 ––

 if p_rec.marital_status is not null then

 ––

 if p_rec.marital_status = ’M’ then

 ––

 –– Context/Reference field is ’Married’

 ––

 val_per_marital_status_m(p_rec => p_rec);

 elsif p_rec.marital_status = ’S’ then

 ––

 –– Context/Reference field is ’Single’

 ––

 val_per_marital_status_s(p_rec => p_rec);

 ––

 –– ...repeat for each possible martial_status value which

 –– has a corresponding Flexfield segment structure

 ––

 else

 ––

 –– Structure/Reference field value is not supported

 ––

 hr_utility.set_message(801,

’HR_7438_FLEX_INV_REF_FIELD_VAL’);

 hr_utility.raise_error;

 end if;

 end df;

It is your responsibility to ensure that:

• The supplied Flexfield validation package body creation scripts
are not edited.

If you want to customize the supplied Flexfield validation
packages, copy the scripts and modify the copies. After an
upgrade, you should check that your customizations are
consistent with the new packages supplied with the upgrade. If
so, you can rerun your customized Flexfield package body
creation scripts.

A – 74 Oracle HRMS Implementation Guide

• No other API packages are modified.

This includes the supplied Flexfield validation package headers.

• Any Flexfield attributes or segments that have no corresponding
definition are checked to ensure that they contain a null value.

• Any code changes made to these files compile without errors and
have been fully tested.

• If the Forms Flexfield definitions are altered, the corresponding
pl/sql code change is made to your copies of the Flexfield
validation package creation scripts.

Oracle Applications cannot accept any responsibility for Flexfield data
created, updated or deleted using APIs with this mechanism.

In the future it will not be necessary to implement Flexfield validation in
these server–side packages. When the technology constraints have been
removed, Oracle Applications will not supply or execute existing
skeleton package creation scripts. The Flexfield segment and value set
definition set–up using the Oracle Application Object Library Forms will
be used instead. For this reason Form fields must not be refereed to in
value set definitions. This style of validation will fail in the future.

These temporary skeleton packages must only be used for implementing
Flexfield validation. If you wish perform other field validation or
perform Flexfield validation which cannot be implemented in value sets,
then utilize API User hooks.

See: API User Hooks

Alternative APIs

Context–specific APIs

In some situations it is possible to perform the same business process
using more than one API. This is especially the case where entities hold
extra details for different legislations. Usually there is a main API which
can be used for any legislation and also specific versions for some
legislations. Whichever API is called, the same validation and changes
are made to the database.

For example, there is an entity to hold addresses for people. For GB style
addresses some of the general address attributes are used to hold
specific details.

 PER_ADDRESSES create_person create_gb_person

A – 75Technical Essays

 Table _address API _address API

 Column Name Parameter Name Parameter Name

 ––

 style p_style N/A

 address_line1 p_address_line1 p_address_line1

 address_line2 p_address_line2 p_address_line2

 address_line3 p_address_line3 p_address_line3

 town_or_city p_town_or_city p_town

 region_1 p_region_1 p_county

 region_2 p_region_2 N/A for this style

 region_3 p_region_3 N/A for this style

 postal_code p_postal_code p_postcode

 country p_country p_country

 telephone_number_1 p_telephone_number_1 p_telephone_number

 telephone_number_2 p_telephone_number_2 N/A for this style

 telephone_number_3 p_telephone_number_3 N/A for this style

Note: Not all database columns names or API parameters have
been listed.

The p_style parameter does not exist on the create_gb_person_address
API because it only creates addresses for one style.

Not all of the address attributes are used in every style. For example, the
region_2 attribute cannot be set for GB style address. Hence, there is no
corresponding parameter on the create_gb_person_address API. When
the create_person_address API is called with p_style set to ”GB” then
p_region_2 must be null.

Both interfaces are provided to give the greatest flexibility. If your
company only operates in one location, you may find it more convenient
to call the address style interface which corresponds to your country. If
your company operates in various locations and you wish to store the
address details using the local styles, you may find it more convenient to
call the general API and specify the required style on creation.

Refer to the individual API documentation for further details of where
other alternative interfaces are provided.

API Errors and Warnings

Failure Errors

When calling APIs, validation or processing errors may occur. These
errors are raised like any other pl/sql error in Oracle applications.

A – 76 Oracle HRMS Implementation Guide

When an error is raised, all the work done by that single API call is
rolled back. As the APIs do not issue any commits, there is no danger
that part of the work will be left in the database. It is the responsibility
of the calling code to issue commits.

Warning Values

Warnings are returned using OUT parameters. The names of these
parameters ends with _WARNING. In most cases the datatype is
boolean. When a warning value is raised, the parameter is set to true.
Other values are returned when the datatype is not boolean. Refer to the
individual API documentation for further details.

The API assumes that although a warning situation has been flagged, it
is acceptable to continue. If there was risk of a serious data problem, a
pl/sql error would have been raised and processing for the current API
call would have stopped.

However, in your particular organization you may need to make a note
about the warning or perform further checks. If you do not want the
change to be kept in the database while this is done, you will need to
explicitly rollback the work the API performed.

Sample Code

When the create_employee API is called the
p_name_combination_warning parameter is set to true when person
details already in the database include the same combination of
last_name, first_name and date_of_birth.

 declare

 l_name_combination_warning boolean;

 l_assign_payroll_warning boolean;

 begin

 savepoint on_warning;

 hr_employee.create_employee

 (p_validate => false

 ...

 ,p_last_name => ’Bloggs’

 ,p_first_name => ’Fred’

 ,p_date_of_birth => to_date(’06–06–1964’, ’DD–MM–YYYY’)

 ...

 ,p_name_combination_warning => l_name_combination_warning

 ,p_assign_payroll_warning => l_assign_payroll_warning

);

 if l_name_combination_warning then

 –– Note that similar person details already exist.

 –– Do not hold the details in the database until it is

A – 77Technical Essays

 –– confirmed this is really a different person.

 rollback to on_name_warning;

 end if;

 end;

It would not have been necessary to rollback the API work if the
p_validate parameter had been set to true.

You should not use our API procedure names for the savepoint names.
An unexpected result may occur if you do not use different names.

Handling Errors in PL/SQL Batch Processes

In a batch environment, errors raised to the batch process must be
handled and recorded so that processing can continue. To aid the
development of such batch processes, a message table called
HR_API_BATCH_MESSAGE_LINES is provided with some APIs, as
follows:

 API Name Description

 –––

 create_message_line Adds a single error message to the

 HR_API_BATCH_MESSAGE_LINES table.

 delete_message_line Removes a single error message to the

 HR_API_BATCH_MESSAGE_LINES table.

 delete_message_lines Removes all error message lines for a

 particular batch run.

For a full description of each API, refer to the individual documentation.

Batch Message Lines Table

For handling API errors in a pl/sql batch process it is recommended that
any messages should be stored in the
HR_API_BATCH_MESSAGE_LINES table.

Example PL/SQL Batch Program

Assume a temporary table has been created containing employee
addresses. The addresses need to be inserted into the HR schema. The
temporary table holding the address is called temp_person_address. It
could have been populated from an ASCII file using Sql*Loader.

TEMP_PERSON_ADDRESSES Table

A – 78 Oracle HRMS Implementation Guide

 Column Name DataType

 –––––––––––––––– –––––––––

 person_id number

 primary_flag varchar2

 date_from date

 address_type varchar2

 address_line1 varchar2

 address_line2 varchar2

 address_line3 varchar2

 town varchar2

 county varchar2

 postcode varchar2

 country varchar2

 telephone_number varchar2

Sample Code

declare

 ––

 l_rows_processed number := 0; –– rows processed by api

l_commit_point number := 20; – Commit after X successful rows

 l_batch_run_number

hr_api_batch_message_lines.batch_run_number%type;

 l_dummy_line_id hr_api_batch_message_lines.line_id%type;

 l_address_id per_addresses.address_id%type;

 l_object_version_number_id

per_addresses.object_version_number_id%type;

 ––

 –– select the next batch run number

 ––

 cursor csr_batch_run_number is

 select nvl(max(abm.batch_run_number), 0) + 1

 from hr_api_batch_message_lines abm;

 ––

 –– select all the temporary ’GB’ address rows

 ––

 cursor csr_tpa is

 select tpa.person_id

 , tpa.primary_flag

 , tpa.date_from

 , tpa.address_type

 , tpa.address_line1

 , tpa.address_line2

 , tpa.address_line3

 , tpa.town

 , tpa.county

 , tpa.postcode

 , tpa.country

 , tpa.telephone_number

 , tpa.rowid

A – 79Technical Essays

 from temp_person_addresses tpa

 where tpa.address_style = ’GB’;

begin

 –– open and fetch the batch run number

 open csr_batch_run_number;

 fetch csr_batch_run_number into l_batch_run_number;

 close csr_batch_run_number;

 –– open and fetch each temporary address row

 for sel in csr_tpa loop

 begin

 –– create the address in the HR Schema

 hr_person_address_api.create_gb_person_address

 (p_person_id => sel.person_id

 ,p_primary_flag => sel.primary_flag

 ,p_date_from => sel.date_from

 ,p_address_type => sel.address_type

 ,p_address_line1 => sel.address_line1

 ,p_address_line2 => sel.address_line2

 ,p_address_line3 => sel.address_line3

 ,p_town => sel.town

 ,p_county => sel.county

 ,p_postcode => sel.postcode

 ,p_country => sel.country

 ,p_telephone_number => sel.telephone_number

 ,p_address_id => l_address_id

 ,p_object_version_number => l_object_version_number

);

 –– increment the number of rows processed by the api

 l_rows_processed := l_rows_processed + 1;

 –– determine if the commit point has been reached

 if (mod(l_rows_processed, l_commit_point) = 0) then

 –– the commit point has been reached therefore commit

 commit;

 end if;

 exception

 when others then

 ––

 –– An API error has occurred

 –– Note: As an error has occurred only the work in the

 –– last API call will implicitly rolled back. The

 –– uncommitted work done by previous API calls will not be

 –– affected. If the error is ora–20001 the fnd_message.get

 –– function will retrieve and substitute all tokens for

 –– the short and extended message text.If the error is not

 –– ora–20001 null will be return.

 ––

 hr_batch_message_line_api.create_message_line

 (p_batch_run_number => l_batch_run_number

 ,p_api_name =>

A – 80 Oracle HRMS Implementation Guide

’hr_person_address_api.create_gb_person_address’

 ,p_status => ’F’

 ,p_error_number => sqlcode

 ,p_error_message => sqlerrm

 ,p_extended_error_message => fnd_message.get

 ,p_source_row_information => to_char(sel.rowid)

 ,p_line_id => l_dummy_line_id);

 end;

 end loop;

 –– commit any final rows

 commit;

end;

You can view any errors which might have been created during the
processes can be viewed by selecting from the
HR_API_BATCH_MESSAGE_LINES table for the batch run completed,
as follows:

select *

 from hr_api_batch_message_lines abm

 where abm.batch_run_number = :batch_run_number

 order by abm.line_id;

WHO Columns and Oracle Alert

In many tables in Oracle Application there are standard WHO columns.
These include

• LAST_UPDATE_DATE

• LAST_UPDATED_BY

• LAST_UPDATE_LOGIN

• CREATED_BY

• CREATION_DATE

The values held in these columns usually refer to the Applications User
who caused the database row to be created or updated. In the Oracle
HRMS Applications these columns are maintained by database triggers.
You cannot directly populate these columns, as corresponding API
parameters have not been provided.

When the APIs are executed from an Application Form or concurrent
manager session, then these columns will be maintained just as if the
Form had carried out the database changes.

A – 81Technical Essays

When the APIs are called from a SQL*Plus database session, the
CREATION_DATE and LAST_UPDATE_DATE column will still be
populated with the database sysdate value. As there are no application
user details, the CREATED_BY, LAST_UPDATED_BY and
LAST_UPDATE_LOGIN column will be set to the “anonymous user”
values.

If you want the CREATED_BY and LAST_UPDATED_BY columns to be
populated with details of a known application user in a SQL*Plus
database session, then before executing any HRMS APIs, call the
following server–side package procedure once:

fnd_global.apps_initialize

If you call this procedure it is your responsibility to pass in valid values,
as incorrect values are not rejected. The above procedure should also be
called if you wish to use Oracle Alert and the APIs.

By using AOL profiles, it is possible to associate a HR security profile
with an AOL responsibility. Care should be taken when setting the
apps_initialize resp_id parameter, to a responsibility associated with a
restricted HR security profile. To ensure API validation is not over
restrictive, you should only maintain data held within that
responsibility’s business group.

To maintain data in more than one business group in the same database
session, use a responsibility associated with an unrestricted HR security
profile.

API User Hooks

APIs in Oracle HRMS support the addition of custom business logic.
We have called this feature ‘API User Hooks’. These hooks let you
extend the standard business rules that are executed by the apis. You
can include your own validation rules or further processing logic and
have it executed automatically whenever the associated API is executed.

Consider:

• Customer specific data validation.

For example, when an employee is promoted you might want to
restrict the change of grade to a single step, unless they work at a
specific location, or have been in the grade for longer than six
months.

• Maintenance of data held in extra customer specific tables

A – 82 Oracle HRMS Implementation Guide

For example, you may want to store specific market or evaluation
information about your employees in database tables that were
not supplied by Oracle Applications.

• Capturing the fact that a particular business event has occurred.

For example, you may want to capture the fact that an employee
is leaving the enterprise to send an electronic message directly to
your separate security database, so the employee’s office security
pass can be disabled.

User hooks are locations in the APIs where extra logic can be executed.
When the API processing reaches a user hook, the main processing will
stop and any custom logic will be executed. Then, assuming no errors
have occurred, the main API processing will continue.

Warning: You must not edit the API code files supplied by
Oracle. These are part of the delivered product code and if they
are modified Oracle may be unable to support or upgrade your
implementation. Oracle Applications support direct calls only
to the published APIs. Direct calls to any other server–side
package procedures or functions that are written as part of the
Oracle HRMS product set are not supported, unless explicitly
specified.

Implementing API User Hooks

All the extra logic that you want to associate with apis should be
implemented as separate server–side package procedures using pl/sql.
The analysis and design of your business rules model is specific to your
implementation. This essay focuses on how you can associate the rules
you decide to write with the API user hooks.

After you have written and loaded into the database your server–side
package, you need to associate your package with one or more specific
user hooks. There are 3 special apis to insert, update and delete this
information. To create the links between the delivered apis and the extra
logic you should execute the supplied pre–processor program. This will
look at the data you have defined, the package procedure you want to
call and will build logic to execute your pl/sql from the specific user
hooks. This step is provided to optimize the overall performance of API
execution with user hooks. Effectively each API will know the extra
logic to perform without needing to check explicitly.

As the link between the apis and the extra logic is held in data, upgrades
are easier to support. Where the same API user hooks and parameters
exist in the new version, the pre–processor program can be executed
again. This process will rebuild the extra code needed to execute your

A – 83Technical Essays

pl/sql from the specific user hooks without the need for manual edits to
Oracle Application or your own source code files.

To implement additional logic in a pl/sql package and have this
executed from an API user hook you need to complete the following
steps:

1. Identify the apis and user hooks where you want to attach your
extra logic.

2. Identify the data values available at the user hooks you intend to
use.

3. Implement your extra logic in a pl/sql server–side package
procedure.

4. Register your extra pl/sql packages with the appropriate API user
hooks by calling the hr_api_hook_call_api.create_api_hook_call API.
Define the mapping data between the user hook and the server–side
package procedure.

5. Execute the user hook pre–processor program. This will validate
the parameters to your pl/sql server–side package procedure and
dynamically generate another package body directly into the
database. This generated code will contain pl/sql to call the custom
package procedures from the API user hooks.

The following sections explain how to perform these steps in more
detail.

Available User Hooks

API user hooks are provided in the HRMS APIs which create, maintain
or delete information. For example, the create_employee and
update_emp_asg_criteria APIs.

Note: User hooks are not provided in alternative interface APIs.
For example, create_us_employee and create_gb_employee are
both alternatives to the create_employee API. You should
associate any extra logic with the main API. Also user hooks are
not provided in utility style APIs such as create_message_line.

A pl/sql script is available which lists all the different user hooks.

See: API User Hook Support Scripts

In the main APIs for HRMS there are two user hooks.

• Before Process

• After Process

A – 84 Oracle HRMS Implementation Guide

There are different versions of these two user hooks in each API. For
example, there is a Before Process and an After Process user hook in the
create_employee API and a different Before Process and After Process user
hook in the update_person API. This allows you to link your own logic
to a specific API and user hook.

Main API User Hooks

–––––––––––––––––––––––––––––––

| create_employee API |

| (Standard HR API) |

–––––––––––––––––––––––––––––––

 | | |

 | | |

 V V V

 Before Core After

 Process Product Process

 User Hook Logic User Hook

 Extra Logic Extra Logic

Before Process Logic

Before Process user hooks execute any extra logic before the main API
processing logic modifies any data in the database. In this case, the
majority of validation will not have been executed. If you implement
extra logic from this type of user hook, you must remember that none of
the context and data values have been validated. It is possible the values
are invalid and will be rejected when the main API processing logic is
executed.

After Process Logic

After Process user hooks execute any extra logic after all the main API
validation and processing logic has successfully completed. All the
database changes which are going to be made by the API will have been
made. Any values provided from these user hooks will have passed the
validation checks. Your extra validation can assume the values provided
are correct. If the main processing logic did not finish, due to an error,
the After Process user hook will not be called.

Note: You cannot alter the core product logic, which is executed
between the ’Before Process’ and ’After Process’ user hooks. You
can only add extra custom logic at the user hooks.

Core Product Logic

Core Product Logic is split into a number of components. For tables
which can be altered by an API there is an internal row handler code
module. These rows handlers are implemented for nearly all the tables

A – 85Technical Essays

in the system where APIs are available. They control all the insert,
update, delete and lock processing required by the main APIs. For
example, if a main API needs to insert a new row into the
PER_ALL_PEOPLE_F table it will not perform the DML itself. Instead it
will execute the PER_ALL_PEOPLE_F row handler module.

Oracle Applications does not support any direct calls to these internal
row handlers, as they do not contain the complete validation and
processing logic. Calls are only allowed to the list of supported and
published APIs. With each new release of HRMS products a guide to
new features is produced and this includes the list of supported and
published HRMS APIs.

In each of the row handler modules three more user hooks are available,
After Insert, After Update and After Delete. The user hook extra logic will
be executed after the validation specific to the current table columns has
been successfully completed and immediately after the corresponding
table DML statement.

These row handler user hooks are provided after the DML has been
completed for two reasons:

• All core product validation will have been carried out. So you
know what the change to that particular table is valid.

• For inserts the primary key value will not be known until the row
has actually been inserted.

Note: Although the update or delete DML statements may
have been executed, the previous – before DML, column values
will be still available for use in any user hook logic. This is
explained in more detail in a later section of this essay.

When an API inserts, updates or deletes records in more than one table
there will be many user hooks available for your use. For example, when
the create_employee API is used data can be created in up to six
different tables.

Create Employee API Summary Code Module Structure

––

| create_employee |

––

 | | | | |

 | | | | |

 V | | | V

Before | | | After

Process | | | Process

User Hook | | | User Hook

 V V V

A – 86 Oracle HRMS Implementation Guide

–––––––––––––– ––––––––––––––––– –––––––––––––––––––

| PER_ALL_ | | PER_PERIODS | | PER_ALL_ |

| PEOPLE_F | | _OF_SERVICE | | ASSIGNMENTS_F |

–––––––––––––– ––––––––––––––––– –––––––––––––––––––

 | | |

 V V V

After Insert After Insert After Insert

 User Hook User Hook User Hook

In the above diagram create_employee is the supported and published
API. Only three of the internal row handlers have been shown,
PER_ALL_PEOPLE_F, PER_PERIODS_OF_SERVICE and
PER_ALL_ASSIGNMENTS_F. These internal row handlers must not be
called directly.

Order of user hook execution:

1st) Create employee API Before Process user hook.

2nd) PER_ALL_PEOPLE_F row handler After Insert user hook.

3rd) PER_PERIODS_OF_SERVICE row handler After Insert user hook.

4th) PER_ALL_ASSIGNMENT_F row handler After Insert user hook.

...

last) Create employee API After Process user hook.

Note: Core product validation and processing logic will be
executed between each of the user hooks.

When a validation or processing error is detected, processing is
immediately aborted by raising a pl/sql exception. API validation is
carried out in each of the separate code modules. For example, when the
create_employee API is used validation logic is executed in each of the
row handlers which are executed. Let’s assume that a validation check is
violated in the PER_PERIODS_OF_SERVICE row handler. The logic
defined against the first two user hooks will be executed. As a pl/sql
exception is raised the 3rd and all remaining user hooks for that API call
will not be executed.

Note: When a DateTrack operation is carried out on a particular
record only one row handler user hook will be executed. For
example, when updating a person record, using the DateTrack
mode ’UPDATE’ only the After Update user hook will be
executed in the PER_ALL_PEOPLE_F row handler.

The published APIs are also known as Business Processes as they
perform a business event within HRMS.

A – 87Technical Essays

A pl/sql script is available to list all of the available user hooks and the
data values provided.

See: API User Hook Support Scripts

Data Values Available at User Hooks

In general, where a value is known inside the API it will be available to
the custom user hook code.

All values are read only. None of the values can be altered by user hook
logic.

None of the AOL WHO values are available at any user hook. Including:

• LAST_UPDATE_DATE

• LAST_UPDATED_BY

• LAST_UPDATE_LOGIN

• CREATED_BY

• CREATION_DATE

The p_validate parameter value will not be available at any user hook.
Any additional processing should be done regardless of the p_validate
value.

Data values are made available to user hook logic using individual
pl/sql procedure parameters. In most cases the parameter name
matches the name of the corresponding database column name with a p_
prefix. For example, the NATIONALITY column on the
PER_ALL_PEOPLE_F table will have a corresponding user hook
parameter name of p_nationality.

Before Process and After Process User Hook Data Values

• IN parameter values on each published API will be available at
the Before Process and After Process user hooks. At the Before
Process hook none of the values will be validated.

• OUT parameter values on the published API will only be
available from the After Process user hook. They are unavailable
from the Before Process user hook because no core product logic
will have been executed to derive them.

• IN OUT parameter values on the published API, will be available
at the Before Process and After Process user hooks. The
potentially invalid, IN value is available at the Before Process user

A – 88 Oracle HRMS Implementation Guide

hook. The value which will be passed out of the published API
will be available at the After Process user hook.

From the row handler After Insert user hook only column values which
can be populated or are derived during insert are available.

From the After Update user hook two sets of values are available. The
new values and the old values. That is, the values which correspond to
the updated record and those values which existed on the record before
the DML statement was executed. The new value parameter names
correspond to the database column name with a p_ prefix. The old
values parameter names match the database column name with a p_
prefix and a _o suffix. For example, the new value parameter name for
the NATIONALITY column on the PER_ALL_PEOPLE_F table will be
p_nationality. Where as the old value parameter name will be
p_nationality_o.

Except for the primary key ID, if a database column cannot be updated a
new value parameter will not be available. There will still be a
corresponding parameter without the _o suffix. For example, the
BUSINESS_GROUP_ID column cannot be updated on the
PER_ALL_PEOPLE_F table. At the After Update user hook a
p_business_group_id_o parameter will be available. But there will be no
new value p_business_group_id parameter.

From the After Delete user hooks only old values are available with _o
suffix style parameter names. The primary key ID value will be available
with a parameter which does not have the _o suffix.

Old values are only made available at the row handler After Update and
After Delete user hooks. Old values are NOT available from any of the
Before Process, After Process or After Insert user hooks.

Wherever the database column name is used, the end of the name may
be truncated, to fit the pl/sql 30 character limit for parameter names.

For DateTrack table row handlers, whenever data values are made
available from the After Insert, After Update or After Delete user hooks, the
provided new and old values apply as of the operation’s effective_date.
If past or future values are required the custom logic will need to
explicitly select them from the database table. The effective_start_date
and effective_end_date column and DateTrack mode value are made
available.

A complete list of available user hooks and the data values provided can
be found by executing a pl/sql script.

See: API User Hook Support Scripts

☞

A – 89Technical Essays

Implementing Extra Logic In a Separate Package Procedure

Any extra logic that you want to link to an API with a user–hook must
be implemented inside a pl/sql server–side package procedure.

Note: These procedures can do anything that can be
implemented in pl/sql except ‘commit’ and full ‘rollbacks’.

The APIs have been designed to perform all of the work associated with
a business process. If it is not possible to complete all of the database
changes then the API will fail and rollback all changes. This is achieved
by not committing any values to the database within an API. If an error
occurs in later processing all database changes made up to that point
will be rolled back automatically.

Attention: Commits or full rollbacks are disallowed in any API
code as they would interfere with this mechanism.. This
includes user–hooks and extra logic. If you attempt to issue a
commit or full rollback statement, the user hook mechanism will
detect this and raise its own error.

When an invalid value is detected by extra validation, you should raise
an error using a pl/sql exception. This will automatically rollback any
database changes carried out by the current call to the published API.
This rollback will include any changes made by earlier user hooks.

The user–hook code does not support any optional or decision logic to
decide when your custom code should be executed. If you link extra
logic to a user hook it will always be called when that API processing
point is reached. You must implement any conditional logic inside your
custom package procedure. For example. You want to check that
‘Administrators’ are promoted by one grade step only with each change.
As your extra logic will be called for all assignments, regardless of job
type, you should decide if you need to check for the job of
‘Administrator’ before checking the grade details.

Limitations

There are some limitations to implementing extra logic as custom pl/sql
code. Only calls to server–side package procedures are supported. But
more than one package procedure can be executed from the same user
hook. Custom pl/sql cannot be executed from user hooks if it is
implemented in:

• stand alone procedures (not defined within a package)

• package functions

• stand alone package functions (not defined within a package)

• package procedures which have overloaded versions

A – 90 Oracle HRMS Implementation Guide

Note: Do not try to implement commit or full rollback
statements in your custom pl/sql. This will interfere with the
API processing and will generate an error.

When a parameter name is defined it must match exactly the name of a
data value parameter that is available at the user hooks where it will be
executed. The parameter must have the same datatype as the user hook
data value. Any normal implicit pl/sql data conversions are not
supported from user hooks. All the package procedure parameters must
be defined as IN, without any default value. OUT and IN OUT
parameters are not supported in the custom package procedure.

At all user hooks many data values are available. When implementing a
custom package procedure every data value does not have to be listed.
Only the data values for parameters that are required for the custom
pl/sql need to be listed.

A complete list of available user hooks, data values provided and their
datatypes can be found by executing a pl/sql script.

See: API User Hook Support Scripts

When you have completed your custom pl/sql package you should
execute the package creation scripts on the database and test that the
package procedure compiles. Then test that this carries out the intended
validation on a test database.

For example. A particular enterprise requires the previous last name for
all married females when they are entered in the system. This
requirement is not implemented in the core product, but an
implementation team can code this extra validation in a separate
package procedure and call it using API user hooks. When martial
status is ‘Married’ and sex is ‘Female’ then use a pl/sql exception to
raise an error if the previous last name is null. The following sample
code provides a server–side package procedure to perform this
validation rule.

Sample Code

Create Or Replace Package cus_extra_person_rules as

procedure extra_name_checks

 (p_previous_last_name in varchar2

 ,p_sex in varchar2

 ,p_marital_status in varchar2

);

end cus_extra_person_rules;

/

exit;

Create Or Replace Package Body cus_extra_person_rules as

procedure extra_name_checks

A – 91Technical Essays

 (p_previous_last_name in varchar2

 ,p_sex in varchar2

 ,p_marital_status in varchar2

) is

begin

 –– When the person is a married female raise an

 –– error if the previous last name has not been

 –– entered

 if p_marital_status = ’M’ and p_sex = ’F’ then

 if p_previous_last_name is null then

 dbms_standard.raise_application_error

 (num => –20999

 ,msg => ’Previous last name must be entered for married

females’

);

 end if;

 end if;

end extra_name_checks;

end cus_extra_person_rules;

/

exit;

Linking Custom Procedures to User Hooks

After you have executed the package creation scripts on your intended
database, you need to link the custom package procedures to the
appropriate API user hooks. The linking between user hooks and
custom package procedures is defined as data in the
HR_API_HOOK_CALLS table.

There are three special APIs to maintain data in this table:

• hr_api_hook_call_api.create_api_hook_call

• hr_api_hook_call_api.update_api_hook_call

• hr_api_hook_call_api.delete_api_hook_call

HR_API_HOOK_CALLS

• The HR_API_HOOK_CALLS table must contain one row for each
package procedure linking to a specific user hook.

• The API_HOOK_CALL_ID column is the unique identifier.

• The API_HOOK_ID column specifies the user hook to link to the
package procedure.

A – 92 Oracle HRMS Implementation Guide

This is a foreign key to the HR_API_HOOKS table. Currently the
user hooks mechanism only support calls to package procedures,
so the API_HOOK_CALL_TYPE column must be set to ’PP’.

• The ENABLED_FLAG column indicates if the user hook call
should be included.

It must be set to ’Y’ for Yes, or ’N’ for No.

• The SEQUENCE column is used to indicate the order of hook
calls. Lowest numbers are processed first.

The user hook mechanism is also used by Oracle to supply
legislation specific and vertical market specific pl/sql. The
sequence numbers from 1000 to 1999 inclusive, are reserved for
Oracle internal use.

You can use sequence numbers less than 1000 or greater than 1999
for custom logic. Where possible we recommend you use
sequence numbers greater than 2000. Oracle specific user hook
logic will then be executed first. This will avoid the need to
duplicate Oracle’s additional logic in the custom logic.

There are two other tables which contain data used by the API user
hook mechanism, HR_API_MODULES and HR_API_HOOKS.

HR_API_MOUDLES

HR_API_MODULES contains a row for every API code module which
contains user hooks.

HR_API_MOUDLES Main Columns

ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

Column Name

ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

Description
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁAPI_MODULE_ID

ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁUnique identifier

A – 93Technical Essays

ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

API_MODULE_TYPE
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

A code value representing the
type of the API code module.

’BP’ for Business Process APIs –
the published APIs.

’RH’ for the internal Row
Handler code modules.

ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

MODULE_NAME
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

The value depends on the
module type.

For ’BP’ the name of the
published API, such as
CREATE_EMPLOYEE.

For ’RH’ modules the name of
the table, such as
PER_PERIODS_OF_SERVICE.

 HR_API_HOOKS

The HR_API_HOOKS table is a child of the HR_API_MODULES table.
It contains a record for each user hook in a particular API code module.

HR_API_HOOKS Main Columns

ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁColumn Name

ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁDescriptionÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

API_HOOK_ID

ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

Unique identifier
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

API_MODULE_ID
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

Foreign key. Parent ID to the
HR_API_MODULES table.ÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

API_HOOK_TYPE

ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

Code value representing the
type of user hook.

The API_HOOK_TYPE code represents the type of user hook:

User Hook Type API_HOOK_TYPE

––––––––––––––– –––––––––––––

After Insert AI

After Update AU

After Delete AD

Before Process BP

After Process AP

A – 94 Oracle HRMS Implementation Guide

Warning: Data in the HR_API_MODULES and
HR_API_HOOKS tables is supplied and owned by Oracle
HRMS. Oracle also supplies some data in the
HR_API_HOOK_CALLS table. Customers must not modify
data in these tables. Any changes you make to these tables may
affect product functionality and may invalidate your support
agreement with Oracle.

Note: Data in these tables may come from more than one
source and API_MODULE_IDs and API_HOOK_IDs may have
different values on different databases. Any scripts you write
must allow for this difference.

Full details for each of these tables can be found in the Oracle HRMS
Technical Reference Manual.

For the example where you want to make sure previous name is entered,
the extra validation needs to be executed whenever a new person is
entered into the system. The best place to execute this validation is from
the PER_ALL_PEOPLE_F row handler After Insert user hook.

The following pl/sql code is an example script to call the
create_api_hook_call API. This tells the user hook mechanism that the
cus_extra_person_rules.extra_name_checks package procedure should be
executed from the PER_ALL_PEOPLE_F row handler After Insert user
hook.:

Sample Code

declare

 ––

 –– Declare cursor statements

 ––

 cursor cur_api_hook is

 select ahk.api_hook_id

 from hr_api_hooks ahk

 , hr_api_modules ahm

 where ahm.module_name = ’PER_ALL_PEOPLE_F’

 and ahm.module_type = ’RH’

 and ahk.api_hook_type = ’AI’

 and ahk.api_module_id = ahm.api_module_id;

 ––

 –– Declare local variables

 ––

 l_api_hook_id number;

 l_api_hook_call_id number;

 l_object_version_number number;

begin

 ––

 –– Obtain the ID if the PER_ALL_PEOPLE_F

A – 95Technical Essays

 –– row handler After Insert API user hook.

 ––

 open cursor csr_api_hook;

 fetch csr_api_hook into l_api_hook_id;

 if csr_api_hook %notfound then

 close csr_api_hook;

 dbms_standard.raise_application_error

 (num => –20999

 ,msg => ’The ID of the API user hook was not found’

);

 end if;

 close csr_api_hook;

 ––

 –– Tell the API user hook mechanism to call the

 –– cus_extra_person_rules.extra_name_checks

 –– package procedure from the PER_ALL_PEOPLE_F row

 –– handler module ’After Insert’ user hook.

 ––

 create_api_hook_call

 (p_validate => false

 ,p_effective_date =>

 to_date(’01–01–1997’, ’DD–MM–YYYY’)

 ,p_api_hook_id => l_api_hook_id

 ,p_api_hook_call_type => ’PP’

 ,p_sequence => 3000

 ,p_enabled_flag => ’Y’

 ,p_call_package =>

 ’CUS_EXTRA_PERSON_RULES’

 ,p_call_procedure => ’EXTRA_NAME_CHECKS’

 ,p_api_hook_call_id => l_api_hook_call_id

 ,p_object_version_number =>

 l_object_version_number

);

 commit;

end;

In this example, the previous_last_name, sex and marital_status values
can be updated. If you want to perform the same checks when the
marital_status is changed, then the same validation will need to be
executed from the PER_ALL_PEOPLE_F After Update user hook. As the
same data values are available for this user hook, the same custom
package procedure can be used. Another API hook call definition should
be created in HR_API_HOOK_CALLS by calling the create_api_hook_call
API again. This time the p_api_hook_id parameter will need to be set to
the ID of the PER_ALL_PEOPLE_F After Update user hook.

A – 96 Oracle HRMS Implementation Guide

The API User Hook Pre–processor Program

Adding rows to the HR_API_HOOK_CALLS table does not mean the
extra logic will be called automatically from the user hooks. You must
run the API user hooks pre–processor program after the definition and
the custom package procedure have both been created in the database.
This will look at the calling definitions in the HR_API_HOOK_CALLS
table and the parameters listed on the custom server–side package
procedures.

Note: Another package body, will be dynamically built in the
database. This is known as the hook package body.

There is no operating system file which contains a creation script for the
hook package body. It is dynamically created by the API user hook
pre–processor program. Assuming the various validation checks
succeed, this package will contain hard coded calls to the custom
package procedures.

If no extra logic is implemented, the corresponding hook package body
will still be dynamically created. It will have no calls to any other
package procedures.

The pre–processor program is automatically executed at the end of some
server–side Oracle install and upgrade scripts. This ensures versions of
hook packages bodies exist in the database. If a customer does not want
to use API user hooks then no further set–up steps are required.

The user hook mechanism is used by Oracle to provide extra logic for
some legislations and vertical versions of the products. Calls to this
pl/sql are also generated into the hook package body.

Warning: It is IMPORTANT that you do not make any direct
edits to the generated hook package body. Any changes you
make may affect product functionality and may invalidate your
support agreement with Oracle.

If you choose to make alternations, these will be lost the next time the
pre–processor program is run. This will occur when the Oracle install or
upgrade scripts are executed. Other developers in the implementation
team could execute the pre–processor program.

If any changes are required, the custom packages should be modified, or
the calling definition data in the HR_API_HOOK_CALLS table. Then
the pre–processor program should be rerun, to generate a new version
of the hook package body. For example. If you want to stop calling a
particular custom package procedure then:

1. Call the hr_api_hook_call_api.update_api_hook_call API setting the
p_enabled_flag parameter to ’N’.

A – 97Technical Essays

2. Execute the API user hook pre–processor program so the latest
definitions are read again and the hook package body is
dynamically created again.

If you want to include the call again, then repeat these steps and set the
p_enabled_flag parameter in the hr_api_hook_call_api.update_api_hook_call
API to ’Y’.

If you want to permanently remove a custom call from a user hook then
remove the corresponding calling definition. Call the
hr_api_hook_call_api.delete_api_hook_call API.

Remember that the actual call from the user hook package body will be
removed only when the pre–processor program is rerun.

Running the Pre–processor Program

The pre–processor program can be run in two ways.

1. Execute the hrahkall.sql script in SQL*Plus

This will create the hook package bodies for all of the different
API code modules,.

2. Execute the hrahkone.sql script in SQL*Plus

This will create the hook package bodies for just one API code
module – one main API or one internal row handler module.

An api_module_id must be specified with this script. The required
ID values are found in the HR_API_MODULES table.

Both the hrahkall.sql and hrahkone.sql scripts are stored in the
$PER_TOP/admin/sql operating system directory.

Example

For the previous example. After the calling definitions and custom
package procedure have been successfully created in the database the
api_module_id can be found with the following SQL statement:

select api_module_id

 from hr_api_modules

 where api_module_type = ’RH’

 and module_name = ’PER_ALL_PEOPLE_F’;

Then execute the hrahkone.sql script. When prompted, enter the
api_module_id returned by the SQL statement above. This will generate
the hook package bodies for all of the PER_ALL_PEOPLE_F row
handler module user hooks After Insert, After Update and After Delete.

☞

A – 98 Oracle HRMS Implementation Guide

Error Report

Both pre–processor programs produce an error report. If no text is
shown after the ’Created on’ statement then all the hook package bodies
have been created without any pl/sql errors or application errors.

When errors do occur the hook package body code may still be created
with valid pl/sql. For example, if a custom package procedure lists a
parameter which is not available, the hook package body will still be
successfully created. No code will be created to execute that particular
customer package procedure. If other custom package procedures need
to be executed from the same user hook, then code to perform those
calls will still be created – assuming they pass all the standard pl/sql
checks and validation checks.

Attention: It is important that you check these error reports to
confirm the results of the scripts. If a call could not be built the
corresponding row in the HR_API_HOOK_CALLS table will
also be updated. The STATUS column will be set to ’I’ for
Invalid Call and the ENCODED_ERROR column will be
populated with the AOL application error message in the
encoded format.

The encoded format can be converted into translated text by the
following pl/sql:

declare

 l_encoded_error varchar2(2000);

 l_user_read_text varchar2(2000);

begin

 –– Substitute ??? with the value held in the

 –– HR_API_HOOK_CALLS.ENCODED_ERROR column.

 l_encoded_error := ???;

 fnd_message.set_encoded(encoded_error);

 l_user_read_text := fnd_message.get;

end;

It is your responsibility to review and resolve any problems recorded in
the error reports. Options::

• • Alter the parameters in the custom package procedures.

• • If required, change the data defined in the
HR_API_HOOK_CALLS table.

When you have resolved any problems then rerun the pre–processor
program.

The generated user hook package bodies must be less than 32K in size.
This restriction is a limit in pl/sql. If you reach this limit, you should

☞

A – 99Technical Essays

reduce the number of separate package procedures called from each
user hook. Try to combine your custom logic into fewer procedures.

Note: Each linked custom package procedure can be greater
than 32K in size. Only the user hook package body that is
dynamically created in the database must be less than 32K.

One advantage of implementing the API user hook approach, is that
your extra logic will be called anytime the APIs are called. This includes
any HRMS Forms or Web pages that perform their processing logic by
calling the APIs.

Attention: The user hook mechanism that calls your custom
logic is supported as part of the standard product. However the
logic in your own custom pl/sql procedures cannot be
supported by Oracle Support.

Recommendations for Using the Different Type of User Hook

Consider your validation rules in two categories:

• Data Item Rules

Rules associated with a specific field in a form or column in a
table. For example. Grade assigned must always be valid for the
Job assigned.

• Business Process Rules

Rules associated with a specific transaction or process. For
example. When you create a secondary assignment you must
include a special descriptive segment value.

Data Item Rules

The published APIs are designed to support business processes. This
means that individual data items can be modified by more than one API.
To perform extra data validation on specific data items, – table columns,
you should use the internal row handler module user hooks.

By implementing any extra logic from the internal row handler code
user hooks, you will cover all of the cases where that column value can
change. Otherwise you will need to identify all the APIs which can set
or alter that database column.

Use the After Insert, After Update or After Delete user hooks for data
validation. These hooks are preferred because all of the validation
associated with the database table row must be completed successfully
before these user hooks are executed. Any data values passed to custom
logic will be valid as far as the core product is concerned.

A – 100 Oracle HRMS Implementation Guide

If the hook call definition is created with a sequence number greater
than 1999, then any Oracle legislation or vertical market specific logic
will also have been successfully executed.

Note: If extra validation is implemented on the After Insert user
hook, and the relevant data values can be updated, then you
should consider excluding similar logic from the After Update
user hook.

Old values – before DML, are available from the After Update and
After Delete user hooks.

Business Process Rules

If you want to detect a particular business event has occurred, or you
only want to perform some extra logic for a particular published API,
then use the Before Process and After Process user hooks.

Where possible, use the After Process user hook, as all core product
validation for the whole API will have been completed. If you use the
Before Process user hook you must consider that all data values could be
invalid in your custom logic. None of the core product validation has
been carried out at that point.

Data values provided at the Before Process and After Process user hooks
will be the same as the values passed into the API. For update type
business processes the API caller has to specify only the mandatory
parameters and the values they actually want to change. When the API
caller does not explicitly provide a parameter value, the system reserved
default values will be used:

 Data Type Default value

 ––––––––– –––––––––––––––––

 varchar2 hr_api.g_varchar2

 number hr_api.g_number

 date hr_api.g_date

Depending on the parameters specified by the API caller, these default
values may be provided to Before Process and After Process user hooks.
That is, the existing column value in the database is only provided if the
API calling code happens to pass the same new value. If the real
database value is required then the custom package procedures must
select it explicitly from the database.

This is another reason why After Update and After Delete user hooks are
preferred. At the row handler user hooks the actual data value is always
provided. Any system default values will have been reset with their
existing database column value in the row handler modules. Any extra
logic from these user hooks does need to be concerned with the system
reserved default values.

☞

A – 101Technical Essays

If any After Process extra logic must access the old database values then a
different user hook needs to be used. It will not be possible to use the
After Process user hook because all the relevant database rows will have
been modified and the old values will not be provided by the user hook
mechanism. Where API specific extra logic requires the old values, they
will need to be explicitly selected in the Before Process user hook.

Alternative Interface APIs

Alternative Interface APIs provide an alternative version of the generic
APIs. Currently there are legislative or vertical specific versions of the
generic APIs.

For example, create_us_employee and create_gb_employee are two
alternative interfaces to the generic create_employee API. These
alternatives make clear how specific legislative parameters are mapped
onto the parameters of the generic API.

In the future other alternative APIs may be provided to support specific
implementation of generic features. For example, with elements and
input values.

Attention: User hooks are not provided in alternative interface
APIs. User hooks are provided only in the generic APIs. In this
example the user hooks are provided in the create_employee API
and not in the create_us_employee and create_gb_employee APIs.

Alternative interface APIs always perform their processing by executing
the generic API and any extra logic in the generic API user hooks will be
executed automatically when the alternative APIs are called. This
guarantees consistency in executing any extra logic and reduces the
administrative effort to set up and maintain the links.

Example 1

You want to perform extra validation on the assignment entity, job and
payroll values to make sure only ‘Machine Workers’ are included in the
‘Weekly’ payroll. There is more than one published API which allows
the values to be set when a new assignment is created or an existing
assignment is updated.

Suggestion. Implement the extra validation in a custom server–side
package procedure. Link this to the two user hooks, After Insert and After
Update, in the PER_ALL_ASSIGNMENTS_F table internal row handler
module.

A – 102 Oracle HRMS Implementation Guide

Example 2

You have a custom table and you want to create data in this table when a
new employee is created in the system, or an existing applicant is
converted into an employee. The data in the custom table does not need
to be created in any other scenario.

Suggestion. Implement the third party table insert DML statements in a
custom server–side package procedure. Link this to two user hooks.
After Process in the create_employee API module and After Process in the
hire_applicant API module.

Comparison with Database Triggers

User hooks have a number of advantages over database triggers for
implementing extra logic.

• Database triggers can only be defined against individual table
DML statements. The context of a particular business event may
be unavailable at the table level because the event details are not
held in any of the columns on that table.

• Executing a database trigger is inefficient compared with
executing a server–side package procedure.

• The mutating table restriction stops values being selected from
table rows which are being modified. This prevent complex
multi–row validation being implemented from database triggers.
This complex validation can be implemented from API user
hooks, as there are no similar restrictions.

• On DateTrack tables it is extremely difficult to implement any
useful logic from database triggers. With many DateTrack modes,
a single transaction may affect more than one row in the same
database table. Each dated instance of a DateTrack record is
physically held on a different database row.

For example. A database trigger which fires on insert cannot tell
the difference between a new record being created or an insert
row from a DateTrack ’UPDATE’ operation.

Note: DateTrack ’UPDATE’ carries out one insert and one
update statement. The context of the DateTrack mode is lost at
the database table level. You cannot re–derive this in a database
trigger due to the mutating table restriction.

• With DateTrack table row handler user hooks more context and
data values are available. The After Insert user hook is only
executed when a new record is created. The DateTrack mode

A – 103Technical Essays

name is available at After Update and After Delete user hooks. The
range of dates the record is actually being modified are also
available at these user hooks. The validation_start_date value is the
first day the record is affected by the current DateTrack operation.
The last day the record is affected is known as the
validation_end_date.

API User Hook Support Scripts

A complete list of available user hooks and the data values provided can
be found by executing the hrahkpar.sql script in SQL*Plus. This script can
be found in the $PER_TOP/admin/sql operating system directory. As
the output is long, it is recommended to spool the output to an
operating system text file.

The user hook pre–processor program can be executed in two ways. To
create the hook package bodies for all of the different API code modules,
execute the hrahkall.sql script in SQL*Plus. To create the hook package
bodies for just one API code module, such as one main API or one
internal row handler module, execute the hrahkone.sql script in SQL*Plus.
An api_module_id must be specified with this second script. The required
api_module_id value can be obtained from the HR_API_MODULES table.
Both the hrahkall.sql and hrahkone.sql scripts can be found in the
$PER_TOP/admin/sql operating system directory.

Using APIs as Building Blocks

The API code files supplied with the product must not be edited directly
for any custom use.

Warning: Any changes you make may affect product
functionality and may invalidate your support agreement with
Oracle, and prevent product upgrades.

Oracle Applications support direct calls to the published APIs. Direct
calls to any other server–side package procedures or functions written
as part of the Oracle HRMS product set are not supported, unless
explicitly specified.

There are supported methods for adding custom logic, using the APIs
provided. In addition to the API user hook mechanism, you can use the
published APIs as building blocks to construct custom APIs.

For example. Suppose that when a new employee joins your company
you always obtain their home address at that time. The address details

A – 104 Oracle HRMS Implementation Guide

must be recorded in the HR system because you run reports which
expect every employee to have an address.

You could write your own API to create new employees with an
address. This API would call the standard create_employee API and then
immediately afterwards call the standard create_address API.

 | last_name

 | first_name

 | ...

 | address_line1

 | address_line2

 | ...

 V

––

| create_company_employee |

| (Customer specific PL/SQL) |

––

 | ^ |

 | last_name | person_id | person_id

 | first_name | ... | address_line1

 | ... | | address_line2

 | | | ...

 V | V

––

| create_employee API | | create_address API |

| (Standard HR API) | | (Standard HR API) |

––

With API user hooks it is not possible to change any of the data values.
So the building block approach can be used to default or set any values
before the published API is called.

The major disadvantage with the building block approach is that any
Forms or WEB pages supplied by Oracle will NOT call any custom
APIs. If a user interface is required then you must also create your own
custom Forms or WEB pages to implement calls to your custom APIs.

Handling Object Version Numbers in Oracle Forms 4.5

If you intend to write your own Forms which call the APIs, you will
need to implement additional Forms logic to correctly manage the object
version number. This is required because of the way Forms can process
more than one row in the same commit unit.

A – 105Technical Essays

Example

Consider the following example of what can happen if only one form’s
block item is used to hold the object version number:

1. The user queries two rows and updates both.
 OVN in

Row Database OVN in Form

––– –––––––– –––––––––––

A 6 6

B 3 3

2. The user presses commit.

Row A has no user errors and is validated in the API. The OVN is
updated in the database and the new OVN is returned to the form.

 OVN in

Row Database OVN in Form

––– –––––––– –––––––––––

A 7 7

B 3 3

3. The form calls the API again for row B.

This time there is a validation error on the user–entered change. An
error message is raised in the form and Forms4 issues a rollback to
the database. However, the OVN for row A in the form is now
different from the OVN in the database.

 OVN in

Row Database OVN in Form

––– –––––––– –––––––––––

A 6 7

B 3 3

4. The user corrects the problem with row B and commits again.

Now the API will error when it validates the changes to row A. The
two OVNs are different.

Solution

The solution to this problem is to use a non–basetable item to hold the
new version number. This item is not populated at query time.

1. The user queries two rows and updates both.
 OVN in New_OVN

Row Database OVN in Form in Form

––– –––––––– ––––––––––– –––––––

A 6 6

B 3 3

2. The user presses commit.

A – 106 Oracle HRMS Implementation Guide

Row A is valid, so the OVN is updated in the database and the new
OVN is returned to the form.

Note: The actual OVN in the form is not updated.
 OVN in New_OVN

Row Database OVN in Form in Form

––– –––––––– ––––––––––– –––––––

A 7 6 7

B 3 3

3. The forms calls the API again for row B.

The validation fails and an error message is raised in the form.
Forms4 issues a rollback to the database.

 OVN in New_OVN

Row Database OVN in Form in Form

––– –––––––– ––––––––––– –––––––

A 6 6 7

B 3 3

4. The user corrects the problem with row B and commits again.

The API is called to validate row A again. The OVN value is passed,
not the NEW_OVN. There is no error because the OVN in the
database now matches the OVN it was passed. The API passes back
the updated OVN value.

 OVN in New_OVN

Row Database OVN in Form in Form

––– –––––––– ––––––––––– –––––––

A 7 6 7

B 3 3

5. The API is called again to validate row B.

The validation is successful; the OVN is updated in the database
and the new OVN value is returned to the form. The commit in the
form and the database is successful.

 OVN in New_OVN

Row Database OVN in Form in Form

––– –––––––– ––––––––––– –––––––

A 7 6 7

B 4 3 4

What would happen when the user updates the same row again without
re–querying? Following on from the previous step:

6. When the user starts to update row A, the on–lock trigger will fire.

The trigger updates the OVN when New_OVN is not null.
(Theoretically the on–lock trigger will only fire if the previous
commit has been successful. Therefore the New_OVN is the OVN
value in the database.)

A – 107Technical Essays

 OVN in New_OVN

Row Database OVN in Form in Form

––– –––––––– ––––––––––– –––––––

A 7 7 7

7. The on–lock trigger then calls the API to take out a lock using OVN.

The lock is successful as the OVN values match.
 OVN in New_OVN

Row Database OVN in Form in Form

––– –––––––– ––––––––––– –––––––

A 7 7 7

8. The user continues with the update, the update API is called, and
the commit is successful.

 OVN in New_OVN

Row Database OVN in Form in Form

A 8 7 8

If user does delete instead of update, the on_lock will work in the same
way. When key_delrec is pressed, the delete API should be called with
p_validate set to true. Doing so ensures that the delete is valid without
removing the row from the database.

Therefore, the OVN value in the form should be set with the New_OVN,
when New_OVN is not null. This ensure that the delete logic is called
with the OVN value in the database.

However, there is another special case which has to been taken into
consideration. It is possible for the user to update a row (causing a new
OVN value to be returned from the API), the update of the next row in
the same commit unit fails, the user navigates back to the first row and
decides to delete it. To stop the new_OVN from being copied into the
OVN in the form, only do the copy in key_delrec if the record_status is
query.

Example Code Using the Grade Rate Values

The above descriptions are handled in the following example. In this
example, <block_name>.object_version_number is a basetable item and
 <block_name>.new_object_version_number are non–basetable.

Forms Procedure Called from the ON–INSERT Trigger

 procedure insert_row is

 begin

 ––

 –– Call the api insert routine

 ––

 hr_grade_api.create_grade_rate_value

 (<parameters>

A – 108 Oracle HRMS Implementation Guide

 ,p_object_version_number =>

:<block_name>.object_version_number

 ,p_validate => false

);

 end insert_row;

 Forms Procedure Called from the ON–UPDATE Trigger

 procedure update_row is

 l_api_ovn number;

 begin

 –– Send the old object version number to the API

 l_api_ovn := :<block_name>.object_version_number;

 ––

 –– Call the api update routine

 ––

 hr_grade_api.update_grade_rate_values

 (<parameters>

 ,p_object_version_number => l_api_ovn

 ,p_validate => false

);

 –– Remember the new object version number returned from the

API

 :<block_name>.new_object_version_number := l_api_ovn;

 end update_row;

Forms Procedure Called from the ON–DELETE Trigger

 procedure delete_row is

 begin

 ––

 –– Call the api delete routine

 ––

 hr_grade_api.delete_grade_rate_values

 (<parameters>

 ,p_object_version_number =>

:<block_name>.object_version_number

 ,p_validate => false

);

 end delete_row;

Forms Procedure Called from the KEY–DELREC Trigger

 procedure key_delrec_row is

 l_api_ovn number;

 l_rec_status varchar2(30);

 begin

 –– Ask user to confirm they really want to delete this row.

 ––

 –– Only perform the delete checks if the

 –– row really exists in the database.

A – 109Technical Essays

 ––

 l_rec_status := :system.record_status;

 if (l_rec_status = ‘QUERY’) or (l_rec_status = ‘CHANGED’) then

 ––

 –– If this row just updated then the

 –– new_object_version_number will be not null.

 –– If that commit was successful then the

 –– record_status will be QUERY, therefore use

 –– the new_object_version_number. If the commit

 –– was not successful then the user must have

 –– updated the row and then decided to delete

 –– it instead. Therefore just use the

 –– object_version_number.

 ––(Cannot just copy the new_ovn into ovn

 –– because if the new_ovn does not match the

 –– value in the database the error message will

 –– be displayed twice. Once from key–delrec and

 –– again when the on–lock trigger fires.)

 ––

 if (:<block_name>.new_object_version_number is not null)

and

 (l_rec_status = ’QUERY’) then

 l_api_ovn := :<block_name>.new_object_version_number;

 else

 l_api_ovn := :<block_name>.object_version_number;

 end if;

 ––

 –– Call the api delete routine in validate mode

 ––

 hr_grade_api.delete_grade_rate_values

 (p_validate => true

 ,<parameters>

 ,p_object_version_number => l_api_ovn

 ,p_validate => true

);

 end if;

 ––

 delete_record;

 end key_delrec_row;

Forms Procedure Called from the ON–LOCK Trigger

 procedure lock_row is

 l_counter number;

 begin

 l_counter := 0;

 LOOP

 BEGIN

 l_counter := l_counter + 1;

 ––

A – 110 Oracle HRMS Implementation Guide

 –– If this row has just been updated then

 –– the new_object_version_number will be not null.

 –– That commit unit must have been successful for the

 –– on_lock trigger to fire again, so use the

 –– new_object_version_number.

 ––

 if :<block_name>.new_object_version_number not null then

 :<block_name>.object_version_number :=

 :<block_name>.new_object_version_number;

 end if;

 ––

 –– Call the table handler api lock routine

 ––

 pay_grr_shd.lck

 (<parameters>

 ,p_object_version_number =>

:<block_name>.object_version_number

);

 return;

 EXCEPTION

 When APP_EXCEPTIONS.RECORD_LOCK_EXCEPTION then

 APP_EXCEPTION.Record_Lock_Error(l_counter);

 END;

 end LOOP;

 end lock_row;

HRMS Table Locking Ladder

This locking ladder should be used to avoid deadlock situations.

See: Avoiding Deadlocks

Table Name Processing Order

PER_TIME_PERIOD_TYPES 10

FF_ROUTES 20

FF_CONTEXTS 30

FF_FORMULA_TYPES 40

FF_FORMULAS_F 50

PAY_BALANCE_DIMENSIONS 60

PAY_BALANCE_TYPES 70

PAY_MONETARY_UNITS 80

PAY_DEFINED_BALANCES 90

PAY_EXTERNAL_ACCOUNTS 100

PAY_PAYMENT_TYPES 110

PAY_ORG_PAYMENT_METHODS_F 120

HR_SOFT_CODING_KEYFLEX 130

PAY_COST_ALLOCATION_KEYFLEX 140

A – 111Technical Essays

HR_LOCATIONS 150

HR_ORGANIZATION_UNITS 160

PER_NUMBER_GENERATION_CONTROLS 170

PER_ORGANIZATION_STRUCTURES 180

PER_ORG_STRUCTURE_VERSIONS 190

PER_ORG_STRUCTURE_ELEMENTS 200

PAY_CONSOLIDATION_SETS 210

PAY_ALL_PAYROLLS_F 220

PAY_ORG_PAY_METHOD_USAGES_F 230

PER_PARENT_SPINES 240

PAY_RATES 250

PER_SPINAL_POINTS 260

PER_GRADE_DEFINITIONS 270

PER_GRADES 280

PER_GRADE_SPINES_F 290

PER_SPINAL_POINT_STEPS_F 300

PAY_GRADE_RULES_F 310

PAY_EXCHANGE_RATES_F 320

PAY_CALENDARS 330

PER_TIME_PERIOD_SETS 340

PER_TIME_PERIOD_RULES 350

PER_TIME_PERIODS 360

PER_BUDGETS 370

PER_BUDGET_VERSIONS 380

PER_STARTUP_PERSON_TYPES 390

PER_PERSON_TYPES 400

PER_ALL_PEOPLE_F 410

PER_APPLICATIONS 420

PER_RECRUITMENT_ACTIVITIES 430

PAY_PEOPLE_GROUPS 440

PER_REQUISITIONS 450

PER_JOB_DEFINITIONS 460

PER_JOBS 470

PER_POSITION_DEFINITIONS 480

PER_POSITIONS 490

PER_VACANCIES 500

PER_RECRUITMENT_ACTIVITY_FOR 510

PER_PERIODS_OF_SERVICE 520

PER_POSITION_STRUCTURES 530

PER_POS_STRUCTURE_VERSIONS 540

PER_POS_STRUCTURE_ELEMENTS 550

PER_CAREER_PATHS 560

PER_CAREER_PATH_ELEMENTS 570

PER_COBRA_QFYING_EVENTS_F 580

PER_COBRA_COV_ENROLLMENTS 590

PER_COBRA_COVERAGE_BENEFITS_F 600

PER_COBRA_COVERAGE_STATUSES 610

PER_SCHED_COBRA_PAYMENTS 620

PER_ADDRESSES 630

A – 112 Oracle HRMS Implementation Guide

PER_CONTACT_RELATIONSHIPS 640

PER_SPECIAL_INFO_TYPES 650

PER_ANALYSIS_CRITERIA 660

PER_PERSON_ANALYSES 670

PER_JOB_EVALUATIONS 680

PER_JOB_REQUIREMENTS 690

PER_VALID_GRADES 700

PER_ASSIGNMENT_STATUS_TYPES 710

PER_LETTER_TYPES 720

PER_LETTER_GEN_STATUSES 730

PER_LETTER_REQUESTS 740

HR_ORG_INFORMATION_TYPES 750

HR_ORGANIZATION_INFORMATION 760

HR_ORG_INFO_TYPES_BY_CLASS 770

PER_SECURITY_PROFILES 780

PAY_SECURITY_PAYROLLS 790

PAY_PAYROLL_LIST 800

PER_ORGANIZATION_LIST 810

PER_PERSON_LIST 820

PER_POSITION_LIST 830

PER_PERSON_LIST_CHANGES 840

HR_WORKFLOWS 850

HR_NAVIGATION_UNITS 860

HR_NAV_UNIT_GLOBAL_USAGES 870

HR_NAVIGATION_CONTEXT_RULES 880

HR_INCOMPATIBILITY_RULES 890

HR_NAVIGATION_NODES 900

HR_NAVIGATION_NODE_USAGES 910

HR_NAVIGATION_PATHS 920

PAY_CUSTOMIZED_RESTRICTIONS 930

PAY_RESTRICTION_PARAMETERS 940

PAY_RESTRICTION_VALUES 950

PER_ALL_ASSIGNMENTS_F 960

PAY_COST_ALLOCATIONS_F 970

PAY_ELEMENT_CLASSIFICATIONS 980

PAY_ELEMENT_TYPES_F 990

PAY_ELEMENT_SETS 1000

PAY_ELE_CLASSIFICATION_RULES 1010

PAY_ELEMENT_TYPE_RULES 1020

PAY_SUB_CLASSIFICATION_RULES_F 1030

PAY_BALANCE_CLASSIFICATIONS 1040

PAY_INPUT_VALUES_F 1050

PAY_BACKPAY_SETS 1060

PAY_BACKPAY_RULES 1070

PAY_BALANCE_FEEDS_F 1080

PAY_ELEMENT_LINKS_F 1090

PAY_LINK_INPUT_VALUES_F 1100

PAY_ASSIGNMENT_LINK_USAGES_F 1110

PAY_PAYROLL_GL_FLEX_MAPS 1120

A – 113Technical Essays

PER_EVENTS 1130

PER_BOOKINGS 1140

HR_ASSIGNMENT_SETS 1150

PAY_ACTION_CLASSIFICATIONS 1160

PAY_ACTION_PARAMETERS 1170

PAY_PAYROLL_ACTIONS 1180

PAY_ASSIGNMENT_ACTIONS 1190

PAY_ACTION_INTERLOCKS 1200

PAY_PRE_PAYMENTS 1210

PAY_MESSAGE_LINES 1220

PAY_POPULATION_RANGES 1230

PAY_PERSON_LATEST_BALANCES 1240

PAY_ASSIGNMENT_LATEST_BALANCES 1250

PAY_BALANCE_CONTEXT_VALUES 1260

FF_LOOKUPS 1270

FF_HARNESS 1280

FF_FTYPE_CONTEXT_USAGES 1290

FF_QP_REPORTS 1300

FF_COMPILED_INFO_F 1310

FF_FUNCTIONS 1320

FF_FUNCTION_PARAMETERS 1330

FF_FUNCTION_CONTEXT_USAGES 1340

FF_GLOBALS_F 1350

FF_USER_ENTITIES 1360

FF_ROUTE_PARAMETERS 1370

FF_ROUTE_PARAMETER_VALUES 1380

FF_DATABASE_ITEMS 1390

FF_ROUTE_CONTEXT_USAGES 1400

FF_FDI_USAGES_F 1410

PAY_STATUS_PROCESSING_RULES_F 1420

PAY_FORMULA_RESULT_RULES_F 1430

PAY_ELEMENT_ENTRIES_F 1440

PAY_ELEMENT_ENTRY_VALUES_F 1450

PAY_QUICKPAY_INCLUSIONS 1460

PER_SPINAL_POINT_PLACEMENTS_F 1470

PAY_COIN_ANAL_ELEMENTS 1480

PAY_PERSONAL_PAYMENT_METHODS_F 1490

PAY_RUN_RESULTS 1500

PAY_RUN_RESULT_VALUES 1510

PAY_COSTS 1520

PER_ASSIGNMENT_INFO_TYPES 1530

PER_ASSIGNMENT_EXTRA_INFO 1540

PER_ASSIGNMENT_BUDGET_VALUES 1550

PER_LETTER_REQUEST_LINES 1560

PER_BUDGET_ELEMENTS 1570

PER_BUDGET_VALUES 1580

PER_SECONDARY_ASS_STATUSES 1590

PER_ABSENCE_ATTENDANCE_TYPES 1600

PER_ABS_ATTENDANCE_REASONS 1610

A – 114 Oracle HRMS Implementation Guide

PER_ABSENCE_ATTENDANCES 1620

PER_PAY_PROPOSALS 1630

PER_PAY_BASES 1640

HR_ASSIGNMENT_SET_CRITERIA 1650

HR_ASSIGNMENT_SET_AMENDMENTS 1660

PER_QUICKPAINT_INVOCATIONS 1670

PER_QUICKPAINT_RESULT_TEXT 1680

PER_FORM_FUNCTIONS 1690

PAY_USER_TABLES 1700

PAY_USER_ROWS_F 1710

PAY_USER_COLUMNS 1720

PAY_USER_COLUMN_INSTANCES_F 1730

PAY_ACCRUAL_PLANS 1740

PAY_ACCRUAL_BANDS 1750

PAY_ELE_PAYROLL_FREQ_RULES 1760

PAY_FREQ_RULE_PERIODS 1770

PER_ASS_STATUS_TYPE_AMENDS 1780

PER_IMAGES 1790

PAY_NET_CALCULATION_RULES 1800

PAY_GEOCODES 1810

HR_API_MODULES 1820

HR_API_HOOKS 1830

HR_API_HOOK_CALLS 1840

The following tables have not yet been incorporated into the list:

HR_APPLICATION_OWNERSHIPS

HR_COMMENTS

HR_COMPARISON_ROWS

HR_LEGISLATION_SUBGROUPS

HR_OWNER_DEFINITIONS

HR_STU_EXCEPTIONS

HR_STU_HISTORY

PAY_JOB_WC_CODE_USAGES

PAY_LEGISLATION_RULES

PAY_LEGISLATIVE_FIELD_INFO

PAY_PDT_BATCH_CHECKS

PAY_PDT_BATCH_HEADERS

PAY_PDT_BATCH_LINES

PAY_PDT_LINE_ERRORS

PAY_STATE_RULES

PAY_TAXABILITY_RULES

PAY_WC_FUNDS

PAY_WC_RATES

PAY_WC_STATE_SURCHARGES

A – 115Technical Essays

Balances in Oracle Payroll

This essay deals with the definition and use of balances and balance
dimensions in Oracle Payroll. It also explains how to deal with the issue
of loading initial balances. This essay does not provide any detail on
how to add additional balance dimensions to the system.

Terms

This essay assumes that you are already familiar with the database
design diagrams and tables contained in the Oracle HRMS Technical
Reference Manual.

If you are not already familiar with the setup and use of balances, or the
concepts of employee assignment, assignment actions, database items,
or payroll processing in Oracle FastFormula you should refer to your
Oracle Payroll User’s Guide for more information.

Overview of Balances

In Oracle Payroll a balance is defined as the accumulation of the results
of a payroll calculation. The balance has a name, feeds and dimensions.

For example, the balance GROSS PAY is the accumulation of the results
of processing all ‘Earnings’. However, the idea of a dimension is unique
to Oracle Payroll and allows you to view the value of a balance using a
combination of different criteria. So, you might want to view the value
of Gross Pay for one employee for the current pay period, or for the year
to date. The actual balance and dimension you would use in a formula
or a report would be the GROSS_PAY_ASG_PTD or the
GROSS_PAY_ASG_YTD.

In general, balances in Oracle Payroll can be thought of as the
‘calculation rules’ for obtaining the balance value and in general they are
not held explicitly in the database. This approach has many advantages:
New balances can be defined and used at any time with any feeds and
dimensions; balance values do not need to be stored explicitly in the
database, taking up valuable storage space and causing problems with
data archiving and purging.

Balance Types

These are the balance names, for example Gross Pay and Net Pay.
Balance types always have a numeric Unit Of Measure, and in some
instances a currency code.

☞

A – 116 Oracle HRMS Implementation Guide

Balance Feeds

Balance feeds define the input values that contribute to a balance. For
example the pay values of all earnings types contribute to the Gross Pay
balance. Feeds can add to (+) or subtract (–) from a balance

Balance Dimensions

The balance dimension is identified by the database item suffix for the
balance. For example, ’_YTD’ indicates the balance value is for the year
to date. Balance dimensions are predefined with Oracle Payroll.

Defined Balances

The defined balance is the name used to identify the combination of
Balance Type and Balance Dimension. For example,
GROSS_PAY_ASG_YTD. When you use the Balance window to define
a new balance, Oracle Payroll will automatically generate database
items for every balance dimension you select. You can then access the
value directly within any formula. In any detailed calculation or report
on balances you will always refer to the ‘defined balance’ to return a
value.

Latest Balances

In order to optimize the performance of payroll processing some balance
values are held explicitly in the database and these are referred to as
Latest Balance Values. The payroll process accesses and updates latest
balance values as it runs, and in some cases it will clear and then reset
values, for example when you do a rollback. All of this is invisible to the
user and is managed by the payroll process.

Note: If you need to return the value of a balance in a report
you should use the xxx balance function. This will always find
the latest value of the balance for the dimension you select.

Expiry

An important concept for latest balances is that of ‘expiry’. For
example, consider the GROSS_PAY_YTD balance. When you cross the
tax year boundary you would expect the value to return to zero. This
‘expiry’ of a balance is maintained internally by Oracle Payroll and there
is code to work out if we have crossed such a boundary.

Attention: Even if a defined balance has expired in theory for a
payroll run, it is not actually zeroed on the database unless it is

A – 117Technical Essays

subsequently updated by the same payroll run. Thus, following
a Payroll Run, you may well see balances that you would have
expected to have expired, but have their old values.

Balance Contexts

These allow the definition of complex balances. For example in the US
legislation you need to maintain balance dimensions for particular
states, while in the UK legislation you need to maintain balance
dimensions for distinct tax offices. Both of these requirements are met
by the definition of special balance contexts. These are legislative
specific ’C’ code and appear to you as part of the balance dimensions.

User definition of additional balance contexts are not yet supported
because of the major impact these may have on the overall performance
of the payroll process. Bad code in the definition of these contexts can
run exceptionally slowly, especially when you accumulate a large
number of run results.

If you need to define additional balance contexts you should contact
your Oracle HRMS Support representative for more information.

A – 118 Oracle HRMS Implementation Guide

Balance Dimensions

This essay describes what a balance dimension is and what it does, and
how the various parts interact with formulas and the Payroll Run.

A balance dimension defines how the value of a specific balance should
be calculated. The balance dimension is also an entity with its own
attributes that are associated with balance calculations.

Balance Dimension Attributes

The following list provides a description of most attributes of a balance
dimension. It does not include attributes that have an obvious meaning.

Database Item Suffix

The database item suffix identifies the specific dimension for any named
balance. The ‘defined balance’ name is the combination of the balance
and the suffix. For example, the suffix ’_ASG_YTD’ in
’GROSS_SALARY_ASG_YTD’ identifies that the value for the gross
salary balance is calculated for one assignment, for the year to date.

Routes

The balance dimension route is a foreign key to the FF_ROUTES table.
A route is a fragment of sql code which defines the value to be returned
when you access a balance. As with other database items, the text is
held in the DEFINITION_TEXT column of the FF_DATABASE_ITEMS
table.

The select clause of the statement is always:

select nvl(sum(TARGET.result_value * FEED.scale),0)

Thus, a balance could be defined as the sum of those run result values
that feed the balance type (‘Gross Salary’ in our example), across a
certain span of time (in our example, this is since the start of the current
tax year).

The sql statement itself must follow a number of rules, and an example
appears below:

 pay_balance_feeds_f FEED

 ,pay_run_result_values TARGET

 ,pay_run_results RR

 ,pay_payroll_actions PACT

 ,pay_assignment_actions ASSACT

 ,pay_payroll_actions BACT

 ,pay_assignment_actions BAL_ASSACT

where BAL_ASSACT.assignment_action_id = \&B1

A – 119Technical Essays

and BAL_ASSACT.payroll_action_id = BACT.payroll_action_id

and FEED.balance_type_id = \&U1

and FEED.input_value_id = TARGET.input_value_id

and TARGET.run_result_id = RR.run_result_id

and RR.assignment_action_id = ASSACT.assign_action_id

and ASSACT.payroll_action_id = PACT.payroll_action_id

and PACT.effective_date between

 FEED.effective_start_date and FEED.effective_end_date

and RR.status in (’P’,’PA’)

and PACT.effective_date >=

 (select to_date(’06–04–’ || to_char(to_number(

 to_char(BACT.effective_date,’YYYY’))

 + decode(sign(BACT.effective_date – to_date(’06–04–’

 ||

to_char(BACT.effective_date,’YYYY’),’DD–MM–YYYY’)),–1,–1,0)),’DD–M

M–YYYY’)

 from dual)

and ASSACT.action_sequence <= BAL_ASSACT.action_sequence

and ASSACT.assignment_id = BAL_ASSACT.assignment_id’);

This example is the route for a UK based assignment level year to date
balance that uses the 6th of April as the start of the tax year.

Comments

The route is made up of the following parts:

1. Return all possible actions for the assignment

2. Identify the possible feeds to the balance

– feed checking

3. Restrict the period for which you sum the balance

– ‘expiry checking’

Note: The expiry and feed checking parts have a special
significance that will become obvious later.

• Specific table aliases should be used as they have a particular
meaning.

• The BAL_ASSACT table is the ‘source’ assignment action, i.e. the
current action for this assignment.

• The ASSACT table is the ‘target’ assignment action, i.e. the action
for those results that feed the balance.

• The PACT table is the ‘target’ payroll action, i.e. used to define the
date of the ASSACT assignment actions.

A – 120 Oracle HRMS Implementation Guide

• We join to the BACT table, getting all the Payroll Actions in which
the assignment appears.

• We join to the FEED table for the balance type and get all the
TARGET input values that could possibly feed this balance.

• The run results that feed must be processed (’P’ or ’PA’).

• The complicated looking sub–query returns the start of the
current tax year, which is from when we are summing the
balance. i.e. the results that feed the balance will be between the
start of the current tax year and the current action sequence.

Dimension Type

Dimension type determines how a balance is treated by the Payroll Run,
and for predefined dimensions this is optimized for performance of the
payroll run.

The dimension type can take one of the following values:

– N – Not fed and not stored. This dimension type does not
create a latest balance at any time. A balance with this
dimension will always have its sql re–executed whenever
that balance is executed.

– F – Fed but not stored. This dimension type creates a
balance ‘in memory’ during the Payroll Run. This balance is
fed by the run code but it does not store a latest balance on
the database.

– R – Run Level balance. This dimension type is used
specifically for those balances that total for the current run
and must be used with the appropriate route. No latest
balance value is stored on the database.

– A – Fed and stored at assignment level. This dimension type
creates an assignment level latest balance and stores it in
PAY_ASSIGNMENT_LATEST_BALANCES.

– P – Fed and stored at person level. This dimension type
createds a person level latest balance (i.e. stored in the
pay_person_latest_balances table).

Feed Checking Type

The feed checking type controls the feed checking strategy used during
the payroll run. This type is used to keep the in memory balance up to

A – 121Technical Essays

date by deciding whether a run result should feed the balance. It can
have the following values:

– Null This is the default value, and means that all the run
result values included by the existing balance feeds will feed
the balance.

– P This indicates that a procedure is called to perform
additional feed checking. There is a defined interface that
returns a value to indicate feeding will or will not occur.

– E This indicates that equality feed checking is done. When
a route accepts contexts that are not supported by the core
Payroll Run.

– J This indicates that Jurisdiction checking is done. This is
specific to US legislative balances.

– S This indicates that Subject Feed Checking is done. This is
specific to US legislative balances.

A – 122 Oracle HRMS Implementation Guide

Initial Balance Loading for Oracle Payroll

This essay describes the functionality available with Oracle Payroll to
assist in the loading of initial balance values from an existing payroll
system.

Introduction

Whether you are implementing Oracle Payroll for the first time, or
upgrading from an earlier release you will need to set initial values for
your legislative balances. It is essential for the accurate calculation of
legislated deductions in Oracle Payroll that the initial values for these
balances are correct.

This section shows you how to set up and load these initial balance
values before you begin to process payrolls in Release 10SC. After you
have begun processing payrolls you may need to repeat this process for
additional user balances you define in the future.

Warning: The steps you follow to load initial balances is
completely different from the steps an enduser follows to adjust
a balance, and you should not try to use the balance loading
method to make balance adjustments.

In Oracle Payroll a balance is the accumulation of the results of a payroll
calculation. The balance has a name, feeds and dimensions. The results
that feed a specific balance are known as the ‘balance feeds’ and these
can add or subtract from the total. The balance loading process will
calculate and insert the correct run results to set the correct initial values
with effect from the upload date.

Differences from Release 9

If you are migrating from an earlier release of Oracle Payroll, it is
important to recognize that this area of the system has been completely
redesigned. In previous releases all balance values were held explicitly.
This meant that many balance items had to be maintained in step with
the processing of run results and this produced a large overhead in
payroll processing.

In Release 10SC balance items have been dropped and balances are now
calculated directly from the run results that are designated as feeding
the balance. This approach ensures run results and balance values are

☞

A – 123Technical Essays

always in step and it removes the need to store and maintain extra
information in the database. In effect, the definition of a balance is really
the definition of the ‘calculation’ that is performed to return the balance
value.

The run results that feed a defined balance are usually the results of
processing elements during a payroll run. However, there may be times
when balance values have to be adjusted manually. You do this by
making an entry of an element as a ‘balance adjustment’ . (Refer to your
Oracle Payroll User’s Guide for details.) When you make a balance
adjustment online, the effect is to create a single processed run result for
the element. This run result will automatically feed, or adjust, all the
balances that are normally fed by the element. In this way, you are able
to cascade the adjustment to all affected balances.

Attention: When performing an online balance adjustment
you must be careful to choose the right element and input value.
However, if you make a mistake you can always go back and
delete and re–enter the adjustment. You delete balance
adjustments from the Payroll or Assignment Actions windows.

Steps

There are 3 basic steps involved in loading initial balance values:

1. Define an Element and Input Value to feed each specific balance

2. Setup the initial balance values in the tables

PAY_BALANCE_BATCH_HEADERS
PAY_BALANCE_BATCH_LINES

3. Run the Initial Balance Upload process

– Use the SRS window

– Use Validate, Transfer, Undo and Purge modes as needed

Overview

When you run the initial balance loading process you set values for each
balance relative to a specific date – the Upload Date. The process
creates date–effective balance entries, or ‘adjustments’ to ensure your
legislative balances are correct from the upload date. Mainterance of

A – 124 Oracle HRMS Implementation Guide

balance information after this date is managed by the system, or by
using the balance adjustments.

Consider the following example of three dimensions for gross pay
balance values for one employee.

– Gross Pay Ptd 1000.00

– Gross Pay Qtd 3250.00

– Gross Pay Ytd 6250.00

The balance loading process must calculate the actual values required
for each entry and the effective date for these entries. The result of the
calculation is the creation of 3 balance entries.

– _PTD balance entry value is 1000.00

– _QTD balance entry value is 2250.00

– _YTD balance entry value is 3000.00

Balance Loading

Balance Upload Process
creates separate entries to
make sure all balances are

correct at upload date

Balance Upload Date

PTD
start

QTD
start

3000 2250 1000

Normal processing after the
upload date uses and

maintains balance values

The result is that the cumulative values of the individual entries match
the initial requirement for each balance.

– Gross Pay Ptd= 1000.00

– Gross Pay Qtd = 1000.00 + 2250.00 = 3250.00

– Gross Pay Ytd = 1000.00 + 2250.00 + 3000.00 = 6250.00

☞

☞

A – 125Technical Essays

Latest Balances

To improve payroll run performance Oracle Payroll sets and maintains
’Latest Balance Values’. If these values are not set the balance value is
created by summing the run results for the balance. If a large number of
assignments have no value then there could be a significant impact on
the first payroll run. Therefore, loading the latest balances prior to the
first payroll run has significant implications for performance.

Note: Some balances are not permitted to have latest balances,
for example balances that are used in–memory but not stored,
thus latest balances for these should not be created.

When you are deciding which balances and dimensions you should
include in the initial loading process you should consider the balances
that are used in the payroll run. For example, if the payroll run uses the
balance bal_YTD, but the upload process loads bal_PTD only, then the
latest balance value for bal_PTD exists but not for bal_YTD. In this
case, the first payroll run would have to evaluate bal_YTD.

In the normal payroll run the latest balance value is associated with the
last assignment action that uses the defined balance. The balance
upload process attempts to simulate this action by creating a number of
balance adjustment entries prior to the upload date.

Attention: If the defined balance includes contexts then the
latest balance can only be created on a balance adjustment
payroll action which has context values that do not contradict
the latest balance that is to be created.

In Oracle Payroll, each balance adjustment entry is considered to be a
separate assignment action. These adjustments are performed in date
order – earliest first. The last balance adjustment, with the highest
assignment action number is used to create the latest balance.

Attention: US users should run the special plsql script –
paybalup.pkb, to create the elements and inputs you need to
feed the predefined legislative balances. This script has been
registered as an SRS process – Initial Balance Structure Creation.
You will need to create batch lines for each of these elements.

UK users need only link the predefined elments that feed the
legislative balances that must be initialized. Refer to the essay
on UK Legislative Balance Initialization in this manual for a list
of these elements and balances: See page A – 143

All users need to define additional elements and input values to
set up initial balance values for their own earnings and
deductions.

A – 126 Oracle HRMS Implementation Guide

Setup an Element to Feed Initial Balances

Because of the complex web of feeds that can exist for any specific
balance there is a simple mechanism to let you set the initial value for
any specific balance. The basic principle is that you require a special
element input value to feed each specific balance; and you set each
balance separately.

Oracle Payroll comes with the predefined elements and input values
you need to set initial values for all your legislative balances.

For all other balances you will need to set up the elements that will
provide the entry values for each of your initial balances. There are some
rules for setting up elements for initial balance feeds.

Element

– must have a start date 01–JAN–0001

This rule simplifies the validation by making sure that the
element and input value to feed the balance is always
available.

– must have a classification of ’Initial Balance Feed’

This new classification is excluded from the list of
classifications available when you define a balance. You can
only setup manual balance feeds for this type of element.

– must be ‘Adjustment Only’

– must be a nonrecurring type

– must be processable in a payroll run

Input Values

– must have a start date 01–JAN–0001

– each input value must feed only one balance

If you need to set initial values for a large number of
balances you can define multiple input values for a single
element with each input value feeding a different balance.

Element Link

– must have a start date 01–JAN–0001

– criteria must be only Link To All Payrolls – ’Yes’

A – 127Technical Essays

Supported Balances

All the balances supported by the initialization process are set at the
assignment level. Balances at the person level are set indirectly by
accumulating the values from all the assignments.

Setup the Initial Balance Values

There can be many different sources for the initial balance value to be
loaded. For example, you may be migrating from a previous version of
the Oracle Payroll, or from another payroll system, or you may hold this
information in another system.

Two batch interface tables are supplied with Oracle HRMS to
standardize the process of loading the initial balance values. You can
load information directly into these tables and you can also review,
update and insert values manually. This gives you total flexibility for
setting values and it also lets you define and manage the loading of
separate batches as logical groups.

PAY_BALANCE_BATCH_HEADERS

Name Null? Type

ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

BUSINESS_GROUP_ID
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
NUMBER(15)

ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

PAYROLL_ID
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
NUMBER(9)

ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

BATCH_ID

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

NOT NULL

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
NUMBER(9)

ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁBATCH_NAME

ÁÁÁÁÁÁ
ÁÁÁÁÁÁNOT NULL

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁVARCHAR2(30)ÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

BATCH_STATUS

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

NOT NULL

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
VARCHAR2(30)

ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

UPLOAD_DATE
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

NOT NULL
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
DATE

ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

BATCH_REFERENCE
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
VARCHAR2(30)

ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

BATCH_SOURCE

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
VARCHAR2(30)

A – 128 Oracle HRMS Implementation Guide

TypeNull?Name

ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

BUSINESS_GROUP_NAME
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

VARCHAR2(60)ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

PAYROLL_NAME

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

VARCHAR2(80)

Each batch identifies the payroll which is being uploaded and the date
of the upload. Other identifiers can be set to uniquely identify each
batch eg.

Batch Name Batch Ref
Batch
Source Payroll Upload Date

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Weekly Payroll
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

0001
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

SQL*Loader

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

Pay1
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

01–Jan–1995

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Weekly Payroll

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

0002

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

SQL*Loader

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

Pay1

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

01–Jan–1995

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Monthly
Payroll

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

0003
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

SQL*Loader

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

Pay2
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

01–Jan–1995

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Semi Monthly
Payroll

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

0001

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

Screen

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

Pay3

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

01–Aug–1995

PAY_BALANCE_BATCH_LINES

Name Null? Type

ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

ASSIGNMENT_ID

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

NUMBER(9)
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁBALANCE_DIMENSION_ID

ÁÁÁÁÁ
ÁÁÁÁÁ

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁNUMBER(9)ÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

BALANCE_TYPE_ID

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

NUMBER(9)
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

PAYROLL_ACTION_ID
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

NUMBER(9)
 (Page 1 of 2)

A – 129Technical Essays

TypeNull?Name

ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

BATCH_ID
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

 NOT NULL
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

NUMBER(9)ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

BATCH_LINE_ID

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

NOT NULL

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
NUMBER(9)

ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

BATCH_LINE_STATUS
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

NOT NULL
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
VARCHAR2(30)

ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁVALUE

ÁÁÁÁÁÁ
ÁÁÁÁÁÁNOT NULL

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁNUMBERÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

ASSIGNMENT_NUMBER

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
VARCHAR2(30)

ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁBALANCE_NAME

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁVARCHAR2(80)ÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

DIMENSION_NAME

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
VARCHAR2(80)

ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

GRE_NAME
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
VARCHAR2(60)

ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁJURISDICTION_CODE

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁVARCHAR2(30)ÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

ORIGINAL_ENTRY_ID

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
NUMBER(15)

 (Page 2 of 2)

Each batch has a set of batch lines that include details of the assignment,
the balance and the value for each dimension. You can also include
other contexts for a specific balance.

Assignment Balance Dimension Value

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

101

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Gross Pay

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

PTD

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
1000.00

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ101

ÁÁÁÁÁÁ
ÁÁÁÁÁÁGross Pay

ÁÁÁÁÁÁ
ÁÁÁÁÁÁQTD

ÁÁÁÁÁ
ÁÁÁÁÁ3250.00ÁÁÁÁÁÁ

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

101

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Gross Pay

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

YTD

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
6250.00

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

101–2
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Gross Pay
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

PTD
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
750.00

Note: The tables provide support for either a system ID or a
user ID for each piece of information eg. assignment_id and

A – 130 Oracle HRMS Implementation Guide

assignment_number as this allows maximum flexibility when
the user is populating the batch tables.

The rule is that if both are specified then the system ID
overrides the user ID. Here’s a list of the system ID’s and user
ID’s that can be specified when setting up the tables:–

System ID User ID
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

BUSINESS_GROUP_ID

ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

BUSINESS_GROUP_NAME
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

PAYROLL_ID
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

PAYROLL_NAME

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

ASSIGNMENT_ID
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

ASSIGNMENT_NUMBER
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

BALANCE_DIMENSION_ID

ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

DIMENSION_NAME
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁBALANCE_TYPE_ID

ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁBALANCE_NAMEÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

ORIGINAL_ENTRY_ID

ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

GRE_NAME
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁ
JURISDICTION_CODE

ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

If an error occurs during the processing of the batch, the error message
is written to the PAY_MESSAGE_LINES table with a source_type of H
(header) or L (line).

Running the Initial Balance Upload Process

You run the Initial Balance Upload process from the SRS window to
upload values from the batch tables. You can run this process in one of
four modes:

• Validate

• Transfer

• Undo Transfer

• Purge

A – 131Technical Essays

Prerequisites

On the upload date, every assignment in the batch must belong to the
payroll identified in the batch header.

The payroll must have a sufficient number of time periods prior to the
upload date to allow the setting of the initial balances.

Other specific criteria are not validated by the initial balance loading
process, and it is the responsibility of the user to validate this
information. This includes, for example the GRE or Legal Company.

Note: The validation process contains a predefined hook to
enable you to apply your own additional validation procedure
to your own balances. The procedure should be named
validate_batch_line.

The process will check for valid data but will not set it.

Validate Mode

There is no validation of the batch tables prior to running this process.
The process validates data in PAY_BALANCE_BATCH_LINES, but does
not transfer these to the Oracle HRMS database. It marks valid lines
with V (Validated), and lines in error with E (Error), and sends error
messages to the PAY_MESSAGE_LINES table.

The validation process is split into two phases:

• The first phase checks the integrity of the data in the batch tables

• The second phase checks that it is possible to create all the
required balance adjustment entries.

• The validate process also populates the system ID entries in the
table. This ensures that all subsequent processing has access to the
system IDs.

All batch lines are validated independently and are marked with their
individual status at the end of the process.

Transfer Mode

Transfer mode repeats the first phase of the validation check to ensure
the integrity of the data in the batch tables and the existence of all
system IDs.

The process calculates the balance adjustment entries required for each
assignment. This list is checked and aggregated where values are shared
and actual entries are then created for the assignment. This is repeated
for each assignment in the batch. Successful transfer is marked with a
status of ’T’ – Transferred.

A – 132 Oracle HRMS Implementation Guide

Note: If any line for an assignment is in error, none of the lines
for the assignment are transferred into the HRMS database.
Failures are logged in the messages table against the batch line
being processed and the batch line is marked as I – ’Invalid’.

If the value of the adjustment is zero then no entry is created. For
example:

Balance_PTD = 500

Balance_QTD = 500

There is no need for an adjustment to the QTD dimension since the
value is already set by the PTD.

It is likely that there will be large volumes of data to load, so the work is
periodically committed to preserve successful work and to reduce the
number of rollback segments required.

Note: The commit size is specified by the CHUNK_SIZE
parameter in PAY_ACTION_PARAMETERS. The default for
CHUNK_SIZE is 20 successful assignments.

This is the same parameter used by other payroll processes to
determine commit frequency.

If a batch has been processed with partial success, you can resubmit the
batch and only those assignments with batch lines that have not been
’Transferred’ are processed again. You can also restart the batch process
if it failed during processing, for example it ran out of tablespace.

Undo Transfer

This mode will remove all the balance adjustment entries created by the
transfer process and return the status of the batch lines to ’U’.

Note: The data in the batch tables is kept. You can correct any
batch lines with incorrect values and repeat the transfer.

Purge

Purges all data in a batch regardless of current status. When a batch is
purged all the messages, batch lines and the batch header are removed.
This allows you to reclaim space once a batch is successfully transferred.

Note: Use Purge mode only when you are sure that the
balances for all assignments in a batch have been successfully
entered into the HRMS database.

A – 133Technical Essays

Process Flow

As this implies, there is a defined flow to the loading of the initial
balances, this can be seen in the following diagram:–

Process Flow

Load Batch Tables

Validate Batch

Transfer Batch

Are balances correct ?

Yes

Normal Processing

Purge Batch Tables

Undo Batch Transfer

Correct Batch Tables

No

Warning: Once you have purged a batch, all the entries for that
batch are deleted. This action cannot be undone.

Error Statuses

Any errors encountered are recorded in the messages table against the
object being validated ie. either the batch itself or an individual batch
line. The status set against the batch or batch lines is dependent on the
mode the process is running in as well as the status of other batch lines.

Batch Line Status

The status of each batch line can be one of the following :

– V Valid; the batch line is OK

– E Invalid; the batch line has an error

– T Transferred; the batch line has been successfully
transferred

A – 134 Oracle HRMS Implementation Guide

Batch Status

The status of the batch is dependent on the statuses of the batch lines
within the batch :

– T – Transferred; all lines in the batch have been transferred

– P – Partially Transferred; some lines in the batch lines have
been transferred

– V – Valid; all the lines in the batch are valid and none have
been transferred

– E – Invalid; some of the lines in the batch are invalid and
none have been transferred

Validation Problems

There are two common problems you should check:

The adjustment request for a balance dimension may be incorrect. For
example, if an assignment has the following upload requests:

– <Balance>_QTD = 1500.00

– <Balance>_YTD = 1000.00

In this example the YTD value is lower than the QTD value. This may
be valid, if the balance decreases over time. However, in most instances
balances will be increaing, so it is advisable to check a balance if has
been decreased.

Secondly, an invalid adjustment error may occur, where the process
could not find the correct date to do the adjustment. The cause of this
error depend on the balance dimension that is being processed.

However, good practice is always to make sure that the all the business
group details are correct, and there are enough payroll periods for the
balance to be set. To check which date is being used for each assignment
balance use the following sql:

select BL.dimension_name,

pay_balance_upload.dim_expiry_date

(BH.business_group_id

,BH.upload_date

,BL.dimension_name

,BL.assignment_id

,BL.gre_name

,BL.jurisdiction_code

,BL.original_entry_id) expiry_date

from pay_balance_batch_headers BH

,pay_balance_batch_lines BL

☞

A – 135Technical Essays

where BH.batch_name = ’&Batch_Name’

and BL.batch_id = BH.batch_id

and BL.assignment_number = ’&Assignment_Number’

and BL.balance_name = ’&Balance_Name’

;

If the expiry date is set to ’31–DEC–4712’ then the adjustment date could
not be found.

Balance Initialization Steps

Here’s a simple check list on how to setup the data:

1. Create payrolls in Oracle Payroll with periods going back to the
start of the year. Enter all employees into Oracle HRMS and give
them assignments to these payrolls.

Attention: The next step applies to US users only. UK users
need only to define links for the predefined balance loading
elements.

2. From the Submit Requests window, run the Initial Balance Structure
Creation process, selecting a batch name as the parameter. For each
batch, this process creates:

• an input value to hold the amount of each balance and of any
context, and enough elements with the special classification
Balance Initialization to hold all the input values created

• the necessary links and balance feeds for these elements.

3. Create any other elements you need to initialize balances for your
own earnings and deduction.

• follow the requirements listed above

• use multiple input values to reduce the number of elements

• define one balance feed for each input value

Note: Each balance must have one initial balance feed only.

Multiple input values for one element must feed balances that
have the same ’upload date’.

4. Group employees into batches for managing initialization of their
balances. Enter an identifying header for each batch (these headers
go into the PAY_BALANCE_BATCH_HEADERS table). Each
header contains the following information:

☞

A – 136 Oracle HRMS Implementation Guide

5. Group employees into batches for managing initialization of their
balances. Enter an identifying header for each batch (these headers
go into the PAY_BALANCE_BATCH_HEADERS table). Each
header contains the following information:

• Business Group name and payroll name

• batch name and ID number

• upload date: the date on which the balances in the current system
will be correct and ready for transfer

 For example:

Batch Name Business Group Payroll Name Upload Date

Upload 1 BG name Full Time 1 13–AUG–1995

6. Create a batch line for each balance to be transferred (these lines go
into the PAY_BALANCE_BATCH_LINES table). A batch line
includes the following information:

• employee assignment number

• balance name and dimension, such as quarter to date or year to
date

• balance value

• balance context where appropriate. For US users the context may
include a GRE and a jurisdiction (federal, state or local).

Note: The process will use your balance feed definitions to
determine which element input value to use.

For example:

Asg. Number Balance Dimension Value

60001 Salary PTD 700

60001 Salary QTD 1400

60001 Salary YTD 2400

60001 Tax Paid PTD 200

60001 Tax Paid QTD 400

60001 Tax Paid YTD 400

Attention: The Tax Paid YTD value is not required because it
has the same value as the QTD. However, this balance is
included to create a value for the latest balance, and improve the
performance of the first payroll run.

7. From the Submit Requests window, run the Initialize Balances
process. Select the mode in which to run this process as a
parameter. Available modes are:

• Validate

A – 137Technical Essays

– Validate batch lines but do not transfer

– Send error messages to PAY_MESSAGE_LINES

• Transfer

– Validate and transfer batch lines

– If any line for an assignment is in error, none of the lines for
the assignment are transferred

• Undo

Removes balance initialization entries from the database and
marks the lines as ’U’ in the batch lines table.

• Purge

Purges all lines in the batch lines table, regardless of how they
may be marked.

Note: Use Purge mode only when you are sure that the
balances for all assignments in a batch have been successfully
entered into the HRMS database.

A – 138 Oracle HRMS Implementation Guide

Including Balance Values in Reports

This section describes the pl/sql interface for the balance function that
enables you to access balance values for inquiry and reporting tools.

Note: Currently the dynamic pl/sql routines that are used in
the balance function do not have pragma level of WNPS and
WNDS (Write No Package State and Write No DML). This
means that the pl/sql function cannot be called as part of a
view.

If you need to report the same balance value many times in
different reports you might consider creating a reporting table.
You would simply include the balance function in your pl/sql
script to populate this table.

Advantages

Using this pl/sql function to retrieve balance values has several
advantages:

1. You can easily call the function from a form or SRW2 report.

2. You can access latest balance values, where they exist. This will
optimize performance automatically.

The Balance Function

The interface to the balance function is flexible and easy to use. Hard
coded knowledge of contexts within the function are kept to a minimum
and the balance function is controlled as follows:

1. Before the function is called, calls are made to another pl/sql
function to set up the contexts to be used. These are held in package
level pl/sql tables. This allows the balance function to operate
without hard coded knowledge of the contexts, and reduces
client–server calls for several balances.

2. The ’C’ balance user exit works in 2 modes, date and assignment
action. For the balance function rather than pass a mode parameter,
this is resolved by using the pl/sql overloading feature. This
simplifies the interface.

The pl/sql code resides in 1 package.

pay_balance_pkg

Procedure : Initialize the contexts:

A – 139Technical Essays

procedure set_context (p_context_name in varchar2,

p_context_value in varchar2);

For example:

pay_balance_pkg.set_context (’TAX_UNIT_ID’, p_tax_unit_id);

This is called to set up ALL contexts required for a balance, with the
exclusion of assignment action id. Context values are maintained
throughout the entire session. Subsequent calls with the same context
name will update the value.

Note: The context name can be specified in any case. The
routine will convert all context names to upper case.

Function : Get balance value (Assignment action mode):

function get_value (p_defined_balance_id in number,

p_assignment_action_id in number,

p_always_get_db_item in boolean default false)

return number;

Function : Get balance value (Date mode):

function get_value (p_defined_balance_id in number,

p_assignment_id in number,

p_virtual_date in date,

p_always_get_db_item in boolean default false)

return number;

The balance value is returned by this function. The parameters required
for the function have been kept to a minimum. Legislation code and
business group id are derived by the pl/sql function when the balance
SQL has to be built up from ff_routes.

Note: If the balance uses business_group_id as a context then
this must still be set up using the set_context routine.

The parameter ’p_always_get_db_item’ can be ignored. It is
used for testing purposes. If this value is set to ’true’ then the
function will not even look for a latest balance value, and will
always derive the balance from the database item.

Example

This example shows how to access parameterized balances supporting
jurisdiction– and GRE–based taxation. (US specific).

In the UK, with the exception of court orders, no use is made of
parameterized balances.

A – 140 Oracle HRMS Implementation Guide

Note: For balances that are not parameterized, no calls to
pay_balance_pkg.set_context are necessary.

1. Set up the contexts

pay_balance_pkg.set_context (’TAX_UNIT_ID’, 1);

pay_balance_pkg.set_context (’JURISDICTION_CODE’, ’01–123–4567’);

2. Retrieve the balance value

bal_value := pay_balance_pkg.get_value (p_def_balance_id,

p_asg_action_id);

3. Retrieve the balance for a different jurisdiction code but using the
same value for tax unit id

pay_balance_pkg.set_context (’JURISDICTION_CODE’, ’99–999–1234’);

bal_value := pay_balance_pkg.get_value (p_def_balance_id,

p_asg_action_id);

A – 141Technical Essays

Including Balance Values in Reports (U.K. Only)

This section describes the PL/SQL interface for the GB balance function
that enables you to access balance values for inquiry and reporting
tools.

Advantages

Using this PL/SQL function to retrieve balance values has several
advantages:

• You can easily call the function from a form or report.

• The function accesses latest balance values, where they exist.

This optimizes performance automatically.

• You can call the function from a user–defined view.

This is because the function has pragma levels WNPS and
WNDS set (Write No Package State, and Write No DML).

The Balance Function

The interface to the function is flexible and easy to use. Hard coded
knowledge of contexts within the function are kept to a minimum and
the balance function is controlled as follows:

• The GB Balance User Exit works in two modes; date and
assignment action mode.

For the balance function the interface is simplified using the
pl/sql overloading feature. The same function name is used, but
different parameters are passed in according to the mode. If in
Date Mode, the function calculates the values using the
assignment action previous to the date passed in. The value
obtained is checked to make sure it hasn’t expired between the
assignment action that it represents and the date passed in.

• The function uses the rubric of ’quickest value first’.

If a value can be retrieved from the latest balances table, it will
be. This is so that performance of the code is optimized.

Although 1 interface is used to directly call the GB Balance value
function, the PL/SQL code resides in three packages:

A – 142 Oracle HRMS Implementation Guide

• hr_dirbal

• hr_gbbal

• hr_routes

The function Get balance value (Assignment Action mode):

function get_balance (p_assignment_action_id in number,

p_defined_balance_id in number)

return number;

Function: Get balance value (Date mode):

function get_balance (p_assignment_id in number,

p_defined_balance_id in number,

p_effective_date in date)

return number;

The balance value is returned by these functions. The parameters
required for the function have been kept to a minimum.

Example

If we took an assignment action id of 12345 and a defined balance id of
111:

l_balance := hr_dirbal.get_balance (12345, 111);

This would return a balance value, using the Assignment Action mode
call to the package.

If we took an assignment id of 2, and the same defined balance id and
an arbitrary date:

l_balance := hr_dirbal.get_balance

(2,111,to_date(’01/01/1998’,’DD/MM/YYYY’));

This would return a balance value, using the Date mode call to the
package.

A – 143Technical Essays

Legislative Balance Initialization (U.K. Only)

Balance Initialization Elements

The following elements need to be linked to all payrolls from the date
01–Jan–0001 in order to permit balance initialization of predefined
balances.

– Setup Court Order Balance

– Setup NI Balance 1

– Setup NI Balance 2

– Setup NI Car Balance

– Setup Tax Balance

The inputs from these elements provide the initial balance feeds for
predefined balances.

Supported Dimensions

The following dimensions are currently supported –

– ASG_PROC_YTD

– ASG_YTD

– ASG_TD_YTD

– ASG_STAT_YTD

– PER_TD_DIR_YTD

– ASG_PROC_PTD

– ASG_ITD

Predefined Balances That May Need Initializing

The following predefined balances may need initializing if you migrate
to Oracle Payroll in the middle of the financial year.

Note that the statutory balances need to be initialized as they are
reported on the P35 End of Year return. For this purpose the Dimensions
ASG_TD_YTD and ASG_STAT_YTD are used. NI Category balances
e.g. NI A Able , NI A Employee, NI A Employer , NI A Total should be

A – 144 Oracle HRMS Implementation Guide

kept in step. i.e. if you load the NI A Able balance also load the NI A
Employee.

Similarly Taxable Pay and PAYE should be kept in step. NI Y is reported
a year in arrears – either setup the NI Y in the year that it was accrued or
setup NI Y Last Year in the year it is reported.

For directors the dimension PER_TD_DIR_YTD only needs to be
initailized if it differs from the ASG_TD_YTD figure(i.e. the director has
been appointed part way through the financial year.) Some of the Court
Order elements use the ELEMENT_ITD dimension which is tied to a
particular element entry via an ORIGINAL_ENTRY_ID. You will need
first to setup the Element Entry and enter the Element_entry_id from
that as the ORIGINAL_ENTRY_ID on pay_balance_batch_lines.

Balance Name Dimension
On EOY
Return

ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

CAO Scotland Payments EAS
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

_ASG_ITD
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁCourt Order
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ_ELEMENT_ITD

ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

Court Order Arrears Deduction

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

_ELEMENT_ITD

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

Court Order Arrears Protected
Pay

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

_ELEMENT_ITD
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

Court Order Non Priority

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

_ELEMENT_ITD

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁEAS Scotland
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ_ASG_ITD

ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

EAS Scotland Payments

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

_ASG_ITD

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

GAYE
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

_ASG_YTD
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁ
GAYE Taxed

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

_ASG_YTD
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

Gross Pay

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

_ASG_TD_YTD

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

Yes
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ_ASG_YTD

ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

NI A Able

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

_ASG_TD_YTD

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

Yes
 (Page 1 of 5)

A – 145Technical Essays

On EOY
ReturnDimensionBalance Name

ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

_PER_TD_DIR_YTD
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

NI A Employee

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

_ASG_TD_YTD

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

Yes
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ_PER_TD_DIR_YTD

ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

NI A Employer

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

_ASG_TD_YTD

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

Yes
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

_PER_TD_DIR_YTD
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁ
NI A Total

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

_ASG_TD_YTD
ÁÁÁÁÁ
ÁÁÁÁÁ

Yes
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

NI Arrears

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

_ASG_TD_YTD

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁNI B Able
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ_ASG_TD_YTD

ÁÁÁÁÁ
ÁÁÁÁÁYesÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

_PER_TD_DIR_YTD

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

NI B Employee
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

_ASG_TD_YTD
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

Yes

ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

_PER_TD_DIR_YTD ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

NI B Employer

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

_ASG_TD_YTD

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

Yes

ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ_PER_TD_DIR_YTD

ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

NI B Total

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

_ASG_TD_YTD

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

Yes
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

NI C Able
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

_ASG_TD_YTD
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

_PER_TD_DIR_YTD ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

NI C CO
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

_ASG_TD_YTD
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ_PER_TD_DIR_YTD

ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

NI C CO Able

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

_ASG_TD_YTD

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ (Page 2 of 5)

A – 146 Oracle HRMS Implementation Guide

On EOY
ReturnDimensionBalance Name

ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

_PER_TD_DIR_YTD
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

NI C Employee

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

_ASG_TD_YTD

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ_PER_TD_DIR_YTD

ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

NI C Employer

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

_ASG_TD_YTD

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

Yes
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

_PER_TD_DIR_YTD
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁ
NI C Total

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

_ASG_TD_YTD
ÁÁÁÁ
ÁÁÁÁ

Yes
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

NI Car Payment

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

_ASG_STAT_YTD

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁNI Car Payment Secondary
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ_ASG_STAT_YTD

ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

NI Car Primary

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

_ASG_STAT_YTD

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

NI Car Secondary
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

_ASG_STAT_YTD
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁ
NI D Able ÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁ
_ASG_TD_YTD ÁÁÁÁ

ÁÁÁÁ
Yes

ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

_PER_TD_DIR_YTD

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁNI D CO
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ_ASG_TD_YTD

ÁÁÁÁ
ÁÁÁÁYesÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

_PER_TD_DIR_YTD

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

NI D CO Able
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

_ASG_TD_YTD
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

Yes

ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

_PER_TD_DIR_YTD ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

NI D Employee
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

_ASG_TD_YTD
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

Yes

ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ_PER_TD_DIR_YTD

ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

NI D Employer

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

_ASG_TD_YTD

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

Yes
 (Page 3 of 5)

A – 147Technical Essays

On EOY
ReturnDimensionBalance Name

ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

_PER_TD_DIR_YTD
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

NI D Total

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

_ASG_TD_YTD

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

Yes
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁNI E Able

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ_ASG_TD_YTD

ÁÁÁÁÁ
ÁÁÁÁÁYesÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

_PER_TD_DIR_YTD

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

NI E CO
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

_ASG_TD_YTD
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

Yes

ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

_PER_TD_DIR_YTD
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

NI E CO Able

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

_ASG_TD_YTD

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

Yes

ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ_PER_TD_DIR_YTD

ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

NI E Employee

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

_ASG_TD_YTD

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

Yes
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

_PER_TD_DIR_YTD
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁ
NI E Employer ÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁ
_ASG_TD_YTD ÁÁÁÁÁ

ÁÁÁÁÁ
Yes

ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

_PER_TD_DIR_YTD

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁNI E Total
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ_ASG_TD_YTD

ÁÁÁÁÁ
ÁÁÁÁÁYesÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

NI Employee Arrears

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

_ASG_TD_YTD

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

NI Employer
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

_ASG_TD_YTD
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁ
NI Employer Arrears ÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁ
_ASG_TD_YTD ÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

NI Y
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

_ASG_STAT_YTD
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

Yes

ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁNI Y Last Year

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ_ASG_STAT_YTD

ÁÁÁÁÁ
ÁÁÁÁÁ YesÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

NIable Pay

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

_ASG_TD_YTD

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ (Page 4 of 5)

A – 148 Oracle HRMS Implementation Guide

On EOY
ReturnDimensionBalance Name

ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

_PER_TD_DIR_YTD
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

Net Pay

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

_ASG_TD_YTD

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁPAYE
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ_ASG_TD_YTD

ÁÁÁÁ
ÁÁÁÁYesÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

_PER_TD_DIR_YTD

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

PAYE Dispute Refund
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

_ASG_TD_ITD
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁ
PAYE Starter Refund

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

_ASG_TD_YTD
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

SMP Total

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

_ASG_TD_YTD

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

Yes

ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁSSP Total

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ_ASG_TD_YTD

ÁÁÁÁ
ÁÁÁÁYesÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

Superannuation Total

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

_ASG_TD_YTD

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

Yes
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

Taxable Pay
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

_ASG_TD_YTD
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

Yes

ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

Total Deductions ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

_ASG_TD_YTD ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

Widows and Orphans

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

_ASG_TD_YTD

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

Yes
 (Page 5 of 5)

A – 149Technical Essays

Pay Advice Report (U.K. Only)

The Pay Advice Report produces the Pay Advice document on
preprinted stationary. Part of the report is based on views for efficiency
and to reduce complexity.

A complex dynamic sort is a feature of this report.

Parameter Values

The following are the parameters users can enter to generate the report:

p_payroll_id Number (9)

p_time_period_id Number (9)

p_pay_advice_date Date

p_assignment_id Number (20)

p_bus_grp_id Number (15)

p_sort_order1/6 Char (60)

p_sort_order7 Char (20)

Queries

There are five queries in the report.

Q_Personel This is the driving query based on the view
PAY_ASSIGNMENT_ACTIONS_V2.

Q_Payment This query is based on the view
PAY_ELEMENT_TYPES_V1. It is linked to
the main query by assignment_action_id.

Q_Deduction This query is based on the view
PAY_ELEMENTS_TYPES_V1. It is linked to
the main query by assignment_action_id.

Q_Accounts This query is based on the view
PAY_EXTERNAL_ACCOUNTS_V. It is
linked to the main query by
assignment_action_id.

Q_Messages This query is based on the
PAY_PAYROLL_ACTIONS table. It is

A – 150 Oracle HRMS Implementation Guide

linked to the main query by
run_payroll_action_id.

Groups

The following are formula type fields in the Personnel group:

c_name Concatenates the person’s title, initials and last name.

c_get_address Fetches the home or work address depending upon the
value in the expense_check_send_to_address field. The
address id is found from the package
pay_gb_payroll_actions.get_home_address or
.get_work_add.

c_ff Gets the tax details from the package
pay_gb_payroll_actions_pkg.get_report_db_items and
.get_report_balances.

Triggers

The following triggers are used:

Before Report This trigger sets the session id and date into the
fnd_session table.

After Form This trigger checks if the parameter has been left
defaulted, and if so, sets it to null. This is part of
dynamic sort order.

Layout

The layout is a complex grouping of the various groups and summaries.
It is possible to overflow in some of the groups, thus producing extra
pages. Not all the fields are printed on the extra pages (only fields such
as Person Name). When you run the report in the designer, not all fields
are correctly aligned. However, when you run it in the correct
environment with the correct.prt file, it aligns correctly.

A – 151Technical Essays

Dynamic Sort Order

The user can dynamically change the sort order of the report. The last
parameter sort_order7 is mandatory, and consists of either the
employee’s last name or assignment number.

The working of the sort is as follows:

1. The sort is defaulted to Not Sort by the first six parameters, and
only by the last name.

2. The user can enter the required parameters, for example, Segment1,
Segment2, when running the report.

3. The Post Form trigger checks if the user fhas entered a parameter. If
not, the parameter default is lost and the parameter is set to null.

4. The main query begins and checks the the send
expense_check_send_to_address field. If it is set, the person’s home
address is used to address the pay advice, and the dynamic sort
order is not used. If it does not, the dynamic sort order is used to
order the pay advices.

Warning: The design of the sort order means that you cannot
change the main query without compile errors resulting. This is
because the lexical parameter in the query uses the default sort
order value segmentx. If you want to change the query, you first
need to change segmentx to segment1, and so on. The query
now complies. You then must change it back to segmentx in
order for the trigger to work.

A – 152 Oracle HRMS Implementation Guide

Balance View Usage

The balance view provided, ”PAY_GB_BALANCES_ACTION_V”
enables you to query balances, their dimensions and values either by
Assignment ID or by Assignment Action ID. Each row returned
represents a single balance dimension and value.

Name Null? Type

ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

ASSIGNMENT_ID
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

NOT NULL
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
NUMBER(9)

ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

ASSIGNMENT_ACTION_ID
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

NOT NULL
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
NUMBER(15)

ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

BALANCE_TYPE_ID

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

NOT NULL

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
NUMBER(9)

ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁBALANCE_NAME

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁNOT NULL

ÁÁÁÁÁÁ
ÁÁÁÁÁÁVARCHAR2(80)ÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

DEFINED_BALANCE_ID

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

NOT NULL

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
NUMBER(9)

ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

DATABASE_ITEM_SUFFIX
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

NOT NULL
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
VARCHAR2(30)

ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

VALUE
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
NUMBER

If, for example, you wanted to retrieve values for a particular balance,
for an assignment action of ’5268’, for the balance type of ’Gross Pay’,
you would issue the following SQL query:

select balance_name, database_item_suffix, value

from pay_gb_balances_by_action_v

where assignment_action_id = 5268

and balance_name = ’Gross Pay’

As long as there were relevant balance values, the query might for
example yield the following results:

Balance Name Database Item Suffix Value

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Gross Pay

ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

_ASG_PROC_PTD

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
4100

ÁÁÁÁÁÁ
ÁÁÁÁÁÁGross Pay

ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ_ASG_RUN

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ4100ÁÁÁÁÁÁ

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Gross Pay

ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

_ASG_TD_YTD

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
16700

A – 153Technical Essays

ValueDatabase Item SuffixBalance Name

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Gross Pay
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

_ASG_YTD
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

16700ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Gross Pay

ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

_ASG_ITD

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

16700

You can see that the database item suffix column relates to the relevant
dimensions of the particular balance.

The view may be used to find out which balances are relevant for a
particular assignment. You can do this by using the following SQL
query;

Using an example assignment ID of 662;

select distinct balance_name

from pay_gb_balances_by_action_v

where assignment_id = 662

This would, for example, yield the result in the following format:

BALANCE_NAME
––––––––––––––––––––
Attachable
Gross Pay
NI B Able
NI B Employee
NI B Employer
NI B Total
NI D Able
NI D CO
NI D CO Able
NI D Employee
NI D Employer

BALANCE_NAME
––––––––––––––––––––
NI D Total
NI E Able
NI E CO
NI E CO Able
NI E Employee
NI E Employer
NI E Total
NI Employer
NIable Pay

A – 154 Oracle HRMS Implementation Guide

NW Earns
Net Pay

BALANCE_NAME
––––––––––––––––––––
PAYE
Taxable Pay
Total Deductions
Total Pay

Note: Note that only balances relevant to the assignment are
shown.

A P P E N D I X

B
T

B – 1Technical Essay on Payroll Processes

Technical Essay on
Payroll Processes

his technical essay describes the payroll processes run as part of the
regular pay cycle. It also identifies which payroll action parameters
control the Oracle Payroll batch processes, and explains how assignment
level interlock rules prevent payment results from being changed.
Specifically, this essay discusses the following topics:

• Overview

• Payroll Run Process

• Pre–Payments Process

• Payment Processes

• Magnetic Tape Process

• Cheque Writer/Check Writer Process

• Cash Process

• Costing Process

• Transfer to the General Ledger Process

• Assignment Level Interlocks

• Payroll Action Parameters

B – 2 Oracle HRMS Implementation Guide

Overview

Oracle Payroll provides you with the flexibility you require to run your
regular pay cycle in the best way to meet your business needs. To do
this, we provide you with a modular batch process called PYUGEN.

PYUGEN

PYUGEN is a generic process that performs many actions, depending
upon which parameter sets and defaults the Oracle Payroll system
administrator registers it with.

The following figure illustrates the payroll processes executed by
PYUGEN, and the typical sequence in which they are performed. Each
individual process performs the different actions required to calculate
and generate your employees pay.

Figure B – 1
Pay Cycle Sequence

Payroll Run

Step 13

Pre–Payments

Step 14

Payment (BACS or
NACHA, Cheque

Writer or Check Writer
and Cash)

Step 15

Costing

Step 16

Transfer to General
Ledger

Step 17

PYUGEN

B – 3Technical Essay on Payroll Processes

The parameter identifies the specific payroll process to execute. These
are predefined in Oracle Payroll; the value is not visible to the user.

Checking Registration Details

You can check the registration details for each payroll process using the
Concurrent Programs window. These details are predefined and are
protected from change. During implementation you may add your own
versions of these payroll processes to simplify the running of a pay cycle
for your users. For example, you might want to define a separate payroll
run process for each payroll, with different:

• Names

• Security

• Default values for different users

Consult your Oracle Applications System Administator’s Guide for more
information on registering concurrent programs.

Payroll Action Parameters

Payroll action parameters are system–level parameters that control
aspects of the Oracle Payroll batch processes. It is important to recognize
that the effects of setting values for specific parameters may be system
wide.

See: Payroll Action Parameters: page B – 69

Overview of the Payroll Processes

The first process you run in your pay cycle is the Payroll Run process.
This process calculates the gross to net payment for your employees.
After the successful completion of the Payroll Run, you start the
Pre–Payments process. This process distributes employee’s pay over the
payment methods employees have requested. It also allocates payments
to third parties.

B – 4 Oracle HRMS Implementation Guide

The next step is to start one of the payment processes to produce
payments for employees:

• MAGTAPE (BACS or NACHA)

• CHEQUE (Cheque Writer or Check Writer)

• CASH (Cash) – for UK only

The payment processes take the unpaid prepayment values allocated to
each payment type and produce the required payment file. It is these
processes that actually produce payments for employees.

The Costing process allocates payroll run results to cost segments. The
Transfer to the General Ledger process transfers cost information to
Oracle General Ledger interface tables.

See Also

Payroll Run Process: page B – 6

Pre–Payments Process: page B – 20

Payment Processes: page B – 26

• The Magnetic Tape Process: page B – 27

• The Cheque Writer/Check Writer Process: page B – 49

• The Cash Process: page B – 58

Costing Process: page B – 59

Transfer to General Ledger Process: page B – 63

Supporting Processes

In addition to this regular cycle of activities there are other processes
that support the correction and completion of each cycle. These include:

• Mark for Retry

• Retry

• Rollback

• QuickPay

• RetroPay

See the Oracle Payroll User’s Guide for more information about these
supporting processes.

B – 5Technical Essay on Payroll Processes

Assignment Level Interlocks

This sequence in which the PYUGEN calculates payment is critical to the
success of processing. This is because each process uses, and builds
upon, the results of the previous process in the sequence. The sequence
of the processing is also determined by issues of data integrity. For
example, the Pre–Payments process (that prepares the payments
according to the payment methods) uses the results of the Payroll Run
process (that calculates the gross to net payment).

It is essential for correct payments that the results cannot be changed
without also changing the prepayment results. To prevent this from
occurring (and for data integrity), Oracle Payroll uses assignment level
interlock rules.

See: Assignment Level Interlocks: page B – 64

B – 6 Oracle HRMS Implementation Guide

Payroll Run Process

The Payroll Run process calculates the gross to net payment for your
employees.

Payroll Run uses payroll actions to represent each payroll run. It
identifies which assignments have payroll actions performed on
them—that action is an assignment action of the type payroll.

The results from processing each element for an assignment are
identified as the run result values. These individual results are
accumulated into balances that summarise gross to net, and in
particular the payment balances. Payment balances are taken forward
by the next process in the regular pay cycle, Pre–Payments.

Determine Assignments and Elements

The first phase of the Payroll Run process is to determine the
assignments and elements to be included in the current batch. This is
set up according to the assignment set and element set specified in the
batch submission. The default is All.

Payroll Run accesses a number of specific entities for processing. It
identifies whether they are used for select, update, delete or insert.
Where an entity is date–effective, the Payroll Run process also identifies
changed DateTracked information and actions it accordingly. For
example, an update of a date effective entity may require an actual
insert into the table.

Main Entities

The following list indicates the main entities for processing:

Key: S = Select, U = Update, D = Delete, I = Insert.

Entity Name Date Effective? Processing

Payroll Action No S

Assignment Action No S, U

Element Entry Yes S, U

Element Entry Value Yes S, U

Person Latest Balance No S, U, D

Assignment Latest Balance No S, U, D

B – 7Technical Essay on Payroll Processes

Entity Name ProcessingDate Effective?

Balance Context No S, U, D

Run Result No S, U, D, I

Run Result Value No S, U, D, I

Process Each Assignment

Payroll Run applies the appropriate processing to each assignment. For
a specific payroll run, this is identified by an assignment action. The
following ’pseudo code’ represents the processing that occurs:

get assignment status();

if assignment status is ’Process’ then

load element entries and values ();

load latest balances ();

while(entries to process)

create run results if necessary ();

set up User Defined Context Area ();

/* third party hook */

get processing mode for entry ();

if(we are not skipping) then

look for formula to run ();

if(there is formula to execute) then

execute formula ();

if(error detected) then

handle error ();

end if

end if

post run results and feed balances ();

end if

end while

flush run results and values ();

B – 8 Oracle HRMS Implementation Guide

write / update latest balances ();

end if

Element Entry Processing

Element entries hold the entry values that are input to the gross to net
calculations. The result of processing each entry value is a run result
value. Before processing each assignment, Payroll Run loads all entries
for that assignment into memory. This includes any pre–inserted run
results and values.

By default, nonrecurring entries are only fetched if they are
unprocessed in the current pay period. By default, recurring entries are
always fetched and processed when you submit a payroll run. You
must use Element Skip rules, or Element Sets to limit the inclusion of
recurring entries.

If Oracle Payroll is installed outside the United States and uses
’additional’ entries of a recurring element in the pay period, Payroll
Run treats them as nonrecurring entries for processing purposes.

Processing Priority

The sequence of processing entries for each assignment is determined
by the processing priority of the element type, and the subpriority
order of each entry. When the subpriority is null, entries are ordered
by:

1. processing priority

2. element_type_id

3. entry type

Payroll Run checks for Overrides and Replacement entries before
calculating normal entries and additional entries for non–US
legislations.

If subpriority is specified, the in memory list is reordered to reflect this.
Adjustments and target entries are kept together.

Termination Processing

Payroll Run implements the entry processing rules for a terminated
assignment.

B – 9Technical Essay on Payroll Processes

For US legislations, this means that if the date earned of Payroll Run is
between the actual date of termination and the final process date for an
assignment, the assignment is processed only when there exists an
unprocessed nonrecurring entry for the assignment.

For non–US legislations, a user can also enter a last standard process
date. This means that if the date earned of Payroll Run is between the
last standard process date and the final process date for an assignment,
the assignment is processed only when there exists an unprocessed
nonrecurring entry for the assignment.

An additional entry counts as nonrecurring for termination purposes.

Create Run Results and Values

For every entry that is processed there must be a run result; for each
entry value there must be a run result value. If these do not already
exist, by pre–insertion, then the appropriate run results and values are
created in memory and are inserted into the database, ready for Payroll
Run to process.

For example, a nonrecurring entry may have pre–inserted run results
and values if you have entered the Pay Value.

Pre–inserted values are automatically deleted by a rollback or mark for
retry operation, and Payroll Run re–establishes them.

At the same time, Payroll Run uses the current exchange rate for the
payroll to perform any currency conversions. This happens if the input
and output currency codes of the element are different. You can define
an element with any input currency.

If the element contributes to a payment balance for the employee the
output currency must be the base currency of the Business Group.
Payment balances can be converted into other currencies as part of the
PrePayments process linked to payment methods.

Set Up Contexts

Before an entry is processed, Payroll Run sets up the contexts that are
needed by FastFormula for Payroll and Element Skip formulas. This
may include legislative specific contexts, for example, US legislations.
The value of all the contexts are held in a special data structure, known
as the User Defined Context Area (UDCA). The generic contexts that

B – 10 Oracle HRMS Implementation Guide

are always created provide additional route information for the
formula. These are:

• ORIGINAL_ENTRY_ID

• ELEMENT_ENTRY_ID

• BUSINESS_GROUP_ID

• PAYROLL_ACTION_ID

• PAYROLL_ID ASSIGNMENT_ID

• ASSIGNMENT_ACTION_ID

• DATE_EARNED

• ELEMENT_TYPE_ID

A special third party interface is called so that the value of legislative
specific contexts can be set. This has been used extensively for US
legislations.

Element Skip Rules

Element Skip Rules enable you to define specific formula criteria to
determine whether an entry is processed or not. A skip rule formula
must return a skip_flag value of Y or N.

Where appropriate, a skip formula is fired and any input values are
taken from the in memory run result values (to allow for any currency
conversion). Additionally, when looking at the skipping of an
adjustment, the formula inputs are taken from the entry values of the
normal target entry, not the adjustment entry itself.

There may also be legislative specific skip rules predefined for specific
elements or element types. This additional third party skip hook is
called at the same time that the internal function looks for a normal
skip formula. This legislative specific skip rule is defined in ’C’ code.

Element Entry Processing Modes

In processing entries, Payroll Run has to cope with many different
conditions. For instance, a Substitute Override prevents the processing
of any other entries of the same element type (it literally ”overrides”
them). Another example is that if a skip rule shows that an element

B – 11Technical Essay on Payroll Processes

entry must be skipped, the target of the skip must not be processed,
and so on.

Internally, Payroll Run uses the concept of a ”State Machine” to control
this. At first, the ’state’ is set to indicate that it should process. Then,
depending on the entry type and whether a skip rule has fired, a
different mode is set. This then affects the processing of this entry and
(possibly) subsequent entries. Taking an example from above, the
Substitute Override sets a mode to say that it is processing an
Override. When subsequent entries are encountered, they have a mode
of Overriding set and are not processed. This remains in force until a
change of element type.

B – 12 Oracle HRMS Implementation Guide

Balances and Latest Balances

Payroll Run needs to be able to access and maintain balances and latest
balances. For more information about latest balances, see the
introduction to balances in the TRM essay, Loading Latest Balances.

Any existing assignment– or person–level latest balances (and any
associated balance contexts) are loaded into memory before any entries
are processed. The basic data structure for this is a doubly linked list,
kept ordered by balance_type_id. The balance values themselves are
held and manipulated as Oracle Numbers. The fetch itself is a union, in
this case because the two types of balances are held in separate tables.

Expiry Checking of Latest Balances

All loaded balances must be expiry checked. If they have expired, they
are set to zero. Information for this comes from the dimension
associated with a particular balances. The expiry step is entirely
separate from the loading step, due to the need to deal with balance
context values.

Expiry Checking and Performance

To process expiry checking, Expiry Checking code is called that is held
in a PL/SQL package. To prevent performance from being degraded,
the number of accesses required is cut down by making certain
assumptions about the different expiry checking levels.

The approach used is:

• N – Never expires: balances are never set to zero.

• P – Payroll Action Level: for these types, a list of the expiry
check results for each owning action/balance dimension are
kept.

Once expiry checking code has been called for such a
combination, it does not need to be checked again for other
balances that have the same combination, thus avoiding multiple
calls to the database.

The expiry checking is balance context independent – the list of
balance contexts is not passed to the expiry checking code.

B – 13Technical Essay on Payroll Processes

• A – Assignment Action Level: no assumptions can be made,
expiry checking code is always called. The expiry checking is
balance context dependent – the list of the balance contexts is
passed to the expiry checking code.

• D – Date Expiry: the date expiry checking mechanism looks at
the balance dimension/balance contexts combination of the
balance being expiry checked, and scans the in memory list to
see if a balance with the same combination has already been
expiry checked.

If so, the expiry date is taken from that stored on the in memory
balance.

The expiry checking is balance context dependent—the list of the
balance contexts is passed to the expiry checking code.

Creation and Maintenance of In Memory Latest Balances

Not all balances are loaded from the database, some have to be created.
Once they have been created, they have to be maintained.

The newly created or updated balances must be written to the tables.

Creation of New In Memory Balances

There are three places in the code where in memory balances are created,
depending on what dimension type the balance has; one place is for
types A, P and F, and two places are for type R.

Note: In memory, balances are only created for the A, P, R and
F types.

In memory balances are created for:

• A, P and F.

This follows the execution of a Fast Formula. If it has just
accessed a defined balance with one of these dimension types,
that is not already held as an in memory balance, an in memory
balance with the value as accessed by the formula is created.

• R:

– Before the execution of a Fast Formula.

B – 14 Oracle HRMS Implementation Guide

If it accesses a defined balance with the ’Run level’ balance
dimension type, it creates an in memory balance with a
value of zero (which is what a run level balance must be, by
definition).

– Before balance feeding time.

If the balance type it is attempting to feed has defined
balances with run level dimension types, it creates in
memory balances as appropriate, with zero value. Also see
the section on maintenance of balances.

The corollary of the above rules is that, except for the Run Level
dimension type, a latest balances can only be created for a particular
defined balance when that balance is accessed by an executed formula.

Run Results Added to In Memory Balances

Next, the appropriate run results are added to the current value of the
balance.

A summary of the algorithm that is used is:

For each processed run result, look at the balance feeds (which identify the
balance types that are potentially fed by each run result value). Then scan the
in memory balances to see if there are any potential feeds. If so, perform ’feed
checking’. Feed checking (as expressed by the feed checking type on the
appropriate balance dimension) is performed. If this shows that it should feed,
then: balance value = balance value + (result value * scale).

There are a number of possible feed checking types:

• NULL

The result always feeds the balance.

• P

Payroll Run executes the package procedure defined in the
expiry_checking_code column on the dimension. An expiry flag
parameter indicates whether feeding should occur or not.

• E

Feeding occurs if there is a match between the in memory
balance context values and the contexts held in the UDCA.

• J

This is a special case for United States localisation.

B – 15Technical Essay on Payroll Processes

• S

This is a special case for United States localisation.

In the case of run result values that might feed run level balances,
Payroll Run might need to create them in memory, before feed checking
occurs. Since Payroll Run cannot identify which balances might be
required at this point, it has to create all those it might need.

In practice, this means it creates balances for each of the run level
defined balances that might potentially be fed by the run result being
examined.

Note: If the dimension type is R and the feed checking type is
set to S, this represents a special case for United States
localisation. A different algorithm is used in this case.

Writing of In Memory Balances

The contents of the in memory balances (and any associated contexts)
need to be written to the database as appropriate—that is where the
replace flag on the in memory balance is set. Only balances with a
dimension type of A or P are written. This occurs after all entries have
been processed for the current assignment action.

After all element entries have been processed for the assignment, The
in memory balance list is scanned, data is moved to an array buffer and
then array inserted or updated on the database.

Formula Processing

Payroll Run calls Fast Formula to enable it to perform its complex
calculations.

Note: Even if a Formula has been defined against an element
type via a Status Processing Rule, it does not fire if the Pay
Value is not null.

Introduction to the Fast Formula Interface

The interface used by Payroll Run to access Fast Formula is made up of
two sections, which are:

• the common part of the interface (such as those meant to be
available to any product)

B – 16 Oracle HRMS Implementation Guide

This sets up pointers from Formula’s internal data structures to
the data to be input to the formula (contexts and inputs) and
output from the formula (formula results).

• a special interface

This is designed especially for Payroll Run, that allows access to
Formula’s database item cache. Execution of Fast Formula by
Payroll Run.

Payroll Run goes through the following steps:

1. Declares that a new formula is executed.

2. Formula tells the run code what formula contexts, inputs and
outputs are required.

3. The in memory balance chain is scanned.

If the formula may access any of the defined balances held as latest
balances, it writes the current value of the balance to the Fast
Formula database item cache. It is this mechanism that allows us to
benefit from the existence of in memory balances.

4. Any formula contexts are satisfied. All the values are taken from
the User Defined Context Area (UDCA).

5. Values that are passed to the formula as ’inputs are’ variables are
satisfied. This is done by looking for a run result value that has an
associated Input Value name matching the input variable name.

6. The outputs that Fast Formula has told us that it returns are
directed to a buffer area.

Execute the formula

The third party post formula hook is called. This allows special
legislative dependent functions to manipulate the formula results
before they are processed by Payroll Run. For instance, it allows certain
run results to be suppressed.

The formula results are processed.

Processing the Formula Results

Following the execution of a formula, Payroll Run loops through any
returned results, processing them as required by the formula result
rules. It looks for a formula result rule name that matches the formula
result that has been returned. There are several types of result rule, and
they are summarised below, from an internal processing point of view.

B – 17Technical Essay on Payroll Processes

Message Rule

If the severity level of the message is fatal, it causes an assignment level
error. Otherwise, the message is written to the messages table. Note
that the length of a message is restricted to the size that can be held in
the run result values table (currently 60 characters).

Direct Rule

If the Unit Of Measure is Money, the value is rounded as necessary.
Following this, the run result value chain is searched for the entry
holding the Pay Value and is updated. The replace flag is set to indicate
this.

Indirect and Order Indirect Rule

These two types are grouped together, because they cause very similar
processing. During the processing of the current element entry, all
indirects are held on a temporary chain, and merged into the main
entry chain later.

First of all the temporary chain is searched. If there is no existing entry
for the element type, a new one is created and added to the chain.
Then, in the indirect rule case only, the appropriate entry value is
located and updated with the new value. In the Order Indirect case, the
subpriority of the indirect entry is set to the formula result value.

Note: If two formula result rules target to the same input
value, the second result to be processed takes precedence.

Following the processing of all formula results, the chain of indirects is
merged into the main element entry chain at the appropriate point.
What is appropriate depends on the main processing priority and the
subpriority (the latter which can be set using the Order Indirect rule).

Payroll Run prevents the processing priority of an indirect element
from being the same as the element that gives rise to the indirect.
However, the form continues to disallow this, Same priority indirects
was provided specifically for United States legislative requirements.

Same priority indirects can cause problems, however, because they
create an endless loop.

Update Recurring Rule

Payroll Run calls a PL/SQL procedure to find the appropriate element
entry to update. This procedure then performs the date effective
update. If this entry happens to exist further down the entry chain, its
value is updated to reflect the change.

B – 18 Oracle HRMS Implementation Guide

Stop Recurring Rule

Payroll Run calls a PL/SQL procedure to find the appropriate element
entry to stop. This procedure then performs the date effective delete.

Run Result Processing

The run result and their associated run result values form the corollary
of element entries and element entry values. The entries express
eligibility to certain elements, whilst the results and values contain the
after effect of processing those entries.

During processing, run results and values are held in memory, hung off
the in memory element entry chain. This reflects their close connection
in database terms.

Creation of Run Results and Run Result Values

Results and values are created internally in one of three way:

• Loaded when entries and entry values are loaded – as
pre–inserted results, arising from nonrecurring element entries.

• Created by Payroll Run before processing the appropriate
element entry if there are any missing results and values.

• Created via indirect results.

Defaulting of Run Result Values

Payroll Run handles Hot and Cold defaulting while it checks that
results and values exist. If results and values do already exist, and are
null, Payroll Run attempts to default them. In addition, the special
defaulting for ”Benefit” elements is processed as required.

At the same time, if currency conversion is required, it is performed at
the same time. Internally, it uses Oracle Numbers for the calculation.
Following this, if it is processing an input value with a ’Money’ Unit of
Measure, it performs rounding on the result as necessary.

Writing Results and Values to the Database (Flushing)

The process moves the results and values to a special buffer and then
writes the run results and values to the database (update or insert). It
uses array processing techniques (similar to the technique used by
latest balances).

B – 19Technical Essay on Payroll Processes

This process is usually referred to as flushing the results and there are
two reasons that may trigger it. If it is about to execute a Fast Formula
that accesses a database item not held in memory. This is required
because the route for that database item might need to access run
results that have been generated so far in Payroll Run itself. This
assumption is made because there is no way of finding out for sure.
When all the element entries for the assignment action have been
processed, any remaining results and values are flushed.

Payroll Data Cache

During processing, Payroll Run has to access attributes of certain
entities that represent static definition data. For instance, it may need to
know the element type name or the balance feeds for a particular input
value. Furthermore, the same data typically requires access many times
over. If this data were selected from the database every time it was
needed, it would cause severe performance degradation.

To resolve this problem, a special static Payroll data cache was
introduced. All the appropriate data for the entity is loaded into
memory the first time it is accessed. From then on, any subsequent
accesses to the data can go straight to memory.

As it happens, the cache also introduces further advantages. These are:

• the SQL statements that access the data for the entity are isolated
in one place which is good practice.

• the actual coding itself is easier to understand and maintain.

B – 20 Oracle HRMS Implementation Guide

Pre–Payments Process

The Pre–Payments process prepares the payments generated by the
Payroll Run for payment. It prepares payments for each assignment
and inserts the results into PAY_PRE_PAYMENTS for each payment
method for an assignment.

The Pre–Payments process also:

• Calculates the amount of money to pay through each payment
method for an assignment, and converts any currency if the
payment method is in a foreign currency.

• Handles the preparation of third party payments.

For example, garnishments, court orders and child maintenance.
Third party payments are managed through the definition of
special payment methods for the employee.

Setting Up Payment Methods

During implementation, you set up your own specific payment
methods with source account details. When you hire an employee, you
can record one or more payment methods for the employee, and
proportion payment by percentage or amount. You can also record
payment methods in different currencies.

The Pre–Payments process prepares payments following the payment
methods for each assignment. There are three predefined payment
types that Oracle Payroll processes:

• Cheque/Check

• Magnetic Tape (such as NACHA/BACS)

• Cash (U.K. only)

You can set up as many payment methods as you require (based on the
three predefined payment types) to support your business needs.

Every payroll group has a default payment method, and this is used by
Pre–Payments if there is no personal payment method entered for a
specific assignment.

Note: You cannot have a default method of type Magnetic
Tape. This is because Magnetic Tape payment methods require
knowledge of the employee’s bank account details, including
prenotification details. See Prenotification (Prenoting): page
B – 22

B – 21Technical Essay on Payroll Processes

Payment methods are processed in order of their priority for an
assignment. For example, an employee may want:

1. 50% of the salary to be paid directly into their bank account by
Magnetic Tape payment

2. 100 dollars paid by Cheque/Check

3. 100 dollars paid in Cash

Pre–Payments prepares the payments in priority order, providing that
the amount to be paid covers the payments. If there is less to be paid
than the payment methods specify, the system pays up to 100% and
stops. If there is more to be paid than the payment methods specify, the
system adds the excess to the last payment method.

Preparing Cash Payments (U.K. Only)

If you are using Oracle Payroll to prepare cash payments, you can
calculate the banknote and coinage requirements for each employee.
Pre–Payments breaks down the amount into the individual monetary
units for payment and insert the results into the
PAY_COIN_ANAL_ELEMENTS table.

You can define the monetary units for each currency you pay for cash
payments administered through Oracle Payroll. You can also define
cash analysis rules to specify minimum numbers of each denomination
of the currency.

Setting Up a Cash Rule

The are two steps to setting up a cash rule:

1. Alter the package body hr_cash_rules

The alteration should test for the name of the cash rule you want to
setup and then perform the payment. For example, if the rule name
is ’TENS AND FIVES’ then enter the following:

if cash_rule = ’TENS AND FIVES’ then

––

hr_pre_pay.pay_coin(6, 10)

hr_pre_pay.pay_coin(3, 5)

––

B – 22 Oracle HRMS Implementation Guide

–– number to pay –––^ ^––– unit value of currency

––

end if;\

Using this cash rule with a currency of dollar results in a minimum
of 6 ten dollars and 3 five dollars being paid (given sufficient
funds).

2. Register the rule.

• Enter the QuickCode Values widow and query the QuickCode
type of ’CASH ANALYSIS’.

• Add the new Cash rule with the meaning and description fields
set to ’TENS AND FIVES’.

• Use the cash rule when setting up an organisation payment
method.

Prenotification (Prenoting)

Prenotification validation (also known as prenoting) applies to payment
methods of the type Magnetic Tape. This validation is performed when
bank details require checking before a payment can be made. For
example, when an employee has changed banks or changed bank
details. When an employee has changed bank or bank details, a
payment value of zero is made to the employees bank account. The
payment is then made by subsequent methods, or by the default
method.

Consolidation Sets

Pre–Payments is run for a consolidation set. It must complete for an
assignment action before that assignment can be paid. This is different
in R10 in that it does not necessarily exist only for this time period. A
consolidation set is now just a tag which ties groups of actions together.
For example, in R9 a consolidation set is typically used to enable
prepayments to run on a group of payroll runs with one easy action. In
fact it is more flexible because it can be used to prepay all assignment
actions in the set which have not yet been prepaid, whether or not they
are in this period.

B – 23Technical Essay on Payroll Processes

A further benefit of this change to the nature of a consolidation set is
that in routines such as BACS which may consist of data from many
periods, it can be used to tie together payments from different periods
and even different payrolls. For example, a consolidation set may be
used to force BACS to pay both of a company’s payrolls where one is
monthly and one is weekly.

Third Party Payments

Third party Payments are post Tax deductions from an employee’s
salary, that are paid to organisations or individuals. For example, court
orders payable to a municipal court whereas child support orders may
be directly payable to a spouse, or other individual.

These payments are processed in a slightly different way. The element
entry that produces the run result value for the payment holds details
of which payment method to use. This allows the same third party
element type to have two entries that are paid to different parties for an
assignment. An example, of this would be an employee paying a third
party element of ’Child Support’ to two different people.

Third party payments can only be made by magnetic tape or cheque,
cash payments are not allowed. In addition, these methods pay the full
amount of the payments, so only one method is used. There is no
default method for these payments, and as a result, a payment method
must always be specified. If the magnetic tape prenote validation fails,
the process creates an error for that assignment

Exchange Rates

Pre–Payments calculates the currency conversion if the payment is in a
different currency to that of the remuneration balance (the element
output currency in the case of third party payments). If the process
cannot find the exchange rate for the two currencies, it creates an error
for the assignment.

Overriding Payment Method

You can specify an overriding payment method when making a
prepayments run. This method overrides the personal payment

B – 24 Oracle HRMS Implementation Guide

methods, so the full amount of the payment is made. The only
exceptions are the third party payments, these are paid as per the
method specified for them.

The overriding payment method can be either:

• Cash

• Cheque

You cannot specify magnetic tape payments as an override method, as
this type of payment requires prior knowledge of bank account details.

The Process

The Pre–Payments process creates payroll actions and assignment
actions. The assignment actions are based on assignment actions of the
payroll/consolidation set specified that do not have interlocks to a
prepayment process. The interlocks guarantee that Payroll Run cannot
be rolled back until Pre–Payments is rolled back. Thus, the new
assignment actions are created with interlocks to the runs assignment
actions.

See: Assignment Level Interlocks: page B – 60

Chunking

The assignment actions are split into groups called chunks, the size of
which are denoted by the CHUNK_SIZE action parameter in the
PAY_ACTION_PARAMETERS table. The process could spawn several
threads (child processes), depending on the THREAD action parameter.
Each thread then picks a chunk to process, processes the assignment
actions and then picks another chunk until all the chunks are
processed. The number of threads can be used to enhance performance
on multiprocessor machines.

PL/SQL Procedures

The main part of the C process (the section that performs the payment),
is a harness for PL/SQL procedures. It is the PL/SQL procedures that
create the entries in the Pre–Payment table.

The threads process the assignment actions, by retrieving the third
party details and paying the value in the appropriate manner as
defined by the personal payment methods. Following this, the value for

B – 25Technical Essay on Payroll Processes

the remuneration balance for this assignment is retrieved using the
PL/SQL balance functions. This is then broken down into payments as
defined by the payment methods.

Error Handling

Errors encountered while processing can be at two levels:

• Payroll action level

These errors are fatal.

• Assignment level

These errors occur while processing assignment actions. If an
error is encountered at this level, it marks the assignment
action’s status as in Error, and continues processing. If the
process then completes it then marks the payroll action status as
Complete.

A value can be set to error the payroll action after a set number of
consecutive assignment action errors, the action parameter
MAX_ERRORS_ALLOWED sets this value. If
MAX_ERRORS_ALLOWED is not found then the chunk size is used as
default.

All the error messages are written to the PAY_MESSAGE_LINES table
with a more detailed explanation in the log file. This method of
handling errors enables Pre–Payments to continue processing if minor
errors are encountered. For example, if Pre–Payments has thousands of
assignments to process and a few are paid by cash but the currency
details have not been loaded, the process creates an error for the
assignments with cash payments (process unable to perform the cash
breakdown). Most assignment actions complete, only the assignments
with errors have to be rerun.

B – 26 Oracle HRMS Implementation Guide

Payment Processes

Now that you have run the Pre–Payments process to prepare the results
for payment (according to the payment methods), you are ready to
produce payment for your employees.

With Oracle Payroll, there are three types of payment process that you
can run:

• The Magnetic Tape process – MAGTAPE (BACS or NACHA)

See: Magnetic Tape Process: page B – 27

• The Cheque process – CHEQUE

See: Cheque Writer/Check Writer Process: page B – 49

• The Cash Payments process – CASH

See: Cash Process: page B – 58

Note: This is a U.K.–only process.

Recording Manual Payment

You can also record any manual payment you make to a specific
employee. This has the effect of marking the prepayment as paid. The
Payment process take the unpaid prepayment values allocated to each
payment type and produce the required payment file.

Note: Payments can be made externally using the External
Payments form. If you make a payment external to the system,
the Magnetic Tape process does not pay these.

B – 27Technical Essay on Payroll Processes

Magnetic Tape Process

The Magnetic Tape process generates the payment due and writes the
data to a file on magnetic tape. It is this tape that is taken to the bank
for payment.

The Process

There are two types of magnetic tape file:

• Payments

• End of year tax reporting

The two types of magnetic file, payments and reporting, are created
differently. The order of the entries in the magnetic file is critical.
Because of this, the Magnetic Tape process cannot run with multiple
threads (unlike the PrePayments or Cheque Writer processes that can).

The actual format of these tapes is legislation specific.

In release 8 and 9, localisation teams had to write a process for each
area for each legislation. Now, with release 10, localisation teams are
provided with a generic ’tape writer’ process that enables them to
specify exact tape formats required by their legislation.

The tape process is a simple ’C’ harness which calls ORACLE7 stored
procedures and ”FASTFORMULA” formulas to produce the required
tape file. The routine is generic, you can use it for any task which
requires magnetic tape reporting. The actual structure and content of
the tape is defined entirely by the stored procedure and a series of
formulas.

Examples

Some examples that use the routine are:

• BACS

• NACHA

• W2

• P35 submissions (and equivalent in other countries)

The routine can open several files for output, one of which is the
magnetic file requested. The file name is based on the concurrent
request ID when the code is run for magnetic tape payments or is

B – 28 Oracle HRMS Implementation Guide

passed as a start parameter for magnetic reports. Several other files can
be produced by this process, these files could be used to audit the
assignments that are being processed. The file name is in a similar
format as the magnetic tape file.

Magnetic Tape Structure

Magnetic tapes are usually broken down into:

• records

• fields

The sequence in which the process writes the records to tape follows
strictly defined rules. As a result, you can write a piece of code to
return the name of the next record to write to tape.

Similarly, the actual records have strict field place and length
requirements. For example:

Record Fields

Tape Header Batch Id, Company Name, Batch Record
Length, and so on

Employee Employee Id, Salary, Age, Job, and so on

Tape Footer No. of Records Processed, Salary Total, and
so on

Magnetic Tape uses this strict layout. A piece of driving PL/SQL code
returns the name of a formula, and the formula writes one type of
record; that is the Tape Header to tape. This method of getting the
formula and record name, then writing the record to tape is repeated
until all the records are processed. A ’C’ code harness performs the file
handling (opening, closing and writing to files), and enables the
PL/SQL and the formulas to interface.

C Harness and PL/SQL

The following figure illustrates the Magnetic Tape process:

• C harness for file handling and interfacing

• PL/SQL for sequencing records and formulas (to define the
contents of the record)

B – 29Technical Essay on Payroll Processes

The Magnetic Tape
Process

Record Details

Open files
Call PL*SQL

Call Formula

Write record

Formula

Formula Name

C
Harness

PL*SQL

Database Items

Formulas use database items to reference variable values. For example,
the employee and assignment number could be different for each run of
the formula and record.

The database item is held within the database, which consists of
components to make up a SQL statement. As the value could be
different for each run of the formula, the ’where’ clause of the
statement is slightly different. This is done by substituting key values
into the ’where’ clause that uniquely select the required value. These
substitution values are known as context values.

Context values are set by the driving PL/SQL procedure that places the
values into a PL/SQL table. The PL/SQL table is passed back to the C
code, which in turn places it in the formula structure.

Parameter Values

Parameter values are the variables used in the Magnetic Tape process.
These parameters can be:

• Passed into the C process from the command line

• Created by the driving PL/SQL procedure

• Created by the formula

Only the driving PL/SQL procedure and the formula can update the
values.

B – 30 Oracle HRMS Implementation Guide

These parameters are used to store the variable data to be transferred
between the formula and the PL/SQL. The running totals are passed to
the formula in this way.

The following figure illustrates how the C code acts as an interface
between the PL/SQL and formula, and how the data is passed as
context values.

C Code Interface

Open files
Call PL*SQL

Call Formula

Write record

Formula Name

loop

Set Contexts

end

Context Values

Parameter Values

Record Details

Parameter Values

C
Harness

PL*SQL

Formula

So, the driving PL/SQL determines which type of record is required at
any stage of the processing, and uses context and parameter values to
communicate with the formula.

B – 31Technical Essay on Payroll Processes

Magnetic Tape Formats

There are two things required to create the magnetic tape format:

• Formulas

• Driving PL/SQL procedure

Formulas

The formulas do the following:

• define the field positions in the records

• perform calculations

• report on the details written to tape (auditing)

• raise different levels of error messages

The prefix of the name of the return value determines which operation
is performed on the return value. See the Formula Interface document
for technical details.

The Driving PL/SQL Procedure

The driving procedure determines the sequence in which the records
are processed. This driving procedure can be written from scratch by
opening cursors processing a particular formula for each fetch of the
cursor, or the generic PL/SQL can be used. See the PL/SQL Interface
document for technical details.

Magnetic Tape Payments

The payroll assignment action creation code is the entry point to the
Magnetic Tape Payments process. Employee magnetic tape payments
such as BACS and NACHA are recorded on the core HR system as
payroll and assignment actions with interlocks to the relevant
pre–payment assignment actions. The interlocks prevent the
pre–payments actions being rolled back while the magnetic tape actions
exist.

Third party payments (such as the company’s total NI bill to the DSS or
the company’s health plan contributions) do not result in payroll and
assignment actions, and therefore would use the magnetic tape report
interface.

B – 32 Oracle HRMS Implementation Guide

Batch Process Parameters

You run PYUGEN with the following parameters:

consolidation_set_id Mandatory

A magnetic tape payroll action is initiated to pay any unpaid
prepayments of the specified payment type. The consolidation set
restricts so that it only pays those unpaid pre–payments which are for a
prepayment action of the same consolidation set.

payment_type_id Mandatory

This parameter defines the driving PL/SQL procedure.

effective_date Optional

This parameter identifies the effective date for processing.

payroll_id Optional

This parameter processes assignments which are on the specified
payroll on the effective date

start_date Optional

This parameter specifies how far back, date effectively the process
searches for target prepayments. If this parameter is not specified, then
the process scans back to the beginning of time.

organisation_payment_method_idOptional

This parameter creates assignment actions interlocking to unpaid
prepayments for that payment.

legislative Optional

These parameters are free–format, available to all payroll actions.
Localisation groups can use these to pass in a number of
legislation–specific parameters, made accessible to the payroll action
through the entity horizon.

B – 33Technical Essay on Payroll Processes

PL/SQL Procedure for the Payment Type

The PL/SQL driving procedure used is that specified for the payment
type on the database (for example, <package name>.<procedure
name>). The PL/SQL procedure for the Magnetic Tape Writer process
must drive off the assignment actions created and not further restrict
the assignments processed. If the PL/SQL was to further restrict which
assignments were processed, then there may be magnetic tape
assignment actions which couldn’t ever be processed. When the
process first runs the PL/SQL, one of the parameters passed is the
payroll action id (PAYROLL_ACTION_ID).

The Magnetic Tape process actions prepayment with an effective date
on or before the effective date of the magnetic tape action. The
magnetic tape effective date defaults to session date, in an AOL
environment, and sysdate outside AOL.

The magnetic tape file generated is named, as per the normal
file–naming standards):

p<trunc(conc_request_id, 5)>.mf

The file name is padded with zeros if the length of the request id is
shorter than five characters, (for example, p03451.mf).

It is written to a directory, such that:

if $APPLCSF is defined

 write to $APPLCSF/$APPLOUT

else

 write to $PAY_TOP/$APPLOUT

end if

The audit files are created in the same way, except that the file
extension is different. The audit file extension is .a<file_number>, so if
a formula returns a value for audit file 6 then a file with the extension
.a6 is created in the correct directory using the concurrent request id as
described above.

Magnetic Tape Reports

Magnetic Tape reports are not recorded as payroll and assignment
actions. The entry point is the specific Magnetic Tape code, PYUMAG.
The PL/SQL determines which assignments to be process.

B – 34 Oracle HRMS Implementation Guide

Mandatory parameters:

• driving PL/SQL procedure (<package name>.<procedure
name>)

• output file (full pathname included)

Optional parameters:

• Audit file prefix (the prefix to the extension, plus the full path)

• Effective date (the parameters to the driving PL/SQL procedure)

The optional parameters to the PL/SQL must be tokenised, so that the
generic tape writer process can populate the PL/SQL tables for
parameter name and parameter value. These tables constitute the
interface between the generic writer process and the driving PL/SQL
procedure.

See: The Formula Interface: page B – 41

The magnetic tape action only processes formulas with an effective
date on or before the effective date of the magnetic tape action. The
magnetic tape effective date defaults to session date, in an AOL
environment, and sysdate outside AOL.

The magnetic tape filename is generated if it is not supplied to the
process. The file is in the format:

o<trunc(conc_request_id, 5)>.mf

When an audit file prefix is not set but the process tries to write to an
audit the concurrent request id is used as the prefix and .out used as
the extension. In these circumstances all audit returns are written to
this file.

SRS Definitions

Using SRS, we define the generic tape writer process once, as an
executable. We can then define any number of concurrent programs
which invoke that executable. Each concurrent program can have its
own set of parameters, its own hidden parameters, defaults and so on.
For example, we can define two concurrent programs:

• W2 report

• Illinois Quarterly State Tax report

B – 35Technical Essay on Payroll Processes

They would both use the magnetic tape writer executable PYUMAG,
each with a hidden parameter specifying the appropriate PL/SQL
procedure, and possibly, each with specific parameters. They appear as
completely distinct reports to the user. This would be setup in the SRS
process interface.

Similarly, magnetic payments can be made to appear as distinct
processes to the user – the only difference is that the payment type is
the hidden parameter, and the generic code determines the driving
PL/SQL procedure from that.

The PL/SQL Driving Procedure

The PL/SQL driving procedure determines the format of the magnetic
tape file. The interface between the ’C’ process and the stored
procedure makes extensive use of PL/SQL tables. Pl./SQL tables are
single column tables which are accessed by an integer index value.
Items in the tables use indexes beginning with 1 and increasing
contiguously to the number of elements. The index number is used to
match items in the name and value tables.

The names of the tables used to interface with the PL/SQL procedure
are:

• pay_mag_tape.internal_prm_names

• pay_mag_tape.internal_prm_values

• pay_mag_tape.internal_cxt_names

• pay_mag_tape.internal_cxt_values

The first two tables (pay_mag_tape.internal_prm_names and
pay_mag_tape.internal_prm_values) are used to pass parameter details
to the PL/SQL and formula. These are reserved for the number of
entries in the parameter tables and the formula ID that is to be
executed. The second two tables (pay_mag_tape.internal_cxt_names
and pay_mag_tape.internal_cxt_values) are used to set the context
rules for the database items in the formula. These are reserved for the
number of entries in the context tables.

The PL/SQL can be of two forms: it can be specifically for one type of
magnetic tape file, or it can be used to drive off the magnetic tape batch
tables.

B – 36 Oracle HRMS Implementation Guide

The Generic PL/SQL

The Magnetic Tape process uses generic PL/SQL that drives off several
tables that contain cursor names. These cursors and tables control the
format of the magnetic tape.

These cursors retrieve three types of data:

1. data that is used in subsequent cursors

2. data that is to be used as context value data

3. data to be held as parameter/variable data

Example

Here are two select statements as examples:

cursor business is

select business_group_id,

’DATE_EFFECTIVE=C’, effective_start_date

from per_business_groups

cursor assignment is

select ’ASSIGN_NO=P’, assignment_id

from pay_assignments

In the above example, the first select (DATE_EFFECTIVE) is a context
value that is passed to subsequent fast formula. The business_group_id
column is being retrieved so that it can be used in subsequent cursors.
It is accessed by using a function described later. The second select
(ASSIGN_NO=P) is used as a parameter.

B – 37Technical Essay on Payroll Processes

When the cursor is opened, it assigns rows in a retrieval table that it
can select into (the number of rows depends on the number of columns
retrieved by the cursor). For example, if the above cursors were used,
and the previous example was run, the retrieval table would look like
this:

After First Run After Second Run

50000 50000

DATE_EFFECTIVE= DATE_EFFECTIVE=C

16–MAR–1997 16–MAR–1997

ASSIGN_NO=P

50367

Access to Data

Some cursors require access to data previously selected, this can be
achieved in two ways:

1. If the column needed was selected as a context or an individual
column (like business group in the previous example) then a
function is provided to return the value given the cursor name and
the column position in the select statement. For example, to get the
business group in the above select statement use the following
command:

 pay_magtape_generic.get_cursor_return(’business’, 1)

2. Another way of using a value in subsequent cursors is to select the
value as a parameter and access a function that retrieves that value
given the parameter name. For example to get the ASSIGN_NO
parameter value use the following command:

 pay_magtape_generic.get_parameter_value(’ASSIGN_NO’)

Different Data

The formula requires two types of data:

• context

• parameter

The context data is held in PL/SQL tables, which are filled by the
PL/SQL with data retrieved by the cursors, as described above. The

B – 38 Oracle HRMS Implementation Guide

context rules are inherited to lower levels unless the lower level cursor
retrieves a different value for that context name. The PL/SQL always
uses the lowest level context value for a particular context. For
example, if the second cursor above retrieved a context value for
DATE_EFFECTIVE it would be this value that would be used for the
formula, it is at a lower level in the retrieval table than the previous
DATE_EFFECTIVE, until the cursor is close. In which case the rows in
the retrieval table are reclaimed and the DATE_EFFECTIVE context
reverts to the first one.

The Parameter data is also held in tables, but unlike context values the
values are not level dependent. The fast formula can access these
values by selecting that parameter on the input line and if the formula
returns a value for that parameter it overwrites the entry in the table. If
the FastFormula returns a parameter that does not exist, the parameter
is entered in the table.

Driving Structure

The driving structure for the package procedure is held in two database
tables:

• PAY_MAGNETIC_BLOCKS

• PAY_MAGNETIC_RECORDS

SQL> desc PAY_MAGNETIC_BLOCKS

Name Null? Type

MAGNETIC_BLOCK_ID NOT NULL NUMBER (9)

BLOCK_NAME NOT NULL VARCHAR2 (80)

MAIN_BLOCK_FLAG NOT NULL VARCHAR2 (30)

REPORT_FORMAT NOT NULL VARCHAR2 (30)

CURSOR_NAME VARCHAR2 (80)

NO_COLUMN_RETURNED NUMBER (5)

SQL> desc PAY_MAGNETIC_RECORDS

Name Null? Type

FORMULA_ID NOT NULL NUMBER (9)

MAGNETIC_BLOCK_ID NOT NULL NUMBER (9)

B – 39Technical Essay on Payroll Processes

NEXT_BLOCK_ID NUMBER (9)

LAST_RUN_EXECUTED_MODE NOT NULL VARCHAR2 (30)

OVERFLOW_MODE NOT NULL VARCHAR2 (30)

SEQUENCE NOT NULL NUMBER (5)

FREQUENCY NUMBER (5)

Example

In the following examples the tables have simplified:

Cursor/Block Table

block_id

cursor_name block_name no_of_
select_
values

main_
block

type

1 company_curs companies 2 Y CA

2 employee_curs employees 2 N CA

3 assignment_curs assignments 1 N CA

Formula/Record Table

formula_name block
_id

seq next_
block

frequency O/F exec.last

formula 1 1 1 – – N N

formula 2 1 2 2 – N N

formula 3 2 1 – – N N

formula 4 2 2 3 – N N

formula 5 3 1 – – N N

formula 6 2 3 – – N N

formula 7 1 3 – – N N

The block table has columns block_id (system generated), cursor name
and blockname. However, no_of_select_values is the number of
columns that the select statement specified by cursor_name retrieves
and the type refers to the type of report that it represents. The main
block column signifies the starting block to use, only one of these can
be set to Y for a given report.

B – 40 Oracle HRMS Implementation Guide

Types of Formula/Record

Formulas/records can be of three general types:

• standard formulas executed for every row returned from cursor

• intermediate formulas executed once every x number of rows

• formula executed depending on the result of the previous
formula (overflow formula)

The formula table has columns and a formula name. The block id refers
to the block that this formula is part of and the seq refers to the
sequence in the block. The next_block column signifies that after this
formula has run the cursor defined by that block should be opened and
that block’s formula should be run until there are no more rows for that
cursor.

The frequency column is used by the intermediate formula to specify
the number of rows to be skipped before the formula is run. The O/F
(overflow) column specifies whether the formula is an overflow, if it is
(set to Y), and if the last formula returned the
TRANSFER_RUN_OVERFLOW flag set to Y then the formula runs.
Similarly, if the formula is a Repeated overflow (set to R), and the
TRANSFER_RUN_OVERFLOW flag is set to Y then that formula is
continually repeated until the formula does not return
TRANSFER_RUN_OVERFLOW set to Y.

The exec.last column can apply to all the types of formula but most
commonly the intermediate formulas. This column specifies that the
formula can run one extra time after the last row has been retrieved
from the cursor.

For intermediate formula this column can be set to 4 different values:

• N – Never run after last row returned

• A – Always run after last row returned

• R – Run only if the intermediate formula has run for this cursor

• F – Run only if this is the first run of the formula for this cursor

Note: For overflow and standard formula only N and A are
valid.

Using the above specification the formulas could be retrieved in the
following sequence:

B – 41Technical Essay on Payroll Processes

Formula Sequencing

1, 2, 3, 4, 5, 5, 5, 6, 3, 4, 5, 5, 6, 7
3 rows from the
assignment_curs

1 row from the company_curs

2 rows from the
employee_curs

3 rows from the
assignment_curs

2 rows from the
assignment_curs

The generic PL/SQL procedure identifies which type of report to
process. It does this by passing the parameter MAGTAPE_REPORT_ID
when calling the process. The previous figure illustrates how
MAGTAPE_REPORT_ID=CA is passed when calling the process.

The Formula Interface

Typically, a magnetic tape consists of a number of records. Oracle
suggests having a formula associated with (generating) each record
type. A PL/SQL stored procedure provides the main control flow and
determines the order in which the formula are called.

The routine uses FASTFORMULA to prepare records The records are
written to an ASCII file in preparation for transfer to magnetic tape. To
implement the required actions, there are more formula result rule
types. These are listed below:

TRANSFER This transfers the output parameter to the
input of the stored procedure. The parame-
ter may or may not be modified by the
stored procedure before being used in the
next execution of the formula.

WRITE TO TAPE This instructs the process to write the result
to the magnetic tape file. This is always a
character string that represents the desired
record.

B – 42 Oracle HRMS Implementation Guide

REPORT FILE This writes the string result to the ”audit”
file.

ERROR This instructs the process that an ERROR/
WARNING has been detected within the
formula. Thus the process should handle
the error appropriately.

Naming Convention

These are not implemented in the traditional manner using the formula
result rules table. They use the naming convention:

WRITE TO TAPE results are named WRITE_<result_name>.

The transfer results follow a similar, but more stringent convention in
that the result_name part must be the name of the parameter. For
example, a result company_total_income would be named
transfer_company_total_income. The REPORT result must identify
which file is to be written to, this is achieved by embedding the file
number in the formula return name, as in REPORT1_<result_name>,
this writes to report/audit file 1.

Error Types

The errors can be of 3 types:

• payroll errors

These are identified by a return of ERROR_PAY_<error_name>.

• assignment errors

These are denoted by ERROR_ASS_<error_name>.

• warning errors

These are denoted by ERROR_WARN_<error_name>.

Transfer Input/Return

The transfer input and return values are used simply to transfer values
between the PL/SQL and the formulas.

Writing to the Tape File

If the formula returns a value with the name prefixed by WRITE_, the
value is written to the magnetic tape ASCII file. The writes are
performed in the order in which they are returned from the formula.

B – 43Technical Essay on Payroll Processes

Report Production

Reports can be written during the production of the magnetic tape file.
These reports could be used to check the details that are produced. A
number of reports can be created in the same run, the number can be
limited by using the ADD_MAG_REP_FILES action parameter in the
PAY_ACTION_PARAMETERS table.

Each report is accessed by using a prefix that denotes the file, for
example, REPORT1_ to denote report number 1, REPORT2_to denote
report number 2, and so on. If a report number is outside the range of
the ADD_MAG_REP_FILES value, an invalid return error is reported.
The report files are opened as and when needed with the names of the
files previously described.

FastFormula Errors

Errors returned from formulas can be at three levels, as described in
Error Types: page B – 42:

To initiate a payroll action level error the name prefix for the returning
variable should be ERROR_PAY_. Similarly with the assignment level
errors the prefix should be ERROR_ASS_. And finally the names for the
warning messages is prefixed with ERROR_WARN_.

The actual messages themselves have to be prefixed with the
assignment action id or payroll action id. This is done to insert the
messages into the PAY_MESSAGE_LINES table. Warning messages are
regarded as being at the assignment action level and require the
assignment action id. If no id is supplied, the message is only written to
the log file. No id must be supplied when running a magnetic tape
report, since no actions exist for reports. Only payments have actions.

B – 44 Oracle HRMS Implementation Guide

Example

Here are some examples of the format to use:

ERROR_PAY_TEXT1 = ’50122: Unexpected value’ – Payroll action id
50122 with message
’Unexpected Value’

ERROR_PAY_TEXT1 = ’:Unexpected value’ – No payroll action id
just a message

ERROR_ASS_TEXT1 = ’56988: Unexpected value’

ERROR_ASS_TEXT1 = ’Unexpected value’

ERROR_WARN_TEXT1 = ’56988: Unexpected value’

ERROR_WARN_TEXT1 = ’:Unexpected value’

Error Handling

Magnetic tape either fully completes the process, or marks the whole
run with a status of error.

Within this there are two types of errors:

• payroll action level errors which are fatal

If this form of error is encountered, the error is reported and the
process terminates.

• assignment action level

These can be setup in formulas and result in the error message
being reported and the process continuing to run. This can be
used to report on as many errors as possible during the
processing so that they can be resolved before the next run.

The payroll action errors at the end of the run if assignment action level
errors are encountered.

A description of the error message is written to the Log file, also an
entry is placed in the PAY_MESSAGE_LINES table if the action id is
known.

Example PL/SQL

The following piece of PL/SQL code could be used to format a
magnetic tape payment (drives off assignment actions). An alternative

B – 45Technical Essay on Payroll Processes

to writing a PL/SQL procedure would be to use the generic procedure
and populate the batch magnetic tape tables.

Note: This example only works for a business group of ’MAG
Test GB’ (the legislative formulas is for GB only).

create or replace package body pytstm1

 as

 CURSOR get_assignments(p_payroll_action_id NUMBER)

 IS

 SELECT ppp.org_payment_method_id,ppp.personal_pay-
ment_method_id,

ppp.value, paa.assignment_id

 FROM pay_assignment_actions paa, pay_pre_payments ppp

 WHERE paa.payroll_action_id = p_payroll_action_id

 AND ppp.pre_payment_id = paa.pre_payment_id

 ORDER BY ppp.org_payment_method_id;

Also need to:

Test that the assignment are date effective?

Order by name or person_number or other ?

p_business_grp NUMBER;

––

––

PROCEDURE new_formula

IS

––

p_payroll_action_id NUMBER;

assignment NUMBER;

p_org_payment_method_id NUMBER;

p_personal_payment_method_id NUMBER;

p_value NUMBER;

––

––

FUNCTION get_formula_id (p_formula_name IN VARCHAR2)

B – 46 Oracle HRMS Implementation Guide

 RETURN NUMBER IS

p_formula_id NUMBER;

BEGIN

 SELECT formula_id

 INTO p_formula_id

 FROM ff_formulas_f

 WHERE formula_name = p_formula_name

 AND (business_group_id = p_business_grp

OR (business_group_id IS NULL

 AND legislation_code = ’GB’)

OR (business_group_id IS NULL AND legisla-
tion_code IS NULL)

);

–– RETURN p_formula_id;

––

END get_formula_id;

––

BEGIN

––

pay_mag_tape.internal_prm_names(1) :=

’NO_OF_PARAMETERS’; –– Reserved positions

pay_mag_tape.internal_prm_names(2) := ’NEW_FORMULA_ID’;–– ––

Number of parameters may be greater than 2 because formulas

may be –– keeping running totals.––

pay_mag_tape.internal_cxt_names(1) := ’Number_of_contexts’;

pay_mag_tape.internal_cxt_values(1) := 1; ––

Initial value–––– IF NOT get_assignments%ISOPEN THEN

–– New file–– pay_mag_tape.internal_prm_values(1) := 2;

pay_mag_tape.internal_prm_values(2) := get_formula_id

(’REPORT_HEADER_1’);–– if

pay_mag_tape.internal_prm_names(3) = ’PAYROLL_ACTION_ID’

B – 47Technical Essay on Payroll Processes

 then p_payroll_action_id :=

to_number(pay_mag_tape.internal_prm_values(3)); end if;––

OPEN get_assignments (p_payroll_action_id);–– ELSE––––

FETCH get_assignments INTO

p_org_payment_method_id,

p_personal_payment_method_id, p_value,

assignment;–– IF get_assignments%FOUND THEN

–– New company

pay_mag_tape.internal_prm_values(1) := 2;

pay_mag_tape.internal_cxt_names(2) := ’ASSIGNMENT_ID’;

pay_mag_tape.internal_cxt_values(2) := assignment;

pay_mag_tape.internal_cxt_names(3) := ’DATE_EARNED’;

pay_mag_tape.internal_cxt_values(3) := to_char

(sysdate,’DD–MON–YYYY’);

pay_mag_tape.internal_cxt_values(1) := 3;

pay_mag_tape.internal_prm_values(2) := get_formula_id

(’ENTRY _DETAIL’);

ELSE–– pay_mag_tape.internal_prm_values(1) := 2;

pay_mag_tape.internal_prm_values(2) := get_formula_id

(’REPORT_CONTROL_1’);

CLOSE get_assignments;

–– END IF;

––END IF;––

END new_formula;

BEGIN

–– ’MAG test BG’ used as an example. The business group could be

–– retrieved using the payroll action id.

 select business_group_id

 into p_business_grp

 from per_business_groups

B – 48 Oracle HRMS Implementation Guide

 where name = ’MAG test BG’;

––END pytstm1;

B – 49Technical Essay on Payroll Processes

Cheque Writer/Check Writer Process

Note: For ease, we refer to the Cheque Writer/Check Writer
process as Cheque Writer throughout this technical essay.

You run the Cheque Writer process to produce cheque payments for
unpaid pre–payment actions. Before you run the process, you need to
set up certain things, for example, the SRW2 report and the ’order by’
option to sequence cheques, (if required).

You run Cheque Writer through Standard Reports Submission (SRS).
Unlike the Magnetic Tape process, you can have multiple threads in
Cheque Writer.

The Process

The Cheque Writer process has two distinct steps:

Cheque Writer Steps

Create Cheque
Assignment Actions

Step 1

Submit the SRW2
Report

Step 2

Step 1 – Create Cheque Assignment Actions

Cheque Writer creates cheque assignment actions for each of the target
pre–payments, subject to the restrictions of the parameters specified.
The target pre–payments must be unpaid—that is, they never have
been paid—or if they have been paid, then voided.

Cheque Writer creates assignment actions in two stages:

1. Multiple threads insert ranges of assignment actions, which
interlocks back to previous actions.

This happens in the same way as Pre–Payments and Magnetic Tape
create assignment actions.

B – 50 Oracle HRMS Implementation Guide

See: The Process: page B – 24 (Pre–Payments)

See: Magnetic Tape Payments: page B – 31

2. A single thread runs through all the assignment actions in a specific
order to update the chunk and cheque number.

The order is specified by a PL/SQL procedure that you can
customise. The thread divides the assignment actions equally into
chunks, one chunk per thread. It assigns each action a cheque
number.

See: Using or Changing the PL/SQL Procedure: page B – 56

At this stage, the status of the assignment actions is ’Unprocessed’.

Note: Cheque Writer creates an assignment action and cheque
for each target pre–payment of the assignment. Consequently, a
single Cheque Writer run can produce more than one cheque
for a single assignment.

Step 2 – Submit SRW2 Report

When Cheque Writer has created the assignment actions and interlocks,
each thread submits the specified SRW2 report as a synchronously
spawned concurrent process. The reports produce files in a specific
cheque format.

If the spawned concurrent process is successful, the status of the
assignment actions are changed to ’Complete’. If the process fails, the
status of the assignment actions are changed to ’In Error’. So, if you
resubmit Cheque Writer, it can start at the point of submitting the
report.

In this respect, Cheque Writer is similar to the magnetic tape process, in
that, the whole process must be successful before the payroll action is
Complete. But, while the Magnetic Tape process can mark individual
assignment actions In Error, Cheque Writer marks all assignment
actions In Error.

Batch Process Parameters

The batch process has a number of parameters users can enter. The
definition of the printer type (for example, laser or line printer for the
report output) is not a parameter. The default for this is specified as
part of the registration of the concurrent process for the report. Consult
your Oracle Applications System Administrators Guide for more
information on printers and concurrent programs.

B – 51Technical Essay on Payroll Processes

payroll_id Optional

This parameter restricts the cheques generated according to the current
payroll of the assignment. It is a standard parameter to most payroll
processes.

consolidation_set_id Mandatory

This parameter restricts the target pre–payments for Cheque Writer to
those which are for runs of that consolidation set.

start_date Optional

This parameter specifies how far back, date effectively, Cheque Writer
searches for target pre–payments. If this parameter is not specified,
Cheque Writer scans back to the beginning of time.

effective_date Optional

This parameter specifies the effective date for the execution of Cheque
Writer. If it is null, the effective date is taken to be the effective date
held in FND_SESSIONS. If there is no such row, then it is defaulted to
SYSDATE.

payment_type_id Mandatory

This parameter specifies which payment type is being paid. For UK
legislation, it must be a payment type which is of payment category
Cheque. For US legislation, it must be a payment type which is of
payment category Check.

org_payment_method_id Optional

This parameter restricts the target prepayments to those which are for
that organisation payment method. It would be used where different
cheque styles are required by organisation payment method.

order_by_option Mandatory

This parameter specifies which order by option is called to create and
order the cheque assignment actions. By providing this as a parameter,
the user can specify what ordering they want to take effect for the
generated cheques.

B – 52 Oracle HRMS Implementation Guide

report_name Mandatory

This parameter is the name of the SRW2 report that is synchronously
spawned by Cheque Writer to generate the print file of cheques and
any attached pay advices, and such.

A user–extensible lookup is provided as part of the core product.

start_cheque_number Mandatory

This parameter specifies the contiguous range of numbers to be
assigned to cheques generated.

end_cheque_number Optional

This parameter specifies the contiguous range of numbers to be
assigned to cheques generated. If this parameter is specified, this range
constrains how many cheque assignment actions are created. Cheque
Writer is the only payroll action which does not necessarily process,
what would otherwise be, all of its target actions.
If the end number is not specified, Cheque Writer assigns numbers
sequentially from the start number onwards for all generated cheque
assignment actions.

If cheques must be printed for different contiguous ranges (as may
occur when using up the remnants of one box of cheque stationery,
before opening another box), then the Cheque Writer process must be
invoked separately for each contiguous range.

Cheque Numbering

The cheque stationery onto which the details are printed is typically
authorised, and has the cheque number preprinted on it. It is common
in the U.K. for there to be a further cheque number box which is
populated when the cheque is finally printed. It is this number which
the generating payroll system uses.

Usually, these two numbers are the same. It is not known whether any
clearing system invalidates the cheque if they are not. However, it
seems likely that if you need to trace the path of a cheque through a
clearing system, the preprinted cheque number would prove most
useful, and hence, it should be the number recorded for the cheque
payment on the payroll system.

It is a user’s responsibility to ensure that the cheque numbers used by
Cheque Writer (and recorded on the system) are identical to those on

B – 53Technical Essay on Payroll Processes

the preprinted stationery. In certain circumstances, you might want to
use numbers that are not the same. In this case, the cheque number
recorded by the payroll system is simply a different cheque identifier
from the preprinted cheque number.

Note: Preprinted stationery usually comes in batches, for
example, boxes of 10000. Therefore, you may want to use
different ranges of cheque numbers when printing off cheques
at the end of the pay period. For example, you may have to
print off 2500 cheques using the remains of one box (numbered
9500 – 10000) and then an unopened box (numbered 20001 –
30000). Cheque Writer uses the start and end cheque number
parameters to enforce these ranges.

Voiding and Reissuing Cheques

Under some circumstances, users might need to void a cheque and
optionally reissue a replacement. For example, an employee loses their
cheque and requests a replacement, or you discover that the employee
has previously left employment and should not have been paid. In both
cases the first step is to void the cheque. This activity may also involve
contacting the bank that holds the source account and cancelling the
cheque.

Note: Voiding a cheque does not prevent the payment from
being made again.

Voiding and reissuing a cheque is different from rolling back and
reprinting a cheque. You void a cheque when it has actually been
issued and you need to keep a record of the voided cheque. You
rollback when a cheque has not yet been issued. For example, if during
a print run your printer jams on a single cheque and thinks it has
printed more than one. These cheques have not been issued and the
batch process should be rolled back and restarted for those actions.

Depending on the reason for voiding, a user may want to issue another
cheque. This is known as ’reissuing’. This requires no extra
functionality. The user has the choice of issuing a manual cheque and
recording the details online, or of resubmitting the batch process for
automatic printing.

You cannot reprocess actions that have already been paid, the process
only creates payments for those actions that have never been paid, or
have been voided.

B – 54 Oracle HRMS Implementation Guide

Mark for Retry

Cheque Writer actions can be marked for retry. As with the rollback
process, when marking a Cheque Writer payroll action for retry, the
user can determine which assignment actions are to be marked by
specifying an assignment set parameter.

Marking cheque assignment actions for retry does not remove the
assignment actions, but simply updates their status to ’Marked For
Retry’ (standard behaviour for all action types). The assigned cheque
numbers are left unaltered. Hence, on retry, Cheque Writer generates a
new print file.

The reason for this is that we cannot reassign cheque numbers for
assignment actions of a cheque payroll action which has been created.
The payroll action stores the start and end cheque numbers specified,
and if different ranges of numbers could be used on several retries of
the payroll action, then some of its assignment actions could be
assigned numbers outside the range held on the payroll action.

Rolling Back the Payments

If a user wants to assign new cheque numbers, then they must rollback
the Cheque Writer payroll and assignment actions, and submit a
separate batch request.

Note: Marking a random spread of assignment actions within
one Cheque Writer action for retry, is an unlikely operation.
There is absolutely no guarantee (indeed, it is extremely
unlikely) that the cheque numbers of the marked assignment
actions are contiguous. Considering the issues of matching
cheque numbers on the actions and on the preprinted cheque
stationery, a print file of such non–contiguous cheques is
unlikely to be useful.

SRW2 Report

The localisation teams need to set up the format for the cheque
stationery. The SRW2 report, invoked by Cheque Writer is passed in
two parameters:

• payroll_action_id (of the cheque action)

• chunk number (to be processed)

B – 55Technical Essay on Payroll Processes

For this purpose, the report must take the parameters named PACTID
and CHNKNO.

By the time the report is run, the appropriate assignment actions have
been created and cheque numbers assigned according to the order
specified in the order by parameter.

The report must drive off the assignment actions for the cheque payroll
action and chunk number specified. It must generate one cheque for
each assignment action. The cheque number is held directly on the
assignment action, while the amount to be paid is retrieved from the
associated pre–payment.

The report must maintain the order of the cheques when printed out,
the report must process the assignment actions in order of cheque
number.

Example SELECT statement

The following select statement illustrates how to drive a report:

select to_number(ass.serial_number),

ass.assignment_action_id,

round(ppa.value,2),

ppf.last_name,

ppf.first_name

from per_people_f ppf,

per_assignments_f paf,

pay_assignment_actions ass,

pay_pre_payments ppa

where ass.payroll_action_id =:PACTID

and ass.chunk_number =:CHNKNO

and ppa.pre_payment_id = ass.pre_payment_id

and ass.assignment_id = paf.assignment_id

and ass.status !=’C’

and paf.person_id = ppf.person_id

order by to_number(ass.serial_number)

B – 56 Oracle HRMS Implementation Guide

Registering the Report

Once the SRW2 report is written, you must register it as a Cheque
Writer report. This is similar to registering ’Cash Analysis Rules’ for the
Pre–Payments process.

You must also define a new Quickcode Value for the Type of
’CHEQUE_REPORT’. Enter the report name and description.

In a similar way to the Magnetic Tape process, the file generated by the
report is named:

p<trunc(conc_request_id,5)>.c<chunk_number>

The file name is padded with zeros if the length of the request id is
shorter than five characters, for example, p03451.cl.

It is written to a directory, such that:

if $APPLCSF is defined

 write to $APPLCSF/$APPLOUT

else

 write to $PAY_TOP/$APPLOUT

end if

If Cheque Writer is run with multiple threads, it produces several files.
This is because Cheque Writer assignment actions are split into several
chunks, one chunk per thread. So, each thread can pick a chunk and
process it. This is done to improve performance on machines with
multiple processors. For example, if there are four threads processing,
there would be four files produced:

• p03451.c1

• p03451.c2

• p03451.c3

• p03451.c4

Cheque Writer creates a fifth file (by the process which concatenates the
four files into one), the name of this file is p03451.ch.

Using or Changing the PL/SQL Procedure

Cheque Writer updates the assignment actions with the cheque and
chunk number in the sequence, determined by a PL/SQL procedure,

B – 57Technical Essay on Payroll Processes

called anonymously from the process. A default PL/SQL procedure is
provided with the generic product – pay_chqwrt_pkg.chqsql.

The default sort order is:

1. Organisation

2. Department

3. Surname

4. First name

You can change this procedure to set up several different sorting orders
by criteria, denoted by a flag passed to the procedure.

These changes should be made by the Localisation team, as part of the
implementation process. You should copy the core select statement,
and alter the subquery to order according to your own business needs.

The advantage of giving access to the whole SQL statement is that the
cheques can be ordered by any criteria. If we had only allowed
specification of an ORDER BY clause, then the ordering would have
been restricted to attributes on those tables already in the FROM clause
of the core SQL statement.

To set up new order by requirements, change the
pay_chqwrt_pkg.chqsql package procedure. You could add the
following IF statement when checking the procname variable:

else if procname = ’NEW ORDER BY’ then

 sqlstr := ’select’

The select statement could be a copy of the existing select statement but
with the order by clause changed. The select statement must return the
assignment action’s rowid.

Based on this information the assignment action can be given a
serial/cheque number and assigned to a chunk.

Similarly, as with the SRW2 report the new order by option has to be
registered before it can be used. This is done in a similar manner except
that the Quickcode Type is CHEQUE PROCEDURE. Place in the
meaning field a meaningful description and in the description field the
name of the option, for example, NEW ORDER BY.

B – 58 Oracle HRMS Implementation Guide

Cash Process

The Cash process indicates the system that payment has been made,
and prevents pre–payments from being rolled back.

Note: This is a UK–only process.

B – 59Technical Essay on Payroll Processes

Costing Process

After running the payroll processes, you start the post–run process,
Costing. The Costing process accumulates results for transfer to the
General Ledger and other applications. This process sorts the run
results in accordance with the information you have selected from the
Cost Allocation flexfield at all levels, by the following:

• Company

• Set of Books

• Cost Centre

• General Ledger

• Labour Distribution Accounts

Examples of the cost allocation of payroll results and of the distribution
of employer charges over selected employee earnings appear in the
following table.

If your installation also includes Oracle General Ledger, run the
Transfer to the General Ledger process after you have run the Costing
process. This transfers the results from the Costing process to Oracle
General Ledger.

Example of Payroll Costs Allocation

The following table displays payroll run results for four employees,
using accounts and work structures identified using the Cost
Allocation key flexfield. The example Costing Process Results table
illustrates how the Costing process allocates these payroll results to:

• accounts and cost centres for the General Ledger

• accounts for cost centres and product lines within cost centres,
for labour distribution purposes

Sample Payroll Results

Employee Work Structure Earnings and Deductions

Cost Centre Product
Line

Salary Wages Overtime Union
Dues

Employee 1 Production H201
100%

1,000 400 20

B – 60 Oracle HRMS Implementation Guide

Sample Payroll Results

Employee 2 Sales H305
100%

1,500

Employee 3 Production H201 50%
H202 50%

2,000 600 30

Employee 4 Sales H305 20%
H310 40%

1,000

The following table illustrates the allocation of costs from the sample
run results previously displayed.

Example Costing Process Results

Account
Code

Cost Centre Product Line

Production Sales H201 H202 H305 H307 H310

Salaries 2,500 1,700 400 E400

Wages 3,000 2,000 1,000

Overtime 1,000 700 300

Union
Dues
Liability

50

Clearing Account contains balancing credits for earnings Salary, Wages and
Overtime, and balancing debits for deduction Union Dues

Example of Employer Charge Distribution

When you give links for elements representing employer charges and
the costable type Distributed, the Costing process distributes the
employer charges as overhead for each employee over a set of
employees’ earnings. This example shows how employer payments
totalling 100 dollars are distributed over a set of earnings including
wages and overtime, for the cost centre Production and the product
lines H201 and H202.

B – 61Technical Essay on Payroll Processes

Overhead Distribution for the Production Cost Centre

Total paid to Production Cost Centre as Wagesrun

result: $3,000.00

Total paid to Production Cost Centre as Overtime run

result: $1,000.00

Total for Earnings types specified for Distribution:

$4,000.00

Ratio for Wages distribution, Production Cost Centre

= 3000/4000 = .75

Wages overhead = Pension Charge 100 x .75 = 75.00

Ratio for Overtime distribution, Production Cost

Centre = 1000/4000 = .25

Overtime overhead = Pension Charge 100 x .25 = 25.00

Overhead Distribution for the Product Lines H210 and H202

Total paid for Product Line H201 as Wages run result:

$2,000.00

Total paid for Product Line H202 as Wages run result:

$1,000.00

Total paid for Product Lines H201 and H202 as Wages:

$3,000.00

Ratio for Wages distribution, Product Line H201 =

2000/3000 = 0.6667

Product Line H201 overhead = Total Wages overhead $75

x .6667 = $50.00

Ratio for Wages distribution, Product Line H202 =

1000/3000 = 0.3334

Product Line H202 overhead = Total Wages overhead $75

x .3334 = $25.00

Total paid for Product Line H201 as Overtime run

result: $700.00

Total paid for Product Line H202 as Overtime run

result: $300.00

Total paid for Product Lines H201 and H202 as

Overtime: $1,000.00

B – 62 Oracle HRMS Implementation Guide

Ratio for Overhead distribution, Product Line H201 =

700/1000 = .7

Product Line H201 overhead = Total Overtime overhead

$25 x .7 = $17.50

Ratio for Overhead distribution, Product Line H202 =

300/1000 = 0.3

Product Line H202 overhead = Total Overtime overhead

$25 x .3 = $7.50

Distribution of Overhead Over Cost Centre and Production Line Totals

Account Code Cost Centre Product Line

Production H201 H202

Wages 3,000 2,000 1,000

Employer Liability
Distribution

75 50 25

Overtime 1,000 700 300

Employer Liability
Distribution

25 17.50 7.50

B – 63Technical Essay on Payroll Processes

Transfer to the General Ledger Process

After you have run the post–run process Costing (that accumulates
costing results), you are ready to transfer the results to the General
Ledger or other systems.

B – 64 Oracle HRMS Implementation Guide

Assignment Level Interlocks

When you process a payroll, you run a sequence of processes that each
perform an action on the assignments.

The sequence in which you run the processes is critical to the success of
processing, as each process uses, and builds upon, the results of the
previous process in the sequence. The sequence of the processing is also
determined by issues of data integrity. For example, the Pre–Payments
process (that prepares the payments according to the payment
methods) uses the results of the Payroll Run process (that calculates the
gross to net payment).

It is essential for correct payments that the results cannot be changed
without also changing the prepayment results. To prevent this from
occurring (and for data integrity), Oracle Payroll uses assignment level
interlock rules.

Action Classifications

The different payroll processes (such as Payroll Run and Costing) and
action types (such as QuickPay and Purge), are classified as Sequenced,
Unsequenced or Non Removable. The action classification determines
how interlock processing rules are applied.

Processes and
Action Types Classification Insert Interlock Rows?

Payroll Run Sequenced No

QuickPay Sequenced No

Reversal Sequenced Yes

Balance Adjustment Sequenced No

Balance Initialisation Sequenced No

Purge Sequenced No

’’’’ Non Removable ––

Pre–Payments Unsequenced Yes

QP PrePayments Unsequenced Yes

Ext/Manual
Payments

Unsequenced Yes

B – 65Technical Essay on Payroll Processes

Insert Interlock Rows?Classification
Processes and
Action Types

Magnetic Tape
Transfer

Unsequenced Yes

Cheque Writer Unsequenced Yes

Cash Unsequenced Yes

Costing Unsequenced Yes

Transfer to GL Unsequenced Yes

Sequenced Actions

These actions exist at the same level and must be processed in strict
sequence, for example, Payroll Run before QuickPay. The general rule
is that you cannot insert a sequenced action for an assignment if there
is another sequenced action in the future, or if there is an incomplete
sequenced action in the past.

There are exceptions for Process Reversal and Balance Adjustment.
And, there may be specific legislative requirements that have
implications for this rule. For more information, see Pay Period
Dependent Legislation: page B – 66.

The sequence rule uses the effective date of the payroll action. If there
is more than one action with the same effective date, the action
sequence number determines the sequence of processing.

Unsequenced Actions

You can insert unsequenced actions for an assignment even when there
are other assignment actions for that assignment in the future or in the
past. For example, you can run the Costing process before or after you
run the PrePayments process.

Non Removable Actions

This is used for ’Purge’ actions. Actions can only be deleted by
themselves.

B – 66 Oracle HRMS Implementation Guide

Pay Period Dependent Legislation

The rules that govern the calculation of tax for employees with multiple
assignments vary between legislations, and this determines how the
rules for interlocking are applied.

For example, in the UK when you calculate tax, you must take account
of all earnings for all assignments in a pay period. For this type of
legislation, the interlock rules check the sequence of actions for all
assignments and a failure on one assignment in a pay period may be
caused by an action that applies to another assignment.

For example, if you process an employee who is on both a monthly and
a weekly payroll, you cannot rollback the monthly pay run for that
employee if you have subsequently processed and paid them on the
weekly payroll. You would have to rollback the payments process for
the weekly assignment before you could rollback their monthly payroll
action.

In other legislations, for example, in the US, each assignment is
considered separately and interlock failure for one assignment does not
cause failure for any others.

Action Interlock Rows

When interlocks are inserted for an assignment action they lock the
action that is being processed. For example, a pre–payment interlock
points to the payroll run action to be paid.

The existence of an interlock prevents subsequent insertion of other
actions (and interlocks), as opposed to the order of when processing
was performed.

Checking for Marked For Retry Actions

There is one special rule for assignment actions that are marked for
retry. If you attempt to retry a Payroll Run or Quickpay action,
validation is performed to ensure there are no sequenced assignment
actions marked for retry existing in the past for any assignments that
we are attempting to process.

The interlock rule is dependent on the legislation, and so is checked on
an assignment or person basis.

B – 67Technical Essay on Payroll Processes

Specific Rules for Sequenced Actions

An assignment action is not inserted if any of the following situations
exist:

• there is an incomplete sequenced action for the assignment with
a date on or after the insertion date

• there is a sequenced action for the assignment with any action
status, at a date after the insertion date

• there is a non removable action at a date after the insertion date

There are two exceptions:

• Reversal

• Balance Adjustment.

When a reversal or balance adjustment is inserted, the system
maintains the action sequence by changing the action sequence
numbers for any assignment actions that exist later in the pay period.

Specific Rules for Unsequenced Actions

An assignment action is not inserted if there is an interlock for the
assignment action currently being processed from another assignment
action of an appropriate classification.

In other words, if we had performed a QuickPay followed by a
QuickPay Pre–Payment, a subsequent Pre–Payments process would not
insert an assignment action/interlock to the QuickPay. This is because
the QuickPay Pre–Payment would have inserted an action and an
interlock, and Pre–Payments has the same action classification.

Rules For Rolling Back and Marking for Retry

This table summarises the rules for retry and rollback of payroll and
assignment actions. For some processes, you cannot rollback actions
only for an individual assignment, for example you cannot rollback an
individual from the Magnetic Transfer process. This process actually
produces the magnetic tape file so you must rollback the whole
process, and then redo it.

B – 68 Oracle HRMS Implementation Guide

Action Type Name

Payroll

Retry

Action

Rollback

Assignment

Retry

Action

Rollback

Payroll Run Yes Yes Yes Yes

QuickPay Yes Yes Yes No

Reversal No Yes No No

Balance Adjustment No Yes No No

Balance Initialisation No Yes No No

Purge Yes No No No

Pre–Payments Yes Yes Yes Yes

QP PrePayments Yes Yes Yes No

Ext/Manual
Payment

No Yes No No

Magnetic Tape
Transfer

Yes Yes No Yes

Cheque Writer Yes Yes Yes Yes

Cash No Yes No Yes

Costing Yes Yes Yes Yes

Transfer to GL Yes Yes No No

Rolling Back Sequenced Actions

You cannot rollback a sequenced action if there is a later sequenced
action for the assignment, except for Balance Adjustments or Reversals.
For example, you cannot rollback a payroll run in one period, if you
have already processed another payroll run in the next pay period.

Marking Actions For Retry

You cannot mark a sequenced action for retry if there is a later
sequenced action for the assignment, except for Balance Adjustments
or Reversals. However, you can do this if the future action causing the
lock is itself marked for retry.

You can retry an unsequenced action if the locking action is itself
marked for retry.

B – 69Technical Essay on Payroll Processes

Payroll Action Parameters

Payroll action parameters are system–level parameters that control
aspects of the Oracle Payroll batch processes. It is important to recognize
that the effects of setting values for specific parameters may be system
wide. The text indicates where parameters are related to specific
processes. For some parameters you should also understand the concept
of array processing and how this affects performance.

Action Parameter Values

Predefined values for each parameter are supplied with the system, but
you can override these values as part of your initial implementation and
for performance tuning.

Action parameter values are specified by inserting the appropriate rows
into the following table: PAY_ACTION_PARAMETERS, which has two
columns:

PARAMETER_NAME NOT NULL VARCHAR2(30)

PARAMETER_VALUE NOT NULL VARCHAR2(30)

The payroll batch processes read values from this table on startup, or
provide appropriate defaults, if specific parameter values are not
specified.

Summary of Action Parameters

The following list shows user enterable action parameters and values
with any predefined default value.

Note: Case is significant for these parameters.
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

Parameter
ÁÁÁÁÁ
ÁÁÁÁÁ

Value
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

Default
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

ADD_MAG_REP_FILES ÁÁÁÁÁ
ÁÁÁÁÁ

1 or moreÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

4
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

BAL BUFFER SIZE ÁÁÁÁÁ
ÁÁÁÁÁ

1 or moreÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

30

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

CHUNK_SIZE ÁÁÁÁÁ
ÁÁÁÁÁ

1 – 16000ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

20

ÁÁÁÁÁÁÁÁÁÁEE BUFFER SIZE ÁÁÁÁÁ1 or moreÁÁÁÁÁÁÁÁÁÁÁÁ40ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁLOG_AREA

ÁÁÁÁÁ
ÁÁÁÁÁSee later

ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁ
LOG_ASSIGN_END ÁÁÁÁÁ

ÁÁÁÁÁ
See later ÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

LOG_ASSIGN_START ÁÁÁÁÁ
ÁÁÁÁÁ

See later ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁ
LOGGING ÁÁÁÁÁ

ÁÁÁÁÁ
See later ÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁ

☞

B – 70 Oracle HRMS Implementation Guide

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

MAX_ERRORS_ALLOWEDÁÁÁÁÁ
ÁÁÁÁÁ

1 or more ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

CHUNK_SIZE or 20 (if no chunk size)

ÁÁÁÁÁÁÁÁÁÁMAX_SINGLE_UNDO ÁÁÁÁÁ1 or more ÁÁÁÁÁÁÁÁÁÁÁÁ50ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁRR BUFFER SIZE

ÁÁÁÁÁ
ÁÁÁÁÁ1 or more

ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ20ÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁ
RRV BUFFER SIZE ÁÁÁÁÁ

ÁÁÁÁÁ
1 or more ÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁ
30

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

THREADS ÁÁÁÁÁ
ÁÁÁÁÁ

1 or more ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

1
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

TRACE ÁÁÁÁÁ
ÁÁÁÁÁ

Y or N ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

N

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

USER_MESSAGING ÁÁÁÁÁ
ÁÁÁÁÁ

Y or N ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

N

Parallel Processing Parameters

THREADS

Parameter Name: THREADS

Parameter Value: 1 or more

Default Value:1

Oracle Payroll is designed to take advantage of multiprocessor
machines. This means that you can improve performance of your batch
processes by splitting the processing into a number of ‘threads’. These
threads, or sub–processes will run in parallel.

When you submit a batch process to a concurrent manager the
THREADS parameter will determine the total number of sub–processes
that will run under the concurrent manager. The master process will
submit (THREADS – 1) sub–processes.

Set this parameter to the value that provides optimal performance on
your server. The default value, 1, is set for a single processor machine.
Benchmark tests on multiprocessor machines show that the optimal
value is around two processes per processor. So, for example, if the
server has 6 processors, you should set the initial value to 12 and test the
impact on performance of variations on this value.

Attention: The concurrent manager must be defined to allow
the required number of sub–processes to run in parallel. This is
a task for your Applications System Administrator.

CHUNK_SIZE

Parameter Name: CHUNK_SIZE

Parameter Value: 1 – 16000

Default Value: 20

Size of each commit unit for the batch process. This parameter
determines the number of assignment actions that are inserted during
the initial phase of processing and the number of assignment actions
that are processed at one time during the main processing phase.

B – 71Technical Essay on Payroll Processes

Note: This does not apply to the Cheque Writer/Check Writer,
Magnetic Tape or RetroPay processes.

During the initial phase of processing this parameter defines the array
size for insert. Large chunk size values are not desirable and the default
value has been set as a result of benchmark tests.

Each thread processes one chunk at a time.

Array Select, Update and Insert Buffer Size Parameters

The following parameters control with buffer size used for ’in–memory’
array processing. The value determines the number of rows the buffer
can hold.

Note: These parameters apply to the Payroll Run process only.

When you set values for these parameters you should note that there is a
trade–off between the array size, performance and memory
requirements. In general, the greater the number of rows fetched,
updated or inserted at one time, the better the performance. However,
this advantage declines at around 20.

Therefore, the improvement between values 1 and 20 is large, while
between 20 and 100 it is small. Note also that a higher value means
greater memory usage. For this reason, it is unlikely that you will gain
any advantage from altering the default values.

CHUNK_SIZE

Parameter Name: CHUNK_SIZE

Parameter Value: 1 – 16000

Default Value: 20

Size of each commit unit for the batch process. As before.

RR BUFFER SIZE

Parameter Name: RR BUFFER SIZE

Parameter Value: 1 or more

Default Value: 20

Size of the Run Result buffer used for array inserts and updates: one row
per Run Result.

RRV BUFFER SIZE

Parameter Name: RRV BUFFER SIZE

Parameter Value: 1 or more

Default Value: 30

B – 72 Oracle HRMS Implementation Guide

Size of the Run Result Value buffer used for array inserts and updates:
one row per Run Result Value. Typically this will be set to (RR BUFFER
SIZE * 1.5).

BAL BUFFER SIZE

Parameter Name: BAL BUFFER SIZE

Parameter Value: 1 or more

Default Value: 30

Size of the Latest Balance buffer used for array inserts and updates: 1 row
per Latest Balance.

EE BUFFER SIZE

Parameter Name: EE BUFFER SIZE

Parameter Value: 1 or more

Default Value: 40

Size of the buffer used in the initial array selects of Element Entries,
Element Entry Values, Run Results and Run Result Values per
assignment.

Magnetic Tape Specific Parameters

ADD_MAG_REP_FILES

Parameter Name: ADD_MAG_REP_FILES

Parameter Value: 1 or more

Default Value: 4

The maximum number of additional audit or report files the magnetic
tape process can produce.

Error Reporting Parameters

In every pay cycle you would expect some errors to occur in processing
individual assignments, especially in the Payroll Run. These errors are
usually caused by incorrect or missing data in the employee record. For
practical reasons, you would not want the entire run to fail on a single
assignment failure. However, if many assignments generate error
conditions one after the other, this will usually indicate a serious
problem, and you will want to stop the entire process to investigate the
cause. For processes that support assignment level errors you can use
the MAX_ERRORS_ALLOWED parameter to control the point at which
you want to stop the entire process to investigate these errors.

B – 73Technical Essay on Payroll Processes

The processes that use this feature are:

– Payroll Run

– Pre–Payments

– Costing

– Rollback

MAX_ERRORS_ALLOWED

Parameter Name: MAX_ERRORS_ALLOWED

Parameter Value: 1 or more

Default Value: CHUNK_SIZE or 20 (if no chunk size)

The number of consecutive actions that may have an error before the
entire process is given a status of ’Error’.

Rollback Specific Parameters

Rollback of specific payroll processes can be executed in two ways. A
batch process can be submitted from the Submit Requests window.
Alternatively, you can rollback a specific process by deleting it from the
Payroll Process Results or Assignment Process Results windows. When you
rollback from a window this parameter controls the commit unit size.

MAX_SINGLE_UNDO

Parameter Name: MAX_SINGLE_UNDO

Parameter Value: 1 or more

Default Value: 50

The maximum number of assignment actions that can be rolled back in a
single commit unit when rollback is executed from a form. Although
you can change the default limit, you would usually use the Rollback
process from the SRS screen if it is likely to be breached.

Payroll Process Logging

During installation and testing of your Oracle Payroll system you may
need to turn on the detailed logging options provided with the product.
Use the LOGGING parameter to provide a large volume of detailed
information that is useful for investigating problems.

Detailed logging options should only be switched on when you need to
investigate problems that are not easily identified in other ways. The

☞

B – 74 Oracle HRMS Implementation Guide

logging activities will have an impact on the overall performance of the
process you are logging. Usually, this feature is needed during your
initial implementation and testing before you go live. In normal
operation you should switch off detailed logging.

Attention: If you need to contact Oracle Support for assistance
in identifying or resolving problems in running your payroll
processes, you should prepare your log file first. Define the
Logging Category, Area and range of Assignments and then
resubmit the problem process.

Logging Categories

Logging categories define the type of information included in the log.
This lets you focus attention on specific areas that you consider may be
causing a problem. You can set any number of these by specifying
multiple values:

– G General (no specific category) logging information.

Output messages from the PY_LOG macro for general
information. This option does not sort the output and you
should normally choose a list of specific categories.

– M Entry or exit routing information

Output information to show when any function is entered
and exited, with messages such as ’In: pyippee’, ’Out :
pyippee’. The information is indented to show the call level,
and can be used to trace the path taken through the code at
function call level. Often, this would be useful when
attempting to track down a problem such as a core dump.

– P Performance information

Output information to show the number of times certain
operations take place at the assignment and run levels and
why the operation took place. For example, balance buffer
array writes.

– E Element entries information

Output information to show the state of the in–memory
element entry structure, after the entries for an assignment
have been fetched, and when any item of the structure
changes; for example, addition of indirects or updates. This
also shows the processing of the entry.

B – 75Technical Essay on Payroll Processes

– L Balance fetching information

Output information to show the latest balance fetch and
subsequent expiry stage.

– B Balance maintenance information

Output information to show the creation and maintenance of
in–memory balances

– I Balance output information

Output information to show details of values written to the
database from the balance buffers.

– R Run results information

Output information to show details of run results and run
result values written to the database from the Run Results or
Values buffer.

– F Formula information

Output information to show details of formula execution.
This includes formula contexts, inputs and outputs.

– C C cache structures information.

Output information to show details of the payroll cache
structures and changes to the entries within the structure.

– Q C cache query information

Output information to show the queries being performed on
the payroll cache structures.

– S C Cache ending status information

Output information to show the state of the payroll cache
before the process exits, whether ending with success or
error. Since much of the logging information includes id
values, this can be used to give a cross reference where
access to the local database is not possible.

Logging Parameters

LOGGING

Parameter Name: LOGGING

Parameter Value: G, M, P, E, L, B, I, R, F, C, Q

Default Value: No logging

B – 76 Oracle HRMS Implementation Guide

LOG_AREA

Parameter Name: LOG_AREA

Parameter Value: Function to start logging

Default Value: No default

LOG_ASSIGN_START

Parameter Name: LOG_ASSIGN_START

Parameter Value: Assignment to start logging

Default Value: All assignments

LOG_ASSIGN_END

Parameter Name: LOG_ASSIGN_END

Parameter Value: Assignment to end logging, including this one

Default Value: All assignments

Output Log File

When you enable the logging option the output is automatically
included in the log file created by the concurrent manager. You can
review or print the contents of this log file.

Except for the General category the log file will contain information in a
concise format using id values. This keeps the size of the log file to a
minimum while providing all the technical detail you need.

To help you understand the output for each logging category, other than
’G’ and ’M’, the log file will contain a header indicating the exact format.

Miscellaneous Parameters

USER_MESSAGING

Parameter Name: USER_MESSAGING

Parameter Value: Y/N

Default Value: N

Set this to parameter to ’Y’ to enable detailed logging of user readable
information to the pay_message_lines table. This information includes
details about the elements and overrides that are processed during the
Payroll Run.

Note: This information is useful when you are investigating
problems, but you may find that it is too detailed for normal
working.

B – 77Technical Essay on Payroll Processes

TRACE

Parameter Name: TRACE

Parameter Value: Y/N

Default Value: N

Set this parameter to ’Y’ to enable the database trace facility. Oracle trace
files will be generated and saved in the standard output directory for
your platform.

Warning: Only use the trace facility to help with the
investigation of problems. Setting the value to ‘Y’ will cause a
significant deterioration in database performance. If you
experience a significant problem with the performance of your
payroll processes, you should always check that you have reset
this parameter to the default value – ’N’.

System Management of QuickPay Processing

When users initiate a QuickPay run or a QuickPay prepayments process,
the screen freezes until the process finishes. QuickPay is set up to
manage any cases in which the concurrent manager fails to start the
process within a specified time period, or starts it but fails to complete it
within the specified period. This situation can sometimes arise when, for
example, many high priority processes hit the concurrent manager at the
same time.

The system’s management of the screen freeze occurring when a user
initiates a QuickPay process involves:

• Checking the concurrent manager every few seconds for the
process completion.

• Unfreezing the screen and sending an error message to the user
when the process has not completed within a maximum wait
time.

The error message includes the AOL concurrent request ID of the
process. The user must requery the process to see its current
status.

System administrators can improve the speed of QuickPay processing at
their installation by:

• Changing the default for the interval at which checks for process
completion occur.

By default, the check of the concurrent manager occurs at
2–second intervals. The parameter row

B – 78 Oracle HRMS Implementation Guide

QUICKPAY_INTERVAL_WAIT_SEC in the table
PAY_ACTION_PARAMETERS sets this default.

• Changing the default for the maximum wait time.

The maximum wait time allowed for a QuickPay process to
complete defaults to 300 seconds (5 minutes), after which the
system issues an error message. The parameter row
QUICKPAY_MAX_WAIT_SEC in the
PAY_ACTION_PARAMETERS table sets this default.

• Defining a new concurrent manager exclusively for the QuickPay
run and prepayments processes.

To change the defaults for the interval at which checks occur or for the
maximum wait time:

Insert new rows (or update existing rows) in the table
PAY_ACTION_PARAMETERS.

Notice that QUICKPAY_INTERVAL_WAIT_SEC and
QUICKPAY_MAX_WAIT_SEC are codes for the QuickCode type
ACTION_PARAMETER_TYPE.

To define a new concurrent manager exclusively for the two QuickPay
processes:

1. Exclude the two QuickPay processes from the specialization rules
for the standard concurrent manager.

2. Include them in the specialization rules for the new QuickPay
concurrent manager to be fewer than those of the standard
concurrent manager. Doing so reduce the time it takes to start
requests for the QuickPay processes.

A P P E N D I X

C
T

C – 1Post Install Steps

Post Install Steps

his appendix describes any post install steps required for Oracle
HRMS.

☞

Step 1

Step 2

Step 3

C – 2 Oracle HRMS Implementation Guide

Post Install Steps for Oracle Human Resources

Warning: Be sure to check adpatch logs for errors. Although
patch execution may appear to be 100% successful, errors may
exist that require attention.

Attention: For more information about using adpatch, see
AutoPatch Utility (adpatch), Release 11 in Chapter 4, Applying
the Server Updates.

Run the Generic HR Post Install Driver

The Generic HR Post Install Driver delivers the generic entity horizon.
To run it, type in the following commands:

$ cd $PER_TOP/admin/driver

$ adpatch
Apply the driver hr11gn.drv

Run the Relevant Post Install Driver for the Legislation

UK and US users must install additional legislation specific startup data
to enable them to make use of the soft–coded flexfield structures
supplied with Oracle Human Resources.

If the legislation is UK:

$ cd $PER_TOP/admin/driver

$ adpatch
Apply the driver hr11gb.drv

If the legislation is US:

$ cd $PER_TOP/admin/driver

$ adpatch
Apply the driver hr11us.drv

Load Schools and Colleges Seed Data for Career Management
(Recommended)

Using the Schools and Colleges Attended form, you can maintain a
record of people’s attendance at schools, colleges, and universities.
Complete this step if you want to load a set of US and/or UK
universities and colleges as reference data.

Note: You can also enter schools, colleges, and universities
manually using the Schools and Colleges form.

To load UK universities and colleges:

$ cd $PER_TOP/admin/driver

C – 3Post Install Steps

$ adpatch
Apply the driver hr11cmgb.drv

To load US schools, colleges, and universities:

$ cd $PER_TOP/admin/driver

$ adpatch
Apply the driver hr11cmus.drv

C – 4 Oracle HRMS Implementation Guide

Post Install Steps for Oracle Payroll (UK)

There are no additional manual post installation steps for Oracle Payroll
(UK). However, ensure that you perform the first two post install steps
for Oracle Human Resources before anyone logs on to Oracle Payroll.
These steps are:

• Run the Generic HR Post Install Driver

• Run the Relevant Post Install Driver for the Legislation

Additional Information: Post Install Steps for Oracle Human
Resources: page C – 2

C – 5Post Install Steps

Post Install Steps for Oracle Training Administration

There are no post install steps for Oracle Training Administration.

C – 6 Oracle HRMS Implementation Guide

Post Install Steps for Oracle SSP/SMP

There are no post install steps for Oracle SSP/SMP.

Glossary – 1

Glossary

A
Absence Types Categories of absence, such as

medical leave or vacation leave, that you
define for use in absence windows.

Alternative Regions Parts of a window that
appear in a stack so that only one is visible
at any time. You click on the name of the
region to pop up a list of the other regions
in the stack. Select the name of a region to
bring it to the top of the stack.

Applicant A candidate for employment in a
Business Group.

Appraisal A ’superset’ of recording opinions
and setting and achieving objectives, plans
and so on. See also: Assessment.

Arrestment Scottish court order made out for
unpaid debts or maintenance payments.
See also: Court Order

Assessment An information gathering
exercise, from one or many sources, to
evaluate a person’s ability to do a job. See
also: Appraisal.

Assignment An employee’s assignment
identifies his or her role and payroll within
a Business Group. The assignment is made
up of a number of assignment components.
Of these, organization is mandatory, and
payroll is a required component for
payment purposes.

Assignment Number A number that uniquely
identifies an employee’s assignment. An
employee with multiple assignments has
multiple assignment numbers.

Assignment Set A grouping of employees
and/or applicants that you define for
running QuickPaint reports and processing
payrolls. See also: QuickPaint Report

Assignment Status For employees, used to
track their permanent or temporary
departures from your enterprise, and to
control the remuneration they receive. For
applicants, used to track the progress of
their applications.

Glossary – 2 Oracle HRMS Implementation Guide

BACS Banks Automated Clearing System.
This is the UK system for making direct
deposit payments to employees.

Balances Positive or negative accumulations
of values over periods of time normally
generated by payroll runs. A balance can
sum pay values, time periods or numbers.
See also: Predefined Components

Balance Adjustment A correction you make
to a balance. You can adjust user balances
and assignment level predefined balances
only.

Balance Dimension The period for which a
balance sums its balance feeds, or the set of
assignments/transactions for which it sums
them. There are five time dimensions: Run,
Period, Quarter, Year and User. You can
choose any reset point for user balances.

Balance Feeds These are the input values of
matching units of measure of any elements
defined to feed the balance.

Base Currency The currency in which Oracle
Payroll performs all payroll calculations for
your Business Group. If you pay
employees in different currencies to this,
Oracle Payroll calculates the amounts based
on exchange rates defined on the system.

Behavioral Indicators Characteristics that
identify how a competence is exhibited in
the work context. See also: Proficiency Level

Benefit Any part of an employee’s
remuneration package that is not pay.
Vacation time, employer–paid medical
insurance and stock options are all
examples of benefits. See also: Elements

Block The largest subordinate unit of a
window, containing information for a
specific business function or entity. Every
window consists of at least one block.
Blocks contain fields and, optionally,
regions. They are delineated by a bevelled
edge. You must save your entries in one
block before navigating to the next. See
also: Region, Field

Budget Value In Oracle Human Resources
you can enter staffing budget values and
actual values for each assignment to
measure variances between actual and
planned staffing levels in an organization or
hierarchy.

Business Group The highest level
organization in the Oracle HRMS system.
A Business Group may correspond to the
whole of your enterprise or to a major
grouping such as a subsidiary or operating
division. Each Business Group must
correspond to a separate implementation of
Oracle HRMS.

C
Calendars In Oracle Human Resources you

define calendars that determine the start
and end dates for budgetary years, quarters
and periods. For each calendar you select a
basic period type. In Oracle SSP/SMP you
define calendars to determine the start date
and time for SSP qualifying patterns.

Glossary – 3

Calendar Exceptions In Oracle SSP/SMP you
define calendar exceptions for an SSP
qualifying pattern, to override the pattern
on given days. Each calendar exception is
another pattern which overrides the usual
pattern.

Career Map A plan showing the expected
routes by which employees can progress
from one job to another within the Business
Group.

Cash Analysis A specification of the different
currency denominations required for
paying your employees in cash. Union
contracts may require you to follow certain
cash analysis rules.

Compensation The pay you give to
employees, including wages or salary, and
bonuses. See also: Elements

Competence Any measurable behavior
required by an organization, job or position
that a person may demonstrate in the work
context. A competence can be a piece of
knowledge, a skill, an attitude or an
attribute.

Competence Profile Where you record
applicant and employee accomplishments,
for example, proficiency in a competence.

Competence Requirements Competencies
required by an organization, job or position.
See also: Competence, Core Competencies

Competence Type A group of related
competencies

Consolidation Set A grouping of payroll runs
within the same time period for which you
can schedule reporting, costing, and
post–run processing.

Contact A person who has a relationship to an
employee that you want to record.
Contacts can be dependents, relatives,
partners or persons to contact in an
emergency.

Core Competencies Competencies required
by every person to enable the enterprise to
meet its goals. See also: Competence

Costable Type A feature that determines the
processing an element receives for
accounting and costing purposes. There are
four costable types in Oracle HRMS:
costed, distributed costing, fixed costing,
and not costed.

Costing Recording the costs of an assignment
for accounting or reporting purposes.
Using Oracle Payroll, you can calculate and
transfer costing information to your general
ledger and into systems for project
management or labor distribution.

Court Order A ruling from a court that
requires an employer to make deductions
from an employee’s salary for maintenance
payments or debts, and to pay the sums
deducted to a court or local authority. See
also: Arrestment

Customizable Forms Forms that your system
administrator can modify for ease of use or
security purposes by means of Custom
Form restrictions. The Form Customization
window lists the forms and their methods
of customization.

Glossary – 4 Oracle HRMS Implementation Guide

D
Database Item An item of information in

Oracle HRMS that has special
programming attached, enabling Oracle
FastFormula to locate and retrieve it for use
in formulas.

Date To and Date From These fields are used
in windows not subject to DateTrack. The
period you enter in these fields remains
fixed until you change the values in either
field. See also: DateTrack, Effective Date

DateTrack When you change your effective
date (either to past or future), DateTrack
enables you to enter information that takes
effect on your new effective date, and to
review information as of the new date. See
also: Effective Date

Deployment Factors See: Work Choices
Descriptive Flexfield A field that your

organization can customize to capture
additional information required by your
business but not otherwise tracked by
Oracle Applications. See also: Key Flexfield

E
Effective Date The date for which you are

entering and viewing information. You set
your effective date in the Alter Effective
Date window. See also: DateTrack

Elements Components in the calculation of
employee pay. Each element represents a
compensation or benefit type, such as
salary, wages, stock purchase plans, and
pension contributions.

Element Classifications These control the
order in which elements are processed and
the balances they feed. Primary element
classifications and some secondary
classifications are predefined by Oracle
Payroll. Other secondary classifications can
be created by users.

Element Entry The record controlling an
employee’s receipt of an element, including
the period of time for which the employee
receives the element and its value. See also:
Recurring Elements, Nonrecurring Elements

Element Link The association of an element to
one or more components of an employee
assignment. The link establishes employee
eligibility for that element. Employees
whose assignment components match the
components of the link are eligible for the
element. See also: Standard Link

Element Set A group of elements that you
define to process in a payroll run, or to
control access to compensation information
from a customized form, or for distributing
costs.

Employment Category A component of the
employee assignment. Four categories are
defined: Full Time – Regular, Full Time –
Temporary, Part Time – Regular, and Part
Time – Temporary.

Event An activity such as a training day,
review, or meeting, for employees or
applicants.

Expected Week of Confinement (EWC) The
week in which an employee’s baby is due.
The Sunday of the expected week of
confinement is used in the calculations for
Statutory Maternity Pay (SMP).

F
Field A view or entry area in a window where

you enter, view, update, or delete
information. See also: Block, Region

Form A predefined grouping of functions,
called from a menu and displayed, if
necessary, on several windows. Forms
have blocks, regions and fields as their
components. See also: Block, Region, Field

Glossary – 5

G
Global Value A value you define for any

formula to use. Global values can be dates,
numbers or text.

Grade A component of an employee’s
assignment that defines their level and can
be used to control the value of their salary
and other compensation elements.

Grade Comparatio A comparison of the
amount of compensation an employee
receives with the mid–point of the valid
values defined for his or her grade.

Grade Rate A value or range of values
defined as valid for a given grade. Used
for validating employee compensation
entries.

Grade Scale A sequence of steps valid for a
grade, where each step corresponds to one
point on a pay scale. You can place each
employee on a point of their grade scale
and automatically increment all placements
each year, or as required. See also: Pay Scale

Grade Step An increment on a grade scale.
Each grade step corresponds to one point
on a pay scale. See also: Grade Scale

Group A component that you define, using
the People Group key flexfield, to assign
employees to special groups such as
pension plans or unions. You can use
groups to determine employees’ eligibility
for certain elements, and to regulate access
to payrolls.

H
Hierarchy An organization or position

structure showing reporting lines or other
relationships. You can use hierarchies for
reporting and for controlling access to
Oracle HRMS information.

I
Input Values Values you define to hold

information about elements. In Oracle
Payroll, input values are processed by
formulas to calculate the element’s run
result. You can define up to fifteen input
values for an element.

K
Key Flexfield A flexible data field made up of

segments. Each segment has a name you
define and a set of valid values you specify.
Used as the key to uniquely identify an
entity, such as jobs, positions, grades, cost
codes, and employee groups. See also:
Descriptive Flexfield

Leaver’s Statement Records details of
Statutory Sick Pay (SSP) paid during a
previous employment (issued as form
SSP1L) which is used to calculate a new
employee’s entitlement to SSP. If a new
employee falls sick, and the last date that
SSP was paid for under the previous
employment is less than eight calendar
weeks before the first day of the PIW for
the current sickness, the maximum liability
for SSP is reduced by the number of weeks
of SSP shown on the statement.

Linking Interval The number of days that
separate two periods of incapacity for
work. If a period of incapacity for work
(PIW) is separated from a previous PIW by
less than the linking interval, they are
treated as one PIW according to the
legislation for entitlement to Statutory Sick
Pay (SSP). An employee can only receive
SSP for the maximum number of weeks
defined in the legislation for one PIW.

Glossary – 6 Oracle HRMS Implementation Guide

Linked PIWs Linked periods of incapacity for
work are treated as one to calculate an
employee’s entitlement to Statutory Sick
Pay (SSP). A period of incapacity for work
(PIW) links to an earlier PIW if it is
separated by less than the linking interval.
A linked PIW can be up to three years long.

Lower Earnings Limit (LEL) The minimum
average weekly amount an employee must
earn to pay National Insurance
contributions. Employees who do not earn
enough to pay National Insurance cannot
receive Statutory Sick Pay (SSP) or
Statutory Maternity Pay (SMP).

M
Maternity Pay Period The period for which

Statutory Maternity Pay (SMP) is paid. It
may start at any time from the start of the
11th week before the expected week of
confinement and can continue for up to 18
weeks. The start date is usually agreed
with the employee, but can start at any time
up to the birth. An employee is not eligible
to SMP for any week in which she works or
for any other reason for ineligibility,
defined by the legislation for SMP.

Menus You set up your own navigation
menus, to suit the needs of different users.

N
Nonrecurring Elements Elements that process

for one payroll period only unless you
make a new entry for an employee. See
also: Recurring Elements

O

Oracle FastFormula An Oracle tool that
allows you to write Oracle HRMS formulas
without using a programming language.

Organization A required component of
employee assignments. You can define as
many organizations as you want within
your Business Group. Organizations can be
internal, such as departments, or external,
such as recruitment agencies. You can
structure your organizations into
organizational hierarchies for reporting
purposes and for system access control.

P
Pattern A pattern comprises a sequence of

time units that are repeated at a specified
frequency. Oracle SSP/SMP uses SSP
qualifying patterns to determine employees
entitlement to Statutory Sick Pay (SSP).

Pattern Time Units A sequence of time units
specifies a repeating pattern. Each time
unit specifies a time period of hours, days
or weeks.

Pay Scale A set of progression points, which
can be related to one or more rates of pay.
Employee’s are placed on a particular point
on the scale according to their grade and,
usually, work experience. See also: Grade
Scale

Payment Type There are three standard
payment types for paying employees:
check, cash and direct deposit. You can
define your own payment methods
corresponding to these types.

Glossary – 7

Payroll A group of employees that Oracle
Payroll processes together with the same
processing frequency, for example, weekly,
monthly or bimonthly. Within a Business
Group, you can set up as many payrolls as
you need.

Performance (within Assessment) An
expectation of ”normal” performance of a
competence over a given period. For
example, a person may exceed performance
expectation in the communication
competence. See also: Proficiency (within
Assessment), Competence, Assessment

Period of Incapacity for Work (PIW) A period
of sickness that lasts four or more days in a
row, and is the minimum amount of
sickness for which Statutory Sick Pay can
be paid. If a PIW is separated by less then
the linking interval, a linked PIW is formed
and the two PIWs are treated as one.

Period Type A time division in a budgetary
calendar, such as week, month, or quarter.

Person Type There are eight system person
types in Oracle HRMS. Seven of these are
combinations of employees, ex–employees,
applicants, and ex–applicants. The eighth
category is ’External’. You can create your
own user person types based on the eight
system types.

Position A specific role within the Business
Group derived from an organization and a
job. For example, you may have a position
of Shipping Clerk associated with the
organization Shipping and the job Clerk.

Predefined Components Some elements and
balances, all primary element classifications
and some secondary classifications are
defined by Oracle Payroll to meet
legislative requirements, and are supplied
to users with the product. You cannot
delete these predefined components.

Proficiency (within Assessment) The
perceived level of expertise of a person in a
competence, in the opinion of the assessor,
over a given period. For example, a person
may demonstrate the communication
competence at Expert level. See also:
Performance (within Assessment), Competence,
Assessment

Proficiency Level A system for expressing and
measuring how a competence is exhibited
in the work context. See also: Behavioral
Indicators.

Progression Point A pay scale is calibrated in
progression points, which form a sequence
for the progression of employees up the pay
scale. See also: Pay Scale

Glossary – 8 Oracle HRMS Implementation Guide

Q
Qualification Type An identified

qualification method of achieving
proficiency in a competence, such as an
award, educational qualification, a license
or a test. See: Competence

Qualifying Days Days on which Statutory
Sick Pay (SSP) can be paid, and the only
days that count as waiting days.
Qualifying days are normally work days,
but other days may be agreed.

Qualifying Pattern See: SSP Qualifying Pattern
Qualifying Week The week during

pregnancy that is used as the basis for the
qualifying rules for Statutory Maternity Pay
(SMP). The date of the qualifying week is
fifteen weeks before the expected week of
confinement and an employee must have
been continuously employed for at least 26
weeks continuing into the qualifying week
to be entitled to SMP.

QuickCode Types Categories of information,
such as nationality, address type and tax
type, that have a limited list of valid values.
You can define your own QuickCode Types,
and you can add values to some predefined
QuickCode Types.

QuickPaint Report A method of reporting on
employee and applicant assignment
information. You can select items of
information, paint them on a report layout,
add explanatory text, and save the report
definition to run whenever you want. See
also: Assignment Set

R
Rates A set of values for employee grades or

progression points. For example, you can
define salary rates and overtime rates.

Rating Scale Used to describe an enterprise’s
competencies in a general way. You do not
hold the proficiency level at the competence
level. See also: Proficiency Level

Recruitment Activity An event or program to
attract applications for employment.
Newspaper advertisements, career fairs
and recruitment evenings are all examples
of recruitment activities. You can group
several recruitment activities together
within an overall activity.

Recurring Elements Elements that process
regularly at a predefined frequency.
Recurring element entries exist from the
time you create them until you delete them,
or the employee ceases to be eligible for the
element. Recurring elements can have
standard links. See also: Nonrecurring
Elements, Standard Link

Region A collection of logically related fields
in a window, set apart from other fields by
a rectangular box or a horizontal line across
the window. See also: Block, Field

Report Parameters Inputs you make when
submitting a report to control the sorting,
formatting, selection, and summarizing of
information in the report.

Report Security Group A list of reports and
processes that can be submitted by holders
of a particular responsibility. See also:
Responsibility

Report Set A group of reports and concurrent
processes that you specify to run together.

Requisition The statement of a requirement
for a vacancy or group of vacancies.

Glossary – 9

Responsibility A level of authority in an
application. Each responsibility lets you
access a specific set of Oracle Applications
forms, menus, reports, and data to fulfill
your business role. Several users can share
a responsibility, and a single user can have
multiple responsibilities. See also: Security
Profile, User Profile Options, Report Security
Group

Retry Method of correcting a payroll run or
other process before any post–run
processing takes place. The original run
results are deleted and the process is run
again.

Reversal Method of correcting payroll runs or
QuickPay runs after post–run processing
has taken place. The system replaces
positive run result values with negative
ones, and negative run result values with
positive ones. Both old and new values
remain on the database.

Rollback Method of removing a payroll run
or other process before any post–run
processing takes place. All assignments
and run results are deleted.

S
Salary Basis The period of time for which an

employee’s salary is quoted, such as hourly
or annually. Defines a group of employees
assigned to the same salary basis and
receiving the same salary element.

Security Profile Security profiles control
access to organizations, positions and
employee and applicant records within the
Business Group. System administrators use
them in defining users’ responsibilities. See
also: Responsibility, User Profile Options

SMP See: Statutory Maternity Pay

Special Information Types Categories of
personal information, such as skills, that
you define in the Personal Analysis key
flexfield.

SSP See: Statutory Sick Pay
SSP Qualifying Pattern An SSP qualifying

pattern is a series of qualifying days that
may be repeated weekly, monthly or some
other frequency. Each week in a pattern
must include at least one qualifying day.
Qualifying days are the only days for which
Statutory Sick Pay (SSP) can be paid, and
you define SSP qualifying patterns for all
the employees in your organization so that
their entitlement to SSP can be calculated.

Standard Link Recurring elements with
standard links have their element entries
automatically created for all employees
whose assignment components match the
link. See also: Element Link, Recurring
Elements

Statutory Maternity Pay You pay Statutory
Maternity Pay (SMP) to female employees
who take time off work to have a baby,
providing they meet the statutory
requirements set out in the legislation for
SMP.

Statutory Sick Pay You pay Statutory Sick
Pay (SSP) to employees who are off work
for four or more days because they are sick,
providing they meet the statutory
requirements set out in the legislation for
SSP.

Glossary – 10 Oracle HRMS Implementation Guide

T
Task Flows A sequence of windows linked by

buttons to take you through the steps
required to complete a task, such as hiring a
new recruit. System administrators can
create task flows to meet the needs of
groups of users.

Terminating Employees You terminate an
employee when he or she leaves your
organization. Information about the
employee remains on the system but all
current assignments are ended.

Termination Rule Specifies when entries of an
element should close down for an employee
who leaves your enterprise. You can define
that entries end on the employee’s actual
termination date or remain open until a
final processing date.

U
User Balances Users can create, update and

delete their own balances, including
dimensions and balance feeds. See also:
Balances

User Profile Options Features that allow
system administrators and users to tailor
Oracle HRMS to their exact requirements.
See also: Responsibility, Security Profile

V
Waiting Days Statutory Sick Pay is not

payable for the first three qualifying days in
period of incapacity for work (PIW), which
are called waiting days. They are not
necessarily the same as the first three days
of sickness, as waiting days can be carried
forward from a previous PIW if the linking
interval between the two PIWs is less than
56 days.

Work Choices Also known as Deployment or
Work Factors. These can affect a person’s
capacity to be deployed within an
enterprise, such willingness to travel or
relocate. You can hold work choices at both
job and position, or at person level.

Work Structures The fundamental definitions
of organizations, jobs, positions, grades,
payrolls and other employee groups within
your enterprise that provide the framework
for defining the work assignments of your
employees.

Index – 1

Index
A
Action classifications, assignment level

interlocks, B – 64
Applicant assignment statuses, 2 – 42
Appraisal, 2 – 46 to 2 – 47
Array select, update and insert buffer size,

payroll action parameters, B – 71
Assessment, 2 – 46 to 2 – 47
Assignment level interlocks, B – 64

action classifications, B – 64
non–sequenced actions, B – 65
overview, B – 5
pay period dependent legislation, B – 66
rolling back/mark for retry, B – 67
sequenced actions, B – 65

Assignment statuses, defining, 2 – 37, 2 – 42
Assignments and elements, B – 6
AuditTrail, 2 – 68 to 2 – 70

B
Balances

Balance Dimensions, A – 118
Balances in Oracle Payroll, A – 115
including values in reports, A – 138
Initial values for UK legislative balances,

A – 143
initialization steps, A – 135
Latest Balances, A – 116

Loading initial balance values, A – 122
Balances and latest balances, Payroll Run,

B – 12
Budgets, implementing, 2 – 49
Business Groups, defining, 2 – 20 to 2 – 22

C
Career planning, 2 – 53
Check Writer, processes, B – 49
Cheque numbering, Cheque Writer, B – 52
Cheque Writer

cheque numbering, B – 52
mark for retry, B – 54
PL/SQL, B – 56
processes, B – 49
rolling back payments, B – 54
SRW2 report, B – 54
voiding and reissuing cheques, B – 53

Competence requirements, 2 – 44 to 2 – 47
Competencies, functions – OTA, 2 – 45 to

2 – 47
Costing process, B – 59
Create run results and values, Payroll Run,

B – 9

Index – 2 Oracle HRMS Implementation Guide

D
Descriptive flexfields, defining, 2 – 12 to 2 – 16

E
Element entry, Payroll Run, B – 8
Element skip rules, Payroll Run, B – 10
Elements and assignments, B – 6
Employee assignment statuses, defining, 2 – 37
Entities for processing, Payroll Run, B – 6
Error reporting, payroll action parameters,

B – 72
Establishments, 2 – 45 to 2 – 47
Evaluation systems, implementing, 2 – 51
Exchange rates, Pre–Payments, B – 23
Expiry checking

latest balance, Payroll Run, B – 12
performance, Payroll Run, B – 12

F
Formula errors, Magnetic Tape, B – 43
Formula interface, Magnetic Tape, B – 41
Formula processing, Payroll Run, B – 15

G
Grade scales, defining, 2 – 26
Grades, defining, 2 – 24

I
Implementation Planning, 1 – 2
Implementing Oracle HRMS

checklists, 1 – 13
flowcharts, 1 – 4
steps, 2 – 2

In memory latest balances, Payroll Run, B – 13
Input values, validation, 2 – 29 to 2 – 30
Interlocks, B – 64

J
Jobs, defining, 2 – 22 to 2 – 24

K
Key flexfields, setting up, 2 – 2 to 2 – 12

L
Letters, generating, 2 – 57
Logging, payroll action parameters, B – 75

M
Magnetic Tape

format, B – 31
formula errors, B – 43
formula interface, B – 41
payments, B – 31
PL/SQL, B – 36
processes, B – 27
reports, B – 33
structure, B – 28

Mark for retry, Cheque Writer, B – 54
Methods of measurement

competencies, 2 – 43 to 2 – 47
rating scales, 2 – 43 to 2 – 47

Miscellaneous, payroll action parameters,
B – 76

N
Non–sequenced actions, assignment level

interlocks, B – 65

O
Oracle Human Resources, post install, C – 2 to

C – 3
Oracle Payroll, post install, C – 4

Index – 3

Oracle Training Administration, post install,
C – 5

Organizations, defining, 2 – 20 to 2 – 22
Overriding – payment method, Pre–Payments,

B – 23

P
Parallel, payroll action parameters, B – 70
Pay Advice report, A – 149
pay period legislation, assignment level

interlocks, B – 66
Pay scales, defining, 2 – 25
Payment, processes, B – 26
Payment – recording manual, Payment, B – 26
Payroll, processes, B – 3
Payroll action parameters, B – 69

array select, update and insert buffer size,
B – 71

error reporting, B – 72
logging, B – 75
miscellaneous, B – 76
parallel, B – 70
payroll process logging, B – 73
rollback, B – 73
summary, B – 69
values, B – 69

Payroll process logging, payroll action
parameters, B – 73

Payroll processes
Costing, B – 59
General Ledger transfer, B – 63

Payroll Run
balances and latest balances, B – 12
create run and values, B – 9
element skip rules, B – 10
entities for processing, B – 6
expiry checking
�	����
	�	����� � � ��
���
���	���� � � ��

formula processing, B – 15
in memory latest balances, B – 13
processes, B – 6
processing each assignment, B – 7
processing element entries, B – 8

processing priority, B – 8
run results in memory latest balances, B – 14
set up contexts, B – 9
writing in memory latest balances, B – 15

Payrolls, defining, 2 – 26 to 2 – 28
Person types, 2 – 37
PL/SQL

Cheque Writer, B – 56
Magnetic Tape, B – 36

Positions, defining, 2 – 22 to 2 – 24
Post install steps

Oracle HRMS, C – 2 to C – 3
Oracle Payroll, C – 4
Oracle SSP/SMP, C – 6 to C – 7
Oracle Training Administration, C – 5

Pre–Payments
exchange rates, B – 23
payment method – overriding, B – 23
preparing cash payments, B – 21
processes, B – 20
setting up payment methods, B – 20
third party payments, B – 23

Preparing cash payments, Pre–Payments,
B – 21

Printing on preprinted stationery, P45 and Pay
Advices, 2 – 56

Processing priority, Payroll Run, B – 8
Processes

Check Writer, B – 49
Cheque Writer, B – 49
Magnetic Tape, B – 27

���	�� � � ��
�	������� � � ��
���������� � � ��

Payment, B – 26
Payroll Run, B – 6
Pre–Payments, B – 20
supporting, B – 4

Processes, PYUGEN, B – 3
Processing each assignment, Payroll Run, B – 7
PYUGEN, B – 3

Index – 4 Oracle HRMS Implementation Guide

Q
Qualification types, 2 – 45 to 2 – 47
QuickCodes, creating QuickCode values,

2 – 17 to 2 – 19

R
Recording manual payment, Payment, B – 26
Reports

defining, 2 – 56
Magnetic Tape, B – 33

Responsibilities, view–all access, 2 – 21 to
2 – 23

Rollback, payroll action parameters, B – 73
Rolling back payments, Cheque Writer, B – 54
Rolling back/mark for retry, B – 67
Run results in memory latest balances, Payroll

Run, B – 14

S
Security, setting up, 2 – 62 to 2 – 68
Sequenced actions, assignment level interlocks,

B – 65
Set up contexts, Payroll Run, B – 9
Setting up payment methods, Pre–Payments,

B – 20
Skills matching, defining requirements, 2 – 52
Special information types, setting up, 2 – 38 to

2 – 43

SSP/SMP, post install, C – 6 to C – 7
SSRW2 report, Cheque Writer, B – 54
Standard letters, setting up, 2 – 57 to 2 – 71
Startup data, 1 – 2
Steps, post install

HRMS, C – 2 to C – 3
Payroll, C – 4
SSP/SMP, C – 6 to C – 7
Training Administration, C – 5

Summary, payroll action parameters, B – 69
Supporting processes, B – 4

T
Third party payments, Pre–Payments, B – 23
Transferring to the General Ledger process,

B – 63

V
Values, payroll action parameters, B – 69
Voiding and reissuing cheques, Cheque Writer,

B – 53

W
Writing in memory latest balances, Payroll

Run, B – 15

Reader’s Comment Form

Oracle HRMS Implementation Guide
A58331–01

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness
of this publication. Your input is an important part of the information we use for revision.

• Did you find any errors?

• Is the information clearly presented?

• Do you need more information? If so, where?

• Are the examples correct? Do you need more examples?

• What features did you like most about this manual? What did you like least about it?

If you find any errors or have any other suggestions for improvement, please indicate the topic, chapter,
and page number below:

Please send your comments to:

Oracle Applications Documentation Manager
Oracle Corporation
500 Oracle Parkway
Redwood Shores, CA 94065
Phone: (650) 506–7000 Fax: (650) 506–7200

If you would like a reply, please give your name, address, and telephone number below:

Thank you for helping us improve our documentation.

	Preface
	About This User’s Guide
	Finding the Latest Information
	Assumptions
	Do Not Use Database Tools to Modify Oracle Applications Data
	Finding Your Way Around the System
	Other Information Sources
	Related User’s Guides
	Installation and System Administration
	Other Information

	About Oracle
	Thank You

	Planning Your Implementation
	Implementing Oracle HRMS
	Following a Plan
	Oracle Applications Implementation Wizard

	Implementation Flowcharts
	Implementation Checklists
	Basic Administration Checklist
	Work Structures Checklist
	Compensation and Benefits Checklist
	People and Assignments Checklist
	Career Management Checklist
	Specific Business Functions Checklist
	Control Checklist

	Implementation Steps
	Implementation Steps: Basic Administration
	Define Key Flexfields
	Define Descriptive Flexfields

	Implementation Steps: Administration
	Implementation Steps: Application Data Export (ADE) and Hierarchy
	Implementation Steps: Work Structures
	Define Organization Structures
	Define Roles
	Define Grade Related Information
	Define Payroll Information

	Implementation Steps: Compensation and Benefits
	Define Input Value Validation
	Define Compensation and Benefits for Information
	Activating Predefined Elements
	Define Balances, Formulas and Results for Payroll Processing
	Salary Administration
	Element Sets

	Implementation Steps: People and Assignments
	Special Personal Information

	Implementation Steps: Recruitment
	Implementation Steps: Career Management
	Methods of Measurement and Creating Competencies
	Competence Requirements
	Define Functionss to Implement the Competence Approach (Oracle Training
	Qualification Types and Establishments
	Assessment and Appraisal

	Implementation Steps: Specific Business Functions
	Absence Management/Accruals of Paid Time Off (PTO)
	Human Resource Budgets
	Evaluation Systems
	Requirements Matching
	Career and Succession Planning

	Implementation Steps: Control
	Define Reports
	Standard Letter Generation
	Define User Security
	Define Audit Requirements

	Technical Essays
	How DateTrack Works
	Behavior of DateTracked Forms
	Table Structure for DateTracked Tables
	Creating a DateTracked Table and View

	How to Create and Modify DateTrack History Views
	What Happens When You Request DateTrack History
	DateTrack History in Forms 2
	DateTrack History in Forms 4
	Rules for Creating or Modifying DateTrack History Views
	List of DateTrack History Views

	The FastFormula Application Dictionary
	Entities in the Dictionary
	Defining New Database Items

	Extending Security in Oracle Human Resources
	Security Profiles
	Security Processes
	Securing Custom Tables

	Creating Control Totals for the Batch Element Entry Process
	Introduction

	API Overview
	APIs in Oracle HRMS
	Understanding the Object Version Number (OVN)
	API Parameters
	API Features
	Flexfields with APIs
	Alternative APIs
	API Errors and Warnings
	Example PL/SQL Batch Program
	WHO Columns and Oracle Alert
	API User Hooks
	Using APIs as Building Blocks
	Handling Object Version Numbers in Oracle Forms 4.5
	HRMS Table Locking Ladder

	Balances in Oracle Payroll
	Overview of Balances
	Latest Balances

	Balance Dimensions
	Initial Balance Loading for Oracle Payroll
	Introduction
	Differences from Release 9
	Steps
	Overview
	Latest Balances
	Setup an Element to Feed Initial Balances
	Setup the Initial Balance Values
	Running the Initial Balance Upload Process
	Balance Initialization Steps

	Including Balance Values in Reports
	The Balance Function

	Including Balance Values in Reports (U.K. Only)
	Advantages
	The Balance Function

	Legislative Balance Initialization (U.K. Only)
	Balance Initialization Elements

	Pay Advice Report (U.K. Only)
	Parameter Values
	Queries
	Groups
	Triggers
	Layout
	Dynamic Sort Order

	Balance View Usage

	Technical Essay on Payroll Processes
	Overview
	PYUGEN
	Payroll Action Parameters
	Overview of the Payroll Processes
	Assignment Level Interlocks

	Payroll Run Process
	Determine Assignments and Elements
	Process Each Assignment
	Create Run Results and Values
	Set Up Contexts
	Element Skip Rules
	Element Entry Processing Modes

	Balances and Latest Balances
	Expiry Checking of Latest Balances
	Expiry Checking and Performance
	Creation and Maintenance of In Memory Latest Balances
	Creation of New In Memory Balances
	Run Results Added to In Memory Balances
	Writing of In Memory Balances
	Formula Processing

	Pre–Payments Process
	Setting Up Payment Methods
	Preparing Cash Payments (U.K. Only)
	Prenotification (Prenoting)
	Consolidation Sets
	Third Party Payments
	Exchange Rates
	Overriding Payment Method
	The Process

	Payment Processes
	Magnetic Tape Process
	The Process
	Magnetic Tape Structure
	Database Items
	Parameter Values
	Magnetic Tape Formats
	Magnetic Tape Payments
	Magnetic Tape Reports
	SRS Definitions
	The PL/SQL Driving Procedure
	The Generic PL/SQL
	The Formula Interface
	FastFormula Errors
	Error Handling

	Cheque Writer/Check Writer Process
	The Process
	Cheque Numbering
	Voiding and Reissuing Cheques
	Mark for Retry
	Rolling Back the Payments
	SRW2 Report
	Using or Changing the PL/SQL Procedure

	Cash Process
	Costing Process
	Example of Payroll Costs Allocation
	Example of Employer Charge Distribution
	Transfer to the General Ledger Process

	Assignment Level Interlocks
	Action Classifications
	Rules For Rolling Back and Marking for Retry

	Payroll Action Parameters
	Action Parameter Values
	Summary of Action Parameters
	Parallel Processing Parameters
	Array Select, Update and Insert Buffer Size Parameters
	Magnetic Tape Specific Parameters
	Error Reporting Parameters
	Rollback Specific Parameters
	Payroll Process Logging
	Logging Parameters
	Miscellaneous Parameters
	System Management of QuickPay Processing

	Post Install Steps
	Post Install Steps for Oracle Human Resources
	Post Install Steps for Oracle Payroll (UK)
	Post Install Steps for Oracle Training Administration
	Post Install Steps for Oracle SSP/SMP

	Glossary
	Index

