

Oracle® JRockit
Introduction

Release R28

E15058-05

December 2011

This document contains information about the Oracle JRockit
JDK

Oracle JRockit Introduction, Release R28

E15058-05

Copyright © 2001, 2011, Oracle and/or its affiliates. All rights reserved.

Primary Author: Savija T.V.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify,
license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means.
Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical
data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the
restrictions and license terms set forth in the applicable Government contract, and, to the extent applicable
by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software License (December 2007). Oracle America, Inc., 500 Oracle Parkway, Redwood City, CA
94065.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle
Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your
access to or use of third-party content, products, or services.

v

Contents

Preface .. vii

Guide to this Document .. vii
Documentation Accessibility .. vii
Conventions .. vii

1 About the Oracle JRockit JDK

1.1 What Is the JRockit JVM?... 1-1
1.2 JRockit Release Numbering Scheme .. 1-2
1.3 Supported Configurations for the Oracle JRockit .. 1-2
1.4 Support and Error Correction Policies... 1-2
1.5 Compatibility Between JRockit and HotSpot ... 1-2
1.6 Contents of a JRockit Installation ... 1-3
1.7 JRockit JVM Command-Line Options.. 1-4

2 Understanding Just-In-Time Compilation and Optimization

2.1 What Happens Inside the JRockit JVM.. 2-1
2.2 How the JRockit JVM Generates Machine Code for Java Applications.............................. 2-2
2.3 Examples of Code Optimization... 2-3

3 Understanding Threads and Locks

3.1 Understanding Threads ... 3-1
3.2 Understanding Locks ... 3-2

4 Understanding Memory Management

4.1 Heap and Nursery .. 4-1
4.2 Object Allocation... 4-2
4.3 Garbage Collection ... 4-2
4.3.1 Mark-and-Sweep Model ... 4-3
4.3.2 Generational Garbage Collection .. 4-4
4.3.3 Garbage Collection Modes ... 4-4
4.4 Compaction.. 4-4

5 Migrating Applications to the JRockit JDK

5.1 Support for Migration Problems... 5-1

vi

5.2 Migration Tasks... 5-2
5.2.1 Make Necessary Changes in the Application Environment ... 5-2
5.2.2 Tune the JRockit JVM for Optimal Performance... 5-3
5.3 Testing the Application.. 5-3
5.4 Replicating Tools Supplied with the HotSpot JDK.. 5-3
5.5 Command-line Option Compatibility Between the JRockit and HotSpot JVMs............... 5-4

6 Setting Up and Running the Oracle JRockit JDK

6.1 Installing the Oracle JRockit JDK.. 6-1
6.2 Setting Up and Verifying Your Windows Environment... 6-1
6.3 Setting Up and Verifying Your Linux Environment ... 6-1
6.4 Setting Up and Verifying Your Solaris Environment .. 6-2

vii

Preface

This preface describes the document accessibility features and conventions used in this
guide—Oracle JRockit Introduction.

Guide to this Document
This document contains the following chapters:

■ Chapter 1, "About the Oracle JRockit JDK" provides an overview of the Oracle
JRockit JDK.

■ Chapter 2, "Understanding Just-In-Time Compilation and Optimization" describes
how Oracle JRockit compiles and optimizes the Java code.

■ Chapter 3, "Understanding Threads and Locks" provides information about
threads and locks in the Oracle JRockit JVM.

■ Chapter 4, "Understanding Memory Management" describes how object allocation
and garbage collection work in the Oracle JRockit JVM.

■ Chapter 5, "Migrating Applications to the JRockit JDK" describes how to migrate
Java applications developed on other JDKs to the JRockit JDK.

■ Chapter 6, "Setting Up and Running the Oracle JRockit JDK" describes the process
of setting up the Oracle JRockit JDK environment.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For
information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are
hearing impaired.

Conventions
The following text conventions are used in this document:

viii

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

1

About the Oracle JRockit JDK 1-1

1About the Oracle JRockit JDK

Oracle JRockit provides tools, utilities, and a complete run-time environment for
developing and running Java applications. JRockit includes the Oracle JRockit JVM,
which is developed and optimized for Intel architectures to ensure reliability,
scalability, and manageability for Java applications.

This chapter contains information about the following topics:

■ Section 1.1, "What Is the JRockit JVM?"

■ Section 1.2, "JRockit Release Numbering Scheme"

■ Section 1.3, "Supported Configurations for the Oracle JRockit"

■ Section 1.5, "Compatibility Between JRockit and HotSpot"

■ Section 1.6, "Contents of a JRockit Installation"

■ Section 1.7, "JRockit JVM Command-Line Options"

1.1 What Is the JRockit JVM?
The JRockit JVM is a high-performance JVM developed to ensure reliability,
scalability, manageability, and flexibility for Java applications. The JRockit JVM
provides improved performance for Java applications deployed on Intel 32-bit (Xeon)
and 64-bit (Xeon and SPARC) architectures at significantly lower costs to the
enterprise. Further, it is the only enterprise-class JVM optimized for Intel architectures,
providing seamless interoperability across multiple hardware and operating system
configurations. The JRockit JVM enables your Java applications to run optimally on
Windows and Linux operating systems (both 32-bit and 64-bit architectures). The
JRockit JVM is especially well-suited for running Oracle WebLogic Server.

For more information about JVMs, see The Java Virtual Machine Specification at:
http://java.sun.com/docs/books/jvms/second_
edition/html/VMSpecTOC.doc.html

About the Oracle JRockit JDK
The JRockit JVM is one component of the JRockit JDK. In addition to the JRockit JVM,
the JDK contains the Java Run-time Environment (JRE). The JRE contains the Java class
libraries (as specified by the Java Platform, Standard Edition 6 API Specification) and a
set of development tools, such as a compiler.

For more information about the contents of the JRockit, see Section 1.6, "Contents of a
JRockit Installation".

JRockit Release Numbering Scheme

1-2 Oracle JRockit Introduction to the JDK

1.2 JRockit Release Numbering Scheme
Every JRockit JVM release comes with several Java versions. For example, JRockit JVM
R28.0 comes with Java SE versions 5.0 and 6. A Java version can be compatible with
multiple JRockit JVM releases.

The JRockit release number consists of the following elements:

■ The JRockit JVM release number (Rnn.nn.nn)

■ The Java version (J2SE 5.0 or Java SE 6)

For example, Oracle JRockit 6 R28.0.0 indicates the 28.0.0 release of JRockit JVM used
with Java SE 6; similarly, Oracle JRockit 5.0 R28.0.0 indicates the 28.0.0 release of the
JRockit JVM used with J2SE 5.0.

The following is an example of a complete release number:

R28.0.0-637-126675-1.6.0_17-20100111-2121-windows-ia32

In this example, R28.0.0 is the JRockit JVM release, 1.6.0_01 is the Java version,
and windows-ia32 is the platform on which the release runs.

1.3 Supported Configurations for the Oracle JRockit
Oracle JRockit is compatible with J2SE 5.0 and Java SE 6.

For a full list of processor types and operating systems that JRockit supports, see
Oracle JRockit Supported Configurations at
http://www.oracle.com/technology/software/products/ias/files/fus
ion_certification.html.

1.4 Support and Error Correction Policies
The Oracle Lifetime Support Policy for Oracle Fusion Middleware is available at
http://www.oracle.com/support/library/brochure/lifetime-support-
middleware.pdf.

The Software Error Correction Policy is available in Support Note ID 950131.1.

1.5 Compatibility Between JRockit and HotSpot

Java APIs
All Java APIs follow the Java compatibility statement
(http://java.sun.com/javase/6/webnotes/compatibility.html).

Proprietary JRockit JVM APIs
■ Official APIs (JMAPI, JRockit JMX beans) cannot be removed or modified except

between major JDK versions. New APIs can be added at any time.

■ Unofficial but supported APIs (jrockit.ext.*) cannot be removed in service
packs.

■ Internal APIs (all jrockit.* except for jrockit.ext.*) can change at any
time.

Contents of a JRockit Installation

About the Oracle JRockit JDK 1-3

Command Line Options
■ Standard options (for example, -server) adhere to the Java compatibility

statement
(http://java.sun.com/javase/6/webnotes/compatibility.html).

■ Nonstandard -X options adhere to the Java compatibility statement
(http://java.sun.com/javase/6/webnotes/compatibility.html).

■ Nonstandard -XX options are handled as follows:

– They cannot be removed unless in association with major JDK updates.

– They can be disabled or their implementation can be changed at any time.

– New -XX options can be added at any time.

1.6 Contents of a JRockit Installation
The JRockit is similar, in the file layout, to the HotSpot JDK, except that the JRockit
includes a new JRE with the JRockit JVM. All of the class libraries have the same
behavior in the JRockit as in the HotSpot JDK.

Table 1–1 describes the contents of the directories in a JRockit installation.

Table 1–1 Contents of a JRockit JDK Installation

Directory Contents

bin The bin directory contains development tools and utilities to help you develop,
execute, debug, and document programs written in the Java programming
language.

The JRockit includes the standard tools distributed with the typical Java JDKs.
Most of these tools work well with Java development projects, but you can use
any other third-party tools, compilers, debuggers, IDEs, and so on that work best
in your situation.

The tools included with the JRockit are:

■ the javac compiler

■ the jdb debugger

■ javadoc, which is used to create documentation in HTML format for the
JVM API

For more information about these tools, see the documentation at
http://java.sun.com/.

demo The demo directory contains demos on using the libraries included in the JRockit
JDK installation.

include The include directory contains header files that support native-code
programming using the Java Native Interface (JNI) and the Java Virtual Machine
Tools Interface (JVMTI), and other functionality of the Java SE Platform.

JRockit JVM Command-Line Options

1-4 Oracle JRockit Introduction to the JDK

1.7 JRockit JVM Command-Line Options
The JRockit JVM configuration and tuning parameters are set by using specific
command-line options, which you can enter either along with the start-up command
or include in a start-up script.

For more information, see the Oracle JRockit Command-Line Reference.

jre The jre directory contains the JRockit JVM implementation of the Java run-time
environment. The run-time environment includes the JRockit JVM, class libraries,
and other files that support running Java programs.

Java Virtual Machine: By definition, the JVM is the JRockit JVM, as described in
this documentation.

Standard Java SE JRE Features: In addition to JRE components specific to the
JRockit, the JRE also contains components found in the HotSpot implementation
of the JRE. For a complete list of the standard Java SE JRE features, see the
following documentation:

■ JRockit 6 R28.x:

http://java.sun.com/javase/6/docs/index.html

■ JRockit 5.0 R28.x:

http://java.sun.com/j2se/1.5.0/docs/index.html

Note about JRE class files: The JRE class files distributed with the JRockit are the
same as those in the HotSpot JDK, except for a small number of files that are
tightly coupled to the JVM and are, therefore, overridden in the JRockit. No
classes are omitted.

lib The lib directory contains additional class libraries and support files required by
the development tools.

sample The sample directory contains the source files for a simple NIO-based
HTTP/HTTPS Server written in Java. The server was written to demonstrate
some features of the Java 2 platform. The demo is not meant to be a full tutorial,
and it is assumed that you have some familiarity with the subject.

Table 1–1 (Cont.) Contents of a JRockit JDK Installation

Directory Contents

2

Understanding Just-In-Time Compilation and Optimization 2-1

2Understanding Just-In-Time Compilation and
Optimization

This chapter offers a high-level look at how the Oracle JRockit JVM generates code. It
provides information about how the JRockit JVM compiles code just-in-time (JIT) and
how it optimizes code to ensure high performance.

This chapter contains information about the following topics:

■ Section 2.1, "What Happens Inside the JRockit JVM"

■ Section 2.2, "How the JRockit JVM Generates Machine Code for Java Applications"

■ Section 2.3, "Examples of Code Optimization"

2.1 What Happens Inside the JRockit JVM
From the user's point of view, the JRockit JVM is a black box that converts Java code to
highly optimized machine code for a specific platform (see Figure 2–1).

Figure 2–1 The JRockit JVM as a Black Box

Figure 1-1 is a representation of the JRockit JVM as a black box. Java code enters the
black box and emerges from it as binary code on a microchip. Along the right edge of
the black box are the three operating systems (Linux, Windows, and Solaris) that the
JRockit JVM supports.

How the JRockit JVM Generates Machine Code for Java Applications

2-2 Oracle JRockit Introduction to the JDK

Figure 2–2 shows what happens to Java code as it passes through the JRockit JVM.
After Java code enters the JRockit JVM, it passes through the operations stage, the data
structure stage, and the transformation stage, before emerging as binary code on a
microchip.

Figure 2–2 Inside the JRockit JVM Black Box

2.2 How the JRockit JVM Generates Machine Code for Java Applications
The code generator in the JRockit JVM runs in the background during the entire run
time of your Java application, automatically adapting the code to run optimally. The
code generator works in three steps, as depicted in Figure 2–3.

Figure 2–3 How the JRockit JVM Generates Machine Code for Your Java Application

Step 1: JIT Compilation
The first step in the machine-code generation process is just-in-time (JIT) compilation.
JRockit does not include an interpreter; so the JIT compilation of the byte code into
native machine code has to occur before a method executes. The JIT compilation is
performed the first time a Java method is called.

Examples of Code Optimization

Understanding Just-In-Time Compilation and Optimization 2-3

The JIT compiler is fast and generates moderately efficient code. This is necessary to
enable the Java application to start and run quickly. Subsequently, profiling reveals
frequently called methods (hot spots) that require further optimization. The JRockit
approach—JIT compilation and no interpreter—results in relatively longer startup
times, but even if the JIT compilation results in only moderately efficient code, the
generated code is still significantly faster than interpreted code.

Step 2: Thread Monitoring
During the second step of the machine-code generation process, the JRockit JVM uses
a sophisticated, low-cost, sampling based technique to identify which functions merit
optimization: a "sampler thread" wakes up periodically and checks the status of
several application threads. It identifies what each thread is executing and logs some
execution history. This information is tracked for all the methods; when the
information indicates that a method is heavily used (hot), that method is earmarked
for optimization. Usually, a flurry of such optimization opportunities occur in the
application's early run stages, with the rate slowing down as execution continues.

Step 3: Code Optimization
Code optimization is a process by which commonly-executed code is recompiled to
make it run more efficiently.

The first time that the JRockit JVM runs a method, the method is compiled into
machine code. This compilation is quick, but the resulting code is not as efficient as it
could be. This code is acceptable for methods that are run once and discarded;
however, if a method is used repeatedly, the system can get a performance boost if the
code for that particular method is regenerated in a more efficient way.

The JRockit JVM optimizes these commonly-executed (hot) methods to make the code
as efficient as possible. The optimization runs in the background and does not
interfere with the running application.

2.3 Examples of Code Optimization
The following code examples show how the JRockit JVM optimizes Java code.

Example 2–1 shows the code before optimization.

Example 2–1 Code Before Optimization

class A {
 B b;
 public void newMethod() {
 y = b.get();
 ...do stuff...
 z = b.get();
 sum = y + z;
 }
}
class B {
 int value;
 final int get() {
 return value;
 }
}
Example 2–2 shows the optimized code.

Examples of Code Optimization

2-4 Oracle JRockit Introduction to the JDK

Example 2–2 Code After Optimization

class A {
B b;
public void newMethod() {
 y = b.value;
 ...do stuff...
 sum = y + y;
}
}
class B {
 int value;
 final int get() {
 return value;
 }
}

Originally, the code contained two calls to the b.get() method. After optimization,
the two method calls are optimized into a single variable-copy operation; that is, the
optimized code does not need to perform a method call to acquire the field value of
class B.

Optimization Process: Step-by-Step
Table 2–1 shows the tasks that the JRockit JVM performs to optimize the code in
Example 2–1.

Note that the optimization process usually does not occur at the Java source code
level. Java source code is used here to provide an easily understandable view of the
optimization process.

Table 2–1 Optimization Process: Step-by-Step

Optimization
Step Code Transformation Comment

Starting point public void newMethod() {
 y = b.get();
 ...do stuff...
 z = b.get();
 sum = y + z;
}

Inline final
method

public void newMethod() {
 y = b.value;
 ...do stuff...
 z = b.value;
 sum = y + z;
}

// b.get() is replaced by b.value
// latencies are reduced by accessing
// b.value directly instead of using
// a function call.

Remove
redundant loads

public void newMethod()
{
 y = b.value;
 ...do stuff...
 z = y;
 sum = y + z;
}

// z = b.value is replaced with
// z = y so that latencies are
// reduced by accessing local value
// instead of b.value.

Examples of Code Optimization

Understanding Just-In-Time Compilation and Optimization 2-5

Copy
propagation

public void newMethod()
{
 y = b.value;
 ...do stuff...
 y = y;
 sum = y + y;
}

// z = y is replaced by y = y because
// there is no use for extra variable
// z; the values of z and y are equal.

Eliminate dead
code

public void newMethod()
{
 y = b.value;
 ...do stuff...
 sum = y + y;
}

// y = y is unnecessary and can be
// eliminated.

Table 2–1 (Cont.) Optimization Process: Step-by-Step

Optimization
Step Code Transformation Comment

Examples of Code Optimization

2-6 Oracle JRockit Introduction to the JDK

3

Understanding Threads and Locks 3-1

3Understanding Threads and Locks

This chapter contains basic information about threads and locks in the JRockit JVM.

A running application usually consists of one process with its own memory space. A
computer generally runs several processes at the same time. For example, a word
processor application process might run at the same time as a media player
application process. A process consists of many threads that run concurrently. When
you run a Java application, a new JVM process starts.

Each Java process has at least one application thread. In addition to the application
threads, the Oracle JRockit JVM uses internal threads for garbage collection, code
generation, and other internal purposes.

You can use thread dumps (printouts of the stacks of all the threads in an application)
to diagnose problems and optimize application and JVM performance. For
information about generating thread dumps, see "Using Thread Dumps" in Oracle
JRockit JDK Tools.

The following sections describe the threads and locks in the JRockit JVM:

■ Section 3.1, "Understanding Threads"

■ Section 3.2, "Understanding Locks"

3.1 Understanding Threads
A Java application consists of one or more threads that run Java code. The JVM
process consists of the Java threads and some JVM-internal threads, for example one
or more garbage collection threads, a code optimizer thread, and one or more finalizer
threads.

The operating system handles Java threads as it does any application thread. Thread
scheduling and priorities are handled by the operating system.

Within Java, the Java threads are represented by thread objects. Each thread also has a
stack, used for storing run-time data. The thread stack has a specific size. If a thread
tries to store more items on the stack than the stack size allows, the thread throws a
stack overflow error.

Default Stack Sizes for Java Application Threads
The default stack sizes vary depending on the operating system you use. Table 3–1
lists the default stack sizes for different operating systems.

Understanding Locks

3-2 Oracle JRockit Introduction to the JDK

You can change the thread stack size with the -Xss command-line option (for
example, java -Xss:512k MyApplication

Default Stack Size for JVM Internal Threads
A special "system" stack size (256 KB on all platforms) is used for JVM internal threads
such as the garbage collection and code generation threads.

3.2 Understanding Locks
When threads in a process share and update the same data, their activities must be
synchronized to avoid errors. In Java, this is done with the synchronized keyword,
or with the wait and notify keywords. Synchronization is achieved by the use of
locks, each of which is associated with an object. For a thread to work on an object, it
must control (hold) the associated lock. Only one thread can hold a lock at a time. If a
thread tries to take control of a lock that is already held by another thread, then it must
wait until the lock is released. When this happens, there is contention for the lock.

Locks can be of four types:

■ Thin locks

A thread that tries to acquire a lock that is held by another thread spins for a short
while. While it spins, the thread continuously checks whether the lock it needs is
still held by the other thread. This is the default behavior on multiple-CPU
systems. Such a lock is called a thin lock.

■ Fat locks

If a thread trying to acquire a lock spins for too long, the CPU resource is
needlessly tied down and not available to execute other code. The CPU resource
can be released, by inflating the thin lock into a fat lock. The operating system
then manages the thread till the required lock becomes available, freeing the CPU
for other tasks.

■ Recursive locks

A lock is recursive if the synchronized code calls itself, either directly or indirectly.

■ Lazy locks

A lazy lock is not released when a critical section is exited. After a lazy lock is
acquired by a thread, other threads that try to acquire that lock must ensure that
the lock is, or can be, released.

Table 3–1 Default Stack Size

Operating System Default Stack Size

Windows IA32 64 KB

Windows x64 128 KB

Linux IA32 128 KB

Linux x64 256 KB

Solaris/SPARC 512 KB

Note: The -Xss command-line option sets the stack size of both
application threads and JVM internal threads.

Understanding Locks

Understanding Threads and Locks 3-3

The JRockit JVM uses a complex set of heuristics to determine when to change from
one type of lock to another.

Lock Chains
Several threads can be tied up in what is called a lock chain. A lock chain can be
defined as follows:

■ Threads A and B form a lock chain if thread A holds a lock that thread B is needs.
If A is not trying to take a lock, then the lock chain is considered to be open.

■ If A–B is a lock chain, and B–C is a lock chain, then A–B–C is a more complete lock
chain.

■ If there is no additional thread waiting for a lock held by C, then A–B–C is a
complete and open lock chain.

Lock Chain Types
The JRockit JVM analyzes the threads and forms complete lock chains. There are three
possible types of lock chains: open, deadlocked and blocked.

■ Open chains

Open chains represent a straight dependency: thread A is waiting for B which is
waiting for C, and so on. If you have long open chains, your application might be
wasting time waiting for locks. If this is the case, then reconsider how locks are
used for synchronization in your application.

■ Deadlocked chains

A deadlocked, or circular, chain consists of a chain of threads, in which the first
thread in the chain is waiting for the last thread in the chain. In the simplest case,
thread A is waiting for thread B, while thread B is waiting for thread A. In thread
dumps, the JRockit JVM selects an arbitrary thread to display as the first thread in
the chain.

Deadlocks cannot be resolved, and the application waits indefinitely.

■ Blocked chains

A blocked chain is a lock chain whose head thread is also part of another lock
chain, which can be either open or deadlocked. For example, if thread A is waiting
for thread B, thread B is waiting for thread A, and thread C is waiting for thread
A, then thread A and B form a deadlocked lock chain, while thread C and thread
A form a blocked lock chain.

Understanding Locks

3-4 Oracle JRockit Introduction to the JDK

4

Understanding Memory Management 4-1

4Understanding Memory Management

Memory management is the process of removing unused objects from the heap, to
make memory available for new objects. This chapter presents basic memory
management concepts and explains how object allocation and garbage collection work
in the Oracle JRockit JVM.

This chapter contains information about the following topics:

■ Section 4.1, "Heap and Nursery"

■ Section 4.2, "Object Allocation"

■ Section 4.3, "Garbage Collection"

■ Section 4.4, "Compaction"

4.1 Heap and Nursery
Java objects reside in an area called the heap, a section of the memory stack that is
created when the JVM starts. The heap can grow or shrink while the application runs.

When the heap becomes full, garbage is collected: The JRockit JVM identifies memory
spaces that contain objects that are being used (live objects). It then reclaims the
memory spaces that do not contain live objects, and makes those spaces available for
allocation to new objects.

The heap is sometimes divided into two generations: a nursery (or young space) and
an old space. The nursery is a part of the heap reserved for allocating new objects.
When the nursery becomes full, garbage is collected by running a special young
collection, through which all objects that have lived long enough in the nursery are
promoted (moved) to the old space, freeing up the nursery for more object allocation.
When the old space is full, garbage is collected there—a process called old collection.

Note: This chapter is primarily about memory management theory.
For information about how to tune the memory management system,
see "Tuning the Memory Management System" in the Oracle JRockit
Performance Tuning Guide.

Note: The JRockit JVM uses more memory than the heap; Java
methods, thread stacks, native handles, and JVM internal data
structures are allocated in a memory space that is separate from the
heap.

Object Allocation

4-2 Oracle JRockit Introduction to the JDK

A multigenerational heap helps reduce the overall garbage collection time. Most
objects allocated in the heap are short-lived. The young collection quickly finds newly
allocated objects in the nursery that are still being used and moves them out of the
nursery to the old space. Typically, a young collection frees a given amount of
memory much faster than an old collection or a garbage collection of a
single-generational heap (a heap without a nursery).

A part of the nursery is reserved as a keep area, for holding objects that were allocated
just before a young collection started. These objects are not garbage collected until the
next young collection.

4.2 Object Allocation
During object allocation, the JRockit JVM distinguishes between small and large
objects. The limit for when an object is considered large depends on the heap size, the
garbage collection strategy, and the platform being used, but is usually between 2 and
128 KB. For more information, see the documentation for the -XXtlaSize
command-line option in the Oracle JRockit Command-Line Reference.

Small objects are allocated in thread local areas (TLAs), which are free chunks of
memory reserved from the heap and given to a Java thread for exclusive use. The
thread can then allocate objects in its TLA without synchronizing with other threads.
When the TLA becomes full, the thread requests for a new TLA. The TLAs are
reserved in the nursery, if one exists; otherwise, they are reserved anywhere on the
heap.

Objects that are larger than the TLA size are allocated directly on the heap. Allocation
of large objects requires more synchronization among the Java threads; the JRockit
JVM uses a system of caches of free chunks of different sizes to reduce the need for
synchronization and to improve the allocation speed.

4.3 Garbage Collection
Garbage collection frees space in the heap for allocating new objects.

The following topics describe how garbage collection works in the JRockit JVM.

■ Section 4.3.1, "Mark-and-Sweep Model"

■ Section 4.3.2, "Generational Garbage Collection"

■ Section 4.3.3, "Garbage Collection Modes"

Note: At times, during a young collection, there might not be
enough memory left in the old space to promote objects from the
nursery. Until memory becomes available in the old space, objects that
are identified for promotion to the old space are instead promoted
within the nursery, resulting in a fragmented nursery. This situation is
known as promotion failure.

In R28.1, the JRockit JVM assesses the likelihood of an upcoming
young collection resulting in a promotion failure, and prevents it by
triggering an old collection.

Garbage Collection

Understanding Memory Management 4-3

4.3.1 Mark-and-Sweep Model
The JRockit JVM uses the mark-and-sweep garbage collection model to perform
garbage collections of the whole heap.

■ During the mark phase, all objects that can be reached directly from Java threads,
native handles, and other root sources; objects that can be reached from the first
set of objects; and so on are marked as being used (live objects). The remaining
objects are considered garbage.

■ During the sweep phase, the heap is traversed to identify the gaps between the
live objects. The gaps are recorded in a free list and are made available for new
object allocation.

The JRockit JVM provides two improved strategies of the mark-and-sweep model:
mostly concurrent and parallel. You can mix the two strategies; for example, you can
run the mostly concurrent mark with a parallel sweep.

Mostly Concurrent Mark-and-Sweep Strategy
The mostly concurrent mark-and-sweep strategy (often called concurrent garbage
collection) allows the Java threads to continue running during large portions of the
garbage collection process. The threads must, however, be stopped a few times for
synchronization.

The mostly concurrent mark phase is divided into four stages:

■ Initial marking

The root set of live objects is identified. This is done while the Java threads are
paused.

■ Concurrent marking

The references from the root-set are followed to find and mark the remaining live
objects in the heap. This is done while the Java threads run.

■ Precleaning

Changes in the heap during the concurrent mark phase are identified and any
additional live objects are found and marked. This is done while the Java threads
run.

■ Final marking

Changes during the precleaning phase are identified and any additional live
objects are found and marked. This is done while the Java threads are paused.

The mostly concurrent sweep phase consists of four stages:

■ Sweeping one half of the heap

This occurs while the Java threads run; object allocation can continue in the part of
the heap that is currently not being swept.

■ A short pause to switch halves

■ Sweeping the other half of the heap

This is done while the Java threads run; object allocation can continue in the part
of the heap that was swept first.

■ A short pause for synchronization and recording statistics

Compaction

4-4 Oracle JRockit Introduction to the JDK

Parallel Mark-and-Sweep Strategy
The parallel mark and sweep strategy (also called the parallel garbage collector) uses
all available CPUs in the system for performing the garbage collection as fast as
possible. All Java threads are paused during the parallel garbage collection.

4.3.2 Generational Garbage Collection
When a nursery exists (as described in Section 4.1, "Heap and Nursery"), its garbage is
collected with a special garbage collection called a young collection. A garbage
collection strategy that uses a nursery is called generational garbage collection.

The young collector used in the JRockit JVM identifies and promotes all live objects in
the nursery that are outside the keep area to the old space. This work is done in
parallel by using all available CPUs. The Java threads are paused during the young
collection.

4.3.3 Garbage Collection Modes
The JRockit JVM automatically selects a garbage collection strategy that optimizes the
application throughput.

The following garbage collection modes are available:

■ throughput (default mode): Optimizes the garbage collector for maximum
application throughput

■ pausetime: Optimizes the garbage collector for short and even pause times

■ deterministic (only available as a part of Oracle JRockit Real Time): Optimizes the
garbage collector for very short and deterministic pause times

For more information, see "Selecting and Tuning a Garbage Collector" in the Oracle
JRockit Performance Tuning Guide.

4.4 Compaction
After a garbage collection, the heap may become fragmented. Numerous free spaces
exist, but each free space is small, making allocation of large objects difficult or
impossible. Free spaces that are smaller than the minimum TLA size cannot be used
and the garbage collector discards them as dark matter until a future garbage
collection frees space next to them, creating a space large enough for a TLA.

To reduce fragmentation, the JRockit JVM compacts a part of the heap at every
garbage collection (old collection). Compaction moves objects closer and further down
in the heap, creating larger free areas near the top of the heap. The size (and position)
of the compaction area and the compaction method are selected by advanced
heuristics, depending on the garbage collection mode used.

Compaction is performed at the beginning of or during the sweep phase and while all
Java threads are paused.

For information about how to tune compaction, see "Tuning the Compaction of
Memory" in the Oracle JRockit Performance Tuning Guide.

External and Internal Compaction
The JRockit JVM uses two compaction methods: external compaction and internal
compaction.

Compaction

Understanding Memory Management 4-5

External compaction moves (evacuates) the objects within the compaction area to free
positions outside the compaction area and as far down in the heap as possible. Internal
compaction moves the objects within the compaction area as far down in the
compaction area as possible, moving them closer.

The JVM selects a compaction method depending on the current garbage collection
mode and the position of the compaction area. External compaction is typically used
near the top of the heap, while internal compaction is used near the bottom, where the
density of objects is higher.

Compaction Area Size and Location
The size and location of the compaction area depends on the garbage collection mode
and the current state of the Java heap.

If the number of references to objects within an area (object density) is high, the
compaction area size is small. Typically the object density is higher toward the bottom
of the heap than toward the top, except at the very top of the heap, which contains
recently allocated objects. So the compaction areas are usually smaller near the bottom
of the heap than at the top of the heap.

Compaction

4-6 Oracle JRockit Introduction to the JDK

5

Migrating Applications to the JRockit JDK 5-1

5Migrating Applications to the JRockit JDK

This chapter describes how to migrate Java applications developed on other JDKs to
the JRockit JDK to ensure optimal performance during run time.

This chapter contains the following topics:

■ Section 5.1, "Support for Migration Problems"

■ Section 5.2, "Migration Tasks"

■ Section 5.3, "Testing the Application"

■ Section 5.4, "Replicating Tools Supplied with the HotSpot JDK"

■ Section 5.5, "Command-line Option Compatibility Between the JRockit and
HotSpot JVMs"

Migrating an application to the JRockit JDK requires you to make a few minor
environmental changes and follow some simple coding guidelines.

This chapter provides instructions and tips to help you complete the migration
process. It also describes the benefits of migration and problems that you might
encounter during migration, and it describes some best Java coding practices to ensure
that your application runs successfully after migrating it to the JRockit JDK.

The JRockit JDK is the default JDK shipped with Oracle WebLogic Server. Although
there are other JDKs available in the market, Oracle recommends that you use JRockit
JDK with Oracle products.

You can migrate applications for all platforms for which Oracle WebLogic Server is
supported with the JRockit JDK. For more information, see the Oracle JRockit JDK
Supported Configurations at
http://www.oracle.com/technology/software/products/ias/files/fus
ion_certification.html.

5.1 Support for Migration Problems
If you have any problems while migrating an application to the JRockit JDK, contact
Oracle through My Oracle Support.

Note: Successful migration to the Oracle JRockit JDK often depends
as much on the application being migrated as on the JVM. Oracle
welcomes suggestions based upon your experiences with migrating
applications to the Oracle JRockit JDK.

Migration Tasks

5-2 Oracle JRockit Introduction to the JDK

When you contact Oracle for support, provide as much information as possible about
the problem; for example, provide the following information:

■ Hardware

■ Operating system and its version

■ Program you are attempting to migrate

■ Stack dumps (if any)

■ A small code example that reproduces the error

■ Copies of any *.dump and *.mdmp/core process memory dump files (on
Windows, the dump files they are stored as *.mdmp; on Linux and Solaris as core
or core.*)

5.2 Migration Tasks
The following topics describe the tasks you must perform to migrate applications from
a third-party JDK to the Oracle JRockit JDK.

■ Section 5.2.1, "Make Necessary Changes in the Application Environment"

■ Section 5.2.2, "Tune the JRockit JVM for Optimal Performance"

5.2.1 Make Necessary Changes in the Application Environment

To migrate from a third-party JDK to the JRockit JDK, make the following changes to
the application environment.

■ Set the JAVA_HOME environment variable in WL_HOME/common/commEnv.cmd
(or .sh) to the appropriate path.

■ Set the JAVA_VENDOR environment variable in WL_HOME/common/commEnv.cmd
(or .sh) to BEA.

■ If you use a start-up script, remove any command-line options that are specific to
third-party JVMs. If possible, replace the third-party options with the Oracle
JRockit JVM-specific equivalents (for example, -Xns). Other flags that might need
to be changed include MEM_ARGS and JAVA_VM.

For more information about the command-line options that the Oracle JRockit
JVM supports, see the Oracle JRockit Command-Line Reference:

■ Change config.xml to point the default compiler settings to the javac compiler
in the JRockit JDK.

Note: The changes described in this section apply primarily to
Oracle WebLogic Server. If you are working with other Java
applications, you must change the scripts and environments
according to how that application is set up.

Note: Ensure that your application is developed to run on the Oracle
JRockit JDK according to the guidelines described in the Oracle JRockit
Application Development Guide.

Replicating Tools Supplied with the HotSpot JDK

Migrating Applications to the JRockit JDK 5-3

5.2.2 Tune the JRockit JVM for Optimal Performance
After you migrate your application to the JRockit JDK, tune the JVM for optimal
performance. For example, you might want to specify a different startup heap size or
set custom garbage collection parameters. For more information about tuning the
JRockit JVM, see Oracle JRockit Performance Tuning Guide.

The nonstandard command-line options (preceded with -X) are critical tools for
tuning a JVM at startup. These options change the behavior of the JRockit JVM to suit
the requirements of different Java applications. If you are migrating an application to
the JRockit JDK, Oracle recommends that you become familiar with the nonstandard
options available to you. For more information, see the Oracle JRockit Command-Line
Reference.

5.3 Testing the Application
After performing the migration tasks described earlier, test your application on the
JRockit JVM.

Some important reasons for testing are:

■ You might find bugs in your application that do not occur on the HotSpot JVM;
for example, synchronization problems.

■ You might have used third-party class libraries that do not follow the Java
specifications and rely on HotSpot-specific classes or behavior.

■ You might have used third-party class files that are not correct. The JRockit JVM
enforces verification rigorously.

To test your application on the JRockit JVM, run the application against any test
scripts or benchmarks that are appropriate for that application. If any problems occur,
handle them as you typically would for the specific application.

5.4 Replicating Tools Supplied with the HotSpot JDK
The following J2SE tools, normally available with the HotSpot JDK, are not shipped
with the JRockit JDK:

■ jinfo

■ jhat

■ jmap

■ jsadebugd

■ jstack

The JRockit JDK provides internal tools that are equivalent to most of the HotSpot
tools. Table 5–1 lists the HotSpot JDK tools and their JRockit JDK equivalents. Some
tools require using the jrcmd feature. For more information, see Oracle JRockit JDK
Tools.

Note: The names of nonstandard options might not be the same
from JVM to JVM. For example, in the JRockit JVM the name of the
nonstandard option to set the nursery in generational concurrent and
generational parallel garbage collectors is -Xns, whereas, in the
HotSpot JVM, the name of the equivalent option is -XX:NewSize.

Nonstandard options are subject to change at any time.

Command-line Option Compatibility Between the JRockit and HotSpot JVMs

5-4 Oracle JRockit Introduction to the JDK

5.5 Command-line Option Compatibility Between the JRockit and
HotSpot JVMs

This section describes the compatibility between the important and commonly used
command-line options available when running the JRockit JVM with the options when
running the HotSpot JVM.

Table 5–2 lists the options that have the same name in both the HotSpot and JRockit
JVMs and but have different functions.

Table 5–3 lists the options that perform the same or similar functions on both the
HotSpot and JRockit JVMs but have different names.

Table 5–1 JRockit JDK and HotSpot JDK: Tool Equivalents

HotSpot Tool
Shipped with
JRockit JDK Oracle JRockit Equivalent

jinfo No jrcmd pid print_properties

jrcmd pid command_line

jmap No JRockit Memory Leak Detector (see Oracle JRockit JDK Tools

The following diagnostic commands:

■ jrcmd pid print_object_summary

■ jrcmd pid verbose_referents

■ jrcmd pid heap_diagnostics

jsadebugd No None

jhat Yes jhat works with the JRockit JVM.

You can also use the JRockit Memory Leak Detector and the
JRockit Flight Recorder.

jstack No jrcmd pid print_threads

jps Yes jrcmd

jstat Yes jstat works with the JRockit JVM.

You can also use the JRockit Flight Recorder and the JRockit
Management Console in Oracle JRockit Mission Control (see
Oracle JRockit JDK Tools).

jstatd Yes jstatd works with the JRockit JVM.

jconsole Yes jconsole works with the JRockit JVM.

You can also use the JRockit Management Console in Oracle
JRockit Mission Control (see Oracle JRockit JDK Tools).

jrunscript Yes jrunscript works with the JRockit JVM.

Table 5–2 Same Name, Different Function

Option HotSpot JVM Function JRockit JVM Function

-Xms Sets the initial size of the
heap

Sets the initial and minimum size of the heap

For more information, see the Oracle JRockit
Command-Line Reference.

Command-line Option Compatibility Between the JRockit and HotSpot JVMs

Migrating Applications to the JRockit JDK 5-5

Table 5–4 lists options available only when using the Oracle JRockit JVM.

Table 5–3 Different Name; Same or Similar Function

HotSpot JVM Option JRockit JVM Option Function

-verbose:gc -Xverbose:gc This option prints log information
about the memory system.

-Xmn, -XX:NewSize, and
-XX:MaxNewSize

-Xns This option sets the size of the
young generation.

-XX:+UseConcMarkSweepGC -Xgc:singlecon This option sets the garbage
collector to use a concurrent
strategy.

-XX:+UseParallelGC -Xgc:parallel This option sets the garbage
collector to use a parallel strategy.

Table 5–4 Options Available Only in the JRockit JVM

Option Function

-XpauseTarget Specifies a suitable pause time for the application

Note: -Xint and -XX:MaxPermSize, which are commonly used
with the Hotspot JVM, are not valid for the JRockit JVM because the
JRockit JVM has neither an interpreter nor a permgen space.

Command-line Option Compatibility Between the JRockit and HotSpot JVMs

5-6 Oracle JRockit Introduction to the JDK

6

Setting Up and Running the Oracle JRockit JDK 6-1

6Setting Up and Running the Oracle JRockit
JDK

This chapter describes the process of setting up the Oracle JRockit JDK environment.

It contains the following topics:

■ Section 6.1, "Installing the Oracle JRockit JDK"

■ Section 6.2, "Setting Up and Verifying Your Windows Environment"

■ Section 6.3, "Setting Up and Verifying Your Linux Environment"

■ Section 6.4, "Setting Up and Verifying Your Solaris Environment"

6.1 Installing the Oracle JRockit JDK
The JRockit JDK is included in several Oracle products, for example Oracle JRockit
Mission Control, Oracle JRockit Real Time and Oracle WebLogic Server. So the JRockit
JDK is installed when you install those products. For more information, see the
installation guide for your specific Oracle product.

6.2 Setting Up and Verifying Your Windows Environment
Several environment variables control the operation of the JRockit JVM on Windows.
For these environment variables to work, the PATH environment variable must point
to the directory of your Java installation:

set PATH=java_installation_directory\bin;%PATH%

6.3 Setting Up and Verifying Your Linux Environment
Keep your Linux environment up to date and ensure that you have a release
supported by Oracle when running the JRockit JDK.

For the list of Linux releases against which the JRockit JDK has been tested, see Oracle
JRockit JDK Supported Configurations at
http://www.oracle.com/technology/software/products/ias/files/fus
ion_certification.html.

The following is the correct path for Linux installations:

export PATH=java_installation_directory/bin:$PATH

Setting Up and Verifying Your Solaris Environment

6-2 Oracle JRockit Introduction to the JDK

Verify Whether the glibc Library is Installed for Linux on IA32
When running the JRockit JVM on Linux IA32, the JVM must be configured to use the
glibc library compiled for the i686 architecture; otherwise, the JRockit JVM might
freeze or crash.

Verify which glibc library is installed by running the following command:

rpm -q --queryformat '\n%{NAME} %{VERSION} %{RELEASE} %{ARCH}\n' glibc

Verify That the /proc File System is Mounted When Running in a chroot(3)
Environment
In some Linux versions, the /proc file system is not mounted when running in a
chroot(3) environment. This might cause the JRockit JVM to become unstable or
crash, because the JVM and some Linux libraries must access information about the
hardware platform from the /proc file system.

To verify that the /proc file system is mounted, run the shell command getconf _
NPROCESSORS_CONF from the command line in your chroot(3) environment. If the
command does not return the correct number of processors in your system, you must
mount the /proc file system before running the JRockit JVM.

6.4 Setting Up and Verifying Your Solaris Environment
The following is the correct path for Solaris installations:

export PATH=java_installation_directory/bin:$PATH

Note that Oracle JRockit JDK R28.x is supported for Solaris only on 64-bit SPARC
systems.

	Contents
	1 About the Oracle JRockit JDK
	2 Understanding Just-In-Time Compilation and Optimization
	3 Understanding Threads and Locks
	4 Understanding Memory Management
	5 Migrating Applications to the JRockit JDK
	6 Setting Up and Running the Oracle JRockit JDK
	Preface
	Guide to this Document
	Documentation Accessibility
	Conventions

	1 About the Oracle JRockit JDK
	1.1 What Is the JRockit JVM?
	1.2 JRockit Release Numbering Scheme
	1.3 Supported Configurations for the Oracle JRockit
	1.4 Support and Error Correction Policies
	1.5 Compatibility Between JRockit and HotSpot
	1.6 Contents of a JRockit Installation
	1.7 JRockit JVM Command-Line Options

	2 Understanding Just-In-Time Compilation and Optimization
	2.1 What Happens Inside the JRockit JVM
	2.2 How the JRockit JVM Generates Machine Code for Java Applications
	2.3 Examples of Code Optimization

	3 Understanding Threads and Locks
	3.1 Understanding Threads
	3.2 Understanding Locks

	4 Understanding Memory Management
	4.1 Heap and Nursery
	4.2 Object Allocation
	4.3 Garbage Collection
	4.3.1 Mark-and-Sweep Model
	4.3.2 Generational Garbage Collection
	4.3.3 Garbage Collection Modes

	4.4 Compaction

	5 Migrating Applications to the JRockit JDK
	5.1 Support for Migration Problems
	5.2 Migration Tasks
	5.2.1 Make Necessary Changes in the Application Environment
	5.2.2 Tune the JRockit JVM for Optimal Performance

	5.3 Testing the Application
	5.4 Replicating Tools Supplied with the HotSpot JDK
	5.5 Command-line Option Compatibility Between the JRockit and HotSpot JVMs

	6 Setting Up and Running the Oracle JRockit JDK
	6.1 Installing the Oracle JRockit JDK
	6.2 Setting Up and Verifying Your Windows Environment
	6.3 Setting Up and Verifying Your Linux Environment
	6.4 Setting Up and Verifying Your Solaris Environment

