
ORACLE Series / Oracle9i New Features / Freeman / 222385-5 / Chapter 1
Blind Folio 1:1

CHAPTER
1

Oracle9i Database Administration
and Management Features

■ The compatibility parameter

■ Oracle-managed datafiles

■ Oracle9i shared memory areas

■ The default temporary tablespace

■ UNDO tablespaces in Oracle9i

■ Resumable space management

■ Persistent initialization parameters

■ Supported platforms for Oracle9i

P:\010Comp\Oracle8\385-5\ch01.vp
Tuesday, December 04, 2001 4:22:11 PM

Color profile: Generic CMYK printer profile
Composite Default screen

2 Oracle9i New Features

ORACLE Series / Oracle9i New Features / Freeman / 222385-5 / Chapter 1
Blind Folio 1:2

W
elcome to the first chapter of Oracle9i New Features. This
chapter is the beginning of your journey into Oracle9i’s new
and enhanced features. Of course, DBAs want features and
enhancements to make the management of their Oracle
databases easier, quicker, and with as little impact on their

users as possible. Oracle9i responds to this need with many new management
features, and it is these features that we will address here.

The Compatibility Parameter
As we begin to review many of the new, changed, and enhanced features of
Oracle9i, a word about the compatibility parameter: this parameter, which is
located in the database parameter file (init.ora), controls which database features
you can, and cannot, use. It might well be a good idea when migrating to Oracle9i
to leave compatibility set to the version of the database you are migrating from until
you are comfortable with Oracle9i. This is because you will not be able to use the
new features of Oracle9i with the compatibility parameter set to a value that is
not 9i. This makes it easier if you find you need to roll back your database upgrade
or migration, since you will not have taken advantage of some Oracle9i feature
that will have to be backed out before you can roll the database back to the
previous version.

Also, certain database default actions (such as creating a tablespace) are
different depending on the value of compatibility. Once you have migrated or
upgraded to Oracle9i and you are comfortable with the new database, set the
compatible parameter to 9.0.0.0, and you can start using some of the new
Oracle9i features that you will find inside this book.

Migration/Upgrade Notes
Generally, all operating systems support a direct migration from Oracle 7.2 or later
to Oracle9i using the mig utility or the database migration assistant. Many platforms
even support migration from Oracle 7.1. If you are running Oracle8i, then you will
need to upgrade the database following your platform-specific instructions. This
generally involves starting the 8i database under the 9i RDBMS software and running
an upgrade script. Please refer to your platform-specific documentation for exact
instructions on migrating or upgrading to Oracle9i from your current Oracle version.

Oracle-Managed Datafiles (OMFs)
The first new Oracle9i feature you are going to learn about in this chapter are
Oracle-Managed Datafiles (OMFs). OMFs give Oracle the ability to manage Oracle
database files for you. OMFs are part of the Oracle9i move to make the Oracle
database easier to manage. Previous to Oracle9i, when you dropped a tablespace,

P:\010Comp\Oracle8\385-5\ch01.vp
Tuesday, December 04, 2001 4:22:12 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 1: Oracle9i Database Administration and Management Features 3

ORACLE Series / Oracle9i New Features / Freeman / 222385-5 / Chapter 1
Blind Folio 1:3

you would also have to remove the physical datafile associated with that tablespace.
With Oracle9i, you can leave physical file management to the database itself, using
OMFs. In this section, you will learn about the types of datafiles that are managed
by this feature, and some of the benefits and restrictions of OMFs. Then you will
learn how to configure your database to take advantage of OMFs, and you will find
some examples of using OMFs.

OMF Uses, Rules, and Restrictions
In this section, you will learn about the uses, rules, and restrictions involved in using
OMFs. First, we’ll look at the concept of using OMFs, when they should be used,
and when they should not. Then we’ll move on to OMF management issues.

Introducing OMF
You can use OMF when creating database datafiles, tempfiles, online redo logfiles,
and database control files. To use OMF, you must first configure the database to
use OMF (see the “Configuring the Database to Use OMF” section). Once the
database is configured for OMF, Oracle will create the datafiles required during the
execution of a DDL statement such as create tablespace—if you do not specifically
define the datafiles associated with that statement. OMF can be associated with
tablespaces, temporary tablespace, redo logs, and control files in Oracle9i. Let’s
look at some specifics of OMF with regards to the creation of tablespaces, redo logs,
and control files.

Tablespace OMF You can create any tablespace using OMF, even the SYSTEM
tablespace. To configure Oracle for this operation, you need to set the db_create_
file_dest parameter in the database parameter file (see “Configuring the Database to
Use OMF,” later in the chapter, for more on configuring OMF). For example, when
you create a tablespace by issuing the create tablespace or create temporary
tablespace commands without any datafile names, Oracle will create the needed
datafile for that tablespace. Also, if you issue the create database command and
do not provide a datafile name for the SYSTEM tablespace, then an OMF datafile
will be created. Also, if you define a DEFULAT tablespace or an UNDO tablespace
in the create database command, then an OMF will be created for each of those
tablespace types. The default size for any OMF is 100M, and the datafile(s) are set
to autoextend with an unlimited maximum extent.

If you wish to define a file size other than 100M for a datafile, include the datafile
keyword, and then include the size parameter (without a filename), and the datafile
will be created at the requested size. You can also include autoextend off to disable
the setting of autoextend on the OMF when it is created. An example of this is
shown here:

CREATE TABLESPACE new_tbs DATAFILE SIZE 500M AUTOEXTEND OFF;

P:\010Comp\Oracle8\385-5\ch01.vp
Tuesday, December 04, 2001 4:22:13 PM

Color profile: Generic CMYK printer profile
Composite Default screen

4 Oracle9i New Features

ORACLE Series / Oracle9i New Features / Freeman / 222385-5 / Chapter 1
Blind Folio 1:4

This next example is of the creation of a tablespace using two OMFs:

CREATE TABLESPACE new_tbs DATAFILE SIZE 500M, SIZE 500M AUTOEXTEND OFF;

You can change the datafile size (via the alter database datafile resize command)
or change the datafile autoextend parameters without affecting the ability of the
Oracle database to manage the datafile.

As datafiles associated with tablespaces fill, they will extend—as long as the
ability to autoextend has not been changed by the DBA. If desired, rather than
extending the existing OMF, the DBA can opt to create an additional datafile for
the tablespace by issuing an alter tablespace add datafile command. If the DBA
does not include the datafile name, then the new datafile added will be an OMF.
You can mix and match OMF and non-OMF datafiles in the same tablespace if
you desire. Oracle will not remove any non-OMF datafiles unless you use the
new including contents and datafiles keyword of the drop tablespace command.

When you drop a tablespace that contains OMF, Oracle will remove the OMFs
associated with that tablespace from the operating system. For example, issuing a
drop tablespace command will cause Oracle to remove the datafiles associated
with that tablespace—as long as they are Oracle managed. Of course, if you have
defined the names and locations of the datafiles, then Oracle will not remove those
datafiles. You will be responsible for that administrative activity yourself.

Another interesting bit of functionality is that you can mix and match OMF with
manually defined ones. For example, the following command is perfectly legal:

CREATE TABLESPACE new_tbs DATAFILE SIZE 500M,
'd:\oracle\oradata\mydb\mydb_new_tbs_02.dbf' SIZE 500M AUTOEXTEND OFF;

In this event, Oracle will create both the OMF and the manually defined datafile.
If you drop the tablespace, the default action will be that Oracle will remove only
the OMF, and the DBA will need to manually remove all datafiles that are not Oracle
managed. This feature can be extended to existing tablespaces that use manually
created datafiles. For examples, adding additional OMFs to an existing tablespace
can expand space allocated to the tablespace created originally in Oracle8i with
manually created datafiles. You will find several examples of Oracle-managed file
operations on redo logfiles later in this section.

Redo Log OMF If you decide to use Oracle-managed redo logfiles, you can
create as many redo log groups as you need, bounded of course by the maxlogfiles
clause setting you used in the create database command. You can multiplex each
of those groups with up to five additional OMF members (again bounded by the
maxlogmembers setting when the database is created). The different redo log group
members are created in different locations, as defined by multiple parameters such
as db_create_online_log_dest_n (see “Configuring the Database to Use OMF,” later
in the chapter, for a list of these parameters).

P:\010Comp\Oracle8\385-5\ch01.vp
Tuesday, December 04, 2001 4:22:13 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ORACLE Series / Oracle9i New Features / Freeman / 222385-5 / Chapter 1
Blind Folio 1:5

Chapter 1: Oracle9i Database Administration and Management Features 5

You can initially create a database with the create database statement, using
OMF redo logs. Simply omit the name of the database datafiles, as you can see in
the example in “Creating a Database Using OMF,” later in the chapter.

Depending on the operating system, if none of the db_create_online_log_dest_n
parameters are set, then one member for each redo log group will get created in the
location pointed to by the db_create_file_dest parameter. If neither parameter is set,
then Oracle will return an error when you issue the create database statement.

If you issue either the alter database drop logfile group or alter database drop
logfile member, Oracle will remove the associated logfile group or member—if they
were created as OMFs. By default, Oracle-managed redo logs are 100M in size. You
will find several examples of Oracle-managed file operations on redo logfiles later
in this section.

Control File OMF If the CONTROL_FILES parameter is not listed in the database
parameter file when you create the database, and if the database parameter db_
create_online_log_dest_n is configured, Oracle will create the control files for you
as OMF in the directories defined. As with the redo logfiles, you can configure the
database so up to five copies of the control files will be created (see the upcoming
“Configuring the Database to Use OMF” section). If the db_create_file_dest
parameter is set, but the db_create_online_log_dest_n is not, then a single control
file is created in the db_create_file_dest. If the db_create_online_log_dest_n
parameters are set, then the control files will be written there.

Depending on the operating system, if neither the control_files, db_create_
online_log_dest_n nor the db_create_file_dest parameters are set, Oracle might
choose to do a couple of things. In some cases, Oracle might create an OMF control
file in a default directory that is OS specific. In this case, the control files will not be
Oracle-managed control files. If you wish the control files to be Oracle managed,
you will need to make sure that the OMF parameters (either db_create_file_dest or
db_create_online_log_dest_n) are correctly set. On some platforms, Oracle will
simply signal an error if the location of the control file is not defined by the presence
of the control_files parameter.

When to Use, and Not to Use, OMF
Oracle OMF is useful in different situations. First, it is quite useful in low-use smaller
databases to reduce the administrative overhead associated with such a database.
This feature reduces the overall administrative overhead required for such databases
and also helps to ensure that old, unused datafiles do not reduce the overall
availability of disk space. Configuring the database to use this feature does not
imply that the alternative ability to define datafile names and locations is not
available. In fact, you can use both features of the database if you choose.

The OMF feature can be particularly useful for development and test databases.
With this feature, you can allow the developers some latitude to create and remove
their own tablespaces (though there is no support at this time for forcing the use
of OMF).

P:\010Comp\Oracle8\385-5\ch01.vp
Tuesday, December 04, 2001 4:22:14 PM

Color profile: Generic CMYK printer profile
Composite Default screen

6 Oracle9i New Features

ORACLE Series / Oracle9i New Features / Freeman / 222385-5 / Chapter 1
Blind Folio 1:6

Another use of OMF is to simplify management of a standby database. Previously,
when you added a tablespace or datafile to the primary database, human intervention
was required on the standby database to perform the same operation. Now, with
OMF, this is no longer the case. If the standby database is configured to use OMF,
then the creation of a tablespace or addition of a datafile to the primary database
will result in the automated creation of that tablespace or datafile on the standby
server. No other administrative activity is required.

NOTE
If datafiles are removed from the primary database,
Oracle will not automatically remove the related
datafiles on the standby database.

Also, if you have a large database environment that is using large disk arrays,
you might find OMF of use to you as well. In these environments, typically a small
number of large file systems are created that are striped across a number of disks.
The main idea is to stripe across as many disks as you can. This can cause
significant performance gains.

OMF is not an appropriate choice for use with a high-volume or mission-critical
database that is not using high-end striped disk arrays. For example, OMF would not
be recommended on systems with many smaller file systems, or systems running
RAID-5. This is because the nature of managed datafiles is such that such DBA tasks
as IO distribution are not really supportive of this feature (and kind of defeat the
whole purpose, in a way). Also, the managed datafile feature does not support the
use of raw disk devices.

Administering OMF
When Oracle creates managed database datafiles, it follows a naming convention for
these datafiles. You cannot create a new datafile using the OMF naming convention.
Any attempt to do so will result in an error. The naming conventions of the database
datafiles are shown in the following table. (Note that these might be different for
various operating system ports. Check your operating system documentation for the
file-naming convention used.)

File Type Naming Convention Example

Datafile ora_{tablespace_name}_
{unique character string}.dbf

ORA_NEW_TBS_ZV3NZF00.DBF

Tempfile ora_{tablespace_name}_
{unique character string}.tmp

ORA_TEMP_TBS_ZV3NZF01.DBF

Redo logfile ora_{online redo log group
number}_{unique character
string}.log

ORA_4_ZV307100.LOG

Control file ora_{unique character string}.ctl ORA_4_ZV307100.CTL

P:\010Comp\Oracle8\385-5\ch01.vp
Tuesday, December 04, 2001 4:22:14 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 1: Oracle9i Database Administration and Management Features 7

ORACLE Series / Oracle9i New Features / Freeman / 222385-5 / Chapter 1
Blind Folio 1:7

NOTE
Up to eight characters of the tablespace name
are used. This is why the second part of the name,
the unique character string, is important, as two
tablespaces might have unique names, but the
first eight characters of the tablespace might be
the same.

As a DBA, you can use the names of OMF in SQL statements, just as you would
normal datafiles. For example, you can use the alter database rename file or alter
tablespace rename datafile commands to rename an Oracle database-managed
datafile, you can drop a specific Oracle-managed redo logfile with the alter
database drop logfile command, and so on.

To rename an OMF datafile, you will first need to offline the tablespace that
the OMF datafile is associated with (or offline the OMF datafile). Then, physically
rename the datafile at the OS level. Once you have renamed the OMF file, you can
issue the rename command from within the database (using the alter database or
alter tablespace command) to rename the OMF within the database. Finally, online
the tablespace or datafile.

If you rename the OMF datafile using a file-naming convention that does not
follow the OMF naming convention, that file will no longer be an OMF. Finally, you
cannot rename any existing non-OMF Oracle datafile to a filename that has “ORA_”
at the beginning. This will cause an error, as ORA_ prefixes are reserved for OMF.

Here is an example of renaming an existing OMF datafile:

alter session set db_create_file_dest = '/home1/teach3';
create tablespace sdgtest4 datafile size 2m;
select file_name,tablespace_name
from dba_data_files where tablespace_name = 'SDGTEST4';
FILE_NAME TABLESPACE_NAME
-- --------------------
/home1/teach3/ora_sdgtest4_xx5vcmqf.dbf SDGTEST4

ALTER TABLESPACE sdgtest4 OFFLINE;

HOST ls
ora_sdgtest4_xx5vcmqf.dbf
host mv ora_sdgtest4_xx5vcmqf.dbf ora_sdgtest4_xx5vsdg4.dbf
alter tablespace sdgtest4 rename datafile

'/home1/teach3/ora_sdgtest4_xx5vcmqf.dbf' to
'/home1/teach3/ora_sdgtest4_xx5vsdg4.dbf';

ALTER TABLESPACE sdgtest4 ONLINE;

The backup and recovery procedures for Oracle-managed database datafiles
are no different than those for DBA managed datafiles. Also, the use of the Oracle

P:\010Comp\Oracle8\385-5\ch01.vp
Tuesday, December 04, 2001 4:22:15 PM

Color profile: Generic CMYK printer profile
Composite Default screen

imp and exp utilities are not affected by the presence of OMF. The procedure
for recovering from the loss of a control file when using backup control files or
re-creating the control file using the results of an alter database backup control file
to trace has not changed either.

Configuring the Database to Use OMF
To use OMF, you first must configure certain database parameters. These
parameters define the locations that the different OMF should be created in. The
parameters associated with OMF are seen in Table 1-1 (you can find examples in
the “Examples of Using OMF” section, next).

Note that each of the parameters described in Table 1-1 can be dynamically
altered via the alter system or the alter session command, such as

ALTER SYSTEM SET DB_CREATE_FILE_DEST='d:\oracle\data\my_datafiles';

8 Oracle9i New Features

ORACLE Series / Oracle9i New Features / Freeman / 222385-5 / Chapter 1
Blind Folio 1:8

Parameter Name Default Purpose

db_create_file_dest None This defines the file system
where OMF and tempfiles
are to be located. This
location is also used for
Oracle-managed control
files and redo logs if the
DB_CREATE_ONLINE
_LOG_DEST_n parameter
is not configured.

db_create_online_log_dest_n None This parameter defines the
file system location where
Oracle-managed online
redo logs are to be
created. The n value is
replaced by a number,
1–5. This allows for up
to 5 multiplexed copies
of each redo log group
member, and up to 5
copies of the control
files to be created.

TABLE 1-1. Database Parameters

P:\010Comp\Oracle8\385-5\ch01.vp
Tuesday, December 04, 2001 4:22:15 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 1: Oracle9i Database Administration and Management Features 9

ORACLE Series / Oracle9i New Features / Freeman / 222385-5 / Chapter 1
Blind Folio 1:9

Changing the location to create files does not affect Oracle’s ability to manage
datafiles already created in other directories.

NOTE
Even if you have not configured db_create_file_dest
or db_create_online_log_dest_n, you can still
configure them dynamically and take advantage
of OMF without having to shut down and restart
the database.

Examples of Using OMF
In this section, you will learn about the various database operations that can use
OMF. First, you will configure a parameter file so you can use OMF. You will then
learn about creating a database using OMF for the SYSTEM tablespace, UNDO
tablespace, default tablespace, redo logs, and control files. We will then move on
to examine the impacts of several different types of operations involving OMF. This
includes dropping tablespaces and adding and removing online redo logs to the
database. In this example, we will be using my Oracle9i database, called mydb.

NOTE
These examples are not intended to be a “how-to”
on the overall process of the creation of a database.
There are several steps that occur before and after
the steps being demonstrated. It is assumed that you
are already familiar with the procedure to create
a database.

Configuring the Database to Use OMF
The first step in using OMF is to configure the init.ora database parameter file to
support the use of this feature. Here is an example of the init.ora for the mydb
(we have left out many of the settings that don’t pertain to configuration of OMF).

db_name=mydb
undo_management=auto
undo_tablespace=myundotbs
DB_CREATE_FILE_DEST=c:\oracle\admin\mydb\data
DB_CREATE_ONLINE_LOG_DEST_1=c:\oracle\admin\nydb\redo
DB_CREATE_ONLINE_LOG_DEST_2=d:\oracle\admin\nydb\redo

In this example, the mydb database has been set up to use automated undo
management. An UNDO tablespace called MYUNDOTBS has been defined as the
db_create_file_dest parameter, which serves to enable the Oracle-managed datafile

P:\010Comp\Oracle8\385-5\ch01.vp
Tuesday, December 04, 2001 4:22:16 PM

Color profile: Generic CMYK printer profile
Composite Default screen

feature. In this case, when Oracle creates a datafile, it puts it in the c:\oracle\
admin\mydb\data directory.

Next, two different directory locations for redo logs and control files to be
created in have been defined using the db_create_online_log_dest_1 and db_
create_online_log_dest_2 parameters. Notice that the directories are using two
different drives to protect the redo logs and control files from accidental erasure
and for some IO balancing.

Creating a Database Using OMF
Now let’s create our database! If we wanted to just let Oracle do all the work for us,
we could actually just issue the command create database. In this case, if the OMFs
are configured in the init.ora, Oracle will create everything for you. To exert a bit
more control over our database creation process, however, let’s use the following
create database command to create the mydb database:

CREATE DATABASE mydb
DATAFILE SIZE 200M
LOGFILE GROUP 1 SIZE 20M, GROUP 2 SIZE 20M
DEFAULT TEMPORARY TABLESPACE dflt_ts TEMPFILE SIZE 50M
UNDO TABLESPACE undo_ts DATAFILE SIZE 50M
MAXLOGFILES=5
MAXLOGMEMBERS=5
MAXDATAFILES=200
NOARCHIVELOG;

So, in our example, the database mydb will be created with a SYSTEM
tablespace that is 200M in size. Based on the parameters we set in the previous
section, the datafile for the SYSTEM tablespace will reside in the directory c:\oracle\
admin\mydb\data. Next, we have defined a default temporary tablespace called
dflt_ts. This tablespace is 50M in size and will also be created in c:\oracle\
admin\mydb\data. We have also created an UNDO tablespace called undo_ts that
is 50M in size. Again, this tablespace’s datafile will be in c:\oracle\admin\mydb\
data. When this database is created, the redo logfiles will be created in two locations.
The first member of each group will be in the directory c:\oracle\admin\mydb\redo,
and the second will be in the d:\oracle\admin\mydb\redo directory.

Management of OMF
Now that our database is created, let’s look at some examples of administrative
functions involving OMF. This includes adding and dropping tablespaces. Other
administrative items you will learn about are the changing of the default locations
for datafile creations and the process of adding and dropping redo logs from a
database that is using OMF.

10 Oracle9i New Features

ORACLE Series / Oracle9i New Features / Freeman / 222385-5 / Chapter 1
Blind Folio 1:10

P:\010Comp\Oracle8\385-5\ch01.vp
Tuesday, December 04, 2001 4:22:16 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Adding a Tablespace Adding a tablespace is a simple operation when using
OMF. Simply issue the create tablespace command with only the name of the
tablespace, and Oracle will create the tablespace using the 100M default datafile
size, as shown in this example:

CREATE TABLESPACE auto_created_tbs;

If we wanted a larger tablespace created, we could include the DATAFILE
clause and indicate what the size of the datafile should be. Also, in this next case,
the datafile’s ability to extend will be disabled by including the NOEXTEND clause
in the statement. The resulting statement is seen in this example:

CREATE TABLESPACE bigger_tbs DATAFILE 200M NOEXTEND;

The previous statement creates a 200M datafile, and disables the AUTOEXTEND
functionality of the datafile. You can also use OMF when creating temporary
tablespaces, as shown in this example:

CREATE TEMPORARY TABLESPACE temp_obj_tbs DATAFILE 200M NOEXTEND;

Dropping a Tablespace Now that we have created tablespaces, there will be
a need to drop them from time to time. In this example, let’s drop the bigger_tbs
we created earlier in this section. Simply use the drop tablespace command, and
Oracle will handle the rest, as shown in the following example:

DROP TABLESPACE bigger_tbs;

The datafile for the bigger_tbs tablespace will be dropped by Oracle
automatically during the execution of the statement.

NOTE
Even if the db_create_file_dest parameter has been
changed, Oracle will remove any OMF—as long as
it remains in its original directory.

NOTE
The including contents clause of the drop
tablespace statement has had a new clause added to
it, and datafiles. When this clause is included in the
drop tablespace command, the tablespace will be
dropped and all associated datafiles will be dropped
as well. This is a new feature in Oracle9i!

Chapter 1: Oracle9i Database Administration and Management Features 11

ORACLE Series / Oracle9i New Features / Freeman / 222385-5 / Chapter 1
Blind Folio 1:11

P:\010Comp\Oracle8\385-5\ch01.vp
Tuesday, December 04, 2001 4:22:18 PM

Color profile: Generic CMYK printer profile
Composite Default screen

12 Oracle9i New Features

ORACLE Series / Oracle9i New Features / Freeman / 222385-5 / Chapter 1
Blind Folio 1:12

Changing the Location of Datafile Creation The alter system and alter
session commands can be used to alter all the parameters associated with OMF.
Thus, we can change the location that database datafiles, as well as redo logs,
are created in. Here is an example of changing the location of the parameter
db_create_file_dest, and then creating a datafile after that operation:

ALTER SYSTEM SET DB_CREATE_FILE_DEST='d:\oracle\admin\mydb\data';
CREATE TABLESPACE new_tbs DATAFILE SIZE 150m NOEXTEND;

In this case, any newly created datafile will be created in the d:\oracle\admin\
mydb\data directory. If we dropped any tablespace that had datafiles in the old
directory, those datafiles would be removed by Oracle, just as Oracle would
remove the datafiles for the new_tbs tablespace just created.

Adding a Redo Log Group When we created our database, two redo log
groups of 200M each were defined for our database. Let’s create a third logfile
group. To do this, simply issue the following command:

ALTER DATABASE ADD LOGFILE;

Alternatively, you can issue the following command:

ALTER DATABASE ADD LOGFILE GROUP 3 SIZE 300M;

Note that in this example we have indicated that the redo log group will be
300M, as opposed to the 100M default size.

Dropping a Redo Log Group Perhaps you have discovered that your existing
redo log members are not large enough and you wish to re-create them so they are
larger. In this case, first you need to remove one of the existing redo log groups,
and then re-create it. This is a simple operation, performed with the alter database
command:

ALTER DATABASE DROP LOGFILE GROUP 1;

Something to keep in mind is that it’s not possible to add an additional log
group member that is an OMF (that is, alter database add logfile member to group
2). You can drop an OMF redo log member, however, with the alter database drop
logfile member. In this event, Oracle will remove the dropped redo log member.

NOTE
As a DBA, you should already be aware that if you
are going to drop a logfile group, it cannot be the
current logfile group.

P:\010Comp\Oracle8\385-5\ch01.vp
Tuesday, December 04, 2001 4:22:19 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 1: Oracle9i Database Administration and Management Features 13

ORACLE Series / Oracle9i New Features / Freeman / 222385-5 / Chapter 1
Blind Folio 1:13

Managing Oracle9i Shared
Memory Areas
Oracle9i has made several changes to the management of shared memory areas
contained with the SGA. This includes database parameter changes, the ability to
dynamically change shared memory allocations, and the ability to support multiple
database block sizes within the Oracle9i database. Let’s look at each of these
features, and how they relate to Oracle9i memory areas, in a bit more detail.

Multiple Database Block Size Support
Oracle now supports multiple database block sizes. This was done, in part, to allow
transportable tablespaces to be plugged in from databases with differing database
block sizes. Each Oracle9i database has a standard block size assigned, which is
defined by the DB_BLOCK_SIZE parameter and is assigned to the database when
it is created. This block size must be used for the SYSTEM, TEMPORARY, and
ROLLBACK tablespaces and is the default block size used for other tablespaces.
As with previous versions of Oracle, once you determine the standard block size,
it is set in stone unless you re-create the database. When you upgrade from Oracle8i
to Oracle9i, the standard block size for your database will be whatever the block
size of the Oracle8i database was when it was created.

When creating a tablespace, you can use the BLOCKSIZE parameter of the
create tablespace command to create that tablespace using a nonstandard block
size. Oracle9i can support up to four nonstandard block sizes that can range
anywhere from 2K to 32K in size, depending on operating-system restrictions.

CREATE TABLESPACE my_16k_tbs
BLOCKSIZE 16k
DATAFILE 'd:\oradata\mydb\data\my_8k_tbs.dbf' size 100m;

The DBA_TABLESPACES and V$DATAFILE views have had a block-size column
added to them that defines the assigned block sizes for each tablespace, as shown in
this example:

SQL> select tablespace_name, block_size
2 FROM dba_tablespaces
3 where tablespace_name = 'MY_16K_TBS';

TABLESPACE_NAME BLOCK_SIZE
------------------------------ ----------
MY_16K_TBS 16384

NOTE
To use nonstandard block sizes, you must set up
some subcaches in shared memory. This will be
discussed in the following section.

P:\010Comp\Oracle8\385-5\ch01.vp
Tuesday, December 04, 2001 4:22:20 PM

Color profile: Generic CMYK printer profile
Composite Default screen

14 Oracle9i New Features

ORACLE Series / Oracle9i New Features / Freeman / 222385-5 / Chapter 1
Blind Folio 1:14

New Oracle9i Memory Database
Initialization Parameters
Oracle9i has introduced several new database initialization parameters that have
impacts on memory allocations in the database. In this section, you will learn
about the new db_cache_size parameter and the memory subcache configuration
parameters introduced to support the new multiple database block size features
of Oracle9i.

The db_cache_size Parameter
Oracle9i has depreciated the db_block_buffers parameter, which controls the size
of the database buffer cache component of the SGA, in favor of a new parameter,
db_cache_size. This parameter is defined in bytes (K and M can be used to indicate
kilobytes and megabytes) and allocates memory in blocks based on the standard
block size of the Oracle9i database (just as db_block_buffers does). Note that the
db_block_buffers parameter is backward compatible. The new features of Oracle9i
(such as being able to dynamically change the size of the database buffer cache,
or the use of multiple database block sizes) are not available when using the
db_block_buffers parameter, and you cannot define both parameters at the
same time. If you try, an ORA-00381 error will be raised.

NOTE
When you migrate or upgrade your 7.x, 8.x, or 8i
Oracle database to Oracle9i, you will probably
want to replace the db_block_buffers parameter
with the db_cache_size parameter. Do this so you
can take advantage of the new Oracle9i features
such as dynamically changeable SGA memory
configurations.

The db_keep_cache_size and db_recycle_cache_size Parameters
As with the db_block_buffers parameter, the buffer_pool_keep and buffer_pool_
recycle parameters have been depreciated in favor of new parameters in Oracle9i.
The new parameter db_keep_cache_size replaces the buffer_pool_keep parameter.
The new db_recycle_cache_size parameter replaces the buffer_pool_recycle
parameter. Both old parameters are still available for backward compatibility,
but the old parameters are not dynamically alterable as the new parameters are.
Also, you cannot use both the old and new parameters at the same time.

P:\010Comp\Oracle8\385-5\ch01.vp
Tuesday, December 04, 2001 4:22:21 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 1: Oracle9i Database Administration and Management Features 15

ORACLE Series / Oracle9i New Features / Freeman / 222385-5 / Chapter 1
Blind Folio 1:15

NOTE
In Oracle9i, the db_keep_cache_size and
db_recycle_cache_size memory areas are separate
memory areas and are not allocated out of the
default buffer pool, as was the case in Oracle8i
and the buffer_pool_keep and buffer_pool_recycle
parameters.

Configuring Memory Subcaches
To take advantage of Oracle9i support for multiple block sizes, you will need to
allocate shared memory subcaches. Five new parameters are introduced in Oracle9i
to support the subcaching feature: db_2k_cache, db_4k_cache, db_8k_cache,
db_16k_cache, and db_32k_cache. These parameters are defined in bytes, and
Oracle allows the use of K to denote kilobytes and M to indicate megabytes. Note
that these allocations require additional memory, and are not taken from the
memory allocated by the db_cache_size parameter. Additionally, you cannot use
the subcache parameter that is the same for the block size of your database. Thus,
if your db_block_size is 4K, you cannot use the db_4k_cache parameter. An example
of setting these parameters would look like this:

DB_2K_CACHE_SIZE=8364032
DB_8K_CACHE_SIZE=8000K

In this example, three different memory caches have been allocated. First, the
2K cache is allocated about 8 megabytes, defining the cache size in bytes. Second,
the 8K cache is allocated with about 8 megabytes by defining the cache size in
kilobytes using the K indicator. Finally, we allocate 10 megabytes to the 16K cache
by using the M identifier. Note that each memory cache is considered part of the
overall size of the SGA. Also note that, in each case, Oracle might choose to round
the allocations to the nearest granule size. For example, in our last case, Oracle
might well round the 10M to 12M, which would be the nearest granule multiple.
A granule is a unit of contiguous memory whose size depends on the estimated total
size of the SGA. A granule is either 4 megabytes (in the case where the estimated
SGA total size will be less than 128 megabytes); or if the database is to be larger than
128 megabytes, then the granule will be 16 megabytes. All growth and shrinkage of
SGA structures is done based on granule boundaries.

Data Dictionary Views and Memory Subcaches
When you create a memory subcache, the individual subcaches do not appear in
V$SGA. The total combined memory allocated to all the subcaches and the default

P:\010Comp\Oracle8\385-5\ch01.vp
Tuesday, December 04, 2001 4:22:22 PM

Color profile: Generic CMYK printer profile
Composite Default screen

cache will appear in V$SGASTAT under the line for the setting of db_block_buffers.
If you want to see the individual pools, you will need to use the v$buffer_pool view,
as shown in this example:

SQL> select id, name, block_size, current_size, buffers
2 from v$buffer_pool;

ID NAME BLOCK_SIZE CURRENT_SIZE BUFFERS
---------- -------------------- ---------- ------------ ----------

1 KEEP 8192 0 0
2 RECYCLE 8192 0 0
3 DEFAULT 8192 4 501
4 DEFAULT 2048 12 5676
5 DEFAULT 4096 0 0
6 DEFAULT 8192 0 0
7 DEFAULT 16384 12 759
8 DEFAULT 32768 0 0

In this case, we see that three buffer pools are currently defined. The name
column contains the type of buffer pool. In the case of subcaches and the default
buffer pool, the name is always default. The BLOCK_SIZE column is what really tells
us what is going on. In this case, there is the default buffer pool for our block size,
which is 8K. Also there are the 2K and 16K buffers established, as can be seen from
the output. The CURRENT_SIZE column gives the current size of the individual
buffer cache in megabytes. Note that this size might actually be larger than the
size that was defined for it because Oracle will round the subcache size up to the
nearest granule (see the next section for more on granules). The buffers column
indicates how many BUFFERS are currently allocated to the cache.

Dynamically Changeable Shared Memory
Often, when performance-tuning a system, you will find you need to change the
size of the database buffer cache or the shared pool. Previous to Oracle9i, this
would require a shutdown of the database system. For 24/7 environments, shutting
down a system, even for a short time, can mean lost productivity, lost business,
even lost customers.

Oracle9i solves this problem by allowing the DBA to dynamically alter the size
of the shared memory areas. This includes the principle areas of the SGA:

■ The default database buffer cache

■ The memory subcaches

■ The shared pool

NOTE
The redo log buffer, large pool, and java pools
cannot currently be dynamically resized.

16 Oracle9i New Features

ORACLE Series / Oracle9i New Features / Freeman / 222385-5 / Chapter 1
Blind Folio 1:16

P:\010Comp\Oracle8\385-5\ch01.vp
Tuesday, December 04, 2001 4:22:23 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 1: Oracle9i Database Administration and Management Features 17

ORACLE Series / Oracle9i New Features / Freeman / 222385-5 / Chapter 1
Blind Folio 1:17

All Oracle shared memory areas are dynamically settable via the alter system
command. Some examples of setting these areas are shown here:

ALTER SYSTEM SET SHARED_POOL=50000000;
ALTER SYSTEM SET DB_CACHE_SIZE =50000000;
ALTER SYSTEM SET DB_16K_CACHE_SIZE=10M;

A new parameter, sga_max_size, is used in Oracle9i to indicate the maximum
overall size of the SGA. Thus, you can dynamically expand the SGA by altering the
size of any of the buffers, but you cannot alter them such that the total amount of
memory allocated is greater than that set by the sga_max_size. The default value of
sga_max_size is the total size of the configured SGA at instance startup. If you set
sga_max_size to a value smaller than the amount of memory initially allocated at
instance startup, then sga_max_size will default to the total amount of memory
initially allocated. You cannot dynamically change this parameter, so take care to
make sure it is set correctly if there is some chance that you will want to increase
overall SGA memory use. Note that, contrary to some documentation, this parameter
will cause Oracle to reserve memory of an amount of sga_max_size on most
operating systems (Solaris 8 was the exception at the time this book was written),
so be careful when setting it to avoid causing swapping or paging.

Automated PGA Memory Management
The PGA in Oracle consists of two different memory types: not tunable and tunable.
Several database parameters can be used to configure the tunable area. These
parameters include sort_area_size, hash_area_size, bitmap_merge_area_size,
and create_bitmap_area_size. In Oracle8i, these parameters were able to be set
dynamically; however, it was difficult to really tune them well. Often, however,
more memory was allocated to a given session than was really needed. As a result,
memory was wasted.

Now Oracle9i offers the option of automated PGA space management.
Two new parameters have been introduced to allow the DBA to have the PGA
dynamically configured by the RDBMS software, removing this responsibility from
the DBA. The first parameter is pga_aggregate_target, which allows you to set a
target aggregate amount of memory that becomes the target amount of PGA memory
available to be allocated. This memory can be allocated in bytes, kilobytes,
megabytes, or gigabytes (using the K, M, and G symbols to denote the allocation
type). This parameter can be set only at the system level, but it is dynamic in
its nature.

A second parameter, workarea_size_policy, which can be set at the system
or session level, establishes whether a given session’s PGA size should be sized
automatically or via the database init.ora parameters. There are two valid values for
this parameter. When set to AUTO, the database will size the tunable PGA memory,
and the total aggregate allocated amount of PGA memory will be bounded by

P:\010Comp\Oracle8\385-5\ch01.vp
Tuesday, December 04, 2001 4:22:23 PM

Color profile: Generic CMYK printer profile
Composite Default screen

18 Oracle9i New Features

ORACLE Series / Oracle9i New Features / Freeman / 222385-5 / Chapter 1
Blind Folio 1:18

pga_aggregate_ target. When set to MANUAL, the size of the PGA memory
allocation is based on the various database parameter settings. If the
pga_aggregate_target is set, then the workarea_size_policy will default to AUTO.

In the V$SYSSTAT and V$SESSTAT views, three new statistics have been added
that relate to automated PGA memory. These are

■ Work Area Executions: Optimal Size Represents the number of work
areas that had an optimal size, and no writes to disk were required.

■ Work Area Executions: One Pass Size Represents the number of work
areas that had to write to disk, but required only one pass to disk.

■ Work Area Executions: Multipasses Size Represents the number of work
areas that had to write to disk using multiple passes. High numbers of this
statistic might indicate a poorly tuned PGA.

In addition, new columns have been added to V$PROCESS to help tune the PGA.

■ PGA_USED_MEM This reports how much PGA memory the process uses.

■ PGA_ALLOCATED_MEM This is the amount of PGA memory allocated to
the process.

■ PGA_MAX_MEM This is the maximum amount of PGA memory allocated
by the process.

Also, three new views are available to help the DBA extract information about
the PGA:

■ V$SQL_WORKAREA Provides information about SQL work areas.

■ V$SQL_WORKAREA_ACTIVE Provides information on current SQL work
area allocations.

■ V$SQL_MEMORY_USAGE This displays current memory-use statistics.

Oracle9i Default Temporary
Tablespace
Oracle9i has introduced a new feature called the default temporary tablespace.
In the past, whenever you created a user, the user would be given the SYSTEM
tablespace as its default temporary tablespace. Left unchanged, this could lead to

P:\010Comp\Oracle8\385-5\ch01.vp
Tuesday, December 04, 2001 4:22:23 PM

Color profile: Generic CMYK printer profile
Composite Default screen

serious fragmentation and IO issues with the SYSTEM tablespace, because many
users would be creating and removing temporary segments.

To deal with this problem, Oracle9i introduces the default temporary tablespace.
The default temporary tablespace is either set at database creation with the default
temporary tablespace clause of the create database command, or it can be set
or changed after database creation with the alter database default temporary
tablespace command. When the default temporary tablespace is changed with the
alter database default temporary tablespace command, all users assigned to the
previous default temporary tablespace will be reassigned to the newly defined
temporary tablespace. Users assigned to a temporary tablespace that was not the
default temporary tablespace will remain unchanged. Note that the tablespace
selected to be the new default temporary tablespace must be of the same block size
as the standard block size of the database. Also, any default temporary tablespace
must be of type TEMPORARY.

If you wish to know what tablespace is current assigned as the default tablespace,
you can use the new DATABASE_PROPERTIES view. Look in the PROPERTY_NAME
column for the value DEFAULT_TEMP_TABLESPACE, and you will find the tablespace
name in the associated PROPERTY_VALUE column. Here is an example of such
a query:

SQL> column property_value format a16
SQL> select property_name, property_value from database_properties

2 where property_name = 'DEFAULT_TEMP_TABLESPACE';
PROPERTY_NAME PROPERTY_VALUE
------------------------------ ----------------
DEFAULT_TEMP_TABLESPACE NEW_TEMP

Finally, note that Oracle will no longer allow you to assign a permanent locally
managed tablespace as a user’s temporary tablespace. This was allowed in Oracle8i,
but the users session would get an error when it tried to create a temporary segment
in the tablespace.

Automated UNDO Management
in Oracle9i
One of the more maintenance-intensive architectural components of a pre-Oracle9i
database was the management of rollback segments. It was often time-consuming
to first decide how many rollback segments to create, how big to make them, and
how many extents to make them. Then you had to monitor the use of the rollback
segments to ensure that you were getting optimal use of the rollback segment
configuration that you had created.

Chapter 1: Oracle9i Database Administration and Management Features 19

ORACLE Series / Oracle9i New Features / Freeman / 222385-5 / Chapter 1
Blind Folio 1:19

P:\010Comp\Oracle8\385-5\ch01.vp
Tuesday, December 04, 2001 4:22:24 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Oracle9i introduces automated UNDO management to alleviate the need to
manage rollback segments. To use the Oracle9i automated UNDO management
features, you must first create an UNDO tablespace. Then you must configure the
Oracle9i instance to use the Oracle9i automated UNDO management feature.

NOTE
In Oracle9i, according to Oracle documentation,
Oracle has actually depreciated the use of rollback
segments for undo space management. This implies
that Oracle intends to do away with rollback
segments all together at some point. While this is
not likely to occur for some time, it is probably a
good idea to start learning about and using UNDO
tablespaces.

Creating the UNDO Tablespace
There are two different ways of creating an UNDO tablespace. The first method
is by the use of the new UNDO clause of the create tablespace command. The
second method is through the use of the create database command. Let’s look at
each of these methods in more detail.

Using the CREATE UNDO TABLESPACE Command
In Oracle9i, you can create an UNDO tablespace with the new UNDO clause of
the create tablespace command, as shown in the following example:

CREATE UNDO TABLESPACE undo_tbs
DATAFILE '/ora100/oracle/mydb/data/mydb_undo_tbs_01.dbf' SIZE 100m
AUTOEXTEND ON;

In this case, we have created an UNDO tablespace called UNDO_TBS. As
you can see, the create undo tablespace command syntax is much like the create
tablespace command, including the datafile and size clauses. Note that when
creating an UNDO tablespace, you can use only the datafile clause and a restricted
form of the extent_management clause of the create tablespace command. Thus,
you cannot define any default storage characteristics for an UNDO tablespace. Also
note that Oracle creates an UNDO tablespace as locally managed tablespace, and
that there is no option to create it as a dictionary-managed tablespace.

Once an UNDO tablespace is created, it will be brought online, along with the
undo segments within it, each time the database is started. This can be seen in the
messages that will appear in the alert log each time that you start the database.

20 Oracle9i New Features

ORACLE Series / Oracle9i New Features / Freeman / 222385-5 / Chapter 1
Blind Folio 1:20

P:\010Comp\Oracle8\385-5\ch01.vp
Tuesday, December 04, 2001 4:22:24 PM

Color profile: Generic CMYK printer profile
Composite Default screen

NOTE
At the very least, you will still need to have the
SYSTEM rollback segment.

Creating an UNDO Tablespace with
the CREATE DATABASE Command
You can opt to create an UNDO tablespace when you initially create a database.
Oracle has modified the create database command to support the definition of
UNDO tablespaces during the database creation process through the use of the
undo tablespace clause, as shown in the following example:

CREATE DATABASE mydb
CONTROLFILE REUSE
LOGFILE GROUP 1 ('d:\oradata\mydb\redo\mydb_redo_01a.log',

' e:\oradata\mydb\redo\mydb_redo_01b.log ') SIZE 50K,
GROUP 2 ('d:\oradata\mydb\redo\mydb_redo_02a.log',

' e:\oradata\mydb\redo\mydb_redo_02b.log ') SIZE 50K
MAXINSTANCES 1 MAXLOGFILES 5 MAXLOGHISTORY 100 MAXDATAFILES 100
ARCHIVELOG
DATAFILE 'e:\oradata\mydb\mydb_system_01.dbf'
SIZE 100M AUTOEXTEND ON NEXT 20M MAXSIZE UNLIMITED,
DEFAULT TEMPORARY TABLESPACE temp_ts
TEMPFILE 'e:\oradata\mydb\mydb_temp_ts_01.dbf' SIZE 20m
UNDO TABLESPACE undo_ts DATAFILE 'e:\oradata\mydb\mydb_undo_ts_01.dbf'
SIZE 50M AUTOEXTEND OFF;

Note that we have used the UNDO TABLESPACE clause of the CREATE
DATABASE command to create an UNDO tablespace called undo_ts. Further,
we used the DATAFILE clause to define the name and location of the datafile
associated with the UNDO tablespace, and we also included the SIZE and
AUTOEXTEND clauses.

When issuing a create database command, there are several rules that you
should consider that relate to UNDO tablespaces. The rules will differ depending
on how the database is configured (see the next section, “Configuring the Instance
for Automated UNDO Management”). If the database instance is not configured for
automated UNDO management, and you omit the UNDO TABLESPACE clause,
then the CREATE DATABASE statement will work as it always has, with no UNDO
tablespace being created.

If the instance is configured for automated UNDO management, however, then
the default behavior of the create database statement changes. If you do not include
the undo tablespace clause, then Oracle will create an UNDO tablespace for you
by default. This tablespace will be called SYS_UNDOTBS. This tablespace will be
created using a default size of 100M for the database datafile.

Chapter 1: Oracle9i Database Administration and Management Features 21

ORACLE Series / Oracle9i New Features / Freeman / 222385-5 / Chapter 1
Blind Folio 1:21

P:\010Comp\Oracle8\385-5\ch01.vp
Tuesday, December 04, 2001 4:22:25 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Dropping an UNDO Tablespace
To drop an UNDO tablespace, simply issue a drop tablespace command. Oracle
will drop the tablespace. If that UNDO tablespace is the active UNDO tablespace,
then Oracle will generate an error.

Configuring the Instance for Automated
UNDO Management
To take advantage of Oracle9i automated UNDO management features, you
must configure the database. Configuration of the database for automated UNDO
management is done through changes to the databases parameter file (init.ora). The
parameters in Table 1-2 have been added to Oracle9i to support automated UNDO
management.

Let’s look at a couple of notable aspects of these parameters. Some SQL commands
such as set transaction use rollback segment will, by default, return an ORA-30019
error to the session issuing the SQL statement. This is because these commands
are not compatible with automated UNDO management. Because such an error
might cause problems with existing scripts, you can set the undo_suppress_errors
parameter to avoid getting the ORA-30019 error message.

If you have managed Oracle databases before, no doubt you are familiar with
the “snapshot to old” error messages. These messages appear for several reasons,
but principally they appear because a read-consistent image of the data that a
given session needs is no longer in the rollback segments of the database. The
undo_retention parameter is used with automated UNDO management to provide
a guide to Oracle on how long it should retain UNDO after the transaction that has
generated it has committed. By default, undo_retention is set to 900 seconds. This
means that Oracle will try not to reuse generated UNDO space for 900 seconds
after the transaction committing it has been committed.

The keyword here is try, because if Oracle runs out of available UNDO space,
it will begin to use space that was otherwise protected by the undo_retention
parameter. The undo_retention parameter can be modified dynamically with
the alter system command. This is handy if you are finding that long-running
transactions are getting “snapshot to old” errors from Oracle, though you might also
need to add space to the UNDO tablespace. The undo_retention parameter also has
some significant impact on another new Oracle9i feature, flashback queries, which
we will cover in Chapter 3.

Finally, note that the undo_tablespace parameter is dynamic. This implies that
you can have multiple UNDO tablespaces, however, you can have only one active
UNDO tablespace in use at any given time.

22 Oracle9i New Features

ORACLE Series / Oracle9i New Features / Freeman / 222385-5 / Chapter 1
Blind Folio 1:22

P:\010Comp\Oracle8\385-5\ch01.vp
Tuesday, December 04, 2001 4:22:25 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ORACLE Series / Oracle9i New Features / Freeman / 222385-5 / Chapter 1
Blind Folio 1:23

Chapter 1: Oracle9i Database Administration and Management Features 23

Parameter Name Default Value Valid Values Dynamic? Description

undo_
Management

MANUAL AUTO, MANUAL No Determines whether
automated UNDO
management is
enabled in the
database. AUTO
enables automated
UNDO management
and MANUAL disables
the feature.

undo_
tablespace

The first
available
UNDO
tablespace,
SYS_
UNDOTBS,
uses the
SYSTEM
rollback
segment if
no UNDO
tablespace
is available

Valid UNDO
tablespace name.
Multiple UNDO
tablespaces are not
supported, though
Oracle does not
generate an error.

Immediate
for system

Defines one or more
UNDO tablespaces
that should be used by
Oracle for automated
UNDO management.
If this parameter is set,
and undo_management
is set to AUTO when
issuing a create
database command,
then you must include
all tablespaces listed
in this parameter in
the create database
statement or the
statement will fail.
You can list multiple
tablespaces here but
only the last one listed
will be used since
Oracle allows only one.

undo_
suppress_ errors

TRUE TRUE, FALSE Immediate
for system,
session
allowed

Allows you to control
the displaying of error
messages that result
from certain SQL
commands when
the database is in
automated UNDO
management mode.

TABLE 1-2. Oracle9i UNDO Management Parameters

P:\010Comp\Oracle8\385-5\ch01.vp
Tuesday, December 04, 2001 4:22:26 PM

Color profile: Generic CMYK printer profile
Composite Default screen

The Data Dictionary and Automated
UNDO Management
New data dictionary views, V$UNDOSTAT and DBA_UNDO_EXTENTS, have
been created that are associated with automated UNDO management. Also, the
V$ROLLSTAT and V$ROLLNAME views can be used to monitor overall performance
of UNDO tablespaces. Just as with Oracle8i, though, there is really little you can
do to tune UNDO tablespaces. Let’s take a look at the V$UNDOSTAT and DBA_
UNDO_EXTENTS views in a bit more detail.

V$UNDOSTAT
The V$UNDOSTAT data-dictionary view provides system-generated statistics,
collected every 10 minutes for the last 24 hours. This view can be used to monitor
and tune UNDO space. Use this view to determine whether you have allocated
sufficient space to the UNDO tablespaces for the current workload. In particular,
the UNDOBLKS column is useful in determining if the tablespace is large enough.
This column indicates the total number of undo blocks that were used during the
statistics collection period. Thus, if the number of undo blocks consumed during
the collection period is significantly larger than the size of the UNDO tablespace,
you might well consider increasing the size of the UNDO tablespace for
performance reasons.

24 Oracle9i New Features

ORACLE Series / Oracle9i New Features / Freeman / 222385-5 / Chapter 1
Blind Folio 1:24

Parameter Name Default Value Valid Values Dynamic? Description

undo_
retention

900 Seconds 0 to the maximum
value allowed
by 32 bits

Immediate
for system

This parameter defines
the minimum amount
of time that Oracle will
retain UNDO after it
has been generated
and after the
generating transaction
has been completed.
This parameter can be
modified dynamically
using the alter system
command. Note that
Oracle will make a
best effort to retain
UNDO for the
requested amount
of time, but there is
no guarantee.

TABLE 1-2. Oracle9i UNDO Management Parameters (continued)

P:\010Comp\Oracle8\385-5\ch01.vp
Tuesday, December 04, 2001 4:22:26 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ORACLE Series / Oracle9i New Features / Freeman / 222385-5 / Chapter 1
Blind Folio 1:25

Chapter 1: Oracle9i Database Administration and Management Features 25

Also watch the UNXPSTEALCNT column, as high numbers in this column
indicate that unexpired blocks (as determined by the undo_retention parameter)
are being expired prematurely and the space is being taken for use by transactions
because available UNDO space was not available for those transactions. This is
particularly important for new databases as more and more people begin to use the
system, generating more undo, which can lead to “snapshot to old” error messages.
Finally, the SSOLDERRCNT and NOSPACEERRCNT columns keep track of the
number of Oracle errors generated during the snapshot. If these columns are
non-zero, consider increasing the size of your UNDO tablespace.

DBA_UNDO_EXTENTS
This view provides information on each extent in the UNDO tablespaces, including
the commit time for each transaction. It is also with this view that you can
determine which tablespaces are defined as UNDO tablespaces.

Resumable Space Management
Ever run a large data load, just to have the database run out of space on you and roll
back the entire thing? Perhaps you ran a large select statement that ran for six hours
before it ran out of temporary tablespace space during its final large sort. With
Oracle9i, rather than fling the box out of the window in anger, you can take
advantage of the new Oracle9i resumable space management feature. In this
section, first we’ll look at when resumable space management can be used, and
then how to enable and disable this feature. Finally, we’ll review some of the
various administration issues around resumable space management and provide
some examples of resumable space management in action.

Resumable Space Management
Features and Limitations
Resumable space management can be used to manage the impacts a space failure
of a long-running transaction may have on a session. Some of the space failures
include:

■ Running out of tablespace space This includes errors such as ORA-1650
(Unable to extend rollback segment), ORA-1653 (Unable to extend table),
and ORA-1654 (Unable to extent index), in which Oracle is not able to
allocate another extent due to lack of available space. Adding space to the
given tablespace generally solves this error condition (though coalescing
space might be an alternative). If this error involves a temporary tablespace,
other user sessions can result in the release of temporary segments in the
tablespace, thus freeing space for the suspended session.

P:\010Comp\Oracle8\385-5\ch01.vp
Tuesday, December 04, 2001 4:22:26 PM

Color profile: Generic CMYK printer profile
Composite Default screen

26 Oracle9i New Features

ORACLE Series / Oracle9i New Features / Freeman / 222385-5 / Chapter 1
Blind Folio 1:26

■ Maximum number of extents reached This includes errors such as
ORA-1628 (Max # of extents reached for rollback segment), and ORA-1631
ORA-1654 (Max # of extents reached in Table or Index). In this case, the
object has a MAX_EXTENTS value assigned to it, which has been reached.
The solution to this problem is to increase the MAX_EXTENTS setting for the
object in question.

■ Attempt to exceed a tablespace quota This includes error ORA-1536
(space quota exceeded for tablespace). The solution to correcting this
problem is to increase the user quota for the tablespace in question.

When one of these conditions is reached, and if resumable space management
has been enabled for the session, then the resumable statement will be suspended.
At the time the statement is suspended, an error will be raised in the alert log. In
addition, the user session running the query will become suspended, until either the
time-out period passes, or the error condition is resolved. Also, Oracle has provided
an after suspend system trigger event that can be used to automate a response to a
SUSPEND condition.

Once a statement is suspended, it will wait for a defined period of time (two
hours is the default). After that period of time elapses, the error will be raised, and
the statement rolled back. During the period of the statement suspension, if the
condition that caused the statement to be suspended is corrected, then the statement
will automatically resume execution. Thus, for example, if space in the temporary
tablespace were released by another user session, the query that was suspended
because it ran out of temporary tablespace space would resume automatically
without user intervention.

Suspended operations can be monitored through the use of the DBA_RESUMABLE
and USER_RESUMABLE views (see “Data Dictionary Views Associated with
Resumable Space Management,” later in the chapter). Also, Oracle provides a
package called DBMS_RESUMABLE that allows you to manage the Resumable Space
Management features of the database, which we will discuss later in this section.

Candidate Database Operations for
Resumable Space Management
There are many different kinds of operations that can take advantage of resumable
space management. The following table lists these operations:

Operation Type Comment

SELECT queries If the query runs out of temporary sort
space, then it can be suspended and
resumed.

INSERT, UPDATE, DELETE operations These operations can be suspended if
they raise an out-of-space exception.

P:\010Comp\Oracle8\385-5\ch01.vp
Tuesday, December 04, 2001 4:22:26 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 1: Oracle9i Database Administration and Management Features 27

ORACLE Series / Oracle9i New Features / Freeman / 222385-5 / Chapter 1
Blind Folio 1:27

Operation Type Comment

INSERT AS … SELECT operation This operation can be suspended if it
runs into an out-of-space condition.

Import/export operations Resumable space management is
supported by the IMP and EXP
facilities of Oracle.

SQL*Loader Supports resumable space
management operations

CREATE TABLE … AS SELECT Supports resumable space
management

CREATE INDEX Supports resumable space
management

ALTER INDEX … REBUILD Supports resumable space
management

ALTER TABLE … MOVE PARTITION Supports resumable space
management

ALTER TABLE … SPLIT PARTITION Supports resumable space
management

ALTER INDEX … REBUILD
PARTITION

Supports resumable space
management

ALTER INDEX … SPLIT PARTITION Supports resumable space
management

CREATE MATERIALIZED VIEW Supports resumable space
management

CREATE MATERIALIZED VIEW LOG Supports resumable space
management

Resumable Space Management Administration
In this section, you will learn about several administrative issues in regard to
Oracle resumable space management features. First on the hit parade is the
DBMS_RESUMABLE package, followed by a look at some restrictions that exist
for this feature in regard to dictionary-managed tablespaces. Following that will
be a look at some of the data dictionary views associated with resumable space
management.

Controlling Resumable Space Management Features
Resumable space management is controlled on a session-by-session level, and is
disabled by default. Any user who wants to enable resumable space management

P:\010Comp\Oracle8\385-5\ch01.vp
Tuesday, December 04, 2001 4:22:27 PM

Color profile: Generic CMYK printer profile
Composite Default screen

28 Oracle9i New Features

ORACLE Series / Oracle9i New Features / Freeman / 222385-5 / Chapter 1
Blind Folio 1:28

must first be granted the resumable system privilege. Having been granted that
privilege, the user will enable resumable space management features by issuing
the command alter session enable resumable. Likewise, to disable resumable space
management, issue the command alter session disable resumable. If you wish to
cause specific users to enable resumable space management, then create a login
trigger to alter the users’ sessions when they log in to the database.

Any session that is suspended during a resumable space operation is suspended
for a specific period of time, after which it will error out and abort completely. By
default, when you enable resumable space management, this time-out is 7,200
seconds, or two hours. You can modify this default value by including the timeout
parameter to the alter session enable resumable command, as shown in the
following example:

ALTER SESSION ENABLE RESUMABLE TIMEOUT 14400;

In this example, our time-out is set to 14,400 seconds, or four hours. Keep in
mind that the longer you make the time-out interval, the more likely that suspended
sessions will occur and pile up. This can cause resource contentions on your
database to appear, as suspended sessions do consume a certain amount of overhead.
If you should wish to change the time-out, simply issue another alter session enable
resumable command with a different time-out value. Alternatively, you can use
the dbms_resumable.set_timeout procedure (we will discuss this package in the
next section).

With each execution of alter session enable resumable, you can also specify
a name to be associated with the set of resumable sessions. This makes it easier to
identify sessions in the data dictionary views for resumable space management such
as DBA_RESUMABLE. An example of enabling resumable space management and
defining a name for the sessions is shown here:

ALTER SESSION ENABLE RESUMABLE TIMEOUT 14400 NAME 'ROBERT';

Note that if you do not define a name, a system default name will be used.

The DBMS_RESUMABLE Package
The principle method of managing the Oracle resumable space management
features is the use of the DBMS_RESUMABLE package. This package contains five
procedures that can be used in concert with resumable space management. These
subprograms are abort, get_session_timeout, set_session_timeout, get_timeout, and
set_timeout. We will look at each of the subprograms in a bit more detail in the
following sections.

DBMS_RESUMABLE.ABORT The purpose of the abort procedure is to
cancel all suspended statements for a given session. When calling abort, for the
command to succeed, you must be the owner of the session, have alter system

P:\010Comp\Oracle8\385-5\ch01.vp
Tuesday, December 04, 2001 4:22:27 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 1: Oracle9i Database Administration and Management Features 29

ORACLE Series / Oracle9i New Features / Freeman / 222385-5 / Chapter 1
Blind Folio 1:29

privilege, or have DBA privileges. Here is the syntax for the dbms_resumable.abort
procedure:

PROCEDURE DBMS_RESUMABLE.ABORT
(session_id IN NUMBER);

DBMS_RESUMABLE.GET_SESSION_TIMEOUT The purpose of the
get_session_timeout function is to return the current value of a given session’s
resumable space management time-out setting in seconds in the form of a
NUMBER type. If the session is not present, a –1 error is returned. The syntax
for the get_session_timeout function is shown here:

FUNCTION DBMS_RESUMABLE.GET_SESSION_TIMEOUT
(session_id IN NUMBER)
RETURN NUMBER;

DBMS_RESUMABLE.SET_SESSION_TIMEOUT The purpose of the
set_session_timeout procedure is to set the current value of a given session’s
resumable space management time-out setting in seconds. This change is immediate
in its effect, and no error is returned if the session does not exist. The syntax for the
set_session_timeout function is shown here:

PROCEDURE DBMS_RESUMABLE.SET_SESSION_TIMEOUT
(session_id IN NUMBER,
timeout IN NUMBER);

DBMS_RESUMABLE.GET_TIMEOUT The purpose of the get_ timeout
function is to return the current value of the current session’s resumable space
management time-out setting in seconds. There are no parameters to this procedure.
This function returns a NUMBER type.

DBMS_RESUMABLE.SET_TIMEOUT The purpose of the set_ timeout
procedure is to set the value of the current session’s resumable space management
time-out setting in seconds. This change is immediate in its effect. The syntax for the
set_ timeout function is shown here:

PROCEDURE DBMS_RESUMABLE.SET_TIMEOUT
(timeout IN NUMBER);

DBMS_RESUMABLE.SPACE_ERROR_INFO The purpose of the space_
error_info function is to return space-related errors. It is generally called by an after-
suspend trigger (see the “After-Suspend Trigger” section). This function returns a
great deal of information about the cause of a given statement failure in the form of
its OUT parameters. This allows you to customize the system’s response to a given

P:\010Comp\Oracle8\385-5\ch01.vp
Tuesday, December 04, 2001 4:22:29 PM

Color profile: Generic CMYK printer profile
Composite Default screen

30 Oracle9i New Features

ORACLE Series / Oracle9i New Features / Freeman / 222385-5 / Chapter 1
Blind Folio 1:30

failure condition. Thus, you can choose to suspend statements for certain failure
conditions (say, out of temporary tablespace space), and just abort the statement in
the case of other conditions (such as running out of rollback segment space). This
function returns TRUE if a suspended statement was discovered, and FALSE if it was
not. The syntax for the space_error_info function is shown here:

FUNCTION DBMS_RESUMABLE.SPACE_ERROR_INFO
(error_type OUT VARCHAR2,

object_type OUT VARCHAR2,
object_owner OUT VARCHAR2,
table_space_name OUT VARCHAR2,
object_name OUT VARCHAR2,
sub_object_name OUT VARCHAR2)

RETURN BOOLEAN;

Resumable Space Management Restrictions
Oracle9i resumable space management comes with certain limitations when used
with dictionary-managed tablespaces. If the creation of an object (that is, table
or index) fails and the DDL includes an explicit maxextents clause that caused
the failure, then that failure will cause an error to be generated and the object
creation will not be resumable. The solution to this problem is to set maxextents to
UNLIMITED while creating the object and then alter the object to reset maxextents,
if that is what you wish to do. This applies only to DDL that is actually creating
the object, not subsequent DML operations (select, insert, update, or delete) on
that same object. Also, this does not apply to locally managed tablespaces.

Another limitation with regard to dictionary-managed tablespaces has to do with
space management for rollback segments. If a rollback-segment space allocation fails,
and the associated rollback segment is in a dictionary-managed tablespace, then
the operation will fail. This restriction does not apply if you are using Oracle’s new
UNDO tablespaces, or if the tablespace that the rollback segments belong to is
locally managed.

Note that statements that involve remote operations (such as DML statements
using database links) do not support resumable space management. In regard to
parallel execution, any parallel process that runs into a space management error
will be suspended, and will restart when the problem is corrected. The remaining
parallel processes will continue until they run into an error and are suspended or
they complete. Note that this might cause multiple calls of the after-suspend trigger
(see the next section for more on the after-suspend trigger). Note that if the parallel
execution server process receives any nonrecoverable error, then the entire
statement will fail and any suspended process will be aborted.

After-Suspend Trigger
Each time a SQL statement is suspended because of a space management failure,
Oracle will call an after-suspend event trigger, if one exists. This trigger can be
used for a number of reasons, including controlling which type of space allocation

P:\010Comp\Oracle8\385-5\ch01.vp
Tuesday, December 04, 2001 4:22:29 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 1: Oracle9i Database Administration and Management Features 31

ORACLE Series / Oracle9i New Features / Freeman / 222385-5 / Chapter 1
Blind Folio 1:31

failures you wish to suspend, and which you wish to allow. You can also use the
trigger for notification purposes, such as sending e-mail to notify the DBA or a
monitoring group that the process had failed. The Oracle documentation provides
a good example of an after-suspend trigger. Check it out!

Data Dictionary Views Associated with Resumable Space
Management
The main views associated with resumable space management are the DBA_
RESUMABLE and USER_RESUMABLE views. These views contain information on
each statement that is currently suspended. Here is an example of a query against
the DBA_RESUMABLE view:

SQL> select user_id, session_id, error_msg from dba_resumable;
USER_ID SESSION_ID ERROR_MSG

---------- ---------------- ---
26 7 ORA-30036: unable to extend segment by 128 in undo tablespace

'SECOND_UNDO'

In this example, session 7 has a suspended session. It is apparently stalled,
waiting for UNDO space in the UNDO tablespace called SECOND_UNDO. At this
point, a DBA would have a few options to resume this statement. The DBA could
add space to the UNDO tablespace or enable AUTOEXTEND. The DBA could also
choose to just wait for UNDO segments to be released by other transactions so they
could be used. Of course, once Oracle has resolved the problem, it will automatically
restart the suspended session.

Another view that has some use with relation to resumable space management
is the V$SESSION_WAIT view. In this view, there will be an event for each
statement that is suspended. The name of the event is “Suspended on space error.”
Here is a query that displays this event:

SQL> select sid, event, seconds_in_wait from v$session_wait WHERE sid = 7;
SID EVENT SECONDS_IN_WAIT

---------- -- ----------------
7 statement suspended, wait error to be cleared 517

Also, the V$SYSTEM_EVENT and V$SESSION_EVENT views provide wait
information on suspension events. Here are some example queries from those tables
of a session waiting on a suspended session:

SQL> select event, total_waits, time_waited from v$system_event where
2 event like '%suspend%';

EVENT TOTAL_WAITS TIME_WAITED
-- ----------- -----------
statement suspended, wait error to be cleared 186 37204

SQL> select sid, event, total_waits, time_waited from
2 v$session_event where event like '%suspend%';

SID EVENT TOTAL_WAITS TIME_WAITED
---------- --- ----------- -----------

7 statement suspended, wait error to be cleared 193 38605

P:\010Comp\Oracle8\385-5\ch01.vp
Tuesday, December 04, 2001 4:22:30 PM

Color profile: Generic CMYK printer profile
Composite Default screen

32 Oracle9i New Features

ORACLE Series / Oracle9i New Features / Freeman / 222385-5 / Chapter 1
Blind Folio 1:32

Resumable Space Management
and Oracle Utilities
In this section, you will learn about the use of reusable space management in concert
with Oracle utility programs. First, we’ll look at how this feature works with Oracle’s
IMP and EXP facilities. Then you will learn about resumable space management and
SQL*Loader.

Using imp and exp with Resumable Space Management
To facilitate the use of resumable space management in Oracle9i with Oracle’s imp
and exp utilities, new parameters have been added to the imp command. The new
parameters include

■ resumable

■ resumable_name

■ resumable_timeout

These parameters enable resumable space management when using the imp
utility. As with an Oracle user session, if the imp session is suspended, then the imp
process will freeze until the suspension time-out passes (in which case, the process
will fail). Of course, if the space failure is fixed during the suspension, then the
imp process will simply continue to process the work until it’s finished or it’s
suspended again. The default is to not have resumable space features enabled
with the imp facility.

Using SQL*Loader with Resumable Space Management
Oracle’s SQL*Loader product has had the following command-line parameters added:

■ resumable

■ resumable_name

■ resumable_timeout

These parameters enable resumable space management features when loading
data using SQL*Loader. The default is to not have resumable space features enabled.

Persistent Initialization Parameters
In this section, you will learn to set up the new server parameter file (spfile), which
allows parameter settings to be persistent. We will then look at how to change
parameters and ensure that the change is persistent. Finally, we will look at some
management issues related to spfiles.

P:\010Comp\Oracle8\385-5\ch01.vp
Tuesday, December 04, 2001 4:22:30 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 1: Oracle9i Database Administration and Management Features 33

ORACLE Series / Oracle9i New Features / Freeman / 222385-5 / Chapter 1
Blind Folio 1:33

Oracle has long offered the ability to change a certain number of database
parameters dynamically using the alter system or alter session command. One
problem with this was that the dynamic changes that were made were valid only
until the instance was shut down. For those changes to persist through future
database shutdown-startup cycles, you needed to change the database parameter
file manually. If these changes were not made, then the database settings would
revert to those in the database parameter file during the next database shutdown-
startup cycle, which could lead to a variety of problems.

Creating the Server Parameter File
The spfile is a binary version of the text database file that is created using a new
Oracle command, create spfile. The spfile must reside on the server and can be
used only if the database is started using the pfile parameter of the STARTUP
command. If the pfile parameter is not used, then the database will revert to trying
to use the standard database parameter file. Of course, you can still use the pfile
parameter to point to a nondefault database parameter file. The rule for using the
spfile is as follows: When you start the database, Oracle first checks for a system
parameter file called spfile<instance_name>.ora, then a system parameter file called
spfile.ora in the $ORACLE_HOME/dbs directory on a UNIX system. If neither exists,
then it looks for the traditional init.ora file. The Oracle9i database creation assistant
will create an spfile (you can choose to disable this operation if you like) for you
when it creates your database. It will also start the database using the spfile it
created. The steps for creating and using a server parameter file are as follows:

1. Create the server parameter file using the create spfile command as
shown here:

CREATE spfile='c:\oracle\admin\mydb\pfile\spfiletmydb.ora';

FROM PFILE='c:\oracle\admin\mydb\pfile\initmydb.ora';

2. Shut down the database and restart it using the following commands:

SHUTDOWN IMMEDIATE

STARTUP PFILE= c:\oracle\admin\mydb\pfile\spfilemydb.ora

NOTE
The only comments that will survive a conversion
to a spfile are those contained in the same line of
a parameter. Stand-alone and header comments
are not preserved.

A few rules to note about the create spfile command: first, if you do not define
the name of the server file to be created, then Oracle will create an spfile in the
default location of the Oracle parameter files (that is, %ORACLE_HOME\database

P:\010Comp\Oracle8\385-5\ch01.vp
Tuesday, December 04, 2001 4:22:31 PM

Color profile: Generic CMYK printer profile
Composite Default screen

34 Oracle9i New Features

ORACLE Series / Oracle9i New Features / Freeman / 222385-5 / Chapter 1
Blind Folio 1:34

in NT or $ORACLE_HOME/dbs in UNIX). The spfile will take on the default name
spfile{oracle_sid}.ora. Further, if you do not define the name of the source pfile,
then the default pfile for the database will be used.

When creating an spfile with the create spfile command, Oracle will overwrite
the old spfile, so be careful. If you try to overwrite an spfile that you started the
database with, then Oracle will generate an error.

Also, you cannot point to an spfile from a normal parameter file by using the
ifile command. Instead, include an spfile command in the normal parameter file
to point to an spfile.

Setting Persistent Parameters
In Oracle9i, you will still use the alter system set command to change a parameter
and ensure that change is persistent across database shutdowns. A new clause to the
alter system called scope has been introduced to allow the DBA to indicate how
Oracle should interpret the desired persistence of the change. There are three
options to the scope clause:

■ spfile The parameter being changed will be changed in the spfile, but will
not take effect until the next time the instance is cycled. This is the only
way that static parameters can be modified in the spfile. Attempting to use
any other scope for static parameters will result in an error.

■ memory The parameter being changed will be changed only for the
instance that is currently active. The parameter in the spfile will not be
updated, and thus the parameter is not persistent. You cannot use this
parameter for static parameters.

■ both The parameter being changed will be changed in the current
instance and will be updated in the spfile for the database. Thus, the
change will persist through future cycles of the database instance.

Also, a new comment clause has been added to the alter system command. This
clause allows you to associate comments with the parameter being set. This allows
you to document the change being made (which is a really good idea!). Here are
a couple of examples of using the alter system command to change parameters in
an spfile:

ALTER SYSTEM
SET query_rewrite_enabled=TRUE COMMENT='Change on 9/30' SCOPE=BOTH

This example sets the query_rewrite_enabled parameter to a value of TRUE. We
have also associated this parameter change with a comment that indicates the date

P:\010Comp\Oracle8\385-5\ch01.vp
Tuesday, December 04, 2001 4:22:31 PM

Color profile: Generic CMYK printer profile
Composite Default screen

we made the change. Finally, we indicate the scope of the change is BOTH, so that
the change will take place immediately and will also be reflected in the spfile of the
database. Here is another example:

ALTER SYSTEM
SET shared_pool_size=100m, COMMENT='Change on 9/30' SCOPE=BOTH,
aq_tm_processes=5, COMMENT='Change on 9/30' SCOPE=BOTH

In this case, we are changing two parameters at the same time. If you wish to
remove a parameter that is set, you would simply issue an alter system command
with the parameter set to 0 (or " if it is a string parameter), as shown in this example:

ALTER SYSTEM SET db_16k_cache_size=0;

Also, you can use the deferred parameter to cause the change to take effect only
for future sessions that connect to the database, as in this example:

ALTER SYSTEM
SET query_rewrite_enabled=TRUE COMMENT='Change on 9/30' SCOPE=MEMORY
DEFERRED;

If you are running real application clusters in Oracle9i, you can define the sid
that the change is associated with by using the sid parameter. If you wish the change
to take effect for all instances, you can use an asterisk (*) in the sid parameter to
indicate this. The default for sid is * if the database was started with an spfile;
otherwise, the default is the current instance. Here is an example of the use of the
sid parameter:

ALTER SYSTEM
SET query_rewrite_enabled=TRUE COMMENT='Change on 9/30' SCOPE=MEMORY
DEFERRED SID=mysid2;

Finally, if you are using real application clusters, you might want to remove a
previously set spfile setting for one of the instances of the cluster. To do this, you
can use the alter system command with the reset clause, as shown here:

ALTER SYSTEM
RESET query_rewrite_enabled SCOPE=MEMORY DEFERRED SID=mysid2;

Managing the spfile
Let’s look at a few of the management issues relating to spfiles. First, we will look
at how to create a text parameter file from an existing spfile. Then we will look at
some of the data dictionary views that can be used in Oracle9i that relate to spfiles.

Chapter 1: Oracle9i Database Administration and Management Features 35

ORACLE Series / Oracle9i New Features / Freeman / 222385-5 / Chapter 1
Blind Folio 1:35

P:\010Comp\Oracle8\385-5\ch01.vp
Tuesday, December 04, 2001 4:22:32 PM

Color profile: Generic CMYK printer profile
Composite Default screen

36 Oracle9i New Features

ORACLE Series / Oracle9i New Features / Freeman / 222385-5 / Chapter 1
Blind Folio 1:36

Creating a Text Parameter File from an spfile
There might be times that you will want to convert an existing spfile into a standard
text database parameter file. You might want to do this for documentation purposes,
backup and recovery purposes, or if you just want a parameter file to work with
when creating a new database. Oracle provides the ability to convert an spfile into
a text parameter file through the use of the new create pfile command, which works
like the create spfile command, but in reverse. Here is an example of the operation
of this command:

CREATE PFILE='c:\oracle\admin\mydb\pfile\initmydb_pfile.ora';
FROM spfile='c:\oracle\admin\mydb\pfile\spfilemydb.ora';

Note, in this case, that we have defined the location of the pfile to be created.
If we did not define the pfile name and location, Oracle would default to putting
the file in the default pfile location (that is, %ORACLE_HOME\database in NT or
$ORACLE_HOME/dbs in UNIX). The default name of the file will be the default
parameter filename for the database. If you do not include a filename for an spfile,
then the default database spfile name will be used. Of course, if you choose to use
the defaults and the source file does not exist, then the statement will fail.

Data Dictionary Views and spfiles
The data dictionary provides some useful views that allow you to display not only
the current value of database parameters, but also how the parameters will be set
in the future (again, assuming we have set them using DEFERRED or SCOPE=spfile).
There are three principle views that we can use to display database parameters.
Let’s take a moment to look at these.

V$PARAMETER This view remains generally unchanged from Oracle8i. It
provides the current settings that are in effect for the instance for a given parameter.
One thing that is new is that comments that are associated with the parameter are
listed in this view.

V$PARAMETER2 This view is new for Oracle9i. This view lists the parameters
that are current for a given database session. Its format is generally the same as
V$PARAMETER except for the inclusion of an ORDINAL column. The ORDINAL
column shows you the actual order of the parameters, which is handy for parameters
that have included a list of strings.

V$SPPARAMETER This view is new for Oracle9i. Its purpose is to allow you to
view the settings of parameters in the instance spfile.

P:\010Comp\Oracle8\385-5\ch01.vp
Tuesday, December 04, 2001 4:22:33 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Oracle Supports Fewer Platforms in 9i
Here is a list of platforms that Oracle has announced it will support for Oracle9i:

■ Sun Sparc Solaris

■ HP 9000 Series HP-UX (64-bit)

■ Compaq Tru64 UNIX

■ AIX-based systems (64-bit)

■ Sun Sparc Solaris (64-bit)

■ Linux Intel

■ IBM OS/390

■ IBM DYNIX/ptx

■ Alpha OpenVMS

■ Microsoft Windows NT

■ Microsoft Windows 2000

Chapter 1: Oracle9i Database Administration and Management Features 37

ORACLE Series / Oracle9i New Features / Freeman / 222385-5 / Chapter 1
Blind Folio 1:37

P:\010Comp\Oracle8\385-5\ch01.vp
Tuesday, December 04, 2001 4:22:33 PM

Color profile: Generic CMYK printer profile
Composite Default screen

