## Orbitals, and the Periodic Table

## Ram Seshadri MRL 2031, x6129, seshadri@mrl.ucsb.edu

These notes closely follow P. W. Atkins, Physical Chemistry
The Hydrogen atom: To understand the quantum mechanics of the hydrogen atom, we recognize that we need to set up the Hamiltonian $\mathbf{H}$ that describes the kinetic energy of the electron and recognizes the potential energy (Coulombic) arising from the negatively charged electron being in the vicinity of a positively charged nucleus:

$$
\mathbf{H}=\mathrm{K} . \mathrm{E}(\text { electron })+\text { K.E.(nucleus) }+ \text { P.E.(electron-nucleus) }
$$

and the Schrödinder equation (S.E.) $\mathbf{H} \psi=E \psi$ can be written and solved. The best way to do this is to use polar coordinates and the equation as well as the solution is written $\psi(r, \theta, \phi)$ rather than $\psi(x, y, z)$.

Quantum numbers: From solving the S.E. for hydrogen-like atoms, one finds that electrons in many-electron atoms are completely described by a set of four quantum numbers:

1. The principal quantum number $n$, that can take on values $1,2,3 \ldots$
2. The angular momentum quantum number $l$ that takes on values $0,1,2 \ldots n-1$
3. The magnetic quantum number corresponding to the $z$ component of the angular momentum $m_{l}$, which takes on the values $0, \pm 1, \pm 2, \ldots \pm l$
4. The spin quantum number $m_{s}$ which takes on the values $\pm \frac{1}{2}$

The energy of an electron in an orbital with quantum number $n$ for an atom with atomic number $Z$ is given by:

$$
E_{n}=-\frac{Z^{2} \mu e^{4}}{32 \pi^{2} \epsilon_{0}^{2} \hbar^{2} n^{2}}
$$

Where $e$ is the charge on the electron, $\epsilon_{0}$ is the vacuum permittivity, and $\mu$ is the reduced mass of the system.
Shells, subshells . . . : The different quantum numbers define the shell, subshells ...

$$
n=\begin{array}{lllll}
1 & 2 & 3 & 4 & \ldots \\
\mathrm{~K} & \mathrm{~L} & \mathrm{M} & \mathrm{~N} & \ldots
\end{array}
$$

and

$$
l=\begin{array}{cccccc}
0 & 1 & 2 & 3 & 4 & \ldots \\
\mathrm{~s} & \mathrm{p} & \mathrm{~d} & \mathrm{f} & \mathrm{~g} & \ldots
\end{array}
$$

The s, p, d, f and g are called atomic orbitals. Filling up these orbitals with electrons builds atoms, and the way in which atoms are build up gives rise to the periodic table. There is only one s orbital $\left(m_{l}=0\right)$, but there are three p orbitals $\left(m_{l}=-1,0,1\right)$, five d orbitals $\left(m_{l}=-2,-1,0,1,2\right)$, and seven f orbitals $\left(m_{l}=-3,-2,-1,0,1,2,3\right)$.

| $n$ | Shell | Subshells | States | Electrons |
| :---: | :---: | :---: | :---: | :---: |
| 1 | K | $s$ | 1 | 2 |
| 2 | L | $s$ | 1 | 2 |
|  |  | $p$ | 3 | 6 |
| 3 | M | $s$ | 1 | 2 |
|  |  | $p$ | 3 | 6 |
|  |  | $d$ | 5 | 10 |
| 4 | N | $s$ | 1 | 2 |
|  |  | $p$ | 3 | 6 |
|  |  | $d$ | 5 | 10 |
|  |  | $f$ | 7 | 14 |

Rules for filling in the electrons: Atoms have in the nucleus, protons and neutrons and outside the nucleus, electrons. The number of electrons $=$ number of protons $=Z$, the atomic number.

1. The Pauli principle: No more than two electrons can occupy a given orbital. If there are two electrons in an orbital, their spins must be paired (one must have $m_{s}=\frac{1}{2}$ and the other, $m_{s}=-\frac{1}{2}$ ).
2. The aufbau (building-up) principle: When electrons are filled in to orbitals in an atom, the orbitals with lower energy are filled first. The order of filling is $1 \mathrm{~s}, 2 \mathrm{~s}, 2 \mathrm{p}, 3 \mathrm{~s}, 3 \mathrm{p}, 4 \mathrm{~s}, 3 \mathrm{~d}, 4 \mathrm{p}, 5 \mathrm{~s}, 4 \mathrm{~d}, 5 \mathrm{p}, 6 \mathrm{~s} \ldots$
3. The Hund rule: Electrons will occupy different orbitals in a given subshell, before two electrons will occupy a single orbital.

There is a simple way of remembering how electrons fill up orbitals, shown in the accompanying diagrams:



From such diagrams, we are able to extract the electronic configurations of elements.

More about the atom: The atomic mass (which is numerically, a value close to the mass number) is the weighted average mass of a number of isotopes of the element, expressed in a system of units where the common isotope of carbon ${ }^{12} \mathrm{C}$ has an atomic mass of precisely 12.00000 . The unit of atomic mass in g is equal to $1.00000 /($ Avogadro Number $)=1.00000 / 6.0221367 \times 10^{23}=1.66054 \times 10^{-24} \mathrm{~g}$. This is sometimes called the Lochschmidt number. One atom of ${ }^{12} \mathrm{C}$ weighs 12 times this, $1.99265 \times 10^{23} \mathrm{~g}$. If instead of counting atom by atom, we count in bunches corresponding to the Avogadro number, we have moles of something, and 1 mole of ${ }^{12} \mathrm{C}$ weights precisely 12.00000 g . One mole of a normal carbon sample (which is a mixture of isotopes with different mass numbers) actually weighs 12.011 g .

The Periodic Table: The rules for filling up electrons in an atom result in the periodic table. Note that elements in the periodic table are separated into various categories. You must learn to understand these different categories: Alkali metals, alkaline earth metals, transition metals, main group elements (consisting of metalloids and non-metals) and the noble gases. Also, there are the lanthanide and actinide elements.

ELEMENTS
OF THE



PERIODIC


 III ALUMINIUM SILICON PHOSPHORUS SULPHUR CHLORINE | 5.39 | 31 | 69.723 | 32 | 72.64 | 33 | 74.922 | 34 | 78.96 | 35 | 79.904 | 36 | 83.80 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | dy $\stackrel{\stackrel{3}{4}}{\stackrel{1}{m}}$

$\stackrel{1}{c}$
in 0
$\vdots$
$\vdots$
$\infty$
$\infty$ $\stackrel{\circ}{\stackrel{o}{c}}+$
Cd

$$
30200.59
$$

$$
\mathbf{H g}
$$

$$
\begin{array}{|c|}
\hline \text { MERCURY } \\
\hline
\end{array}
$$

$$
\begin{array}{|l|l|}
\hline \text { MERCURY } \\
\hline & 112(285) \\
\hline
\end{array}
$$



$$
\mathrm{Tl}
$$

$18 \quad 39.948$
Ar
Rn $82 \quad 207.2$
$\mathbf{P b}$ 114 (289)
In
In

\[
81204.38

\] ${ }^{\mathrm{x}}$ 86 Bi Po At $3882 \quad 207$ 114 (289) UTICA | 3 |
| :--- |
| $\frac{3}{6}$ |
| $\frac{2}{2}$ |
| $\frac{3}{5}$ |



## LANTHANIDE




$$
\begin{aligned}
& \begin{array}{l}
112 \text { (28) } \\
\text { crib } \\
\text { ununbium }
\end{array} \\
& \text { ununbium }
\end{aligned}
$$



Count the electrons in the noble gases. Note that they correspond to filled K shells (He), filled L shells (Ne), filled M shells (Ar) .... These are stable configurations and the noble gases are rather unreactive. It is always useful to know how far an element is from the nearest noble gas. For instance, Br is just one electron away from Kr , and as a result, will grab an electron whenever it gets the chance. K has just one electron more than Ar and is always trying to get rid of it (the one electron). Another way of stating this is that Br has 7 valence electrons (and tries to get one more to reach 8) while $K$ has 1 valence electron and tries to get rid of it to reach zero.

In general, atoms that can adopt the configuration of the nearest noble gas by gaining electrons, have a tendency to grab electrons from other atoms. This tendency is called electronegativity, and Pauling introduced a scale to describe this tendency. The scale runs to 4 (corresponding to F ) which is an atom that always tries very hard to grab electrons. Atoms that have can gain a noble gas configuration by giving up electrons are electropositive, and their electronegativity values are small (usually below 1.5).

## Bonding:

- There are four forces in nature. The strong and the weak interactions act between electrons, protons, neutrons and other elementary particles and do not concern us. We do not know of any normal material whose properties (melting point, for example) depend on the magnitude of these forces. The two other forces are gravitational and electromagnetic.
- Gravitational forces account for large scale phenomena such as tides, and seasons, and together with intermolecular forces, decide the length of a giraffe's neck. We shall not discuss gravitation.
- All interactions that are important for solids, should in principle, come out as solutions of the Schrödinger equation (SE). Unfortunately, solutions of the SE are hard to come by for many real systems, and even if they were available, their utility would not be assured. We therefore continue to propagate the useful fiction that cohesive interactions in materials can be classified as belonging to one of four categories - van der Waals, ionic, covalent or metallic. ${ }^{1}$ We keep in mind that these are not very easily distinguished from one-another in many solids.
For a delightfully readable text on the nature of cohesion between molecules, and between molecules and surfaces, look at J. N. Israelachvili, Intermolecular and Surface Forces.


## van der Waals:

- The simplest solids are perhaps those obtained on cooling down a noble gas - $\mathrm{He}, \mathrm{Ne}, \mathrm{Ar}, \mathrm{Kr}$ or Xe . He does not form a solid at ambient pressure. All the other noble gases do.
- The interactions between noble gas atoms (which have closed shells of electrons) is of the van der Waals type (note: van der Waals, not van der Waal's !) which means that the interaction is between instantaneous dipoles formed because the atoms "breathe" and this breathing causes the centers of positive and negative charges to, from time to time, not coincide. The forces are therefore also referred to as induced dipole-induced dipole interactions, or London dispersion forces (after F. W. London).

[^0]

- If we were to believe the above scheme, it should come as no surprise that the largest noble gas atom should be the most polarisable and therefore the most cohesive. The boiling points (often better indicators of cohesion than melting points) testify to this:

| Atom | $T_{\mathrm{M}}(\mathrm{K})$ | $T_{\mathrm{B}}(\mathrm{K})$ |
| :---: | :---: | :---: |
| Ne | 24 | 27 |
| Ar | 84 | 87 |
| Kr | 116 | 120 |
| Xe | 161 | 165 |

- Other columns of elements in the periodic table don't follow this simple trend. For example:

| Atom | $T_{\mathrm{M}}(\mathrm{K})$ | $T_{\mathrm{B}}(\mathrm{K})$ |
| :---: | :---: | :---: |
| Cu | 1353 | 2833 |
| Ag | 1235 | 2433 |
| Au | 1333 | 3133 |

## Ionic

- As a good thumb rule, atoms at the two ends of the electronegativity scale either give up their valence electrons very easily to form stable cations (ions with small values of electronegativity) or take up electrons very easily to form anions (ions with large electronegativities).

| H |  | $\cdots$ |  |  |  |  |  |
| :---: | :---: | :--- | :---: | :---: | :---: | :---: | :---: |
| 2.2 |  | $\ldots$ |  |  |  |  |  |
| Li | Be | $\ldots$ | B | C | N | O | F |
| 1.0 | 1.6 | $\ldots$ | 2.0 | 2.6 | 3.0 | 3.4 | 4.0 |
| Na | Mg | $\ldots$ | Al | Si | P | S | Cl |
| 0.9 | 1.3 | $\ldots$ | 1.6 | 1.9 | 2.2 | 2.6 | 3.2 |
| K | Ca | $\ldots$ | Ga | Ge | As | Se | Br |
| 0.8 | 1.0 | $\ldots$ | 1.8 | 2.0 | 2.2 | 2.6 | 3.0 |
| Rb | Sr | $\ldots$ | In | Sn | Sb | Te | I |
| 0.8 | 0.9 | $\ldots$ | 1.8 | 1.9 | 2.1 | 2.1 | 2.7 |
| Cs | Ba | $\ldots$ | Tl | Pb | Bi | Po | At |
| 0.8 | 0.9 | $\ldots$ | 1.8 | 2.1 | 2.0 | 2.0 | 2.2 |

- The process of giving up electrons (in the case of cations) and of taking electrons (anions) permits the ion to achieve a stable electronic configuration such as that of
- a noble gas: For example, $\mathrm{Na}^{+}$and $\mathrm{F}^{-}$have the Ne configuration
- the $\mathrm{d}^{10}$ configuration: $\mathrm{Ga}^{3+}$ takes this up
- the $\mathrm{s}^{2}$ configuration: $\mathrm{Pb}^{2+}$ and $\mathrm{Bi}^{3+}$ take this up
- Once they have done this, they can pair up suitably to form ionic solids that are held together by Coulombic interactions
- For any ionic crystal, the attractive Coulombic part (per mole) is:

$$
\Delta U_{\mathrm{Att} .}=-\left(\frac{L A\left|z_{+}\right|\left|z_{-}\right| e^{2}}{4 \pi \epsilon_{0} r}\right)
$$

$L$ is the Avogadro number.

- The repulsive part arises because atoms and ions behave nearly like hard spheres. This is a consequence of the Pauli exclusion principle which says that no two electrons in a system can have all four quantum numbers the same.
- The repulsion can be approximated by the expression:

$$
\Delta U_{\mathrm{Rep} .}=\frac{L B}{r^{n}}
$$

where $B$ is called the repulsion coefficient and $n$ is the Born exponent. $n$ is normally around 8 or 9 .
The two terms add:

$$
\Delta U(0 \mathrm{~K})=-\frac{L A\left|z_{+}\right|\left|z_{-}\right| e^{2}}{4 \pi \epsilon_{0} r}+\frac{L B}{r^{n}}
$$

## Covalent bonding

- Covalent bonds are formed between non-metallic (usually) atoms of similar electronegativity. $s$ or $p$ orbitals are used.
For example, the 1 s orbitals on two hydrogen atoms combine to form the molecular orbitals $\sigma(1 \mathrm{~s})$ which is bonding and $\sigma *(1 \mathrm{~s})$, which is antibonding. The two electrons occupy the bonding level and leave the antibonding level empty. In the following depiction, the circles are the 1 s orbitals:

- Why is covalent bonding strongly directional ? The example of $\mathrm{sp}^{3}$ hybrids in diamond and Si :


Hybrid orbitals are obtained from linear combinations of atomic orbitals on the same atom. These hybrid orbitals can then overlap with similar hybrid orbitals on neighboring atoms, just as the 1s orbitals do in the hydrogen chain.

## Metallic bonding

This is a special case of covalent bonding where all the states are not filled up, and the electrons float around fixed nuclei in the solid.


[^0]:    ${ }^{1}$ Hydrogen bonds are somewhere between being ionic and covalent and we do not see a good reason to place them in a class by themselves.

