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1 Introduction

Over the last decade, high-frequency trading has become one of the most important

driving factors in securities markets. Both market observers and researchers agree

that a large part of the traded volume on major stock exchanges such as NASDAQ,

Deutsche Börse, or the NYSE is traded by algorithms and not by humans. However,

the definition of high-frequency traders is still somewhat diffuse. Hendershott et al.

(2011, p. 1) define them in a very general but still accurate way as ‘computer

algorithms [that] automatically make certain trading decisions, submit orders, and

manage those orders after submission.’

The rapid increase in high-frequency trading in the last one-and-a-half or so

decades has been fuelled by the Regulation National Market System (better known

as RegNMS) in the United States and the Markets in Financial Instruments Directive

(MiFID) in the European Union. Although the two laws differ in details, they share

the main goal to ‘foster fair, competitive, efficient, and integrated equities markets

and to encourage financial innovation’ (Storkenmaier and Wagener, 2010, p. 3).

Both RegNMS and MiFID have led to the increased market share of ECNs and

multilateral trade facilities (MTFs), which have entered the competition with the

established stock exchanges and have been able to gain significant parts of overall

trade activity.

Many ECNs provide an open electronic limit order book. In order to provide

a liquid market, they have to find a way to fill their order books. Many algorith-

mic strategies, especially high-frequency trading ones, generate large amounts of

limit orders. Together with this liquidity generation, they generate income, making

it economically very attractive as well. Consequently, ECNs often encourage high-

frequency trading. They invest in fast communication and input/output technology.
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This enables ECNs to provide very short times to accept, process, and respond to

incoming orders, which is usually called (system) latency. For many high-frequency

trading strategies, fast reaction times are a crucial factor; hence, a low latency of

the stock exchanges’ matching systems is a key asset. Because they find an appeal-

ing environment, many orders from algorithms are routed to ECNs. Established

exchanges quickly reacted and shifted their market structure away from quote- to

order-driven microstructures and also invested in IT in order to lower their latency

times.

As a result of this technological arms race, latencies of well below one millisecond

(10−3s) are not uncommon. As we will show in the progress of this paper, high-

frequency trading strategies work on the level of a few microseconds (10−6s). In

order to analyse their behaviour and the effects they could have on overall trading,

datasets with a precision of a hundredth of a second or one millisecond are insufficient

to exactly show the effects of high-frequency trading (and especially its subset HFT)

on order books. Low timestamp precision causes too much information loss. We

use a dataset from the NASDAQ stock exchange with a timestamp precision of one

nanosecond (10−9s). This enables us to accurately analyse high-frequency trading

effects on the order book and thus the market environment that everybody is trading

in.

It is currently being discussed, however, how large the share of high-frequency

trading really is. Of course, brokerage firms, proprietary traders, and other financial

institutions that implement algorithms do not have to publish their implementa-

tion of high-frequency trading strategies and are in fact very secretive about them.

Thus, because usually no reliable data exists, market observers and researchers have

to rely on estimations on the share of high-frequency trading. The numbers are

rather diverse. For example, Mary Schapiro, SEC chairwoman, sees the share of
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high-frequency trading relative to market volume at ‘50 per cent or more’ in 2010;

Senator Kaufman (Democrats, Delaware) states that the market volume is 70 per

cent algorithmic (Muthuswamy et al., 2011, p. 87). For Deutsche Börse’s Xetra

system, more reliable data exists because of its ATP, which was discontinued in

2009. Market participants who implement algorithms could sign up for it and save

order fees. For detailed descriptions and analyses see, for example, Hendershott and

Riordan (2009), Gsell (2009), Groth (2009), or Maurer and Schäfer (2011). There,

the share of high-frequency trading floats around 50 per cent.

The analysis of high-frequency trade activity is important, because it is struc-

turally different than human trade behaviour. With the rise of high-frequency trad-

ing, the whole market structure changes. For example, Hasbrouck and Saar (2009)

state that the traditional interpretation of limit order traders as ‘patient providers

of liquidity’ (Handa and Schwartz, 1996) has to be re-evaluated if limit order life-

times decrease to fractions of seconds. For market participants, there are neither

timely nor accurate statistics on high-frequency trading. However, traders may have

reasons for the desire to know about the extent of high-frequency trading on ‘their’

market.

The lack of accurate data on high-frequency trading prevents us from devel-

oping an easy-to-calculate method to accurately measure high-frequency trading.

Nonetheless, we try to extract information on the approximate extent of high-

frequency trading from raw order book message data that does not contain any

information on the source of the messages. Currently, high-frequency trade activity

is not directly measurable. With this paper, we show the order activity of high-

frequency algorithms and hope to help find a way to create a measure to estimate

the extent of high-frequency trade activity. It can be especially useful to model
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an agent-driven few-type market with the integration of a stylised high-frequency

trader.

Trade activity can be analysed by more than just one measure. Market par-

ticipants who work intraday to trade on small price movements have to constantly

revise their open positions and orders. Therefore, we analyse the structure of order

strategies of high-frequency trading engines with three proxies. We choose limit

order lifetime, order-revision time, and inter-order placement time to catch actively

and rapidly trading computer programs. We often observe very short values for the

proxies. We conclude that algorithms possibly have a built-in risk assessment for

their limit orders, which we call the limit order risk function. This strictly concave

function reflects the probability that a limit order does not optimally fit the current

market. Over time, market factors change, which results in changed optimal limit

order properties. When the limit order risk function achieves a pre-defined value,

the algorithm deletes the old limit order and inserts a new one with now-optimal or-

der properties. With this concept, we can partly explain the structure of the proxies

and the difference between ETFs and common stocks.

The remainder of the paper is structured as follows: Section 2 describes the data

for the empirical analysis. Section 3 provides the results of the empirical analysis. In

Section 3.1, we analyse the structure of limit order lifetimes of ETFs and NASDAQ-

listed common stocks, i.e., the time that passes between the insertion of a limit

order and its deletion. In Section 3.2, we examine limit order revision times, i.e.,

the time that passes between a deletion of a limit order until the next placement

for the same security. In Section 3.3, we analyse inter-order placement times, i.e.,

the time that passes between two placements of limit orders. For each of these

proxies, we perform various analyses and use data with a timestamp precision of less
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than one microsecond, which enables us to very accurately research sub-millisecond

observations. Section 4 concludes.

2 Dataset

The analysis of limit order book data usually employs data with a precision level of a

hundredth of a second or milliseconds, i.e., 1/100 or 1/1,000 of a second, respectively.

For example, to search patterns in Xetra limit order book data, Prix et al. (2007,

2008) use limit order book data with a timestamp precision of 1/100 of a second,

whereas the clock of Xetra runs at 1/1,000 of a second.

We use data generously provided by the NASDAQ stock exchange. It contains

all entries into the order book, so it is comparable to the one Prix et al. (2007, 2008)

use. It is a protocol of the order book and every activity is stored—order insertions,

deletions, partial cancellations, executions, etc. In early 2010, NASDAQ’s ITCH-

data’s timestamp precision received an update from milliseconds to nanoseconds, or

1/1,000,000,000 of a second. This enables us to perform a search for order structure

patterns at levels that, to our knowledge, have not been attempted before due to

the recent increase in accuracy.

This increase in precision is more than welcome because one of the top priorities

of algorithmic and especially HFT is speed. For example, because light moves at a

speed of 299,792.458 km/s, a signal carrying order information from a brokerage firm

in, say, Chicago, to the NASDAQ stock exchange in New York would need at least

3.87 milliseconds or 0.00387 seconds. Because the speed of light in fibre or electric

signals in wires is significantly slower, these numbers are minimal values, and the

actual transmission time will be much longer. In addition to this, the signal from

the broker would need additional time to pass routers and other network technology,
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increasing the brokerage firm’s latency to levels well beyond four milliseconds. If

the trading strategy of the Chicago-based brokerage firm was based on ultra-high

frequency models, this latency could result in significant disadvantages compared to

brokerage firms located next to the exchange. Indeed, many high-frequency trading

firms use the co-location service, where their engines operate from servers only a

few metres away from the exchange’s servers.

We analyse the limit order protocol from 22 February to 26 February 2010,

i.e., five trading days. Within this time, 131,701,300 orders have been placed and

125,489,818 limit orders were deleted. That means approximately 95 per cent of

the added limit orders were deleted. This figure is only approximate because some

orders from the week before were deleted in this week and some limit orders that

were added were not deleted until Friday’s market close. We expect the error rate to

be small, though. The number of deletions of last week’s limit orders and insertion

of limit orders that stay alive over the weekend should approximately equal out each

other. The dataset contains ETFs, stocks listed on NASDAQ, and stocks listed on

the NYSE. We choose 36 stocks that are listed on NASDAQ with the highest limit

order activity and matched them with 36 ETFs that have a similar number of added

orders to keep the results for the different, comparable securities. The list of stocks

and ETFs used for this analysis is given in Table 2.

The structure of the data enables us to measure limit order lifetimes without

any noise. Each new limit order that arrives on the NASDAQ receives a day-unique

order reference number, and each change or deletion of it is marked with it. That

means that once a limit order is placed, its lifetime can be determined by looking

for its deletion time. The lifetime is then L = td − tp, where L is the lifetime, td the

deletion time and tp the placement time.
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The other two modes are subject to noise. ITCH data is anonymous and does

not carry any identifier of the market participant that places the limit order. Thus,

we cannot detect every structured approach in these two proxies, because any other

market participant can add a limit order before the one who we are looking at does.

However, because of the high speed of high-frequency trading, high frequency limit

order strategies indeed leave visible footprints.

3 Empirical Results

As Hasbrouck and Saar (2011) show, the majority of limit orders of highly liquid

stocks are often deleted within a matter of a few milliseconds. One of their aims was

to show the basic structure of the order dynamics within the time frame of fleeting

orders as defined by Hasbrouck and Saar (2001, 2009). Hasbrouck and Saar (2011)

use a dataset with a timestamp precision of a millisecond, which is sufficient for the

microstructure of order dynamics. As a consequence, all limit orders with lifetimes of

under one millisecond were shown as one millisecond. In 2010, however, NASDAQ’s

timestamp precision level was increased to nanoseconds. This improvement enables

us to ‘zoom in’ and see what really happens in the atomic regions of limit order

data.

We will perform a limit order book analysis based on three different modes: first,

we look at the limit order lifetime, which measures the time between the placement

of a limit order and its deletion. Second, we analyse the limit order revision time.

We measure the time that passes between the deletion of a limit order until the next

placement of a limit order. The third mode is the inter-order placement time. This

is the time the order book for a specific stock does not receive new limit orders.
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Because we are interested in the ‘algorithmic nano level’ using nanosecond times-

tamps we ‘zoom in’ the few-millisecond lifetimes. After a short recapitulation of the

evidence in the macro-level of order lifetimes, we examine the regions that are obvi-

ously the most interesting for many high-frequency algorithms: the sub-millisecond

lifetimes.

3.1 Limit Order Lifetimes

Limit order lifetimes are fundamentally non-normally distributed. Rather, they can

be described with the Weibull distribution, which defines a survival probability S of

P(T > t) = S(t) = exp(− exp(β0)t
p), (1)

where β0 is the scale parameter and p is the shape parameter (Cleves et al., 2002,

p. 212). The estimated β0 in our dataset is constantly smaller than one and greater

than zero, and p averages around 0.31, which yields a hyperbolic distribution. Many

limit orders are deleted before their execution within a handful of milliseconds. The

more limit order placement activity there is for an equity, the shorter the limit order

lifetime becomes. For the most active stocks or ETFs, it is not uncommon that more

than 80 per cent of limit orders are deleted without execution within less than one

second.

Following Prix et al. (2007, 2008), we look for irregularities in the densities of

limit order lifetimes. Whereas Prix et al. (2007, 2008) find multiple peaks in the

kernel density estimations of their Xetra datasets at 250 milliseconds, two seconds

and multiples of 30 seconds, we only find one peak at 100 milliseconds in our NAS-

DAQ dataset. While some stocks or ETFs show an additional peak at one second,

only the peak at 100 milliseconds is statistically significant.
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Many limit orders, as already mentioned, are deleted after one or two millisec-

onds. With a dataset with an unmatched timestamp precision, we can examine

the ‘nanostructure’ of today’s stock markets and capture ultra-high-frequency high-

frequency trade activity. The result is surprising. We only find one significant peak

at the micro level with millisecond timestamps. With the more exact timestamps, it

becomes clear that the entire density of limit order lifetimes consists of peaks, that

are invisible at a lower ‘resolution.’ The ultra-short lifetimes show peaks at multi-

ples of 50 microseconds. Figure 1 illustrates this with four exemplary histograms,

which depict two NASDAQ-listed stocks, and two ETFs. The individual assets were

chosen randomly, and the day presented is 22 February. The histograms show the

frequency of limit order lifetimes in the interval of [0, 2] milliseconds. The solid line

shows the cumulated share of limit orders deleted until time t relative to the total

amount of limit orders for the security on the day. For example, observe that more

than 15 per cent of the limit orders placed during the day on CENX were deleted

within two milliseconds.

Figure 2 shows the cumulative average share of limit orders that have been

deleted within n seconds. The share is calculated relative to the total number

of limit orders that have been inserted on the same day. The figure shows two

curves: one shows the average limit order lifetime of 36 ETFs, the other one that

of 36 NASDAQ stocks covering five trading days, i.e., one trading week. The main

underlying function—disregarding the jump at 100 milliseconds—is concave and

approaches unity.

On average, limit orders are deleted within a very short time. In the sample of

five trading days, more than 50 per cent of inserted limit orders have been deleted

within approximately 0.6 seconds. It is noticeable that the graphs of the stocks and

ETFs differ a little. The basic structure of limit order deletion times is in both cases



3 EMPIRICAL RESULTS 11

0
.0

1
.0

2
.0

3
.0

4
.0

5
S

ha
re

0
20

40
60

F
re

qu
en

cy

0 .0005 .001 .0015 .002
QQQQ

0
.0

2
.0

4
.0

6
S

ha
re

0
2

4
6

8
F

re
qu

en
cy

0 .0005 .001 .0015 .002
VWO

0
.0

5
.1

.1
5

.2
S

ha
re

0
50

10
0

15
0

F
re

qu
en

cy

0 .0005 .001 .0015 .002
CENX

0
.0

2
.0

4
.0

6
S

ha
re

0
2

4
6

8
10

F
re

qu
en

cy

0 .0005 .001 .0015 .002
INTC

Figure 1: Exemplary histograms of order lifetimes. Each bar represents
a timeframe of 100 nanoseconds from 0 to two milliseconds. Depicted
are the two ETFs QQQQ (Powershares QQQ, 125,680 observations) and
VWO (Vanguard Emerging Markets ETF, 39,121) and two stocks listed
on NASDAQ: CENX (Century Aluminum Co, 57,783), and INTC (Intel
Corp, 48,977). Solid line: cumulated share of limit order lifetime relative
to the total amount of limit orders on the day in per cent.

a concave function with a jump at 100 milliseconds. Stocks, however, tend to have

a greater proportion of limit orders with a lifetime of below 100 milliseconds, but

the slope of the function of limit order lifetimes decreases more rapidly for stocks

than for ETFs.

The functions in Figure 2 can possibly be regarded as limit order risk functions

f(·). The probability that a limit order does not optimally fit market conditions

increases over time, ∂f(·)/∂t ≥ 0. To fit the limit orders to the market, traders

constantly have to adjust price and/or quantity tags in order not to be exposed to

the two main risks of limit orders: non-execution risk and undesired execution risk

(Handa and Schwartz, 1996).



3 EMPIRICAL RESULTS 12

0
.2

.4
.6

0 .2 .4 .6 .8
Lifetime in Seconds

S
ha

re

Figure 2: Cumulative average limit order lifetimes. Solid line: NAS-
DAQ listed stocks, dashed line: ETFs. X-axis: limit order lifetime in
seconds. Y-axis: share of limit orders thathave been added and deleted
on the same day.

Every order starts with a risk of non-optimality greater than zero, because no

model can perfectly reflect reality, nor can it predict the future accurately. No

model, however complex, can say with absolute certainty that the properties of any

limit order are impartially optimal, because models are always less complex than

reality. At any point in time, some external factors change and the trading system

deletes the limit order in favour of a new one. This possibly leads to the clustering of

observations at values close to zero in all the proxies. This ‘baseline risk’ is reflected

by the rapid increase of the function especially in the regions close to zero. The

more insecure the perception of optimality of the calculated limit order is, the more

likely it is that the limit order will be deleted after a very short time. Because

high-frequency traders do not mind acting within microseconds or any other speed

that hardware and software allow, this risk level can be adjusted with almost infinite

precision.
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There exists a wide range of possible factors that influence the suitability of limit

orders: bid and offer price, order book depth, order book change rate, ad hoc news,

position of the order in the order book, (implied) volatility, each of these factors for

some benchmark or a correlated asset, and many more. The value of the function

and perhaps even the function itself changes in time, and they can change rather

rapidly. The more limit orders there are, the quicker market conditions change and

limit orders have to be adjusted more rapidly. Obviously, with a growing share of

high-frequency trading engines on the market, this results in a self-nurturing process,

because the algorithms change the very factors they observe.

We now turn to the scale parameter β0 of the Weibull function and regress it

against the log of the number of limit orders. This univariate regression shows that

the more limit order activity there is for a security, the shorter-lived limit orders

become. As mentioned earlier, the Weibull distribution fits the survival probabilities

of limit orders remarkably well. However, the peak cannot be replicated by the

smooth parameterised curve and distorts the parameter estimation. Hence, we left

lifetimes of around 100 milliseconds out of consideration. Specifically, we ruled out

lifetimes if .095s ≤ Lt ≤ 0.105s. We choose this range because the peak is not only

at exactly 100 milliseconds but at some lifetimes t around it, probably due to effects

of the IT infrastructure. We made an individual regression for ETFs and common

stocks. The estimation results are shown in Table 1.

The two types of assets are, therefore, broadly comparable in terms of limit order

lifetime changes in relation to limit order activity. The constant is a little smaller

for stocks than for ETFs, but the slope of the regression curve is less steep. In both

cases, however, the slope is positive. This means that the more limit orders arrive at

the stock exchange, the higher the probability of very short-lived limit orders with

a lifetime of only a handful milliseconds becomes.
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Table 1: Regression results of y = α+βx+ϵ, where the scale parameter
β0 is the dependent variable and the natural logarithm of the number
of limit orders that have been added and deleted on the same day is the
independent variable.

Coeff. Est. Result Std. Err. 95% Conf. Int. N Adj. R2 Avg. p

ETF
α -3.182 0.530 -4.229, -2.135

175 .138 .321
β 0.280 0.052 0.177, 0.382

NASDAQ
α -2.776 0.560 -3.880, -1.671

175 .099 .317
β 0.246 0.056 0.138, 0.354

With the addition of a dummy variable δ, which is 1 when t ≥ 0.1s and 0

otherwise, the Weibull distribution fits the actual data best. The fitted Weibull

curve function is then

P(T > t) = S(t) = exp(− exp(β0)t
p) + δd,

where d is the value for the jump in the deletion probability. The value for d is

on average 0.045 for ETFs and 0.058 for NASDAQ stocks. This indicates that,

on average, around five per cent of all inserted limit orders without execution are

deleted after precisely 100 milliseconds.

Limit order lifetimes over a trading day usually show a distinct break between

market hours and non-market hours. Active trading algorithms that generate many

short-lived limit orders and place and remove limit orders are most active during

market hours when the limit order activity is highest. Figure 3 shows the results

of an aggregation of limit order lifetimes and number of limit orders over the five

trading days in February 2010. The figures were created by splitting the trading

day into five-second intervals.

While traders place limit orders for both ETFs and NASDAQ-listed stocks in pre-

market hours, the data only contain limit orders for ETFs in after-market hours.
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In addition to the different average limit order lifetimes during market and non-

market hours, the lifetimes during market hours show a rough reverse smile. The

lifetimes shortly after market opening and before market close are shorter than at

noon. The lower two figures show the total amount of limit orders arriving in each

five-second interval. They show the well-known smile effect with more limit order

activity at the beginning and at the end of the trading day than around noon (see

for example, Jain and Joh (1988), Foster and Viswanathan (1993), or Biais et al.

(1995)). This supports the hypothesis that high-frequency trade strategies are most

active when many limit orders are in the market, perhaps in order to hide themselves

from sniffer algorithms that seek to reverse-engineer other algorithms’ strategies to

frontrun them.

This concave pattern of average limit order lifetimes over the trading day fits

smoothly into the framework of a limit order risk function. With a rapidly changing

order book structure, it becomes more likely that a limit order placed at time t0

becomes non-optimal for the market at some time t0 + x. At the beginning and at

the end of a trading day, trading activity is commonly at its highest level over the

day. After market opening, market participants trade to find a consensus on the fair

price of an asset and process the information of the night and from other markets.

Before market close, traders often close their position in order to avoid overnight

risk or take the position their portfolio manager has ordered. Of course, this leads to

a lot of trading action, with many order insertions and -deletions. These activities

increase the slope of the limit order risk function for lifetimes close to zero.

Fast markets with a lot of volatility should prove to be a good environment to

test the concept of a limit order risk function as well as analyse order dynamics in

turbulent conditions. Especially interesting is the so-called ‘flash crash’ of 6 May

2010, in which HFT was involved; see, for example CFTC and SEC (2010, pp. 45–
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Figure 3: Top: average limit order lifetimes of limit orders for
NASDAQ-listed stocks (left) and ETFs (right). Bottom: number of
limit orders for the same period and assets. The x-axis represents the
number of the five-second intervals, starting at 0 and representing the
interval 08:00.00 - 08:00.04 AM, when the market opens. The dashed
vertical lines show the beginning of market hours (09:30.00 AM, or the
1,080th interval, and 04:00.00 PM, or the 5,760th interval).

57). By investigating the trading day using the limit order lifetime proxy, we receive

a further indication that it is likely that the proxy correlates with the intensity of

high-frequency trading.

As Figure 4 shows, the average lifetime of limit orders on 6 May behaves as the

average limit order lifetimes of the February lifetimes, only with a more elevated

variance of the lifetimes over time than in Figure 3. At the time of the flash crash,

the average lifetime of limit orders plummets from values ranging from around two to

thirteen seconds to average lifetimes of around one second and lower. This indicates

that during the flash crash, the share of high-frequency trading increased, because

humans are unlikely to systematically insert and delete orders within much less than

a second or so.
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Figure 4: Upper graphs: average Lifetimes of limit buy (left) and sell
(right) orders on ETFs. Lower graphs: average lifetimes of buy (left)
and sell (right) orders of NASDAQ-listed stocks. Five-second-intervals,
starting at 9:30 AM (interval number 1080). All graphs show the time
09:30 AM to 04:00 PM, i.e., the regular trading hours, of 6 May 2010.
The dashed line highlights 2:45.30 (or interval number 4,866), when the
Dow-Jones index reached its minimum on that day with a little more
than nine per cent losses for a short period of time.

In distressed markets, there are two possibilities for high-frequency traders: the

first possibility is to ‘pull the plug’ because the algorithm’s model depends on ‘nor-

mal’ markets. Because the market changes very rapidly, the model does not yield

limit orders with risk levels below the threshold. This causes the algorithm to tem-

porarily halt trading. The second possibility is the opposite: to trade with a higher

frequency because the market changes more rapidly. The faster the market changes,

the faster increases the risk that the limit order does not fit to the market and needs

to be replaced. This is the case if the algorithm’s risk level for new orders is still

below the risk threshold that would prevent it from trading.
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As is visible in all lifetime graphs in Figure 4, the average lifetime decreases and

reaches its minimum at around 2:45 PM, when the Dow-Jones hit the minimum

value of the day with a minus of approximately nine per cent. This signifies that at

the time of the market turmoil, high-frequency algorithms were very active, placing

and deleting limit orders rapidly. It would be too much, however, to draw any

definitive conclusion from this indicator.

The different structures of limit order lifetimes for ETFs and common stocks

enable us to create the concept of limit order risk functions as perceived by market

participants. If a trader deletes a limit order quickly after its placement, he or she

gives up the time priority in exchange for not being exposed to the two main risks

of limit orders, non-execution and adverse execution. In the next section, we will

analyse the proxy order-revision time, which shows how long the trader waits after

a deletion before he or she places a new order for the same stock.

3.2 Order Revision Times

Order revisions are a fundamental feature of the price formation process on order-

driven stock markets. With the adjustment of limit order properties, traders can

adjust their perception of the supply/demand curves for securities and contribute to

the price-formation process. Even though most stock exchanges provide a built-in

routine for replacing limit orders, it seems common to manually delete limit orders

and manually insert a new one. Because limit order revisions are a fundamental

part of active trading, it serves as the second proxy.

Human traders and computers alike constantly compute their optimal limit

orders—according to their market perception. That means that the time between

the deletion of a non-optimal limit order and the next insertion of a limit order with
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adjusted properties can be very small or even zero. The revision time depends on the

trader’s decision to wait or not to wait for a market reaction on the deletion of the

limit order. However, with a timestamp precision of a nanosecond, it is theoretically

possible but very unlikely to observe revision times of zero: the new order would

have to be placed with less than a nanosecond delay, and the network technology

would have to be perfectly constant, both of which is rather unlikely.

The slope of the limit order risk function for small values of t is usually very

steep. To keep non-optimality risk low, traders adjust their limit orders very quickly

in order to adapt to changing market conditions. We show that many securities show

a distributional peak at 100 milliseconds in the distribution of order-revision times

comparable to the one of limit order lifetimes. This is in line with the findings of

Hasbrouck and Saar (2011), who employ two older datasets with more peaks in the

hazard function. There, the lifetime distribution becomes smoother, a process that

seems to have continued further. We expect a similar shape for average cumulated

revision times as we find for order lifetimes. We assume it is more likely that a

trader keeps trading in the same stock with a higher probability than foregoing it,

so revision times should resemble lifetimes.

It is possible but unlikely that revision times are often shorter than a few millisec-

onds through the random placement of different market participants. The informa-

tion of an order deletion has to arrive at the market participant, which even on very

advanced platforms takes some 100 to 150 microseconds or so even for users with

their trade engines co-located next to the exchange’s servers. Adding the processing

time for the now-changed order book and the time it takes to send a limit order

back to the stock exchange, it is likely that at least around 0.3 to 0.5 milliseconds

pass.
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The market participant who deletes the limit order does not have to wait for the

information of the deletion (as he or she generates it). As trivial as it sounds, he or

she knows about the change of the order book caused by his or her deletion before

all other market participants do. Thus, not considering the unlikely coincidental

placement or deletion of a limit order by another market participant in such small

timeframes, the market participant who is about to delete his or her limit order

knows the structure of the limit order book before anyone else does. This enables

him or her to calculate the optimal limit order for the then-changed order book. For

the deleting market participant, the order-revision time can be infinitesimally small

or even negative, if the new order is routed more quickly than the deletion message.

Of course, only high-frequency engines can perform actions in such short intervals.

Even though human traders might know exactly the properties of their next limit

order they plan to place after they delete their old one, they will not be able to place

it in a matter of milliseconds, probably not even in a tenth of a second.

Figure 5 shows histograms of order-revision times for the same two stocks and

two ETFs used in Figure 1. The data reveals that very short order-revision times

of only a few milliseconds are very common. In this set of two ETFs (VWO and

QQQQ) and two stocks (CENX and INTC), order-revision times are lower than or

equal to two milliseconds in some 40 per cent of the cases. It is noticeable that

similar to limit order lifetimes, limit order revision times tend to occur every 50

microseconds. This explains the step-wise shape of the cumulated average limit

order revision share.

To verify that the large shares of revision times of under two milliseconds in

Figure 5 are not just special cases, we take the same securities as we did in Section

3.1 and calculate the average cumulated share of order-revision times. Again, the

function describes a concave curve and resembles the one we discovered with the
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Figure 5: Histograms and cumulated proportions of limit order revision
times on 22 February 2010 of VWO and QQQQ (ETFs) and CENX and
INTC (NASDAQ-listed stocks). In each subfigure, the left y-axis shows
the frequency of each limit order revision time (with increments of 0.2
microseconds), and the right y-axis shows the cumulated share of the
order-revision time t with respect to all limit order revisions for the
security on the same day.

limit order lifetime proxy. It is much steeper, which are shown by the exemplary

figures in Figure 5.

The cluster of order-revision times of a few milliseconds may be the effect of the

often-made argument that traders seek for liquidity by placing ultra-short-termed

limit orders in quick succession. In the context of a limit order risk function, this

repeated insertion of limit orders also makes sense for the traders. Whereas the

deleted limit order climbed the limit order risk function over time, the trader can

delete that limit order and add a new one with adjusted properties to start at

a risk of zero that it does not fit the market—at least within the trader’s model

framework. Because computers can calculate optimal limit orders continuously,

there is no necessity to wait after a deletion to place the new order. In some cases,
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e.g., if there is uncertainty, it may be advisable to wait a few fractions of a second

for the market’s reaction to the deletion. However, high-frequency traders do not

seem to wait very often, as can be deduced from the distribution of the cumulative

average revision times.

Figure 6 shows average cumulative limit order revision times for NASDAQ stocks

and ETFs. It shows that orders for ETFs are revised differently than stocks. ETFs

tend to have shorter revision times than common stocks, indicating that high-

frequency traders are more active on those structured products than on plain vanilla

equity.

0
.2

.4
.6

.8

0 .2 .4 .6 .8 1
Order Revision Time in Seconds

Figure 6: Average limit order revision times for ETFs (dashed line)
and stocks listed on NASDAQ (solid line). The lines show the average
cumulated share of order-revision times t relative to all observations of
the message sequence [Delete–Add] per day per security.

The cause is probably the structured nature of ETFs. Market participants—

traders, and especially in the case of ETFs, market makers—know the constituents

of the ETF and can easily calculate its net asset value (NAV). This makes the risk
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that the limit order is not optimally suited for the current market, lower than for

common stocks, where traders always face the problem that they do not know its

fundamental value. Because this knowledge is relatively easily available in the case

of ETFs, the only edge traders have is speed, which makes the use of algorithms

pivotal. Notice that the curve for stocks shows a small jump at around 0.1 seconds,

which does not exist for ETFs.

Figure 7 shows that order-revision times over the day behave as one would as-

sume. As the order flow decreases around noon as shown in the lower half of Figure

3, the average time that passes between the deletion of a limit order and the arrival

of a new limit order for the same stock increases. Before market opening, and espe-

cially after market close, order revisions become rather scarce, which leads to much

longer order-revision times than during market hours. The informational content of

non-market hours is only limited, so we do not include them in this figure.

To see how active trading changes in distressed markets, we employ the data of

6 May 2010 as for the limit order lifetime. We create several order-revision time

figures with the technique employed in Figure 6. According to CFTC and SEC

(2010, p. 57), the share of high-frequency trading on total market volume hovered

a little over 40 per cent over the day and peaked at 50per cent at 2:45 PM, when

the Dow-Jones index hit its minimum. Their figures refer to 17 HFT firms, i.e.,

high-frequency trading firms. They split up the day into 15-minute intervals, and

for each the share of the 17 HFT firms on the overall market is given. They are thus

minimum values, as other algorithmic market participants were not taken into the

dataset. The cumulative share of limit order revisions on 6 May for four 15-minute

intervals is given in Figure 8.

It becomes apparent that the eagerness to place new orders after the deletion

of a previous limit order is greater for ETFs than for NASDAQ stocks. This hints
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Figure 7: Average order-revision times over the trading day. The x-axis
is the interval number; each interval represents five seconds of trading.
The figures show the time 9:30 AM to 4:00 PM. Each dataset consists
of 36 stocks or ETFs, respectively. The trading week is 22–26 February,
i.e., five trading days.

at a greater share of algorithmic price formation for ETFs than for common stocks.

At 10:00 AM as well as at 12:00 PM on 6 May, the figures are comparable to a

very quiet market, given in Figure 6. At the time of the flash crash, however, which

happened between around 2:30 and 3:00 PM, the speed of limit order revisions

increases rapidly for both limit orders to sell and limit orders to buy.

This proxy alone probably does not yield a relative share of high-frequency trad-

ing in the market. However, a decrease of limit order revision times indicates a

higher proportion of high-frequency trading if the value is adjusted for a faster mar-

ket, which automatically brings down limit order revision times with the noise it

generates. Ultra-fast revision times of only a few milliseconds can possibly serve

as an approximate indicator for high-frequent limit order activity. However, with-
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Figure 8: Average share of order-revision times t within four 15-minute
intervals on 6 May 2010. —– interval from 2:30 PM to 2:45 PM; – · ·
– interval from 2:45 PM to 3:00 PM; — — interval from 10:00 AM to
10:15 AM; - - - interval from 12:00 AM to 12:15 PM. For example, of all
the observed occurrences of the message flow of the form [Delete–Add]
that were sell orders on ETFs (upper right figure), in around 80 per cent
of the cases, a new order was placed within 0.4 seconds from 12:00 AM
to 12:15 PM.

out a reference dataset with an indicator for algorithmic orders, it is impossible to

construct a measure.

3.3 Inter-Order Placement Times

Although some research papers analyse inter-trade or inter-transaction durations

(e.g., Engle and Russell (1998), Ivanov et al. (2004)), to the best of our knowledge,

there are no scientific papers on the inter-order placement duration, i.e., the time

that passes from the placement of one limit order until the next limit order arrives.
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Limit order insertions in quick succession can have various origins. For example,

the much criticised so-called ‘quote-stuffing’ works this way. If one market partici-

pant places many limit orders at once for one stock, the algorithms of other market

participants have to read and process them, which consumes calculation time. They

face a (possibly small) time disadvantage. The market participant who placed the

limit orders does not have to react to the new limit orders, he or she knew the

structure of the limit orders beforehand simply because he or she placed them. Due

to the fact that the dataset is anonymous, we cannot say if the limit orders we anal-

yse are part of a quote-stuffing attempt or not. We can, however, say with a high

probability that ultra-short inter-order placement times originate in high-frequency

trading.

Inter-order placement times tend to be very short by nature. If there are many

limit order insertions, even without order clustering the time between the arrival of

limit order insertions decreases. In addition to that, it is well-known that liquidity

attracts liquidity, causing inter-order placement times to further diminish at times of

much limit-order activity. But for the ultra-short inter-order placement times that

we observe, this explanation alone does not suffice. Figure 9 shows the inter-order

placement times of four securities for up to two milliseconds and the cumulated

share relative to all placed limit orders on the day (22 February).

In the case of QQQQ and INTC, with a probability of 50 per cent a trader would

only have to wait two milliseconds after the insertion of a limit order to see the next

one to be placed. Perfectly distributed over the trading day with 23,400 seconds,

we would expect inter-order placement times distributed around average values of

around 0.2 seconds for QQQQ (125,680 orders) or 0.5 seconds for INTC (489,777

orders). For the securities VWO and CENX, the probability of a new limit order

insertion within two milliseconds after the last one lies between 25 and 30 per cent.
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Figure 9: Inter-order placement times of QQQQ and VWO (two ETFs)
and CENX and INTC (two stocks listed on NASDAQ). The bars show
the frequency of inter-order placement times t, the solid line shows the
cumulated share of limit orders at t relative to all limit orders placed on
that day for the individual security.

The quickest inter-order placement time is two microseconds, i.e., 0.000002 seconds—

which is clearly not coincidental. The bulk of inter-order placement times is placed

within less than a millisecond. Note the different shapes of the histograms given

in Figure 9. Every security shows the clustering around multiples of 1/20,000 of a

second. While 3 per cent of all limit orders of CENX, for example, arrive earlier than

0.0002 seconds after the last limit order, it shows a massive clustering of limit orders

at 0.00025 and 0.0003 seconds—almost 12 per cent of limit orders are placed with

exact that speeds. The limit orders of QQQQ, in comparison, come in at a higher

rate, around 20 per cent of the limit orders are inserted within 0.0004 seconds. As

for the limit order revision time, is not possible to say with certainty that the two

successive orders generating such short inter-order placement durations come from
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the same trader, because the dataset is anonymous and the realised latency of the

stock market and the market participants to process the order is unknown.

To compare ETFs and common stocks with each other, we calculate the average

shares of inter-order placement times t relative to all limit orders of the individ-

ual securities. The results are given in Figure 10. The figures show five curves,

representing the inter-order placement durations for the intervals (0, 1/10,000), (0,

1/1,000), (0, 1/100), (0, 1/10), and (0, 1) seconds. For example, for the sample

of 36 ETFs and five trading days, with a probability of 40 per cent the average

duration between two successive limit order insertions is only 0.6 × 1/100s = 0.006

seconds. This indicates that limit orders are clustered. NASDAQ-listed stocks are

quite comparable to ETFs regarding this proxy, except the jump at 100ms.

Observe that at 3/10,000 of a second or 300 microseconds, there is a peak in the

distribution of inter-order placement times, as can be seen from the curve labelled

1/1,000 of a second. In addition to that, the solid line of NASDAQ stocks shows

a jump at 0.1 seconds that are possibly part of strategic runs as found by Prix

et al. (2007, 2008), and Hasbrouck and Saar (2011). The jumps indicate that there

are relatively static algorithms in the market that wait 300 microseconds or 100

milliseconds after a limit order has been added and place a new one.

The often much shorter inter-order placement durations for more active stocks

and ETFs indicate that algorithms take up speed with an increased order flow. This

behaviour can also be explained with the concept of a limit order risk function. The

more limit orders arrive, the faster increases the risk that a limit order placed in the

market some time earlier turns non-optimal. This leads the algorithm to delete the

old order in favour of a new one, leading to decreased order revision- and decreased

inter-order placement times.
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Figure 10: The lines show the different cumulated probabilities of
order-revision time as being equal to t. Each curve represents different
intervals, which can be calculated by multiplying the factor given at
the x-axis with the corresponding time scale given in the legend. For
example, the solid line (1/1 sec) shows the interval (0, 1) seconds, the
dashed line directly below it the interval (0, 1/10) seconds and so forth.
For example, with a probability of 80 per cent, a new order arrives within
one second after the last insertion for both ETFs and stocks.

4 Conclusion

We analyse raw order book message data for traces of high-frequency trading. From

the analysis of the microstructure of order dynamics in time frames that are still

perceivable by humans (as described above), we know that a great deal of limit order

activity occurs in a few milliseconds’ time. Until recently, the timestamp precision

of most datasets ‘only’ reached milliseconds, prohibiting a thorough and detailed

analysis of ultra-high frequency algorithms. This paper aims at helping close this

gap.



4 CONCLUSION 30

We operate with an order book protocol from the US stock exchange NASDAQ.

It logs all order book events, such as limit order insertions, deletions, executions,

etc. In order to give traders and other market participants an idea of the way high-

frequency trading works on a modern order-driven market, we analyse the structure

of limit order lifetimes, limit order revision times, and inter-order placement times.

All three proxies show a clustering of observations at a few milliseconds, which makes

an analysis of pure high-frequency trading behaviour impossible with timestamp

precisions of a millisecond or worse. The dataset has timestamps which are exact to

the nanosecond. This enables us to perform analyses at a greater accuracy than ever

before, which is necessary to observe high-frequency traders that currently operate

at microsecond levels.

The limit order lifetime, i.e., the time from insertion to the deletion of a limit

order, is the first proxy we analyse. It is also the most exact one; the data does not

produce any noise, because every order is equipped with a day-unique order reference

number. Many limit orders for common stocks and ETFs are only active for a few

milliseconds, often only a few microseconds, before they are deleted. This proxy

shows clusterings of observations at multiples of 50 microseconds. Order dynamics

differ for ETFs and common stocks. A greater proportion of limit orders for common

stocks than for ETFs is deleted within less than 100 milliseconds. During the flash

crash on 6 May 2010, the average limit order lifetimes plummeted to very small

values both for buy orders and for sell orders.

Order revision times, i.e., the time that passes between a deletion of a limit order

and the next insertion of a limit order, are very small. Their density resembles the

one of limit order lifetimes, they also show peaks at multiples of 50 microseconds. As

in the case of limit order lifetimes, revision times for ETFs and for common stocks are

different. This becomes apparent in the average cumulated share of revision times;
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the slope is much steeper for ETFs for values close to zero than for common stocks.

During the flash crash on 6 May 2010, revision times for both ETFs and common

stocks decreased, indicating that the share of high-frequency trading increased as

compared to ‘normal’ markets.

The inter-order placement time measures the time that passes between two suc-

cessive limit order insertions for a stock. A great share of inter-order insertion

durations is very short. On average, in 50 per cent of the cases a new order is placed

within less than 100 milliseconds. This proxy shows the peaks at multiples of 50

microseconds that can be observed for lifetimes and revision times. For very active

stocks or ETFs, this time decreases to two or three milliseconds. The differences

between ETFs and stocks are rather negligible in comparison with the two other

proxies revision times and lifetimes. As one would expect, inter-order placement

times decreased for both asset classes during the flash crash.

The structures of the limit order proxies can possibly be explained by a limit

order risk function. The function describes the increasing risk of a limit order not to

be optimal for the market any more. It is an increasing function that can depend on

various factors that influence both the optimal order strategy and tactics, such as, for

example, depth of the order book, volatility, implied volatility, depth of correlated

securities, and any other factor the trader deems important for an optimal order

strategy.

The short order-revision times and lifetimes could be a direct result of this. To

illustrate this for limit order revision times: if a trader deletes an existing limit

order, a newly inserted order restarts at a risk of non-optimality of zero. In the

case of order lifetimes: if a previously inserted limit order reaches a threshold level

of inappropriateness, the algorithm or trader deletes the order and inserts a new

one that is optimal according to the employed model. High-frequency algorithms
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can do both of these things very quickly. They rapidly read and process large

amounts of market information. They feed this information to their order calculation

models, which act accordingly. The more powerful information and communication

technology becomes, the faster the value of the limit order risk function changes,

which results in decreasing values for the proxies. At the time of the flash crash,

the order-revision times decreased significantly, because the market itself generated

a lot of new information through large price movements.

ETFs are treated differently than common stocks. Their limit order lifetimes are

on average longer, their revision times shorter, and their inter-order placement times

are also shorter. This can be explained by the different structure of ETFs compared

to common stocks. Because ETFs are usually diversified portfolios with a known

inner structure, their fundamental value can relatively easily be calculated via its

net asset value. This lowers the risk that an inserted order is not optimal for the

current market conditions. This has a positive effect on limit order lifetimes, because

the suitability of the order for the market decreases more slowly, especially in the

regions close to zero. For the order-revision time, the effect is negative, because the

trader can calculate the optimal order with less uncertainty for ETFs than common

stocks, so a new order can be placed with no delay. It goes without saying that this

leads to clusters of observations close to zero, making a very accurate timestamp

precision necessary.

Future research will include modelling and testing a limit order risk function and

the connection of the proxies to the structure of the order book. It will be interesting

to see if the ultra-short lifetimes, order-revision times or inter-order placement times

happen within, at or slightly away from the BBO.
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Table 2: Ticker symbol, type, name, and number of limit orders of the
stocks and ETFs used in the empirical analysis.

No. Ticker Symbol Type Company Name Limit Orders

1 IYR ETF iShares Dow-Jones US Real Estate Index Fund 313,998
2 SPXU ETF ProShares UltraPro Short S&P 500 302,766
3 IAU ETF iShares Gold Trust 278,115
4 VWO ETF Vanguard MSCI Emerging Markets ETF 243,793
5 SMDD ETF ProShares UltraPro Short MidCap400 229,215
6 DUG ETF ProShares UltraShort Oil & Gas 224,297
7 EDC ETF Direxion Daily Emerging Markets Bull 3X Shares 210,257
8 SH ETF ProShares Short S&P500 189,223
9 TLT ETF iShares Barclays 20+ Year Treasury Bond Fund 184,564

10 IXG ETF iShares S&P Global Financials Sector Index Fund 183,516
11 UPRO ETF ProShares UltraPro S&P 500 170,674
12 USD ETF ProShares Ultra Semiconductors 149,717
13 XHB ETF SPDR S&P Homebuilders ETF 147,519
14 TBT ETF ProShares UltraShort 20+ Year Treasury 146,791
15 IEO ETF iShares Dow-Jones US Oil & Gas Exploration & Production Index Fund 146,481
16 SMH ETF Semiconductor HOLDRs Trust 142,775
17 SLV ETF iShares Silver Trust 14,2620
18 XOP ETF SPDR S&P Oil & Gas Exploration & Production ETF 141,408
19 FPL ETF Futura Polyesters Ltd 138,815
20 KRE ETF SPDR KBW Regional Banking ETF 132,532
21 XLK ETF Technology Select Sector SPDR Fund 132,232
22 TWM ETF ProShares UltraShort Russell2000 131,086
23 DAI (now DUST) ETF Direxion Gold Miners Bull 2X Shares 129,203

Continued on next page
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Table 2 – continued from previous page

No. Ticker Symbol Type Company Name Limit Orders

24 EWC ETF iShares MSCI Canada Index Fund 125,131
25 ERY ETF Direxion Daily Energy Bear 3X Shares 121,007
26 XLI ETF Industrial Select Sector SPDR Fund 120,967
27 OEF ETF iShares S&P 100 Index Fund 119,704
28 EPP ETF iShares MSCI Pacific ex-Japan Index Fund 117,567
29 ICF ETF iShares Cohen & Steers Realty Majors Index Fund 116,879
30 XLV ETF Health Care Select Sector SPDR Fund 114,838
31 TRA ETF Terra Industries Inc 112,987
32 IWF ETF iShares Russell 1000 Growth Index Fund 111,749
33 DOG ETF ProShares Short Dow30 110,545
34 EEV ETF ProShares UltraShort MSCI Emerging Markets 107,322
35 LHB ETF Direxion Daily Latin America Bear 3X Shares 104,625
36 AGQ ETF ProShares Ultra Silver 102,882

1 QCOM NASDAQ QUALCOMM Inc 314,698
2 INTC NASDAQ Intel Corp 307,902
3 CENX NASDAQ Century Aluminum Co 283,047
4 BRCM NASDAQ Broadcom Corp 244,583
5 STLD NASDAQ Steel Dynamics Inc 229,428
6 MSFT NASDAQ Microsoft Corp 225,705
7 STX NASDAQ Seagate Technology PLC 211443
8 BRCD NASDAQ Brocade Communications Systems Inc 189,830
9 CSCO NASDAQ Cisco Systems Inc 184,703

10 WFMI (now WFM) NASDAQ Whole Foods Market Inc 181,518
11 ORCL NASDAQ Oracle Corp 170,411

Continued on next page
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Table 2 – continued from previous page

No. Ticker Symbol Type Company Name Limit Orders

12 INTU NASDAQ Intuit Inc 149,600
13 NTAP NASDAQ NetApp Inc 148,801
14 CTXS NASDAQ Citrix Systems Inc 147,367
15 CTSH NASDAQ Cognizant Technology Solutions Corp 146,316
16 SNDK NASDAQ SanDisk Corp 143,250
17 UAUA (now UAL) NASDAQ United Continental Holdings Inc 142,098
18 MRVL NASDAQ Marvell Technology Group Ltd 141,903
19 NIHD NASDAQ NII Holdings Inc 138,778
20 ASML NASDAQ ASML Holding NV 132,701
21 DTV NASDAQ DIRECTV 132,340
22 MU NASDAQ Micron Technology Inc 131,756
23 XLNX NASDAQ Xilinx Inc 130,376
24 GILD NASDAQ Gilead Sciences Inc 126,173
25 LLTC NASDAQ Linear Technology Corp 122,328
26 APOL NASDAQ Apollo Group Inc 120,823
27 TEVA NASDAQ Teva Pharmaceutical Industries Ltd 119,679
28 MCHP NASDAQ Microchip Technology Inc 118,128
29 PTEN NASDAQ Patterson-UTI Energy Inc 116,396
30 NVDA NASDAQ NVIDIA Corp 113,321
31 KLAC NASDAQ KLA-Tencor Corp 112,373
32 AMLN NASDAQ Amylin Pharmaceuticals Inc 111,876
33 CMCSA NASDAQ Comcast Corp 111,031
34 HCBK NASDAQ Hudson City Bancorp Inc 104,100
35 LBTYA NASDAQ Liberty Global Inc 104,095
36 SBUX NASDAQ Starbucks Corp 102,938
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