
Ordinary Differential Equations

Slobodan N. Simić
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CHAPTER 1

First order differential equations

Newton’s fundamental discovery, the one which he considered

necessary to keep secret and published only in the form of an

anagram, consists of the following: Data aequatione quotcunque

fluentes quantitae involvente fluxiones invenire et vice versa. In

contemporary mathematical language this means: “It is useful to

solve differential equations”.

Vladimir Arnold

1.1. What is a differential equation?

Differential equations are arguably the most important types of equations in mathematics,
the natural sciences and engineering. They are one of the basic tools of mathematics. Modeling
natural phenomena leads straight to differential equations. The first person to systematically study
differential equations was Isaac Newton. He considered his discovery that differential equations are
useful for modeling physical phenomena one of his greatest, so he kept it secret and published it
only in the form of an anagram (see the quote above).

But what is a differential equation? Here’s an example:

(1.1)
dy

dt
= y.

Here’s another:

(1.2)
∂2u

∂x2
+
∂2u

∂y2
= 0.

And here’s an equation that’s not a differential equation:

(1.3) x2 + 3x+ 2 = 0.

In each example there’s an unknown we are supposed to solve for, but unlike the last equation (which
is just a simple quadratic equation), where the unknown is a number, in the first two equations the
unknown is a function. In (1.1) the unknown is the function y which depends on a single real variable
t; in (1.2), the unknown is a function u which depends on two real variables, x and y. The first
two equations involve derivatives of the unknown function, which is why we call them differential

1



2 1. FIRST ORDER DIFFERENTIAL EQUATIONS

equations. Equation (1.1) contains an “ordinary” derivative
dy

dt
of the unknown function y, so we

call it an ordinary differential equation. This equation arises in modeling exponential growth (e.g.,
population dynamics). Equation (1.2) contains partial derivatives of the unknown function u, so
we call it a partial differential equation. This equation (called Laplace’s equation) arises in potential
theory.

Here we will only be concerned with ordinary differential equations.
So we could say that an ordinary differential equation is an equation in which the unknown is

a function of one real independent variable and the equation involves derivatives of that function.
The order of an equation is the order of the highest derivative appearing in it.

We will always denote the independent variable by t and think of it as time. Usually the unknown
function of t will be denoted by the letter y. Thus a first-order ordinary differential equation is
always of the form

F (t, y, y′) = 0,

where F is some function of three variables and y′ =
dy

dt
. It is often possible to solve for y′ and

rewrite the equation in the more useful form

(1.4) y′ = f(t, y).

For instance, in (1.1), f(t, y) = y. If the right-hand side in (1.4) does not depend on t, we call the
equation autonomous. Otherwise, it is called non-autonomous. Thus (1.1) is autonomous, whereas
y′ = t+ y is not.

Similarly, most second-order ordinary differential equations can be written in the form

y′′ = g(t, y, y′),

where g is some function of three variables and y′′ =
d2y

dt2
.

In later Chapters 2, 3 and 4, we will be studying systems of differential equations, where there
is not just one, but several unknown functions, all depending on the same independent variable t.
We postpone the discussion of systems to Chapter 2.

Since the unknown in a differential equation is a function, solving a differential equation means
(at least in principle) finding infinitely many unknown numbers. This is in general much harder
then solving for just one or two numbers (like in numerical equations such as (1.3)). As a rule of
thumb, differential equations are harder to solve than numerical equations, and among differential
equations, partial differential equations are harder to solve than ordinary differential equations.
In fact, it turns out that most differential equations cannot be solved explicitly (i.e., there’s no
equivalent of the quadratic formula). But more about this later.

Notation. If y is a differentiable function of an independent variable t, we will denote its
derivative either by y′ (when it’s clear with respect to what variable the derivative is taken) or by
dy

dt
. Sometimes (especially if t denotes time) we will use Newton’s notation ẏ. So remember:

y′ = ẏ =
dy

dt
.

1.2. Basic examples and modeling

In this section we will introduce three differential equations which arise in modeling of population
growth and harmonic oscillators. Before we do that, let us first discuss what we mean by modeling.

Essentially, all of science is a search for models for how the Universe works. But to quote George
E. P. Box, a British-American statistician:
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Essentially, all models are wrong, but some are useful.

That’s of course because the Universe (or almost any subset of it) is too complicated to be
modeled by our puny mathematical tools, since a model is just a mathematical representation of
the real world (whatever that is). We can only hope to partially represent some aspects of the real
phenomenon we wish to understand. So to obtain a reasonable model we need to make simplifying
assumptions. That allows us to identify a finite (and ideally small) number of relevant variables
and parameters, and then write down a set (also ideally small) of equations comprising our model.
Once we have it, we can temporarily (but only temporarily) forget the “real thing” and analyze the
model using any tools and methods that mathematics can offer. And that means calculus, geometry,
topology, etc. After we have understood our mathematical model, we can make predictions about
its future behavior and compare those predictions with real data (which we can presumably obtain
by measurement). This can give us some idea about the validity and limitations of our model, which
we can use to improve it, say by including more relevant variables or parameters, choosing a better
set of equations, etc.

We usually start by building a model that is as simple as possible yet reflecting the basic features
of the real phenomenon we are trying to represent. If the model is not good enough, we make it
more complex. The goal is to have a good balance between simplicity (which often translates into
tractability) and faithfulness in representing the real world.

Let’s see how this works in the following examples.

1.2.1. Unlimited population growth. Assume we have the population of some species (say
fruit flies), which has the following remarkable properties:

• Its members never die.
• The population has access to an unlimited supply of food.
• The species spends all of its time reproducing itself.

How do we go about modeling the change of this population with time? First, let us denote the
number of individual members of the population by P and time by t. So P is a function of t. Of
course, in reality P is a positive integer, but since we are hoping to study its rate of change with
respect to t, we choose to treat it as a real number. In fact, we will assume that P is a differentiable

function of t; in other words, we assume that P ′ =
dP

dt
exists for all values of t.

What do our standing assumptions tell us about the rate of change P ′ of P with respect to t? It
is clear that the larger the size P of the population, the faster it reproduces, i.e., the larger its rate
of change P ′. Thus it makes sense to assume that P ′ is proportional to P , which means that there
exists a positive parameter k1 such that P ′ = kP . Thus the simplest differential equation modeling
the growth of the population satisfying the above properties is

(1.5)
dP

dt
= kP.

This is the simplest non-trivial example of a differential equation (in which the right-hand side
is not just a function of the independent variable). We will study it in two ways: qualitatively and
analytically (i.e., by solving it).

Qualitative approach: First of all, what is qualitative analysis of a differential equation?
The short answer is: it is a type of analysis in which we do not explicitly solve the equation

1This parameter is related to the food supply, but we will not elaborate on that connection here.
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(mostly because we can’t) but instead try to understand what happens to solutions as
t→ +∞ and t→ −∞.

Let P (t) be a solution to (1.5) and set P0 = P (0). This is the initial value of the
population when t = 0. Let’s see what we can say about P (t) for large t for various values
of P0. Assume first that P0 = 0. If there is no population to speak of at the beginning,
there will obviously be no population at any time in the future or past, so P (t) = 0, for
all values of t. The solution is constant; we will call such solutions equilibrium solutions or
equilibria.2 Finding and understanding such solutions is an important part of qualitative
analysis.

If P0 > 0, then P ′(0) > 0, so by calculus P must be an increasing function near t = 0.
Therefore P (t) is positive at least for small values of t > 0. But for any such value of t,
P (t) > 0 implies that P ′(t) is also positive, since P ′(t) = kP (t) and k > 0. Therefore, P (t)
keeps increasing as t gets bigger and it is not hard to see that it never stops increasing.
That is, if P0 > 0, then P (t)→∞, as t→∞, which is not surprising.

Forgetting that P denotes population for a moment, let’s see what happens if P0 < 0.
We leave it as an exercise to the reader to show, in exactly the same way as in the previous
paragraph, that P (t)→ −∞, as t→∞.

-5 -4 -3 -2 -1 0 1 2 3 4 5

-2.4

-1.6

-0.8

0.8

1.6

2.4

Figure 1.1. Three types of solutions of equation (1.5).

Therefore, qualitatively speaking, there are only three types of solutions: the equilib-
rium solution (corresponding to the not very interesting situation when P0 = 0), those
solutions that tend to +∞ and those that tend to −∞ (both as t→∞).

Analytic approach: Now let us solve (1.5). It is easy to see that one solution is P (t) ≡ 03:
just plug it into both sides of the equation and check that it “works”. Assume P 6= 0.
Divide both sides of the equation by P and, pretending that dP and dt have a meaning
independent of each other, “multiply” both sides by dt. We obtain

dP

P
= k dt.

2Equilibria is the plural of equilibrium.
3The symbol ≡ means that the left-hand side equals the right-hand side for all values of the independent variable.
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Now integrate both sides: ∫
dP

P
=

∫
k dt.

Observe that P is now a “dummy variable” in the indefinite integral on the left and t plays
the same role in the integral on the right. Solve these integrals. (If you don’t remember
how to do that, you need to review basic integration techniques.) This gives us

ln |P | = kt+ C,

where C is a constant and ln denotes the natural logarithm. Exponentiating both sides we
get

|P | = ekt+C = ekteC = Bekt,

where B = eC , just another constant (for now). Since |P | = ±P , taking A = ±B (just
another arbitrary constant), we obtain

P = Aekt.

So every non-zero solution appears to be a constant multiple of the exponential function
ekt! How does the constant A relate to the initial value P0 of P? Let’s see: set t = 0 in
the previous equation and get

P0 = Aek·0 = A.

So A equals the initial value P0 of P (t)! Therefore, given P0 = P (0), our solution must be

(1.6) P (t) = P0e
kt,

for all values of t. The method we used for finding the solution is called separation of
variables. We’ll learn more about it in Section 1.4.

Observe that the explicit solution given by (1.6) is consistent with the conclusions of
the qualitative analysis: even though there are infinitely many solutions (one for each
initial value of P (t)), they fall into one of the three categories discussed above. �

1.2.2. Logistic population model. It’s pretty clear that the assumptions we made in the
previous model are extremely unrealistic. Indeed, if we compared the predictions of this model to
real data (say, the US census) we would see that they agree only for small values of t. When t
becomes large, the predictions have nothing to do with reality whatsoever.

So how can we improve our model and keep it not too complicated? Recall that the right-hand
side of equation (1.5) is a very simple function of P : it is linear in P , which is why (1.5) is an
example of a linear differential equation (with constant coefficients); more on those in Section 1.5.
So one way to improve our model would be to use a slightly more sophisticated, non-linear function
on the right-hand side of the equation. Of course, we don’t want to make it too complicated either,
so the most natural choice would be a quadratic function of P , i.e., something that looks like
this: f(P ) = AP 2 + BP + C, for some suitably chosen parameters A,B and C. But how do we
choose these parameters? One way is to make better assumptions. For starters, no more unlimited
quantities of food. How do we incorporate this assumption in the new model? Here’s one way to
do that.

(1) For small P , we still want P ′ to be nearly proportional to P , i.e., when the population is
small we would like P ′ to be approximately equal to kP , where k is a parameter as above.
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(2) However, if P gets too large, we will assume that P ′ becomes negative, that is, the popula-
tion decreases. How large is too large? We assume that there is a sort of “ideal population”
N – also called the carrying capacity – such that if P < N , then P ′ > 0 and if P > N ,
then P ′ < 0.

What is the simplest quadratic function f(P ) which incorporates these assumptions? Assump-
tion (1) suggests that we should try f(P ) = (something) ·kP , where “something” is close to 1 when
P is small. But we need to make sure that assumption (2) is also satisfied. After thinking about
this for a while, we are inescapably lead to the following solution:

something = 1− P

N
.

Thus our new model for population growth becomes

(1.7)
dP

dt
= f(P ), where f(P ) = kP

(
1− P

N

)
.

The graph of the function f (with k = 3 and N = 4) is given in Figure 1.2.

-5 -4 -3 -2 -1 0 1 2 3 4 5
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3

Figure 1.2. The graph of f with k = 3 and N = 4.

It is not hard to see that assumptions (1) and (2) are satisfied. Equation (1.7) is called a
logistic equation. It is an example of a non-linear differential equation. Even though we could again
separate the variables and find an explicit formula for all solutions, we will not do that here (see
Section 1.4 for that approach). Instead, we employ only the qualitative approach to show its power
and simplicity.

As in the previous example, let us first find the equilibrium solutions. Recall that a solution
P (t) is an equilibrium solution if it is constant, i.e., if P ′(t) = 0 for all t. But if P ′ = 0, then
f(P ) = 0, so we can find equilibrium solutions by solving the algebraic equation f(P ) = 0, which
in our case is

kP

(
1− P

N

)
= 0.
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And that’s a pretty easy task: the only solutions are P = 0 and P = N . Therefore, there are only
two equilibrium solutions: the trivial one (when the population is always zero) and the “ideal one”
when the population equals the carrying capacity.

What if the initial population P0 is different from 0 and N? Here’s how to approach this
question. Suppose that at some time t the population is P . If 0 < P < N , then f(P ) > 0, so
P ′ = f(P ) > 0, which means that P is increasing. If P > N , then P ′ = f(P ) < 0, which means
that P is decreasing. Thus solutions whose value is in the interval (0, N) are increasing and those
in the interval (N,∞) are decreasing. Here’s a crucial question: if 0 < P < N , can the solution
increase beyond N? Or: if P > N , can it decrease below N? Let’s see.

Assume we have a solution P (t) such that 0 < P (0) < N but at some point in the future
P (t+) > N . Solutions are continuous (in fact, differentiable!) functions, so there must be some
intermediate time t0 such that P (t0) = N . (What theorem of calculus guarantees this?) Therefore,
when t = t0, our solution and the equilibrium solution P∗(t) ≡ N cross! This would mean that
after time t = t0 our population could “choose” to follow the solution P or it could “decide” to
stay at the equilibrium N . Population growth would not be a deterministic process! This is clearly
nonsense, so solutions cannot cross. (Our conclusion is related to uniqueness of solutions, which
will be discussed in Section 1.6.) Thus if a solution P satisfies 0 < P (t) < N for some t, satisfies
the same inequality for all t. Similarly, if P (t) > N for some t, the same holds for all t.

x ’ = 1            
y ’ = 3 y (1 − y/4)

 
 

 
 

 
 

−0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
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0
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Figure 1.3. Graphs of several solutions of the logistic equation (1.7) with k = 3
and N = 4.

We draw the following conclusions (see Figure 1.3):

• There are two equilibrium solutions, P = 0 and P = N .
• If 0 < P < N , the solution increases and converges to N , as t → ∞. (Where does it

converge as t→ −∞?)
• If P > N , the solution decreases and converges to N , as t→∞.
• Finally, if P < 0 (ignoring the physical impossibility of this), then we similarly obtain that

the solution must decrease to −∞, as t→∞. �

1.2.3. The harmonic oscillator. There are many harmonic oscillators in nature. We will
describe the so called mass-spring oscillator consisting of a mass m attached by a spring to a wall.
If the mass is displaced from its natural equilibrium position, it will oscillate. Our job is to find a
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mathematical model for this physical system and explore its properties. We will do the former in
this section and the later in Chapter 3.

Denote by y(t) the displacement of the mass m from its equilibrium position at time t. Place
the equilibrium at the origin of the real line and assume that the distance increases towards the
right, assuming the wall is on the left as in Figure 1.4.

Figure 1.4. A mass-spring oscillator.

The motion of the oscillator is governed by Newton’s Second Law:

The net force on an object equals its mass times its acceleration.

In mathematical language,

(1.8) F = ma.

We know that a is the second derivative of the position:

a =
d2y

dt2
= y′′

Let’s figure out what the net force F is. To make the problem tractable, we need to make some
simplifying assumptions such as these: the only forces that matter are friction (or damping) Ff ,
the force exerted by the spring, Fs, and an externally applied force Fe. Thus we assume

F = Ff + Fs + Fe.

By Hooke’s Law, the force needed to extend a spring by a certain distance is proportional to that
distance. Therefore,

Fs = −ky,
where k > 0 is a constant called the stiffness of the spring. Note the negative sign; it’s there because
the spring is trying to return the mass to its equilibrium position (which is at y = 0), so when y > 0,
Fs < 0 and when y < 0, then Fs > 0.

To characterize the frictional force Ff , we will use its simplest approximation and assume that
it is proportional to the velocity of the object. In other words,

Ff = −by′,
where b > 0 is the damping constant (or the coefficient of friction).

The external force Fe cannot be specified in advance so we are only going to assume that it
depends on time, i.e., Fe = f(t), where f is some function.4

Substituting back in (1.8), we obtain

−ky − by′ + f(t) = my′′,

which is equivalent to

4f(t) is often periodic though it can be any kind of function, including a discontinuous one.
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my′′ + by′ + ky = f(t).

This is the mass-spring oscillator equation. Observe that it’s a second order equation; we will
study these types of equations in Chapter 3. �

Exercises

1. Consider the population model

dP

dt
= 0.2P

(
1− P

135

)
,

where P (t) is the population at time t.
(a) For what values of P is the population in equilibrium?
(b) For what values of P is the population increasing?
(c) What is the carrying capacity?
(d) For which initial values of P does the population converge to the carrying capacity as

t→∞?

2. Consider the differential equation

y′ = y3 + 3y2 − 10y.

(a) What are the equilibrium solution?
(b) For which values of y is y(t) increasing?
(c) For which values of y is y(t) decreasing?

3. In this exercise your task is to model radioactive decay. Use the following notation:
t = time (independent variable);
I(t) = amount of the radioactive isotope at time t (dependent variable);
−λ = decay rate, where λ > 0 (parameter).

Write the simplest equation modeling the decay of a radioactive isotope with decay
rate −λ. State the corresponding initial-value problem if the initial amount of the isotope
is I0.

4. The half-life of a radioactive isotope is the amount of time it takes for a quantity of that
isotope to decay to one half of its original value.
(a) Express the half-life of a radioactive isotope in terms of its decay rate.
(b) The half-life of radiocarbon or Carbon 14 (C-14) is 5230 years. Determine its decay

rate parameter λ.
(c) Carbon dating is a method of determining the age of an object using the properties

of radiocarbon. It was pioneered by Willard Libby and collaborators in 1949 to date
archaeological, geological, and other samples. Its main idea is that by measuring the
amount of radiocarbon still found in the organic mater and comparing it to the amount
normally found in living matter, we can approximate the amount of time since death
occurred.5 Using the decay-rate parameter found in part (b), find the time since death
if 35% of radiocarbon is still in the sample.

5This is based on the assumption that radiocarbon makes a constant proportion of the carbon ingested by living

matter and that once the matter dies no new carbon is added to it.
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1.3. The notion of a solution

So far we have been a little imprecise and have freely talked about solutions to various differential
equations without ever defining what we meant by it. So suppose we have a first-order differential
equation

(1.9) y′ = f(t, y).

What do we mean when we say that y(t) is a solution? The answer quite natural: y(t) is a solution
to (1.9) if when plugged into (1.9), y(t) satisfies it, i.e., the left-hand side becomes identically and
trivially equal to the right-hand side:

y′(t) = f(t, y(t)),

for all values of t for which both sides make sense. Here are some examples.

1.1. Example. Consider y′ = 2y. Then y(t) = e2t is a solution as one can easily check. So are
the functions −e2t and 2014e2t, but not t2, e−t or sin t. (Note that this is just an equation modeling
unlimited population growth as in Section 1.2.1.) �

1.2. Example. The function y(t) = tan t is a solution to the equation y′ = 1+y2. This equation
has no equilibrium solutions. (Check this!) �

1.3. Example. Define a function z(t) by

z(t) =

{
0 if t ≤ 0

t3 it t > 0.

Verify that z satisfies the differential equation z′ = 3z2/3. �

We have already encountered the notion of an equilibrium solution but because of its importance
we repeat it definition:

A solution is called an equilibrium solution if it is constant. A point y0 is called an
equilibrium point of a differential equation if y(t) ≡ y0 is a solution.

How do we look for equilibrium solutions? Suppose that y(t) = y0 is an equilibrium solution of
the differential equation y′ = f(t, y). Plugging y(t) into the equation we obtain

f(t, y0) = f(t, y(t)) = y′(t) =
d

dt
y0 = 0,

for all t. Conversely, suppose we found y0 such that f(t, y0) = 0, for all values of t. Then the above
calculation also shows that y(t) = y0 is an equilibrium solution of the equation y′ = f(t, y). We
conclude:

y0 is an equilibrium point of the equation y′ = f(t, y) if and only if f(t, y0) = 0, for
all values of t.

In particular, if the equation is autonomous, y′ = f(y), then finding equilibrium points amounts
to solving the equation f(y) = y.

Observe that checking whether a given function is a solution is easy, but finding solutions is
usually not. For instance, does the equation

y′ = 1 + y4 sin2 y + 17earctan y3
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have a solution satisfying the condition y(0) = 0? The answer is yes, but there’s no way we can tell
using the tools we have available at this point.

This brings us to another notion of a solution. Often it is important to find a solution to a
differential equation which satisfies an initial condition of the type y(0) = y0 or more generally
y(t0) = y0. We call the problem of finding a solution to the pair of equations

y′ = f(t, y), y(t0) = y0

an initial-value problem, which we will sometimes abbreviate by IVP. A solution to an initial-
value problem is sometimes called a particular solution. We will also use the term “general solution”:
an expression with parameters which describes all possible solutions to a differential equation is
called the general solution.

1.4. Example. The general solution to the equation
dP

dt
= kP is P (t) = Aekt, where A is a

constant. (Recall that in fact A is just P (0), the initial value of the solution.) Let us prove this.
Assume that Q(t) is any solution to the above equation. Define R(t) = Q(t)e−kt. Then by the

product rule,

R′(t) = Q′(t)e−kt − kQ(t)e−kt = {Q′(t)− kQ(t)}e−kt.
But Q(t) is a solution to P ′ = kP , so Q′(t) − kQ(t) = 0. Therefore, R′(t) = 0, so R(t) must be
constant, say R(t) ≡ A. Multiplying both sides by ekt, we obtain Q(t) = Aekt, as claimed. Thus
every solution is of the form Aekt. �

Now that we have defined the notion of a solution, it’s time to ask:

Does every differential equation have a solution? Does every initial-value problem
have a solution? If so, is it unique?

We will discuss these questions in Section 1.6. But first, let’s learn how to solve some simple,
though common types of differential equations.

Exercises

1. Verify the claim in Example 1.3.

2. Find a function g(t) such that y(t) = tet
2

is a solution to the differential equation

y′ = g(t)y.

3. Find a function h(y) such that the function y(t) = e2t is a solution to the equation

y′ = 2y − t+ h(y).

1.4. Separable equations

Recall that in a differential equation we distinguish two types of variables: the independent
variable t and the dependent variable (or the unknown) y. A separable differential equation is
simply an equation in which these variables can be separated, in the sense that the right-hand side
can be written as a product of functions of each individual variable. So separable equations are
equations of the form
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dy

dt
= g(t)h(y).

For instance, the equation y′ = t2y is separable, whereas y′ = t3 + y2 is not.
Not surprisingly, the method for solving separable equations is called separation of variables. It

goes as follows.

Step 1: Find all equilibrium solutions by solving the equation h(y) = 0. If y0 is a root6 of
this equation, then y(t) ≡ y0 is an equilibrium solution.

Step 2: Next we look for the non-equilibrium solutions. We therefore assume h(y) 6= 0,
divide both sides of the equation by h(y), and pretending that dy/dt is a quotient of real
numbers, “multiply” both sides by dt. This gives

dy

h(y)
= g(t) dt.

We have separated the variables. Both sides are expressions ready to be integrated.

Step 3: Integrate both sides, treating y and t as “dummy variables” in their respective
integrals: ∫

dy

h(y)
=

∫
g(t) dt.

Since we always assume that our differential equations are nice, 1/h(y) and g(t) are at least
continuous functions, so by calculus they have anti-derivatives, which we denote by H(y)
and G(t). Whether these anti-derivaties are easy to find is another question. Assuming we
are lucky and that we can integrate, we get

(1.10) H(y) = G(t) + C,

where C is a constant. And we are done! But wait, how does this solve our differential
equation? The answer is, equation (1.10) defines one or more solutions implicitly. That is,
solutions to the differential equation can be found as solutions to equation (1.10), which
is not a differential equation and is hopefully easier to solve than the original equation.
Sometimes we may get even more lucky and be able to solve for y explicitly as a function
of t (which is what we would ideally like), but in many cases we just won’t.

Remark. Since in the method of separation of variables we used a somewhat dubious idea of
thinking of the derivative dy/dt as a quotient of differentials, let us verify that solutions to (1.10)
are indeed solution to our differential equation. So assume y(t) solves (1.10) in the sense that there
is an interval I such that for all t in I,

H(y(t)) = G(t) + C.

Assuming we can differentiate both sides (which indeed we can, thanks to something called the
Implicit Function Theorem), and using the Chain Rule, we obtain

H(y(t))y′(t) = G′(t).

Now recall that G and H are antiderivatives of g and 1/h, respectively, i.e., G′ = g and H ′ = 1/h.
It therefore follows that

1

h(y(t))
y′(t) = g(t).

6Root means solution, though the term root is usually reserved for algebraic equations.
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Multiplying both sides by h(y(t)), we obtain y′(t) = g(t)h(y(t)), i.e., y(t) does satisfy the original
equation, as claimed.

Here are some examples.

1.5. Example. Consider the equation

y2y′ = t.

Since we can write y′ = t/y2, the equation is clearly separable with g(t) = t and h(y) = 1/y2.
Observe that h(y) 6= 0, for all y 6= 0 (h(0) is not even defined), so there are no equilibrium solutions.
Separating the variables we obtain ∫

y2 dy =

∫
t dt.

Integrating both sides gives
y3

3
=
t2

2
+ C.

Multiplying both sides by 3, setting K = 3C and solving for y, we obtain

y =

(
3t2

2
+K

)1/3

.

In this example we were pretty lucky and were able to find an explicit formula for all solutions.

1.6. Example. Consider the ODE (1 + y2)y′ = y. It is clearly separable with g(t) = 1 and
h(y) = y/(1 + y2). Following the procedure for the method of separation of variables, we first solve
the equation h(y) = 0. This gives us the only equilibrium solution y(t) = 0. Next, for y 6= 0, we
separate the variables and integrate: ∫

1 + y2

y
dy =

∫
dt.

The integrand on the left-hand side is
1

y
+ y, so integrating we obtain

(1.11) ln |y|+ y2

2
= t+ C.

Try solving this equation for y! Or better: don’t even try. This is a hard possibly unsolvable
transcendental equation. So we are stuck with an implicit solution. It is possible but not easy to
show that for any real number C there are two solutions y+(t) and y−(t) to (1.11): y+(t) is positive
and increasing, y+(t) → ∞, as t → ∞, y+(t) → 0, as t → −∞, and y−(t) = −y+(t), for all t. See
Figure 1.5.

1.7. Example. Consider the equation y2y′ = te−y
3
. It is not hard to see that it is separable

and that it has no equilibrium solutions. Separating the variables and integrating we get∫
y2ey

3
dy =

∫
t dt.

You should be able to see right away that the substitution u = y3 solves the integral on the left-hand
side. (If you cannot see that right away, you need to review basic techniques of integration from
Calculus 1 and 2.) We get du = 3y2 dy, so∫

1

3
eu du =

∫
t dt.
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Figure 1.5. Graphs of solutions y+ and y− to (1.11).

These are easy integrals:

1

3
eu =

t2

2
+ C.

Of course, we want to solve for the original unknown variable y, so we substitute back:

1

3
ey

3
=
t2

2
+ C.

We could stop here but we won’t because this equation is solvable for y. Indeed, multiplying both
sides by 3, taking the ln and cube roots of both sides, we obtain

y(t) =
3

√
3t2

2
+K,

where K = 3C. What if we want the solution which satisfies y(0) = 2? No problem: substitute

t = 0 and y(0) = 2 into the above equation to obtain 2 = 3
√
K, which implies K = 8. Thus the

unique solution to the given IVP is

y∗(t) =
3

√
3t2

2
+ 8.

1.8. Example (Logistic equation). Let us revisit the logistic equation

dP

dt
= kP

(
1− P

N

)
.

The equation is separable, so let’s try to solve it. For simplicity, we choose units with respect to
which N = 1, so we are looking at the equation

dP

dt
= kP (1− P ).

Separating the variables and integrating we obtain∫
dP

P (1− P )
=

∫
k dt.
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To solve the integral on the left-hand side we use the method of partial fractions:∫
dP

P (1− P )
=

∫ (
1

P
+

1

1− P

)
dt

= ln |P | − ln |1− P |+A

= ln

∣∣∣∣ P

1− P

∣∣∣∣+A,

where A is an arbitrary constant. The integral on the right-hand side equals kt+B, where B is an
arbitrary constant. Taking C = B −A, we obtain

ln

∣∣∣∣ P

1− P

∣∣∣∣ = kt+ C

which is equivalent to ∣∣∣∣ P

1− P

∣∣∣∣ = eCekt.

Recall that for any real number x, |x| = ±x. So if we set K = ±eC (just another arbitrary constant),
we obtain

P

1− P = Kekt.

We can now solve this equation for P = P (t):

(1.12) P (t) =
Kekt

1 +Kekt
.

Recall that we are interested in the behavior of solutions as a function of their initial value, so let’s
express K in terms of P0 = P (0). To do that substitute t = 0 into the last equation and obtain

P0 =
K

1 +K
.

Solving for K we get

K =
P0

1− P0
.

Plugging this expression into (1.12) and simplifying, we obtain an explicit solution to the logistic
equation with N = 1:

(1.13) P (t) =
P0e

kt

1− P0 + P0ekt
.

Let’s investigate the behavior of solutions as t→∞ for different initial values P0:

P0 = 0: In this case P (t) ≡ 0 so we have an equilibrium solution.

P0 = 1: It is not hard to check that P (t) ≡ 1, which is another equilibrium solution (corre-
sponding to the ideal population or carrying capacity).

0 < P0 < 1: In this case the denominator in (1.13) is always positive, so P (t) is defined for
all values of t. Letting t → ∞ we obtain P (t) → 1. The population tends to the ideal
population.

P0 > 1: As in the previous case we can show that P (t)→ 1, as t→∞.
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P0 < 0: This case is of course not realistic, but for completeness we investigate it anyway.
As in the previous two cases we could just let t → ∞ and conclude that P (t) → 1. But
this would mean that the population starts off negative but miraculously becomes positive
and then approaches the ideal population N = 1! Something is obviously very wrong here.
Let’s investigate what it is.

If P0 < 0, then by setting the denominator in (1.13) to zero,

1− P0 + P0e
kt = 0

we see that when t = t0, where

t0 =
1

k
ln
P0 − 1

P0

the denominator equals zero. This means that as t → t0, the denominator goes to zero
so the solution blows up. This phenomenon is known as finite-time blow up; in particular,
solutions are not defined for all values of t: if P0 < 0, then P (t) is defined only for t < t0
(so it does not make sense to let t → ∞). With a little care (we leave this to the reader)
it is possible to show that P (t) → −∞, as t → t0+ (that is, if t approaches t0 from the
right).

x ’ = 1          
y ’ = 2 y (1 − y)
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Figure 1.6. Typical solutions to the logistic equation with N = 1 and k = 2.

Figure 1.6 shows the behavior of several typical solutions. (Compare with Figure 1.3.) �

We conclude this section with some remarks.

Remark.

(a) Most differential equations are not separable.
(b) Most separable equations, even those of the simplest form y′ = g(t) (with h(y) = 1), cannot

be solved explicitly. Take for example y′ = et
2
. We know from Calculus that the integral∫

et
2
dt is unsolvable, in the sense that it cannot be expressed in terms of elementary

functions.7

7Recall that an elementary function is a function which can be expressed in terms of a finite number of polynomials,

roots, sines, cosines, and logarithms using the basic arithmetic operations of addition, subtraction, multiplication and

division, and composition of functions.
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(c) Still, separation of variables is often quite useful!

Exercises

In Exercises 1-4 find the general solution of the given differential equations.

1. y′ = 1− y 2.
dz

dt
= 4 + z2

3.
dy

dt
= y2 − 9 4.

dy

dt
=

1

t2y + t2 + y + 1
In Exercises 5-8 sove the given initial-value problems. equations.

5.
dy

dt
= y3, y(0) = 0 6.

dy

dt
= y3, y(0) = −2

7.
dy

dt
= t(y2 + 4), y(0) = 2 8.

dy

dt
=

1 + y2

y
, y(0) =

√
e− 1

9. A 10 liter bucket is full of pure water. Suppose we start adding salt to the water at a rate of
0.2 kilograms per minute. Assume also that every minute 1 liter of the salt water solution is leaking
from the bucket, but that we are adding pure water to keep the bucket full. The salt water solution
is always kept well mixed.

(a) Set up a differential equation modeling the amount of salt in the bucket.
(b) What is the amount of salt in the bucket after 6.93147 minutes? (Note that 6.93147 ≈

10 ln 2.)
(c) What is the amount of salt in the bucket after an extremely long time?

1.5. Linear equations

Recall that the general form of a first-order ordinary differential equation is

y′ = f(t, y),

where f is some function of two variables, t and y. If f is a complicated function of y (or even if
it is not), it may be impossible to solve this equation in closed form. However, if f is the simplest
possible function of y – that is, a linear function – it turns out that it is always possible to write
down the general solution at least in terms of integrals. Now, what does it mean for f(t, y) to be a
linear function of y? To answer this question, let us fix t and think of it as constant, and assume
that f(t, y) as a function of y can be expanded into its Taylor series:

f(t, y) = a0(t) + a1(t)y + a2(t)y
2 + · · · ,

where the Taylor coefficients a0(t), a1(t), a2(t), · · · depend on t (since f(t, y) in general depends on
t). If this series does not go on forever but stops after the 0th and first terms,

f(t, y) = a0(t) + a1(t)y,

we say that f is a linear function of y.8 For the same reason a differential equation of the form

y′ = a0(t) + a1(t)y

is called a linear differential equation of first order. (There are also linear differential equations of
second, third, etc. order.) The functions a0(t) and a1(t) are called the coefficients of the equation.
They are allowed to be any functions of t (though we will always assume they are at least continuous).

8More accurately, in this case f is called an affine function of y, but we don’t want to use any fancy terminology.
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1.9. Example. The equations

y′ =
y

t2
+ cos t, ty + 3 = y′ − ety, y′ = et

2
y +

sin t

1 + t2 + t4

are linear, while

y′ =
y2

t2
+ cos t, yy′ = t+ 1, y′ = ey + 3t

are not. Observe that it is the dependence on y, not on t, that matters.

It is standard to write a linear differential equation in the form

(1.14) y′ + p(t)y = q(t).

If q(t) ≡ 0, the equation is called homogeneous. To each linear equation (1.14) we can associate the
homogeneous equation

(1.15) y′ + p(t)y = 0.

This equation is separable and easy to solve. Indeed, separating the variables and integrating, we
get ∫

dy

y
= −

∫
p(t) dt,

which yields

y = C exp

(
−
∫
p(t) dt

)
,

where exp denotes the exponential function (i.e., exp(x) = ex) and C is an arbitrary constant. We
will present two methods for solving linear equations.

Method 1. Consider the linear equation (1.14). We know how to solve the associated homogeneous
equation y′ + p(t)y = 0. Denote its general solution by yh. Suppose now that we are able to find
just one solution yp – usually called a particular solution – to the non-homogenous equation (1.14).
We claim that the general solution ygeneral to (1.14) is then of the form yh + yp. Let’s see why that
is the case.

Suppose y is an arbitrary solution to the non-homogeneous equation (1.14). Consider the
function z = y − yp. Since both y and yp satisfy (1.14), we have:

z′ = y′ − y′p
= −p(t)y + q(t)− {−p(t)yp + q(t)}
= −p(t)(y − yp)
= −p(t)z,

so z satisfies the homogeneous equation z′ + p(t)z = 0. Therefore, z = yh, for some choice of the
constant C in the general solution yh. This implies that y − yp = yh, hence y = yh + yp, proving
that an arbitrary solution y to (1.14) has to be of the form yh + yp.

So it is enough to find a particular solution yp. We could try to guess it but that may not work
so well (though in some situations it does; for example, if p(t) is constant and q(t) is of the form
Aekt or B sinωt+C cosωt). Instead we will us use a different approach, sometimes called variation
of constants (or parameters). It goes like this.

Since the general solution of the associated homogeneous equation y′ + p(t)y = 0 is

y = Cu(t), where u(t) = exp

(
−
∫
p(t) dt

)
,
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perhaps we can find a particular of the equation y′ + p(t)y = q(t) by varying the constant (!) C,
i.e., by replacing it by a bona fide function of t, which we can call c(t). In other words, we want to
find a function c(t) such that

yp = c(t)u(t)

solves (1.14). To find c(t), we plug yp = c(t)u(t) into equation (1.14). First we need to find y′p; by
the Product Rule we get

y′p = c′(t)u(t) + c(t)u′(t).

Thus

y′p + p(t)yp = c′(t)u(t) + c(t)u′(t) + p(t)c(t)u(t)

= c′(t)u(t) + c(t){u′(t) + p(t)u(t)}
= c′(t)u(t) + c(t) · 0
= c′(t)u(t),

since u′ + p(t)u = 0. We conclude that y′p + p(t)yp = q(t) if c′(t)u(t) = q(t). Dividing both sides of
the equation c′(t)u(t) = q(t) by u(t) and integrating we obtain

c(t) =

∫
q(t)

c(t)
dt =

∫
q(t) exp

(∫
p(t) dt

)
dt.

Since we have computed c(t), we now have a particular solution yp and thus the general solution
ygeneral to (1.14).

Let us summarize this method. To find the general solution to the non-homogeneous equation
y′ + p(t)y = q(t), perform the following steps:

Step 1: Find the general solution yh = Cu(t) of the associated homogeneous equation
y′ + p(t)y = 0, as we did above.

Step 2: Find a particular solution yp of the non-homogeneous equation in the form yp =
c(t)u(t), where u(t) is as in Step 1. To find c(t) solve the equation c′(t)u(t) = q(t).

Step 3: The general solution to (1.14) is

(1.16) ygeneral = yh + yp.

Remark. This idea to break up the general solution of the non-homogenous equation into the
sum of its particular solution and the general solution of the associated homogeneous equation will
be useful later, in Chapter 3, and where it will be used to solve second order linear equations.

Method 2. This method should of course give us the same answer as Method 1. The main idea
is the following: Even though the left-hand side of the equation may not be the derivative of any
function, perhaps we can multiply the equation by some, yet to be determined function µ(t) so that
the left-hand side becomes the derivative of µ(t)y. We will call such a function µ(t) an integrating
factor.

So let’s multiply both sides of (1.14) by µ(t) and figure out what µ(t) has to be in order for the

left-hand side of the new equation to be of the form
d

dt
[µ(t)y]. We obtain

µ(t)t′ + µ(t)p(t)y = µ(t)q(t).
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We require that the left-hand side of this equation be equal to the derivative of µ(t)y:

µ(t)t′ + µ(t)p(t)y =
d

dt
[µ(t)y].

Since
d

dt
[µ(t)y] = µ′(t)y + µ(t)y′, we get

µ(t)t′ + µ(t)p(t)y = µ′(t)y + µ(t)y′.

Canceling out µ(t)y′, we obtain the equation

µ(t)p(t)y = µ′(t)y.

This is an equation for µ(t), not y. Assuming y 6= 0 (otherwise, things are not very interesting),
switching sides and dividing by y, we obtain

µ′(t) = µ(t)p(t).

Note that this is a separable equation in µ. One solution of this equation is the trivial one, µ(t) ≡ 0.
But this is not the solution we are looking for (what would be the point of multiplying (1.14) by
zero!?), so we may as well assume that µ(t) 6= 0 and divide both sides by µ(t) to obtain

µ′(t)

µ(t)
= p(t).

The left-hand side is the derivative of ln |µ(t)|, but since we just want one integrating factor µ(t),
we may as well assume that µ(t) > 0 in which case the left-hand side is the derivative of lnµ(t) (no
absolute value signs). So we have

d

dt
lnµ(t) = p(t),

which by integration (and one extra step left to the reader) implies

µ(t) = exp

(∫
p(t) dt

)
.

This is our integrating factor. Since we want only one solution for µ(t), we have chosen to omit
the constant of integration.

We know that the left-hand side of the new equation (the old equation multiplied by µ(t)) equals
d

dt
[µ(t)y], so

d

dt
[µ(t)y] = µ(t)q(t).

Integrating both sides we obtain

µ(t)y(t) =

∫
µ(t)q(t) dt+ C.

Dividing both sides by µ(t), we obtain the general solution to (1.14):

(1.17) ygeneral(t) =
1

µ(t)

{∫
µ(t)q(t) dt+ C

}
.

Remark.

(a) If µ(t) is an integrating factor, then so is Kµ(t), where K is any constant.
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(b) We leave it to the reader to check that the solution (1.17) obtained by Method 2 is identical
to the solution (1.16) obtained by Method 1. Since we will get to practice Method 1 in
Chapter 3, in the subsequent examples we will use only Method 2.

(c) To solve a linear differential equation you can either (i) compute µ(t) using the above
formula, plug it into (1.17) and solve the integral in it (if possible) or (ii) go through the
entire procedure outlined above, which means, compute µ(t), multiply both sides of the
equation by µ(t), etc. Do what works best for you.

1.10. Example. The equation

y′ +
2

t
y = t− 1

is linear, with p(t) = 2/t and q(t) = t− 1. Solving for an integrating factor we obtain

µ(t) = exp

(∫
p(t) dt

)
=

∫
2

t
dt = t2,

so the general solution is

y =
1

µ(t)

{∫
µ(t)q(t) dt+ C

}
=

1

t2

∫
t2(t− 1) dt

...

=
t2

4
− t

3
+
C

t2
. �

1.11. Example. Consider the equation

y′ = t2y + t− 1.

The equation is linear with p(t) = −t2 (note the sign!) and q(t) = t− 1. So

µ(t) = exp

(∫
(−t2) dt

)
= e−t

3/3.

Therefore the general solution is

y =
1

e−t3/3

∫
e−t

3/3(t− 1) dt,

and we are stuck, since we
∫
e−t

3/3(t− 1) is not an elementary function (i.e., the integral can’t be
solved)!

What if q(t) were equal to t2 instead of t− 1, i.e., what about the equation

y′ = t2y + t2?

We could treat this equation both as linear and as separable: y′ = t2(y+ 1). If we do the latter, we
obtain ∫

dy

y + 1
=

∫
t2 dt,

so the general solution is (check this!)

y = Cet
3/3 − 1. �
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1.6. Existence and uniqueness of solutions

So far we have tacitly worked under the assumption that ordinary differential equations have
solutions and that, if we also specify an initial condition (i.e., if we have an initial-value problem),
the solution is unique. But how do we know this is true? For instance, how can we be so sure that
the monstrosity of an equation

y′ = earctan y3 sin(ln(1 + y2)) + y2014

admits any solutions whatsoever? On the other hand, if we want to use differential equations to
model physical phenomena, we better make sure that every differential equation used for modeling
does have a unique solution for each initial condition! Otherwise, we cannot ever hope to predict
the motion of stars and planets, trajectories of rockets, behavior of electrical circuits, etc.

But what exactly do we even mean by existence and uniqueness of solutions of differential
equations? Let’s look at a couple of examples.

1.12. Example. Consider the following differential equation:

dy

dt
=

{
1 if y < 0

−1 if y ≥ 0.

We claim that there exists no solution satisfying y(0) = 0. Assume that y(t) was such a solution.
Since y′(0) = −1, y(t) is supposed to start by decreasing. However, as soon as it does that, y(t)
(for small t > 0) becomes negative and the equation demands that if y(t) < 0, then y′(t) = 1, so
the solution needs to increase, not decrease. These two requirements are obviously incompatible,
so the solution does not exist. If this slightly hand-waving argument is not convincing, here is a
more rigorous one. Suppose y(t) is a solution satisfying y(0) = 0. Since y(t) must be differentiable
(otherwise, how can it ever satisfy a differential equation?!), by Darboux’s theorem from Calculus,
its derivative y′ has the Intermediate Value Property (IntVP).9 Thus y′(t) cannot take both −1 and
1 as values, so since y′(0) = −1, it follows that y′(t) must always equal −1. Thus y′(t) = −1, for
all t. Integrating and using y(0) = 0, we get y(t) = −t. However, this function is not a solution, as
can be easily checked. Contradiction! Therefore, the equation does not admit a solution satisfying
y(0) = 0. �

1.13. Example. Consider the initial-value problem

y′ = 3y2/3, y(0) = 0.

It is easy to check that y(t) = t3 is a solution. For any non-negative real number a define the
following function:

ya(t) =

{
0 if t ≤ a
(t− a)3 if t > a.

We claim that ya is also a solution to the above IVP. Indeed, ya(0) = 0 (remember that a ≥ 0) and

it is not hard to see that y′a(t) = 3ya(t)2/3 if t 6= a (both the zero function and the function (t− a)3

satisfy the equation). Using the limit definition of derivative we can also verify that y′a(a) = 0, so
ya satisfies the equation also when t = a. Thus there are infinitely many solutions to this IVP.

So it turns out that differential equations do not always have solutions and solutions to IVP’s
are not always unique! But observe that the right-hand side of the equation in Example 1.12 is
discontinuous whereas the right-hand side in Example 1.13 although continuous is not everywhere

9A function f has the IntVP if for every two distinct values of f , any number in between is also a value of f . We

call b a value of f if b = f(a) for some a in the domain of f . Continuous functions have the IntVP but a function

which has the IntVP is not necessarily continuous.
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differentiable. Could that be the cause of the non-existence and non-uniqueness of solutions? It
turns our that the answer to both questions is yes. This is due to the following fundamental result.

1.14. Theorem (Existence and Uniqueness of Solutions). Consider the differential equation

y′ = f(t, y).

(a) Assume that f is continuous on the rectangle

Q = (a, b)× (c, d) = {(t, y) : a < t < b, c < y < d}
and let (the initial point) (t0, y0) be in Q. Then there exists ε > 0 and a solution y(t)
defined for t0 − ε < t < t0 + ε which satisfies the initial condition y(t0) = y0.

(b) If both f and its partial derivatives with respect to t and y are continuous on Q, then for
every (t0, y0) ∈ Q the solution satisfying y(t0) = y0 is unique. That is, if both y1(t) and
y2(t) are solutions satisfying the given initial condition, then

y1(t) = y2(t),

for all t for which both sides are defined.
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E-mail address: simic@math.sjsu.edu

Date: August 6, 2014.

1

Figure 1.7. Solution satisfying the initial condition y(t0) = y0.

The moral of this theorem is: if the right-hand side of the differential equation is sufficiently
nice, the solutions exists and are unique (for any given initial value). Part (a) says that the solution
may be defined only for a short interval of time (with length 2ε). See Figure 1.7.

So even the nasty equation

(1.18) y′ = earctan y3 sin(ln(1 + y2)) + y2014

admits solutions and for any initial value y0, there is a unique solution satisfying y(0) = y0! The

reason is that f(y) = earctan y3 sin(ln(1 + y2)) + y2014 although complicated, is a “nice” function: it
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has continuous partials with respect to both variables (of course, since it doesn’t depend on t, its
t-partial is just zero).

Think about it: we have no idea how to actually solve this equation, but we do know that
its solutions exist. In what sense do they exist if we cannot construct them? That is a question
for philosophers of mathematics, which we do not have time to address here.10 However, we can
certainly approximate them, which we will learn how to do in Section 1.9.

Here are some important consequences of the Existence and Uniqueness Theorem. Suppose that
f satisfies the assumptions of Theorem 1.14. Then:

(1) The graphs of distinct solutions never cross. That is, if y1(t) and y2(t) are two solutions
and y1(t) = y2(t) for some t, then y1(t) = y2(t) for all t for which both sides are defined.
In other words, if two solutions are in the same place at the same time, then they are the
same solution.

t

y

Figure 1.8. Solutions can’t cross, so this scenario is impossible.

(2) Consider the (autonomous) equation y′ = f(y) and suppose that f(y0) = 0. Let y(t) be a
solution such that y(t0) = y0 for some t0. Then y(t) = y0 for all t, i.e., y is an equilibrium
solution.

(3) If y0(t), y1(t) and y2(t) are solutions and y0(t) < y1(t) < y2(t) for some t, then y0(t) <
y1(t) < y2(t) for all t. That is, if y1(t) is between two solutions at one instant of time,
then it is trapped between these solutions for all time.

Here are some examples of applications of the Existence and Uniqueness Theorem.

1.15. Example. Find the unique solution to (1.18) satisfying y(0) = 0.

Solution: Let f(y) = earctan y3 sin(ln(1 + y2)) + y2014. It is easy to check that f(0) = 0, so the
zero function y∗(t) ≡ 0 is an equilibrium solution. Since y∗(0) = 0, by the Existence and Uniqueness
Theorem y∗(t) is the (unique) solution satisfying y(0) = 0. �

1.16. Example. What can be said about the solution to the equation

y′ = (y + 1)y(y − 2)

satisfying y(0) = 1?
Solution: Let f(y) = (y + 1)y(y − 2). This function does not depend on t and f ′(y) is clearly

continuous (it’s a polynomial), so the equation admits unique solutions. Since f(−1) = f(0) =

10There is a point of view called Mathematical Platonism, which (according to the Stanford Encyclopedia of

Philosophy) is “the metaphysical view that there are abstract mathematical objects whose existence is independent

of us and our language, thought, and practices. (...) Mathematical truths are therefore discovered, not invented.”
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f(2) = 0, the equilibrium solutions are y−(t) = −1, y0(t) = 0 and y+(t) = 2. Consider the solution
y(t) satisfying y(0) = 1. Since y0(0) < y(0) < y+(0), Remark (3) above implies that y(t) is trapped
between 0 and 2 forever. Moreover, since f is negative on (0, 2), we have f(y(t)) = y′(t) < 0, so
the solution is decreasing. Since y(t) is bounded and decreasing, we know from Calculus that y(t)
must approach a limit, as t→∞. Let’s call that limit L:

lim
t→∞

y(t) = L.

What value might L have? Well, it is clear that 0 ≤ L < 2. Since y(t) approaches a constant value
x ’ = 1                
y ’ = (y + 1) y (y − 2)
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Figure 1.9. The graphs of equilibrium solutions y−(t) = −1, y0(t) = 0 and y+(t) =
2, and the solution y(t) satisfying y(0) = 1.

in a decreasing manner, y′(t)→ 0, as t→∞. So:

0 = lim
t→∞

y′(t)

= lim
t→∞

f(y(t))

= f( lim
t→∞

y(t))

= f(L).

Here we used the fact that y(t) is a solution (second line) and that f is continuous (third line). Thus
f(L) = 0 and since 0 ≤ L < 2, we must have L = 0. In conclusion: the unique solution satisfying
y(0) = 0 lies in the interval (0, 2) for all time and approaches the equilibrium solution 0 as t→∞.
In a similar way it can be shown that y(t)→ 2, as t→ −∞. See Figure 1.9. �

Remark. It can be shown in a similar way as in Example 1.16 that solutions to first order
differential equations (in one variable) can converge only to equilibrium solutions.

Picard’s method of successive approximations. The Existence and Uniqueness Theorem
is an extremely general (hence powerful and important) theorem, so it is natural to ask: how in
the world can one prove that a differential equation has solutions when we don’t even know its
right-hand side? Here we sketch the classical approach to this question, called Picard’s method of
successive approximations.11

11Émile Pickard (1856-1941) was a prominent French mathematician.
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Suppose we are given an IVP

(1.19) y′ = f(t, y), y(0) = y0,

and assume that f satisfies the assumptions of the Existence and Uniqueness Theorem. Denote the
unique solution to the IVP by y(t). At this point, we know nothing about y except that it exists
in some abstract sense (living in some strange Platonic universe). However, we can construct a
sequence of approximate solutions y0(t), y1(t), y2(t), . . . such that yk(t) converges to y(t), as k →∞.
This is done in the following way.

Since y(t) is a solution defined on some interval (−ε, ε), we have

y′(s) = f(s, y(s)),

for all −ε < s < ε. Let us integrate this equation with respect to s from 0 to t. We obtain

y(t)− y0 =

∫ t

0
f(s, y(s)) ds.

On the left-hand side we used the Fundamental Theorem of Calculus and the initial condition
y(0) = y0. Moving y0 to the right-hand side, we see that y(t) satisfies the following integral equation

(1.20) y(t) = y0 +

∫ t

0
f(s, y(s)) ds.

Conversely, if y(t) satisfies (1.20), then it satisfies the IVP (1.19). In other words, equations (1.19)
and (1.20) are equivalent. That means that we may as well attempt to solve (1.20), which turns
out to be better suited for constructing successive approximations.

We define our sequence y0(t), y1(t), y2(t), . . . recursively (or inductively) as follows:

y0(t) ≡ y0

yk+1(t) = y0 +

∫ t

0
f(s, yk(s)) ds.

Thus we first compute y0(t), which is just a constant function equal to the initial value y0, then
use the above formula to compute (at least theoretically: the integral may be hard) y1(t), then we
plug y1(t) back into the recursive formula to find y2(t), and so on. It turns out that this works,
namely, yk(t) converges to the true solution, at least for small enough t! Let’s see how this plays
out in a simple example.

1.17. Example. Let us apply Pickard’s method to the IVP

y′ = y, y(0) = 1.
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Note that f(t, y) = y. We obtain:

y0(t) = 1

y1(t) = 1 +

∫ t

0
1 ds = 1 + t

y2(t) = 1 +

∫ t

0
(1 + s) ds = 1 + t+

t2

2

y3(t) = 1 +

∫ t

0

(
1 + s+

s2

2

)
ds = 1 + t+

t2

2
+
t3

6

...

It is not hard to see (and even prove) that for a general k ≥ 1, we have

yk(t) = 1 + t+
t2

2!
+ · · ·+ tk

k!
,

where k! = 1 · 2 · 3 · . . . · k. So as k →∞, yk(t) becomes an infinite series:

yk(t)→
∞∑
n=0

tn

n!
.

We learned in calculus that the sum of this infinite series is y(t) = et, which we know is the unique
solution to the above IVP. �

Completeness. In applications it is important to know if a model has solutions defined for all
future (and sometimes past) time t. For if a differential equation has a solution y(t) defined only
up to some finite time t0, it can undergo the phenomenon called a finite-time blow up. We already
had two instances of that phenomenon: see Examples 1.8 and 1.1. Recall that in the latter one
y(t) = tan t is the (unique) solution to the IVP y′ = 1 + y2, y(0) = 0.

If all solutions are defined for all time, the equation is called complete. We saw that even some
very simple equations are not complete. The question is: under what conditions is a given equation
complete? This is a non-trivial question so we will only mention the following basic result.

1.18. Theorem. (a) If y(t) is a solution to y′ = f(y) and y(t) is bounded (i.e., there exist
numbers a, b such that a ≤ y(t) ≤ b for all t), then y(t) is defined for all t.

(b) Let f be a differentiable function and assume its derivative f ′ is bounded (i.e., there is a
constant M > 0 such that |f ′(y)| ≤ M , for all y). Then the differential equation y′ = f(y) is
complete.

Note that in the above example f(y) = 1 + y2, so f ′(y) = 2y, which is not bounded (it goes to
infinity as y →∞). However, the theorem guarantees that the equation

y′ = (arctan y) sin y

is complete. (Check that!)

1.7. The phase line and classification of equilibria

In this section we focus on qualitative analysis of differential equations. This approach was
pioneered by the the famous French mathematician Henri Poincaré (1854-1912), one of the leading
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mathematicians and scientists of his time.12 Poincaré studied the Solar system hoping to show
that it is stable (which among other things would mean that the Moon would never crash into the
Earth or fly off into space). Instead what he discovered was that the Solar system, modeled by
differential equations defined by Newton’s law of gravitation and his second law of motion, exhibits
extremely complicated behavior later named chaotic. (Remember Ian Malcolm, the Chaos Expert
from Jurassic Park?) To understand this type of behavior of solutions (which in this case correspond
to trajectories of the planets and their moons) Poincaré could not count on studying any explicit
formulas, both because they were either hard to come by and because even if he had had them,
they would have been too complicated to analyze. Instead he invented brand new methods and
techniques which comprise what we now call qualitative analysis. In his plenary address at the 1908
International Congress of Mathematicians Poincaré said:

In the past an equation was only considered to be solved when one had expressed the
solution with the aid of a finite number of known functions; but this is hardly possible
one time in a hundred. What we can always do, or rather what we should always
try to do, is to solve the qualitative problem so to speak, that is, to try to find the
general form of the curve representing the unknown function.

In other words, most differential equations cannot be solved explicitly in terms of elementary
functions. What we should do instead of looking for explicit solutions is try to understand them
from a qualitative point of view. This means that we should try to answer questions such as these:

• How many equilibrium solutions are there and what is their type?
• What is the limit of a “typical” solution as t goes to infinity?
• Is the given equation qualitatively the same as a simpler equation?

This type of approach to differential equations is facilitated by the concept of the phase line.
Recall that so far we visually represented solutions via their graphs. Now we are going to look at
the space in which all solutions “live”. Of course if y(·) is a solution, then for each t, y(t) is a just
a real number. So solutions “live” on the real line. However, when regarded as the “living space”
of solutions of a differential equation, the real line is called the phase line. To draw the phase line
of an autonomous differential equation y′ = f(y) we procede as follows:

Step 0 Draw the a horizontal real y-line.

Step 1 Find the equilibria and mark them on the y-line.

Step 2 Find the intervals on which f(y) > 0 and label each one by an arrow pointing to the right.

Step 3 Find the intervals on which f(y) < 0 and label each one by an arrow pointing to the left.

Here are some examples.

1.19. Example. Consider yet another logistic equation

y′ = 2y(1− y),

with k = 2 and N = 1. Let f(y) = 2y(1 − y). The equilibria points are 0 and 1. Since f > 0 on
(0, 1), solutions in (0, 1) are increasing. Since f < 0 on (1,∞) and on (−∞, 0) solutions contained

12Among his many accomplishments, Poincaré discovered special theory of relativity independently of Einstein

and more or less at the same time as him.
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in these intervals are decreasing. The phase line of the logistic equation therefore looks like this:

0 1

Figure 1.10. The phase line of the logistic equation.

It is instructive to plot the phase line and the graphs of typical solutions from Fig. 1.6 side by
side:

0

1

x ’ = 1          
y ’ = 2 y (1 − y)
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Figure 1.11. The phase line of the logistic equation and the graphs of typical solutions.

Observe that in the above example solutions which have a positive initial value are all pulled
toward the equilibrium solution y = 1. We call such an equilibrium a sink. More generally:

An equilibrium point y∗ of a differential equation y′ = f(y) is called a sink if there
exists an open interval (a, b) containing y∗ such that every solution y(t) with y(0) ∈
(a, b) converges to y∗, as t→ +∞.

In other words, y∗ is a sink if every solution which starts sufficiently close to y∗ converges to it
in forward time. Sinks attract nearby solutions.

An equilibrium point y∗ is called a source if it is a sink for the reverse equation y′ = −f(y).
Equivalently:

An equilibrium point y∗ of a differential equation y′ = f(y) is called a source if
there exists an open interval (a, b) containing y∗ such that every solution y(t) with
y(0) ∈ (a, b) converges to y∗, as t→ −∞.

In other words, y∗ is a source if every solution which starts sufficiently close to y∗ converges to
it in backward time. Sources repel nearby solutions. In the previous example y∗ = 0 is a source,
with (a, b) = (−∞, 1).
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If an equilibrium attracts nearby solutions on one side and repels nearby solutions on the other
side we will call it a node.

1.20. Example. Consider the differential equation

y′ = y3 − y2.
Write f(y) = y3−y2 = y2(y−1). The equilibria are y0 = 0 and y1 = 1. Since f(y) < 0 for 0 < y < 1
and f(y) > 0 for y > 1, y1 is a source. Since we also have f(y) < 0 for y < 0, y0 is a node. Observe
also that f ′(0) = 0. Here is the phase line for this equation.

10

Figure 1.12. The phase line of y′ = y3 − y2 with a node at zero.

1.21. Example. To appreciate the power of qualitative analysis, consider the differential equa-
tion y′ = f(y) and assume that all we know about a function f is a sketch of its graph given in
Figure 1.13.

f

a b c

Figure 1.13. The graph of f .

We see that f(y) = 0 if y = a, b, c. Furthermore, if y < a or b < y < c, then f(y) < 0 and if
a < y < b or y > c, then f(y) > 0. The phase line of y′ = f(y) therefore looks like this:

ca b

Note that even though we do not have any details about the differential equation, we can for
instance derive an important fact that any solution which starts between a and b converges to b, as
t→∞.

Remark. We should emphasize that we are always speaking of isolated equilibria. An equilib-
rium is called isolated if there is an open interval around it which contains no other equilibria. The
equation

y′ =

y2 sin
1

y
if y 6= 0

0 if y = 0
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has an equilibrium at zero which is not isolated, since there is a sequence of equilibria converging
to zero. The graph of the function on the right-hand side of the equation is pictured below.

-0.05 -0.025 0 0.025 0.05

-0.025

0.025

Figure 1.14. The graph of F (x) = x2 sin
1

x2
(x 6= 0), F (0) = 0.

In this course we will not be concerned with non-isolated equilibria, which are in a certain sense
rare.

1.8. Linearization

It is pretty clear from what we’ve learned so far that linear differential equations are the easiest
to deal with: they are easy to solve and do qualitative analysis with. They are certainly easier
than most non-linear equations. This is true in mathematics in general: linear objects (functions,
shapes, spaces, etc.) are always easier to understand than non-linear ones. But most things in the
“real world” are not linear so we have no choice but to find ways of studying nonlinear equations.
Luckily, we have can use Calculus. Remember one of its central ideas:

To understand something non-linear, approximate it by something linear.

For instance, to undertand the shape of the graph of the non-linear function

f(x) = x5 − 2x+ 1

near the point (1, 0) we calculate f ′(1) = 3 and find the equation of its tangent line

y = 3(x− 1).

The tangent is the best linear approximation to f near x = 1. When x is close to 1, f(x) is fairly
close to 3(x− 1). See Figure 1.15.

Following the same idea, we will try to understand non-linear equations by linearizing them.
This works particularly well near equilibrium points. Here’s how to do it.

Suppose we have a non-linear (autonomous) differential equation

y′ = f(y)

and that y0 is an equilibrium point (i.e., f(y0) = 0). Let a = f ′(y0). Then:

The equation z′ = az is called the linearization of y′ = f(y) at the equilibrium
point y0.
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Figure 1.15. The tangent approximates the non-linear function well near the point (1, 0).

Of course, we know how to solve z′ = az: the general solution is

z(t) = z(0)eat.

Note that when a < 0, the origin is a sink for the linearized equation and if a > 0, it is a source.
The question is, what does the linearized equation tell us about the original, non-linear equation?

The answer is given by the following result.

1.22. Theorem (Linearization Theorem). Let y0 be an equilibrium point of the equation y′ =
f(y) and set a = f ′(y0).

(a) If a < 0, then y0 is a sink. equilibrium.
(b) If a > 0, then y0 is a source.
(c) If a = 0, then the linearized equation does not give us any information about the non-linear

equation.

To get an idea why the Linearization Theorem is true, let’s assume a = f ′(y0) < 0. That means
that in some small interval around the point y0 the function f is decreasing. In other words, there
exists a number ε > 0 such that f is decreasing on (y0 − ε, y0 + ε). Recall that f(y0) = 0, since y0
is an equilibrium. Putting the two things together, we get that f(y) > 0 for y0 − ε < y < y0 and
f(y) < 0 for y0 < y < y0 + ε. That means that any solution starting in the interval (y0 − ε, y0) is
increasing toward the equilibrium whereas solutions starting in the interval (y0, y0+ε) are decreasing
toward the equilibrium. Thus y0 is sink.

The case a > 0 is dealt with in a similar way.

1.23. Example. Consider the differential equation

y′ = y5 − 2y + 1.

Let f(y) = y5 − 2y + 1. Since f(1) = 0, the equation has an equilibrium at y0 = 1. We have
f ′(1) = 3 > 0, so the Linearization Theorem tells us that y0 = 1 is a source. By inspecting
Figure 1.15 we see that there are also equilibrium points y− < 0 (between −1.5 and −1) and y+ > 0
(between 0 and 1). We also see that f ′(y−) > 0 and f ′(y+) < 0, so y− is a source and y+ is a
sink. �
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1.24. Example. Consider the differential equation y′ = f(y), where

f(y) = (y2 − y)
{

cos(y7 − 3y)− π

e
y8
}
.

It is easy to check that f(0) = 0, so zero is an equilibrium. Is it a sink, source or a node? We leave
it as an exercise to check that f ′(0) = −1. Therefore by the Linearization Theorem zero is a sink.

1.25. Example. Consider the equation y′ = −y3 and let f(y) = −y3. Since f(0) = 0, zero is
the (only) equilibrium. However, f ′(0) = 0, so the Linearization Theorem does not apply. On the
other hand, we see that f(y) > 0 for y < 0 and f(y) < 0 for y > 0, so negative solutions increase
and positive solutions decrease, which means that 0 is a sink. It is not hard to see that 0 is a source
for the equation y′ = y3. Note that for both equations, f ′(0) = 0.

1.26. Example. Zero is the only equilibrium of the equation y′ = y2 = f(y). Since f ′(0) = 0,
the Linearization Theorem is not applicable. However, since y2 > 0, for all y 6= 0, we see that all
non-equilibrium solutions are increasing, so zero is a node.

The last two examples show that if y0 is an equilibrium of the equation y′ = f(y) and f ′(y0) = 0,
then y0 may be of any type whatsoever, confirming the assertion in part (c) of the Linearization
Theorem.

Remark. It can also be shown that if y0 is an equilibrium point of y′ = f(y) and a = f ′(y0) 6= 0,
then near y0, solutions of the linear equation y′ = a(y − y0) approximate solutions of y′ = f(y).

1.9. Numerical methods

Qualitative analysis is useful but what if we need some quantitative information about solutions
of a differential equation which we cannot solve? In that case we have no choice but to work with
approximate solutions. In other words, we try to construct a sequence of not-quite-solutions yk(t)
such that as k →∞, yk(t) converges to a bona fide solution y(t). Ideally, we also want to have some
information about the error we would be making if we were to replace the actual solution y(t) by
an approximate one yk(t).

There are many methods – called numerical methods – for constructing approximate solutions.
Here we will only discuss one of them called Euler’s Method.13 It is ultimately based on the following
idea. Assume y(t) is is a solution to the equation y′ = f(t, y). Since

y′(t) = lim
h→0

y(t+ h)− y(t)

h
,

we can approximate the derivative y′(t) by the difference quotient:

y′(t) ≈ y(t+ h)− y(t)

h
,

where h is small. Multiplying both sides by h and rearranging the terms, we obtain

y(t+ h) ≈ y(t) + hy′(t) = y(t) + hf(t, y(t)).

So the value of the solution at some future time t+h can be approximated using its “present” value
y(t) and its “present” slope f(t, y(t)).

Before we describe Euler’s method, we need the notion of a slope field. Suppose we are interested
in the solution y(t) which at time t = t0 takes some value y0. At t = t0 the graph of y(t) has slope
y′(t0) = f(t0, y0). Even if we don’t know y(t), we can always draw the tangent line at the point
(t0, y0). If we do this at every point, we obtain the slope field. More precisely:

13Named after Leonhard Euler (1707-1783), one of the greatest mathematicians of all time, who published the

method in 1768. Euler was so enormously productive that the publication of his collected works is still in progress.
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The slope field of a differential equation y′ = f(t, y) is the assignment to every point
(t0, y0) in the plane of a slope equal to s0 = f(t0, y0). This is graphically represented
by drawing a short line segment through (t0, y0) with slope s0.

In practice, we usually draw the slope field only on a finite rectangular array of points in the
plane. The following slope fields were plotted using the website http://slopefield.nathangrigg.net
created by Nathan Grigg.

1.27. Example. Figure 1.16 shows the slope field of the logistic equation y′ = 2y(1 − y). The
solution satisfying y(0) = 1/2 is plotted in blue.

Slope Field by Nathan Grigg

y'(t,y) = 2*y*(y-1)
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Figure 1.16. The slope field of y′ = 2y(1−y) with the solution satisfying y(0) = 1/2
in blue.

Note that if the equation is autonomous (i.e., of the form y′ = f(y)), then the slope field stays
the same if we shift it horizontally by any amount. Similarly, if the equation is of the form y′ = f(t),
then its slope field is invariant with respect to vertical shifts.

1.28. Example. The slope field of the non-linear non-separable equation y′ = y2 − t is shown
in Figure 1.17 with the solution satisfying y(−1) = 0 shown in blue.

Slope Field by Nathan Grigg

y'(t,y) = y^2-t
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Figure 1.17. The slope field of y′ = y2 − t with the solution satisfying y(−1) = 0 in blue.
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The basic idea behind slope fields is: they are easy to draw and by visually inspecting a slope
field we may gain some insight in the behavior of solutions of the corresponding differential equation.

Now we can formulate the main idea of Euler’s Method, which is:

Glue together little pieces of the slope field to obtain a curve which approximates the
graph of an actual solution.

Joining together little pieces of the slope field produces a polygonal line. That means that our
goal is to construct a polygonal approximation to the actual solution of the IVP

y′ = f(t, y), y(t0) = y0.

A polygonal line consists of finitely many straight line segments. That means we are looking
for a piecewise linear approximate solution u(t), in the sense that for some sequence of times
t0 < t1 < t2 < · · · < tn−1 < tn, u(t) is a linear function14 between any two consecutive tk’s. That
is, for tk ≤ t ≤ tk+1, u(t) should be given by

u(t) = akt+ bk

for some constants ak and bk. The question is, how should we choose tk’s, ak’s and bk’s? We will
see that we can make some pretty natural choices. Here’s how we do that.

First, choose a step size ∆t and define

tk = t0 + k∆t,

for k = 1, 2, 3, . . .. Thus tk+1 − tk = ∆t, for all k. (It is also possible to choose the tk’s which are
not uniformly spaced.) Next, let us choose a0 and b0. We want our approximate solution u(t) to
have the following properties:

(a) It should satisfy the initial condition, i.e., u(t0) = y0.
(b) It should have the same slope at t = t0 as the actual solution, i.e., u′(t0) = f(t0, y0).
(c) It should be linear for t0 ≤ t ≤ t1.

These three properties force us to define

u(t) = y0 + f(t0, y0)(t− t0),
for all t between t0 and t1. This is the first linear segment of the approximate solution. It terminates
at y1 = u(t1) = y0 + f(t0, y0)∆t.

How do we continue? Well, u(t) should be linear between t1 and t2 and it makes sense to take
its slope at t = t1 to be equal to the slope of the actual solution passing through the point (t1, y1).
Since that slope is f(t1, y1), we are again forces to define

u(t) = y1 + f(t1, y1)(t− t1),
for all t between t1 and t2. This is the second linear segment of the approximate solution. It
terminates at y2 = u(t2) = y1 + f(t1, y1)∆t.

Continuing this process in the same way we obtain the approximate solution u(t). Between tk
and tk+1, for any k, u(t) is given by

u(t) = yk + f(tk, yk)(t− tk).

The sequence y1, y2, . . . is defined recursively by

14Or more precisely, affine. A function is called linear if it is of the form L(t) = ct and it is technically called

affine if it is of the form A(t) = at + b.
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(1.21) yk+1 = yk + f(tk, yk)∆t.

See Figure 1.18.
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t

y

t0

y0

t1 t2 t3 t4

y1

y2

y3

Department of Mathematics and Statistics, San José State University, San José, CA 95192-0103
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Figure 1.18. A piecewise linear solution constructed using Euler’s method.

Euler’s method can be summarized as follows:

Step 1 Choose a step size ∆t.
Step 2 For k = 0, 1, 2, . . ., plot the line segment joining (tk, yk) and (tk+1, yk+1), where yk+1 is

defined by (1.21).

1.29. Example (Taken from [1], p. 59). Using Euler’s method approximate y(2), where y(t) is
the solution to the initial-value problem

y′ = −2ty2, y(0) = 1.

Of course, the equation is separable and we can easily solve it explicitly to obtain

y(t) =
1

1 + t2
.

So the exact value of y(2) = 1/5 = 0.2.
Choose ∆t = 1/2 to be the initial step size. So t0 = 0, t1 = 1/2, t2 = 1, t3 = 3/2, and t4 = 2.

The recursive formula for Euler’s method in this case is

yk+1 = yk + f(tk, yk)∆t = yk − 2tky
2
k∆t.

Applying Euler’s method we obtain the following table:
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k tk yk f(tk, yk)

0 0 1 0

1 1/2 1 −1

2 1 1/2 −1/2

3 3/2 1/4 −3/16

4 2 5/32

The resulting approximation of y(2) we obtain with this step size is therefore y4 = 5/32 =
0.15625. The absolute error is |0.2− 0.15625| = 0.04375, while the relative error is 0.04375/0.2 =
0.21875, or 21.875%, which is huge!

Let’s try to do a little better by choosing the step size to be ∆t = 0.1. To reach 2 starting from
zero with this step size we need k = 20 steps. Euler’s method done to four decimal places yields
the following table:

k tk yk

0 0 1

1 0.1 1.000

2 0.2 0.9800

3 0.3 0.9416

...
...

...

19 1.9 0.2101

20 2.0 0.1933

This time we obtain y20 = 0.1933 as the approximation of y(2). The absolute error is 0.0067
while the relative error is 0.0067/0.2 = 0.0335 or 3.35%, which is a lot better! See Figure 1.19 for
a comparison between the two approximate solutions.15

Making the step size even smaller, say ∆t = 0.001, would further decrease the absolute and
relative error: the former would drop to 0.000063 and the latter to 0.0315%.

Remark.

(a) Euler’s method is a first-order method, which means that the error at a given time (also
known as the global error) is proportional to the step size. It can be shown that the global

15Plotted using http://www.mathscoop.com/calculus/differential-equations/euler-method-calculator.php.
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Figure 1.19. Comparison between step sizes ∆t = 1/2 and ∆t = 1/10.

error at time t is at most

(∆t)M

2L

{
eL(t−t0) − 1

}
,

where M is an upper bound on the second derivative of the solution y(·) on the interval
[t0, t] and L is an upper bound of the first partial derivatives of f . So if we make the step
size ten times shorter, the error becomes approximately ten times smaller.

(b) There are many other, more efficient and accurate numerical methods for approximately
solving ordinary differential equations, such as so called multiderivative methods (which
use not only the function f on the right-hand side of the differential equation but also its
derivatives), Runge-Kutta methods, ets.

(c) Just like computers can fail, so can numerical methods, especially if they are not used
prudently. Take for example the IVP

y′ = et cos y, y(0) = 1/2.

As t increases, the right-hand side of the differential equation quickly gets very large,
making the slope field almost vertical and confusing the computer. Here’s the “solution”
we get

Slope Field by Nathan Grigg

y'(t,y) = e^t*cos(y)
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Figure 1.20. Numerical solution is wrong for large t.
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Qualitative analysis tells us that the blue curve cannot be a solution: it crosses the
equilibrium solution y(t) = π/2 (as well as the equilibrium y(t) = −π/2), which by the
Existence and Uniqueness Theorem is not permitted.





CHAPTER 2

First order systems

2.1. Examples of systems of differential equations

2.2. Vector fields and solutions curves

2.3. The phase plane, equilibria and periodic solutions

2.4. Existence and uniqueness of solutions

41





CHAPTER 3

Linear systems

3.1. Definition and examples

3.2. Linear algebra preliminaries

3.3. Properties of linear systems

3.4. Phase planes for planar linear systems

3.4.1. Distinct real eigenvalues.

3.4.2. Complex eigenvalues.

3.4.3. Repeated real eigenvalues.

3.4.4. Special case: zero eigenvalues.

3.5. The trace-determinant plane

3.6. Second order linear equations

3.7. Forced harmonic oscillators

43





CHAPTER 4

Nonlinear systems

4.1. Examples of nonlinear systems

4.2. Equilibria and periodic solutions

4.3. Linearization

4.4. Hamiltonian systems

4.5. Gradient systems

45





CHAPTER 5

Laplace transform

5.1. Why another method?

5.2. Definition and basic properties

5.3. Discontinuous forcing

5.4. Impulse forcing

5.5. Convolution and Laplace transform

47





Appendix

49





Bibliography

1. Paul Blanchard, Robert L. Devaney, and Glen R. Hall, Differential equations, third ed., Thomson, 2006.

51


	Chapter 1. First order differential equations
	1.1. What is a differential equation?
	1.2. Basic examples and modeling
	1.3. The notion of a solution
	1.4. Separable equations
	1.5. Linear equations
	1.6. Existence and uniqueness of solutions
	1.7. The phase line and classification of equilibria
	1.8. Linearization
	1.9. Numerical methods

	Chapter 2. First order systems
	2.1. Examples of systems of differential equations
	2.2. Vector fields and solutions curves
	2.3. The phase plane, equilibria and periodic solutions
	2.4. Existence and uniqueness of solutions

	Chapter 3. Linear systems
	3.1. Definition and examples
	3.2. Linear algebra preliminaries
	3.3. Properties of linear systems
	3.4. Phase planes for planar linear systems
	3.5. The trace-determinant plane
	3.6. Second order linear equations
	3.7. Forced harmonic oscillators

	Chapter 4. Nonlinear systems
	4.1. Examples of nonlinear systems
	4.2. Equilibria and periodic solutions
	4.3. Linearization
	4.4. Hamiltonian systems
	4.5. Gradient systems

	Chapter 5. Laplace transform
	5.1. Why another method?
	5.2. Definition and basic properties
	5.3. Discontinuous forcing
	5.4. Impulse forcing
	5.5. Convolution and Laplace transform


