William A. Adkins, Mark G. Davidson

ORDINARY DIFFERENTIAL EQUATIONS
 Chapter 10: Fourier Series
 Student Solution Manual

November 11, 2015

Chapter 1
 Solutions

SECTION 10.1

3.

5.

7.

9.

11. Periodic. Fundamental period is $2 \pi / 2=\pi$.
13. Since $\cos 2 t$ is periodic with fundamental period $2 \pi / 2=\pi$, it follows that all positive multiples $k \pi$ is also a period. Similarly, $\sin 3 t$ is periodic with fundamental period $2 \pi / 3$ so that all positive multiples $2 m \pi / 3$ are also periods. If p is any number that can be written both as $k \pi$ and $2 m \pi / 3$ for appropriate k and m, then p is a period for the sum: $\cos 2(t+p)+\sin 3(t+$ $p)=\cos (2 t+2 p)+\sin (3 t+3(2 m \pi / 3))=\cos (2 t+2 k \pi)+\sin (3 t+2 m \pi)=$ $\cos 2 t+\sin 3 t$. Therefore, the function is periodic with period p. The smallest p that is both $k \pi$ and $2 m \pi / 3$ is $p=2 \pi(k=2, m=3)$. Thus the fundamental period is 2π
15. $\sin ^{2} t=(1-\cos 2 t) / 2$ so $\sin ^{2} t$ is periodic with fundamental period $2 \pi / 2=\pi$
17. Periodic. The periods of $\sin t$ are $2 k \pi$, the periods of $\sin 2 t$ are $m \pi$, and the periods of $\sin 3 t$ are $2 n \pi / 3$ for positive integers k, m, n. The smallest p that is common to all of these is $p=2 \pi$, so the fundamental period is 2π.
19. $f(-t)=(-t)|-t|=-t|t|=-f(t)$ for all t. Thus, $f(t)$ is odd.
21. This is the product of two even functions ($\cos t$ for both). Thus it is even by Proposition 5 (1).
23. $f(-t)=f(t) \Longrightarrow(-t)^{2}+\sin (-t)=t^{2}+\sin t \quad \Longrightarrow t^{2}-\sin t=$ $t^{2}+\sin t \Longrightarrow 2 \sin t=0 \Longrightarrow t=k \pi$. Thus $f(t)$ is not even. Similarly, $f(t)$ is not odd.
25. $f(-t)=\ln |\cos (-t)|=\ln |\cos t|=f(t)$. Thus, $f(t)$ is even.
27. Use the identity $\cos A \sin B=\frac{1}{2}(\sin (A+B)+\sin (B-A))$ to get

$$
\begin{aligned}
& \int_{-L}^{L} \cos \frac{n \pi}{L} t \sin \frac{m \pi}{L} t d t=\frac{1}{2} \int_{-L}^{L}\left(\sin \frac{(m+n) \pi}{L} t+\sin \frac{(m-n) \pi}{L} t\right) d t \\
& \quad=\left.\frac{1}{2}\left(\frac{-L}{(m+n) \pi} \cos \frac{(m+n) \pi}{L} t+\frac{-L}{(m-n) \pi} \cos \frac{(m-n) \pi}{L} t\right)\right|_{-L} ^{L}=0 .
\end{aligned}
$$

SECTION 10.2

1. The period is 10 so $2 L=10$ and $L=5$. Then

$$
a_{0}=\frac{1}{5} \int_{-5}^{5} f(t) d t=\frac{1}{5} \int_{-5}^{0} 0 d t+\frac{1}{5} \int_{0}^{5} 3 d t=\frac{1}{5} \cdot 15=3 .
$$

For $n \geq 1$,

$$
\begin{aligned}
a_{n} & =\frac{1}{5} \int_{-5}^{5} f(t) \cos \frac{n \pi}{5} t d t=\frac{1}{5} \int_{-5}^{0} f(t) \cos \frac{n \pi}{5} t d t+\frac{1}{5} \int_{0}^{5} f(t) \cos \frac{n \pi}{5} t d t \\
& =\frac{1}{5} \int_{-5}^{0}(0) \cos \frac{n \pi}{5} t d t+\frac{1}{5} \int_{0}^{5} 3 \cos \frac{n \pi}{5} t d t \\
& =\frac{1}{5}\left[\frac{15}{n \pi} \sin \frac{n \pi}{5} t\right]_{0}^{5}=0,
\end{aligned}
$$

and

$$
\begin{aligned}
b_{n} & =\frac{1}{5} \int_{-5}^{5} f(t) \sin \frac{n \pi}{5} t d t=\frac{1}{5} \int_{-5}^{0} f(t) \sin \frac{n \pi}{5} t d t+\frac{1}{5} \int_{0}^{5} f(t) \sin \frac{n \pi}{5} t d t \\
& =\frac{1}{5} \int_{-5}^{0}(0) \sin \frac{n \pi}{5} t d t+\frac{1}{5} \int_{0}^{5} 3 \sin \frac{n \pi}{5} t d t \\
& =\frac{1}{5}\left[-\frac{15}{n \pi} \cos \frac{n \pi}{5} t\right]_{0}^{5} \\
& =-\frac{3}{n \pi}(\cos n \pi-1)=\frac{3}{n \pi}\left(1-(-1)^{n}\right) \\
& = \begin{cases}0 & \text { if } n \text { is even } \\
\frac{6}{n \pi} & \text { if } n \text { is odd. }\end{cases}
\end{aligned}
$$

Therefore, the Fourier series is

$$
\begin{aligned}
f(t) & \sim \frac{3}{2}+\frac{6}{\pi}\left(\sin \frac{\pi}{5} t+\frac{1}{3} \sin \frac{3 \pi}{5} t+\frac{1}{5} \sin \frac{5 \pi}{5} t+\frac{1}{7} \sin \frac{7 \pi}{5} t+\cdots\right) . \\
& =\frac{3}{2}+\frac{6}{\pi} \sum_{n=\mathrm{odd}} \frac{1}{n} \sin \frac{n \pi}{5} t
\end{aligned}
$$

3. The period is 2π so $L=\pi$. Then

$$
a_{0}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(t) d t=\frac{1}{\pi} \int_{-\pi}^{0} 4 d t+\frac{1}{\pi} \int_{0}^{\pi}-1 d t=4-1=3
$$

For $n \geq 1$,

$$
\begin{aligned}
a_{n} & =\frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \cos n t d t=\frac{1}{\pi} \int_{-\pi}^{0} f(t) \cos n t d t+\frac{1}{\pi} \int_{0}^{\pi} f(t) \cos n t d t \\
& =\frac{1}{\pi} \int_{-\pi}^{0} 4 \cos n t d t+\frac{1}{\pi} \int_{0}^{\pi}(-1) \cos n t d t \\
& =\frac{1}{\pi}\left[\frac{4}{n} \sin n t\right]_{-\pi}^{0}+\frac{1}{\pi}\left[\frac{-1}{n} \sin n t\right]_{0}^{\pi}=0
\end{aligned}
$$

and

$$
\begin{aligned}
b_{n} & =\frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \sin n t d t=\frac{1}{\pi} \int_{-\pi}^{0} f(t) \sin n t d t+\frac{1}{\pi} \int_{0}^{\pi} f(t) \sin n t d t \\
& =\frac{1}{\pi} \int_{-\pi}^{0} 4 \sin n t d t+\frac{1}{\pi} \int_{0}^{\pi}(-1) \sin n t d t \\
& =\frac{1}{\pi}\left[-\frac{4}{n} \cos n t\right]_{-\pi}^{0}+\frac{1}{\pi}\left[-\frac{-1}{n} \cos n t\right]_{0}^{\pi} \\
& =\frac{-4}{n \pi}(1-\cos (-n \pi))+\frac{1}{n \pi}(\cos (n \pi)-1) \\
& =-\frac{5}{n \pi}(1-\cos n \pi)=-\frac{5}{n \pi}\left(1-(-1)^{n}\right) .
\end{aligned}
$$

Therefore,

$$
b_{n}= \begin{cases}0 & \text { if } n \text { is even } \\ -\frac{10}{n \pi} & \text { if } n \text { is odd }\end{cases}
$$

and the Fourier series is

$$
\begin{aligned}
f(t) & \sim \frac{3}{2}-\frac{10}{\pi}\left(\sin n t+\frac{1}{3} \sin n t+\frac{1}{5} \sin n t+\frac{1}{7} \sin n t+\cdots\right) \\
& =\frac{3}{2}-\frac{10}{\pi} \sum_{n=\text { odd }} \frac{1}{n} \sin n t
\end{aligned}
$$

5. The period is 2π so $L=\pi$. The function $f(t)$ is odd, so the cosine terms a_{n} are all 0 . Now compute the coefficients b_{n} :

$$
\begin{aligned}
b_{n} & =\frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \sin n t d t \\
& =\frac{2}{\pi} \int_{0}^{\pi} t \sin n t d t \quad\left(\text { let } x=n t \text { so } t=\frac{1}{n} x \text { and } d t=\frac{1}{n} d x\right) \\
& =\frac{2}{\pi} \int_{0}^{n \pi} \frac{1}{n} x \sin x \frac{1}{n} d x=\frac{2}{n^{2} \pi} \int_{0}^{n \pi} x \sin x d x \\
& =\frac{2}{n^{2} \pi}[\sin x-x \cos x]_{x=0}^{x=n \pi} \\
& =-\frac{2}{n^{2} \pi}(n \pi \cos n \pi)=-\frac{2}{n}(-1)^{n} .
\end{aligned}
$$

Therefore, the Fourier series is

$$
\begin{aligned}
f(t) & \sim 2\left(\sin t-\frac{1}{2} \sin 2 t+\frac{1}{3} \sin 3 t-\frac{1}{4} \sin 4 t+\cdots\right) \\
& =2 \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \sin n t
\end{aligned}
$$

7. The period is 4 so $L=2$. The function is even, so the sine terms $b_{n}=0$. For the cosine terms a_{n} :

$$
a_{0}=\frac{1}{2} \int_{-2}^{2} f(t) d t=\frac{1}{2} 2 \int_{0}^{2} f(t) d t=\int_{0}^{2} t^{2} d t=\left.\frac{t^{3}}{3}\right|_{0} ^{2}=\frac{8}{3},
$$

and for $n \geq 1$, (integration by parts is used multiple times)

$$
\begin{aligned}
a_{n} & =\frac{1}{2} \int_{-2}^{2} f(t) \cos \frac{n \pi}{2} t d t=\int_{0}^{2} f(t) \cos \frac{n \pi}{2} t d t=\int_{0}^{2} t^{2} \cos \frac{n \pi}{2} t d t \\
& =\left.t^{2} \cdot \frac{2}{n \pi} \sin \frac{n \pi}{2} t\right|_{0} ^{2}-\int_{0}^{2} \frac{4 t}{n \pi} \sin \frac{n \pi}{2} t d t=-\frac{4}{n \pi} \int_{0}^{2} t \sin \frac{n \pi}{2} t d t \\
& =-\frac{4}{n \pi}\left[\left.\frac{-2 t}{n \pi} \cos \frac{n \pi}{2} t\right|_{0} ^{2}+\frac{2}{n \pi} \int_{0}^{2} \cos \frac{n \pi}{2} t d t\right] \\
& =\frac{16}{n^{2} \pi^{2}} \cos n \pi-\left.\frac{16}{n^{3} \pi^{3}} \sin \frac{n \pi}{2} t\right|_{0} ^{2} \\
& =\frac{16}{n^{2} \pi^{2}}(-1)^{n} .
\end{aligned}
$$

Therefore, the Fourier series is

$$
f(t) \sim \frac{4}{3}+\frac{16}{\pi^{2}} \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{2}} \cos \frac{n \pi}{2} t
$$

9. The period is π so $L=\pi / 2$ and $n \pi / L=2 n$. The function is even, so the sine terms $b_{n}=0$. For the cosine terms a_{n} :

$$
a_{0}=\frac{2}{\pi} \int_{0}^{\pi} f(t) d t=\frac{2}{\pi} \int_{0}^{\pi} \sin t d t=-\left.\frac{2}{\pi} \cos t\right|_{0} ^{\pi}=\frac{4}{\pi}
$$

and for $n \geq 1$,

$$
\begin{aligned}
a_{n} & =\frac{2}{\pi} \int_{0}^{\pi} f(t) \cos 2 n t d t=\frac{2}{\pi} \int_{0}^{\pi} \sin t \cos 2 n t d t \\
& =\frac{2}{\pi} \int_{0}^{\pi} \frac{1}{2}(\sin (2 n+1) t-\sin (2 n-1) t) d t \\
& =\frac{1}{\pi}\left[\frac{-1}{2 n+1} \cos (2 n+1) t+\frac{1}{2 n-1} \cos (2 n-1) t\right]_{0}^{\pi} \\
& =\frac{1}{\pi}\left[\frac{-1}{2 n+1}(\cos (2 n+1) \pi-1)+\frac{1}{2 n-1}(\cos (2 n-1) \pi-1)\right] \\
& =\frac{-2}{\pi}\left[\frac{1}{2 n-1}-\frac{1}{2 n+1}\right]=\frac{-4}{\left(4 n^{2}-1\right) \pi} .
\end{aligned}
$$

Therefore, the Fourier series is

$$
f(t) \sim \frac{2}{\pi}-\frac{4}{\pi} \sum_{n=1}^{\infty} \frac{\cos 2 n t}{4 n^{2}-1} .
$$

11. The period is 2 so $L=1$. Since the function $f(t)$ is even, the sine coefficients $b_{n}=0$. Now compute the coefficients a_{n} : For $n=0$, using the fact that $f(t)$ is even,

$$
\begin{aligned}
a_{0} & =\int_{-1}^{1} f(t) d t=2 \int_{0}^{1} f(t) d t \\
& =2 \int_{0}^{1}(1-t) d t=2\left[t-\frac{t^{2}}{2}\right]_{0}^{1}=1
\end{aligned}
$$

For $n \geq 1$, using the fact that $f(t)$ is even,

$$
\begin{aligned}
a_{n} & =\int_{-1}^{1} f(t) \cos n \pi t d t=2 \int_{0}^{1} f(t) \cos n \pi t d t \\
& =2 \int_{0}^{1}(1-t) \cos n \pi t d t \quad(\text { integration by parts with } u=1-t, d v=\cos n \pi t d t) \\
& =2\left[\frac{1-t}{n \pi} \sin n \pi t\right]_{0}^{1}+\frac{2}{n \pi} \int_{0}^{1} \sin n \pi t d t \\
& =-\left.\frac{2}{n^{2} \pi^{2}} \cos n \pi t\right|_{0} ^{1} \\
& =-\frac{2}{n^{2} \pi^{2}}[\cos n \pi-1]=-\frac{2}{n^{2} \pi^{2}}\left[(-1)^{n}-1\right]
\end{aligned}
$$

Therefore,

$$
a_{n}= \begin{cases}0 & \text { if } n \text { is even, } \\ \frac{4}{n^{2} \pi^{2}} & \text { if } n \text { is odd }\end{cases}
$$

and the Fourier series is

$$
\begin{aligned}
f(t) & \sim \frac{1}{2}+\frac{4}{\pi^{2}}\left(\frac{\cos \pi t}{1^{2}}+\frac{\cos 3 \pi t}{3^{2}}+\frac{\cos 5 \pi t}{5^{2}}+\frac{\cos 7 \pi t}{7^{2}}+\cdots\right) \\
& =\frac{1}{2}+\frac{4}{\pi^{2}} \sum_{n=\text { odd }}^{\infty} \frac{\cos n \pi t}{n^{2}} .
\end{aligned}
$$

13. The period is 2π so $L=\pi$. The function $f(t)$ is an odd function, so the cosine terms $a_{n}=0$. Now compute the coefficients b_{n} : Since $f(t)$ is odd, $f(t) \sin n t$ is even so, (using integration by parts multiple times)

$$
\begin{aligned}
b_{n} & =\frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \sin n t d t=\frac{2}{\pi} \int_{0}^{\pi} f(t) \sin n t d t \\
& =\frac{2}{\pi} \int_{0}^{\pi} t(\pi-t) \sin n t d t \\
& =\left.\frac{2}{\pi} \frac{-t(\pi-t)}{n} \cos n t\right|_{0} ^{\pi}+\frac{2}{n \pi} \int_{0}^{\pi}(\pi-2 t) \cos n t d t \\
& =\left.\frac{2(\pi-2 t)}{n^{2} \pi} \sin n t\right|_{0} ^{\pi}+\frac{4}{n^{2} \pi} \int_{0}^{\pi} \sin n t d t \\
& =-\left.\frac{4}{n^{3} \pi} \cos n t\right|_{0} ^{\pi}=-\frac{4}{n^{3} \pi}(\cos n \pi-1) \\
& =-\frac{4}{n^{3} \pi}\left((-1)^{n}-1\right)= \begin{cases}0 & \text { if } n \text { is even } \\
\frac{8}{n^{3} \pi} & \text { if } n \text { is odd. }\end{cases}
\end{aligned}
$$

Therefore the Fourier series is

$$
f(t) \sim \frac{8}{\pi} \sum_{n=\text { odd }} \frac{\sin n t}{n^{3}}
$$

15. The function is odd of period 2π so the cosine terms $a_{n}=0$. Let $n \geq 1$. Then,

$$
\begin{aligned}
b_{n} & =\frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \sin n t d t=\frac{2}{\pi} \int_{0}^{\pi} f(t) \sin n t d t \\
& =\frac{2}{\pi} \int_{0}^{\pi} \sin \frac{t}{2} \sin n t d t \\
& =\frac{1}{\pi} \int_{0}^{\pi}\left(\cos \left(\frac{1}{2}-n\right) t-\cos \left(\frac{1}{2}+n\right) t\right) d t \\
& =\frac{1}{\pi}\left[\frac{\sin \left(\frac{1}{2}-n\right) t}{\frac{1}{2}-n}-\frac{\sin \left(\frac{1}{2}+n\right) t}{\frac{1}{2}+n}\right]_{0}^{\pi} \\
& =\frac{1}{\pi}\left[\frac{\sin \left(\frac{1}{2}-n\right) \pi}{\frac{1}{2}-n}-\frac{\sin \left(\frac{1}{2}+n\right) \pi}{\frac{1}{2}+n}\right] \\
& =\frac{1}{\pi}\left[\frac{\sin \frac{\pi}{2} \cos n \pi}{\frac{1}{2}-n}-\frac{\sin \frac{\pi}{2} \cos n \pi}{\frac{1}{2}+n}\right] \\
& =\frac{(-1)^{n}}{\pi}\left[\frac{1}{\frac{1}{2}-n}-\frac{1}{\frac{1}{2}+n}\right] \\
& =\frac{(-1)^{n}}{\pi}\left[\frac{\left(\frac{1}{2}+n\right)-\left(\frac{1}{2}-n\right)}{\frac{1}{4}-n^{2}}\right] \\
& =\frac{2 n(-1)^{n+1}}{\pi\left(n^{2}-\frac{1}{4}\right)} .
\end{aligned}
$$

Therefore, the Fourier series is

$$
f(t) \sim \frac{2}{\pi} \sum_{n=1}^{\infty} \frac{(-1)^{n+1} n}{n^{2}-\frac{1}{4}} \sin n t
$$

17. The period is 2 so $L=1$.

$$
a_{0}=\int_{-1}^{1} e^{t} d t=e^{1}-e^{-1}=2 \sinh 1
$$

For $n \geq 1$, the following integration formulas (with $a=1, b=n \pi$) will be useful.

$$
\begin{aligned}
\int e^{a t} \cos (b t) d t & =\frac{1}{a^{2}+b^{2}} e^{a t}[a \cos (b t)+b \sin (b t)]+C \\
\int e^{a t} \sin (b t) d t & =\frac{1}{a^{2}+b^{2}} e^{a t}[a \sin (b t)-b \cos (b t)]+C
\end{aligned}
$$

Then,

$$
\begin{aligned}
a_{n} & =\int_{-1}^{1} e^{t} \cos n \pi t d t \\
& =\left.\frac{1}{1+n^{2} \pi^{2}} e^{t}[\cos n \pi t+n \pi \sin n \pi t]\right|_{-1} ^{1} \\
& =\frac{1}{1+n^{2} \pi^{2}}\left[e^{1} \cos n \pi-e^{-1} \cos (-n \pi)\right] \\
& =\frac{\left(e^{1}-e^{-1}\right)(-1)^{n}}{1+n^{2} \pi^{2}}=\frac{2(-1)^{n} \sinh (1)}{1+n^{2} \pi^{2}}
\end{aligned}
$$

and,

$$
\begin{aligned}
b_{n} & =\int_{-1}^{1} e^{t} \sin n \pi t d t \\
& =\left.\frac{1}{1+n^{2} \pi^{2}} e^{t}[\sin n \pi t-n \pi \cos n \pi t]\right|_{-1} ^{1} \\
& =\frac{1}{1+n^{2} \pi^{2}}\left[e^{1}(-n \pi \cos n \pi)-e^{-1}(-n \pi \cos (-n \pi))\right] \\
& =\frac{\left(e^{1}-e^{-1}\right)(-n \pi)(-1)^{n}}{1+n^{2} \pi^{2}}=\frac{2(-1)^{n}(-n \pi) \sinh (1)}{1+n^{2} \pi^{2}}
\end{aligned}
$$

Therefore, the Fourier series is

$$
f(t) \sim \sinh (1)+2 \sinh (1) \sum_{n=1}^{\infty} \frac{(-1)^{n}(\cos n \pi t-n \pi \sin n \pi t)}{1+n^{2} \pi^{2}}
$$

SECTION 10.3

1. (a)

(b) All t except for $t=2 n$ for n an integer.
(c) For $t=2 n, f(t)=3$ for n even and $f(t)=-1$ for n odd. Converges to $(3+(-1)) / 2=1$ for all $t=2 n$.
2. (a)

(b) All t except for $t=n$ for n an even integer.
(c) For t an even integer, $f(t)=0$. Fourier series converges to 1 .
3. (a)

(b) All t since $f(t)$ is continuous for all t.
(c) No points of discontinuity.
4. (a)

(b) All t except for $t=4 n$ for n an integer.
(c) For t a multiple of $4, f(t)=0$. Fourier series converges to 1 .
5. (a)

(b) All t since $f(t)$ is continuous.
(c) No points of discontinuity.
6. The Fourier series for the $2 L$-periodic function $f(t)=t$ for $-L \leq t<L$ is

$$
f(t) \sim \frac{2 L}{\pi}\left(\sin \frac{\pi}{L} t-\frac{1}{2} \sin \frac{2 \pi}{L} t+\frac{1}{3} \sin \frac{3 \pi}{L} t-\frac{1}{4} \sin \frac{4 \pi}{L} t+\cdots\right)
$$

This function is continuous for $-L<t<L$ so the Fourier series converges to $f(t)$ for $-L<t<L$. Letting $L=\pi$ gives an equality

$$
t=2\left(\sin t-\frac{1}{2} \sin 2 t+\frac{1}{3} \sin 3 t-\frac{1}{4} \sin 4 t+\cdots\right), \quad \text { for }-\pi<t<\pi
$$

Dividing by 2 gives the required identity. Substituting $t=\pi / 2$ gives the summation.
13. The 2-periodic function defined by $f(t)=t^{2}$ for $-1 \leq t \leq 1$ has period 2 so $L=1$. Compute the Fourier series of $f(t)$. The function is even, so the sine terms $b_{n}=0$. For the cosine terms a_{n} :

$$
a_{0}=\int_{-1}^{1} f(t) d t=2 \int_{0}^{1} f(t) d t=2 \int_{0}^{1} t^{2} d t=\left.2 \frac{t^{3}}{3}\right|_{0} ^{1}=\frac{2}{3}
$$

and for $n \geq 1$, (integration by parts is used multiple times)

$$
\begin{aligned}
a_{n} & =\int_{-1}^{1} f(t) \cos n \pi t d t=2 \int_{0}^{1} f(t) \cos n \pi t d t=2 \int_{0}^{1} t^{2} \cos n \pi t d t \\
& =\left.2 t^{2} \cdot \frac{1}{n \pi} \sin n \pi t\right|_{0} ^{1}-2 \int_{0}^{1} \frac{2 t}{n \pi} \sin n \pi t d t=-\frac{4}{n \pi} \int_{0}^{1} t \sin n \pi t d t \\
& =-\frac{4}{n \pi}\left[\left.\frac{-t}{n \pi} \cos n \pi t\right|_{0} ^{1}+\frac{1}{n \pi} \int_{0}^{1} \cos n \pi t d t\right] \\
& =\frac{4}{n^{2} \pi^{2}} \cos n \pi-\left.\frac{4}{n^{3} \pi^{3}} \sin n \pi t\right|_{0} ^{1} \\
& =\frac{4}{n^{2} \pi^{2}}(-1)^{n}
\end{aligned}
$$

Therefore, the Fourier series is

$$
f(t) \sim \frac{1}{3}+\frac{4}{\pi^{2}} \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{2}} \cos n \pi t
$$

Since the function $f(t)$ is continuous for all t, the Fourier series converges to $f(t)$ for all t. In particular,

$$
\frac{1}{3}+\frac{4}{\pi^{2}} \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{2}} \cos n \pi t=t^{2}, \quad \text { for }-1 \leq t \leq 1
$$

15. $f(t)$ is 2π periodic and even. Thus the sine terms $b_{n}=0$. For the cosine terms.

$$
a_{0}=\frac{1}{\pi} \int_{-\pi}^{\pi} t^{4} d t=\frac{2}{\pi} \int_{0}^{\pi} t^{4} d t=\frac{2}{5} \pi^{4}
$$

For $n \geq 1$: The following integration formula, obtained by multiple integrations by parts, will be useful:

$$
\begin{aligned}
\int t^{4} \cos a t d t=\frac{1}{a} t^{4} \sin a t-\frac{1}{a^{2}} 4 t^{3} \cos a t & -\frac{1}{a^{3}} 12 t^{2} \sin a t \\
& -\frac{1}{a^{4}} 24 t \cos a t+\frac{1}{a^{5}} 24 \sin a t
\end{aligned}
$$

Then, since t^{4} is even, and letting $a=n$ in the integration formula,

$$
\begin{aligned}
a_{n} & =\frac{1}{\pi} \int_{-\pi}^{\pi} t^{4} \cos n t d t=\frac{2}{\pi} \int_{0}^{\pi} t^{4} \cos n t d t \\
& =\frac{2}{\pi}\left[\frac{1}{n} t^{4} \sin n t+\frac{4}{n^{2}} t^{3} \cos n t-\frac{12}{n^{3}} t^{2} \sin n t-\frac{24}{n^{4}} t \cos n t+\frac{24}{n^{5}} \sin n t\right]_{0}^{\pi} \\
& =\frac{2}{\pi}\left[\frac{4}{n^{2}} \pi^{3} \cos n \pi-\frac{24}{n^{4}} \pi \cos n \pi\right] \\
& =\frac{8}{n^{2}} \pi^{2}(-1)^{n}-\frac{48}{n^{4}}(-1)^{n}
\end{aligned}
$$

Thus, the Fourier series is

$$
f(t) \sim \frac{1}{5} \pi^{4}+\sum_{n=1}^{\infty}\left[\frac{8}{n^{2}} \pi^{2}(-1)^{n}-\frac{48}{n^{4}}(-1)^{n}\right] \cos n t
$$

Since $f(t)$ is continuous for all t, the Fourier series of $f(t)$ converges to $f(t)$ for all t. In particular, there is an identity

$$
t^{4}=\frac{1}{5} \pi^{4}+\sum_{n=1}^{\infty}\left[\frac{8}{n^{2}} \pi^{2}(-1)^{n}-\frac{48}{n^{4}}(-1)^{n}\right] \cos n t
$$

valid for all t. Setting $t=\pi$ gives

$$
\pi^{4}=\frac{1}{5} \pi^{4}+\sum_{n=1}^{\infty} \frac{8}{n^{2}} \pi^{2}-\sum_{n=1}^{\infty} \frac{48}{n^{4}}
$$

Thus,

$$
\begin{aligned}
48 \sum_{n=1}^{\infty} \frac{1}{n^{4}} & =-\frac{4}{5} \pi^{4}+8 \pi^{2} \sum_{n=1}^{\infty} \frac{1}{n^{2}} \\
& =-\frac{4}{5} \pi^{4}+8 \pi^{2} \cdot \frac{\pi^{2}}{6} \quad \text { from problem } 13 \\
& =\pi^{4}\left(\frac{4}{3}-\frac{4}{5}\right)=\pi^{4}\left(\frac{8}{15}\right)
\end{aligned}
$$

Hence,

$$
\sum_{n=1}^{\infty} \frac{1}{n^{4}}=\pi^{4} \frac{8}{15 \cdot 48}=\frac{\pi^{4}}{90}
$$

Setting $t=0$ gives

$$
0=\frac{1}{5} \pi^{4}+\sum_{n=1}^{\infty} \frac{8}{n^{2}} \pi^{2}(-1)^{n}-\sum_{n=1}^{\infty} \frac{48}{n^{4}}(-1)^{n}
$$

Thus,

$$
\begin{aligned}
48 \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{4}} & =\frac{\pi^{4}}{5}+8 \pi^{2} \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{2}} \\
& =\frac{\pi^{4}}{5}-8 \pi^{2} \cdot \frac{\pi^{2}}{12} \quad \text { from problem 13 } \\
& =\frac{\pi^{4}}{5}-\frac{8 \pi^{4}}{12}=\pi^{4}\left(\frac{1}{5}-\frac{2}{3}\right)=-\frac{7}{15} \pi^{4}
\end{aligned}
$$

Therefore,

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^{4}}=\frac{7 \pi^{4}}{15 \cdot 48}=\frac{7 \pi^{4}}{720}
$$

SECTION 10.4

1. Cosine series:

$$
a_{0}=\frac{2}{L} \int_{0}^{L} f(t) d t=\frac{2}{L} \int_{0}^{L} 1 d t=2
$$

and for $n \geq 1$

$$
\begin{aligned}
a_{n} & =\frac{2}{L} \int_{0}^{L} f(t) \cos \frac{n \pi t}{L} d t \\
& =\frac{2}{L} \int_{0}^{L} \cos \frac{n \pi t}{L} d t=\left.\frac{2}{n \pi} \sin \frac{n \pi t}{L}\right|_{0} ^{L}=0
\end{aligned}
$$

Thus, the Fourier cosine series is $f(t) \sim 1$ and this series converges to the constant function 1.
Sine series: For $n \geq 1$

$$
\begin{aligned}
b_{n} & =\frac{2}{L} \int_{0}^{L} f(t) \sin \frac{n \pi t}{L} d t \\
& =\frac{2}{L} \int_{0}^{L} \sin \frac{n \pi t}{L} d t=-\left.\frac{2}{n \pi} \cos \frac{n \pi t}{L}\right|_{0} ^{L} \\
& =-\frac{2}{n \pi}(\cos n \pi-1)= \begin{cases}0 & \text { if } n \text { is even } \\
\frac{4}{n \pi} & \text { if } n \text { is odd }\end{cases}
\end{aligned}
$$

Thus, the Fourier sine series is

$$
f(t) \sim \frac{4}{\pi} \sum_{n \text { odd }} \frac{1}{n} \sin \frac{n \pi t}{L}
$$

This converges to the odd extension of $f(t)$, which is the odd square wave function (see Figure 10.5). The graph is

3. Cosine series: For $n=0$,

$$
\begin{aligned}
a_{0} & =\frac{2}{2} \int_{0}^{2} f(t) d t \\
& =\int_{0}^{2} t d t=\left.\frac{t^{2}}{2}\right|_{0} ^{2}=2
\end{aligned}
$$

For $n \geq 1$, taking advantage of the integration by parts formula

$$
\begin{aligned}
& \qquad \int \cos x d x=x \sin x+\cos x+C \\
& a_{n}=\frac{2}{2} \int_{0}^{2} f(t) \cos \frac{n \pi}{2} t d t \\
&= \int_{0}^{2} t \cos \frac{n \pi}{2} t d t \quad\left(\operatorname{let} x=\frac{n \pi}{2} t \text { so } t=\frac{2 x}{n \pi} \text { and } d t=\frac{2 d x}{n \pi}\right) \\
&= \int_{0}^{n \pi} \frac{2 x}{n \pi} \cos x \frac{2 d x}{n \pi}=\frac{4}{n^{2} \pi^{2}}[x \sin x+\cos x]_{x=0}^{x=n \pi} \\
&= \frac{4}{n^{2} \pi^{2}}[\cos n \pi-1]=\frac{2}{n^{2} \pi^{2}}\left[(-1)^{n}-1\right]
\end{aligned}
$$

Therefore,

$$
a_{n}= \begin{cases}0 & \text { if } n \text { is even } \\ -\frac{8}{n^{2} \pi^{2}} & \text { if } n \text { is odd }\end{cases}
$$

and the Fourier cosine series is

$$
\begin{aligned}
f(t) & \sim 1-\frac{8}{\pi^{2}}\left(\frac{\cos \frac{\pi}{2} t}{1^{2}}+\frac{\cos \frac{3 \pi}{2} t}{3^{2}}+\frac{\cos \frac{5 \pi}{2} t}{5^{2}}+\frac{\cos \frac{7 \pi}{2} t}{7^{2}}+\cdots\right) \\
& =1-\frac{8}{\pi^{2}} \sum_{n=\mathrm{odd}} \frac{\cos \frac{n \pi}{2} t}{n^{2}}
\end{aligned}
$$

This converges to the even extension of $f(t)$, which is an even triangular wave with graph

Sine series: For $n \geq 1$, taking advantage of the integration by parts formula

$$
\int x \sin x d x=-x \cos x+\sin x+C
$$

$$
\begin{aligned}
b_{n} & =\frac{2}{2} \int_{0}^{2} f(t) \sin \frac{n \pi}{2} t d t \\
& =\int_{0}^{2} t \sin \frac{n \pi}{2} t d t \quad\left(\text { let } x=\frac{n \pi}{2} t \text { so } t=\frac{2 x}{n \pi} \text { and } d t=\frac{2 d x}{n \pi}\right) \\
& =\int_{0}^{n \pi} \frac{2 x}{n \pi} \sin x \frac{2 d x}{n \pi}=\frac{4}{n^{2} \pi^{2}}[-x \cos x+\sin x]_{x=0}^{x=n \pi} \\
& =-\frac{4}{n \pi} \cos n \pi=-\frac{4}{n \pi}(-1)^{n}
\end{aligned}
$$

Therefore, the Fourier sine series is

$$
\begin{aligned}
f(t) & \sim \frac{4}{\pi}\left(\frac{\sin \frac{\pi}{2} t}{1}-\frac{\sin \frac{2 \pi}{2} t}{2}+\frac{\sin \frac{3 \pi}{2} t}{3}-\frac{\sin \frac{4 \pi}{2} t}{4}+\cdots\right) \\
& =\frac{4}{\pi} \sum_{n=1}^{\infty}(-1)^{n+1} \frac{\sin \frac{n \pi}{2} t}{n}
\end{aligned}
$$

This converges to the odd extension of $f(t)$, which is a sawtooth wave with graph

5. Cosine series: For $n=0$:

$$
a_{0}=\frac{2}{\pi} \int_{0}^{\pi} f(t) d t=\frac{2}{\pi} \int_{0}^{\pi / 2} d t=1
$$

and for $n \geq 1$,

$$
\begin{aligned}
a_{n} & =\frac{2}{\pi} \int_{0}^{\pi} f(t) \cos n t d t=\frac{2}{\pi} \int_{0}^{\pi / 2} \cos n t d t \\
& =\left.\frac{2}{n \pi} \sin n t\right|_{0} ^{\pi / 2}=\frac{2}{n \pi} \sin \frac{n \pi}{2}
\end{aligned}
$$

Thus, the Fourier cosine series is

$$
f(t) \sim \frac{1}{2}+\frac{2}{\pi} \sum_{n=1}^{\infty} \frac{\sin \frac{n \pi}{2}}{n} \cos n t=\frac{1}{2}+\frac{2}{\pi} \sum_{k=1}^{\infty} \frac{(-1)^{k}}{2 k+1} \cos (2 k+1) t
$$

This converges to the even extension of $f(t)$, which has the graph

Sine series: For $n \geq 1$,

$$
\begin{aligned}
b_{n} & =\frac{2}{\pi} \int_{0}^{\pi} f(t) \sin n t d t=\frac{2}{\pi} \int_{0}^{\pi / 2} \sin n t d t \\
& =\left.\frac{-2}{n \pi} \cos n t\right|_{0} ^{\pi / 2}=\frac{-2}{n \pi}\left(\cos \frac{n \pi}{2}-1\right)
\end{aligned}
$$

Thus, the Fourier sine series is

$$
f(t) \sim \frac{2}{\pi} \sum_{n=1}^{\infty} \frac{-2}{n \pi}\left(\cos \frac{n \pi}{2}-1\right) \sin n t
$$

This converges to the odd extension of $f(t)$, which has the graph

7. Cosine series: For $n=0$,

$$
a_{0}=\frac{2}{1} \int_{0}^{1} f(t) d t=2 \int_{0}^{1}\left(t-t^{2}\right) d t=2\left[\frac{t^{2}}{2}-\frac{t^{2}}{3}\right]_{0}^{1}=\frac{1}{3}
$$

For $n \geq 1$, taking advantage of the formula (obtained from repeated integration by parts):

$$
\begin{aligned}
\int p(t) \cos a t d t= & \frac{1}{a} p(t) \sin a t-\frac{1}{a} \int p^{\prime}(t) \sin a t d t \\
= & \frac{1}{a} p(t) \sin a t+\frac{1}{a^{2}} p^{\prime}(t) \cos a t-\frac{1}{a^{3}} p^{\prime \prime}(t) \sin a t-\cdots \\
& (++--++--\cdots)(\text { signs alternate in pairs })
\end{aligned}
$$

$$
\begin{aligned}
a_{n} & =2 \int_{0}^{1} f(t) \cos n \pi t d t=2 \int_{0}^{1}\left(t-t^{2}\right) \cos n \pi t d t \\
& =2\left[\frac{1}{n \pi}\left(t-t^{2}\right) \sin n \pi t+\frac{1}{n^{2} \pi^{2}}(1-2 t) \cos n \pi t-\frac{1}{n^{3} \pi^{3}}(-2) \sin n \pi t\right]_{0}^{1} \\
& =2\left[\frac{-1}{n^{2} \pi^{2}}-\frac{1}{n^{2} \pi^{2}}\right]=\frac{-2}{n^{2} \pi^{2}}(\cos n \pi+1) \\
& = \begin{cases}0 & \text { if } n \text { is odd } \\
\frac{-4}{n^{2} \pi^{2}} & \text { if } n \text { is even }\end{cases}
\end{aligned}
$$

Therefore, the Fourier cosine series is

$$
f(t) \sim \frac{1}{6}-\frac{4}{\pi^{2}} \sum_{n=\mathrm{even}} \frac{\cos n \pi t}{n^{2}}
$$

This converges to the even extension of $f(t)$, which has the graph

Sine series: For $n \geq 1$, taking advantage of the formula (obtained from repeated integration by parts):

$$
\begin{aligned}
& \begin{aligned}
\int p(t) \sin a t d t= & -\frac{1}{a} p(t) \cos a t+\frac{1}{a} \int p^{\prime}(t) \cos a t d t \\
& =-\frac{1}{a} p(t) \cos a t+\frac{1}{a^{2}} p^{\prime}(t) \sin a t+\frac{1}{a^{3}} p^{\prime \prime}(t) \cos a t-\cdots \\
& (-++--++\cdots)(\text { signs alternate in pairs after first term) }
\end{aligned} \\
& \begin{aligned}
b_{n}= & 2 \int_{0}^{1} f(t) \sin n \pi t d t=2 \int_{0}^{1}\left(t-t^{2}\right) \sin n \pi t d t
\end{aligned} \\
& =2\left[-\frac{1}{n \pi}\left(t-t^{2}\right) \cos n \pi t+\frac{1}{n^{2} \pi^{2}}(1-2 t) \sin n \pi t+\frac{1}{n^{3} \pi^{3}}(-2) \cos n \pi t\right]_{0}^{1} \\
& =
\end{aligned} \begin{aligned}
& \frac{-4}{n^{3} \pi^{3}}(\cos n \pi-1) \\
& = \begin{cases}0 & \text { if } n \text { is even } \\
\frac{8}{n^{3} \pi^{3}} & \text { if } n \text { is odd }\end{cases}
\end{aligned}
$$

Therefore, the Fourier sine series is

$$
f(t) \sim \frac{8}{\pi^{3}} \sum_{n=\mathrm{odd}} \frac{\sin n \pi t}{n^{3}}
$$

This converges to the odd extension of $f(t)$, which has the graph

9. Cosine series: The even extension of the function $f(t)=\cos t$ on $0<$ $t<\pi$ is just the cosine function on the whole real line. Thus, $f(t)$ it its own Fourier cosine series $f(t) \sim \cos t$, which converges to the cosine function.
Sine series: For $n \geq 1$,

$$
\begin{aligned}
b_{n} & =\frac{2}{\pi} \int_{0}^{\pi} f(t) \sin n t d t=\frac{2}{\pi} \int_{0}^{\pi} \cos t \sin n t d t \\
& =\frac{-2}{\pi}\left[\frac{1}{n^{2}-1}(\sin t \sin n t+n \cos t \cos n t)\right]_{0}^{\pi} \\
& =\frac{-2 n}{\pi\left(n^{2}-1\right)}(\cos \pi \cos n \pi-1) \\
& = \begin{cases}\frac{4 n}{\pi\left(n^{2}-1\right)} & \text { if } n \text { is even } \\
0 & \text { if } n \text { is odd }\end{cases}
\end{aligned}
$$

Therefore, the Fourier sine series is

$$
f(t) \sim \frac{2}{\pi}+\frac{4}{\pi} \sum_{n=\text { even }} \frac{n}{n^{2}-1} \sin n t
$$

This converges to the odd extension of $f(t)$, which has the graph

11. Cosine series: For $n=0$,

$$
a_{0}=\frac{2}{L} \int_{0}^{L} f(t) d t=\frac{2}{L} \int_{0}^{L}\left(1-\frac{2}{L} t\right) d t=\left.\frac{2}{L}\left(t-\frac{t^{2}}{L}\right)\right|_{0} ^{L}=0
$$

For $n \geq 1$,

$$
\begin{aligned}
a_{n} & =\frac{2}{L} \int_{0}^{L} f(t) \cos \frac{n \pi}{L} t d t=\frac{2}{L} \int_{0}^{L}\left(1-\frac{2}{L} t\right) \cos \frac{n \pi}{L} t d t \\
& =\frac{2}{L}\left[\frac{L}{n \pi}\left(1-\frac{2}{L} t\right) \sin \frac{n \pi}{L} t+\frac{L^{2}}{n^{2} \pi^{2}}\left(-\frac{2}{L}\right) \cos \frac{n \pi}{L} t\right]_{0}^{L} \\
& =-\frac{4}{n^{2} \pi^{2}}(\cos n \pi-1)= \begin{cases}\frac{8}{n^{2} \pi^{2}} & \text { if } n \text { is odd } \\
0 & \text { if } n \text { is even }\end{cases}
\end{aligned}
$$

Therefore, the Fourier cosine series is

$$
f(t) \sim \frac{-4}{\pi^{2}} \sum_{n=\mathrm{odd}} \frac{\cos \frac{n \pi}{L} t}{n^{2}}
$$

This converges to the even extension of $f(t)$, which has the graph

Sine series: For $n \geq 1$,

$$
\begin{aligned}
b_{n} & =\frac{2}{L} \int_{0}^{L} f(t) \sin \frac{n \pi}{L} t d t=\frac{2}{L} \int_{0}^{L}\left(1-\frac{2}{L} t\right) \sin \frac{n \pi}{L} t d t \\
& =\frac{2}{L}\left[\frac{-L}{n \pi}\left(1-\frac{2}{L} t\right) \cos \frac{n \pi}{L} t+\frac{L^{2}}{n^{2} \pi^{2}}\left(-\frac{2}{L}\right) \sin \frac{n \pi}{L} t\right]_{0}^{L} \\
& =\frac{2}{n \pi} \cos n \pi-\frac{-2}{n \pi}=\frac{2}{n \pi}\left((-1)^{n}+1\right) \\
& = \begin{cases}\frac{4}{n \pi} & \text { if } n \text { is even } \\
0 & \text { if } n \text { is odd }\end{cases}
\end{aligned}
$$

Therefore, the Fourier sine series is

$$
f(t) \sim \frac{4}{\pi} \sum_{n=\text { even }} \frac{\sin \frac{n \pi}{L} t}{n}
$$

This converges to the odd extension of $f(t)$, which has the graph

SECtion 10.5

1. The procedure is to write each of these functions as a linear combination of $f_{1}(t)$ and $f_{2}(t)$ (or other basic functions whose Fourier series are already computed) and then use Theorem 1.
(a) $f_{3}(t)=1-f_{1}(t)$. Thus,

$$
f_{3}(t)=1-f_{1}(t) \sim \frac{1}{2}-\frac{2}{\pi} \sum_{n=\mathrm{odd}} \frac{\sin n t}{n}
$$

(b) From Example 5 of Section 10.2, the Fourier series of the 2π-periodic sawtooth wave function $f(t)=t$ for $-\pi<t<\pi$, is

$$
f(t) \sim 2 \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \sin n t
$$

Since, $f_{4}(t)=f(t)-f_{2}(t)$,

$$
\begin{aligned}
f_{4}(t) & \sim 2 \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \sin n t-\left(\frac{\pi}{4}-\frac{2}{\pi} \sum_{n=\mathrm{odd}} \frac{\cos n t}{n^{2}}+\sum_{n=1}^{\infty}(-1)^{n+1} \frac{\sin n t}{n}\right) \\
& =-\frac{\pi}{4}+\frac{2}{\pi} \sum_{n=\mathrm{odd}} \frac{\cos n t}{n^{2}}+\sum_{n=1}^{\infty}(-1)^{n+1} \frac{\sin n t}{n}
\end{aligned}
$$

(c) $f_{5}(t)=f_{3}(t)+f_{2}(t)$. Thus,

$$
\begin{aligned}
f_{5}(t) & \sim \frac{1}{2}-\frac{2}{\pi} \sum_{n=\text { odd }} \frac{\sin n t}{n}+\frac{\pi}{4}-\frac{2}{\pi} \sum_{n=\text { odd }} \frac{\cos n t}{n^{2}}+\sum_{n=1}^{\infty}(-1)^{n+1} \frac{\sin n t}{n} \\
& =\frac{\pi}{4}+\frac{1}{2}-\frac{2}{\pi} \sum_{n=\text { odd }} \frac{\cos n t}{n^{2}}+\sum_{n=\text { odd }} \frac{-2+\pi}{\pi} \frac{\sin n t}{n}-\sum_{n=\text { even }} \frac{\sin n t}{n}
\end{aligned}
$$

(d) $f_{6}(t)=2 f_{3}(t)$. Thus,

$$
f_{6}(t) \sim 2\left(\frac{1}{2}-\frac{2}{\pi} \sum_{n=\mathrm{odd}} \frac{\sin n t}{n}\right)=1-\frac{4}{\pi} \sum_{n=\mathrm{odd}} \frac{\sin n t}{n}
$$

(e) $f_{7}(t)=2 f_{3}(t)+3 f_{1}(t)=2\left(1-f_{1}(t)\right)+3 f_{1}(t)=2+f_{1}(t)$. Thus,

$$
f_{7}(t)=2+f_{1}(t) \sim \frac{5}{2}+\frac{2}{\pi} \sum_{n=\text { odd }} \frac{\sin n t}{n}
$$

(f) $f_{8}(t)=1+2 f_{2}(t)$. Thus,

$$
f_{8}(t) \sim 1+\frac{\pi}{2}-\frac{4}{\pi} \sum_{n=\mathrm{odd}} \frac{\cos n t}{n^{2}}+2 \sum_{n=1}^{\infty}(-1)^{n+1} \frac{\sin n t}{n}
$$

(g)

$$
\begin{aligned}
f_{9}(t) & =a f_{3}(t)+b f_{4}(t)+c f_{1}(t)+d f_{2}(t) \\
& =a\left(1-f_{1}(t)\right)+b\left(t-f_{2}(t)\right)+c f_{1}(t)+d f_{2}(t) \\
& =a+b t+(c-a) f_{1}(t)+(d-b) f_{2}(t) .
\end{aligned}
$$

Thus,

$$
\begin{aligned}
f_{9}(t) \sim a+b & \left(2 \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \sin n t\right)+c\left(\frac{1}{2}+\frac{2}{\pi} \sum_{n=\mathrm{odd}} \frac{\sin n t}{n}\right) \\
& +d\left(\frac{\pi}{4}-\frac{2}{\pi} \sum_{n=\text { odd }} \frac{\cos n t}{n^{2}}+\sum_{n=1}^{\infty}(-1)^{n+1} \frac{\sin n t}{n}\right) \\
=a+\frac{c}{2} & +\frac{\pi d}{4}-\frac{2 d}{\pi} \sum_{n=\text { odd }} \frac{\cos n t}{n^{2}}-\sum_{n=\text { even }}(2 b+d) \frac{\sin n t}{n} \\
& +\left(\frac{2 c}{\pi}+2 b+d\right) \sum_{n=\text { odd }} \frac{\sin n t}{n} .
\end{aligned}
$$

3. The function $g(t)=|t|-\frac{\pi}{2}$ for $-\pi<t<\pi$ has the cosine term $a_{0}=0$ in its Fourier series, so the Fourier series of $\int_{-\pi}^{t} g(x) d x$ can be computed by termwise integration of the Fourier series of $g(t)$. For $-\pi<t \leq 0$,

$$
\begin{aligned}
\int_{-\pi}^{t} g(x) d x & =\int_{-\pi}^{t}\left(|x|-\frac{\pi}{2}\right) d x=\int_{-\pi}^{t}\left(-x-\frac{\pi}{2}\right) d x \\
& =\left[-\frac{x^{2}}{2}-\frac{\pi}{2} x\right]_{-\pi}^{t}=-\frac{t^{2}}{2}-\frac{\pi}{2} t
\end{aligned}
$$

For $0<t<\pi$,

$$
\begin{aligned}
\int_{-\pi}^{t} g(x) d x & =\int_{\pi}^{0} g(x) d x+\int_{0}^{t} g(x) d x=0+\int_{0}^{t}\left(|x|-\frac{\pi}{2}\right) d x \\
& =\int_{0}^{t}\left(x-\frac{\pi}{2}\right) d x=\left[\frac{x^{2}}{2}-\frac{\pi}{2} x\right]_{0}^{t}=\frac{t^{2}}{2}-\frac{\pi}{2} t
\end{aligned}
$$

Thus,

$$
\int_{-\pi}^{t} g(x) d x=\frac{1}{2} t^{2} \operatorname{sgn} t-\frac{\pi}{2} t
$$

Theorem 7 applies to give

$$
\int_{-\pi}^{t} g(x) d x \sim \frac{A_{0}}{2}-\frac{4}{\pi} \sum_{n=\text { odd }} \frac{1}{n^{3}} \sin n t
$$

Since $\int_{-\pi}^{t} g(x) d x$ is an odd function, the cosine term $A_{0}=0$. Solving for $f(t)$ gives

$$
f(t)=2 \int_{-\pi}^{t} g(x) d x+\pi t
$$

Thus, using the known Fourier series for t given in Exercise 2, the Fourier series of $f(t)$ is given by

$$
\begin{aligned}
f(t) & \sim-\frac{8}{\pi} \sum_{n=\text { odd }} \frac{1}{n^{3}} \sin n t+2 \pi \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \sin n t \\
& =\sum_{n=\text { odd }}\left(\frac{-8}{\pi n^{3}}+\frac{2 \pi}{n}\right) \sin n t-\sum_{n=\text { even }} \frac{1}{n} \sin n t .
\end{aligned}
$$

5. (a) $f(t)$ is continuous for $-2<t<0$ and for $0<t<2$ since it is defined by a polynomial on each of those open intervals. $\lim _{t \rightarrow 0^{+}} f(t)=$ $\lim _{t \rightarrow 0^{+}} \frac{t^{2}}{2}-\frac{t}{2}=0$ and $\lim _{t \rightarrow 0^{-}} f(t)=\lim _{t \rightarrow 0^{-}}-t / 2=0$. Thus, $f(t)$ is continuous at 0 . Since $\lim _{t \rightarrow 2^{-}} f(t)=\lim _{t \rightarrow 2^{-}} \frac{t^{2}}{2}-\frac{t}{2}=\frac{4}{2}-\frac{2}{2}=1$ and $\lim _{t \rightarrow 2^{+}} f(t)=\lim _{t \rightarrow-2^{+}} f(t)=\lim _{t \rightarrow-2^{+}}-t / 2=1$, it follows that $f(t)$ is continuous at 2 , and similarly at -2 . Since $f(t)$ is 4periodic, it is thus continuous everywhere.
$f^{\prime}(t)=\left\{\begin{array}{ll}-\frac{1}{2} & \text { if }-2<t<0 \\ t-\frac{1}{2} & \text { if } 0<t<2\end{array}\right.$ and $f^{\prime \prime}(t)=\left\{\begin{array}{ll}0 & \text { if }-2<t<0 \\ 1 & \text { if } 0<t<2\end{array}\right.$ Thus, both $f^{\prime}(t)$ and $f^{\prime \prime}(t)$ are piecewise continuous, and hence $f(t)$ is piecewise smooth. Therefore, the hypotheses of Theorem 3 are satisfied.
(b) Using Theorem 3 we can differentiate the Fourier series of $f(t)$ term by term to get

$$
f^{\prime}(t) \sim \frac{2}{\pi} \sum_{n=1}^{\infty}\left(-\frac{(-1)^{n}}{n} \sin \frac{n \pi}{2} t+\frac{(-1)^{n}-1}{\pi n^{2}} \cos \frac{n \pi}{2} t\right)
$$

(c) Since $\lim _{t \rightarrow 2^{-}} f^{\prime}(t)=\lim _{t \rightarrow 2^{-}} t-\frac{1}{2}=1-\frac{1}{2}=\frac{1}{2}$ and $\lim _{t \rightarrow 2^{+}} f^{\prime}(t)=$ $\lim _{t \rightarrow-2^{+}} f^{\prime}(t)=\lim _{t \rightarrow-2^{+}}-\frac{1}{2}=-\frac{1}{2}$, it follows that $f^{\prime}(t)$ is not continuous at 2 , and similarly at -2 . Thus, the hypotheses of Theorem 3 are not satisfied.

SECtion 10.6

1. If $g(t)$ is the 2-periodic square wave function defined on $-1<t<1$ by $g(t)=\left\{\begin{array}{ll}-1 & \text { if }-1<t<0 \\ 1 & \text { if } 0<t<1\end{array}\right.$ then $f(t)=\frac{1}{2}+\frac{1}{2} g(t)$. Thus, the Fourier series of $f(t)$ is

$$
f(t)=\frac{1}{2}+\frac{2}{\pi} \sum_{n=\text { odd }} \frac{\sin n \pi t}{n} .
$$

Let $y(t)=\frac{A_{0}}{2}+\sum_{n=1}^{\infty}\left(A_{n} \cos n \pi t+B_{n} \sin n \pi t\right)$ be a 2 -periodic solution of $y^{\prime \prime}+4 y=f(t)$ expressed as the sum of its Fourier series. Then $y(t)$ will satisfy the hypotheses of Theorem 3 of Section 10.5. Thus, differentiating twice will give

$$
y^{\prime \prime}(t)=\sum_{n=1}^{\infty}\left(-n^{2} \pi^{2} A_{n} \cos n \pi t-n^{2} \pi^{2} B_{n} \sin n \pi t\right)
$$

Substituting into the differential equation gives

$$
\begin{aligned}
y^{\prime \prime}(t)+4 y(t) & =2 A_{0}+\sum_{n=1}^{\infty}\left(A_{n}\left(4-n^{2} \pi^{2}\right) \cos n \pi t+B_{n}\left(4-n^{2} \pi^{2}\right) \sin n \pi t\right) \\
& =\frac{1}{2}+\frac{2}{\pi} \sum_{n=\mathrm{odd}} \frac{\sin n \pi t}{n}
\end{aligned}
$$

Comparing corresponding coefficients of $\cos n \pi t$ and $\sin n \pi t$ gives the equations

$$
\begin{aligned}
2 A_{0} & =\frac{1}{2} \\
A_{n}\left(4-n^{2} \pi^{2}\right) & =0 \quad \text { for all } n \geq 1 \\
B_{n}\left(4-n^{2} \pi^{2}\right) & = \begin{cases}0 & \text { if } n \text { is even } \\
\frac{2}{n \pi} & \text { if } n \text { is odd }\end{cases}
\end{aligned}
$$

Solving these equations gives $A_{0}=1 / 4, A_{n}=0$ for all $n, B_{n}=0$ for n even, and for n odd,

$$
B_{n}=\frac{2}{\left(4-n^{2} \pi^{2}\right) n \pi}
$$

Thus, the unique 2-periodic solution is the sum of the Fourier series expansion

$$
y(t)=\frac{1}{8}+\frac{2}{\pi} \sum_{n=\mathrm{odd}} \frac{1}{n\left(4-n^{2} \pi^{2}\right)} \sin n \pi t
$$

3. The characteristic polynomial $q(s)=s^{2}+1$ has a root $i=i n \omega$ for $n=1$, so Theorem 2 does not apply. However, writing $\sum_{n=1}^{\infty} n^{-2} \cos n t=$ $\cos t+\sum_{n=2}^{\infty} n^{-2} \cos n t$ and solving the two equations $y^{\prime \prime}+y=\cos t$ and $y^{\prime \prime}+y=f(t)$ separately, the original equation can be solved by linearity. Start with $y^{\prime \prime}+y=\cos t$. This can be solved by undetermined coefficients. Since $q(s)=n^{2}+1$ and $\mathcal{L}\{\cos t\}=s^{2}+1$, a test function has the form $y(t)=A t \cos t+B t \sin t$. Then $y^{\prime}(t)=A \cos t-A t \sin t+B \sin t+B t \cos t$, and $y^{\prime \prime}(t)=-2 A \sin t-A t \cos t+2 B \cos t-B t \sin t$. Substituting into $y^{\prime \prime}+y=\cos t$ gives

$$
-2 A \sin t+2 B \cos t=\cos t
$$

Equating coefficients of $\sin t$ and $\cos t$ gives $A=0$ and $B=1 / 2$. Thus, a particular solution of $y^{\prime \prime}+y=\cos t$ is $y_{1}(t)=\frac{1}{2} t \sin t$. Now find a particular solution of $y^{\prime \prime}+y=f(t)$ by looking for a periodic solution $y_{2}(t)=\sum_{n=2}^{\infty}\left(A_{n} \cos n t+B_{n} \sin n t\right)$. Substitute into the differential equation to get

$$
y_{2}^{\prime \prime}+y_{2}=\sum_{n=2}^{\infty}\left(A_{n}\left(1-n^{2}\right) \cos n t+B_{n}\left(1-n^{2}\right) \sin n t\right)=\sum_{n=2}^{\infty} \frac{1}{n^{2}} \cos n t
$$

Comparing coefficients of $\cos n t$ and $\sin n t$ gives $B_{n}=0$ and $A_{n}=$ $\frac{1}{n^{2}\left(1-n^{2}\right)}$, so that a particular solution of $y^{\prime \prime}+y=f(t)$ is

$$
y_{2}(t)=\sum_{n=2}^{\infty} \frac{1}{n^{2}\left(1-n^{2}\right)} \cos n t
$$

By linearity, a particular solution of the original equation is

$$
y_{p}(t)=\frac{1}{2} t \sin t+\sum_{n=2}^{\infty} \frac{1}{n^{2}\left(1-n^{2}\right)} \cos n t
$$

and the general solution is

$$
y_{g}(t)=y_{h}(t)+y_{p}(t)=C_{1} \cos t+C_{2} \sin t+\frac{1}{2} t \sin t+\sum_{n=2}^{\infty} \frac{1}{n^{2}\left(1-n^{2}\right)} \cos n t
$$

5. $f(t)$ is the even extension of the function defined on the interval $(0,2)$ by $f(t)=5$ if $0<t<1$ and $f(t)=0$ if $1<t<2$. Thus the Fourier series is
a cosine series with

$$
a_{0}=\frac{2}{2} \int_{0}^{2} f(t) d t=\int_{0}^{1} 5 d t=5,
$$

and for $n \geq 1$

$$
\begin{aligned}
a_{n} & =\frac{2}{2} \int_{0}^{2} f(t) \cos \frac{n \pi t}{2} d t=\int_{0}^{1} \cos \frac{n \pi t}{2} d t \\
& =\left.\frac{2}{n \pi} \sin \frac{n \pi t}{2}\right|_{0} ^{1}=\frac{2}{n \pi} \sin \frac{n \pi}{2} .
\end{aligned}
$$

Hence,

$$
a_{n}= \begin{cases}0 & \text { if } n=2 k \text { for } k \geq 1 \\ (-1)^{k} & \text { if } n=2 k+1 \text { for } k \geq 0\end{cases}
$$

Thus, the Fourier series of the forcing function is

$$
f(t) \sim \frac{5}{2}+\frac{2}{\pi} \sum_{k=1}^{\infty}(-1)^{k} \frac{\cos \frac{(2 k+1) \pi t}{2}}{2 k+1}
$$

Let $y(t)=\frac{A_{0}}{2}+\sum_{n=1}^{\infty}\left(A_{n} \cos \frac{n \pi t}{2}+B_{n} \sin \frac{n \pi t}{2}\right)$ be a 4-periodic solution of $y^{\prime \prime}+10 y=f(t)$ expressed as the sum of its Fourier series. Then $y(t)$ will satisfy the hypotheses of Theorem 3 of Section 10.5. Thus, differentiating twice will give

$$
y^{\prime \prime}(t)=\sum_{n=1}^{\infty}\left[-\frac{n^{2} \pi^{2}}{4} A_{n} \cos \frac{n \pi t}{2}-\frac{n^{2} \pi^{2}}{4} B_{n} \sin \frac{n \pi t}{2}\right] .
$$

Substituting into the differential equation gives

$$
\begin{aligned}
y^{\prime \prime}(t)+10 y(t) & =5 A_{0}+\sum_{n=1}^{\infty}\left[A_{n}\left(10-\frac{n^{2} \pi^{2}}{4}\right) \cos \frac{n \pi t}{2}+B_{n}\left(10-\frac{n^{2} \pi^{2}}{4}\right) \sin \frac{n \pi t}{2}\right] \\
& =\frac{5}{2}+\frac{2}{\pi} \sum_{k=1}^{\infty}(-1)^{k} \frac{\cos \frac{(2 k+1) \pi t}{2}}{2 k+1} .
\end{aligned}
$$

Comparing corresponding coefficients of $\cos n \pi t$ and $\sin n \pi t$ gives the equations

$$
\begin{aligned}
5 A_{0} & =\frac{5}{2} \\
A_{n}\left(10-\frac{n^{2} \pi^{2}}{4}\right) & =0 \quad \text { for all even } n \geq 1 \\
A_{2 k-1}\left(10-\frac{(2 k+1)^{2} \pi^{2}}{4}\right) & =\frac{2(-1)^{k}}{\pi(2 k+1)} \quad \text { for } k \geq 1 \\
B_{n}\left(10-\frac{n^{2} \pi^{2}}{4}\right) & =0 \quad \text { for all } n \geq 1
\end{aligned}
$$

Solving these equations gives $A_{0}=1 / 2, B_{n}=0$ for all $n, A_{n}=0$ for n even, and for $n=2 k+1$ odd,

$$
A_{n}=A_{2 k+1}=\frac{2(-1)^{k}}{\left(10-\frac{n^{2} \pi^{2}}{4}\right)(2 k+1) \pi}
$$

Thus, the unique 4 -periodic solution is the sum of the Fourier series expansion

$$
y(t)=\frac{1}{4}+\sum_{k=1}^{\infty} \frac{2(-1)^{k}}{\left(10-\frac{n^{2} \pi^{2}}{4}\right)(2 k+1) \pi} \cos \frac{n \pi t}{2}
$$

7. The Fourier series of $f(t)$ is the cosine series of $f(t)$. It was computed in Exercise 2 of Section 10.4 as $f(t) \sim \frac{1}{2}-\frac{4}{\pi^{2}} \sum_{n=\text { odd }} \frac{\cos n \pi t}{n^{2}}$. Let $y(t)=$ $\frac{A_{0}}{2}+\sum_{n=1}^{\infty}\left(A_{n} \cos n \pi t+B_{n} \sin n \pi t\right)$ be a 2 -periodic solution of $y^{\prime \prime}+5 y=$ $f(t)$ expressed as the sum of its Fourier series. Then $y(t)$ will satisfy the hypotheses of Theorem 3 of Section 10.5. Thus, differentiating twice will give

$$
y^{\prime \prime}(t)=\sum_{n=1}^{\infty}\left[-n^{2} \pi^{2} A_{n} \cos n \pi t-n^{2} \pi^{2} B_{n} \sin n \pi t\right]
$$

Substituting into the differential equation gives

$$
\begin{aligned}
y^{\prime \prime}(t)+y(t) & =\frac{5 A_{0}}{2}+\sum_{n=1}^{\infty}\left[A_{n}\left(5-n^{2} \pi^{2}\right) \cos n \pi t+B_{n}\left(5-n^{2} \pi^{2}\right) \sin n \pi t\right] \\
& =\frac{1}{2}-\frac{4}{\pi^{2}} \sum_{n=\mathrm{odd}} \frac{\cos n \pi t}{n^{2}}
\end{aligned}
$$

Comparing corresponding coefficients of $\cos n \pi t$ and $\sin n \pi t$ gives the equations

$$
\begin{aligned}
\frac{5 A_{0}}{2} & =\frac{1}{2} \\
A_{n}\left(5-n^{2} \pi^{2}\right) & =0 \quad \text { for all even } n \geq 1 \\
A_{n}\left(5-n^{2} \pi^{2}\right) & =\frac{4}{\pi^{2} n^{2}} \quad \text { for odd } n \geq 1 \\
B_{n}\left(5-n^{2} \pi^{2}\right) & =0 \quad \text { for all } n \geq 1
\end{aligned}
$$

Solving these equations gives $A_{0}=1 / 5, B_{n}=0$ for all $n, A_{n}=0$ for n even, and for n odd,

$$
A_{n}=\frac{4}{\left(5-n^{2} \pi^{2}\right) \pi^{2} n^{2}}
$$

Thus, the unique 4-periodic solution is the sum of the Fourier series expansion

$$
y(t)=\frac{1}{10}+\sum_{n=\mathrm{odd}} \frac{4}{\left(5-n^{2} \pi^{2}\right) \pi^{2} n^{2}} \cos n \pi t
$$

