

LINUX
SYSTEM ADMINISTRATION

Other Linux resources from O’Reilly

Related titles DNS and BIND

Linux in a Nutshell

Linux iptables Pocket
Reference

Linux Pocket Guide

Linux Network
Administrator’s Guide

Running Linux

LPI Linux Certification in a
Nutshell

Linux Server Hacks™

Linux Security Cookbook™

Linux Books
Resource Center

linux.oreilly.com is a complete catalog of O’Reilly’s books on
Linux and Unix and related technologies, including sample
chapters and code examples.

ONLamp.com is the premier site for the open source web plat-
form: Linux, Apache, MySQL and either Perl, Python, or PHP.

Conferences O’Reilly brings diverse innovators together to nurture the ideas
that spark revolutionary industries. We specialize in document-
ing the latest tools and systems, translating the innovator’s
knowledge into useful skills for those in the trenches. Visit
conferences.oreilly.com for our upcoming events.

Safari Bookshelf (safari.oreilly.com) is the premier online refer-
ence library for programmers and IT professionals. Conduct
searches across more than 1,000 books. Subscribers can zero in
on answers to time-critical questions in a matter of seconds.
Read the books on your Bookshelf from cover to cover or sim-
ply flip to the page you need. Try it today with a free trial.

http://linux.oreilly.com
http://ONLamp.com
http://conferences.oreilly.com
http://safari.oreilly.com

LINUX
SYSTEM ADMINISTRATION
Tom Adelstein and Bill Lubanovic
Beijing • Cambridge • Farnham • Köln • Paris • Sebastopol • Taipei • Tokyo

Linux System Administration
by Tom Adelstein and Bill Lubanovic

Copyright © 2007 O’Reilly Media, Inc. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (safari.oreilly.com). For more information, contact our
corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: Andy Oram
Production Editor: Laurel R.T. Ruma
Copyeditor: Rachel Wheeler
Proofreader: Laurel R.T. Ruma

Indexer: John Bickelhaupt
Cover Designer: Karen Montgomery
Interior Designer: David Futato
Illustrators: Robert Romano and Jessamyn Read

Printing History:

March 2007: First Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. The Linux series designations, Linux System Administration, images of the
American West, and related trade dress are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc. was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors
assume no responsibility for errors or omissions, or for damages resulting from the use of the
information contained herein.
This book uses RepKover™, a durable and flexible lay-flat binding.

ISBN-10: 0-596-00952-6

ISBN-13: 978-0-596-00952-6

[M]

http://safari.oreilly.com
mailto:corporate@oreilly.com

v

Table of Contents

Preface . ix

1. Requirements for a Linux System Administrator . 1
About This Book 2
How Can We Help? 2
Where Do You Start? 3
Do You Need a Book? 3
Who Needs You? 4
What System Managers Should Know About Linux 6
What’s Next 7

2. Setting Up a Linux Multifunction Server . 8
Server Requirements 9
Installing Debian 10
Logging in Remotely 12
Configuring the Network 13
Changing the Default Debian Packages 15
Setting Up Quotas 16
Providing Domain Name Services 18
Adding a Relational Database: MySQL 20
Configuring Mail Securely with Postfix, POP3, and IMAP 22
Putting Apache to Work 33
Adding FTP Services with ProFTPD 34
Summarizing Your Web Statistics with Webalizer 35
Synchronizing the System Clock 36
Installing Perl Modules Needed by SpamAssassin 36
What’s Next 37

vi | Table of Contents

3. The Domain Name System . 38
DNS Basics 38
Getting into the BIND 40
Setting Up a DNS Server 41
Configuring an Authoritative DNS Server 44
Editing the Configuration Files 50
BIND Tools 62
Troubleshooting BIND 66
What’s Next 71

4. An Initial Internet-Ready Environment . 73
Installing ISPConfig 74
Setting Up a Server and Users with ISPConfig 83
Safeguarding a Linux Web Server 96
What’s Next 101

5. Mail . 102
Key Mail Service Terms 103
Postfix, Sendmail, and Other MTAs 103
The Postfix SMTP Mail Server on Debian 105
Adding Authentication and Encryption 111
Configuring POP3 and IMAP Mail Delivery Agents 119
Email Client Configuration 120
What’s Next 121

6. Administering Apache . 122
Static and Dynamic Files 122
A Simple LAMP Setup 123
Installation 124
Apache Configuration Files 127
Logfiles 140
SSL/TLS Encryption 142
suEXEC Support 143
Benchmarking 144
Installing and Administering Drupal 145
Troubleshooting 149
Further Reading 153

Table of Contents | vii

7. Load-Balanced Clusters . 154
Load Balancing and High Availability 154
Scaling Without LB and HA 162
Further Reading 162

8. Local Network Services . 163
Distributed Filesystems 164
Introduction to Samba 164
Configuring the Network 165
DHCP 168
Gateway Services 173
Print Services 181
User Management 186

9. Virtualization in the Modern Enterprise . 194
Why Virtualization Is Popular 194
High-Performance Computing 196
Installing Xen on Fedora 5 199
Installing VMware 204
Virtualization: A Passing Fad? 210

10. Scripting . 211
bash Beginnings 212
Useful Elements for bash Scripts 218
Scripting Language Shootout 226
Further Reading 235

11. Backing Up Data . 236
Backing Up User Data to a Server with rsync 237
tar Archives 242
Saving Files on Optical Media 245
Backing Up and Archiving to Tape with Amanda 251
Backing Up MySQL Data 254

Appendix. bash Script Samples . 257

Index . 273

ix

Preface

As Bill Lubanovic and I were putting the final touches on this book, I overheard a
conversation between two coworkers in our Cisco lab discussing Linux. The senior
networking guru of the two made an interesting remark. He said that despite all his
knowledge, he felt incomplete as a professional because he had never learned Linux.
A moment later he and the other gentleman turned to me and looked me square in
the eyes. I smiled and went on working.

That evening, our director of Information Technology made an offhand remark to
me during a conference that struck me as unusual. He said that he wanted to learn
Apache, and when I asked him why he replied, “I just want to learn it,” and left it at
that.

Later in the conference, our director requested feedback from the group on a solu-
tion for patch management, explaining and using the example of rsync. He said he
wanted something similar, while launching into a detailed technical discussion of
incremental and cumulative patch management. I have a good working knowledge of
rsync, but hadn’t heard such a detailed academic explanation of any open source tool
in any forum.

In both of those cases and many others, I wished I had this book ready to hand over
to highly trained and skilled people who wanted to learn Linux administration. Per-
haps you have had similar experiences and wished you had a book like this one at
hand. I venture to guess that conversations like the ones I’ve just described occur
many times in many places daily.

When Andy Oram and I began discussing a Linux system administration book, we
had a slightly different idea of what we wanted to accomplish. Andy talked about a
book in which each chapter took users through the steps of building and deploying
application servers without co-mingling detailed discussions. He suggested that the
discussion reside in one place in each chapter and the technical steps in another.

x | Preface

Later, I proposed that we make each chapter a module unto itself and let the reader
complete the modules he wanted and/or needed. As this book evolved, we felt that
we’d accomplished that objective. You do not have to read this book cover to cover to
become a Linux system administrator. Simply start where you have the most interest.

When I first started using Linux, the community consisted mostly of programmers
and hobbyists. I don’t recall any discussion lists that focused on desktops or com-
mercial applications. We logged onto the Internet by starting a daemon. We didn’t
have dialers or web browsers like the ones available today. The vast majority of peo-
ple I knew did their own system administration or were in some stage of learning.

Reflecting on the time when we estimated that 30,000 Linux users existed on the
planet, I’m amazed at how many people use Linux today and haven’t the slightest
idea how to write a configuration file. Linux forums seem to be filled with people
asking how to get CUPS or Samba to work. On mailing lists, people hold detailed
discussions on the technical details of projects like Postfix, JBoss, and Monit.

Many people still itch to learn the extensive capabilities of Linux as an application
platform. If you use Linux and want to take the next step from a power user to an
administrator, this book will help you make the transition. We wrote this book with
you in mind.

How This Book Is Organized
Chapter 1, Requirements for a Linux System Administrator

Lays out the goals of the book and what you’ll gain by reading it.

Chapter 2, Setting Up a Linux Multifunction Server
Gets you started with a nearly Internet-ready server.

Chapter 3, The Domain Name System
Shows you the basics of setting up primary and secondary DNS servers.

Chapter 4, An Initial Internet-Ready Environment
Uses the ISPConfig free software configuration system to get you started with a
rich set of services that you can practice while reading the rest of the book.

Chapter 5, Mail
Sets up a Postfix mail server with SASL authentication, a POP server, and an
IMAP server.

Chapter 6, Administering Apache
Gives a quick run-through of the popular Apache, MySQL, and PHP combination
(together with Linux, known as a LAMP server), including SSL authentication.

Chapter 7, Load-Balanced Clusters
Extends the previous chapter’s Apache configuration with IP Virtual Server and
ldirectord to provide high availability.

Preface | xi

Chapter 8, Local Network Services
Shows you how to manage users and configure common networking elements
such as DHCP and gateway software on local area networks (LANs).

Chapter 9, Virtualization in the Modern Enterprise
Shows how to set up Xen, VMware on a Linux host and then add guest operat-
ing systems.

Chapter 10, Scripting
Shows you some basic techniques for writing robust and powerful bash shell
scripts that can save you a lot of administration time.

Chapter 11, Backing Up Data
Presents a range of techniques for carrying out this crucial function, from basic
rysnc and tar to the powerful Amanda system.

Appendix, bash Script Samples
Contains a few shell scripts that we’ve found useful when doing system adminis-
tration and that might give you tips for how to write your own scripts.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, commands and command-line options, email
addresses, filenames, file extensions, and directories.

Constant width
Indicates the contents of files or the output from commands.

Constant width bold
Shows commands or other text that should be typed literally by the user. Also
used to highlight key portions of code or files.

Constant width italic
Shows text that should be replaced with user-supplied values.

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

xii | Preface

Using Code Examples
This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you’re reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example
code from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “Linux System Administration by
Tom Adelstein and Bill Lubanovic. Copyright 2007 O’Reilly Media, Inc., 978-0-596-
00952-6.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

Safari® Enabled
When you see a Safari® Enabled icon on the cover of your favorite tech-
nology book, that means the book is available online through the
O’Reilly Network Safari Bookshelf.

Safari offers a solution that’s better than e-books. It’s a virtual library that lets you
easily search thousands of top tech books, cut and paste code samples, download
chapters, and find quick answers when you need the most accurate, current informa-
tion. Try it for free at http://safari.oreilly.com.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata and any additional informa-
tion. You can access this page at:

http://www.oreilly.com/catalog/9780596009526

mailto:permissions@oreilly.com
http://www.oreilly.com/catalog/9780596009526/

Preface | xiii

Examples, tips, and new procedures will be posted from time to time at the test site
set up by the authors for the book:

http://www.centralsoft.org

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers, and the
O’Reilly Network, see our web site at:

http://www.oreilly.com

Acknowledgments
Books such as Linux System Administration come into existence only with the contri-
bution of many people’s efforts. Consider it impossible to list them all here.

First, we would like to thank Andy Oram, whose editing, writing, and management
efforts to get this book into shape seem remarkable. Apart from working as the over-
all editor, Andy contributed materially to the content of this book. Andy functioned
like a project manager and demonstrated both patience and discipline.

We could not have asked more from the contributions of Falko Timme, Phil
Howard, and Herschel Cohen. Falko lent his time and expertise to Chapters 2 and 4.
Phil wrote the bulk of Chapter 11 and provided the framework for Chapter 10 and
the accompanying appendix of scripts. Herschel wrote sections of several chapters,
including Chapters 8 and 10, and contributed his expertise to Chapter 6. All three
contributors also reviewed other parts of the book.

Many thanks are also due to our technical experts, who spent countless hours
reviewing, testing, and making suggestions about our work: Markus Amersdorfer,
Keith Burgess, Robert Day, Ammar Ibrahim, and Yaman Saqqa.

Special thanks go to Yvonne Adelstein and Mary Lubanovic, our wives, who showed
remarkable patience. We could not have done this without your total support.

http://www.oreilly.com/catalog/9780596009526/
http://www.centralsoft.org
mailto:bookquestions@oreilly.com
http://www.oreilly.com

1

Chapter 1 CHAPTER 1

Requirements for a Linux
System Administrator

We like Linux. Of all the Unix and Unix-like systems we’ve used, many now forgot-
ten,* Linux is our favorite. It’s an excellent server platform, a good desktop, and the
center of much innovation in the current computing world.

Linux probably has the broadest reach of any operating system, from tiny systems
the size of phone jacks, to cell phones, to supercomputer clusters bigger than your
high school. It has infiltrated the fields of telecommunications, embedded systems,
satellites, medical equipment, military systems, computer graphics, and—last but
not least—desktop computing.

In a relatively short time, Linux progressed from a Finnish hacker’s hobby to a top-
tier enterprise-level system backed by high rollers such as IBM and Oracle. The user
base has grown from about 30,000 people in 1995 to hundreds of millions today.
During the Internet boom of the 1990s, many Unix administrators were surprised
to find that Linux on PC hardware could outperform more expensive Unix work-
stations and servers. Many Windows and Novell administrators saw that Linux
could handle DNS, email, and file services more reliably and with less support per-
sonnel than their current platforms. The growth of the Internet, and especially the
Web, fueled a rapid expansion in the use of Linux servers and the need for people
to manage them.

This book is for Linux system administrators. However, you may be a grizzled Unix
veteran, a brave MCSE, or a stoic mainframer. You’re exploring new territory and
need a map and compass. Some of the ground will be familiar, but some will be terra
incognita. This book covers many topics that have only recently joined the main-
stream, for instance load-balanced clusters and virtualization.

The success of the Internet and open source software is changing business. Google,
Amazon, eBay, and others have built huge server farms with commodity hardware and
relatively few administrators compared to traditional mainframe and PC installations.

* Our favorite name was PNX, pronounced almost like something that would never appear in an O’Reilly
book.

2 | Chapter 1: Requirements for a Linux System Administrator

The skills needed to develop and maintain such distributed systems and applications
are not taught in schools but learned from experience, sometimes bitter and some-
times sweet.

While writing this book we’ve constantly tested the latest distribu-
tions and tools, and we’ll keep up our experimentation after the book
is released. We invite readers to come to the test site we set up for the
book, http://www.centralsoft.org, where we’ll publish updates to exam-
ples, pointers to useful new tools we’ve discovered, and other tips.

About This Book
System administration books used to be fairly predictable. They showed you how to
manage users, filesystems, devices, processes, printers, networks, and so on. They
did not tell you what to do when new problems emerged. If your web site became
popular, you had to learn quickly about proxy servers, different levels of caching,
load balancing, distributed authentication, and other complex issues. If you added a
database, you soon needed to scale it and learn to avoid SQL injection attacks. Over-
night, sites became mission critical, and you needed the ability to make hot backups
on 24 × 7 systems.

If you’ve been through these fire drills, you may have become tired of doing every-
thing the hard way, facing new technical challenges nearly every day with few
sources of help. Technical documentation—whether for commercial or open source
software—rarely keeps up with the technology, and the gap seems to be widening.
For example, open source directory servers have become important for managing
computers, users, and resources. The original RFC-compliant protocols underlie
many commercial products, but good documentation for community projects is sur-
prisingly scarce.

How Can We Help?
Linux people are problem solvers. A typical Linux power user can put together a small
server, get a dedicated Internet pipe with static IP addresses into her home, register a
domain name, and build a server on the Internet. If you fall into this category, you can
simply plow through the other topics in this book and expand your job possibilities.

To some of you, however, all that may sound like the equivalent of rappelling down
a 10,000-foot mountain. If you’re one of them, just start somewhere. As the saying
goes, you eat an elephant one bite at a time, and damn the torpedoes.

You may have certifications for operating systems other than Linux. While you’re
applying patches and hot fixes, your boss may ask you to deploy an Apache server,
or handle your own DNS lookups, or replace Exchange with Zimbra.

http://www.centralsoft.org

Do You Need a Book? | 3

Whether you just want to learn or actually have to learn, you’ll likely need some
help climbing the Linux power user curve. That’s exactly what we’re here for: to
help you explore the Linux system landscape without all the hardships our fore-
fathers experienced.

Where Do You Start?
This book summarizes the steps you need to follow to build standalone servers. If
you need to build a mail server, create a web server and blogging system, or set up a
gateway for your LAN, you can jump right into the middle of the book. You don’t
have to read Linux System Administration from cover to cover.

We start you working right away, presenting a step-by-step guide to building a Linux
server in Chapter 2. You can choose whatever path works for you, whether it involves
creating a highly available cluster for web services, server consolidation through virtu-
alization using Xen or VMware, or setting up a server for local area networks.

Running a modern operating system is incredibly cheap. You can set up a sophisti-
cated learning center for yourself on hardware that many sites would consider obso-
lete and give away for free. We started with a used box powered by an Intel CPU two
generations older than current models, added older versions of hard drives and mem-
ory, and went with a no-frills, free version of Linux.

Do You Need a Book?
Technical books have waned in popularity as the Internet has matured. To write a
successful book today, the author has to provide significant value to the reader. An
interesting story about one of the first e-commerce sites on the Web helps explain
the value a book should deliver. A cheesecake company put up an advertisement in
the earliest days of the Web. According to the story, several months passed and the
company didn’t receive a single order. In an unusual move, the president of the com-
pany published the company’s secret cheesecake recipe. Within hours, he began
receiving calls on his toll-free line. People began ordering cheesecakes in large num-
bers. Consumers looked at the recipe, considered the effort required to make their
own cheesecakes, and saw the value in buying them from the company.

Many of the ingredients for this book were scattered across the Internet, in mailing
lists, forums, and discussion groups, while others were mined from books, periodi-
cals, and the experiences of colleagues. We solved a number of problems whose
solutions were completely undocumented in the course of researching this book, and
we pass our lessons on to you.

Many excellent project sites have inadequate documentation. Developers work hard
to provide excellent software for free, but prose often trails code for many reasons:
lack of time, lack of resources, lack of interest, language barriers, and so on.

4 | Chapter 1: Requirements for a Linux System Administrator

Together with our readers, editors, and reviewers, we hope we’ve decreased entropy
slightly in this little corner of the computing world.

Who Needs You?
A few years ago, most Linux system administrators would have told you that they
didn’t choose their careers—Linux chose them. In the old days, Linux was like an
adolescent Unix. Most Linux system administrators learned the ropes on single
workstations and very small networks. Linux inherited some servers from Unix
(BIND, Sendmail, Apache), but little office software and few applications. Today,
Linux system administration involves thousands of packages and interoperability
with other operating systems.

Who needs Linux administrators? The NASA Center for Computational Sciences
(NCCS) at the Goddard Space Flight Center does. Its Linux-based high-performance
computing (HPC) clusters are designed to dramatically increase throughput for appli-
cations ranging from studying weather and climate variability to simulating astrophysi-
cal phenomena. Linux supplements NCCS architecture designed to scale to as many as
40 trillion floating-point operations per second (TFLOPS) in its full configuration.

Linux runs more of the world’s top supercomputers than any other operating sys-
tem. In fact, as of this writing Linux runs an astonishing 75 percent of the top 500
supercomputers on the planet.* According to department heads at the Lawrence Liv-
ermore National Laboratory in Livermore, CA, Linux runs 10 of their massive sys-
tems, all of which are on the TOP500 List. Those systems include BlueGene/L, the
world’s most powerful supercomputer, and Thunder, which currently ranks nine-
teenth (http://www.top500.org/list/2006/11/100).

Help Wanted
Linux administrators are in high demand. To give you an idea of what’s expected of
them, we looked at a small selection of the tens of thousands of ads for Linux sys-
tem administrators on a national job listing agency’s web site. Here’s a tiny snapshot
of some of the jobs’ responsibilities:

• Administer and manage large Linux server environment, with an emphasis on
performance monitoring, tuning, and management.

• Oversee database physical design, administration, and documentation.

• Provide network troubleshooting, escalated service desk support, and proactive
monitoring of mission-critical systems.

* See http://www.top500.org/stats/28/osfam.

http://www.top500.org/stats/28/osfam/
http://www.top500.org/list/2006/11/100

Who Needs You? | 5

• Provide guidance and direction of technology solutions for the organization;
train and mentor junior-level administrators.

• Supply daily technical support and on-call consulting advice for the hardware
and operating system environment supporting the collection platform; adminis-
ter Linux server infrastructure to maintain stability as well as maximize efficien-
cies in the computing environment.

• Install, configure, and troubleshoot all hardware, peripherals, and equipment
necessary to meet integrated systems objectives; provide support functions on
escalated issues.

• Provide effective first/second-level support for a company’s Linux environment
across 300-plus servers, including Linux blades.

• Manage all aspects of the integrity of the environment, including security, moni-
toring (capacity and performance), change control, and software management.

• Interface with other internal support groups such as Change Control, Applica-
tion Development, Engineering, Database Administrators, Web Services, Stor-
age, Security, Operations, and Command Centers.

• Administer infrastructure services—DNS, NIS, LDAP, FTP, SMTP, Postfix/
Sendmail, NFS, Samba—and application and database servers, with an empha-
sis on automation and monitoring.

Linux is now a standard corporate platform, and Linux talent is in short supply. If
you want to learn Linux to boost your financial worth, plenty of evidence supports a
growing need within the industry for workers with Linux administration skills.

Analyzing Skill Sets
Ask different information system managers to define the role of a system administra-
tor, and you will get a variety of answers. Market inertia has surprised the current crop
of managers who lack information about Linux. They do not know what Linux profes-
sionals should know, and Linux professionals rarely understand those managers.

Many information system managers who understand Unix attempt to hold Linux
administrators to Unix standards. That rarely works. While Unix administrators may
believe they can easily transition to Linux, they quickly discover a knowledge gap.
Linux administrators have less trouble transitioning to Unix than the other way
around. One explanation says Linux administrators have a broader understanding of
their systems because of the nature of open source software.

System administration tasks more often than not involve the Internet. The majority
of transactions are related to email and web site management, in addition to telecom-
munications and mobility. Email once represented 70 percent of all traffic on the
Internet. Today, broadband applications such as Voice over IP (VoIP) and other
forms of communication, including instant messaging, have increased traffic while
lowering the percentage devoted to email. But whatever the protocols and media
used, the Internet remains the primary domain of Linux.

6 | Chapter 1: Requirements for a Linux System Administrator

Let’s continue analyzing the job responsibilities described in the previous section.
The last set (“Administer infrastructure services”) can give you a sense of the stan-
dard Linux skill set. Employers want system administrators who can handle what
they deem “infrastructure services.” Notice the Internet technologies involved. Of
the list of Linux components with which familiarity is required, most tasks will
involve DNS, LDAP, FTP, SMTP, and Postfix/Sendmail. We will cover most of these
components in Chapters 2–6.

The other job descriptions fit mostly into the category of in-house enterprise needs.
These include escalated service desk support, technical support, and on-call consult-
ing advice for the hardware and operating system environments. Most Linux system
administrators should have the skills required to provide these services, but they are
outside the scope of this book because they are not purely technical.

The remaining responsibilities fall under the category of “soft skills.” In the past, one
would not have expected a typical system administrator to learn to function as a liai-
son with other internal support groups such as Application Development, Engineer-
ing, Database Administrators, or Web Services. However, a system administrator is
no longer just a techie with knowledge of some arcane systems; he’s a member of the
corporate decision-making staff.

One usually gains soft skills and specializations after mastering the basics. We may
cover these topics tangentially in this book, but we consider them outside the scope of
our focus. Other O’Reilly books and time in the trenches will help you get a hold on
these valuable abilities. For now, we’ll get you up and running in the areas where sys-
tem administration has seen the most growth and where documentation seems lacking.

Unlike other areas of computer science and engineering, few schools offer courses in
Linux administration, let alone entire degree programs. So, if you want to learn
Linux system administration, you will have to look for materials and courses outside
the university setting. But much of the existing materials you may find will not
include what Linux strategists consider the most critical subject matter.

Most Linux administrators have taught themselves, learning as the need arose. At
some point these self-taught administrators moved into jobs. Needs then arose at a
faster pace, causing them to learn more, until they could do just about anything a
system administrator had to do. This is one area where Linux System Administration
can contribute, helping you achieve proficiency in a broad range of tasks faster and
more efficiently.

What System Managers Should Know About Linux
One of the first things an information technology manager should know is that
Linux is not Unix. While Linux can certainly run the vast majority of Unix pro-
grams, it also has a wider range of applications in both public and private networks.

What’s Next | 7

Linux administrators can configure distributions by choosing from a vast number of
components that do similar jobs. For example, with almost every Unix distribution,
Sendmail is the only choice of mail transfer agent (MTA). But with Linux, you can
choose from a number of comparable MTAs, depending on whether you want a cor-
porate workgroup application, a large-scale directory-driven corporate mail back-
bone, or a simple web application for handling “contact us” forms.

A further testament to Linux’s flexibility is that it’s the first operating system IBM
has ever employed that runs on all of its hardware platforms, from the xSeries Intel
class server, through the pSeries and iSeries, to the S/390 and zSeries mainframes.

If you want a Linux administrator and you use large IBM systems, your canidate will
have to know mainframe architecture and be familiar with terms like “DASD” for
hard drive storage, “IPL” for booting up the system, “catalog” for a directory, and
“command list” for a shell script. But don’t sell Linux administrators short. We once
attended a two-day seminar with a group of Linux administrators who went out the
day after the class and started deploying Linux on bare-metal IBM zSeries computers.

If Linux people have anything to offer, it’s that they learn quickly, adapt quickly, and
have a broad knowledge base you will not find with other technologists. They can
learn to run your Microsoft boxes in less time than it takes an MCSE to learn a sin-
gle Linux task.

What’s Next
We know you don’t like slow-paced learning and scads of fussy background (in fact,
we’re amazed you’ve read this far in the chapter), so we want to get started as
quickly as possible. We want to provide a working server that will perform many
Linux jobs you can learn and use. For this reason, we’ll start out with an Internet-
ready server in the next chapter. You’re going to want Internet tools such as a web
server and email no matter how you use your server (probably even if it serves only a
LAN), and those tools will be useful to you from the start.

The rest of the book expands on some of the same topics and introduces others that
you might not encounter every day. Linux System Administration is a combined
cookbook and travelogue; you can enjoy a hearty breakfast while you’re covering
ground. We usually explain topics at the beginning of a chapter and follow with con-
cise steps and applications of those topics. If you just want to follow the step-by-step
instructions, go for it. You can figure out what you’re doing later. We feel that our
approach will keep you headed in the right direction.

Onward and upward. Excelsior!

8

Chapter 2CHAPTER 2

Setting Up a Linux
Multifunction Server

There’s a real difference between reading about something and doing it. That’s why
schools provide laboratories for so many of their courses. If you plan on learning
Linux system administration, you need a server. So, the first task in this book
involves building a basic server environment. Once you’ve built one, you’ll have a
good foundation for practicing and learning Linux.

The Linux operating system resembles the wheelbase of a car, which can take on an
enormous variety of different functions depending on the choice of chassis and fea-
tures. As you add services such as email or a database, the system takes on a differ-
ent character. Do you need a web server, a development platform, a gateway, or a file
and print server? Whatever you need requires a core, which this chapter provides.

We’re going to start with a server you might find on the Internet, hosting web sites.
Why, you might ask? Because you can adapt an Internet server to do many addi-
tional tasks, such as managing user authentication, providing print and file services,
handling local email, and providing remote access. You can take the server to a web
hosting facility, plug it in, and begin offering web services. You can even keep it in
your own home, if you obtain a static IP address from your ISP.

Setting up a server on the Internet may change your perspective about computing.
Deploying a wide area network (WAN) differs from using Linux as a desktop, a file
and print server, or a simple firewall.

First-time administrators may experience some confusion while configuring the
server, due to unfamiliar terms and concepts. You won’t have the X Window Sys-
tem’s convenient graphical interface, and you’ll have to issue commands instead of
clicking on icons. Your work will be done in console mode, from the command-line
interface.

Server Requirements | 9

As part of our strategy to teach you administration, we’ll show you
how to put a web-based tool on your system in the next chapter (ser-
vice providers use this web-based tool to manage Linux servers they
lease to hosting customers). So, not everything you do will be limited
to a black and white screen.

When you follow the instructions in this chapter, you will get a box hosting a web
site that you can adapt for other purposes later. Your system will deploy:

• A web server (Apache 2.0.x)

• A mail server (Postfix)

• A DNS server (BIND 9)

• An FTP server (ProFTPD)

• Mail delivery agents (POP3/POP3s/IMAP/IMAPs)

• Webalizer for web site statistics

Although there are many ways to set up a remote web server, following the instruc-
tions here provides a good basis for getting a grip on Linux. Once you master this
setup, you should have the ability to configure a server to fit your needs.

During the setup process, you will likely see commands and concepts
with which you have no familiarity. We will ask you to enter data that
may not make any sense. While we will attempt to explain as much as
possible about the setup process, you may not feel satisfied with the
information in this chapter.

It’s difficult for anyone to retain complex information on a first read-
ing. So, while asking you to type commands may seem inefficient, it
will allow you to retain enough information about the subject that you
will recognize it later. We will cover each topic in greater detail in sub-
sequent chapters, and your exposure now will help you over the
course of reading this book.

The threshold to a new Linux world awaits you and your server. So, let’s get started!

Server Requirements
You can use almost any distribution of Linux to configure a web server. In this exer-
cise, we’ll use Debian. We chose Debian because we wanted to use a stable distribu-
tion of Linux. The main commercial distributions—Red Hat Enterprise Linux and
Novell’s SUSE Linux Enterprise Server—have price tags that put them out of the
reach of most users, but you can obtain Debian for free. Also, Red Hat and SUSE use
proprietary management tools that create difficulties in transferring knowledge about

10 | Chapter 2: Setting Up a Linux Multifunction Server

Linux. You can learn more about standard Linux behavior by using Debian than by
using either SUSE or Red Hat.

To set up a Linux Internet server, you will need a connection to the Internet and a
static IP address. If you cannot obtain a static IP address, you can set up the system
with the address leased to you by your ISP and configure it statically. Make sure you
know how long the lease runs, in case you have to change the IP address while your
system is running.

You’ll also need a computer with at least a Pentium III CPU, a minimum of 256 MB
of RAM, and a 10 GB hard drive. Obviously, a newer CPU and additional memory
will provide better performance.

This chapter is based on Debian’s stable version. We strongly suggest using a CD
with the Netinstall kernel. The Debian web site (http://www.debian.org) provides
downloadable CD images.

Installing Debian
We assume you know how to do a net installation of Linux. You’ll just need a few
pointers to set up your base box.

After you boot into the Debian CD-ROM disk, you will see a login screen. Make
sure to type in linux26 to get the most recent Version 2.6 kernel instead of the older
version 2.4.

The installer will guide you through a series of installation screens. When you reach
the screen called “Configure the Network,” Debian first suggests configuring your
network with DHCP. You can do that if you have DHCP available. If you do not,
Debian will default to a screen that allows you to configure your network manually.
You will be asked to provide the hostname of the server, a domain name, a gateway,
an IP address, a netmask, and a nameserver. If you have a registered domain and a
static IP address, you’re ready to go. If you don’t have a registered domain name, you
will need one.

You can obtain a domain name from a number of sources for as little
as $3.00. Search the Internet using the keywords “domain registra-
tion.” You will see a number of registrars listed. Many vendors pro-
vide their services at low prices, and some offer free domain name
services. You need two registered DNS servers to obtain a domain
name initially. You may also find your registrar’s DNS service handy if
you do not have another physical server to provide for secondary
domain services. Every domain you register requires a primary DNS
server and a backup or secondary DNS server.

http://www.debian.org

Installing Debian | 11

Now that you have configured your network, you can continue with the installation
tasks that complete the base system. The Debian installation script will lead you
through the next sections.

Right away, you will reach the hard disk partitioning screens. For the purposes of
this book, just create one big partition with the mount point / (just a slash) and a
swap partition. Choose the option to put all files in one partition. Finally, choose the
finish partitioning option and write the results to disk.

The base Debian installation we’re using has two distinct sections.
The first installs what some call the GNU/Linux plumbing, which
allows you to boot off the hard drive and obtain a root prompt. It also
transfers files from the CD-ROM to the hard drive.

Once the first section finishes, it asks you to remove the CD-ROM
disk you used to start the installation. From that point on, the installa-
tion continues using files stored on the hard drive.

Now proceed through the few remaining installation screens, which eventually ask
you to reboot to initialize the kernel and finish the installation.

After the reboot, Debian will want you to add a nonprivileged user during installa-
tion. That allows you to log in and use the su command to become root. For security
reasons, system administrators have established a standard practice of not logging
into the system as root unless they need to recover a failed system.

Name your first user account Administrator and give it a user ID of admin. Don’t use
the same password for admin as you do for your root user. We’ll use the admin user
ID in other chapters as well.

When you reach the Debian software selection screen, move your cursor to the box
next to “mail server,” press the Space bar, and let the system install the default pack-
ages until you reach an option where you see the libc client.

You should install the libc client with regular Unix mailbox support rather than
maildir support. Unix mailboxes keep all mail in a single file, whereas maildir keeps
each message in a separate file. Unix mailboxes are easier to use and configure, so
start with them for now.

Debian will also want you to configure Exim as the mail transfer agent (MTA), but
don’t. We will replace Exim with Postfix a little later in the chapter. In the mean-
time, when you reach the screen that says “Configuring Exim v4,” choose the “no
configuration” option. Then answer yes when the installation script asks you,
“Really leave the mail system unconfigured?”

Finally, on the last screen involved with configuring Exim, enter the username admin
as the email recipient for root and postmaster.

12 | Chapter 2: Setting Up a Linux Multifunction Server

Logging in Remotely
When you finish your installation, you should log into the server from a remote con-
sole on your desktop. We recommend you do further administration from another
system (even a laptop), because a secure server normally runs in what is called head-
less mode—that is, it has no monitor or keyboard. Get used to administering your
server like this, as if you were at a production site. On the remote machine you need
only an SSH client, which virtually all Linux distributions have and which can be
downloaded for other operating systems as well.

The following printout is typical of what you’ll encounter the first time you SSH to
your new Linux server:

$ ssh admin@server1.centralsoft.org
The authenticity of host 'server1.centralsoft.org (70.253.158.42)' can't
be established.
RSA key fingerprint is 9f:26:c7:cc:f2:f6:da:74:af:fe:15:16:97:4d:b3:e6.
Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added 'server1.centralsoft.org,70.253.158.42' (RSA)
to the list of known hosts.
Password: enter password for admin user here
Linux server1 2.6.8-2-386 #1 Thu May 19 17:40:50 JST 2005 i686 GNU/Linux

The programs included with the Debian GNU/Linux system are free software;
the exact distribution terms for each program are described in the
individual files in /usr/share/doc/*/copyright.

MTAs: Sendmail and Alternatives
Debian’s default installation process revolves around Exim, while other Linux distri-
butions generally use Sendmail by default. Sendmail has long been the de facto stan-
dard MTA, and early Linux distributions took advantage of that. Nearly all processes
in Linux related to mail involve Sendmail configuration files, and most free software
applications expect Sendmail to exist on the operating system.

It’s possible to fool Linux into thinking it’s using Sendmail while replacing it with
another MTA. When you install Red Hat, for example, Sendmail is installed by default.
However, Red Hat and Fedora both come with a program that allows the user to
switch to Postfix, which is what we will do manually.

The Debian project managers chose Exim as the default MTA because its creator
licensed it under the General Public License (GPL). Like Postfix, Exim is a drop-in
replacement for Sendmail.

The common practice today involves using Postfix, for many reasons that we will cover
later in this chapter. You will not mess up your system by replacing Exim with Postfix.
In fact, you’ll download Postfix from the Debian repositories.

Configuring the Network | 13

Debian GNU/Linux comes with ABSOLUTELY NO WARRANTY, to the extent
permitted by applicable law.

Last login: Sun Dec 25 19:07:38 2005 from 70.255.197.162
admin@server1:~$

At this point, you have established a remote connection and can perform tasks as if
you were looking at your system from the monitor of your server. If you wish, you
can remove any monitor, keyboard, and mouse you have connected to your server.

Configuring the Network
If you used DHCP during the Debian installation, you should now configure your
server with a static IP address so you can perform the testing required later in the
chapter. If you had a public IP address and configured it as static, you can skip to the
next section.

If you installed Debian with a DHCP client from your router or Internet service pro-
vider, you need to reconfigure networking. This is a valuable lesson in its own right
for exploring Linux network configuration.

To change the settings to use a static IP address, you’ll need to become root and edit
the file /etc/network/interfaces to suit your needs. As an example, we’ll use the IP
address 70.153.258.42.

Our configuration file starts out looking like this:

/etc/network/interfaces -- configuration file for ifup(8), ifdown(8)
The loopback interface
auto lo
iface lo inet loopback
The first network card - this entry was created during the Debian
installation
(network, broadcast, and gateway are optional)
The primary network interface
iface eth0 inet dhcp

To add the IP address 70.153.258.42 to the interface eth0, we must change the file to
look like this (you’ll have to obtain some of the information from your ISP):

/etc/network/interfaces -- configuration file for ifup(8), ifdown(8)
The loopback interface
auto lo
iface lo inet loopback
The first network card - this entry was created during the Debian
installation
(network, broadcast, and gateway are optional)
auto eth0
iface eth0 inet static
 address 70.153.258.42
 netmask 255.255.255.248
 network 70.153.258.0

14 | Chapter 2: Setting Up a Linux Multifunction Server

 broadcast 70.153.258.47
 gateway 70.153.258.46

After editing the /etc/network/interfaces file, restart the network by entering:

/etc/init.d/networking restart

You will then need to edit /etc/resolv.conf and add nameservers to resolve Internet
hostnames to their corresponding IP addresses. Though we have yet to configure our
own nameserver, we will do so later in this chapter. At this point, we will simply set
up a minimal DNS server. The other nameservers should specify the IP addresses of
the DNS servers offered by your ISP. Our resolv.conf looks as follows:

search server
nameserver 70.153.258.42
nameserver 70.253.158.45
nameserver 151.164.1.8

Make sure you use the DNS servers that work with your domain site;
otherwise, your DNS server will not indicate that it’s the authority for
your domain.

Now edit /etc/hosts and add your IP addresses:

127.0.0.1 localhost.localdomain localhost server1
70.153.258.42 server1.centralsoft.org server1

Ignore the IPv6 information in the /etc/hosts file. We will show you
how to set up an IPv6 server in Chapter 8.

Now, to set the hostname, enter these commands:

echo server1.centralsoft.org > /etc/hostname
/bin/hostname -F /etc/hostname

You’ll need to use the same commands regardless of how you set up your network-
ing during installation, substituting your domain name for server1.centralsoft.org.

Next, verify that you configured your hostname correctly by running the hostname
command:

~$ hostname
server1
~$ hostname -f
server1.centralsoft.org

If you get this result, you’re ready to move on to the next section. If not, look in the
/etc/hostname file. You may find that it looks like this:

#less /etc/hostname
server1

Oops. It should read server1.centralsoft.org. You can change it now.

Changing the Default Debian Packages | 15

Changing the Default Debian Packages
We started with the packages the Debian maintainers place in their distribution by
default. As noted earlier, we need to make some changes—notably, in order to use
Postfix. While you might think we’re second-guessing the good work of the Debian
team, that’s not quite the case.

The Debian team has chosen to install, by default, services appropriate for a LAN,
such as the Network File System (NFS). But we’re putting our server on the Internet,
so we’ll want to delete NFS and some other services, while adding others such as
OpenSSL.

To retrieve the files needed for this chapter, execute the following command:

apt-get install wget bzip2 rdate fetchmail libdb3++-dev \
unzip zip ncftp xlispstat libarchive-zip-perl \
zlib1g-dev libpopt-dev nmap openssl lynx fileutils

You will then see Debian downloading files in your console. Soon, the downloading
activity will stop and you will see a question such as the following asking you if you
want to continue:

0 upgraded, 42 newly installed, 0 to remove and 0 not upgraded.
Need to get 12.2MB of archives.
After unpacking 35.8MB of additional disk space will be used.
Do you want to continue? [Y/n]

Entering Y will complete the installation of the additional files.

Next, you will want to remove services you will not use. Execute the following com-
mand, and you will see the output that follows:

apt-get remove lpr nfs-common portmap pidentd pcmcia-cs \
pppoe pppoeconf ppp pppconfig
Reading Package Lists... Done
Building Dependency Tree... Done
Package pcmcia-cs is not installed, so not removed
The following packages will be REMOVED:
 lpr nfs-common pidentd portmap ppp pppconfig pppoe pppoeconf
0 upgraded, 0 newly installed, 8 to remove and 0 not upgraded.
Need to get 0B of archives.
After unpacking 3598kB disk space will be freed.
Do you want to continue? [Y/n] Y
(Reading database ... 22425 files and directories currently installed.)
Removing lpr ...
Stopping printer spooler: lpd .
Removing nfs-common ...
Stopping NFS common utilities: statd.
Removing pidentd ...
Removing portmap ...
Stopping portmap daemon: portmap.
Removing pppoeconf ...
Removing pppoe ...

16 | Chapter 2: Setting Up a Linux Multifunction Server

Removing pppconfig ...
Removing ppp ...
Stopping all PPP connections...done.

Make sure you double-check the commands you type. If you make a
typo, Debian will tell you that it can’t find the file in question. In this
case, simply re-enter apt-get, specifying just the name of that package.

Since you have made changes to the package database, you need to change the
scripts that start at boot time. Use the following commands to modify the startup
scripts:

update-rc.d -f exim remove
Removing any system startup links for /etc/init.d/exim ...
update-inetd --remove daytime
update-inetd --remove telnet
update-inetd --remove time
update-inetd --remove finger
update-inetd --remove talk
update-inetd --remove ntalk
update-inetd --remove ftp
update-inetd --remove discard

Now you need to restart inetd, which is the server process for standard Internet ser-
vices. inetd generally starts at boot time, but because you have changed the services
on the system, you need to restart it so it can discover the services in its configura-
tion file. The inetd command accepts an argument that points to a configuration file
listing the services it provides. But if no argument is given on the command line,
inetd reads the configuration information from the /etc/inetd.conf file, which for our
purposes is fine. The update-inetd commands stored our changes in this file.

To restart inetd using the default configuration file, enter:

/etc/init.d/inetd reload

You will see the following message in your console:

Reloading internet superserver: inetd

Setting Up Quotas
Apache’s web server gives Linux the ability to provide virtual hosting—that is, your
server can host several web sites with domain names that differ from the name of the
physical server. In the web server configuration file, you can define different domains
using virtual hosting clauses. For example, even though the domain name used in
this book is centralsoft.org, we could have mothersmagic.com, wildbills.info, or any
other domain we register and use the same IP address.

Setting Up Quotas | 17

We cover this concept thoroughly in Chapter 6. For now, just think of the IP address
like the telephone number for a house where several different people live. When a
browser accesses port 80, it can reach whatever domain you set up.

Linux provides a means to manage disk usage for multiple domains via a facility
called quotas. Originally, Unix provided quotas on user accounts so they wouldn’t
take up too much room on a server. For instance, if you had 50 users sharing disk
space on a file server, without a quota system one user could fill up the disk, causing
all of the users’ applications to refuse to save any more data.

A quota facility forces users to stay under their disk consumption limits, taking away
their ability to consume unlimited disk space on a system. The system keeps track of
quotas per user and per filesystem. If you have more than one filesystem where users
can create files, set up the facility for each filesystem separately.

You can use the same quota system to limit the space allocated to a domain you
host. Various tools allow you to administer and automate quota policies on your sys-
tem. In this part of the server setup, you’ll add a quota facility so you can use it later.

First, install the quota packages using apt-get:

apt-get install quota quotatool

You will encounter a question that reads:

Enable this option if you want the warnquota utility to be run daily to alert users
when they are over quota.
Send daily reminders to users over quota?
<Yes> <No>

At this point, choose <No>.

Debian will install and configure the two packages, but you will have to edit /etc/
fstab to enable quotas on each filesystem where you want them. Because our system
has just one partition for all user files, you can just add the usrquota and grpquota
options to the partition with the mount point /:

/etc/fstab: static filesystem information.
#
<filesystem> <mount point> <type> <options> <dump> <pass>
proc /proc proc defaults 0 0
/dev/sda1 / ext3 defaults,errors=remount-
ro,usrquota,grpquota 0 1
/dev/sda5 none swap sw 0 0
/dev/hdc /media/cdrom0 iso9660 ro,user,noauto 0 0
/dev/fd0 /media/floppy0 auto rw,user,noauto 0 0

Now run the following commands to add files to the root directory:

touch /quota.user /quota.group
chmod 600 /quota.*
mount -o remount /
quotacheck -avugm

18 | Chapter 2: Setting Up a Linux Multifunction Server

The Linux kernel usually has default support for quotas. The kernel sees the quota
options in /etc/fstab and checks quota.user and quota.group to determine whether
users and/or groups have limits to their disk space.

You will now see the following in your console:

quotacheck: Scanning /dev/hda1 [/] done

You will also see a message in your console stating something like this:

quotacheck: Checked 1912 directories and 28410 files

You can now execute the next command:

quotaon -avug

You will see the following messages:

/dev/hda1 [/]: group quotas turned on
/dev/hda1 [/]: user quotas turned on

Are you wondering what you just did? This sequence enabled quotas on the system.
You can check the manual pages for quota if you feel the need to understand more
right now. Your server box is now set up to use the quota facility.

Providing Domain Name Services
In Chapter 3, you will learn how to manage domain names for your server and for
any virtual domains residing on your system. For now, we will set up a minimal con-
figuration for BIND, the ubiquitous DNS server.

Debian provides a stable version of BIND in its repositories. We’ll install and set up
BIND and secure it in a chroot environment, meaning it won’t be able to see or
access files outside its own directory tree. This is an important security technique.
The term chroot refers to the trick of changing the root filesystem (the / directory)
that a process sees, so that most of the system is effectively inaccessible to it.

We will also configure BIND to run as a non-root user. That way, if someone gains
access to BIND, she won’t gain root privileges or be able to control other processes.

To install BIND on your Debian server, run this command:

apt-get install bind9

Debian downloads and configures the file as an Internet service. You will see the fol-
lowing messages on your console:

Setting up bind9 (9.2.4-1)
Adding group `bind' (104)
Done.
Adding system user `bind'
Adding new user `bind' (104) with group `bind'.
Not creating home directory.
Starting domain name service: named.

Providing Domain Name Services | 19

You will see similar output as you install or remove other services with
the apt-get utility.

To put BIND in a secured environment, you need to create a directory where the ser-
vice can run unexposed to other processes. You will also run it as an unprivileged
user, but only root will be able to access that directory.

First stop the service by running the following command:

/etc/init.d/bind9 stop

Next, edit the file /etc/default/bind9 so that the daemon will run as the unprivileged
user bind, chrooted to /var/lib/named. Change the line:

OPTS="-u bind"

so that it reads:

OPTIONS="-u bind -t /var/lib/named"

To provide a complete environment for running BIND, create the necessary directo-
ries under /var/lib:

mkdir -p /var/lib/named/etc
mkdir /var/lib/named/dev
mkdir -p /var/lib/named/var/cache/bind
mkdir -p /var/lib/named/var/run/bind/run

Then move the config directory from /etc to /var/lib/named/etc:

mv /etc/bind /var/lib/named/etc

Next, create a symbolic link to the new config directory from the old location, to
avoid problems when BIND is upgraded in the future:

ln -s /var/lib/named/etc/bind /etc/bind

Make null and random devices for use by BIND, and fix the permissions of the
directories:

mknod /var/lib/named/dev/null c 1 3
mknod /var/lib/named/dev/random c 1 8

Then change permissions and ownership on the files:

chmod 666 /var/lib/named/dev/null /var/lib/named/dev/random
chown -R bind:bind /var/lib/named/var/*
chown -R bind:bind /var/lib/named/etc/bind

You’ll also need to change the startup script /etc/init.d/sysklogd so that you can still
see messages in the system logs. Change the line:

SYSLOGD=""

so that it reads:

SYSLOGD="-a /var/lib/named/dev/log"

20 | Chapter 2: Setting Up a Linux Multifunction Server

Now restart the logging process with this command:

/etc/init.d/sysklogd restart

You will see the following message:

Restarting system log daemon: syslogd.

Finally, start BIND:

/etc/init.d/bind9 start

Check /var/log/syslog for any errors. You can page through the file using:

less /var/log/syslog

You will be reassured that BIND succeeded in starting if you see:

Starting domain name service: named.

Now, let’s check to see whether named is functioning without any trouble. Execute
this command, and you should see the results that follow:

server1:/home/admin# rndc status

number of zones: 6
debug level: 0
xfers running: 0
xfers deferred: 0
soa queries in progress: 0
query logging is OFF
server is up and running
server1:/home/admin#

If DNS is not working correctly, you’ll instead see something like this:

server1:~# rndc status
rndc: neither /etc/bind/rndc.conf nor /etc/bind/rndc.key was found
server1:~#

Fortunately, our DNS system is working correctly.

For the moment, we have not set up our primary zone files or configured DNS for
the system for anything other than a caching server, which populates its cache each
time someone requests a web page. We’ll show you how to configure primary and
secondary DNS severs in Chapter 3.

Although many people fail to stress its importance, mastering DNS is crucial because
so many other services depend on it. You’ll find DNS to be a critical component of
almost every Internet service your system performs.

Adding a Relational Database: MySQL
Web sites and web service applications use relational databases to embed objects
into web pages. This allows for rapid scaling of web site requests. Web browsers can
stimulate 30 requests at once, increasing loads on CPUs, memory, and disk access.

Adding a Relational Database: MySQL | 21

Relational databases, in combination with a web server, can efficiently construct
complex web pages on the fly.

We do not cover the complex topic of database administration in this book. How-
ever, Linux system administrators often find that developers expect them to set up
databases for development use, so we will demonstrate how to configure your Linux
server box with the one of the popular open source databases: MySQL. To make
effective use of the database, you will need to know how to:

1. Install and start MySQL.

2. Create a MySQL root user.

3. Create a regular MySQL user, which the application will use to access the
database.

4. Perform backups and restorations of databases.

To install the database server, a convenient client program that you can use to
administer the server, and the library needed by both, issue this command:

apt-get install mysql-server mysql-client libmysqlclient12-dev

Debian will download MySQL from its repositories and begin the installation pro-
cess. You’ll see the following messages:

Install Hints
MySQL will only install if you have a NON-NUMERIC hostname that is
resolvable via the /etc/hosts file. E.g. if the "hostname" command
returns "myhostname" then there must be a line like "10.0.0.1
myhostname".
A new mysql user "debian-sys-maint" will be created. This mysql account
is used in the start/stop and cron scripts. Don't delete.
Please remember to set a PASSWORD for the MySQL root user! If you use a
/root/.my.cnf, always write the "user" and the "password" lines in
there, never only the password!
See /usr/share/doc/mysql-server/README.Debian for more information.
<Ok>

Administratively, MySQL is comparable to Linux: each has a root user that has con-
trol over everything that goes on and can grant or deny privileges to other users. The
MySQL root user has nothing to do with the Linux root user; only the name is the
same. Create the MySQL root user by entering:

mysqladmin -u root password 'pword'

Choose a reasonably difficult-to-guess nonsense string for your password (pword).
Whenever you want to administer MySQL in the future, you will enter the following
command and supply your password at the prompt:

mysql -u root -p
Enter password:

22 | Chapter 2: Setting Up a Linux Multifunction Server

Try it now to make sure that the client and server are working and that you can get
into the server. You should see output on your console similar to the one shown
next:

Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 14 to server version: 4.0.24_Debian-10-log
Type 'help;' or '\h' for help. Type '\c' to clear the buffer.
mysql>

Type /q or quit; to exit.

Because the MySQL server is running, you can run netstat -tap and see a line like
this:

tcp 0 0 localhost.localdo:mysql *:* LISTEN 2449/mysqld

MySQL is accessible on the local host (127.0.0.1) on port 3306. If you do not see this
line, edit /etc/mysql/my.cnf (the configuration file that the client and server check for
operating parameters) and add a # sign to comment out skip-networking:

#skip-networking

If you want MySQL to listen on all available IP addresses, edit /etc/mysql/my.cnf and
comment out the bind-address = 127.0.0.1 line:

#bind-address = 127.0.0.1

If you had to edit /etc/mysql/my.cnf, restart MySQL using this command:

/etc/init.d/mysql restart

This discussion has not covered all the functions database developers are likely to
expect of you. MySQL is now set up to run on your server, however, and that’s suffi-
cient for you to take the next steps. We’ll do more with MySQL in Chapters 6 and 11.

Configuring Mail Securely with Postfix, POP3, and IMAP
In this section, we’ll add email transport and delivery agents and implement tight
control over the systems environment. We will demonstrate how to authenticate
bona fide users of an email system and prevent fraudulent access to email facilities.

For more than 25 years, Sendmail has served as the Internet’s primary MTA. Many
applications written for Linux expect to find Sendmail running on the server. Writ-
ten before the Internet became open to the public, however, Sendmail has many of
the security problems listed on the Common Vulnerabilities and Exposures (CVE)
list hosted at http://cve.mitre.org.

Fortunately, other MTAs have emerged to take Sendmail’s place. The main problem
these MTAs face is the expectation by core applications that Sendmail will be present
on the Linux server. To get around this, MTAs such as Postfix and Exim must be
able to appear to applications as if they are Sendmail. We call these drop-in replace-
ments, and they can run in a Sendmail mode.

http://cve.mitre.org

Configuring Mail Securely with Postfix, POP3, and IMAP | 23

Postfix is our preferred replacement for Sendmail. Postfix is faster than Sendmail, has
a more secure, modular architecture, and offers many of the features required by a
high-volume mail provider. Postfix doesn’t provide deprecated protocols, but uses
the Internet-standard Simple Mail Transport Protocol (SMTP), and it has the lowest
number of items on the CVE list. For all of these reasons, we’ll use Postfix rather
than Sendmail as our MTA.

Securing email involves keeping unauthorized users off the server altogether (so they
can’t use it to send unsolicited bulk email), making sure that nobody can spoof legiti-
mate users, and protecting the content of each email from being snooped on or
changed in transit.

Weak email security makes it easy for imposters to spoof users. To promote authen-
tication, we will install Postfix with Transport Layer Security (TLS), a protocol bet-
ter known as the Secure Sockets Layer (SSL). This prevents the sending of clear-text
passwords from an email client to the server.

We also want users to authenticate or log into our mail server. To this end, we will
employ the Simple Authentication and Security Layer (SASL). This creates an exten-
sion (ESMTP) that allows an SMTP client to authenticate the server.

To install the packages needed by Postfix and the other mail components, enter:

apt-get install postfix postfix-tls libsasl2 sasl2-bin \
libsasl2-modules ipopd-ssl uw-imapd-ssl

As Debian installs the packages, it will present some full-screen (ncurses-based)
boxes that ask you several questions.

When you see the “Configuring ipopd” screen shown in Figure 2-1, select pop3 and
pop3s.

Figure 2-1. Debian mail configuration screen

24 | Chapter 2: Setting Up a Linux Multifunction Server

Next you will see a screen like the one in Figure 2-2, where you should select <No> to
provide the flexibility to reroute ports if you feel the need later. The default ports
work here because we’re using TLS and a SASL daemon.

Figure 2-3 is informational; the Debian installer is telling you what options you have
for a mail configuration. Press OK to get the screen in Figure 2-4, which lets you
choose an option. For our purposes, we choose Internet Site, because we will use
SMTP for all traffic, either inside a LAN or outside on the Internet. Debian will then
provide the kind of configuration file that best fits our needs. We can later add to
this default configuration.

Figure 2-2. Leaving the default ports for mail

Figure 2-3. Postfix configuration options

Configuring Mail Securely with Postfix, POP3, and IMAP | 25

When you set up Postfix to run mail, it will function as a standard mail transfer
agent. You will not choose the option in Figure 2-4 to use another mail server as a
smarthost. In other words, your system will be the mail authority for your domain. If
you have used another server (such as a popular portal or an ISP) to send and receive
mail in the past, your server will take over those chores now.

Next, in the screen shown in Figure 2-5, answer NONE. Postfix will then create its own
alias file.

In Figures 2-6 and 2-7, the Postfix configurator wants to know for whom it will
accept and deliver mail. The top domain name is also the “mail name.” Postfix will
use this name to verify mail directed to the server. When you reach the screens
shown in Figures 2-6 and 2-7, they will have default values in the blue text boxes.
You can accept Figure 2-6 as it’s shown to you.

Figure 2-4. Selecting Internet Site from the configuration menu

Figure 2-5. Option to use an existing alias account

26 | Chapter 2: Setting Up a Linux Multifunction Server

centralsoft.org is the domain name we use in this book, but be sure to
substitute your domain name.

In Figure 2-7, you will notice that two commas follow the name localhost.centralsoft.
org. Remove the second comma.

In Figure 2-8, the Postfix configurator inquires about synchronous updating. We will
cover administering mail servers in greater detail in Chapter 5; for now, answer <No>
to the question and move along.

After Debian finishes installing and you see the console return to the system prompt,
you’ll need to start pulling together the various mail components. That means you
will write entries to the Postfix configuration file and generate certificates and
encryption keys.

We warned you about this part of the setup at the beginning of the chapter. Some of
these commands will not make sense to you. Don’t worry about that, but you may

Figure 2-6. Checking the fully qualified domain name set for Postfix

Figure 2-7. Internal domain list in used in Postfix

Configuring Mail Securely with Postfix, POP3, and IMAP | 27

get some sense of where you’re going by looking back at the paragraphs that laid out
our tasks at the beginning of this section.

The postconf command lives in the /usr/sbin directory. You’ll use it to print the value
of a Postfix parameter in the Postfix main.cf configuration file.

Since you already installed Postfix and Debian set it up as a service, you need to tell
Postfix what to do about secure authentication. Use the following commands:

postconf -e 'smtpd_sasl_local_domain ='
postconf -e 'smtpd_sasl_auth_enable = yes'
postconf -e 'smtpd_sasl_security_options = noanonymous'
postconf -e 'broken_sasl_auth_clients = yes'
postconf -e 'smtpd_recipient_restrictions = \
permit_sasl_authenticated,permit_mynetworks,reject_unauth_destination'
postconf -e 'inet_interfaces = all'

These commands write text to the smtpd.conf file:

echo 'pwcheck_method: saslauthd' >> /etc/postfix/sasl/smtpd.conf
echo 'mech_list: plain login' >> /etc/postfix/sasl/smtpd.conf

Now create a directory for your SSL certificates and generate both the certificates and
the encryption keys:

mkdir /etc/postfix/ssl
cd /etc/postfix/ssl/
openssl genrsa -des3 -rand /etc/hosts -out smtpd.key 1024
293 semi-random bytes loaded
Generating RSA private key, 1024 bit long modulus
..++++++
.......................................++++++
e is 65537 (0x10001)
Enter pass phrase for smtpd.key:
Verifying - Enter pass phrase for smtpd.key:

Then issue this command to change the permissions on the file containing the
OpenSSL RSA key:

chmod 600 smtpd.key

Figure 2-8. Refusing synchronous updates

28 | Chapter 2: Setting Up a Linux Multifunction Server

Next, generate another key and a certificate and change the existing keys to the
newly generated ones:

openssl req -new -key smtpd.key -out smtpd.csr
You are about to be asked to enter information that will be incorporated
into your certificate request.
What you are about to enter is what is called a Distinguished Name or a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter '.', the field will be left blank.
Country Name (2 letter code) [AU]:
State or Province Name (full name) [Some-State]:
Locality Name (eg, city) []:
Organization Name (eg, company) [Internet Widgits Pty Ltd]: centralsoft.org
Organizational Unit Name (eg, section) []: web
Common Name (eg, YOUR name) []:
Email Address []:
Please enter the following 'extra' attributes
to be sent with your certificate request
A challenge password []:
An optional company name []: cso
openssl x509 -req -days 3650 -in smtpd.csr -signkey smtpd.key -out \
smtpd.crt
Signature ok
subject=/C=US/ST=Texas/L=Dallas/O=centralsoft.org/OU=web/CN=Tom_Adelstein/
emailAddress=tom.adelstein@centralsoft.org
Getting Private key
Enter pass phrase for smtpd.key:
openssl rsa -in smtpd.key -out smtpd.key.unencrypted
Enter pass phrase for smtpd.key:
writing RSA key
mv -f smtpd.key.unencrypted smtpd.key
openssl req -new -x509 -extensions v3_ca -keyout cakey.pem -out \
cacert.pem -days 3650
Generating a 1024 bit RSA private key
.....................++++++
..........................++++++
writing new private key to 'cakey.pem'
Enter PEM pass phrase:
Verifying - Enter PEM pass phrase:

You are about to be asked to enter information that will be incorporated
into your certificate request.
What you are about to enter is what is called a Distinguished Name or a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter '.', the field will be left blank
Country Name (2 letter code) [AU]:
State or Province Name (full name) [Some-State]:
Locality Name (eg, city) []:
Organization Name (eg, company) [Internet Widgits Pty Ltd]:
Organizational Unit Name (eg, section) []:
Common Name (eg, YOUR name) []:
Email Address []:

Configuring Mail Securely with Postfix, POP3, and IMAP | 29

Some debate exists as to whether or not self-generated certificates
require the information requested at the prompts. We recommend
that you enter the appropriate information for your circumstances.

Now you need to tell Postfix about your keys and certificates, using the following
postconf commands:

postconf -e 'smtpd_tls_auth_only = no'
postconf -e 'smtp_use_tls = yes'
postconf -e 'smtpd_use_tls = yes'
postconf -e 'smtp_tls_note_starttls_offer = yes'
postconf -e 'smtpd_tls_key_file = /etc/postfix/ssl/smtpd.key'
postconf -e 'smtpd_tls_cert_file = /etc/postfix/ssl/smtpd.crt'
postconf -e 'smtpd_tls_CAfile = /etc/postfix/ssl/cacert.pem'
postconf -e 'smtpd_tls_loglevel = 1'
postconf -e 'smtpd_tls_received_header = yes'
postconf -e 'smtpd_tls_session_cache_timeout = 3600s'
postconf -e 'tls_random_source = dev:/dev/urandom'

The /etc/postfix/main.cf file should now look like this:

See /usr/share/postfix/main.cf.dist for a commented, more complete
version
smtpd_banner = $myhostname ESMTP $mail_name (Debian/GNU)
biff = no
Appending .domain is the MUA's job
append_dot_mydomain = no
Uncomment the next line to generate "delayed mail" warnings
#delay_warning_time = 4h
myhostname = server1.example.com
alias_maps = hash:/etc/aliases
alias_database = hash:/etc/aliases
myorigin = /etc/mailname
mydestination = server1.example.com, localhost.example.com, localhost
relayhost =
mynetworks = 127.0.0.0/8
mailbox_command = procmail -a "$EXTENSION"
mailbox_size_limit = 0
recipient_delimiter = +
inet_interfaces = all
smtpd_sasl_local_domain =
smtpd_sasl_auth_enable = yes
smtpd_sasl_security_options = noanonymous
broken_sasl_auth_clients = yes
smtpd_recipient_restrictions =
permit_sasl_authenticated,permit_mynetworks,reject_unauth_destination
smtpd_tls_auth_only = no
smtp_use_tls = yes
smtpd_use_tls = yes
smtp_tls_note_starttls_offer = yes
smtpd_tls_key_file = /etc/postfix/ssl/smtpd.key
smtpd_tls_cert_file = /etc/postfix/ssl/smtpd.crt
smtpd_tls_CAfile = /etc/postfix/ssl/cacert.pem

30 | Chapter 2: Setting Up a Linux Multifunction Server

smtpd_tls_loglevel = 1
smtpd_tls_received_header = yes
smtpd_tls_session_cache_timeout = 3600s
tls_random_source = dev:/dev/urandom

If your file matches this one, you can use this command to implement the changes:

/etc/init.d/postfix restart
Stopping mail transport agent: Postfix.
Starting mail transport agent: Postfix.

Authentication will be done by saslauthd, a SASL daemon, but you’ll have to change
a few things to make it work properly. Because Postfix runs chrooted in /var/spool/
postfix, enter the following commands:

mkdir -p /var/spool/postfix/var/run/saslauthd
rm -fr /var/run/saslauthd

Now you have to edit /etc/default/saslauthd in order to activate saslauthd. Remove
the # sign in front of START=yes and add the line PARAMS="-m /var/spool/postfix/var/
run/saslauthd", so that the file looks like this:

This needs to be uncommented before saslauthd will be run automatically
START=yes
PARAMS="-m /var/spool/postfix/var/run/saslauthd"
You must specify the authentication mechanisms you wish to use.
This defaults to "pam" for PAM support, but may also include
"shadow" or "sasldb", like this:
MECHANISMS="pam shadow"
MECHANISMS="pam"

Finally, edit /etc/init.d/saslauthd. Change the line:

dir=`dpkg-statoverride --list $PWDIR`

to:

#dir=`dpkg-statoverride --list $PWDIR`

Then change the variables PWDIR and PIDFILE and add the variable dir near the begin-
ning of the file:

PWDIR="/var/spool/postfix/var/run/${NAME}"
PIDFILE="${PWDIR}/saslauthd.pid"
dir="root sasl 755 ${PWDIR}"

/etc/init.d/saslauthd should now look like this:

#!/bin/sh -e
NAME=saslauthd
DAEMON="/usr/sbin/${NAME}"
DESC="SASL Authentication Daemon"
DEFAULTS=/etc/default/saslauthd
PWDIR="/var/spool/postfix/var/run/${NAME}"
PIDFILE="${PWDIR}/saslauthd.pid"
dir="root sasl 755 ${PWDIR}"
createdir() {
$1 = user

Configuring Mail Securely with Postfix, POP3, and IMAP | 31

$2 = group
$3 = permissions (octal)
$4 = path to directory
 [-d "$4"] || mkdir -p "$4"
 chown -c -h "$1:$2" "$4"
 chmod -c "$3" "$4"
}
test -f "${DAEMON}" || exit 0
Source defaults file; edit that file to configure this script.
if [-e "${DEFAULTS}"]; then
 . "${DEFAULTS}"
fi
If we're not to start the daemon, simply exit
if ["${START}" != "yes"]; then
 exit 0
fi
If we have no mechanisms defined
if ["x${MECHANISMS}" = "x"]; then
 echo "You need to configure ${DEFAULTS} with mechanisms to be used"
 exit 0
fi
Add our mechanisms with the necessary flag
PARAMS="${PARAMS} -a ${MECHANISMS}"
START="--start --quiet --pidfile ${PIDFILE} --startas ${DAEMON} --name
 ${NAME} -- ${PARAMS}"
Consider our options
case "${1}" in
 start)
 echo -n "Starting ${DESC}: "
 #dir=`dpkg-statoverride --list $PWDIR`
 test -z "$dir" || createdir $dir
 if start-stop-daemon ${START} >/dev/null 2>&1 ; then
 echo "${NAME}."
 else
 if start-stop-daemon --test ${START} >/dev/null 2>&1; then
 echo "(failed)."
 exit 1
 else
 echo "${DAEMON} already running."
 exit 0
 fi
 fi
 ;;
 stop)
 echo -n "Stopping ${DESC}: "
 if start-stop-daemon --stop --quiet --pidfile "${PIDFILE}" \
 --startas ${DAEMON} --retry 10 --name ${NAME} \
 >/dev/null 2>&1 ; then
 echo "${NAME}."
 else
 if start-stop-daemon --test ${START} >/dev/null 2>&1; then
 echo "(not running)."
 exit 0
 else

32 | Chapter 2: Setting Up a Linux Multifunction Server

 echo "(failed)."
 exit 1
 fi
 fi
 ;;
 restart|force-reload)
 $0 stop
 exec $0 start
 ;;
 *)
 echo "Usage: /etc/init.d/${NAME} {start|stop|restart|force-reload}" >&2
 exit 1
 ;;
esac
exit 0

Now start saslauthd:

/etc/init.d/saslauthd start
Starting SASL Authentication Daemon: changed ownership of
`/var/spool/postfix/var/run/saslauthd' to root:sasl
saslauthd.

To see whether SMTP-AUTH and TLS work properly, run the following command:

telnet localhost 25
Trying 127.0.0.1...
Connected to localhost.localdomain.
Escape character is '^]'.
220 server1.centralsoft.org ESMTP Postfix (Debian/GNU)

This establishes a connection to Postfix. Now type:

ehlo localhost

If you see the lines:

server1:/etc/postfix# telnet localhost 25
Trying 127.0.0.1...
Connected to localhost.localdomain.
Escape character is '^]'.
220 server1.centralsoft.org ESMTP Postfix (Debian/GNU)
ehlo localhost
250-server1.centralsoft.org
250-PIPELINING
250-SIZE 10240000
250-VRFY
250-ETRN
250-STARTTLS
250-AUTH LOGIN PLAIN
250-AUTH=LOGIN PLAIN
250 8BITMIME

your configuration should work and you have completed this part of the mail setup.
You can type quit and move to the next section.

Putting Apache to Work | 33

Putting Apache to Work
As mentioned earlier in this chapter, we’re including a web server in our initial setup
because it’s important for you to learn some basic server administration, and because
the server can be a useful host for other tools. At the end of this chapter we’ll use it
to serve up web statistics generated by Webalizer.

In November 2006, Netcraft published a report stating that 60 percent of the web
sites on the Internet use Apache. That makes it more widely used than all other web
servers combined.

Apache is well integrated with most Linux distributions. In this section we will fol-
low a familiar pattern and install and configure Apache by running the following
command:

apt-get install apache2 apache2-doc
Setting up ssl-cert (1.0-11) ...
Setting up apache2-utils (2.0.54-5) ...
Setting up apache2-common (2.0.54-5) ...
Setting Apache2 to Listen on port 80. If this is not desired, please edit
/etc/apache2/ports.conf as desired. Note that the Port directive no longer
works.
Module userdir installed; run /etc/init.d/apache2 force-reload to enable.
Setting up apache2-mpm-worker (2.0.54-5) ...
Starting web server: Apache2.
Setting up apache2 (2.0.54-5) ...
Setting up apache2-doc (2.0.54-5) ...

Once Debian finishes installing the apache httpd server, run:

apt-get install libapache2-mod-php4 libapache2-mod-perl2 \
php4 php4-cli php4-common php4-curl php4-dev php4-domxml \
php4-gd php4-imap php4-ldap php4-mcal php4-mhash php4-mysql \
php4-odbc php4-pear php4-xslt curl libwww-perl imagemagick

This command fetches and configures 48 files, so it will take a while. Once it’s done,
you can move to the next step.

Change the DirectoryIndex directive in the /etc/apache2/apache2.conf file from:

DirectoryIndex index.html index.cgi index.pl index.php index.xhtml

to:

DirectoryIndex index.html index.htm index.shtml index.cgi index.php
index.php3 index.pl index.xhtml

Next, add # marks as shown, to comment out the following lines in the /etc/mime.
types file:

#application/x-httpd-php phtml pht php
#application/x-httpd-php-source phps
#application/x-httpd-php3 php3
#application/x-httpd-php3-preprocessed php3p
#application/x-httpd-php4 php4

34 | Chapter 2: Setting Up a Linux Multifunction Server

You will also need to comment out two lines in /etc/apache2/mods-enabled/php4.conf:

<IfModule mod_php4.c>
#AddType application/x-httpd-php .php .phtml .php3
#AddType application/x-httpd-php-source .phps
</IfModule>

Then make sure that the following two lines are present in the /etc/apache2/ports.conf
file, adding them if necessary:

Listen 80
Listen 443

Now you have to enable some Apache modules (SSL, rewrite, and suexec) by symbol-
ically linking them to files in the mods-enabled subdirectory:

cd /etc/apache2/mods-enabled
ln -s /etc/apache2/mods-available/ssl.conf ssl.conf
ln -s /etc/apache2/mods-available/ssl.load ssl.load
ln -s /etc/apache2/mods-available/rewrite.load rewrite.load
ln -s /etc/apache2/mods-available/suexec.load suexec.load
ln -s /etc/apache2/mods-available/include.load include.load

As you saw when installing other processes earlier in this chapter, installing the
proper modules with apt-get automatically starts Apache on the system. Because
you’ve made several changes to the configuration, however, you need to restart
Apache so the changes will take place without your rebooting the server. Enter this
command:

/etc/init.d/apache2 restart

Your web server will restart and enable the new modules, along with your configura-
tion changes.

Adding FTP Services with ProFTPD
Along with the httpd server for displaying web pages in a browser, you’ll want to
implement a File Transfer Protocol (FTP) server. We will use the open source tool
ProFTPD for this purpose because it is popular, secure, and configurable.

The FTP server uses a single main configuration file, with directives and directive
groups that any administrator who has ever used the Apache web server will
understand. ProFTPD has per-directory .ftpaccess configuration files similar to
Apache’s .htaccess files, which force users to enter their user IDs and passwords to
access individual directories.

ProFTPD allows you to configure multiple virtual FTP servers and anonymous FTP
services. It does not execute any external programs at any time and runs as an
unprivileged user.

Install ProFTPD by executing this command:

apt-get install proftpd

Summarizing Your Web Statistics with Webalizer | 35

Figure 2-9 shows the screen you’ll see once Debian downloads and begins installing
ProFTPD. ProFTPD can be run either standalone or as a service from inetd. For secu-
rity reasons, we’ll run ProFTPD in standalone mode.

Next, add the following lines to your /etc/proftpd.conf file:

DefaultRoot ~
IdentLookups off
ServerIdent on "FTP Server ready."

Now, as we have done with other processes, restart ProFTPD using this command:

/etc/init.d/proftpd restart

Summarizing Your Web Statistics with Webalizer
Webalizer develops statistical reports for web server logfiles. You can use it with a
standard web browser, and it produces detailed, easily configurable usage reports in
HTML format.

The Debian project includes Webalizer in its stable repositories, so you can install it
with this command:

apt-get install webalizer

During the installation you’ll need to verify the installation directory (/var/www/
webalizer), the name to be used in the titles of the statistical reports (you could spec-
ify your domain name, for instance), and the location of the web server’s log file
(which on our system is /var/log/apache/access.log.1):

Which directory should webalizer put the output in?
/var/www/webalizer
Enter the title of the reports webalizer will generate.

Figure 2-9. Debian configuration screen for ProFTPd

36 | Chapter 2: Setting Up a Linux Multifunction Server

Usage Statistics for server1.centralsoft.org
What is the filename of the rotated webserver log?
/var/log/apache/access.log.1

Synchronizing the System Clock
Computer systems’ clocks tend to drift. Therefore, a fairly basic configuration task is
to connect your system to a Network Time Protocol (NTP) server that will keep it
within a couple of seconds of the correct time.

To synchronize your system clock with an NTP server, add the following lines to /var/
spool/cron/crontabs/root:

update time with NTP server
0 3,9,15,21 * * * /usr/sbin/rdate 128.2.136.71 | logger -t NTP

If the file doesn’t exist, you can create it with the command:

touch /var/spool/cron/crontabs/root

The IP address 128.2.136.71 belongs to Carnegie Mellon University’s public time
server. You can use a different time server if you wish.

Modify permissions on the crontab file by running:

chmod 600 /var/spool/cron/crontabs/root

and restart the cron service by running:

/etc/init.d/cron restart

Installing Perl Modules Needed by SpamAssassin
Many tools depend on the Perl programming language or offer a Perl interface to let
you customize them (although other languages are gaining adherents in the open
source and Unix worlds). SpamAssassin, a critical tool for mail administrators (and
even mail users), is one program we’ll use in this book that relies on Perl. As a sys-
tem administrator, even if you don’t want to program in Perl, you should be able to
download Perl modules from the most popular and trusted repository, the Compre-
hensive Perl Archive Network (CPAN).

To give you a feel for installing Perl modules, we’ll add a few now using the Perl
CPAN shell. This is an environment for searching the archive and installing modules
from it.

Log into your command line as root and run the following command to start the Perl
CPAN shell:

server1:/home/admin# perl -MCPAN -e shell
/etc/perl/CPAN/Config.pm initialized.

What’s Next | 37

Answer all the questions by pressing the Return key to accept the defaults. Then run
the following commands to install the modules we’ll use in the next chapter:

> install HTML::Parser
> install DB_File
> install Net::DNS

At the enable tests? prompt, answer no.

If a module already exists on your system, you will see a message like HTML::Parser
is up to date. When a module installs successfully, you will see /usr/bin/make
install – OK.

Once you’re done, simply enter q to leave Perl and return to the system prompt.

What’s Next
Now that you have completed the tasks associated with setting up your server, you
will want to start using it in a production mode. You will need to set up your DNS
services and notify the registrar where you set up your domain (the subject of the next
chapter). Once you’re done with DNS configuration, you can install a web-based
application (we’ll use ISPConfig) and begin to explore how web applications work.

38

Chapter 3CHAPTER 3

The Domain Name System

This chapter shows you how to build a Domain Name System (DNS) server using
BIND. When you finish this material you should understand how to install, config-
ure, maintain, and troubleshoot a server for any domain you register. We’ll begin
with an introduction to DNS, which you can skip if you’d rather move directly to the
step-by-step installation and configuration section. If you run into problems, you
may want to come back and read and/or review the earlier material.

DNS Basics
If you do any research on the Internet’s DNS, you are certain to encounter the claim
that DNS is the world’s largest database. Comparing it to a database like Oracle or
MySQL is misleading, though. In fact, DNS is the world’s largest distributed digital
directory. Like an online telephone directory, you use it to match names with num-
bers—but with DNS, the numbers are the IP addresses of the multitude of servers
connected to the Internet, including those that manage small web sites and gigantic
server farms like Google and Amazon.

Like the public library with its master collection of phone books separated by states,
DNS separates domains into categories. The master collection of categories lives in
what we call root directories. This collection is divided into top-level domains
(TLDs), in much the same way that the master collection of phone books is divided
into states. Instead of looking for a telephone number with a New York area code,
DNS looks for names than end in suffixes like .edu, .org, .com, .net, .mil, .de, .fr, and
so on. The domains within each TLD eventually lead to an address you can use to
communicate with a server.

The DNS (originally defined in RFC 882 in 1983, and later revised as RFCs 1034 and
1035) introduced various ideas for managing the mapping of common Internet
names to IP addresses. The system distributes data and the naming of hosts hierar-
chically in a domain name space. Each domain resembles a branch of a tree and each
branch contains sub-branches. Programs called nameservers provide information

DNS Basics | 39

about their parts of the tree, and resolvers request domain information from
nameservers on behalf of client programs.

Hierarchical naming schemes like DNS prevent duplication of data. Each domain is
unique, and you can have as many servers as you like within a domain—simply pre-
fix their hostnames to the domain name. A site that controls centralsoft.org, for
example, might have any number of hosts with names like server1.centralsoft.org,
ldap.centralsoft.org, and mail.centralsoft.org.

Advantages of Localized DNS Administration
Smaller organizations often let their ISPs handle DNS administration for them. Set-
ting up your own servers has advantages, though. It gives you total control over
which systems host your public services (e.g., web services and email), and putting
DNS into your infrastructure allows you more scalability: you can add servers as
needed and even do load balancing among them. This becomes important if you own
and operate several active domains or internal authentication services. You also have
more control over keeping your names updated. In short, it’s valuable to control your
own DNS in today’s business environment, instead of having somebody else do it.

Many companies have web-enabled their core business applications. Rather than
replacing working systems, they want to make their legacy applications available
through snazzy new web interfaces. Businesses do this by adding web frontends
while using web-based backends to connect disparate systems together. IT depart-
ments use application servers such as JBoss (now owned by Red Hat), IBM’s Web-
Sphere, and BEA’s WebLogic for the backends and numerous products for the
frontends. In every case, DNS becomes an integral part of web-enabling because
such systems use directory servers that communicate with one another.

DNS also holds a prominent place in the emergence of web services and an execut-
able Internet, where people can use applications such as those offered by Google,
Yahoo!, and others. Resolving IP addresses quickly and dependably is critical to the
success of these products outside on the Internet and inside enterprises. Consider
DNS configuration and management one of the most valuable system administra-
tion skill sets you can have.

So what do you need to do as a system administrator running your own public DNS
servers? You must provide the addresses of two or more such servers to your domain
registrar (at least two are required, so there’s a good chance one will always be run-
ning when people request a name). You also must manage the domain names of the
systems you want publicly visible: your web servers, mail servers, and so on.

As you begin to learn DNS, you will likely find it unintuitive. In many ways, the jar-
gon feels like a foreign language. It won’t make a lot of sense until you’ve worked
with it for a while. We’ll show you how to build a DNS server in a moment. Then
we’ll review some key concepts and terms before diving into the configuration files.

40 | Chapter 3: The Domain Name System

Getting into the BIND
Most of the DNS servers in the world are run by the Berkeley Internet Name Dae-
mon, or BIND. BIND is standard on every version of Unix and Linux. Since adminis-
trators are certain to run into it, this chapter covers BIND in detail.

The most popular alternative to BIND is the djbdns suite. It works
well, is used by many large nameservers, and has an arguably simpler
configuration. See http://cr.yp.to/djbdns.html for details.

We won’t offer a history lesson on BIND, because the subject would put you to
sleep. Still, we do need to address one historical concern. Some people continue to
use an antiquated, deprecated release of BIND: version 4. In this chapter, we use the
newer version 9.

If you work on a system with DNS configuration files that look different from the
syntax shown in this chapter, it’s probably because the system uses BIND 4. As we
said earlier, businesses hate to replace working systems, and it may require a catas-
trophe to get an IT department to upgrade to BIND 8 or 9. Because of the potential
for security exploits in BIND 4, however, you should strongly suggest such an
upgrade. (By the way, the version numbering jumped from 4 to 8 to match Send-
mail’s versions; don’t let anyone sell you BIND 5, 6, or 7.)

Components of BIND
BIND comes with three components. The first is the service or daemon that runs the
answering side of DNS. This component is called named (pronounced name-dee). It
answers the phone when it rings.

The second item in the BIND bundle is the resolver library. This is what web brows-
ers, mail software, and other applications consult when trying to find a server by its
DNS name out there in the Internet jungle.

Some folks think of a resolver as a client inside BIND. But unlike the server, the cli-
ent is no single program; instead, it’s a library linked with every web browser, email
client, and so on. The resolver code queries DNS servers in an attempt to translate
names into IP addresses.

This piece of BIND uses its own little directory called resolv.conf, which is present
on each computer system. It’s your job to configure resolv.conf. Here’s what the
resolv.conf file looks like on computers in the centralsoft.org domain:

search centralsoft.org
nameserver 70.253.158.42
nameserver 70.253.158.45

http://cr.yp.to/djbdns.html

Setting Up a DNS Server | 41

As you can see, the BIND resolver’s configuration file is simple. The first line
searches for a server in the local domain. The other lines provide addresses of
nameservers the administrator knows about, which a resolver can fall back on if the
initial search for a server fails.

The third part of BIND provides tools such as the dig command for testing DNS. Go
to your console and type dig yahoo.com (or any known domain), and see what hap-
pens. We’ll discuss dig and the other utilities in this toolkit later.

Setting Up a DNS Server
To build our server, we’re going to use a fresh installation of the latest stable version
of Debian and configure it with the minimum number of packages.

If you don’t already have the net installation disk used in Chapter 2, download it
from http://www.us.debian.org/CD/netinst. Perform a netinstall and make sure to pro-
vide a fully qualified domain name. Then configure Debian as suggested here.

When you acquire the current release of Debian GNU/Linux, you may find differ-
ences between it and the version we used to write the following instructions. Linux
developers update their distributions frequently, and installation procedures change
with updates, patches, and new versions of the Linux kernel. If you do encounter dif-
ferences in the installation procedures we describe, look for the gist of what we
explain and you should have little trouble following along with the latest release.

After the initial stages of the Debian install, you’ll see a graphic screen asking you to
choose the type of installation you want. The screen will look like this:

() Desktop Environment
() Web Server
() Print Server
() DNS Server
() File Server
() Mail Server
() SQL database
() manual package selection

Don’t select any of the options; just press the Tab key. Click the highlighted OK but-
ton, and Debian’s installer will begin downloading and installing packages.

During the downloads, you’ll see one more graphical screen. This screen will ask if
you want to configure Exim (Exim-config). Choose “no configuration.” It will then
ask you, “Really leave the mail system unconfigured?” Answer yes.

Once you’ve completed the minimal Debian installation, you should remove some
unnecessary programs that may have some use in a LAN but do not belong on an
Internet mail server. You can delete them using Debian’s apt-get utility:

apt-get remove lpr nfs-common portmap pidentd pcmcia-cs pppoe \
pppoeconf ppp pppconfig

http://www.us.debian.org/CD/netinst/

42 | Chapter 3: The Domain Name System

If you have decided to use SUSE or Fedora instead of Debian, you can delete these
packages with your preferred method.

Now, let’s snip some out some service scripts and restart inetd:

update-inetd --remove daytime
update-inetd --remove telnet
update-inetd --remove time
update-inetd --remove finger
update-inetd --remove talk
update-inetd --remove ntalk
update-inetd --remove ftp
update-inetd --remove discard
/etc/init.d/inetd reload

To install BIND on your Debian server, run the command:

apt-get install bind9

Debian will download the file and configure it as an Internet service. You will see the
following messages on your console:

Setting up bind9 (9.2.4-1)
Adding group `bind' (104)
Done.
Adding system user `bind'
Adding new user `bind' (104) with group `bind'.
Not creating home directory.
Starting domain name service: named.

Using a chroot Environment for Security
Many security administrators recommend running BIND as a non-root user in an iso-
lated directory called a chroot environment. This protects against the substantial
chance that a security flaw will be found in your version of BIND, potentially
enabling outsiders to attack the named daemon and gain access to your system. Even
if named is exploited, a chroot environment limits any damage that can be done to
name services.

To put BIND in a chroot environment, you need to create a directory where the ser-
vice can run unexposed to other processes. You will also run it as an unprivileged
user, but only root will be able to access the directory. This directory will contain all
the files that BIND needs, and it will look like the whole filesystem to BIND after you
issue the chroot command.

First, stop the service by running this command:

/etc/init.d/bind9 stop

Next, edit the file /etc/default/bind9 so that the daemon will run as the unprivileged
user bind, chrooted to /var/lib/named. Change the line:

OPTS="-u bind"

Setting Up a DNS Server | 43

so that it reads:

OPTIONS="-u bind -t /var/lib/named"

To provide a complete environment for running BIND, create the necessary directo-
ries under /var/lib:

mkdir -p /var/lib/named/etc
mkdir /var/lib/named/dev
mkdir -p /var/lib/named/var/cache/bind
mkdir -p /var/lib/named/var/run/bind/run

Then move the config directory from /etc to /var/lib/named/etc:

mv /etc/bind /var/lib/named/etc

Now create a symbolic link to the new config directory from the old location, to
avoid problems when BIND is upgraded in the future:

ln -s /var/lib/named/etc/bind /etc/bind

Make null and random devices for use by BIND, and fix the directory permissions:

mknod /var/lib/named/dev/null c 1 3
mknod /var/lib/named/dev/random c 1 8

Then change the permissions and ownership of the files:

chmod 666 /var/lib/named/dev/null /var/lib/named/dev/random
chown -R bind:bind /var/lib/named/var/*
chown -R bind:bind /var/lib/named/etc/bind

You’ll also need to change the startup script /etc/init.d/sysklogd so that you can still
see messages in the system logs. Change the line:

SYSLOGD=""

so that it reads:

SYSLOGD="-a /var/lib/named/dev/log"

Now restart the logging process with the command:

/etc/init.d/sysklogd restart

You will see the following message:

Restarting system log daemon: syslogd.

Finally, start BIND:

/etc/init.d/bind9 start

Check /var/log/syslog for any errors. You can page through the file using:

less /var/log/syslog

Typically, you’ll know that BIND succeeded in starting if the syslog file shows:

Starting domain name service: named.

44 | Chapter 3: The Domain Name System

Unfortunately, named can start but fail to load its initial data files, which leaves it
nonfunctional. So, check to see whether named is functioning by entering:

rndc status
number of zones: 6
debug level: 0
xfers running: 0
xfers deferred: 0
soa queries in progress: 0
query logging is OFF
server is up and running
server1:/home/admin#

If DNS is not working correctly, you’ll instead see something like this:

rndc status
rndc: neither /etc/bind/rndc.conf nor /etc/bind/rndc.key was found

If you get this error, take a look at the “Cannot Connect Using rndc” section toward
the end of this chapter.

Configuring an Authoritative DNS Server
If you want to find Jane Doe’s telephone number in a digital phone book, the phone
company publishes that information. But if you want to be able to find janedoe.com,
a system administrator has to come forward with the domain name and number (IP
address) and make them part of the distributed DNS directory. Administrators do
this by creating listings in what DNS aficionados call zone files.

A zone holds the information for a domain or, continuing with our earlier telephone
analogy, for a household. Say there are 15 kids living in your house, and someone
who’s looking for one of them calls you. Each kid has a cell phone, but you don’t
know all of their numbers by heart. Instead, you have a listing of your own, a direc-
tory you look in to find the cell phone number for the child the caller is trying to
reach.

Similarly, you might have 15 servers living in your data center, or 15 web sites hosted
on your server. To illustrate this, let’s say you administer a server that hosts five dif-
ferent web sites, each with a completely different domain name. Suppose one is cen-
tralsoft.org, while the others are linhelp.com, supportcall.org, jdshelp.net, and
linuxconf.net. All the owners of the web sites ask you to manage their DNS records.
BIND’s versatility allows you to manage several DNS servers at once, and to manage
multiple domains independently on one server.

Each web site is in a different domain, so you have to write a zone file for each web
site. In the registrars’ databases, your DNS server will be listed as the nameserver for
those domain names. In other words, server1.centralsoft.org will be listed as the guy
outsiders can contact to find the other kids in the house (linhelp.com, supportcall.org,
and the others).

Configuring an Authoritative DNS Server | 45

The file that corresponds to the list of cell phone numbers in our house analogy is /etc/
named.conf. In a sense, /etc/named.conf is your directory listing of zone files. It pro-
vides you with information about the location of each zone on your system.

Your Responsibility in DNS
As stated earlier, DNS distributes its directory. When you pay a fee and register a
domain, one of the questions you answer deals with your nameservers. You have to
provide the names and addresses of two servers, and they have to be registered in the
DNS system.

Now you can get an idea of what the system administrator’s work involves. You have
to configure any nameservers under your domains so that they conform to specifica-
tions set out by the Internet Engineering Task Force (IETF). If you don’t follow the
specified protocols, your system won’t become part of the universal directory service.

Hopefully, the preceding discussion has given you an idea of the “what” of DNS.
Now let’s take a closer peek at how you get your part of the directory working.

The Distributed Method of Resolving Domain Names
Let’s review the DNS directory structure again. The directory has three levels. The
first group of servers is called root servers, because they provide the starting point
for queries. The second group consists of the top-level domain servers. TLDs include
.com, .net, .org, .mil, .gov, .edu, and so on, as well as country domains such as .de.
(Incidentally, domain names are case-insensitive: .com and .COM are the same.)

Figure 3-1 depicts the DNS structure. At the top of the figure, you can see a represen-
tation of the Internet’s root servers. These servers contain only the names and IP
addresses of the next level of servers and are responsible solely for redirecting
requests to particular TLDs.

In the center of the figure, you see some of the servers for the .org TLD. These serv-
ers contain the names and IP addresses of all registered DNS servers with the suffix
.org. If you register a domain with an .org suffix, its IP address will reside in each of
.org’s TLD servers. You will have to provide the remaining information on any sub-
domains, including servers within your domain.

The bottom layer in Figure 3-1 represents a primary nameserver called server1.cen-
tralsoft.org. It functions as the DNS server for a number of domains, as you’ll see
later. For now, just know that server1.centralsoft.org represents the part of the DNS
system that you will have to manage.

46 | Chapter 3: The Domain Name System

Finding a Domain
As mentioned earlier, besides providing the daemon to write the DNS entries into the
distributed directory, BIND provides the mechanism for reading the directory. When
your computer needs to find the address for a web site, it queries the DNS servers
you specify (which are usually located on your local network or at your ISP).

Let’s say your browser wants to find www.google.com. BIND’s “client” executes a
command that essentially asks its DNS server whether it knows the address of the
web site. If the DNS server doesn’t know the address, it asks a root server for the
address.

The root server replies, “I don’t know, but I do know where you can find the answer.
Start with the TLD servers for .com.” And it provides the IP address of a server that
knows all the domains (quite a lot!) that are registered directly under .com.

On behalf of your browser, the resolver on the DNS server then queries a .com
server for the address. The .com server says, “I don’t have that information, but I
know a nameserver that does. It has an address of 64.233.167.99 and its name is
ns1.google.com.”

Your friendly DNS server proceeds to the address, reads the directory information
ns1.google.com provides, and comes back to tell your browser the address of www.
google.com. The DNS server then places that information in its cache so it won’t have
to run around looking for Google’s address again.

Figure 3-1. The DNS distributed directory structure

Server Server Server Server

Root servers “.”

Server Server Server

Top-level domain
servers for “org”

Server
DNS

Centralsoft

Configuring an Authoritative DNS Server | 47

Basically, resolv.conf controls the queries that browsers and other clients make for
domain names, while named answers the queries and makes sure information is kept
up-to-date on all servers.

Answering Queries
Figure 3-2 depicts the process used to answer a query. Let’s break it down.

In the upper-left corner of the figure is a drawing of a server tower (in our example
this server is called server1.centralsoft.org; it performs the same function as ns1.
google.com). Assume the server is running Linux and BIND. A server at a higher level
directs resolvers to the system (in the case of server1.centralsoft.org, a TLD
nameserver for the .org domain sends the requests).

The named daemon listens on UDP port 53 for anyone making requests for names in
the domain. When named receives a request, it consults its configuration file, /etc/
named.conf. If the server has information on the domain in question, it looks in the
appropriate zone file. If the zone file has the information requested, the server hands
it off to the system querying for the information.

Some people refer to configuration files as rule files. This makes some sense because
correct DNS operation requires tight compliance with its rules and protocols. How-
ever, the zone files actually function as part of the DNS directory. Their primary
function is to provide information, not to enforce rules.

Primary and Secondary DNS Servers
As we said earlier, you have to provide the names of at least two DNS servers when
you register your domain. If you want, you can make an exact duplicate of the infor-
mation you set up on the first DNS server you use and place it on the second server.
Some providers do that, but a more common and maintainable practice is to con-

Figure 3-2. Answering a query

named

Server

query

named.conf

Zone files

48 | Chapter 3: The Domain Name System

sider one server the primary or master server (where you will make all manual
updates) and the other server the secondary or slave server. BIND then allows the
secondary server to contact the primary one and automatically replicate the direc-
tory—a practice called a zone transfer.

Secondary servers are authoritative, just as primary servers are. That is, secondary
servers can respond to queries and give out information on all the zones for which
they are responsible. The difference is that when you make changes, you should do
so only on your primary server. The secondary servers will then obtain that informa-
tion from the primary server.

The primary server does not push its new configuration to secondary servers immedi-
ately. Instead, each secondary server polls the primary server at regular intervals to
find out whether any changes have been made. A secondary server knows it should
poll its big brother because it is labeled with the term slave in its named.conf file, as
shown here:

zone "centralsoft.org" {
 type slave;
 file "sec.centralsoft.org";
 masters { 70.253.158.42; };
};

We won’t discuss the full syntax and role of this entry right now. The important
things to notice are the type slave; line, which defines this server as secondary, and
the masters line, which tells the server where to get its information. In this example,
the master is at the IP address 70.253.158.42. This address matches what we put in
the resolv.conf file earlier (see the section “Components of BIND”). The resolv.conf
file helps a client connect to DNS, whereas the preceding entry in named.conf helps a
secondary DNS server find the primary server.

Designating the secondary server as a slave instructs it to periodically check in with
the primary server to see whether any changes have been made in the domain direc-
tory files. The named.conf file on each server specifies how it does polling and zone
transfers. The refresh value tells the secondary server how often it should check with
the master. The serial number is a value you must increment on the primary server

Firewall Issues
If you have a firewall on your primary server, make sure you unblock UDP port 53.
This port is used to receive and respond to queries. If the secondary servers lie on the
other side of a firewall, you must also unblock TCP port 53. The secondary servers use
both TCP and UDP to perform zone transfers, which are required to keep the servers
up-to-date.

Configuring an Authoritative DNS Server | 49

each time you change the information it offers; the secondary server compares the
primary value to its own value to determine whether it should perform a zone transfer.

The primary configuration file also specifies a retry value, which the secondary server
uses instead of the refresh value if it can’t reach the primary server. This can happen
if the master server or the network fails. In that case, the secondary server masquer-
ades as the master for a little while.

A secondary server can’t masquerade forever, though. Eventually, its information
could become so outdated that it would be preferable for it to stop answering que-
ries altogether. Hence, the configuration file also specifies an expiry time. If this time
passes without a successful update, the secondary server continues trying to contact
the primary server but refuses to answer queries.

There’s one more value that you should be aware of before tackling the configura-
tion files: the minimum time to live (TTL). When a remote DNS server receives an
answer to a query from you, it caches that information and reuses it during the time
specified in the TTL value. Caching is critical to the performance of DNS. Thanks to
caching, if somebody spends an hour visiting various web pages at your site (each of
which may involve multiple downloads), a server near the user will need to ask you
for the domain name only once; thereafter, it will be able to satisfy each request out
of its cache. To avoid the cached information becoming stale, however, the TTL
ensures that eventually the server discards the cached value and returns to you, the
authoritative server, to get the current value.

You will see all of these values in your zone file, not in the named.conf file. The
named.conf file points to the location of your zone file.

Caching-Only Servers
In addition to primary and secondary servers, DNS offers caching-only servers.
Administrators use these to reduce the load on authoritative servers. A caching server
has no authority; it simply makes DNS work faster by storing the domain names it
gets from authoritative servers and offering them to its clients.

The server you set up to host domains is usually tied up answering queries from
other DNS servers on the Internet. That job alone puts a strain on its resources, so
administrators often use caching servers to store information locally for user look-
ups. You’ll see caching servers used by ISPs, for example, just to service their retail
customers. They’ll use another server to provide domain names to the Internet for
the sites they host.

When you install BIND, it sets up a caching server by default. When you perform a
query, the caching server keeps the results in its cache. The next time you attempt to
find the same web site, you won’t have to go through the entire search process again:
you’ll get the host-to-IP address information from the cache.

50 | Chapter 3: The Domain Name System

Editing the Configuration Files
So far, we have made a high-level exploration of the Domain Name System and
explained the parts you have to maintain. We now need to get into the details of the
configuration files so you can write them, change them, and fix them when the need
arises.

When you install BIND on Linux, the package will provide configuration files for
you; you won’t have to write every file from scratch. Figure 3-3 illustrates the basic
files. We’ll start with the named.conf file, which coordinates the whole system on
each BIND server and points to the rest.

named.conf
Recall from the section “Answering Queries” that when named receives a request it
consults its own small directory, the named.conf configuration file. This points
named to the zone file for the requested domain.

Let’s look at a simple named.conf file. If you can’t understand it at this point, just
familiarize yourself with the way it looks. We’ll break it down into its components in
a moment.

Remember, this file is typically already installed on your Linux server by default.
Depending on the distribution, named.conf can live in different directories (it’s
located at /etc/bind/named.conf for BIND 9 under Debian), and its appearance may
vary slightly. Sometimes, for example, the file comes heavily commented.

Here’s our sample named.conf. Comments follow double slash marks:

options {
 pid-file "/var/run/bind/run/named.pid";
 directory "/etc/bind";
 // query-source address * port 53; };

Figure 3-3. BIND configuration files

named

Server

query

named.conf

Hints Local
host

Primary
zone

Reverse
zone

Editing the Configuration Files | 51

//
// a master nameserver config
//
zone "." {
 type hint;
 file "db.root";
};

zone "0.0.127.in-addr.arpa" {
 type master;
 file "db.local";
};

zone "158.253.70.in-addr.arpa" {
 type master;
 file "pri.158.253.70.in-addr.arpa";
};

zone "centralsoft.org" {
 type master;
 file "pri.centralsoft.org";
};

The sample named.conf file refers to the four other configuration files. The third line
down lists the directory containing them all, /etc/bind.

The options statement contains two lines. The first shows the location of named.pid,
which simply contains the process ID of the running named daemon. That may seem
like an odd snippet of information to store, but it’s very useful for utilities that have
to kill or restart named. More significantly, the second line of the options statement
defines the directory containing named and files related to how it runs.

Basic Security in Data Transfers
In our current configuration, every nameserver is allowed to transfer our centralsoft.org
zone from our primary nameserver. Because we want to allow only our secondary
nameserver (70.253.158.45) to transfer the zone, we must add the following line to the
centralsoft.org zone in the named.conf file on our primary nameserver, server1.central-
soft.org:

allow-transfer { 70.253.158.45; };

The zone should look like this:

zone "centralsoft.org" {
 type master;
 file "pri.centralsoft.org";
 allow-transfer { 70.253.158.45; };
};

52 | Chapter 3: The Domain Name System

The subsequent zone statements, an example of which we saw earlier, identify the
locations of several files containing configuration information. In sum, named.conf
will need to point to the following files in zone statements:

Hints file (for zone ".")
This file contains the names and addresses of the root servers on the Internet.
named must know the addresses of these servers so it can begin a query when
none of the components of the requested domain are stored in named’s cache.

Local host file (for zone "0.0.127.in-addr.arpa")
This file represents your own system (IP address 127.0.0.1) to DNS. The point of
creating local zone files for each aspect of your local host is to reduce traffic and
allow software to operate the same way regardless of whether it is accessing your
local system or a remote one.

Reverse zone file (for zone "158.253.70.in-addr.arpa")
This file maps IP addresses to hostnames. It’s a mirror image of the primary zone
file. You can recognize a reverse zone file because it has the extension in-addr.
arpa and it uses PTR records (described later).

Primary zone file (for zone "centralsoft.org")
This file, sometimes called the domain database, defines most of the information
needed to resolve queries about the domain you administer. It does not come
preconfigured when you install BIND. Usually, you have to write this file from
scratch or use one of the files accompanying BIND as a template.

The primary zone file maps names to IP addresses and provides information
about the services your computers offer to the Internet (including your web and
FTP servers, email servers, nameservers, and so on).

The default configuration file will contain the first two zone statements (for the hints
and local files—these files typically appear when you install BIND and do not need
to be altered). You’ll have to add the entries for the reverse and primary zone files.

Zone files use several record types, including:

• SOA (Start of Authority)

• NS (Name Server)

• MX (Mail eXchanger, which identifies a mail server in the domain)

• A (host name to Address mapping)

• CNAME (Canonical Name, which defines an alias for a hostname in an A record)

• PTR (Pointer, which maps addresses to names)

It’s not necessary to try to memorize or understand these record types at this point.
You will have ample opportunity to use them as we dig deeper into this subject.

Next, we’ll look at a primary zone file and break it down.

Editing the Configuration Files | 53

The Primary Zone File
The primary zone file contains the bulk of the configuration information DNS needs.
The format of the file is not standardized, but the elements it contains are specified
by RFC 1035.

If you’re using the set of files the Debian installation provides, you should name your
own primary zone file after your domain. We’ve named the zone file for the central-
soft.org domain pri.centralsoft.org. (The pri prefix will help you recognize that it’s
primary.) We’ll describe each part of the file here; to see it in its entirety, look ahead
to the section “Putting it all together.”

The first lines provide the information needed to sync with your secondary or slave
server(s):

@ IN SOA server1.centralsoft.org. root.localhost. (
 2006012103; serial-no
 28800; refresh, seconds
 7200; retry, seconds
 604800; expiry, seconds
 86400); minimum-TTL, seconds

;

This is an SOA record. SOA is the to Start of Authority, which distinguishes this as
information for authoritative servers (both primary and secondary) as opposed to
caching servers. By the time you write your part of the DNS distributed directory, the
system has handed off authority for your part of the system to you. So your zone file
has to indicate where your authority starts—that is, the domain you are serving.

A semicolon (;) does not mark the end of a line; it just marks the
beginning of a comment. Thus, if you didn’t want to include the
“serial-no” comment, you could write the following line:

2006012103; serial-no

simply as:

2006012103

Let’s look at the first line, the one beginning with the at sign (@). From left to right,
the fields are:

Name
The root name of the zone. The @ sign is a shorthand reference to the current
zone in the /etc/named.conf file. In other words, it’s equivalent to using
server1.centralsoft.org in our example. The @ sign is also known as the ori-
gin in DNS jargon.

Class
The DNS class. A number of classes exist, but the vast majority of sites use the IN
(Internet) class. The other classes exist for non-Internet protocols and functions.

54 | Chapter 3: The Domain Name System

Type
The type of DNS resource record. In this case, this is an SOA resource record.

Nameserver
The fully qualified name of the primary nameserver. One easy-to-miss detail is
important: the name must end with a period (.), denoting the root of the DNS
hierarchy, to indicate that the path is a full domain name.

Email address
The email address of the person responsible for the domain. There is another
important DNS-specific convention here: you can’t use the @ that appears in
every Internet email address because, as we’ve seen, an @ has another meaning in
this file. Therefore, a period is substituted. Here we want to specify the root user
on the local system, or root@localhost, but we have to specify that email address
in the unusual format root.localhost.. Note that the email address must also
end in a period.

The following lines in the SOA record contain fields for the slave server’s benefit:

Serial-no
The serial number for the current configuration. You increment this number
each time you change your configuration so that slave servers will know that
they have to update their information. This number is usually in a date format,
YYYYMMDD, with a double-digit number tagged to the end (this allows you to
do multiple edits each day). Thus, each serial number is higher than the previ-
ous one and documents the date on which the changes were made. Each slave
periodically checks the serial number to see whether it has changed. If the cur-
rent number on the server is higher than the one representing the slave’s configu-
ration information, the slave performs a zone transfer. 2006012103 is the starting
serial number in our example zone file.

Refresh
The interval at which a slave DNS server should check with the master to deter-
mine whether a zone transfer is required. The value is represented in seconds. In
our example file we use the value 28800 (28,800 seconds = 8 hours).

Retry
How often a slave should try to connect to the master in the event of a connec-
tion failure. The interval in our example is 7200 (7,200 seconds = 2 hours).

Expiry
The length of time for which a slave should try to contact the master before
expiring the data it contains. If the data expires and the slave is unable to con-
tact the server for fresh information, it will direct future queries toward the root
servers. The time specified here is also effectively the length of time that the slave
server should continue to respond to queries even if it cannot update the zone
file; it represents how long you can tolerate having outdated information handed
out. In our example, we use 604800 (604,000 seconds = 7 days).

Editing the Configuration Files | 55

Minimum-TTL
The default time-to-live for this domain in seconds. Any resource record that
does not have a specified TTL uses the default value of 86400. Because 86,400
seconds is one day, the querying cache’s record should die in one day.

That’s it for the SOA record. It’s followed by a list of hostnames of various types:

NS server1.centralsoft.org.;
NS server2.centralsoft.org.;

These NS records specify the nameservers for the domain (the ones you listed when
you registered the domain). Once again, the semicolon is not necessary but is conve-
nient in case you want to put a comment at the end of the line.

Next is an MX record, which identifies the mail server for the domain:

MX 10 server1.centralsoft.org.

We’ve used only one mail server in our example, but most production environments
offer several (both to handle large loads and to provide a fallback if one fails). The
second field in this record (10 in our example) can be used to indicate the order in
which MX servers should be tried; it prioritizes servers.

The MX record in our sample primary zone file is followed by several A records:

centralsoft.org. A 70.253.158.42
www A 70.253.158.42
server1 A 70.253.158.42
server2 A 70.253.158.45

An A record maps a name to an IP address. Because multiple names can be assigned
to one computer, you can have multiple A records pointing to a single IP address.
However, each hostname can have at most one A record. Our file has four A records,
mapping three names to one address and one name to a different address.

Enhancements and advanced features

If you set up a file with the contents in the preceding section, just making sure to
insert the proper hostnames and IP addresses for your environment, you’ll have a
working primary zone file. (Of course, you’ll need other files too, as we’ll explain
later.) However, you should be aware of some other useful things you can do with
the primary zone file.

MX records. As you’ve seen, a typical MX record looks like this:

MX 10 server1.centralsoft.org.

This record says that email addressed to the domain centralsoft.org should be deliv-
ered to server1.centralsoft.org (the mail server for the domain), which has a priority
of 10.

56 | Chapter 3: The Domain Name System

Priorities come into play in more complex configurations, where more than one mail
server is available. Lower numbers indicate higher priorities—think of 1 as being the
highest priority. The priority system works as follows: the remote mail server tries to
contact the server in your list with the highest priority first; if it does not respond, the
server with the next-highest priority is tried, and so on down the list. Say you list
more than one mail exchanger, as follows:

MX 10 server1.centralsoft.org.
MX 20 mail.someotherdomain.com.

Now if mail goes to centralsoft.org, the originating MTA first attempts to connect to
server1.centralsoft.org, because it has the highest priority (10). If server1.centralsoft.
org cannot be reached, the originating MTA will use the next server, mail.
someotherdomain.com, which has a priority of 20.

DNS doesn’t specify how to treat multiple mail servers with the same
priority. Many mailers choose one at random in order to implement a
rough sort of load balancing.

Until now, we’ve defined MX records only for email addressed to user@centralsoft.org.
What if you want to route email to different departments in a company or sections
within a governmental agency? You can do that by adding subdomains to your MX
records.

Thus, adding accounting.centralsoft.org would simply require another MX record:

accounting.centralsoft.org. MX 10 server1.centralsoft.org.

Note the “.” at the end of accounting.centralsoft.org.. If you do not add the
period, the origin of the zone is appended to the name. For example, if you wrote:

accounting.centralsoft.org MX 10 server1.centralsoft.org.

without a closing “.”, this would transform to accounting.centralsoft.org.centralsoft.
org, which of course is incorrect.

A records. NS and MX records use hostnames such as centralsoft.org, server1.centralsoft.
org, and server2.centralsoft.org, but the primary zone file must also specify the IP
addresses to which these names should map. A records accomplish this mapping.
Many observers consider them the most important DNS records because you can use
them to create host addresses such as www.centralsoft.org, where www is the host.

The following simple A record from our primary zone file indicates that centralsoft.
org has the IP address 70.253.158.42:

centralsoft.org. A 70.253.158.42

(Remember to add the period at the end of the hostname.)

In a browser, you’re probably used to typing www.centralsoft.org instead of central-
soft.org. www.centralsoft.org is technically totally different from centralsoft.org, but

Editing the Configuration Files | 57

most visitors expect to see the same web site regardless of whether they include the
leading www. or not. Therefore, we’ve also created this record:

www A 70.253.158.42

The www is not followed by a period, so BIND appends the origin of the zone. The
effect is the same as specifying:

www.centralsoft.org. A 70.253.158.42

Specify the IP addresses for server1.centralsoft.org and server2.centralsoft.org:

server1 A 70.253.158.42
server2 A 70.253.158.45

The record for server2.centralsoft.org points to a different IP address, which makes
sense because it is our secondary nameserver and therefore has to be on a different
system in case our primary nameserver goes down.

CNAME records. CNAME is short for canonical name; you can think of it as an alias to an A
record. For example, this:

ftp CNAME www

means that ftp.centralsoft.org is an alternative name for www.centralsoft.org, so ftp.
centralsoft.org points to the same machine as www.centralsoft.org. You may encoun-
ter situations, especially when downloading Linux packages, where the repository
looks like http://ftp.mirrors.kernel.org. In such cases it is almost certain that a CNAME
record was used to assign the ftp part of the hostname to a system that has a differ-
ent name in its A record.

A CNAME must always point to an A record, not to another CNAME. In addition, you
must not use CNAME hostnames in MX or SOA records. This, for example, is not allowed:

MX 10 ftp

The Bootstrapping Problem and Glue Records
You might wonder how server1.centralsoft.org and server2.centralsoft.org can be used
to look up records for centralsoft.org if they are in the zone that is to be looked up. This
is a classic bootstrapping problem: you can’t use the same technique to start the
lookup that you use for the bulk of the lookup.

The solution involves glue records. When the TLD servers for .org direct remote sites
to the nameservers for centralsoft.org, they normally give out a name instead of an IP
address (e.g., server1.centralsoft.org instead of 70.253.158.42). But for the authorita-
tive DNS servers in the zone being looked up, a glue record exists on the TLD server
that maps the name to an IP address (in our case, mapping server1.centralsoft.org to
70.253.158.42), and the TLD servers deliver the IP address instead of the name of the
nameserver. This means you don’t have to find it before you can ask where it is.

58 | Chapter 3: The Domain Name System

The use of CNAME records has pros and cons. Many DNS specialists advise against
their use. Still, you might find that CNAME records have some value. For example, if
your DNS directory contains many A records pointing to the same IP address and you
move to another hosting service that assigns a different IP address, you’ll have to
update every A record. But if you have just one A record and all your other host-
names are in CNAME records, you’ll only have to update one A record. So, we believe
that CNAME records still have a place in the DNS pantheon.

TXT and SPF records. TXT records let you add text to a zone. People primarily use TXT
records to embed SPF (Sender Policy Framework) records, which control whether
mail exchangers should accept email addressed from their domains. The larger email
providers, such as Yahoo! and Hotmail, now rely heavily on SPF records to prevent
spammers from forging email addresses with the providers’ domain names. If email
arrives from a machine that is not listed in the SPF record, an MTA may classify it as
spam.

A wizard for creating SPF records can be found at http://www.openspf.org/wizard.
html?mydomain=&x=26&y=8. We used this wizard to create two SPF records for
centralsoft.org, then embedded them in TXT records and added them to our zone file:

centralsoft.org. TXT "v=spf1 a mx ~all"
server1.centralsoft.org. TXT "v=spf1 a -all"

Putting it all together

Now let’s look at our zone file, pri.centralsoft.org. Note that we’ve added CNAME and
TXT records to the pieces discussed earlier:

@ IN SOA server1.centralsoft.org. root.localhost. (
 2006012103; serial-no
 28800; refresh, seconds
 7200; retry, seconds
 604800; expiry, seconds
 86400); minimum-TTL, seconds

;
 NS server1.centralsoft.org.;
 NS server2.centralsoft.org.;

;
 MX 10 server1.centralsoft.org.

;

centralsoft.org. A 70.253.158.42
www A 70.253.158.42
server1 A 70.253.158.42
server2 A 70.253.158.45
ftp CNAME www
centralsoft.org. TXT "v=spf1 a mx ~all"
server1.centralsoft.org. TXT "v=spf1 a -all"

http://www.openspf.org/wizard.html?mydomain=&x=26&y=8
http://www.openspf.org/wizard.html?mydomain=&x=26&y=8

Editing the Configuration Files | 59

The Reverse Zone File
With our primary zone file completed, programs can look up the centralsoft.org
domain and all its subdomains in DNS. But we still need a reverse zone file.

A reverse zone file maps IP addresses to names. It looks almost like a mirror of the
primary zone file; instead of listing the names first, the reverse zone file lists the IP
addresses first.

Why might someone use a reverse zone file? In the past, many organizations would
refuse to allow you to use their services if they could not ping your domain name in
reverse. Today, many Internet servers use reverse lookups to verify the origins of
email to stop spammers; this is the purpose of the SPF records discussed earlier.

The system we’ve described here deals with a mail-relaying problem that will be
explained further in Chapter 5. DNS indicates which MTA is responsible for mail
from the domain listed in the email sender’s address. Many spammers try to relay
mail using different MTAs, but the receiving mail agent can do a reverse lookup, spot
the irregularity, and refuse the unwanted email.

Since we don’t want emails originating from the centralsoft.org domain to be classi-
fied as spam, we’ll create a reverse zone file. First, to point to this file, we have to
place this entry in our named.conf file:

zone "158.253.70.in-addr.arpa" {
 type master;
 file "pri.158.253.70.in-addr.arpa";
};

The numbers may look strange, but they follow a simple pattern. centralsoft.org is in
the 70.253.158 net, so we reverse the elements of 70.253.158 to produce 158.253.70
and use that in the zone statement in named.conf. The domain in-addr.arpa is the
top-level domain used by all reverse lookups.

We’ll name our reverse zone file pri.158.253.70.in-addr.arpa and place the file in the
same directory as our primary zone file, pri.centralsoft.org.

The beginning of pri.158.253.70.in-addr.arpa looks exactly like pri.centralsoft.org:

@ IN SOA server1.centralsoft.org. root.localhost. (
 2006012103; serial-no
 28800; refresh, seconds
 7200; retry, seconds
 604800; expiry, seconds
 86400); minimum-TTL, seconds

;
 NS server1.centralsoft.org.;
 NS server2.centralsoft.org.;

But here, we do not add any A, MX, or CNAME records. Instead, we create PTR records.

60 | Chapter 3: The Domain Name System

PTR records

PTR is short for Pointer, and that’s what it is: a pointer to a domain name. Let’s create
one by starting with the IP address of centralsoft.org, 70.253.158.42. The named.conf
file has already indicated, through the zone statement we showed in the previous sec-
tion, that this file defines hosts in the 70.253.158 domain. So all the PTR record has to
specify is the final host part of the IP address, 42:

42 PTR centralsoft.org.

Create exactly one PTR record for each IP address in your domain. For our example,
the only other IP address we use is 70.253.158.45 (for server2.centralsoft.org), so we
add:

45 PTR server2.centralsoft.org.

That’s all. Our reverse zone file looks now like this:

@ IN SOA server1.centralsoft.org. root.localhost. (
 2006012103; serial-no
 28800; refresh, seconds
 7200; retry, seconds
 604800; expiry, seconds
 86400); minimum-TTL, seconds

;
 NS server1.centralsoft.org.;
 NS server2.centralsoft.org.;

42 PTR centralsoft.org.
45 PTR server2.centralsoft.org.

Testing Lookups
Once you’ve edited all the configuration and zone files, you need to let BIND know
about your changes. You can stop and start named as follows:

/etc/init.d/bind9 stop
/etc/init.d/bind9 start

If you get any errors or if your BIND service does not act as expected, please see the
upcoming troubleshooting section for details on the most common problems.

In the future, if the only change you perform is to update a zone file with a new DNS
entry for the corresponding domain, it is enough tell BIND to just reload its informa-
tion about this zone (rather than restarting the entire service):

rndc reload centralsoft.org

The rndc command will be discussed in more detail shortly.

Now we can test our configuration by doing a lookup with the command-line tool
dig. First, we’ll look up the IP address of centralsoft.org:

Editing the Configuration Files | 61

dig centralsoft.org

; <<>> DiG 9.2.1 <<>> centralsoft.org
;; global options: printcmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 48489
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 0, ADDITIONAL: 0

;; QUESTION SECTION:
;centralsoft.org. IN A

;; ANSWER SECTION:
centralsoft.org. 86400 IN A 70.253.158.42

;; Query time: 198 msec
;; SERVER: 81.169.163.104#53(81.169.163.104)
;; WHEN: Sat Mar 11 18:55:21 2006
;; MSG SIZE rcvd: 49

As you see, this lookup returns the IP address 70.253.158.42.

Now we can do a reverse lookup:

dig -x 70.253.158.42

; <<>> DiG 9.2.1 <<>> -x 70.253.158.42
;; global options: printcmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 4096
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 0, ADDITIONAL: 0

;; QUESTION SECTION:
;42.158.253.70.in-addr.arpa. IN PTR

;; ANSWER SECTION:
42.158.253.70.in-addr.arpa. 5304 IN PTR centralsoft.org.

;; Query time: 2 msec
;; SERVER: 81.169.163.104#53(81.169.163.104)
;; WHEN: Sat Mar 11 18:57:54 2006
;; MSG SIZE rcvd: 98

The forward and reverse lookups match each other. Our primary server setup is
complete.

Configuring the Secondary Nameserver
Next, let’s set up our secondary nameserver, server2.centralsoft.org. It will act as a
backup nameserver in case the primary (server1.centralsoft.org) fails, so that people
can still look up centralsoft.org and its subdomains.

62 | Chapter 3: The Domain Name System

server2.centralsoft.org’s named.conf file resembles that of the primary nameserver,
with a few differences:

options {
 pid-file "/var/run/bind/run/named.pid";
 directory "/etc/bind";
 // query-source address * port 53;
};

zone "." {
 type hint;
 file "db.root";
};

zone "0.0.127.in-addr.arpa" {
 type master;
 file "db.local";
};

zone "centralsoft.org" {
 type slave;
 file "sec.centralsoft.org";
 masters { 70.253.158.42; };
};

The most important difference is one we discussed earlier in this chapter. The type
slave; line in the final zone statement indicates that this is a slave zone. In the file
line we specify the filename where the slave zone should be stored, and in the
masters line we specify the IP address of the primary nameserver.

That’s all we have to do to set up the secondary nameserver.

Restart named on server2.centralsoft.org, and soon after you should find the file /etc/
bind/sec.centralsoft.org on your secondary nameserver. What has happened? The sec-
ondary nameserver has contacted the primary nameserver, which has transferred the
zone to it.

Now whenever you update a zone on the primary nameserver, make sure the serial
number increases. Otherwise, the updated zone will not transfer to the secondary
nameserver.

BIND Tools
As we mentioned early in this chapter, BIND comes in three pieces: the named dae-
mon, the resolver library, and some tools.

One tool you have already used is dig, which administrators use to interrogate DNS
nameservers. dig does a DNS lookup and displays both the answers returned from
the nameservers and statistics about the query.

BIND Tools | 63

Most DNS administrators use dig to troubleshoot DNS problems because of its flexi-
bility, ease of use, and clarity. Other lookup tools tend to have less functionality.
One alternative you should be aware of, however, is nslookup. We’ll also take a look
at rndc, a useful administration tool that’s included with BIND.

nslookup
nslookup works similarly to dig but is deprecated in Linux. Using it requires more
work, but you should be familiar with it because Microsoft Windows still uses it as
its primary lookup tool.

nslookup queries Internet domain nameservers in two modes: interactive and nonin-
teractive. The interactive mode allows you to query nameservers for information
about various hosts and domains, or to print a list of hosts in a domain.

The noninteractive mode simply prints the name and requested information for a
host or domain. For example, you could run the following lookup to find some infor-
mation about Google’s server:

nslookup ns1.google.com
Server: 68.94.156.1
Address: 68.94.156.1#53

Non-authoritative answer:
Name: ns1.google.com
Address: 216.239.32.10

In interactive mode, nslookup provides a prompt where you can execute commands.
For example:

nslookup
>

From the prompt you can do simple lookups, such as on an IP address:

> 70.253.158.42
Server: 172.30.1.2
Address: 172.30.1.2#53

Non-authoritative answer:
42.158.253.70.in-addr.arpa name = adsl-70-253-158-42.dsl.rcsntx.swbell.net.

Authoritative answers can be found from:
158.253.70.in-addr.arpa nameserver = ns1.swbell.net.
158.253.70.in-addr.arpa nameserver = ns2.swbell.net.
>

You can also execute several commands, including lserver (which uses your local
server to do a lookup), server (which uses another server to do a lookup), and host.
The lserver command produces output like the following:

> lserver google.com
Default server: google.com

64 | Chapter 3: The Domain Name System

Address: 64.233.167.99#53
Default server: google.com
Address: 64.233.187.99#53
Default server: google.com
Address: 72.14.207.99#53

The host subcommmand provides a simple utility for performing lookups. When no
arguments or options are given, host prints a short summary of its command-line
arguments and options. People use it primarily to convert names to IP addresses and
vice versa. Here’s an example:

> host centralsoft.org
centralsoft.org has address 70.253.158.42

When you put host in verbose mode with the -v option, it provides information simi-
lar to the dig command:

> host -v centralsoft.org
Trying "centralsoft.org"
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 43756
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 1, ADDITIONAL: 0

;; QUESTION SECTION:
;centralsoft.org. IN A

;; ANSWER SECTION:
centralsoft.org. 86400 IN A 70.253.158.42

;; AUTHORITY SECTION:
centralsoft.org. 29437 IN NS server1.centralsoft.org.

Received 71 bytes from 68.94.156.1#53 in 30 ms

This information came from the IP address 68.94.156.1, port number 53, which is
the nameserver specified in the resolv.conf file of the desktop performing the lookup.

You can use host again to find out the name of that server:

> host 68.94.156.1
1.156.94.68.in-addr.arpa domain name pointer dnsr1.sbcglobal.net.

Type exit to quit an interactive nslookup session.

You can also use named to do troubleshooting in some instances. For example, to find
out the version number of your BIND implementation, run the following command:

named -v
named 8.4.6-REL-NOESW Tue Feb 1 10:10:48 UTC 2005
 buildd@rockhopper:/build/buildd/bind-8.4.6/src/bin/named

rndc
BIND provides the rndc command as part of the installation. rndc allows you to
administer named using the command line. The utility sends the commands given on

BIND Tools | 65

the command line to the running named server, which acts on them. rndc is also used
by the BIND 9 system initialization script.

To prevent unauthorized users from accessing your nameserver, you should use a
shared secret key to authenticate the access. In order for rndc to issue commands to
any named server, even on a local machine, both must share the same key. This key
is stored in the file /etc/bind/rndc.key, and both named and rndc will read the key
from this location. The rndc.key file should have been created during the installation
of BIND.

The rndc command takes the following form:

rndc rndc-options command command-options

The following are commonly useful rndc-options you might want to use (read the
rndc manpage to see the full list):

-k key-file
Use the specified key-file in place of the default /etc/bind/rndc.key file.

-s server
Send the command to the specified server instead of the local server.

-V
Enable verbose logging for this command.

Here are some of the more commonly used commands that rndc can send to named
(for a complete list of the commands, simply type the rndc command by itself):

halt
Stop the nameserver immediately.

querylog
Enable or disable logging of all queries made by clients to this nameserver. This
is a toggling command: it switches logging on if it is currently off, and vice versa.

reload [zone]
Reload the zone files, but keep all other previously cached responses. This allows
you to make changes to zone files and have them take effect on your master and
slave servers without losing all stored name resolutions. If your changes affected
only a particular zone, you can tell named to reload only that zone.

retransfer zone
Force the retransfer of the specified zone without checking the serial number.

stats
Dump the current named statistics to the named.stats file.

status
Show the current status of the nameserver.

stop
Stop the server gracefully, saving any dynamic update data before exiting.

66 | Chapter 3: The Domain Name System

Troubleshooting BIND
At this point in the chapter, you should have a functional knowledge of DNS. You
should also know how to configure your files and how to find syntax problems in
them, such as typographical errors. In this section we will cover some basic, com-
mon problems that you may encounter when getting BIND and DNS working. This
is not an exhaustive treatise, but it should help you get DNS running on your Linux
server if you have problems getting your domain to resolve hostnames or do zone
transfers.

The Domain Name System is designed very robustly, but strange
errors can still occasionally happen. By strictly following the patterns
for creating zone files described earlier in this chapter, you can avoid
subtle problems that are beyond this book’s scope.

Cannot Connect Using rndc
To begin, let’s see a healthy indication of DNS resolution. Earlier, we discussed using
the rndc status command to show the current running status of our DNS server. Let’s
try logging onto the server as root and running the command:

server1:~# rndc status
number of zones: 6
debug level: 0
xfers running: 0
xfers deferred: 0
soa queries in progress: 0
query logging is OFF
server is up and running
server1:~#

The rndc command depends on a shared key file at /etc/bind/rndc.key for named to
accept its commands. Problems with that file can prevent rndc from sending the
commands. Here is an example of what we would see if the key file were missing:

server1:~# rndc status
rndc: neither /etc/bind/rndc.conf nor /etc/bind/rndc.key was found
server1:~#

We can verify that the file is indeed missing with this command:

server1:~# ls -l /etc/bind/rndc.key
ls: /etc/bind/rndc.key: No such file or directory

We can fix the problem by regenerating the file the same way the BIND initialization
did:

server1:~# rndc-confgen -a
server1:~# ls -l /etc/bind/rndc.key
-rw------- 1 root bind 77 Jul 19 22:38 /etc/bind/rndc.key
server1:~#

Troubleshooting BIND | 67

Because named does not have this new key, we must now kill the named process and
restart it. For this we make use of the system command killall, which takes the full
pathname of the named program. To stop named as gracefully as possible, we do two
killall commands with a few seconds pause in between, then restart named:

server1:~# killall -TERM /usr/sbin/named
server1:~# killall -KILL /usr/sbin/named
/usr/sbin/named: no process killed
server1:~# /etc/init.d/bind9 start
Starting domain name service: named.
server1:~# rndc status
number of zones: 6
debug level: 0
xfers running: 0
xfers deferred: 0
soa queries in progress: 0
query logging is OFF
server is up and running
server1:~#

named Starts but Does Not Resolve Names
Now, let’s look at situations where named isn’t running properly. Incorrectly located
BIND files often cause problems, especially in chroot environments where the BIND
files are placed in an isolated directory.

If named starts OK but does not load any zone files, they may not be present in the
isolated directory. You’ll need to look at the /var/log/syslog file to see if that’s the
case. Here’s an example from the log:

starting BIND 9.2.4 -u bind -t /var/lib/named
using 1 CPU
loading configuration from '/etc/bind/named.conf'
listening on IPv4 interface lo, 127.0.0.1#53
listening on IPv4 interface eth0, 70.253.158.42#53
command channel listening on 127.0.0.1#953
command channel listening on ::1#953
running

The log shows that BIND has started, but it includes no lines indicating that the zone
files were loaded. Because named runs inside the chroot environment at /var/lib/
named, it will look for all files relative to that directory. So really, it’s reading the file
/var/lib/named/etc/bind/named.conf for the list of zones to load. Each of those zone
files must be placed relative to the /var/lib/named directory.

Another common error is a connection failure involving rndc when reloading or
restarting the nameserver:

/etc/init.d/ bind9 reload
Stopping named: rndc: connect failed: connection refused
[OK]
Starting named: [OK]
#

68 | Chapter 3: The Domain Name System

This type of error can also happen as a result of running BIND in a chroot environ-
ment, when one or more files are missing from the isolation directory. You can check
some of the essential files to be sure they are in the proper locations:

ls -l /var/lib/named/etc/bind/named.conf
-rw-r--r-- 1 root bind 1611 2006-09-07 12:21 /var/lib/named/etc/bind/named.conf
ls /var/lib/named/etc/bind/
db.0 db.local named.conf.local pri.centralsoft.org
db.127 db.root named.conf.options pri.opensourcetoday.org
db.255 named.conf pri.156.18.67.in-addr.arpa rndc.key
db.empty named.conf~ pri.156.18.67.in-addr.arpa~ zones.rfc1918
#
...

If these files do not exist, the chroot environment is not set up properly or com-
pletely. Return to the section “Using a chroot Environment for Security” near the
beginning of this chapter and follow its instructions carefully to ensure every file is in
place.

Once you’ve fixed the problem, you’ll need to stop and restart named to enable rndc
to reach the running server. Use the killall command sequence described in the previ-
ous section:

server1:~# killall -TERM /usr/sbin/named
server1:~# killall -KILL /usr/sbin/named
/usr/sbin/named: no process killed
server1:~# /etc/init.d/bind9 start
Starting domain name service: named.
server1:~#

Next, check your /var/log/syslog file to see whether the zone files loaded. You should
see something like this:

starting BIND 9.2.4 -u bind -t /var/lib/named
using 1 CPU
loading configuration from '/etc/bind/named.conf'
listening on IPv4 interface lo, 127.0.0.1#53
listening on IPv4 interface eth0, 70.253.158.42#53
command channel listening on 127.0.0.1#953
command channel listening on ::1#953
zone 0.0.127.in-addr.arpa/IN: loaded serial 1
zone 158.253.70.in-addr.arpa/IN: loaded serial 2006070401
zone centralsoft.org/IN: loaded serial 2006070502
zone supportcall.org/IN: loaded serial 2006062704
running

Hosts Aren’t Recognized
The next step in checking for correct DNS operation is to be sure queries for your
hostnames are answered properly. First, you need to be sure the /etc/resolv.conf file
lists your nameservers with the correct addresses. Most programs use the addresses
from this file to determine which nameservers to query, and in which order:

Troubleshooting BIND | 69

server1:~# cat /etc/resolv.conf
search centralsoft.org
nameserver 70.253.158.42
nameserver 70.253.158.45
server1:~#

The host command does a simple DNS lookup using the servers listed in the /etc/
resolv.conf file. It takes the host you want to look for as an argument, and an
optional second argument makes the command query a specific nameserver. Here
are two examples of the host command and its results:

server1:~# host www.centralsoft.org
www.centralsoft.org has address 70.253.158.42
server1:~# host www.centralsoft.org server2.centralsoft.org
Using domain server:
Name: server1.centralsoft.org
Address: 70.253.158.45#53
Aliases:

www.centralsoft.org has address 70.253.158.42
server1:~#

An alternative to host is the dig command, which is more complex but provides more
detailed answers. It also has more options that enable you make very specific queries.

The output from dig is formatted in the syntax of a zone file. This is convenient,
because once you’ve learned how records are formatted in a zone file you can easily
understand all the details of those records in dig’s output. dig also provides some
additional information about the results of the query in the form of zone-format
comments beginning with the “;” character.

Let’s take a look at the result of a dig command. Many lines of dig’s output are very
long and do not fit this book’s page layout. In the following printout, they are
wrapped around to the next line. You’ll likely see similar results when running this
command in your shell session:

server1:~# dig www.centralsoft.org a

; <<>> DiG 9.2.4 <<>> www.centralsoft.org a
;; global options: printcmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 1633
;; flags: qr aa rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 2, ADDITIONAL: 2

;; QUESTION SECTION:
;www.centralsoft.org. IN A

;; ANSWER SECTION:
www.centralsoft.org. 86400 IN A 70.253.158.42

;; AUTHORITY SECTION:
centralsoft.org. 86400 IN NS server1.centralsoft.org.
centralsoft.org. 86400 IN NS server2.centralsoft.org.

70 | Chapter 3: The Domain Name System

;; ADDITIONAL SECTION:
server1.centralsoft.org. 86400 IN A 70.253.158.42
server2.centralsoft.org. 86400 IN A 70.253.158.45

;; Query time: 1 msec
;; SERVER: 70.253.158.42#53(70.253.158.42)
;; WHEN: Mon Jul 17 23:30:51 2006
;; MSG SIZE rcvd: 129

server1:~#

The first part of the output indicates various status codes and flags. Pay particular
attention to status value on the fourth line. In this example, the value is NOERROR.
Any other value likely indicates a problem of some sort.

The actual zone data comes in four sections:

QUESTION
This section actually details the query itself. It is displayed as a comment because
it is not something that should be in a zone file.

ANSWER
This section contains the actual results requested by the query. It will show the
specific records requested, if available, or all records if the special query record
type any is used.

AUTHORITY
This section identifies the official nameservers for the zone for which the answer
came.

ADDITIONAL
This section provides the addresses of some or all of the names from the prior
sections, to save you the trouble of doing more queries for that information.

Now let’s take a look at what you would get if there was an error. The previous
example used a valid hostname for the web server. This time we will query for the
name of an FTP server that we have not configured into our zone file:

server1:~# dig ftp.centralsoft.org a

; <<>> DiG 9.2.4 <<>> ftp.centralsoft.org a
;; global options: printcmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NXDOMAIN, id: 6531
;; flags: qr aa rd ra; QUERY: 1, ANSWER: 0, AUTHORITY: 1, ADDITIONAL: 0

;; QUESTION SECTION:
;ftp.centralsoft.org. IN A

;; AUTHORITY SECTION:
centralsoft.org. 86400 IN SOA server1.centralsoft.org. admin.
centralsoft.org. 2006070502 28800 7200 604800 86400

What’s Next | 71

;; Query time: 1 msec
;; SERVER: 70.253.158.42#53(70.253.158.42)
;; WHEN: Mon Jul 17 23:30:59 2006
;; MSG SIZE rcvd: 87

server1:~#

Notice that the status for this query is NXDOMAIN, which essentially means “no such
domain name.” If you leave out or misspell a hostname in the zone file, you’ll get this
error.

Another kind of error that you may see with dig is when a domain name is delegated
to your nameserver, but that domain is not configured in the server or otherwise fails
to load. This error returns a status of SERVFAIL. If you see this error for one of your
domains, you need to add the domain to your named.conf file and ensure that there
is a valid zone file for it. If the error recurs after you have done those steps, check the
/var/log/syslog file for any messages about why the zone was not loaded. We’ll dem-
onstrate the problem with a domain name that is registered, but not currently in use:

server1:~# dig linhelp.org a

; <<>> DiG 9.2.4 <<>> linhelp.org a
;; global options: printcmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: SERVFAIL, id: 29949
;; flags: qr rd ra; QUERY: 1, ANSWER: 0, AUTHORITY: 0, ADDITIONAL: 0

;; QUESTION SECTION:
;linhelp.org. IN A

;; Query time: 2 msec
;; SERVER: 70.253.158.42#53(70.253.158.42)
;; WHEN: Mon Jul 17 23:47:14 2006
;; MSG SIZE rcvd: 37

server1:~#

What’s Next
By now you should be familiar with the basics of DNS and BIND. Administrators in
small-to-medium-size businesses may find that the information in this chapter is all
they ever need, but enterprise system administrators are sure to encounter issues
more complex than those that can be covered in a single chapter.

Several books exist that can provide much more detailed information for large enter-
prise and DNS administrators. These include DNS and BIND by Cricket Liu and
Paul Albitz (O’Reilly), DNS & BIND Cookbook by Cricket Liu (O’Reilly), Pro DNS
and BIND by Ron Aitchison (Apress), and DNS in Action: A Detailed and Practical
Guide to DNS Implementation, Configuration, and Administration by L. Dostalek and
A. Kableova (Packt).

72 | Chapter 3: The Domain Name System

Now that you have a working nameserver answering queries and being backed up by
a slave or secondary server, in the next chapter you can move on to installing a web
service application. The new application will utilize the services you set up in
Chapter 2. Once the application, called ISPConfig, is set up and running, you’ll have
a working example of a fully operational web site. We can then begin exploring how
to administer the complete suite of Linux services found on the Internet.

73

Chapter 4 CHAPTER 4

An Initial Internet-Ready
Environment

One of Linux’s great traits is its flexibility. Commercial companies such as Cisco
have hidden Linux under very simple interfaces to make its Linksys routers and other
products user-friendly. We can do that, too.

ISPConfig (http://ispconfig.org), a user-friendly Linux project under a free software
(BSD) license, allows us to build a multifunctional, working Internet server from a
single downloadable application. Once we install it, we will have a tool that helps us
to configure and easily maintain a server that allows us to manage web sites; provide
domain name services; perform email and file transfers; and add users, administra-
tors, and others who can access the system for various administrative tasks. Oh, and
did we mention we can do all those administration tasks from a graphical interface?

We selected ISPConfig primarily because it allows us to deploy powerful server
applications on Linux without sacrificing any power or flexibility. Furthermore:

• ISPConfig uses standard daemons that come with Linux distributions. We’ll use
Apache for serving web sites, Postfix for email, ProFTPD for FTP, BIND for
DNS, and MySQL as the backend database.

• Installation of ISPConfig automatically configures the various server components.

• The packages included in ISPConfig work with most available distributions of
Linux.

• Standard packages from the distributions can be used.

• Support for each bundled component can be found on the Internet.

• The ISPConfig team provides online support for the entire application.

As you progress through this chapter, you should gain a pretty good idea of what’s
involved in getting the various services a server provides up and running. You’ll also
learn how to decide whether your needs allow you to use a visual administrative
panel instead of a command-line interface.

http://ispconfig.org

74 | Chapter 4: An Initial Internet-Ready Environment

ISPConfig itself does not provide a command-line interface. Instead, it lets you man-
age servers though a web-based administrative interface, or panel, described later in
this chapter. You’ll have to do some command-line work at the beginning of the
chapter, when setting up ISPConfig so it can install everything else subsequently, but
in later sections we’ll focus entirely on this visual interface.

ISPConfig’s web application panel simplifies the execution of many Linux adminis-
trative tasks, but it’s important to know how to use standard command-line utilities
to accomplish the same results. We’ll cover those topics in later chapters. You won’t
be tied to ISPConfig; if you choose to do without it, you will have the knowledge to
do so.

Installing ISPConfig
ISPConfig comes from Projektfarm GmbH. Till Brehm and Falko Timme developed
the application, which they originally sold as a proprietary system marketed on http://
42go.de. Now you can download it from http://sourceforge.net/projects/ispconfig.

The project configures these services:

• httpd (virtual hosts, domain-based and IP-based)

• FTP

• BIND

• POP3 autoresponder

• MySQL client databases

• Webalizer statistics

• Hard disk quotas

• Mail quotas

• Traffic limits

• IP addresses

• SSL

• SSI

• Shell access

• Mailscanner (antivirus)

• Firewall

Requirements
At the time of this writing, system requirements include:

http://42go.de
http://42go.de
http://sourceforge.net/projects/ispconfig

Installing ISPConfig | 75

Operating system
Linux (2.4 kernel or later with the glibc6 library). The following distributions are
supported:

• CentOS 4.1, 4.2, 4.3, and 4.4

• Debian Version 3.0 or later

• Fedora Core 1 through 6

• Mandrake Linux Version 8.1 or later

• Mandriva 2006 and 2007

• Red Hat Linux Version 7.3 or later

• SUSE Linux Version 7.2 or later

• Ubuntu 5.04 through 6.10

Linux packages
The project maintainers list the specific Linux distribution components that
need to be installed on your system before you can install ISPConfig. These
include:

• Apache web server Version 1.3.12 or later, or 2.0.40 or later

• BIND 8 or 9

• iptables or ipchains

• MySQL database

• OpenSSL and mod_ssl for the creation of SSL virtual hosts

• PHP 4.0.5 or later as an Apache module

• POP3/IMAP daemon that supports either the traditional Unix mailbox for-
mat (e.g., gnu-pop3d, qpopper, ipop3d, popa3d, or vm-pop3d) or the maildir
format (e.g., Courier-Imap, Dovecot)

• Procmail

• ProFTP as standalone version or vsftpd as inetd/xinetd/standalone version

• quota package

• Sendmail or Postfix

It is important to understand that that these servers and packages must already
be installed on your system, as described in Chapter 2, before you install ISP-
Config. ISPConfig does not come with these services, but requires that they
already exist on your system. The advantage of this approach is that you can use
your distribution’s default packages and can later update them as you would
normally update packages on your system using your distribution’s tools. You
don’t have to compile these services from the sources with specific options for
use with ISPConfig—the default packages will do.

76 | Chapter 4: An Initial Internet-Ready Environment

ISPConfig sets up two directories containing the files and subdirectories that make
up the application panel: /root/ispconfig and /home/admispconfig. You can uninstall
ISPConfig and go back to a standard text-based server by running /root/ispconfig/
uninstall; some readers may choose to do that after working for a while with this
book.

Getting Started
Like many Linux and Unix packages, ISPConfig is provided as a set of files com-
bined with the tar utility, the result of which is often called a tarball. When you click
on the Download link at http://sourceforge.net/projects/ispconfig, it will lead you to
one of the SourceForge site’s mirrors. A typical site containing ISPConfig is http://
superb-west.dl.sourceforge.net/sourceforge/ispconfig/ISPConfig-2.2.6.tar.gz.

You can just click the Download link to download the file, but because the file is
quite large, you may find it useful to copy the URL and paste it into a wget com-
mand in your terminal window. The advantage of using wget is that you can recover
easily if something disrupts your download. If you issue the command with the -c
option, you can resume the download rather than starting again from scratch: if the
download gets aborted, simply rerun the wget command as before and it will resume
where it left off.

In this chapter we’ll assume you start in a directory called /root on your system. You
can download the ISPConfig tarball with this command (on one line, substituting the
URL for the most recent version on the SourceForge site):

wget -c http://superb-west.dl.sourceforge.net/sourceforge/ispconfig/ISPConfig-2.2.
6.tar.gz

Your terminal will display messages similar to the following:

--16:20:48-- http://superb-west.dl.sourceforge.net/sourceforge/ispconfig/ISPConfig-
2.2.1.tar.gz
 => `ISPConfig-2.2.1.tar.gz'

Special ISPConfig Daemons
In addition to managing the applications you already have installed on your system,
ISPConfig maintains its own versions of a few applications for its own use. You can
find sources for these in the install_ispconfig/compile_aps directory of the package.
These redundant services exist so that you can continue to manage ISPConfig even if
the regular services (such as your public Apache web server) go down.

ISPConfig allows both the public and internal servers to run by using a nonstandard
port for the internal server. For instance, ISPConfig’s internal Apache server listens on
port 81 instead of port 80, which is typically used by the distribution’s web server that
hosts the publicly available web sites.

http://sourceforge.net/projects/ispconfig
http://superb-west.dl.sourceforge.net/sourceforge/ispconfig/ISPConfig-2.2.6.tar.gz
http://superb-west.dl.sourceforge.net/sourceforge/ispconfig/ISPConfig-2.2.6.tar.gz

Installing ISPConfig | 77

Resolving superb-west.dl.sourceforge.net... 209.160.59.253
Connecting to superb-west.dl.sourceforge.net|209.160.59.253|:80... connected.
HTTP request sent, awaiting response... 200 OK
Length: 26,633,490 (25M) [application/x-gzip]
24% [========>] 6,533,049 252.80K/s ETA 01:32

Unpack the ISPConfig-archive with the command:

tar xvfz ISPConfig*.tar.gz

which creates a subdirectory called install_ispconfig. Change into the directory /root/
install_ispconfig. Check the file dist.txt and see whether the values given there suit
your Linux server.

For Debian 3.1, the values in dist.txt look something like this:

dist_init_scripts=/etc/init.d ## # debian31
dist_runlevel=/etc ## # debian31

The file contains 19 additional values for Debian that we will not list here. Unless
you have significant proficiency with Linux administration and familiarity with ISP-
Config, stick to the default values. They should work so long as you are using one of
the supported distributions listed earlier in this chapter. Knowledgeable administra-
tors can change values, so long as the format of the file is preserved.

Now start the installation. Run the installation command ./setup from the root
prompt. The installer script will begin by compiling Apache with PHP 5 running on
port 81. First, you will be asked to choose your language:

server2:~/install_ispconfig # ./setup
SuSE 10.0
Neuinstallation eines ISPConfig-Systems. / Installation of a new ISPConfig system. /
Installation d'ISPConfig sur un nouveau systeme.
Whlen Sie Ihre Sprache (deutsch/englisch/spanisch/franzsisch/italienisch/
niederlndisch/polnisch/
schwedisch): / Please choose your language (German/English/Spanish/French/Italian/
Dutch/Polish/Swedish): / Merci de choisir votre langue (Allemand/Anglais/Espagnol/
Francais/Italien/Nerlandais/Polonais/Sudois):
1) de
2) en
3) es
4) fr
5) it
6) nl
7) pl
8) se
Ihre Wahl: / Your Choice: / Votre Choix:

You will see a warning screen:

With the system installation, some system files are replaced where adjustments were
made. This can lead to loss of entries in httpd.conf, named.conf as well as in the
Sendmail configuration.
Do you want to continue with the installation? [y/n] y

78 | Chapter 4: An Initial Internet-Ready Environment

The system will display a license, which you should read and then accept:

Do you accept the license? [y/n] y

The installation program will proceed to ask you questions about your system setup
(e.g., which MTA, FTP server, web server, logs, etc. to use). Because you have
already installed these packages on your system, you should be able to answer all of
the questions.

During the early part of the installation, the script will ask you in which mode you
want to run the installation. Select expert mode:

1) standard
2) expert
Your Choice: 2

In expert mode, you will be given additional choices for which ISPConfig assigns
defaults in standard mode.

When prompted for a default directory, you can choose any directory you like, but
make sure it is on a partition with enough disk space for the web sites you plan to
host. Furthermore, if you want to configure quotas with ISPConfig, make sure you
enabled quotas for that partition as described in Chapter 2. If you want to enable
suExec for web sites that are allowed to run Perl/CGI scripts, the directory should
be within suExec's document root. On Debian and Fedora/Red Hat, suExec's default
document root is /var/www, while on SUSE it's /srv/www. If you're enabling suExec,
the document root is a good choice for the directory in which to put ISPConfig:
########## WEB SERVER ##########
Checking for program httpd...
/usr/sbin/httpd
OK
Checking the syntax of the httpd.conf...
Syntax OK
The syntax is ok!
Web-Root: /home/www
Is this correct? [y/n] n
Web-Root: /var/www

suExec is a security enhancement on a web server that requires CGI
scripts to be owned and run by certain users.

At this point, the installation begins by compiling the Apache server that will be used
for presenting the ISPConfig web interface on port 81. When the ISPConfig Apache
build completes, you will see a custom SSL certificate compiled. The installation pro-
gram will ask you to provide several values. You can accept the default values or
enter your own. The screen will look similar to the following:

SSL Certificate Generation Utility (mkcert.sh)
Copyright (c) 1998-2000 Ralf S. Engelschall, All Rights Reserved.
Generating custom certificate signed by own CA [CUSTOM]
___ _

Installing ISPConfig | 79

STEP 0: Decide the signature algorithm used for certificates
The generated X.509 certificates can contain either
RSA or DSA based ingredients. Select the one you want to use.
Signature Algorithm ((R)SA or (D)SA) [R]:
___ _
STEP 1: Generating RSA private key for CA (1024 bit) [ca.key]
1698765 semi-random bytes loaded
Generating RSA private key, 1024 bit long modulus
............++++++
.........++++++
e is 65537 (0x10001)
___ _
STEP 2: Generating X.509 certificate signing request for CA [ca.csr]
You are about to be asked to enter information that will be incorporated
into your certificate request.
What you are about to enter is what is called a Distinguished Name or a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter '.', the field will be left blank.
1. Country Name (2 letter code) [XY]:
2. State or Province Name (full name) [Snake Desert]:
3. Locality Name (e.g, city) [Snake Town]:
4. Organization Name (e.g, company) [Snake Oil, Ltd]:
5. Organizational Unit Name (e.g, section) [Certificate Authority]:
6. Common Name (eg, CA name) [Snake Oil CA]:
7. Email Address (e.g, name@FQDN) [ca@snakeoil.dom]:
8. Certificate Validity (days) [365]:
__ _
STEP 3: Generating X.509 certificate for CA signed by itself [ca.crt]
Certificate Version (1 or 3) [3]:
Signature ok
subject=/C=XY/ST=Snake Desert/L=Snake Town/O=Snake Oil, Ltd/OU=Certificate Authority/
CN=Snake Oil CA/emailAddress=ca@snakeoil.dom
Getting Private key
Verify: matching certificate & key modulus
Verify: matching certificate signature
../conf/ssl.crt/ca.crt: /C=XY/ST=Snake Desert/L=Snake Town/O=Snake Oil, Ltd/
OU=Certificate Authority/CN=Snake Oil CA/emailAddress=ca@snakeoil.dom
error 18 at 0 depth lookup:self signed certificate
OK
___ _
STEP 4: Generating RSA private key for SERVER (1024 bit) [server.key]
1698765 semi-random bytes loaded
Generating RSA private key, 1024 bit long modulus
...........................++++++
.............++++++
e is 65537 (0x10001)
___ _
STEP 5: Generating X.509 certificate signing request for SERVER [server.csr]
You are about to be asked to enter information that will be incorporated
into your certificate request.
What you are about to enter is what is called a Distinguished Name or a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,

80 | Chapter 4: An Initial Internet-Ready Environment

If you enter '.', the field will be left blank.
1. Country Name (2 letter code) [XY]:
2. State or Province Name (full name) [Snake Desert]:
3. Locality Name (eg, city) [Snake Town]:
4. Organization Name (eg, company) [Snake Oil, Ltd]:
5. Organizational Unit Name (eg, section) [Webserver Team]:
6. Common Name (eg, FQDN) [www.snakeoil.dom]:
7. Email Address (eg, name@fqdn) [www@snakeoil.dom]:
8. Certificate Validity (days) [365]:
___ _
STEP 6: Generating X.509 certificate signed by own CA [server.crt]
Certificate Version (1 or 3) [3]:
Signature ok
subject=/C=XY/ST=Snake Desert/L=Snake Town/O=Snake Oil, Ltd/OU=Webserver Team/CN=www.
snakeoil.dom/emailAddress=www@snakeoil.dom
Getting CA Private Key
Verify: matching certificate signature
../conf/ssl.crt/server.crt: OK

In steps 7 and 8 of the certificate creation process, you will be asked whether you
want to encrypt the respective keys now:

___ _
STEP 7: Enrypting RSA private key of CA with a pass phrase for security [ca.key]
The contents of the ca.key file (the generated private key) has to be
kept secret. So we strongly recommend you to encrypt the server.key file
with a Triple-DES cipher and a Pass Phrase.
Encrypt the private key now? [Y/n]: n
writing RSA key
Enter PEM pass phrase:
Verifying - Enter PEM pass phrase:
Fine, you're using an encrypted private key.
___ _
STEP 8: Enrypting RSA private key of SERVER with a pass phrase for security [server.
key]
The contents of the server.key file (the generated private key) has to be
kept secret. So we strongly recommend you to encrypt the server.key file
with a Triple-DES cipher and a Pass Phrase.
Encrypt the private key now? (Y/n): n
What email address or URL should be used in the suspected-spam report text for users
who want more information on your filter installation?
(In particular, ISPs should change this to a local Postmaster contact)
default text: [the administrator of that system]

Choose n in response to these questions. Otherwise, you will always be asked for a
password whenever you want to restart the ISPConfig system, which means it can-
not be restarted without human interaction.

If the compilation fails, the setup is stopped and all compiled files are removed. The
error message you get should indicate the reason for the failure. In most cases,
header files for a package are missing.

Whatever the reason, look back at your server setup and solve the problem. If the
install_ispconfig directory has not been deleted despite the error, delete it manually.

Installing ISPConfig | 81

Then unpack the ISPConfig sources again, go to the new install_ispconfig directory,
and run ./setup. You cannot install ISPConfig twice from the same install_ispconfig
directory after any errors have occurred.

Similarly, if any of the required packages are not present, the installation routine will
be stopped. Install the missing package, delete the directory install_ispconfig, unpack
ISPConfig again, and start over.

The installation script verifies the syntax of your existing Apache configuration files.
An error will cause ISPConfig’s installation to stop.

If all conditions are fulfilled, you will need to supply values during installation. These
include:

Please enter your MySQL server: localhost
Please enter your MySQL user: root
Please enter your MySQL password: Your MySQL password
Please enter a name for the ISPConfig database: ispconfigdb
Please enter the IP address of the ISPConfig web: 192.168.0.1
Please enter the host name: www
Please enter the domain: xyz.de

Next, the configuration program asks which protocol you wish to use. Select item 2,
HTTP:

Please select the protocol (http or https (SSL encryption)) to use to access the
ISPConfig system:
1) HTTPS
2) HTTP
Your Choice: 2

You will see the system run the final scripts and restart some services:

Connected successfully to MySQL server
ls: /etc/apache2/vhosts.d/*.conf: No such file or directory
Restarting some services...
which: no apachectl in (/sbin:/usr/sbin:/usr/local/sbin:/root/bin:/usr/local/bin:/
bin:/usr/bin:/usr/X11R6/bin:/usr/local/libexec)
Shutting down mail service (Postfix) done
Starting mail service (Postfix) done
Shutting down mail service (Postfix) done
Starting mail service (Postfix) done
Shutting down ProFTPD Server: done
Starting ProFTPD Server: - warning: "ProFTPD" address/port (70.253.158.45:21)
already in use by "ProFTPD Default Installation"
done
Shutting down ProFTPD Server: done
Starting ProFTPD Server: - warning: "ProFTPD" address/port (70.253.158.45:21)
already in use by "ProFTPD Default Installation"
 done
Starting ISPConfig system...
/root/ispconfig/httpd/bin/apachectl startssl: httpd started
ISPConfig system is now up and running!

82 | Chapter 4: An Initial Internet-Ready Environment

The developers end the installation script with:

Congratulations! Your ISPConfig system is now installed. If you had to install quota,
please take the steps described in the installation manual. Otherwise your system is
now available without reboot.

At this point, you can enter your server’s IP address or domain name followed by :81
in your browser to access the ISPConfig login screen.

ISPConfig Directory Structure
As mentioned previously, the main directory set up by ISPConfig is called ispconfig,
and it’s located under the directory where you did the build (/root in this chapter’s
build). You will also find another directory in /home called admispconfig. Each direc-
tory contains the files required to run ISPConfig independently.

Let’s take a look at the /root/ispconfig directory first:

-rwxr-xr-x 1 root root 33660 2006-04-26 12:28 cronolog
-rwxr-xr-x 1 root root 9673 2006-04-26 12:28 cronosplit
drwxr-xr-x 12 root root 4096 2006-04-26 09:55 httpd
drwxr-xr-x 12 root root 4096 2006-04-26 12:28 isp
-rw-r--r-- 1 root root 8 2006-04-26 13:54 .old_path_httpd_root
drwxr-xr-x 6 root root 4096 2006-04-26 09:50 openssl
drwxr-xr-x 6 root root 4096 2006-04-26 10:00 php
drwxr-xr-x 4 root root 4096 2006-04-26 12:28 scripts
drwxr-xr-x 4 root root 4096 2006-04-26 12:28 standard_cgis
drwxr-xr-x 2 root root 4096 2006-04-26 12:28 sv
-rwx------ 1 root root 9389 2006-04-26 12:28 uninstall

It contains ISPConfig’s Apache, PHP, and OpenSSL configuration files, as well as
templates for all kinds of configuration files (for Apache, Postfix, Sendmail, BIND,
procmail recipes, etc.). ISPConfig uses these templates to write the configuration files
for the services it configures.

You will also find a lot of PHP classes here that provide the functions to write the
system’s configuration files. In short, /root/ispconfig contains ISPConfig’s backend.

Under the /home/admispconfig directory, you will see another set of directories:

-rwxr-xr-x 1 admispconfig admispconfig 24 2006-04-26 12:28 .forward
drwxr-xr-x 8 admispconfig admispconfig 4096 2006-04-26 13:53 ispconfig
drwxr-xr-x 2 admispconfig admispconfig 4096 2006-04-26 12:28 mailstats
-rwxr-xr-x 1 admispconfig admispconfig 176 2006-04-26 12:28 .procmailrc

They contain the ISPConfig frontend—i.e., its web interface—as well as some tools,
such as SpamAssassin (http://spamassassin.apache.org) and ClamAV (http://clamav.
elektrapro.com). You can configure these through ISPConfig to protect against spam
and viruses.

http://spamassassin.apache.org
http://clamav.elektrapro.com
http://clamav.elektrapro.com

Setting Up a Server and Users with ISPConfig | 83

Setting Up a Server and Users with ISPConfig
Setting up a web site is one of the first moves toward having a fully functional Inter-
net server. This section will walk you through all the necessary steps.

If you’re wondering why we don’t just ask you to navigate over to the
ISPConfig web site and read the manuals, consider the following: ISP-
Config’s developers wrote their users’ documentation for ISPs hosting
customer web sites. If that’s your intended use, we recommend read-
ing the manuals at http://ispconfig.org. Otherwise, we will assume you
plan on using your server with a single system administrator who man-
ages her own secure web sites, mail, and FTP services.

ISPConfig requires you to set up a client who will own one or more Internet
domains. In our example, we will set up a single client (one of the authors of this
book) who will own four domains:

• centralsoft.org

• linuxnewswire.org

• opensourcetoday.org

• tadelstein.com

When you look at the directory contents in /var/www, you will see how ISPConfig
sets up domains:

$ ls -a
apache2-default sharedip web2 web4 webalizer www.opensourcetoday.org
localhost web1 web3 www.centralsoft.org www.linuxnewswire.org
www.tadelstein.com

Compare this directory listing with the list of web sites in Figure 4-1. Each web site
contains a directory. The www directories whose names show the domains (such as
www.opensourcetoday.org) are symbolic links to what the system knows as web1,
web2, and so on.

Figure 4-2 gives you a better look at the list of domains. Note in Figure 4-2 that a
domain appears for each directory in the command-line listing.

Adding Clients and Web Sites
To configure the client and the domains, you must first log into the ISPConfig inter-
face. In your web browser, enter the IP address of your server followed by the port
for ISPConfig, :81—in our case, http://70.253.158.45:81 (use https:// if you selected
HTTPS as the ISPConfig protocol during installation). At the login screen
(Figure 4-3), enter the user ID admin and the password admin.

http://ispconfig.org
http://70.253.158.45:81

84 | Chapter 4: An Initial Internet-Ready Environment

Then, immediately change the password to one that only you will know. To change
the password, select Tools from the toolbar and then click on the symbol for the
password (Figure 4-4).

The Change Password dialog shown in Figure 4-5 will appear, and you can fill out
the form.

Log out and log in again with the new password.

Figure 4-1. The ISP Manager interface

Figure 4-2. ISP Manager’s domain list

Setting Up a Server and Users with ISPConfig | 85

Before you can set up a web site, you’ll have to create an owner for the site. Select
ISP Manager in the top toolbar. You will see a navigation menu similar to the one
shown in Figure 4-6.

Figure 4-3. ISPConfig login screen

Figure 4-4. The Tools menu

Figure 4-5. ISPConfig form for changing passwords

86 | Chapter 4: An Initial Internet-Ready Environment

Now let’s look at how we created the client tadelstein and the web site linhelp. Click
on “New client” in the ISP Manager menu. You will see a dialog similar to the one in
Figure 4-7.

Figure 4-6. The ISP Manager menu with a client and a domain added

Figure 4-7. The client information form

Setting Up a Server and Users with ISPConfig | 87

Enter the relevant information for the client. Figure 4-8 shows how we filled out the
form. Notice that we used Linhelp.org as the company name.

On the lefthand side of the navigation menu, you’ll now see a new icon representing
a person, accompanied by the client’s name. Now you can set up a web site. Simply
select “New site” from the toolbar, and you will see the dialog in Figure 4-9.

Give the web site a name and an IP address, and create a DNS record. Also notice the
tabs within the form, across the top of the area where you enter the site name:

• Basis

• User & Email

• Co-Domains

• Statistics

• Options

• Invoice

Each of these tabs provides various configuration and management functions.

Figure 4-9 does not show all of the options on the Basis tab. You will also find sev-
eral other options that you can give the administrator of the site. For our site, we will
provide shell access, database creation, FTP, and login options, as shown in
Figure 4-10.

Figure 4-8. The completed form for the administrative client

88 | Chapter 4: An Initial Internet-Ready Environment

Figure 4-9. The form used to create the web site linhelp.org

Figure 4-10. Web site options

Setting Up a Server and Users with ISPConfig | 89

Notice also in Figure 4-10, under Anon. FTP MB, that the system defaults to –1.
That allows the site to provide unlimited FTP disk space. You might want to provide
such access if you mirror a download site; otherwise, you might prefer to set a limit
so no one can upload enough data to squeeze the disk space used by other services.

By this point you have a usable web site. An easy way to add pages is to use an FTP
client such as the graphical gftp to transfer a site you have already built from a folder
on your desktop, as shown in Figure 4-11.

Aiming a browser at http://linhelp.org now displays our index.html page. You can see
the rendering of the page in Figure 4-12.

We now have a simple but functional web site in place. Take a look at Figure 4-13 to
gain an understanding of what we’ve set up.

ISPConfig uses a hierarchical model with /var/www/web1/web as the root for port 80.
In each directory you create under this path, Apache creates another branch where
you can put pages. By default, when a browser requests the directory, Apache looks
for an HTML file named index.html to display. If you don’t provide an index.html
file, the names of the files and directories under the root will be displayed.

Figure 4-11. Using gftp to transfer files to the linhelp.org root directory

90 | Chapter 4: An Initial Internet-Ready Environment

Figure 4-13 provides an example of the root directory of a web site. The home page
is displayed whenever a browser specifies the directory name, because it has the
default title. The home page contains links to other pages in the site.

The example diagram in Figure 4-13 could be treated like a flow chart. The actual
code within the home page would look something like this:

About Us

Products

Services

Support

Usually, the web team you’re supporting will create the directory structure and web
pages. You will probably need to offer them a database, too, but that’s a topic for
another chapter. For now, you just need to know how to establish a web site and
Internet domain presence.

Figure 4-12. The Linhelp.org web site in the Firefox browser

Setting Up a Server and Users with ISPConfig | 91

Managing Users and Email
One of the primary Linux system administration tasks is the management of users
and their accounts. You can do this using ISPConfig’s graphic panel.

Once you’ve set up your domains, selecting one of them from the ISP Manager sec-
tion of the toolbar will pull up the ISP Site screen shown previously in Figure 4-9.
Let’s go back and take another look at it.

The form has six tabs. The second tab from the left is called User & Email. From this
tab, you can add new users and manage existing users. When you select New, you
will see another form like the one in Figure 4-14.

Figure 4-13. Structure of a simple web site

Home page
Index.html

Web page linked from Index.html

Web page linked from Index.html

Web page linked from Index.html

Web page linked from Index.html

Navigation
menu

92 | Chapter 4: An Initial Internet-Ready Environment

On this form, you can enter the new user’s details and set storage space limits. A
value of –1 provides unlimited space, but you can manage the quotas in any way you
prefer.

On the Advanced Settings tab (Figure 4-15), you can use the forwarding option to
allow email sent to the user to be forwarded on to another address. In other words, if
the user already has a primary email address that he wishes to use, you can use the
forwarding options to send his mail to that account.

Other options on this tab include:

Keep Copy
Selecting this option when you have email forwarding set up preserves copies of
all incoming messages in the user’s local mailbox. This is useful in case the for-
warded messages don’t make it to the destination email address (due to spam fil-
tering or some other problem).

Email Alias
If you don’t want to expose the user’s mailbox publicly, visitors to the site can
send mail to a generic name such as info@centralsoft.org or webmaster@central-
soft.org. You can do this by providing an alias account.

Figure 4-14. The ISP User form

Setting Up a Server and Users with ISPConfig | 93

catchAll-Email
This option redirects to the specified mailbox any emails that are addressed to
nonexisting user accounts. People sometimes write to commonly used addresses
such as editor@centralsoft.org or advertising@centralsoft.org without verifying
that those addresses are valid. You can collect any such messages at one user
account per domain site.

MailScan
If you want emails scanned for viruses or JavaScript code on the server, use this
option.

Autoresponder
This option allows you to send an automatic reply to incoming emails addressed
to a specific user, for times when the user is out of the office for some extended
period.

Figure 4-15. Advanced mail options

94 | Chapter 4: An Initial Internet-Ready Environment

Moving on to the Spamfilter & Antivirus tab, shown in Figure 4-16, you can con-
sider what spam strategy to use. Activate Spamfilter for an account; you can then
specify the filter’s behavior.

If you select the accept spam strategy, you allow spam into the user’s inbox and let
the user’s mail user agent (MUA) sort the spam. Many administrators prefer this
strategy initially, until the user has a database of spam-identified mail. Afterward, the
user can switch to the discard mode, where all emails identified as spam get deleted
at the server.

Now let’s look at the other spam options:

Spam Hits
The spam filter runs a number of tests on incoming emails and assigns points for
each test. If the sum of points for these tests reaches or surpasses the value speci-
fied in the Spam Hits field, the email is categorized as spam and handled accord-
ing to the user’s spam strategy.

Rewrite Subject
In accept mode, choosing this option indicates that the subject line of each email
identified as spam should get an identifying prefix (by default, ***SPAM***). This
allows the user to sort emails by subject line.

To enable a user to make changes to her email account herself (including password,
spam filter, and antivirus settings), you must select the Mailuser option for that user on
the Basis tab of the ISP Site form (see Figure 4-10). To make changes, the mail user can
then simply log into a site with a name such as http://centralsoft.org:81/mailuser.

Figure 4-16. The Spamfilter & Antivirus tab

Setting Up a Server and Users with ISPConfig | 95

User, email, home, and public web directories

Every user of a domain under ISPConfig has his own home directory under the folder
users. If FTP access is allowed for a domain, users are placed in their home directories
when they log in via FTP. Every home directory also contains a folder called web that
a user can access by visiting a URL like http://www.centralsoft.org/~user or http://
www.centralsoft.org/users/user.

Figure 4-17 shows the structure of the home directory for the user we created for
centralsoft.org.

Email Client Configuration
At this point, you should understand the basics of setting up a web site, creating a
user, and handling mail. But you will probably have to help your users configure
their email clients, specifying the outgoing and incoming mail servers. On our sys-
tem, ISPConfig uses server1.centralsoft.org as both the outgoing SMTP server and the
incoming POP3/IMAP server.

With most modern email clients, you have the option of choosing Transport Layer
Security (TLS). Select TLS when possible when configuring the outgoing server.
Because most email clients use their ISP’s outgoing server for SMTP, you can select
TLS if your ISP uses it. In the vast majority of cases, your user ID and password will
travel over your ISP’s lines in clear text.

For receiving mail, set up the incoming server (we used server1.centralsoft.org), and
select either POP3 or IMAP. Use your system name (e.g., web1_adelstein) and spec-
ify your email address as the alias (e.g., tom@centralsoft.org).

Figure 4-17. Explorer-style view of user directory

96 | Chapter 4: An Initial Internet-Ready Environment

If you get an “-ERR Unknown AUTHORIZATION state command”
error message when trying to fetch your mail via POP3, you have
probably forgotten to activate SSL/TLS encryption. Reconfigure your
email client, activate POP3-over-SSL, and try again.

Safeguarding a Linux Web Server
In today’s business environment, unexpected events often occur. Ill-intentioned indi-
viduals scan IP addresses looking for exploits. They use sophisticated password dic-
tionaries to attempt to gain root access to servers so they can relay spam, viruses,
and worms. The situations system administrators face arise from a unique combina-
tion of shifting factors that cannot be controlled with precision or certainty. Conse-
quently, administrators need to learn to adapt quickly to new (often hostile)
situations.

There are two ways to adapt. First, if you have enough awareness to understand a sit-
uation in advance, you can take precautions. We’ll call this anticipation.

At other times, however, you’ll have to adapt to the situation on the spur of the
moment, without time for preparation. This involves improvisation. To be fully
adaptable, you must be able to both anticipate and improvise.

The Role of a Daemon-Monitoring Daemon
No matter how rigorously you work at safeguarding your Internet server, for some
unknown combination of reasons, something on your system could fail. In a perfect
world, you could monitor every service and the system would immediately alert you
of any failures. But then, we don’t live in a world where our expectations are always
borne out.

Imagine you cohosted your server at an ISP 250 miles from your base of operations.
If that server went down, someone would have to call the ISP and get one of their
service personnel to run down to the server rack and power it back to a working
state. The tech support person at the ISP wouldn’t necessarily be immediately avail-
able, though, so you might have to wait while a critical application sat idle.

In a large enterprise, you might feel as isolated as if your server was 250 miles away.
Data center operators rarely grant access to the server room even to system adminis-
trators, so regardless of their locations, it’s important for administrators to know
how to manage their systems remotely.

A daemon-monitoring daemon (DMD) is a utility that watches your services for you
and automatically attempts to restart them when they fail. If a service fails, nor-
mally you have to log into your server and open a console to execute a command
such as /etc/init.d/mysql restart. A DMD, however, can execute that command for
you without any intervention on your part.

Safeguarding a Linux Web Server | 97

If the service restarts, that’s the end of the issue. If it doesn’t restart successfully, the
DMD will make a set number of attempts (say, five) and then contact you via a text
message, email, or some other form of communication to alert you of the problem.
At that point, you will have to intervene and find out why your service has failed.

The DMD runs like any other service on your system. It has a configuration file that
allows you to choose the options that best suit your needs. You can have it start at
boot time or start it manually.

In the next section we’ll set up a DMD called monit, which has the simple web inter-
face shown in Figure 4-18.

Notice the five services under surveillance. In Figure 4-19, we drill down to show
how the system handles each process. In this case, we’re displaying sshd.

Figure 4-18. Web interface for monit running on centralsoft.org

98 | Chapter 4: An Initial Internet-Ready Environment

Notice in Figure 4-19 that the status of sshd shows that it is running and that the sys-
tem is monitoring it. Three lines from the bottom of the screen, you can see the
instructions on what to do if sshd fails:

If failed localhost:22 [SSH] with timeout 5 seconds then restart else if recovered
then alert

This policy simply restarts a failed service and sends a message when it successfully
restarts.

Finally, monit provides four buttons at the bottom of the page for manual interven-
tion. Now, let’s see how this system works.

Installing and Configuring monit
To install monit, you can either use your Linux system package manager or down-
load the tarball from http://www.tildeslash.com/monit. If you’re using the Debian
setup from Chapter 2, simply enter:

apt-get install monit

After you’ve installed monit, edit /etc/monit/monitrc. The file created during installa-
tion contains lots of examples, and you can find more configuration examples at
http://www.tildeslash.com/monit/doc/examples.php. In our case, we want to:

Figure 4-19. Drilling down to sshd

http://www.tildeslash.com/monit/
http://www.tildeslash.com/monit/doc/examples.php

Safeguarding a Linux Web Server | 99

• Enable the monit web interface on port 2812.

• Monitor the proftpd, sshd, mysql, apache, and postfix services.

• Create a Secure Sockets Layer (https) web interface where we can log in with the
username admin.

• Tell monit to send email alerts to root@localhost.

Our /etc/monit/monitrc configuration file looks like this:

set daemon 60
set log file syslog facility log_daemon
set mailserver localhost
set mail-format { from: monit@server1.centralsoft.org }
set alert root@localhost
set httpd port 2812 and
 SSL ENABLE
 PEMFILE /var/certs/monit.pem
 allow admin: test
check process proftpd with pidfile /var/run/proftpd.pid
 start program = "/etc/init.d/proftpd start"
 stop program = "/etc/init.d/proftpd stop"
 if failed port 21 protocol ftp then restart
 if 5 restarts within 5 cycles then timeout
check process sshd with pidfile /var/run/sshd.pid
 start program "/etc/init.d/ssh start"
 stop program "/etc/init.d/ssh stop"
 if failed port 22 protocol ssh then restart
 if 5 restarts within 5 cycles then timeout
check process mysql with pidfile /var/run/mysqld/mysqld.pid
 group database
 start program = "/etc/init.d/mysql start"
 stop program = "/etc/init.d/mysql stop"
 if failed host 127.0.0.1 port 3306 then restart
 if 5 restarts within 5 cycles then timeout
check process apache with pidfile /var/run/apache2.pid
 group www
 start program = "/etc/init.d/apache2 start"
 stop program = "/etc/init.d/apache2 stop"
 if failed host www.centralsoft.org port 80 protocol http
 and request "/monit/token" then restart
 if cpu is greater than 60% for 2 cycles then alert
 if cpu > 80% for 5 cycles then restart
 if totalmem > 500 MB for 5 cycles then restart
 if children > 250 then restart
 if loadavg(5min) greater than 10 for 8 cycles then stop
 if 3 restarts within 5 cycles then timeout
check process postfix with pidfile /var/spool/postfix/pid/master.pid
 group mail
 start program = "/etc/init.d/postfix start"
 stop program = "/etc/init.d/postfix stop"
 if failed port 25 protocol smtp then restart
 if 5 restarts within 5 cycles then timeout

100 | Chapter 4: An Initial Internet-Ready Environment

Statements and options are described in the monit documentation at http://www.
tildeslash.com/monit/doc/manual.php.

In the apache section of the monit configuration, you’ll see this statement:

if failed host www.centralsoft.org port 80 protocol http
 and request "/monit/token" then restart

This means that monit tries to connect to www.centralsoft.org on port 80 and tries to
access the file /monit/token. Because our web site’s document root is /var/www/www.
centralsoft.org/web, the filename expands to /var/www/www.centralsoft.org/web/
monit/token. If monit doesn’t succeed, this means Apache isn’t running, so monit
tries to restart it.

Now we must create the file /var/www/www.centralsoft.org/web/monit/token and
write some arbitrary string into it:

mkdir /var/www/www.centralsoft.org/web/monit
echo "hello" > /var/www/www.centralsoft.org/web/monit/token

You can follow a similar procedure on your own system.

Next, create a directory to hold the pem cert file (/var/certs/monit.pem) required for
the SSL-encrypted monit web interface:

mkdir /var/certs
cd /var/certs

You’ll need an OpenSSL configuration file to create the certificate. The resulting /var/
certs/monit.pem file should look like this:

create RSA certs - Server
RANDFILE = ./openssl.rnd
[req]
default_bits = 1024
encrypt_key = yes
distinguished_name = req_dn
x509_extensions = cert_type
[req_dn]
countryName = Country Name (2 letter code)
countryName_default = MO
stateOrProvinceName = State or Province Name (full name)
stateOrProvinceName_default = Monitoria
localityName = Locality Name (eg, city)
localityName_default = Monittown
organizationName = Organization Name (eg, company)
organizationName_default = Monit Inc.
organizationalUnitName = Organizational Unit Name (eg, section)
organizationalUnitName_default = Dept. of Monitoring Technologies
commonName = Common Name (FQDN of your server)
commonName_default = server.monit.mo
emailAddress = Email Address
emailAddress_default = root@monit.mo
[cert_type]
nsCertType = server

http://www.tildeslash.com/monit/doc/manual.php
http://www.tildeslash.com/monit/doc/manual.php

What’s Next | 101

Now create the certificate:

openssl req -new -x509 -days 365 -nodes -config ./monit.cnf -out \
/var/certs/monit.pem -keyout /var/certs/monit.pem
openssl gendh 512 >> /var/certs/monit.pem
openssl x509 -subject -dates -fingerprint -noout -in /var/certs/monit.pem
chmod 700 /var/certs/monit.pem

Then edit /etc/default/monit to enable the monit daemon. Change startup to 1 and set
CHECK_INTERVALS to the interval in seconds at which you would like to check your sys-
tem. We chose 60. The file should now look like this:

Defaults for monit initscript
sourced by /etc/init.d/monit
installed at /etc/default/monit by maintainer scripts
Fredrik Steen <stone@debian.org>
You must set this variable to for monit to start
startup=1
To change the intervals which monit should run uncomment
and change this variable.
CHECK_INTERVALS=60

Finally, start monit:

/etc/init.d/monit start

Now point your browser to https://your_domain:2812/ (make sure port 2812 isn’t
blocked by your firewall) and log in with the username admin and password test.
You should see the monit web interface, shown earlier in Figure 4-18.

What’s Next
We started out by getting your server up and running so you could use it as an Inter-
net platform. We installed a text-based server without the X Window System (for
security and performance reasons) and then set up web-based interfaces to allow you
to securely manage and monitor your web services platform.

In the remaining chapters, we will deepen our exploration of Linux system adminis-
tration. Starting with Chapter 5, you will lose your dependence on self-installing
administrative software. We will configure the major Linux applications people use
in everyday life in the enterprise and in small-to-medium size businesses.

102

Chapter 5CHAPTER 5

Mail

This chapter shows how to build an email service for a small- to medium-size site.
The elements of the service include:

• The Postfix server as the SMTP mail transfer agent (MTA), which accepts mail
from your users and interacts with other sites across the Internet to affect the
delivery of mail.

• Post Office Protocol (POP) and Interactive Mail Access Protocol (IMAP) servers,
to deliver mail at your site to your users.

• Simple Authentication and Security Layer (SASL) for authenticating mail, to pre-
vent spoofing.

We’ll configure Postfix to use traditional file-based authentication, which will scale
to thousands of users. Larger email installations might store email account names
and passwords in a relational database or an LDAP directory. For an example of an
extremely scalable email server based on Postfix with LDAP authentication, see
Zimbra (http://www.zimbra.com).

The solutions in this chapter bring diverse components together to make a robust,
secure, and efficient mail delivery system. Today, people like Wietse Venema (the
inventor of Postfix) have reduced much of the complexity and uncertainty involved
in configuring email systems. Instead of sweating over complex MTA configuration
of an email server, Linux system administrators have other interesting problems to
solve:

• How to secure email, a medium not designed with security in mind, against
spoofing attempts and other attacks by malicious attackers

• How to protect sensitive company data

• How to give email access to remote users outside a company’s network

http://www.zimbra.com

Postfix, Sendmail, and Other MTAs | 103

Key Mail Service Terms
Mail transfer agents do the heavy lifting of Internet communication, moving mail
from site to site on the Internet. To send mail, an email sender attaches his system to
an MTA, which then uses SMTP to transfer the mail to the MTA responsible for
delivering mail to the recipient.

The recipient has several ways to retrieve mail from the MTA, none of them using
SMTP: she can log in as a user on the system that runs the MTA, attach to the MTA
through a direct connection (such as a dial-up line to an ISP), or tunnel though the
Internet to a remote MTA. (We’re ignoring methods that are further removed, such
as retrieving email through a web interface such as Gmail or using a cell phone.)

Regardless of which of these methods the recipient uses, she retrieves her mail
through a mail delivery agent (MDA) such as Courier IMAP. The MDA talks to the
MTA to get the mail and provides an inbox so she can collect her mail. Mail can then
be displayed on the user’s system through a mail user agent (MUA), such as Out-
look, Evolution, or Thunderbird.

Users typically retrieve email using either POP3 or IMAP4 over TCP/IP. Virtually all
modern MUAs support both POP3 and IMAP4. MUAs send mail by attaching to
MTAs and transferring the mail over SMTP.

Most people keep address books listing their contacts so their MUAs can look up
people’s email addresses. In enterprise environments, those contact lists are often
stored in LDAP directory servers. A lot of users don’t even know that their contact
lists have LDAP backends.

Postfix, Sendmail, and Other MTAs
You may be wondering why we’ve chosen to use Postfix as our MTA rather than
Sendmail, the original Internet mail server developed in the early 1980s by Eric All-
man at UC Berkeley. Sendmail has long had the largest base of MTA installations on
the Internet, although we’re not sure that’s still the case today. Many surveys indi-
cate that Sendmail’s popularity has faded rapidly; has less than a 40 percent share of
the servers on the Internet. While some hardened supporters of Sendmail say it’s
flexible and scalable, many system administrators consider Sendmail extremely com-
plex and hard to set up and maintain.

Sendmail was developed before spam and malware evolved, and consequently it has
several security flaws. One of the most serious problems with Sendmail is that, by
default, it allows open relaying—that is, it will relay mail that originates from any-
where outside the server’s local network. This security problem is illustrated in
Figure 5-1.

104 | Chapter 5: Mail

Unsolicited bulk emailers (UBEs), also known as spammers or unsolicited commer-
cial emailers (UCEs), are currently responsible for more than 50 percent of the email
traffic on the Internet. This severely ties up mail queues, DNS servers, CPU and stor-
age capacity, and infrastructure resources. UBEs use a variety of techniques to hide
their real identities, including spoofing IP addresses, forging mail envelopes, and
relaying through open SMTP servers.

Well-configured MTAs accept (relay) outgoing mail only from network addresses
belonging to legitimate users, normally limited to a particular subnet. But, by
default, Sendmail will relay mail sent by anyone. If you use Sendmail and don’t take
care to turn off open relaying, UBEs can take advantage of your MTA to hide their
origins. Your mail server could then be blacklisted as an open relay, which would
cause all the legitimate email flowing through it to be treated as spam. In theory, you
can even get into legal trouble if illicit material is sent through your relay.

Sendmail’s large and entrenched user base, often operating with unpatched, undocu-
mented, and old versions of the application, help UBEs along. Sendmail’s developers
are aware of the problem* and are working hard to make it more secure, but the best

Figure 5-1. Security issues in email’s hostile environment

* See BusinessWire, May 25, 2006, “One in Three Companies Operate Without Email Usage Policies, Risking
Damage to Their Systems and Reputations, Sendmail Finds” (http://goliath.ecnext.com/coms2/summary_
0199-5568576_ITM).

Mail server that
allows relaying from
outside the network.

Unsolicited bulk
mail.

Users Users

Mail server that
blocks outside
relaying by default.
Back-end security
mechanism used for
remote hosts to relay
mail from outside
the network.

Hosts on network

Mobile users

http://goliath.ecnext.com/coms2/summary_0199-5568576_ITM
http://goliath.ecnext.com/coms2/summary_0199-5568576_ITM

The Postfix SMTP Mail Server on Debian | 105

security advances have been made in the fee-based version of the product. Aaron
Weiss helps clear up some of the confusion about the free and fee-based Sendmail
versions in his article, “The Fee vs. Free Divide” (http://www.serverwatch.com/
tutorials/article.php/3580006):

To commercialize Sendmail and offer value-added products that significantly enhance
its deployment, Sendmail, Inc. was formed. The leading product, Sendmail Switch, is
built on the free Sendmail. It sits on top of the Sendmail core and adds a centralized,
graphical management console; ongoing security maintenance; round-the-clock sup-
port; content management filters (including anti-spam and anti-virus defenses); sup-
port for SSL, SASL, and LDAP directories; and auditing, clustering, and remote
management capabilities. All of this is wrapped up with a graphical installer and task-
based wizards.

In sum, the Sendmail Consortium (responsible for the free, open source Sendmail
MTA) is sponsored by Sendmail, Inc., which provides anti-spam, anti-virus, and pol-
icy management add-ons for that MTA. Following is a description of Sendmail, Inc.’s
business model (from http://www.sendmail.com/company):

Sendmail provides enterprise solutions for secure, dependable, compliant messaging
including email, voice, and instant messaging. Sendmail solutions control inbound,
outbound and intra-bound email security and compliance. Sendmail is deployment
agnostic, deployable in software or appliances. Sendmail products work within the
heterogeneous email infrastructure supporting Exchange, Notes, Groupwise, and
other email solutions.

Postfix was designed from the ground up as a secure and robust replacement for
Sendmail. Debian’s default MTA is Exim 4, but we prefer Postfix because Exim has
some problems with scalability. It lacks a central queue manager and centralized load
balancing. Additionally, there is some indication that the developers of the Debian
distributions may make Postfix their default MTA in the near future. In the mean-
time, you can easily swap Exim for Postfix yourself, as you’ll see in the next section.

The Postfix SMTP Mail Server on Debian
To build our server, we’re going to use a fresh installation of Debian. If you choose
to use another distribution, you can apply procedures similar to those outlined in
this chapter to achieve the same results.

Debian Postfix-Related Packages
Use the latest stable version of Debian and configure it with the minimum number of
packages. If you don’t already have a Debian net installation disk, download one from
http://www.us.debian.org/CD/netinst. Then do a netinstall, and make sure to provide a
fully qualified domain name. Configure Debian as we suggest in this section.

http://www.serverwatch.com/tutorials/article.php/3580006
http://www.serverwatch.com/tutorials/article.php/3580006
http://www.sendmail.com/company/
http://www.us.debian.org/CD/netinst/

106 | Chapter 5: Mail

The Debian installer takes you through a standard script before configuration. Fol-
low the standard setup routine until you see a graphic screen asking you to choose
the type of installation you want. The screen will look like this:

() Desktop Environment
() Web Server
() Print Server
() DNS Server
() File Server
() Mail Server
() SQL database
() manual package selection

Don’t select any of the options; you’re not going to use the default Debian mail
server (Exim) because you’ll install Postfix instead. Just press the Tab key and click
the OK button that comes up. Debian’s installer will then proceed to download and
install packages. During the downloads, it will present one more graphical screen
asking if you want you to configure Exim (Exim-config). Choose “no configuration.”
Then answer yes when it asks you, “Really leave the mail system unconfigured?”

The Debian installer will continue downloading and configuring packages. When
Debian finishes its job, you’ll see a screen thanking you for using Debian.

At this point you should remove some unnecessary programs using Debian’s apt-get
utility. If you decided to use another distribution, you can delete the packages
according to its procedures. Under Debian, run:

apt-get remove lpr nfs-common portmap pidentd pcmcia-cs pppoe \
pppoeconf ppp pppconfig

Now, disable some service scripts:

update-inetd --remove daytime
update-inetd --remove telnet
update-inetd --remove time
update-inetd --remove finger
update-inetd --remove talk
update-inetd --remove ntalk
update-inetd --remove ftp
update-inetd --remove discard

and restart the inetd superserver:

/etc/init.d/inetd reload

Installing Postfix on Debian
The following command installs the packages necessary to run Postfix, along with
TLS and SASL security, which allows you to authenticate users:

apt-get install postfix postfix-doc postfix-tls libsasl2 \
sasl2-bin libsasl2-modules

When you install these packages, Debian may choose to install libldap2 at the same
time. libsasl2 may already be installed on your system.

The Postfix SMTP Mail Server on Debian | 107

At this point, Debian’s installation utility will begin downloading and configuring
several files. You’ll notice a long dialog during this process that begins with the fol-
lowing lines:

Reading Package Lists... Done
Building Dependency Tree... Done

Next, you will see a verbose screen that starts with:

You have several choices for general configuration at this point...

At the bottom of the screen you’ll find the question of interest to us:

General type of configuration?

 No configuration
 Internet Site
 Internet with smarthost
 Satellite system
 Local only

 <Ok> <Cancel>

Choose “Internet Site” even if you plan to use Postfix only for local delivery.

Next, an informational dialog will tell you the installation is writing Postfix’s config-
uration file. If you already have a server in production using Sendmail, you will have
an existing aliases file. In this chapter we assume you’re starting from scratch, so
enter NONE at the following screen:

The user root (and any other users with a uid of 0) must have mail
redirected via an alias, or their mail may be delivered to /var/mail/nobody.
This is by design: mail is not delivered to external delivery agents as
root.
If you already have a /etc/aliases file, then you possibly need to add this
entry. (I will only add it if I am creating a new /etc/aliases.)
What address should I add to /etc/aliases, if I create the file? (Enter NONE
to not add one.)
Where should mail for root go
NONE__
 <Ok> <Cancel>

The next question during the installation concerns your FQDN. Postfix requires that
the hostname command return an FQDN like mail.centralsoft.org. But by default, on
Debian the hostname command yields only mail. To let you configure the FQDN, the
installation script offers the following dialog:

Your 'mail name' is the hostname portion of the address to be shown on
outgoing news and mail messages (following the username and @ sign).
This name will be used by other programs besides Postfix; it should be the
single, full domain name (FQDN) from which mail will appear to originate.
Mail name?
mail.centralsoft.org____________________________________
 <Ok> <Cancel>

108 | Chapter 5: Mail

Answer <Ok> to accept the default value that appears in the blue text box.

The next dialog lists default values for the domains your server should answer:

Give a comma-separated list of domains that this machine should consider itself the
final destination for. If this is a mail domain gateway, you probably want to include
the top-level domain.
Other destinations to accept mail for? (blank for none)
server2.centralsoft.org, localhost.centralsoft.org, , localhost
 <Ok> <Cancel>

The listed domains will appear in your main.cf configuration file.

The final question is relevant to systems with non-journaled filesystems:

If synchronous updates are forced, then mail is processed more slowly.
If not forced, then there is a remote chance of losing some mail if the
system crashes at an inopportune time, and you are not using a journaled
filesystem (such as ext3).
The default is "off".
Force synchronous updates on mail queue?
 <Yes> <No>

Because nearly all current distributions use the ext3 journaling filesystem by default,
you can answer <No> here.

At this point, the installation finishes and writes the Postfix configuration file. The
parameters and values printed here may not make sense to you right now, but you’ll
find them in the configuration file and will be able to change them if necessary.

Basic Postfix Configuration
The following is a minimal Postfix configuration file, /etc/postfix/main.cf:

smtpd_banner = $myhostname ESMTP $mail_name (Debian/GNU)
biff = no
append_dot_mydomain = no
myhostname =
mydomain =
myorigin = $mydomain
inet_interfaces =
mydestination = $mydomain, localhost.$mydomain, localhost
mynetworks = 127.0.0.0/8

If you were building Postfix by hand, you would have to fill in many of these values
yourself. The provision of this file makes one appreciate Debian’s installation process.

Postfix uses a simple syntax in which each line consists of a configuration parameter
followed by an equal sign and a value. Once a parameter is defined, later lines in the
file can refer to the parameter by prefixing it with a dollar sign. Thus:

mydomain = centralsoft.org
myorigin = $mydomain

ends up assigning the value centralsoft.org to both the mydomain and myorigin
parameters.

The Postfix SMTP Mail Server on Debian | 109

A basic configuration file performs local delivery only. It expects mail recipients to
have shell accounts and home directories on the mail server itself. It doesn’t require
the system to append the @ suffix (as would be specified by the append_dot_mydomain
parameter). That’s also why the Debian installation process asks you for domains,
hostnames, and destination addresses.

Debian’s package manager configures many of the parameters in /etc/postfix/main.cf
for you. Table 5-1 shows the key lines. A fuller listing of parameters can be found on
the Debian system in the sample file /usr/share/postfix/main.cf.dist.

Table 5-1. Key Postfix configuration parameters

Parameter Explanation

.smtpd_banner = $myhostname ESMTP $mail_
name (Debian/GNU)

Specifies the text in a banner that identifies this server when
it’s communicating over SMTP with another server. The use
of a banner is mandatory according to SMTP specifications.

biff = no biff is a small Postfix process that can notify local users that
mail has arrived. If you do not have local users, you should
turn it off. The default in the Debian install is off.

append_dot_mydomain = no In an environment like ours, appending the domain name to
an email address is the MUA’s job. This value means that
Postfix will not append a suffix such as @centralsoft.org.

#delay_warning_time = 4h Uncomment this line to generate “delayed mail” warnings.
We will not enable this option because we’ll start with a low
volume of users and don’t expect delays.

myhostname = server2.centralsoft.org Specifies the Internet hostname of this mail system. The
default is to use the fully qualified domain name.
$myhostname is used as a default value for many other
configuration parameters.

alias_maps = hash:/etc/aliases
alias_database = hash:/etc/aliases

Specifies the alias databases used by the local delivery agent.
An alias is simply an alternative name that one uses instead
of the original. For instance, you might specify admin as an
alias for root. The roles of these two parameters are not
important to understand at this point; just be aware that
Postfix keeps a list of all the aliases in a single file and that
these parameters tell the system where it’s located and the
format of the database file used.

myorigin = mydomain Specifies the domain from which locally posted mail appears.

mydestination = server2.centralsoft.org,
localhost.centralsoft.org, , localhost

Specifies a list of host or domain names, separated by com-
mas and/or whitespace, for which this server will accept
mail.

relayhost = Specifies a default host that this server will use to forward
mail when it doesn’t know how to reach the recipient. We
leave this blank, relying just on the mynetworks parameter
that follows.

110 | Chapter 5: Mail

Some simple and useful customizations you may need to make include the following:

• Typically, mydestination lists the domains that appear in the email addresses of
local users; that is, the domains for which Postfix accepts and delivers mail. By
default, Postfix accepts mail destined for $myhostname and localhost.$mydomain,
the host on which Postfix is running. You can specify that the system should
accept mail for your whole domain by adding $mydomain to the list:

mydestination = $myhostname, localhost.$mydomain, $mydomain

• You can tell Postfix which hosts you want to allow to relay mail by setting the
mynetworks parameter. (If you set mynetworks, Postfix ignores the mynetworks_
style parameter.) You can provide one or more IP addresses and/or use the net-
work/netmask notation (e.g., 151.164.28.0/28). This parameter is useful when
you wish to provide relaying to hosts outside your network—for example, to
executives working at home, salesmen on the road, etc.

We will make some other changes to /etc/postfix/main.cf later in this chapter, to add
allow authentication and password encryption.

Testing Mail
With Debian’s configuration in place, you can receive and send email from your shell
account. The following is an example of two test messages sent by one of this book’s
authors. First, I used a Gmail account to send a mail message to a user account on
the server2.centralsoft.org system. I read the message from the shell using the stan-
dard Unix mail command:

~$ mail
Message 1:

mynetworks = 127.0.0.0/8 Specifies hosts that this server trusts not to be spammers.
Here, we’ve specified only our local host. You can instead
specify the mynetworks_style = class parameter
when Postfix should trust SMTP clients in the same network
class (A/B/C) as the local machine. Don’t trust the whole class
at a dial-up site, because that would cause Postfix to become
an open relay for your provider’s entire network.

mailbox_command = procmail -a "$EXTENSION" Specifies the optional external command to use to deliver to a
local user’s mailbox. The command is run as the recipient with
proper HOME, SHELL, and LOGNAME environment settings.

mailbox_size_limit = 0 Sets a quota on the mail stored for each user. 0 disables the
quota limit altogether.

recipient_delimiter = + Specifies the separator used between usernames and address
extensions in a lookup table.

inet_interfaces = all Specifies the network interface (network card) addresses on
which this mail system receives mail. This is useful only if you
have more than one network card.

Table 5-1. Key Postfix configuration parameters (continued)

Parameter Explanation

Adding Authentication and Encryption | 111

Date: Tue, 11 Jul 2006 17:38:32 -0500
From: "Tom Adelstein" <tadelstein@gmail.com>
To: tadelste@server2.centralsoft.org
Subject: Testing simple STMP services
We're sending this email to test our mail server's capability to send
and receive simple SMTP mail.

 Then I replied to the original email and received it in my Gmail account:

Delivered-To: tadelstein@gmail.com
Received: from server2.centralsoft.org
 Tue, 11 Jul 2006 16:10:44 -0700 (PDT)
To:tadelstein@gmail.com
Subject: Re: testing simple SMTP mail
In-Reply-To
tadelste@server2.centralsoft.org (Tom Adelstein)

We're sending this email to test our mail server's capability to send
and receive simple SMTP mail

Using the mail command is a primitive way to way to manage large volumes of mail,
even in a shell account. An alternative is mutt, which has a robust interface and sig-
nificantly more features. As an administrator, you may want to use one of these com-
mand-line mail user agents when receiving mail from your Linux system service
accounts.

Adding Authentication and Encryption
We’ve now configured a default SMTP server. What else can we do with Postfix? In
this section we will add authentication (using SASL) and encryption (using TLS) to
our configuration file, /etc/postfix/main.cf. With authentication, we make sure only
users with proper credentials can use our SMTP server. With encryption, we make
sure we do not send users’ IDs and passwords across the network in clear text.

SASL Authentication
Figure 5-1 depicted a group of mobile users who needed to relay mail through a mail
server from outside the server’s local network. This is a common scenario. To distin-
guish these legitimate users from random spammers, you need a security mechanism
on your backend. The Simple Authentication and Security Layer, developed as part
of Carnegie Mellon University’s Cyrus project, provides Postfix with a means to
identify the sources of mail sent to the server and control mail relaying.

System administrators can use SASL to add authentication to many cli-
ent/server interactions, but each service using SASL on a Linux operat-
ing system requires a different configuration file. You can’t just install
SASL and configure it system-wide.

112 | Chapter 5: Mail

How did SASL become a part of Postfix’s solution? To find the answer, we have to
go back to 1999, when the IETF wrote a standard called SMTP’s Service Extension
for Authentication. You’ll see its handiwork if you spot the acronym ESMTP—for
instance, it’s on the first line of the /etc/postfix/main.cf file (see Table 5-1). ESMTP
prevents bulk mailers and/or attackers from using unknowing MTAs as their relays.
It also provides security by authenticating users and logging their activities.

The IETF based its ESMTP service extension on SASL. As part of the SMTP proto-
col, ESMTP simply adds a command called AUTH to the commands servers use to
connect and exchange data.

SASL’s authentication framework allows a variety of ways to store and exchange user
credentials. It can use Linux system passwords (/etc/passwd, /etc/shadow, or Plugga-
ble Authentication Modules); separate files; or external services such as LDAP, Ker-
beros, or sasldb (a directory developed by the Cyrus project and included with
SASL).

In this chapter we’ll show two ways to use Postfix with SASL. First, we’ll configure a
simple method that works well on small sites where you can give every mail user a
user account on the Linux server; this method uses PAM, the default authentication
used for the logins. Second, we’ll configure a more complex system that lets you
authenticate users who don’t have accounts on the server.

Logging in can be considered a two-stage process. First, it establishes
that the requesting user is whom he claims to be. Secondly, it pro-
vides him with the requested service, which can be a command shell
(bash, tcsh, zsh, etc.) or X Window session running under his identity.

Configuring Postfix with SASL to authenticate users with accounts

Fortunately, Debian packages SASL with Postfix. You can utilize Debian’s SASL
libraries to allow mobile users to authenticate from outside the network. In the fol-
lowing example we’ll use SASL to verify that people who are trying to connect have
valid accounts on the Linux server; that is, our system will allow only people with
accounts on the server to connect and send mail. We’ll use the default Linux login
mechanism, PAM, to accomplish this.

When you installed your packages earlier, you provided the necessary SASL exten-
sions and libraries (postfix-tls, libsasl2, sasl2-bin, and libsasl2-modules). Now you
need to configure /etc/postfix/main.cf. First, we’ll show you how to add parameters to
the file using postconf commands; then we’ll show you an alternative way that
involves simply editing /etc/postfix/main.cf directly.

Turn on authentication in the Postfix SMTP server by adding the smtpd (server)
parameters to your main.cf file with this postconf command:

postconf -e 'smtpd_sasl_auth_enable = yes'

Adding Authentication and Encryption | 113

Next, add a parameter to accommodate some nonstandard clients that don’t follow
SMTP authentication correctly:

postconf -e 'broken_sasl_auth_clients = yes'

The smtpd_sasl_security_options parameter lets you control password mechanisms
when clients connect to your SMTP server. The following configuration blocks anon-
ymous authentication:

postconf -e 'smtpd_sasl_security_options = noanonymous'

Postfix does not allow unauthorized relaying of mail by default. So, to allow your
email users to deploy your server from the Internet, you need to add another parame-
ter (note: this should appear on a single line):

postconf -e 'smtpd_recipient_restrictions =
permit_mynetworks,permit_sasl_authenticated,reject_unauth_destination'

Finally, the smtpd_sasl_local_domain parameter stipulates the name of the local
authentication domain. By default, Postfix considers the name of the machine to be
the local authentication domain name. To use the default behavior, specify a null
string:

postconf -e 'smtpd_sasl_local_domain ='

That completes the SASL configuration for Postfix. Alternatively, instead of execut-
ing the preceding postconf commands, you can edit the /etc/postfix/main.cf file, add
the following entries, and reload Postfix:

smtpd_sasl_local_domain = $myhostname
smtpd_sasl_auth_enable = yes
broken_sasl_auth_clients = yes
smtpd_sasl_security_options = noanonymous
smtpd_recipient_restrictions =
 permit_sasl_authenticated,permit_mynetworks,reject_unauth_destination
smtpd_sasl_local_domain =

You’ve just about finished configuring SASL so you can begin using it. Before we dis-
cuss the last steps, run these commands to create a SASL configuration file in the
directory where Postfix searches for it (the -p avoids an error if the directory already
exists):

mkdir -p /etc/postfix/sasl
cd /etc/postfix/sasl
Create the smtpd.conf file with these two lines:
pwcheck_method: saslauthd
mech_list: plain login

You can now restart Postfix:

postfix reload

114 | Chapter 5: Mail

The saslauthd daemon

In the smtpd.conf file, we specified saslauthd as our method for verifying user creden-
tials. Why?

Our password backend uses PAM, and unprivileged processes don’t have access to
password files. Because the Postfix service account runs with limited privileges, it
cannot directly authenticate users.

The SASL libraries packaged with Debian handle this situation by adding an authen-
tication daemon called saslauthd that handles requests for Postfix. The daemon runs
with superuser privileges in a separate process from Postfix, so a compromised mail
server cannot benefit from saslauthd’s privileges.

saslauthd doesn’t communicate outside of your network, so you can consider the
security impact of running the daemon to be minimal even though saslauthd uses
plain-text passwords. saslauthd needs the actual passwords because it uses the same
login service you use to open your Linux console session.

Now, let’s configure saslauthd to run with the mail server. The following directions
are tailored for Debian, but you can do the same things with minor changes to direc-
tories and commands on other Linux systems.

Debian’s port of Postfix runs chrooted in /var/spool/postfix. Consequently, you need
to put your saslauthd daemon in the same namespace. Follow these steps:

1. Create the necessary directory for the daemon:
mkdir -p /var/spool/postfix/var/run/saslauthd

2. Edit /etc/default/saslauthd to activate saslauthd. Remove the comment marker (#)
from the line START=yes, then add the line:

PARAMS="-m /var/spool/postfix/var/run/saslauthd -r"

3. Your file should now look like this:
This needs to be uncommented before saslauthd will be run automatically
START=yes
PARAMS="-m /var/spool/postfix/var/run/saslauthd -r"
You must specify the authentication mechanisms you wish to use.
This defaults to "pam" for PAM support, but may also include
"shadow" or "sasldb", like this:
MECHANISMS="pam shadow"
MECHANISMS="pam"

4. Next, edit /etc/init.d/saslauthd to change the location of saslauthd’s process ID
file. Change the value of PIDFILE to the following:

PIDFILE="/var/spool/postfix/var/run/${NAME}/saslauthd.pid"

5. Start saslauthd:
/etc/init.d/saslauthd start

Adding Authentication and Encryption | 115

If you use a Linux distribution other than Debian, you’ll work with different files,
directories, and commands. For example, on many systems the standard way to start
saslauthd for the first time is via this command:

saslauthd -a pam

Debian specifies the use of PAM through the configuration file instead.

Configuring Postfix with SASL to authenticate users without accounts

Using the password file for Postfix authentication on a Linux system requires each
person who relays mail via the server to have a user account. Obviously, this solu-
tion lacks scalability and requires more administrative time. To support users who
don’t have accounts on the SMTP server, SASL lets you use other storage options;
popular options include sasldb, LDAP, Kerberos, and MySQL. The saslauthd dae-
mon does not run when Postfix uses one of these methods; the separate program
with superuser privileges is not needed because SASL does not need access to the
operating system’s password file.

When using saslauthd, you are limited to plain-text password transmission and login
authentication. Therefore, Postfix also offers an alternative auxprop method, which
supports plain-text, login, CramMD5, DigestMD5, OPT, and NTLM authentication
methods.

Of all the authentication mechanisms discussed in this chapter, LDAP is the most
robust and scalable, but it has the limitation of using primarily plain-text pass-
words. To deal with this problem, system administrators typically use Transport
Layer Security to encrypt passwords moving from the client to the server (as dis-
cussed in the next section). The combination of LDAP and TLS currently provides
the best security.

In a small network, sasldb can provide a simple solution to enable a few remote
users. For really large sites with more users, you might find MySQL more scalable
and easier to use and manage.

The sasldb and MySQL directory methods require you to install extra software called
auxiliary property plug-ins. If you configure sasldb or MySQL, you have to edit the
smtpd.conf file and change the line:

pwcheck_method: saslauthd

to the following, which provides a framework for the auxiliary property plug-ins:

pwcheck_method: auxprop

TLS Encryption
The drawback of using the auxprop method for user validation is that, without addi-
tional protections, it uses plain-text validation. When you log into your own work-
station, that doesn’t present a problem. But when you send your user ID and

116 | Chapter 5: Mail

password over a network in plain text to send an email, whether inside a local net-
work or over the Internet, anyone can easily obtain your credentials.

In Chapter 2 we discussed using TLS, an updated version of SSL encryption, to send
passwords from your workstation to your mail server safely. Here, we’ll extend this
solution to encrypt identifying information by creating a certificate using OpenSSL.

The previous section on SASL and the current section both deal with
security, but with different goals. The SASL section handles authenti-
cation, which determines who has the right to send mail through your
server. This section handles password protection, which ensures that
potential intruders can’t read the users’ secret credentials. You need
both services for secure email.

Start by creating a directory for SSL certificates. Make it a subdirectory under the pri-
mary Postfix location in Debian:

mkdir /etc/postfix/ssl
cd /etc/postfix/ssl/

Next, generate two certificates and two encryption keys. You need a private key that
no one knows and a public key that allows others to send secure credentials to you.
Start with the server’s key:

openssl genrsa -des3 -rand /etc/hosts -out smtpd.key 1024
293 semi-random bytes loaded
Generating RSA private key, 1024 bit long modulus
..++++++
.......................................++++++
e is 65537 (0x10001)
Enter pass phrase for smtpd.key:
Verifying - Enter pass phrase for smtpd.key:

Change permissions on the resulting file that contains the OpenSSL server’s key:

chmod 600 smtpd.key

Next, generate another key and a certificate:

openssl req -new -key smtpd.key -out smtpd.csr
You are about to be asked to enter information that will be incorporated
into your certificate request.
What you are about to enter is what is called a Distinguished Name or a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter '.', the field will be left blank.
Country Name (2 letter code) [AU]:
State or Province Name (full name) [Some-State]:
Locality Name (eg, city) []:
Organization Name (eg, company) [Internet Widgits Pty Ltd]: centralsoft.org
Organizational Unit Name (eg, section) []: web
Common Name (eg, YOUR name) []:
Email Address []:

Adding Authentication and Encryption | 117

Please enter the following 'extra' attributes
to be sent with your certificate request
A challenge password []:
An optional company name []: cso

Some debate exists as to whether or not self-generated certificates
require the information requested at the prompts. We recommend
that you enter the appropriate information for your production site.

The next commands generate a signature key and change the existing keys to the
new ones:

openssl x509 -req -days 3650 -in smtpd.csr -signkey smtpd.key -out \
smtpd.crt
Signature ok
subject=/C=US/ST=Texas/L=Dallas/O=centralsoft.org/OU=web/CN=Tom_Adelstein/
emailAddress=tom.adelstein@gmail.com
Getting Private key
Enter pass phrase for smtpd.key:
openssl rsa -in smtpd.key -out smtpd.key.unencrypted
Enter pass phrase for smtpd.key:
writing RSA key
mv -f smtpd.key.unencrypted smtpd.key
chmod 600 smtpd.key
openssl req -new -x509 -extensions v3_ca -keyout cakey.pem -out \
cacert.pem -days 3650
Generating a 1024 bit RSA private key
.....................++++++
..........................++++++
writing new private key to 'cakey.pem'
Enter PEM pass phrase:
Verifying - Enter PEM pass phrase:

You are about to be asked to enter information that will be incorporated
into your certificate request.
What you are about to enter is what is called a Distinguished Name or a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter '.', the field will be left blank
Country Name (2 letter code) [AU]:
State or Province Name (full name) [Some-State]:
Locality Name (eg, city) []:
Organization Name (eg, company) [Internet Widgits Pty Ltd]:
Organizational Unit Name (eg, section) []:
Common Name (eg, YOUR name) []:
Email Address []:

Now you need to tell Postfix about your keys and certificates using the following
postconf commands:

postconf -e 'smtpd_tls_auth_only = no'
postconf -e 'smtp_use_tls = yes'
postconf -e 'smtpd_use_tls = yes'

118 | Chapter 5: Mail

postconf -e 'smtp_tls_note_starttls_offer = yes'
postconf -e 'smtpd_tls_key_file = /etc/postfix/ssl/smtpd.key'
postconf -e 'smtpd_tls_cert_file = /etc/postfix/ssl/smtpd.crt'
postconf -e 'smtpd_tls_CAfile = /etc/postfix/ssl/cacert.pem'
postconf -e 'smtpd_tls_loglevel = 1'
postconf -e 'smtpd_tls_received_header = yes'
postconf -e 'smtpd_tls_session_cache_timeout = 3600s'
postconf -e 'tls_random_source = dev:/dev/urandom'

The /etc/postfix/main.cf file should now look like this:

See /usr/share/postfix/main.cf.dist for a commented, more complete version
smtpd_banner = $myhostname ESMTP $mail_name (Debian/GNU)
biff = no
appending .domain is the MUA's job.
append_dot_mydomain = no
Uncomment the next line to generate "delayed mail" warnings
#delay_warning_time = 4h
myhostname = server1.example.com
alias_maps = hash:/etc/aliases
alias_database = hash:/etc/aliases
myorigin = /etc/mailname
mydestination = server1.example.com, localhost.example.com, localhost
relayhost =
mynetworks = 127.0.0.0/8
mailbox_command = procmail -a "$EXTENSION"
mailbox_size_limit = 0
recipient_delimiter = +
inet_interfaces = all
smtpd_sasl_local_domain =
smtpd_sasl_auth_enable = yes
smtpd_sasl_security_options = noanonymous
broken_sasl_auth_clients = yes
smtpd_recipient_restrictions = permit_sasl_authenticated,permit_mynetworks,reject_
unauth_destination
smtpd_tls_auth_only = no
smtp_use_tls = yes
smtpd_use_tls = yes
smtp_tls_note_starttls_offer = yes
smtpd_tls_key_file = /etc/postfix/ssl/smtpd.key
smtpd_tls_cert_file = /etc/postfix/ssl/smtpd.crt
smtpd_tls_CAfile = /etc/postfix/ssl/cacert.pem
smtpd_tls_loglevel = 1
smtpd_tls_received_header = yes
smtpd_tls_session_cache_timeout = 3600s
tls_random_source = dev:/dev/urandom

You can now restart the Postfix daemon:

/etc/init.d/postfix restart
Stopping mail transport agent: Postfix.
Starting mail transport agent: Postfix.

Configuring POP3 and IMAP Mail Delivery Agents | 119

Configuring POP3 and IMAP Mail Delivery Agents
In this section we’ll add email delivery agents to complement Postfix. Use the follow-
ing command on Debian to add an IMAP and a POP3 server:

apt-get install ipopd-ssl uw-imapd-ssl

We’ve chosen ipopd-ssl to provide POP2 and POP3 mail delivery agents and uw-
imapd-ssl for IMAP. Don’t let the ssl suffixes fool you—both packages provide un-
encrypted services as well as encrypted ones. Standard IMAP uses port 143, and
POP3 uses port 110. The encrypted protocols and ports are POP3S (port 995) and
IMAPS (port 993).

Originally from the University of Washington, the ipopd-ssl package is now main-
tained by Debian. You just need to install it; it basically configures itself to use the
home mail directory that exists on a mail server like the one we set up in Chapter 4.
ISPs continue to use POP3, but it is rarely used in enterprises.

uw-imapd-ssl provides an IMAP server. Although it requires more disk space, IMAP
is superior to POP because it leaves mail on the server and allows users to view mes-
sages from any location that has Internet access and a mail client. We don’t know of
any current mail clients unable to understand IMAP, so most mail users will want to
use it.

You can also provide webmail on your mail server using SSL (https), making it conve-
nient for users to access their email from a web browser.

In our configuration, users need standard Linux accounts on your
email server, even though they read their mail with an email client on
another system. Postfix usually allows local delivery inside a domain,
but it requires backend relaying (as previously discussed in the section
“Configuring Postfix with SASL to authenticate users without
accounts”) if users are outside the domain.

uw-imapd has advantages and disadvantages. On the plus side, it uses Unix-style
mbox email storage, which maintains all of a user’s mail in a single file in his home
directory. You will also find this service easy to administer.

On the minus side, uw-imapd does not allow virtual users or those without shell
accounts and home directories to access mail. In addition, many administrators
don’t like the simple mbox storage format, preferring the more hierarchical maildir
format. As a single-file format, mbox allows only one application to access it at the
same time, which requires file locking and might slow the system under heavy load.

120 | Chapter 5: Mail

File locking is a mechanism that enforces access to a computer file by
only one user or process at any specific time. The purpose of locking is
to prevent conflicting updates.

Many people consider file locking a problem in the case of mail. Many distributed
filesystems lack reliable locking mechanisms. Some people also believe file locking is
insufficient to prevent occasional mbox corruption. With Linux, corruption is possi-
ble if a mail process is terminated in the middle of updating an mbox.

The maildir format, in contrast, allows concurrent access by multiple applications
and does not require file locking.

Other IMAP servers, such as Cyrus, Courier, and Dovecot, use the maildir format
and allow virtual users and user accounts without shell access and home directories
to access mail. Configured in conjunction with Postfix, the user accounts have only
mailboxes. This allows the administrator to maintain the MTA and MDA without
having to manage standard user accounts on the server itself.

IMAP servers other than uw-imapd are difficult and require significant knowledge to
configure, so you will have to judge for yourself whether the size of your organiza-
tion warrants their use. If so, you’ll need to look at other sources of information,
such as The Book of Postfix by Ralf Hildebrandt and Patrick Katter (No Starch Press).

Email Client Configuration
In our introduction to the /etc/postfix/main.cf Postfix configuration file earlier in this
chapter, we left it up to the user’s email client to add the domain name when a user
typed in an account name:

append_dot_mydomain = no

This matches the behavior of most clients, which can tack on a domain such as
@centralsoft.org when the user types an account name into the “To” field of an email
message.

If you configure Postfix to use encryption, as demonstrated earlier in this chapter, the
email user also has to configure her MUA to use TLS encryption for sending mail.
Most modern clients support this and provide a graphical interface to enable TLS for
use with the outgoing server.

When you are not on Postfix’s defined network and are stationary (as opposed to a
mobile user), use your ISP’s outgoing server for SMTP. In that case, you should
select TLS if your server provider uses it. In the vast majority of cases, your ID and
password will travel over your ISP’s lines in clear text.

What’s Next | 121

For your mail server to receive mail, you’ll need to set up the incoming server with
DNS, as discussed in Chapter 3. As a brief reminder, you’ll use MX records to do this.
A typical MX record looks like this:

MX 10 server1.centralsoft.org.

This record says that email addressed to the domain centralsoft.org should be deliv-
ered to server1.centralsoft.org (which is the mail server for the domain).

What’s Next
At this point, you’ve installed and configured Postfix and an IMAP and POP3 ser-
vice. You have the essential components of a mail system you can use in a corporate
environment.

If this is your first exposure to mail, you may now understand why enterprises spend
large amounts of money to buy packaged systems licensed on a per-seat basis. You
may also understand why they hire a dozen or more system administrators to man-
age their email communication infrastructures. This area requires special expertise.
After you’ve mastered the information in this book, you may want to study more
components of advanced email systems. You should understand how to install and
configure a scalable and secure mail server and how much effort is required to gain
expertise in this area. You will also need an understanding of directory services such
as OpenLDAP or Fedora Directory Server to validate large numbers of users and pro-
vide a listing of mail users in your enterprise.

The next chapter discusses the service most people see as an organization’s most
critical offering: a web server. After we introduce the setup of the Web’s most popu-
lar server, Apache, we’ll proceed to add on a range of important features, such as
support for dynamic web sites and reporting statistics, and give you some trouble-
shooting tips.

122

Chapter 6CHAPTER 6

Administering Apache

In this chapter, we’ll build a Linux web server from scratch. You’ll learn how to:

• Install and configure Apache, PHP, and MySQL

• Manage multiple web sites with virtual hosts

• Encrypt sensitive pages with SSL

• Enable server-side includes and CGI scripts

• Test for performance and security problems

• Install vlogger and Webalizer to view site statistics

• Install Drupal, a content management system that you’ll find useful in many
environments and that uses many of these elements

This chapter describes an environment with a single web server; in Chapter 7, we’ll
show you how to set up a pair of web servers for load balancing.

Web servers are large and complex, and when configuring them it isn’t always clear
how or why things are done. Along the way, we’ll point out why we have chosen
some alternatives and passed by others. To keep explanations short and simple, we’ll
use standard Debian procedures and defaults. We’ll secure the installations as we go,
to underscore the lesson that you have to think about security and build it in from
the start. Toward the end of the chapter, you’ll find the “Troubleshooting” section.

Static and Dynamic Files
A basic web site consists of files: HTML, graphics, JavaScript, stylesheets, and other
types. The contents of these files are static—they don’t change on the server, and the
only job of the web server is to return them to the browser on request. A web server
needs only a little configuration to serve static files.

Many sites have some dynamic aspects, too, including content generation, access
control, and database storage and retrieval. The simplest way to make static HTML
files dynamic is with server-side includes (SSI), which are specially formatted HTML

A Simple LAMP Setup | 123

comments that Apache interprets to echo the values of variables or include the con-
tents of other HTML files. SSI file inclusion is a simple way for a site to define a com-
mon header and footer for its pages, for instance.

SSI has its limits, though, and most dynamic sites use the far more powerful Common
Gateway Interface (CGI) programs. These executable programs can be written in any
language that Linux supports, although the most popular choices are dynamic (“script-
ing”) languages such as Perl, PHP, Python, and Ruby, followed by Java. CGI is a proto-
col that specifies how web clients and servers should exchange requests and responses.

When CGI first appeared on the Web, CGI programs were completely separate from
web servers. Each request caused the web server to start up a new CGI process. The
startup cost increased system load as sites got busier, so alternatives were developed.

People often confuse the CGI protocol with this early implementation method and
think that CGI is inherently slow. However, the CGI standard does not define imple-
mentation. There are faster methods that follow the same CGI protocol.

One faster method is FastCGI, which starts up the CGI program as a separate long-
running process and manages two-way communications between it and the web
server. This avoids the constant reload cost, and the process separation ensures that
if the CGI program crashes, it won’t bring down the web server with it. FastCGI
does have one drawback, though: FastCGI programs, like standalone CGI pro-
grams, can’t access web server internals, which might be required by some complex
applications.

Some CGI programs have evolved into Apache modules that are loaded as part of the
web server itself: the Perl interpreter became mod_perl, PHP became mod_php, and
mod_squad became a terrible ‘70s pun. The performance of FastCGI programs and
Apache modules is roughly similar, and modules have both advantages and disad-
vantages. They have access to all of the server’s internal data structures and func-
tions, so they can be used in various stages of web transactions, not just to generate
HTML content. However, modules also increase the size and memory usage of the
web server, and module bugs can crash the web server.

A Simple LAMP Setup
The standard LAMP (Linux, Apache, MySQL, PHP/Perl/Python) setup uses Apache
modules to perform CGI functions. This approach performs and scales well,
although there are limits to everything. We’ll point out some of those limits in this
chapter, but you can skip those sections if you prefer to learn through bitter experi-
ence. We already have the L, so let’s explore the A; M and P won’t be far behind.

Apache isn’t the fastest web server, or the easiest to configure, or the most secure, but
it’s good enough to dominate all others. According to Netcraft, Apache powers more

124 | Chapter 6: Administering Apache

than 60 percent of all public web sites (http://news.netcraft.com/archives/web_server_
survey.html). Apache runs on Linux, Mac OS X, and all other Unix-like systems, as
well as the many incarnations of Microsoft Windows.

Like other Unix programs, Apache can be built with all of its modules combined into
one big program (static linking), or with modules that are loaded into memory as
needed (dynamic shared objects, or DSOs). The DSO method is easier and more flexi-
ble, since it allows you to add modules to Apache after you’ve built it. The Debian
installation for PHP and other Apache modules uses the DSO method.

Installation
In this section, we’ll install Apache, PHP, and MySQL. We’ll test each with its
default setup to ensure they’re all running correctly. In the following section, we’ll
dive into Apache configuration files and explore how to customize our setup.

Apache
You need to be the root user to install packages. First get the Apache server:

apt-get install apache2

This should install Apache and start it. Did it work? To find out, enter your site’s
URL in a web browser. For the examples in this chapter, we’ll use the name of our
test server (http://server1.centralsoft.org). When you see this URL in the examples,
substitute the URL of your own server. If you’re running your browser on the same
machine as your web server and might have problems with DNS resolution of your
server’s name, you can use http://localhost or http://127.0.0.1. If you’re testing from
outside, you can use the server’s IP address, such as http://70.253.158.41.

Type your server’s URL into a web browser, and you should see a page that proudly
starts with:

If you can see this, it means that the installation of the Apache
web server software on this system was successful. You may now add
content to this directory and replace this page.

Your browser should also show that Apache has remapped the address you typed as
follows: http://server1.centralsoft.org/apache2-default.

We’ll explain this a little later when we get into Apache configuration files. But for
now, let’s create our first web file. Go to the directory that Apache considers the
home directory for your web site and create a little text file:

cd /var/www
echo testing > test.html

Then type its URL (e.g., http://server1.centralsoft.org/test.html) into your browser.

http://news.netcraft.com/archives/web_server_survey.html
http://news.netcraft.com/archives/web_server_survey.html

Installation | 125

You should see the word testing on the screen. Your Apache server is running with
no access restrictions, serving any files and directories that exist under /var/www.

PHP
PHP is the most popular Apache CGI module. In this chapter, we’ll use PHP 4,
which remains more popular than its eventual successor, PHP 5. Using either ver-
sion is a good way to create dynamic web pages, and the large library of PHP mod-
ules adds many useful functions. Begin by getting the PHP program and libraries:

apt-get install php4

Now get the PHP Apache module, mod_php. This command will install mod_php
and tell Apache to let it execute files with a .php suffix:

apt-get install libapache2-mod-php4

Create this test PHP script and save it to /var/www/info.php:

<?php
phpinfo();
?>

Then enter the script’s URL (http://server1.centralsoft.org/info.php) in your browser.

You should see a page with tables full of PHP configuration information. This infor-
mation tells a lot about your machine that you may not want to share with the
world, so you should delete this script after testing it. If you don’t see anything, take
a look at the“Troubleshooting” section at the end of this chapter.

By the way, if you’re a newbie, you just wrote your first CGI script! (In the later sec-
tion on CGI, we’ll provide more details about how web servers run external pro-
grams and scripts.)

MySQL
If you don’t need a database, you have a LAP platform and you can skip this section.
For the full LAMP set, get the MySQL database server and the PHP MySQL module:

apt-get install mysql-server
apt-get install php4-mysql

This is all you need to create PHP CGI scripts that can access the MySQL database
server, but we’ll also install the standard MySQL command-line client (mysql) to
help us test the database without involving PHP or Apache:

apt-get install mysql-client

126 | Chapter 6: Administering Apache

If you run the mysql client but don’t specify a MySQL account name
with the -u option, it tries to use your Linux account name. In our
examples, we’re logged in as root, so the name would be root. The
MySQL administrator account happens also to be called root, and it
has complete control of the database. However, the MySQL and Linux
root accounts have nothing to do with one another. MySQL stores its
account names and passwords in the database itself.

Use this command to see whether the database server is up and running:

mysql -u root
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 5 to server version: 4.0.24_Debian-10sarge2-log

Type 'help;' or '\h' for help. Type '\c' to clear the buffer.

mysql> show databases;
+----------+
| Database |
+----------+
| mysql |
| test |
+----------+
2 rows in set (0.00 sec)

mysql> quit;
Bye
#

If this works, your MySQL server is running. The bad news is that the MySQL root
user starts out with no password. Let’s assign one (use some gibberish password of
your choice where we’ve written newmysqlpassword):

mysqladmin -u root password newmysqlpassword

Now try to get in again without the password:

mysql -u root
ERROR 1045: Access denied for user: 'root@localhost' (Using password: NO)

For once, we’re glad something failed, because it was supposed to. Try again:

mysql –u root -p
Enter password: newmysqlpassword
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 8 to server version: 4.0.24_Debian-10sarge2-log

Type 'help;' or '\h' for help. Type '\c' to clear the buffer.

mysql> quit;

Make a note of this MySQL root password, because you’ll need to provide it later in
the chapter when we install the Drupal application, as well as whenever you want to
access MySQL as the main administrator.

Apache Configuration Files | 127

For security reasons, the default installation of MySQL that we’ve performed restricts
the MySQL server to local clients such as PHP web scripts or the command-line mysql
client. Otherwise, people could connect to your database through the Internet, which
would be a cruel thing for an innocent database. You can check that the MySQL
server’s address is 127.0.0.1 (the local or loopback address) using this command:

netstat -tlnp
Proto Recv-Q Send-Q Local Address Foreign Address StatePID/Program name
tcp 0 0 127.0.0.1:3306 0.0.0.0:* LISTEN25948/mysqld

Apache Configuration Files
Apache uses plain ASCII configuration files. Their locations vary across Linux distri-
butions; Table 6-1 shows where Debian puts them.

If AllowOverride is enabled for any directory, on every client request Apache must
check every directory from the document root down for any .htaccess files, and read
them. This slows down Apache. More importantly, it spreads some of Apache’s config-
uration across the filesystem, making it hard to know what options are in effect for a
directory at any time. If you don’t need .htaccess files, don’t use them. They’re dis-
abled by default.

Table 6-1. Apache configuration files

File/Directory under /etc/apache2 Uses

apache2.conf Main configuration file. Includes other files through the following directives:

Include module configuration:
Include /etc/apache2/mods-enabled/*.load
Include /etc/apache2/mods-enabled/*.conf

Include all user configurations:
Include /etc/apache2/httpd.conf

Include ports listing
Include /etc/apache2/ports.conf

Include generic snippets of statements
Include /etc/apache2/conf.d/[^.#]*

conf.d/* Anything you like can go here. By default, it’s empty.

mods-enabled/*.conf Definitions for each enabled module. Debian includes the programs a2enmod to
enable a module and a2dismod to disable one. The effect is to move xyz.conf and xyz.
load files between /etc/apache/mods-available and /etc/apache2/mods-enabled for a
module named xyz. The apache2.conf file uses the files under mods-enabled.

sites-enabled/* Definitions for each web site. The default is 000-default, but there’s nothing magic
about that name. You can have as many files here as you like.

.htaccess Definitions for a directory, contained in that directory. Overrides other configuration
files because it’s read last. Permitted only if AllowOverride is not set to none.
Can be changed without reloading Apache. This is how many webmasters allow their
clients to customize their sites without touching the main Apache configuration files.

128 | Chapter 6: Administering Apache

Configuration File Directives
Each Apache configuration file is divided into sections that contain Apache direc-
tives (commands or settings) and their values. Some directives are part of the Apache
core, while only specific modules use others. If a directive refers to a module that you
haven’t configured Apache to use, Apache will fail to start, and a message contain-
ing the incorrect lines will be written to the error log.

After you have Apache running successfully, you can see which Apache directives are
currently usable by typing this command:

/usr/sbin/apache2 -L

The “Troubleshooting” section at the end of this chapter has step-by-step guidelines
to help you diagnose web server problems.

Assuming the test file worked, you can now turn to configuring Apache. Following
are the contents of the default Apache configuration file, /etc/apache2/sites-enabled/
000-default. Sections begin and end with HTML-style tags, such as:

<VirtualHost *>
...
</VirtualHost>

Here’s a copy of the file that we’ve annotated with comment lines:

Answer to any name or IP address:
NameVirtualHost *

For any virtual host at any address, any port:
<VirtualHost *>
 # If Apache has problems, whom should it contact?
 ServerAdmin webmaster@localhost

 # Our web site files will be under this directory:
 DocumentRoot /var/www/

 # Overall directives, in case we move DocumentRoot
 # or forget to specify something later:
 <Directory />
 # Lets Apache follow symbolic links:
 Options FollowSymLinks
 # Disables .htaccess files in subdirectories:
 AllowOverride None
 </Directory>

 # DocumentRoot itself:
 <Directory /var/www/>
 Options Indexes FollowSymLinks MultiViews
 # Forbids .htaccess files:
 AllowOverride None
 Order allow,deny
 allow from all
 # Maps / to /apache2-default, the initial welcome

Apache Configuration Files | 129

 # page that says "If you can see this...":
 RedirectMatch ^/$ /apache2-default/
 </Directory>

 # Permits CGI scripts:
 ScriptAlias /cgi-bin/ /usr/lib/cgi-bin/
 <Directory "/usr/lib/cgi-bin">
 AllowOverride None
 Options ExecCGI -MultiViews +SymLinksIfOwnerMatch
 Order allow,deny
 Allow from all
 </Directory>

 # Error log for a single site:
 ErrorLog /var/log/apache2/error.log

 # Possible values include: debug, info, notice,
 # warn, error, crit, alert, and emerg:
 LogLevel warn

 # Access log for a single site:
 CustomLog /var/log/apache2/access.log combined

 # Sends Apache and PHP version information to browsers;
 # Set to Off if you're paranoid, or have reason to be:
 ServerSignature On

 # Shows Apache docs (only to local users)
 # if you installed apache2-docs;
 # to suppress showing the documents,
 # you can comment these lines or delete them:
 Alias /doc/ "/usr/share/doc/"
 <Directory "/usr/share/doc/">
 Options Indexes MultiViews FollowSymLinks
 AllowOverride None
 Order deny,allow
 Deny from all
 Allow from 127.0.0.0/255.0.0.0 ::1/128
 </Directory>
</VirtualHost>

Most of the changes we’ll make to the Apache configuration files in this section will
be in this file. The overall server configuration file, /etc/apache2/apache2.conf, con-
tains many server-wide settings that usually don’t need to be changed; a few notable
exceptions follow.

User and Group directives

These important settings tell Apache to run with a particular user ID and group ID.
The Debian default in /etc/apache2/apache2.conf is:

User www-data
Group www-data

130 | Chapter 6: Administering Apache

Any files and directories served by Apache need to be readable by this user and
group. Incorrect file and directory permissions are very common causes of Apache
errors, such as the inability to view a page (or the ability to view something that you
should not).

Listen directive

Apache normally responds to requests on TCP port 80, but you can direct it to listen
on other ports instead of, or in addition to, port 80. It’s common to use another port
for testing; many people use 81 because it’s easy to remember and not used for any-
thing else. To specify one or more ports, use one or more Listen directives:

Listen 81

If you will be using SSL encryption for some pages, you’ll need to include this direc-
tive to use the standard secure web port:

Listen 443

DocumentRoot directive

Each web site has a document root, which is the directory that contains the site’s
content files and scripts. It’s specified with the DocumentRoot directive. In the default
Debian Apache setup, this is specified in /etc/apache2/sites-enabled/000-default:

DocumentRoot /var/www/

Authentication and Authorization
Some parts of your web site may be open to the world, but you may want to restrict
other parts to certain visitors. Authentication determines who a visitor is. Authoriza-
tion determines what that visitor can do, such as:

• Read a file

• Use server-side includes

• Run a CGI program

• Generate an index page for a directory lacking one

In Apache, the usual place to store authentication information is in a plain-text user
file (often called an .htpasswd file, after the program that modifies it). The user file
contains user IDs and encrypted passwords. The optional group file contains plain-
text group IDs and user IDs; it’s useful for larger sites because it lets you specify per-
missions for a group as a whole rather than for each of the individual users.

User files

As an example, create a password-protected directory and place a small text file in it:

cd /var/www
mkdir secret

Apache Configuration Files | 131

cd secret
echo "now you see it" > file.html

Since you haven’t protected it yet, the file should be visible in your browser (http://
server1.centralsoft.org/secret/file.html):

now you see it

Now make a user file:

cd /tmp
htpasswd -c /tmp/users jack
New password: black_pearl
Re-type new password: black_pearl
Adding password for user jack

Your password will not be echoed as you type it. You need to include the -c argument
this first time you run the htpasswd program on the file, so that it will create the file.

Don’t use the -c argument when you add more users later, because
doing so will cause the file to be overwritten.

If you want to change jack’s password later, enter:

htpasswd /tmp/users jack
New password: kraken
Re-type new password: kraken
Updating password for user jack

The user file consists of lines that each contain a username and an encrypted pass-
word, separated by a colon, as follows:

jack:OSRBcYQ0d/qsI

Now edit the Apache site configuration file /etc/apache2/sites-enabled/000-default
and add (before the final </VirtualHost> line):

<Location /secret>
 AuthName "test"
 AuthType Basic
 AuthUserFile /tmp/users
 Order deny,allow
 require valid-user
</Location>

AuthName is mandatory and must be followed by a quoted string. We used "test"
here; you can use "" if you want, but for some reason you can’t omit this directive.
AuthType Basic means we’re using an htpasswd-style user file. AuthUserFile specifies
the location of the user file. The Order directive says that Apache should deny access
by default, and allow access only when specified in the user file. Lastly, the require
directive says that any user in the user file is allowed. To allow only the user jack to
see the secret, you would substitute:

require jack

132 | Chapter 6: Administering Apache

And if you had more than one permitted user, you would add them like this:

require jack will elizabeth

Apache must be told to re-read its configuration file for these changes to take effect:

/etc/init.d/apache2 reload

Now try to access this secret file (http://www.example.com/secret/file.html) from one
of the accounts listed in the user file. You will get a dialog box that says something
like this:

Enter username and password for "test" at server1.centralsoft.org
Username:
Password:

Enter the username and password (you will see asterisks as you enter the password),
and click OK. You should see:

now you see it

Group files

Another way to handle multiple users is to use a group file. Create a /tmp/groups file
containing a group name, a colon, and one or more space-separated usernames:

pirates: jack will elizabeth

It’s also legal to list the group and users individually:

pirates: jack
pirates: will
pirates: elizabeth

Then add an AuthGroupFile directive to 000-default:

<Location /secret>
 AuthName "test"
 AuthType Basic
 AuthUserFile /tmp/users
 Order deny,allow

AuthGroupFile /tmp/groups
 require group pirates
</Location>

Reload Apache as usual so your changes take effect:

/etc/init.d/apache2 reload

Containers and Aliases
Apache applies authorization restrictions to containers, or files and directories on the
server. One such container is the Location section discussed earlier. We’ll review the
various container directives here.

Apache Configuration Files | 133

Absolute pathnames: Directory

This directive specifies a directory on the server. Here’s an example from the original
contents of our Apache configuration file:

<Directory />
 Options FollowSymLinks
 AllowOverride None
</Directory>

Relative pathnames: Location

This directive specifies files and directories relative to the document root. For
instance, the following example:

<Location /cgi>
 Options ExecCGI
</Location>

allows CGI programs within /var/www/cgi. We’ll see this again in the section on CGI.

Pattern matching: Files and FilesMatch

You may need to specify a file or directory based on some text pattern. Here’s an
example that prevents people from downloading images from your site without
authorization, by checking where the requests originate. It uses the FilesMatch direc-
tive, which lets you specify regular expressions (patterns) within the quotation
marks:

Some notes on the regular expression:
\. means a literal dot character.
(gif|jpg|jpeg|png) means any of these four strings.
$ means the end of the filename.
The regular expression will match files with the suffix
.gif, .jpg, .jpeg, or .png.
<FilesMatch "\.(gif|jpg|jpeg|png)$">
 # Set the environment variable local to 1
 # if the referring page (the URL this image
 # was called from) is on this site.
 # Set local to 0 if the URL was on another site
 # that wants to steal our lovely images.
 SetEnvIfNoCase Referer "^http://server1.centralsoft.org/" local=1
 Order Allow, Deny
 # This checks the local variable and
 # allows access only if the referrer was local.
 Allow from env=local
</FilesMatch>

Aliases

The Alias directive assigns a name to a directory:

Alias /test /tmp/test

134 | Chapter 6: Administering Apache

The alias (new name) comes first in the directive, followed by the actual location of
the directory. The directory may be outside of the document root. In this case, the
file /tmp/test/button.gif would be accessible as the URL http://www.example.com/test/
button.gif, even though it’s not in /var/www/test.

Limits
On a busy server, Apache can create many simultaneous child processes and use a lot
of memory. This can increase the load average and make the system sluggish or even
unresponsive. Table 6-2 shows how you can limit some of Apache’s runtime values
in the site configuration file.

Server-Side Includes
SSI can be used to include file contents, the output of programs, or the contents of
environment variables as part of an HTML file. The syntax to specify SSI in Apache
configuration files can be misleading. For example, to allow only server-side includes
in /var/www/ssi but no other options, create the directory:

mkdir /var/www/ssi

and tell Apache to allow only SSI within it:

<Location /ssi>
 Options Includes
</Location>

To add SSI to existing options, use:

<Location /ssi>
 Options +Includes
</Location>

SSI lets you include file contents, but it can also run any program and include its out-
put. This can be unsafe, so to restrict SSI inclusion to file contents only, use:

Table 6-2. Apache resource directives

Directive Default Usage

MaxClients 256 Maximum simultaneous requests. If any more requests
arrive, they’ll be rejected.

MaxRequestsPerChild 0 (infinite) Maximum requests served before a child Apache pro-
cess is restarted. Used to avoid memory leaks.

KeepAlive on Reuse the TCP connection between the web client and
Apache. Increases throughput by fetching all contents
of a page over the same connection.

KeepAliveTimeout 15 Maximum seconds to wait for another request on the
same connection.

Apache Configuration Files | 135

<Location /ssi>
 Options IncludesNoExec
</Location>

If you would like to have SSI files in various places rather than confined to this direc-
tory, you can tell Apache to associate a certain file suffix with SSI:

AddHandler server-parsed .shtml

For SSI to work, the Apache include module that runs it must be loaded. Since it was
not loaded in the default Apache or PHP setups, we’ll do it now:

a2enmod include
Module include installed; run /etc/init.d/apache2 force-reload to enable.
/etc/init.d/apache2 force-reload

SSI commands look like HTML comments. They have the form:

<!--#command argument="value"-->

Possible values of command are include (include file), echo (display environment vari-
ables), exec (include command output), and config (format some echo variables).
Let’s test file inclusion first. Create two files:

cd /var/www/ssi
echo "top stuff" > top.html
echo "bottom stuff" > bottom.html

Now create the file middle.shtml with these contents:

<!--#include virtual="top.html"-->
middle stuff!
<!--#include virtual="bottom.html"-->

Note that the file doing the including (middle.shtml) needs the .shtml suffix, but the
files that it’s including (top.html and bottom.html) do not. Now point your hard-
working browser to http://server1.centralsoft.org/middle.shtml, and you should see:

top stuff
middle stuff!
bottom stuff

If the Includes option is set for a container, SSI can also execute commands, but the
user (typically, in a web browser) cannot pass any directives to them. SSI command
execution is used for fairly simple things like directory listings:

<!--#exec cmd="ls -l /tmp"-->

A final use of SSI is to display CGI environment variables and some other handy vari-
ables. A quick way to print all of the variables is:

<!--#printenv-->

For a particular variable, this line:

<!--#echo var="DATE_GMT"-->

136 | Chapter 6: Administering Apache

will display something like:

Tuesday, 01-Aug-2006 02:42:24 GMT

If you have only static files, or a mixture of static files and CGI scripts, it’s safest to
disable SSI command execution:

<Location />
 Options IncludesNoExec
</Location>

CGI
CGI is a much more flexible (and dangerous) way of running programs on web serv-
ers, since users can pass information to the programs. Apache has two ways of speci-
fying what programs can be run as CGI programs.

Location

Either of the following directives will associate CGI programs in the /var/cgi direc-
tory with URLs beginning with http://server1.centralsoft.org/cgi/:

ScriptAlias /cgi /var/cgi

or:

<Location /cgi>
 Options ExecCGI
</Location>

File suffix

The suffix method associates a MIME type (a file-type naming standard) with a suffix.
The PHP module uses this method to get Apache to pass .php files to the mod_php
interpreter:

AddType application/x-httpd-php .php

Here are the full contents of the Apache configuration file for mod_php (/etc/apache2/
mods-enabled/php4.conf), which also treats files with the .phtml or .php3 suffix as
PHP:

<IfModule mod_php4.c>
 AddType application/x-httpd-php .php .phtml .php3
 AddType application/x-httpd-php-source .phps
</IfModule>

The first AddType line causes any files ending with .php, .php3, or .phtml to be exe-
cuted as PHP CGI programs. The second AddType line causes Apache to pretty-print
the contents of files with .phps suffixes, rather than running them and returning their
output. Web authors use this to run a script (.php) and let users see a printable ver-
sion (.phps). If you accidentally use the .phps suffix when you meant .php, your script
will not execute; instead, its contents will be displayed.

Apache Configuration Files | 137

Never put a script interpreter like Perl, PHP, or a Linux shell in a CGI
directory. Anyone could run these with the full permissions of the
Apache user and group.

When testing your PHP installation earlier, you created this small PHP CGI program:

<?php
phpinfo();
?>

Now let’s try something more interesting: we’ll connect to the MySQL server, exe-
cute a SQL (database) query, and print the results as HTML. We’ll again need the
MySQL root user password. Save this file as /var/www/db.php:

<?php
$link = mysql_connect("localhost", "root", "newmysqlpassword");
if (!$link) {
 echo "Can't connect to database. Drat.\n";
 exit();
}
$result = mysql_query("show databases");
if (!$result) {
 echo "Arggh, a database error: ", mysql_error();
 exit();
}
print_r prints all of a variable's contents
while ($row = mysql_fetch_assoc($result))
 print_r($row);
?>

Enter the URL http://server1.centralsoft.org/db.php in your browser, and it will display:

Array ([Database] => mysql) Array ([Database] => test)

If you had used the same SQL command with the command-line mysql client, you’d
get the same results (two databases, named mysql and test), but with a different format:

$ mysql -u root -p
Enter password:
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 2996 to server version: 4.0.24_Debian-10sarge2-log

Type 'help;' or '\h' for help. Type '\c' to clear the buffer.

mysql> show databases;
+----------+
| Database |
+----------+
| mysql |
| test |
+----------+
2 rows in set (0.00 sec)

138 | Chapter 6: Administering Apache

PHP Module-Specific Directives
PHP directives may be placed in PHP’s own configuration file (/etc/php4/apache2/
php.ini), or in Apache configuration files. Normally you don’t need to deal with
them unless you install a PHP extension module or want to modify where PHP
searches for libraries or tweak security settings (such as safe mode). The normal
Apache modules have configuration files with a .conf suffix, located under /etc/
apache2/mods-enabled.

Virtual Hosts
Although you could devote an Apache server to a single site, you’ll probably want to
handle more than one site. Apache calls these virtual hosts, and it has more than one
way to specify them. When a web client contacts a web server via HTTP, it sends the
destination IP address and (in HTTP 1.1, the current web protocol standard) the
name of a server at that address.

In the default Apache setup, there are no independent virtual hosts. Apache will hap-
pily serve web pages no matter how many names the server has, and all domain
names share the same configuration.

In the following examples, let’s assume we want to house each site in its own direc-
tory under /var/www/vhosts.

IP-based virtual hosts

If you have more than one IP address on your server and want to dedicate certain
addresses to certain sites, you may choose to use IP-based (or address-based) virtual
hosts:

<VirtualHost 192.168.6.1>
 ServerName "www1"
 DocumentRoot "/var/www/vhosts/www1.example.com"
</VirtualHost>
<VirtualHost 192.168.6.2>
 ServerName "www2"
 DocumentRoot "/var/www/vhosts/www2.example.com"
</VirtualHost>

This was common in the early days of the Web, because HTTP 1.0 had no way to
specify which server you wanted to reach at that address. With HTTP 1.1, name-
based hosting is more popular.

Name-based virtual hosts

With this method, the NameVirtualHost directive defines which addresses can be vir-
tual hosts; * means any name or address this server has, including localhost, 127.0.0.1,
www.centralsoft.org, www2.centralsoft.org, or others. Individual ServerName directives

Apache Configuration Files | 139

associate the server name from the browser’s request with the proper directory stor-
ing files to be served:

Accept any site name on any port:
NameVirtualHost *
<VirtualHost *>
 ServerName www1.example.com
 DocumentRoot "/var/www/vhosts/www1.example.com"
</VirtualHost>
<VirtualHost *>
 ServerName www2.example.com
 # A virtual host can have multiple names:
 ServerAlias backup.example.com
 DocumentRoot "/var/www/vhosts/www2.example.com"
</VirtualHost>

mod_vhost_alias

If you want to administer multiple hosts without needing to specify the names of each
in configuration files, you can instead enable Apache’s mod_vhost_alias module:

a2enmod vhost_alias

and configure the names to be served in the designated file. The vhost_alias in the
previous command expands to /etc/apache2/mods-enabled/vhost_alias.conf. Sample
contents might be:

UseCanonicalName Off
VirtualDocumentRoot /var/www/vhosts/%0

The VirtualDocumentRoot directive is very flexible. The %0 we specified here is
expanded to the full site name (server1.centralsoft.org). We could have used %2 to get
the second part from the left (centralsoft), %-2 for the second part from the right (also
centralsoft), %2+ for the second through the last parts (centralsoft.org), and so on.
These alternatives are useful if you have many virtual hosts. If you always have the
same base domain name, like centralsoft.org, and sites called www1.centralsoft.org,
www2.centralsoft.org, and so on, you could use %1 to get the directories /var/www/
vhosts/www1, /var/www/vhosts/www2, etc.

For now, just use %0 for the full name and create a directory for each virtual host:

cd /var/www/vhosts
mkdir www1.centralsoft.org
echo "test www1.centralsoft.org" > www1.centralsoft.org/index.html
mkdir www2.centralsoft.org
echo "test www2.centralsoft.org" > www2.centralsoft.org/index.html

Then prod Apache to get its attention:

/etc/init.d/apache2 reload

140 | Chapter 6: Administering Apache

If you have DNS records that point www1.centralsoft.org and www2.centralsoft.org
to your server, you can aim your browser at http://www1.centralsoft.org/index.html
and http://www2.centralsoft.org/index.html and see the contents of the test index.html
files that you just made.

Logfiles
Apache writes ASCII logfiles of two types: access (requests that come to the server)
and error (errors that occur during requests). You control how much is written to
these files, depending on what you want to know about visitors to your site, how
much disk space you have (logs get big), and what log analysis tools you want to
apply.

A typical access message (broken onto several lines to fit the page) is:

192.168.0.1 - - [22/Sep/2006:15:04:05 -0400] "GET / HTTP/1.1"
200 580 "-" "Mozilla/5.0 (Windows; U; Windows NT 5.0; en-US;
rv:1.8.0.7) Gecko/20060909 Firefox/1.5.0.7"

A typical error message is:

[Fri Sep 29 10:13:11 2006] [error]
[client www.centralsoft.org]
File does not exist: /var/www/index.html

The default logs are /var/log/apache2/access.log and /var/log/apache2/error.log.

Log Splitting and Rotation
The default Apache setup includes a daily cron job that rotates the access and error
logs. It does the rotation as follows:

1. Renames access.log to access.log.1 and error.log to error.log.1

2. Increments the number suffixes of the older rotated logs (e.g., access.log.1 is
incremented to access.log.2)

3. Deletes access.log.7 and error.log.7

4. Creates a new access.log and error.log

By default, all of your virtual hosts share the same access and error logs. If you have
more than one host, however, you’ll probably want to split the logs to provide sepa-
rate analyses for each.

Apache has two standard access logfile formats: common and combined. You’ll find
their definitions in the master Apache configuration file, /etc/apache2/apache.conf:

The following directives define some format nicknames for use with
a CustomLog directive (see below).
LogFormat "%h %l %u %t \"%r\" %>s %b \"%{Referer}i\" \"%{User-Agent}i\"" combined
LogFormat "%h %l %u %t \"%r\" %>s %b" common
LogFormat "%{Referer}i -> %U" referer
LogFormat "%{User-agent}i" agent

http://www1.centralsoft.org/index.html
http://www2.centralsoft.org/index.html

Logfiles | 141

All those % things stand for Apache configuration variables; for example, %h means
hostname. The combined format is just the common format plus the referer and the
user agent (browser). Unfortunately, neither format includes the name of the virtual
host (a %v variable), which you need to split the log by host. Therefore, if you want to
do this you’ll need to define a new logfile type.

Rather than getting your fingerprints all over the master Apache configuration file,
continue to make your changes to the site file we’ve been using thus far (/etc/
apache2/sites-enabled/000-default). Put these lines above any of your VirtualHost
directives:

Define a new virtual host common log format:
LogFormat "%v %h %l %u %t \"%r\" %s %b" vcommon

Splitting Logs with vlogger
You may be wondering whether to split lines of logging information into separate
files as Apache is being accessed, or to split the access file once a day with a utility
such as Apache’s split-logfile. We prefer the first option, because it diverts the lines
into the proper access logs immediately, and we don’t need to write cron jobs. A
good splitter is the vlogger program. Apache allows you to pipe the log through some
external program, which is just what we want. Add this right below the LogFormat
line you just entered:

Split log on the fly into virtual host directories
under /var/log/apache2:
CustomLog "| /usr/sbin/vlogger -s access.log /var/log/apache2" vcommon

Since vlogger is not part of the standard Debian package, install it:

apt-get install vlogger

Then tickle Apache:

/etc/init.d/apache2 restart

vlogger will create a directory under /var/log/apache2 for each virtual host that you’ve
defined. It will create daily time-stamped access logs, with a symbolic link from
access.log to the most recent one:

cd /var/log/apache2/www1.example.com
ls -l
total 4
-rw-r--r-- 1 root root 984 Aug 3 23:19 08032006-access.log
lrwxrwxrwx 1 root root 19 Aug 3 23:19 access.log -> 08032006-access.log

Analyzing Logs with Webalizer
Many open source and commercial Apache log analyzers are available. We think
Webalizer is a good choice because it’s easy to install, runs well, and produces use-
ful output.

142 | Chapter 6: Administering Apache

Let’s try it:

apt-get install webalizer
...
Which directory should webalizer put the output in?
/var/www/webalizer
Enter the title of the reports webalizer will generate.
Usage Statistics for server1.centralsoft.org
What is the filename of the rotated webserver log?
/var/log/apache2/access.log.1

Access it with the URL http://server1.centralsoft.org/webalizer.

The next day (after the Webalizer daily cron job /etc/cron.daily/webalizer first runs),
you should see pages of tables describing accesses to your web server. You don’t
need to edit the configuration file (/etc/webalizer.conf) unless you want to change the
settings you gave during the installation.

Spammers have ways of manipulating web logs such as Webalizer’s, so
it’s good practice to restrict access to the Webalizer output pages.

SSL/TLS Encryption
Willie Sutton once said that he robbed banks because “that’s where the money is.”
Internet attacks are increasingly being aimed at the application level for the same rea-
son. It’s become essential to encrypt sensitive data such as credit card numbers and
passwords.

When you request a page from a web server with the http:// prefix, all data passing
between the server and your web browser is unencrypted. Anyone with access to the
intervening networks can snoop the contents. Think of plain web access (like stan-
dard email) as a postcard rather than a letter.

The Secure Sockets Layer standard was developed to encrypt web traffic, and it’s
been critical in enabling the explosion of commercial sites and e-commerce on the
Web. Apache has the ability to encrypt web traffic with SSL, which, with slight
modifications, is known as Transport Layer Security. You get this encryption when
you access a site with the https:// prefix. Think of encrypted web traffic as a sealed
envelope.

Let’s set up SSL for Apache. Edit /etc/apache2/ports.conf and add this line:

Listen 443

Then turn on the Apache SSL module and tell Apache to use it:

a2enmod ssl
Module ssl installed; run /etc/init.d/apache2 force-reload to enable.
/etc/init.d/apache2 force-reload

suEXEC Support | 143

Now try accessing your home page with an https:// URL (for example, https://server1.
centralsoft.org).

For SSL to work, your server also needs a certificate. This is an encrypted file that
proves to the user’s browser that you are who you claim to be. How does the
browser know whom to trust? Web browsers have built-in lists of trusted certificate
authorities (CAs). The command/option/tab chain to view them is:

Firefox 2.0
Tools ➝ Advanced ➝ Encryption ➝ View Certificates ➝ Authorities

Internet Explorer 6.0
Tools ➝ Internet Options ➝ Content ➝ Certificates ➝ Trusted Root Certification
Authorities

CAs are companies that sell your organization a certificate and want cash for doing
the legwork to verify your identity. Commercial web sites almost always use commer-
cial CAs, because the browser silently accepts certificates issued by its trusted CAs.

Alternatively, you can be your own CA and create a self-signed certificate. This works
with SSL just as well as a commercial certificate, but the web browser will prompt
the user about whether or not to accept your certificate. Self-signed certs are com-
mon in small open source projects and during testing of larger projects.

suEXEC Support
Apache can serve multiple sites at the same time, but the individual sites will have
different pages, CGI scripts, users, and so on. Because Apache runs as a particular
user and group (our defaults are each www-data), that user can read and write the
contents of all of the sites. But we want to ensure that only the members of a particu-
lar site can run that site’s programs and access that site’s data. As usual, there’s more
than one way to do this, using various combinations of Apache, PHP, and other
tools.

A popular method is to use suEXEC, a program that runs with root permissions and
makes CGI programs run with the user and group IDs of a specific user, not the user
and group running the Apache server. For example, using our unimaginatively
named second virtual host www2.example.com, user account www-user2, and group
www-group2, we can change the permissions for that virtual host by specifying:

<VirtualHost www2.example.com>
 SuExecUserGroup www-user2 www-group2
</VirtualHost>

144 | Chapter 6: Administering Apache

Benchmarking
Our primary goal was to install and configure our web server correctly and securely.
Beyond this, we want to ensure that it can handle the expected load for our web
sites. The Web has many moving parts, and it’s easy for one to get stuck or fly off
with a faint whistle. To see how our system performs, we’ll use benchmarking tools
to simulate hundreds of fast-typing users (which is much cheaper than actually hir-
ing hundreds of fast-typing users).

Apache can run with different versions, called models. The default
installation under Debian is the prefork model, in which multiple
Apache processes are started to handle requests. This seems to be the
model that works best under Linux.

At least one static HTML file is required for benchmarking. Create a file called /var/
www/bench.html. It should be roughly the size you expect a typical web page on your
site to be. You can impress your friends by generating Latin text at http://www.
lipsum.com to cut and paste into bench.html. The benchmarking program, ab, is in
the apache2-utils package, and it should have been installed with Apache. Let’s make
1,000 separate requests for the same file, with a concurrency (simultaneous requests)
of 5:

ab -n 1000 -c 5 http://server1.centralsoft.org/bench.html
This is ApacheBench, Version 2.0.41-dev <$Revision$> apache-2.0
Copyright (c) 1996 Adam Twiss, Zeus Technology Ltd, http://www.zeustech.net/
Copyright (c) 1998-2002 The Apache Software Foundation, http://www.apache.org/

Benchmarking server1.centralsoft.org (be patient)
Completed 100 requests
Completed 200 requests
Completed 300 requests
Completed 400 requests
Completed 500 requests
Completed 600 requests
Completed 700 requests
Completed 800 requests
Completed 900 requests
Finished 1000 requests

Server Software: Apache/2.0.54
Server Hostname: server1.centralsoft.org
Server Port: 80

Document Path: /bench.html
Document Length: 1090 bytes

Concurrency Level: 5
Time taken for tests: 2.799386 seconds

http://www.lipsum.com
http://www.lipsum.com

Installing and Administering Drupal | 145

Complete requests: 1000
Failed requests: 0
Write errors: 0
Non-2xx responses: 1000
Total transferred: 1425000 bytes
HTML transferred: 1090000 bytes
Requests per second: 357.22 [#/sec] (mean)
Time per request: 13.997 [ms] (mean)
Time per request: 2.799 [ms] (mean, across all concurrent requests)
Transfer rate: 496.89 [Kbytes/sec] received

Connection Times (ms)
 min mean[+/-sd] median max
Connect: 0 0 0.1 0 3
Processing: 6 11 2.2 11 22
Waiting: 5 10 2.3 11 18
Total: 6 11 2.2 11 22

Percentage of the requests served within a certain time (ms)
 50% 11
 66% 12
 75% 13
 80% 13
 90% 14
 95% 14
 98% 15
 99% 16
 100% 22 (longest request)

People usually want to see requests per second or its converse, time per request.
These numbers will tell you the best you can do with your server hardware and
Apache configuration.

Installing and Administering Drupal
Now that we have Apache, PHP, and MySQL running, let’s install a package that
uses them. Sadly, we don’t get paid for product placement here, so we’ll choose
something that’s open source, big enough to represent typical real-world software,
and useful in its own right. According to its web site (http://www.drupal.org):

Drupal is software that allows an individual or a community of users to easily publish,
manage and organize a great variety of content on a website.

This includes weblogs, forums, document management, galleries, newsletters, and
other forms of web-based collaboration.

The following two sections describe two installation methods for Drupal:

apt-get
Easier, so try this first. However, we’ve had some problems with Debian Drupal
packages.

http://www.drupal.org

146 | Chapter 6: Administering Apache

Source
More work, but you can see what’s happening; try this if the apt-get method
fails.

Installing Drupal with apt-get
The easiest way to install Drupal is with apt-get. You can go to the Drupal web site
and look for a package to download, or you can ask apt-cache whether it’s in a
Debian repository:

apt-cache search drupal
drupal - fully-featured content management/discussion engine
drupal-theme-marvinclassic - "Marvin Classic" theme for Drupal
drupal-theme-unconed - "UnConeD" theme for Drupal

The first one is what we want, so let’s install it:

apt-get install drupal

The installation process tells you that it needs some packages you don’t have, gets
them, and chatters some more as it installs them. Then it asks you to configure
Drupal through a sequence of text menus. Use the Tab key to move between choices,
the Space bar to toggle a choice, and Enter to go to the next page. We’ll include only
the last line or two of each screen here, and the recommended responses:

Automatically create Drupal database?
Yes

Run database update script?
Yes

Database engine to be used with Drupal
MySQL

Database server for Drupal's database
localhost

Database server administrator user name on host localhost
root

Password for database server administrator root on localhost
newmysqlpassword

Drupal database name
drupal

Remove Drupal database when the package is renoved?
No

Remove former database backups when the package is removed?
Yes

Installing and Administering Drupal | 147

Web server(s) that should be configured automatically
[] apache
[] apache-ssl
[] apache-perl
[*] apache2

The installation will copy the program files, create a MySQL database, and create an
Apache configuration file (/etc/apache2/conf.d/drupal.conf):

Alias /drupal /usr/share/drupal
<Directory /usr/share/drupal/>
 Options +FollowSymLinks
 AllowOverride All
 order allow,deny
 allow from all
</Directory>

If you run into an odd complaint like this one:

An override for "/var/lib/drupal/files" already exists, but –force
specified so lets ignore it.

you can smack your head repeatedly as we have, or install from source. If everything
looks good, skip the next section.

Installing Drupal from Source
Download the latest source distribution and move its directory to your web docu-
ment root directory:

wget http://ftp.osuosl.org/pub/drupal/files/projects/drupal-4.7.3.tar.gz
tar xvzf drupal-4.7.3.tar.gz
mv drupal-4.7.3 /var/www/drupal
cd /var/www/drupal

We’ll excerpt the installation steps from INSTALL.txt and INSTALL.mysql.txt. Cre-
ate the Drupal database (we’ll call it drupal), administrative user (also drupal, since
we have no imagination), and administrative password (please use something other
than drupalpw):

mysql -u root -p
Enter password:
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 37 to server version: 4.0.24_Debian-10sarge2-log

Type 'help;' or '\h' for help. Type '\c' to clear the buffer.

mysql> create database drupal;
Query OK, 1 row affected (0.00 sec)

mysql> GRANT SELECT, INSERT, UPDATE, DELETE, CREATE, DROP,
 -> INDEX, ALTER, CREATE TEMPORARY TABLES, LOCK TABLES
 -> on drupal.* to
 -> "drupal"@"localhost" identified by "drupalpw";

148 | Chapter 6: Administering Apache

Query OK, 0 rows affected (0.01 sec)

mysql> FLUSH PRIVILEGES;
Query OK, 0 rows affected (0.00 sec)

mysql> quit;
Bye

Next, load the Drupal database definitions into MySQL:

mysql -u root -p drupal < database/database.4.0.mysql
Enter password:
#

Then edit the file sites/default/config.php and change the line:

$db_url = 'mysql://username:password@localhost/databasename';

to:

$db_url = 'mysql://drupal:drupalpw@localhost/drupal';

Configuring Drupal
In your web browser, go to http://server1.centralsoft.org/drupal. The first page (in the
version we tested) says:

Welcome to your new Drupal website!
Please follow these steps to set up and start using your website:
Create your administrator account
To begin, create the first account. This account will have full administration rights
and will allow you to configure your website.

Click on the “create the first account” link. On this second page, type your desired
account name (or your full name) in the “Username” text field and your email
address in the “E-mail address” field. Then press the “Create new account” button.
You’ll be sent back to the first page, which now says at the top:

Your password and further instructions have been sent to your e-mail address.

Check your email for the generated one-time password, and log into Drupal in the
“User login” area. You’ll be sent to a page to specify a permanent password. After
setting this, you can go to your home page, where you’ll see these choices:

1. Create your administrator account

To begin, create the first account. This account will have full administration
rights and will allow you to configure your website.

2. Configure your website

Once logged in, visit the administration section, where you can customize and
configure all aspects of your website.

http://server1.centralsoft.org/drupal

Troubleshooting | 149

3. Enable additional functionality

Next, visit the module list and enable features that suit your specific needs. You
can find additional modules in the Drupal modules download section.

4. Customize your website design

To change the “look and feel” of your website, visit the themes section. You may
choose from one of the included themes or download additional themes from
the Drupal themes download section.

5. Start posting content

Finally, you can create content for your website. This message will disappear
once you have published your first post.

For more information, please refer to the Help section, or the online Drupal
handbooks. You may also post at the Drupal forum or view the wide range of
other support options available.

Since you’ve already created the first (administrator) account, you’re now on your
own to try all the other functions. Drupal on.

Troubleshooting
If you like diagnosing problems, you’ll love the Web. There are so many things to
break, in so many places and in so many ways, that you’ll be kept busy for ages.

Let’s look at some classic web problems. (The browser error messages are those used
by the Firefox browser, but Internet Explorer’s messages are similar.)

Web Page Doesn’t Appear in Browser
Let’s assume your document root is /var/www, your file is test.html, and your server
is server1.centralsoft.org. When you use an external web browser to access http://
server1.centralsoft.org/test.html, you get an error page in your browser window.

A browser error message like “Server Not Found” implies a DNS problem. First,
ensure that server1.centralsoft.org has DNS entries in a public nameserver:

dig server1.centralsoft.org
...
;; ANSWER SECTION:
server1.centralsoft.org. 106489 IN A 192.0.34.166
...

Then see whether the server can be reached from the Internet. If your firewall allows
pings, poke the server from the outside to see if it’s alive:

ping server1.centralsoft.org
PING server1.centralsoft.org (192.0.34.166) 56(84) bytes of data.
64 bytes from server1.centralsoft.org (192.0.34.166): icmp_seq=1 ttl=49
time=81.6 ms

150 | Chapter 6: Administering Apache

Check that port 80 is open and not blocked. From an external machine, try nmap:

nmap -P0 -p 80 server1.centralsoft.org

Starting nmap 3.81 (http://www.insecure.org/nmap/) at 2006-07-25 23:50 CDT
Interesting ports on server1.centralsoft.org (192.0.34.166):
PORT STATE SERVICE
80/tcp open http

Nmap finished: 1 IP address (1 host up) scanned in 0.186 seconds

If you don’t have nmap, pretend to be a web browser. Use telnet to connect to the
standard web port (80) and make the simplest HTTP request possible:

telnet server1.centralsoft.org 80
Trying 192.0.34.166...
Connected to server1.centralsoft.org.
Escape character is '^]'.
HEAD / HTTP/1.0

HTTP/1.1 200 OK
Date: Wed, 26 Jul 2006 04:52:13 GMT
Server: Apache/2.0.54 (Fedora)
Last-Modified: Tue, 15 Nov 2005 13:24:10 GMT
ETag: "63ffd-1b6-80bfd280"
Accept-Ranges: bytes
Content-Length: 438
Connection: close
Content-Type: text/html; charset=UTF-8

Connection closed by foreign host.

If that doesn’t work, make sure this line is in /etc/apache2/ports.conf:

Listen 80

and see whether anything else is hogging port 80:

lsof -i :80
COMMAND PID USER FD TYPE DEVICE SIZE NODE NAME
apache2 10678 www-data 3u IPv6 300791 TCP *:www (LISTEN)
apache2 10679 www-data 3u IPv6 300791 TCP *:www (LISTEN)
apache2 10680 www-data 3u IPv6 300791 TCP *:www (LISTEN)
apache2 20188 root 3u IPv6 300791 TCP *:www (LISTEN)
apache2 20190 www-data 3u IPv6 300791 TCP *:www (LISTEN)
apache2 20191 www-data 3u IPv6 300791 TCP *:www (LISTEN)
apache2 20192 www-data 3u IPv6 300791 TCP *:www (LISTEN)
apache2 20194 www-data 3u IPv6 300791 TCP *:www (LISTEN)
apache2 20197 www-data 3u IPv6 300791 TCP *:www (LISTEN)
apache2 20198 www-data 3u IPv6 300791 TCP *:www (LISTEN)
apache2 20199 www-data 3u IPv6 300791 TCP *:www (LISTEN)

If you don’t see apache2 in this output, find out whether Apache is running:

ps -efl | grep apache2

Troubleshooting | 151

If the output contains lines like this:

5 S root 7692 1 0 76 0 - 2991 415244 Jul16 ? 00:00:00
/usr/sbin/apache2 -k start -DSSL

Apache is running. If it isn’t, kick it in the pants:

/etc/init.d/apache2 start

Then run the ps command again. If Apache still does not appear, look at the error log:

tail -f /var/log/apache2/error.log

If you don’t have permission to view this file, you’re definitely having a hard day. If
the error log is empty, it may also have the wrong permissions. Confirm that the /var/
log/apache2 directory and the /var/log/apache2/error.logfile exist:

ls -l /var/log/apache2
total 84
-rw-r----- 1 root adm 31923 Jul 25 23:09 access.log
-rw-r----- 1 root adm 32974 Jul 22 20:50 access.log.1
-rw-r----- 1 root adm 379 Jul 23 06:25 access.log.2.gz
-rw-r----- 1 root adm 1969 Jul 25 23:09 error.log
-rw-r----- 1 root adm 1492 Jul 23 06:25 error.log.1
-rw-r----- 1 root adm 306 Jul 23 06:25 error.log.2.gz

If the tail of the error log showed old information, you may be out of disk space. It’s
surprising how often we forget to check this before investigating more esoteric sus-
pects, such as firewalls. Type:

df
Filesystem 1K-blocks Used Available Use% Mounted on
/dev/hda1 193406200 455292 183126360 1% /
tmpfs 453368 0 453368 0% /dev/shm

If you used a different User or Group directive in your Apache configuration, check
that the user and group exist:

id www-data
uid=33(www-data) gid=33(www-data) groups=33(www-data)

If the browser returned an Apache error message, you have some more digging to do.
If the display says:

Not Found
The requested URL /wrong.html was not found on this server.

the URL was probably mistyped. If you see:

Forbidden
You don't have permission to access /permissions.html on this server.

the file is there, but the Apache user can’t read it:

cd /var/www
ls -l permissions.html
-rw------- 1 root root 0 Jul 26 00:01 permissions.html

152 | Chapter 6: Administering Apache

Permissions problems can be fixed by changing the owner of the file to the process
running Apache.

Virtual Hosts Don’t Work
Use

apache2ctl -S

for a quick check of your virtual host directives.

SSI Doesn’t Work
If you see lines like this in your error log (/var/log/apache2/error.log):

[error] an unknown filter was not added: INCLUDES

you didn’t enable mod_include. Run the command:

a2enmod include

CGI Program Doesn’t Run
If you can’t get a CGI program to run, work through the following checklist:

• Has CGI been enabled, by one of the methods discussed earlier?

• Is the CGI program in a CGI directory like /var/cgi-bin, or does it have a suffix
like .php?

• Is the file readable? If not, use chmod.

• What does the Apache error log say?

• How about the system error log, /var/log/messages?

SSL Doesn’t Work
Check that you enabled the Apache SSL module (a2enmod ssl) and told Apache to
listen to port 443 in /etc/apache2/ports.conf:

Listen 443

If the directive wasn’t there, add it and restart Apache. Then try to access this URL in
your browser: https://server1.centralsoft.org. If it still doesn’t work, port 443 may be
blocked by a firewall. You can check this with nmap:

nmap -P0 -p 443 server1.centralsoft.org

Starting nmap 3.70 (http://www.insecure.org/nmap/) at 2006-08-01 22:38 CDT
Interesting ports on ... (...):
PORT STATE SERVICE
443/tcp open https

Nmap run completed -- 1 IP address (1 host up) scanned in 0.254 seconds

Further Reading | 153

Further Reading
You can explore the shadowed recesses of the Web in books like Apache Cookbook
by Ken Coar and Rich Bowen (O’Reilly), Pro Apache by Peter Wainwright (Apress),
and Run Your Own Web Server Using Linux & Apache by Stuart Langridge and Tony
Steidler-Dennison (SitePoint).

154

Chapter 7CHAPTER 7

Load-Balanced Clusters

More than 10 years ago, people discovered they could connect multiple cheap
machines to perform computing tasks that would normally require a mainframe or
supercomputer. NASA’s Beowulf cluster was an early example that is still in use
today (http://www.beowulf.org). A Wikipedia entry (http://en.wikipedia.org/wiki/
Computer_cluster) lays out the chief characteristics of a cluster succinctly:

A computer cluster is a group of loosely coupled computers that work together closely
so that in many respects they can be viewed as though they are a single computer.
Clusters are commonly, but not always, connected through fast local area networks.
Clusters are usually deployed to improve speed and/or reliability over that provided by
a single computer, while typically being much more cost-effective than single comput-
ers of comparable speed or reliability.

Clusters are a good solution when you’re looking to improve speed, reliability, and
scalability for a reasonable price. Amazon, Yahoo!, and Google have built their busi-
nesses on thousands of commodity servers in redundant cluster configurations. It’s
cheaper and easier to scale out (horizontally, by just adding more servers) than it is to
scale up (vertically, to more expensive machines). There are many Linux cluster solu-
tions, both open source and commercial. In this chapter we’ll discuss clusters based
on the free Linux Virtual Server (http://www.linuxvirtualserver.org). We’ll show how
to combine cereal boxes, rubber bands, and three computers into a load-balanced
Apache web server cluster. We’ll also discuss high availability and, finally, alterna-
tives to clusters. We won’t cover high-performance computing clusters, grid comput-
ing, parallelization, or distributed computing; in these areas, hardware and software
are often specialized for the subject (say, weather modeling or graphics rendering).

Load Balancing and High Availability
Load balancing (LB) provides scalability: the distribution of requests across multiple
servers. LB consists of packet forwarding plus some knowledge of the service being
balanced (in this chapter, HTTP). It relies on an external monitor to report the loads
on the physical servers so it can decide where to send packets.

http://www.beowulf.org
http://en.wikipedia.org/wiki/Computer_cluster
http://en.wikipedia.org/wiki/Computer_cluster
http://www.linuxvirtualserver.org

Load Balancing and High Availability | 155

High availability (HA) provides reliability: keeping services running. It relies on
redundant servers, a heartbeat exchange to say “I’m still alive,” and a failover proce-
dure to quickly substitute a healthy server for an ailing one.

In this chapter, we’re mainly concerned with LB, which administrators will generally
encounter first and need more often. As sites become more critical to an organiza-
tion, HA may also become necessary. Toward the end of this chapter, we’ll provide
some useful links for information on setting up combined LB/HA systems.

The example LB configuration we’ll use in this chapter is a simple one consisting of
three public addresses and one virtual address, all listed in Table 7-1.

The VIP is the address exposed to external clients by the load balancer, which will
relay requests to the web servers.

Load-Balancing Software
The simplest form of load balancing is round-robin DNS, where multiple A records
are defined for the same name; this results in the servers taking turns responding to
any incoming requests. This doesn’t work well if a server fails, though, and it doesn’t
take into account any special needs the service may have. With HTTP, for example,
we might need to maintain session data such as authentication or cookies and ensure
that the same client always connects to the same server. To meet these needs, we’ll
get a little more sophisticated and use two tools:

• IP Virtual Server (IPVS), a transport-level (TCP) load-balancer module that is
now a standard Linux component

• ldirectord, a utility that monitors the health of the load-balanced physical servers

The installation instructions are based on the Debian 3.1 (Sarge) Linux distribution.

IPVS on the Load Balancer
Since IPVS is already in the Linux kernel, we don’t need to install any software, but
we do need to configure it.

Table 7-1. Addresses and roles for servers in our cluster

Name IP address Description

lb 70.253.158.44 Load balancer—public web service address

web1 70.253.158.41 First web server—one of the real IPs (RIPs)

web2 70.253.158.45 Second web server—another RIP

(VIP) 70.253.158.42 Virtual IP (VIP) shared by lb, web1, and web2, in addition to their
real IP addresses

156 | Chapter 7: Load-Balanced Clusters

On lb, add these lines to /etc/modules.

ip_vs_dh
ip_vs_ftp
ip_vs
ip_vs_lblc
ip_vs_lblcr
ip_vs_lc
ip_vs_nq
ip_vs_rr
ip_vs_sed
ip_vs_sh
ip_vs_wlc
ip_vs_wrr

Then load the modules into the kernel:

modprobe ip_vs_dh
modprobe ip_vs_ftp
modprobe ip_vs
modprobe ip_vs_lblc
modprobe ip_vs_lblcr
modprobe ip_vs_lc
modprobe ip_vs_nq
modprobe ip_vs_rr
modprobe ip_vs_sed
modprobe ip_vs_sh
modprobe ip_vs_wlc
modprobe ip_vs_wrr

To enable packet forwarding in the Linux kernel on lb, edit the file /etc/sysctl.conf
and add this line:

net.ipv4.ip_forward = 1

Then load this setting into the kernel:

sysctl -p
net.ipv4.ip_forward = 1

ldirectord
Although we could obtain ldirectord on its own, we’ll get it as part of the Ultra Mon-
key package, which includes the heartbeat software for HA. Because Ultra Monkey
isn’t a part of the standard Debian distribution, you’ll need to add these two lines to
your Debian repository file (/etc/apt/sources.list) on the lb machine:

deb http://www.ultramonkey.org/download/3/ sarge main
deb-src http://www.ultramonkey.org/download/3 sarge main

Then update the repository and get the package:

apt-get update
apt-get install ultramonkey

Load Balancing and High Availability | 157

The installation process will ask you some questions:

Do you want to automatically load IPVS rules on boot?
No
Select a daemon method.
none

Our configuration will have one virtual server (the address that clients see, running
ldirectord), which we’ll call the director, and two realservers (running Apache). The
realservers can be connected to the director in one of three ways:

LVS-NAT
The realservers are in a NAT subnet behind the director and route their
responses back through the director.

LVS-DR
The realservers route their responses directly back to the client. All machines are
on the same subnet and can find each other’s level-2 (Ethernet) addresses. They
do not need to be pingable from outside their subnet.

LVS-TUN
The realservers can be on a different network from the director. They communi-
cate by tunneling with IP-over-IP (IPIP) encapsulation.

We’re going to use DR, because it’s easy, it’s fast, and it scales well. With this
method, we designate a VIP that is shared by the load balancer and the realservers.
This causes an immediate problem: if all machines share the same VIP, how do we
resolve the VIP to a single physical MAC address? This is called the ARP problem,
because systems on the same LAN use the Address Resolution Protocol (ARP) to find
each other, and ARP expects each system to have a unique IP address.

Many solutions require kernel patches or modules, and change along with changes to
the Linux kernel. In 2.6 and above, a popular solution is to let the load balancer han-
dle the ARP for the VIP and, on the realservers, to configure the VIP on aliases of the
loopback device. The reason is that loopback devices do not respond to ARP
requests.

That’s the approach we’ll take. We’ll configure the web servers first.

Configuring the Realservers (Apache Nodes)
On each realserver (web1 and web2), do the following:

1. If the server doesn’t already have Apache installed, install it:
apt-get install apache2

If you haven’t installed the content files for your web site, you can do it now or
after load balancing is set up.

2. Install iproute (a Linux networking package with more features than older utili-
ties such as ifconfig and route):

apt-get install iproute

158 | Chapter 7: Load-Balanced Clusters

3. Add these lines to /etc/sysctl.conf:
net.ipv4.conf.all.arp_ignore = 1
net.ipv4.conf.eth0.arp_ignore = 1
net.ipv4.conf.all.arp_announce = 2
net.ipv4.conf.eth0.arp_announce = 2

4. Get the changes into the kernel:
sysctl -p
net.ipv4.conf.all.arp_ignore = 1
net.ipv4.conf.eth0.arp_ignore = 1
net.ipv4.conf.all.arp_announce = 2
net.ipv4.conf.eth0.arp_announce = 2

5. Assuming that your realserver is a Debian system, edit the /etc/network/interfaces
file, associating the VIP (70.253.15.42) with the loopback alias lo:0:

auto lo:0
iface lo:0 inet static
 address 70.253.15.42
 netmask 255.255.255.255
 pre-up sysctl -p > /dev/null

6. Enable the loopback alias:
ifup lo:0

7. Create the file /var/www/ldirector.html with the contents:
I'm alive!

8. On web1:
echo "I'm web1" > /var/www/which.html

9. On web2:
echo "I'm web2" > /var/www/which.html

10. Start Apache, or restart it if it’s already running:
/etc/init.d/apache2 restart

The Apache access logs should not yet show any activity, because lb is not talking to
them yet.

Configuring the Load Balancer
On lb, create the load balancer configuration file, /etc/ha.d/ldirectord.cf:

checktimeout=10
checkinterval=2
autoreload=no
logfile="local0"
quiescent=no
virtual=70.253.158.42:80
 real=70.253.158.41:80 gate
 real=70.253.158.45:80 gate
 service=http
 request="director.html"
 receive="I'm alive!"

Load Balancing and High Availability | 159

 scheduler=rr
 protocol=tcp
 checktype=negotiate

If quiescent is yes, a faulty realserver gets a weight of 0 but remains in the LVS rout-
ing table; we’ve set it to no, so dead servers will be removed from the pool. The
weight of a server reflects its capacity relative to the other servers. For a simple LB
scheme like ours, all live servers have a weight of 1 and dead ones have a weight of 0.

If checktype is negotiate, the director will make an HTTP request to each of the
realservers for the URL request, and see if its contents contain the string value for
receive. If the value is check, only a quick TCP check will be done, and request and
receive will be ignored.

The system startup files in /etc for ldirectord should have already been created during
the installation. Ultra Monkey also installed Heartbeat, which we aren’t using yet, so
let’s disable it for now:

update-rc.d heartbeat remove
update-rc.d: /etc/init.d/heartbeat exists during rc.d purge (use -f to force)

The load balancer monitors the health of the web servers by regularly requesting the
file we specified in ldirectord.cf (request="director.html").

Since this server will be responding to web requests at the VIP address (70.253.158.42),
we’d better tell the server about it. Edit /etc/network/interfaces and add these lines to
create the alias device eth0:0:

auto eth0:0
iface eth0:0 inet static
 address 70.253.158.42
 netmask 255.255.255.248
 # These should have the same values as for eth0:
 network ...
 broadcast ...
 gateway ...

Now, fire up this new IP address:

ifup eth0:0

Finally, start your engines on lb:

/etc/init.d/ldirectord start
Starting ldirectord... success

Testing the System
Let’s check that the load balancer is running on lb:

ldirectord ldirectord.cf status

You should see something like this:

ldirectord for /etc/ha.d/ldirectord.cf is running with pid:
1455

160 | Chapter 7: Load-Balanced Clusters

If you see something like this instead:

ldirectord is stopped for /etc/ha.d/ldirectord.cf

there’s some problem. You can stop the director and restart it with the debug flag -d,
and see whether any errors appear in the output:

/usr/sbin/ldirectord /etc/ha.d/ldirectord.cf stop
/usr/sbin/ldirectord -d /etc/ha.d/ldirectord.cf start
DEBUG2: Running exec(/usr/sbin/ldirectord -d /etc/ha.d/ldirectord.cf start)
Running exec(/usr/sbin/ldirectord -d /etc/ha.d/ldirectord.cf start)
DEBUG2: Starting Linux Director v1.77.2.32 with pid: 12984
Starting Linux Director v1.77.2.32 with pid: 12984
DEBUG2: Running system(/sbin/ipvsadm -A -t 70.253.158.42:80 -s rr)
Running system(/sbin/ipvsadm -A -t 70.253.158.42:80 -s rr)
DEBUG2: Added virtual server: 70.253.158.42:80
Added virtual server: 70.253.158.42:80
DEBUG2: Disabled server=70.253.158.45
DEBUG2: Disabled server=70.253.158.41
DEBUG2: Checking negotiate: real
server=negotiate:http:tcp:70.253.158.41:80:::\/director\.html:I\'m\ alive\!
(virtual=tcp:70.253.158.42:80)
DEBUG2: check_http: url="http://70.253.158.41:80/director.html"
virtualhost="70.253.158.41"
LWP::UserAgent::new: ()
LWP::UserAgent::request: ()
LWP::UserAgent::send_request: GET http://70.253.158.41:80/director.html
LWP::UserAgent::_need_proxy: Not proxied
LWP::Protocol::http::request: ()
LWP::Protocol::collect: read 11 bytes
LWP::UserAgent::request: Simple response: OK
45:80/director.html is up

The output is shorter if checktype is check.

Just to be nosy, we’ll see what the lower-level IP virtual server says:

ipvsadm -L -n
IP Virtual Server version 1.2.0 (size=4096)
Prot LocalAddress:Port Scheduler Flags
 -> RemoteAddress:Port Forward Weight ActiveConn InActConn
TCP 70.253.158.42:80 rr
 -> 70.253.158.45:80 Route 1 1 2
 -> 70.253.158.41:80 Route 1 0 3

This shows that our first realserver is active, but the second is not.

We’ll also check the system logs on lb:

tail /var/log/syslog
Sep 11 22:59:45 mail ldirectord[8543]: Added virtual server:
70.253.158.44:80
Sep 11 22:59:45 mail ldirectord[8543]: Added fallback server: 127.0.0.1:80
(x 70.253.158.44:80) (Weight set to 1)
Sep 11 22:59:45 mail ldirectord[8543]: Added real server: 70.253.158.41:80
(x 70.253.158.44:80) (Weight set to 1)

Load Balancing and High Availability | 161

Sep 11 22:59:45 mail ldirectord[8543]: Deleted fallback server: 127.0.0.1:80
(x 70.253.158.44:80)
Sep 11 22:59:46 mail ldirectord[8543]: Added real server: 70.253.158.45:80
(x 70.253.158.44:80) (Weight set to 1)

Back on web1 and web2, check the Apache access logs. The director should demand
director.html every checkinterval seconds:

70.253.158.44 - - [11/Sep/2006:22:49:37 -0500] "GET /director.html HTTP/1.1"
200 11 "-" "libwww-perl/5.803"
70.253.158.44 - - [11/Sep/2006:22:49:39 -0500] "GET /director.html HTTP/1.1"
200 11 "-" "libwww-perl/5.803"

In your browser, go to the virtual site URL http://70.253.158.42/which.html, and you
should see either:

I'm web1

or:

I'm web2

If the load balancer is broken or one of the web servers is down, you might always
get a response from the same web server.

Now, stop Apache on web1:

/etc/init.d/apache stop

Reload/refresh your browser page to access http://70.253.158.42/which.html again.
You should always get the response:

I'm web2

Adding HA to LB
The load balancer is a single point of failure. If it starts pining for the fjords, the web
servers behind it will become inaccessible. To make the system more reliable, you
can install a second load balancer in an HA configuration with the first. Detailed
instructions, which use the Ultra Monkey package that you’ve already installed, can
be found in “How To Set Up A Loadbalanced High-Availability Apache Cluster,”
(http://www.howtoforge.com/high_availability_loadbalanced_apache_cluster).

You may not need HA for the Apache servers themselves, because ldirectord is
already prodding them every checkinterval seconds for status and adjusting weights,
which is similar in effect to the heartbeat of HA.

Adding Other LB Services
We’ve used Apache web servers as this chapter’s example because they’re the most
likely to be part of a server farm. Other services that could benefit from LB/HA include
MySQL, email servers, or LDAP servers. See “How To Set Up A Load-Balanced
MySQL Cluster” (http://www.howtoforge.com/loadbalanced_mysql_cluster_debian) for
a MySQL example.

http://www.howtoforge.com/high_availability_loadbalanced_apache_cluster
http://www.howtoforge.com/loadbalanced_mysql_cluster_debian

162 | Chapter 7: Load-Balanced Clusters

Scaling Without LB and HA
If you offered a wonderful service, would your server survive a Slashdotting (i.e., a
huge activity spike)? If not, your credibility could suffer and many visitors might
never return. But because implementing LB and HA requires significant effort and
hardware investments, it’s worth considering other solutions. There are ways to get
more from your present server. For instance, you can disable .htaccess files in your
Apache configuration (AllowOverride None), and use mod_expires to avoid stat calls
for infrequently changed files such as images. Apache books and web sites contain
many such optimization tips.

Once you reach the limits of your web server software, consider alternatives. In many
cases, web servers such as lighttpd (http://www.lighttpd.net), Zeus (http://www.
zeustech.net), and litespeed (http://litespeedtech.com) are faster than Apache and use
less memory.

You can also get huge boosts from caching. Code caches, which include PHP acceler-
ators such as e-accelerator (http://eaccelerator.net) and APC (http://apc.
communityconnect.com), save PHP bytecode and avoid parsing overhead on each
page access. Data caches such as MySQL’s query cache save the results of identical
queries. Replication is a form of LB. memcached (http://danga.com/memcached) is a
fast way to cache data such as database lookup results. Squid (http://www.squid-
cache.org), when used as a caching reverse proxy, is a page cache that can bypass the
web server entirely.

When servers are in separate tiers (e.g., MySQL ➝ PHP ➝ Apache), improvements
are multiplicative; for example, the presentation “Getting Rich with PHP 5” (http://
talks.php.net/show/oscon06) combines many small fixes to scale a PHP application
from 17 calls/second to 1,100 calls/second on a single machine.

If you’re already using these techniques and are still straining to meet demand, defi-
nitely try LB, and provide HA if stability is critical.

Further Reading
More details on the software used in this chapter are available via the products’ web
pages:

• The Linux Virtual Server Project (http://www.linuxvirtualserver.org)

• Ultra Monkey (http://www.ultramonkey.org)

• Heartbeat/The High-Availability Linux Project (http://linux-ha.org)

You may also want to check out the Red Hat Cluster Suite (http://www.redhat.com/
software/rha/cluster), a commercial LB/HA product for Linux built on LVS. The
same software is freely available (but without support) in CentOS.

http://www.lighttpd.net
http://www.zeustech.net
http://www.zeustech.net
http://litespeedtech.com
http://eaccelerator.net
http://apc.communityconnect.com
http://apc.communityconnect.com
http://danga.com/memcached/
http://www.squid-cache.org
http://www.squid-cache.org
http://talks.php.net/show/oscon06
http://talks.php.net/show/oscon06
http://www.linuxvirtualserver.org
http://www.ultramonkey.org
http://linux-ha.org
http://www.redhat.com/software/rha/cluster
http://www.redhat.com/software/rha/cluster

163

Chapter 8 CHAPTER 8

Local Network Services

In this chapter we’ll look at some skills a system administrator needs to manage a
host behind the firewall or gateway of a company, an organization, or even a home
network.

Some of us prefer reading about developments in Internet technology rather than
local area networks, which we think of as routine and unchallenging. But when we
need to configure or fix something central to our working environment, local net-
working moves up the value chain. For example, little else seems to matter when the
CEO’s email doesn’t work.

Local networking can take up the majority of a system administrator’s time if she
isn’t smart about it. So, if you’ve just started in system administration, you’ll want a
primer on LANs and how to install, configure, and maintain a number of different
servers you’ll find there. For the basics, take a look at the most recent edition of the
Linux Network Administrator’s Guide Terry Dawson, et al (O’Reilly). As long as you
possess basic Linux user skills, though, even without such background the topics in
this chapter shouldn’t be over your head—and we find them exciting.

In this chapter, we’ll explore distributed filesystems with a unique slant, how to set
up DHCP and gateway services (including routing between a LAN and the Internet),
the craziness of corporate printing, and user management. Local email services fit
under the umbrella of LAN topics, too, but we covered those issues in Chapter 5.

We’ll use the Fedora Core Linux distribution for this chapter. Red Hat sponsors the
Fedora project and typically uses it for testing its next stable enterprise release. Fedora
is not the ultra-stable version of Red Hat Enterprise Linux, but it’s reasonably stable
and robust. Red Hat provides native packages of many tools for Fedora, putting
Fedora on the leading edge of free Linux distributions available for commercial use.

Whether you like the Red Hat model or not, you can apply the material in this chap-
ter to other distributions of Linux. We suggest you dig into this material: it’s fun,
you’ll need it in practically any environment you work in, and you won’t find the
bulk of this material elsewhere.

164 | Chapter 8: Local Network Services

Distributed Filesystems
You may find it difficult to imagine a time when PCs simply stood alone without the
benefit of a network or a connection to the Internet. But PCs were not originally
designed with networking in mind. You may or may not remember when people
transferred files by walking floppy disks from one PC to another, or flipped a switch
so two to four users could share a printer. Those were painful times.

After the introduction of the PC, it took a number of years and innovations to cre-
ate such basic networking conveniences as distributed filesystems. Getting those
filesystems working on PCs transformed the landscape of business, because it
allowed us to put a computer on everyone’s desk. No longer did we have to manu-
ally fill out forms for keypunch operators to funnel into batch mainframe systems.

Networking became more available and affordable when an IBM researcher, Barry
Feigenbaum, turned a local DOS filesystem into a distributed one. His efforts helped
create the Server Message Block (SMB) application protocol, and the era of system
administrators and network engineers began.

Distributed filesystems let users open, read, and write files stored on computers
other than their own. In some environments, a single large computer stores files
accessed by all users on the LAN; the central computer can even store the users’
home directories, so that all their work is essentially stored on it. In other environ-
ments, users store files on their PCs but allow others to access those files. The two
environments can be mixed, too. Whatever the configuration, this practice is called
file sharing, and the directories (folders, in PC lingo) that users can access on the
remote machines are called shares.

PCs became prevalent in businesses toward the end of the 1980s, and local area net-
works came into existence as PC use evolved and people discovered the need to share
resources.

Try to imagine what the introduction of a LAN must have been like to a closely situ-
ated group of PC users who had never had network services. Suddenly, coworkers
could conveniently share documents, print to devices some distance away from their
desks, and answer emails from supervisors located across the office, campus, or
country. That opened a lot of people’s eyes.

Today, many sites store their users’ critical files on central servers, which control
users’ access rights to the files. We’ll discuss user management later in this chapter.

Introduction to Samba
SMB file and printer sharing evolved under Microsoft’s guidance into the Common
Internet File System (CIFS) protocol. CIFS has been published as a standard, but it’s
poorly documented and contains lots of secret behaviors that Microsoft continues to

Configuring the Network | 165

evolve. However, an intrepid team of developers keeps reverse engineering the proto-
col, and it has created one of the most popular free-software projects to implement
Microsoft file sharing on non-Microsoft systems: Samba. Samba is increasingly popu-
lar; it has significant support for Windows and Linux desktops and is even used on
Mac OS X.

As a Linux system administrator, you will need at least a high-level understanding of
Samba. If you wish to drill down deeper into Samba (and you should), many excel-
lent books exist on the subject, including the online documentation guides at http://
samba.org. To use a common phrase, “An in-depth discussion of this topic goes far
beyond the scope of this book.” Actually, we don’t see any reason to duplicate the
excellent material already available. However, we do want to discuss Samba in
enough detail for you to make it functional in your environment. Luckily, most dis-
tributions provide simple, graphical frontends to Samba, and we’ll discuss some of
those here.

Certain central functions in CIFS networks (mostly involving the way systems find
each other) take place on domain controllers: servers that provide files, printers, and
various controlling operations. Samba can integrate Linux machines into Microsoft
networks as file and print servers, domain controllers, or workgroup members.

The latest iteration of Samba interoperates with Microsoft’s Active Directory. Samba
combined with LDAP can also function as a robust authentication server, replacing
both Microsoft NT domain controllers and Active Directory servers.

Samba can also play a file-sharing role in simpler environments where members of
small offices and/or departments of larger organizations use peer-to-peer networking.
Desktop users can share their printers and files with others without those others hav-
ing to authenticate. If sensitive functions such as financial accounting and record
keeping are handled on one machine, stronger machine-level security policies can be
implemented to shield that machine from other users without compromising its abil-
ity to access the resources of the peer-to-peer network.

Now, let’s take a look at a Linux/Windows network and see how you can set up
Samba for your desktop users.

Configuring the Network
Figure 8-1 represents a network as it might be seen from a Linux system (the Xan-
dros distribution, which is a convenient desktop Linux suitable for corporate envi-
ronments). The tree view on the left side of the screen shows four computers named
Athlon, Atlanta, Dallas, and Dell. Dallas offers a printer, along with several directo-
ries, to the other systems; Dell also hosts a printer. One of the other computers runs
Windows XP, and the other two run Windows 98. Linux ties them all together. The
Linux system looks the same as a Windows system when viewed from the Network
Neighborhood or My Network Places on one of those systems.

http://samba.org
http://samba.org

166 | Chapter 8: Local Network Services

The right side of the screen in Figure 8-1 highlights the shared documents folders on
the node called Dallas, which is a Windows XP system. You also can see a word pro-
cessor file named xp_network_setup.sxw, which was saved in a native OpenOffice.
org Writer format (Version 1).

How difficult was it to set up this network? Aside from the standard wiring, Ether-
net connections, and installation of the firewall and modem, the system basically
installed itself. We followed standard setup procedures on both Windows 98
machines. The systems used DHCP to obtain their IP addresses, DNS servers, and
routes to a gateway. The router provided DHCP services and a private Internet
address scheme using a Class C network (192.168.0.0 through 192.168.0.255).
(We’ll discuss DHCP in the next section.)

Once the Windows systems established their network configurations and could
reach the Internet, we right-clicked Network Neighborhood, selected Properties, and
changed the dynamic addresses to static ones. This allowed the workstations to act
as print servers and provide shared access to the Internet.

Setting up the Windows XP systems was slightly more complicated, because at first
the XP and (now unsupported) Windows 98 machines didn’t see each other. To

Figure 8-1. Files and directories shared by Linux system, as viewed from a Windows PC

Configuring the Network | 167

make them aware of each other, we had to enable Simple File Sharing via XP’s con-
trol panel and run the Network Setup Wizard. The wizard asked us if we wanted to
enable sharing on other computers, referring to Windows 98 machines. Answering
yes enabled us to create a floppy disk that we could use to install the XP protocols on
the Windows 98 computers. This process upgraded the older systems to the newer
protocols, enabling the XP and Windows 98 boxes to communicate. (The program
furnished by Microsoft is called netsetup.exe.)

We then installed the Xandros Linux desktop and enabled Windows Networking on
it, as shown in Figure 8-2.

Notice that we were able to configure Windows Networking via a dialog box. The
Linux desktop allowed us to enable file and printer sharing, name the computer,
define the workgroup, and enable share-level security, which allows the Windows
nodes to use CIFS functionality.

Other Linux distributions, such as Fedora and Ubuntu, also offer easy tools for set-
ting up Windows file sharing. Figure 8-3 shows two configuration screens for the
Ubuntu desktop.

Ubuntu also gives you the option of setting up the Network File System (NFS), a
popular Unix-to-Unix file-sharing system that is incompatible with CIFS. The dialog
box in Figure 8-4 lets you choose either or both systems; you can use Samba to inter-
operate with Windows and Mac OS X, while using NFS to interoperate with other
Unix/Linux systems. Sharing services in Ubuntu are not installed by default, but if
you select Shared Folders (under the Administration menu in Ubuntu 6.10), Ubuntu
downloads the necessary files; you’re then ready to become a member of the domain
or workgroup.

Figure 8-2. Configuring Windows Networking

168 | Chapter 8: Local Network Services

We’ll dig deeper into Samba issues in the section“Print Services” later in this chapter,

DHCP
Dynamic Host Configuration Protocol (DHCP) services can help you with a number
of problems associated with local network environments, including IP address
assignment problems and administration issues. It’s difficult to imagine a network
without DHCP.

Let’s look at some issues you may face, and consider how DHCP can help:

• PCs and workstations require unique IP addresses, DNS information, and the
locations of gateways.

• Manually tracking IP addresses causes excessive work.

• Accidental duplication of IP addresses creates conflicts on the network.

Figure 8-3. Setting up Ubuntu shares in a Windows environment

Figure 8-4. Ubuntu’s setup screen for file-sharing services

DHCP | 169

• Troubleshooting address problems (such as duplicate addresses) and changes in
location creates unnecessary work.

• Changes in personnel usually mean that someone will have to check each com-
puter to configure a new database of IP assignments.

• Frequent movement of mobile users creates a need to reconfigure networking on
laptops.

DHCP solves these problems by handing out IP addresses as needed to each system
on a LAN when those systems boot up. The DHCP server ensures that all IP
addresses are unique. The service requires little human involvement in the assign-
ment and maintenance of IP addresses. Administrators can write the configuration
files and leave the rest up to the DHCP server (dhcpd). This server manages the IP
address pool, freeing a human network administrator from that task.

Installing DHCP
To get started with DHCP, you first need to install the DHCP server. Because this
chapter focuses on Fedora, you can install the RPM package with Yum or the pack-
age manager /usr/bin/gnome-app-install; the current version of the package is dhcp-3.0.
3-28.i386. (Debian users can install the dhcp3-server package and edit the configura-
tion file /etc/dhcp3/dhcpd.conf). The software originates from the Internet Systems
Consortium.

Once you’ve installed it, configure DHCP in /etc/dhcpd.conf. As a first step, copy the
file /usr/share/doc/dhcp/dhcpd.conf.sample to /etc/dhcpd.conf. Next, edit the file to fit
your network. The following example is typical. The syntax uses pound signs (#) for
comments:

ddns-update-style interim;
ignore client-updates;

subnet 192.168.1.0 netmask 255.255.255.0 {

--- default gateway
 option routers 192.168.1.1;
 option subnet-mask 255.255.255.0;

--- option nis-domain "domain.org";
--- option domain-name "domain.org";
 option domain-name-servers 192.168.1.1;

--- option time-offset -18000; # Eastern Standard Time
option ntp-servers 192.168.1.1;
option netbios-name-servers 192.168.1.1;
--- Selects point-to-point node (default is hybrid). Don't change this
-- unless you understand Netbios very well
option netbios-node-type 2;

170 | Chapter 8: Local Network Services

--- range dynamic-bootp 192.168.0.128 192.168.0.254;
 default-lease-time 21600;
 max-lease-time 43200;

 # we want the nameserver to appear at a fixed address
 host ns {
 next-server server1.centralsoft.org;
 hardware ethernet 00:16:3E:63:C7:76;
 fixed-address 70.253.158.42;
 }
}

We configured a few items in our configuration file after we copied it to the /etc
directory:

subnet 192.168.1.0 netmask 255.255.255.0 {
 option routers 192.168.1.1;
 option domain-name-servers 192.168.1.1;
 option subnet-mask 255.255.255.0;
 default-lease-time 21600;
 max-lease-time 43200;

The first line sets the range or pool of IP addresses available for the users in the subnet
of the LAN. In this case we used the reserved private Class C network 192.168.1.0,
which provides 254 nodes (192.168.1.1 through 192.168.1.254). This netmask must
match the netmask used to define your LAN.

We specified the gateway address in the second line, option routers, and a caching
nameserver in the third line, option domain-name-servers. The IP address is the same
on both lines, which reflects common practice.

A single server with two network cards often acts as a gateway in a local area net-
work. One card, represented by a device name such as eth0, has an address on the
Internet, while the other card (say, eth1) has an address on the private network.

When packet forwarding and iptables firewalling are enabled, any Linux server can
act as a gateway/firewall. In this case, we also enabled BIND in caching mode to
function as the network’s DNS server.

The last two lines specify the amount of time a client can keep the address, mea-
sured in seconds.

In our DHCP configuration file, we also added a clause to specify a static address for
a corporate DNS server:

 # we want the nameserver to appear at a fixed address
 host ns {
 next-server server1.centralsoft.org;
 hardware ethernet 00:16:3E:63:C7:76;
 fixed-address 70.253.158.42;}

DHCP | 171

In the upcoming section “Assigning IPv6 Addresses with radvd” we’ll discuss how to
use dhcpd to hand out static IP addresses based on the MAC address of a client’s net-
work card. But before we do, let’s look at a simple version of /etc/dhcpd.conf:

ddns-update-style interim;

default-lease-time 600;
max-lease-time 7200;

subnet 192.168.1.0 netmask 255.255.255.0 {
 option routers 192.168.1.1;
 option subnet-mask 255.255.255.0;
 option domain-name-servers server.centralsoft.org,
 server2.centralsoft.org;
 range 192.168.1.2 192.168.1.254;
}

For simple DHCP servers, maintenance may actually be easier if you
omit comments and keep the configuration file short.

Starting Your DHCP Service
Some DHCP services require a dhcpd.leases file. Use the touch command to create an
empty file in the same directory as the dhcpd.conf file:

touch /var/lib/dhcp/dhcpd.leases

You’ll want to start your DHCP server now, to check whether the configuration is
correct. You’ll also want to configure the server to start on boot. To accomplish the
first task, enter:

[root@host2 ~]# service dhcpd start
Starting dhcpd: [OK]
[root@host2 ~]#

You can also test whether the DHCP process is running with the following com-
mand (if the service is running, a line will be displayed with the process’s statistics):

ps aux | grep dhcpd
root 9028 0.0 0.0 2552 636 Ss 09:40 0:00 /usr/sbin/dhcpd

Use the chkconfig command to get DHCP to start at boot time:

chkconfig dhcpd on
chkconfig –-list
....from the list:
dhcpd 0:off 1:off 2:on 3:on 4:on 5:on 6:off

As with other services under Linux, you’ll need to restart the DHCP daemon when-
ever you make changes to your configuration files. You can set other options in the
dhcpd.conf file globally or for a client machine or subnet. This means you can estab-
lish useful defaults for your network, then override them for a certain group of

172 | Chapter 8: Local Network Services

machines or even individual machines. Here’s an example of a global configuration
section at the top of a dhcpd.conf file:

option domain name "host2.centralsoft.org";

Providing Static IP Addresses
Workstations usually function fine with dynamic addresses (that is, addresses that
can change periodically or upon reboot), but servers usually benefit from static
addresses so that their addresses don’t change while they’re in the middle of a ses-
sion with a client. Thus, DHCP lets you specify static IP addresses for particular sys-
tems in dhcpd.conf. Let’s do this in steps.

First, set up the subnet, broadcast address, and routers:

subnet 192.168.1.0 netmask 255.255.255.0
option broadcast-address 192.168.1.255;
option routers 192.168.1.1;

Next, add a host section for each machine on your network. To do this, you need to
know the hardware address (often called the MAC address) for each network card,
which you can determine by using the ifconfig command on the host. Here’s an
example host section:

ethernet MAC address as follows (Host's name is "laser-printer"):

host laser-printer {
 hardware ethernet 08:00:2b:4c:59:23;
 fixed-address 192.168.1.10;
}

host1.centralsoft.com {
 hardware ethernet 01:0:cO:2d:8c:33;
 fixed-address 192.168.1.5;
}

Create a configuration clause like this for each server needing a static lP address, and
add it to the configuration file.

Assigning IPv6 Addresses with radvd
Back in 1995, Steve Deering and Robert Hinden realized the need for a new Internet
Protocol addressing system. Their first specification for IPv6 appeared in 1995, in
IETF Request for Comments (RFC) 1883; the second in appeared in 1998, in RFC
2460. Deering and Hinden articulated what many people already knew: that lPv4’s
32-bit address space would limit the explosive growth of the Internet.

Few system administrators realize that IPv6 and its new methods for assigning IP
addresses have started gaining in popularity. Although many people scoff at IPv6,
saying either that it is unnecessary or that the weight of existing practice will prevent

Gateway Services | 173

it from ever entering the mainstream, enough applications and environments require
it that the tide is turning in its direction.

An extensive discussion of IPv6 is, again, out of this book’s scope; for
more information on the IPv6 protocol and daemon, as well as on
obtaining public IPv6 addresses, you’ll have to look elsewhere.

IPv6 addresses often include the hardware addresses of network cards. This property
allows IPv6 users to obtain static IP addresses without requiring any configuration
on the server side to support those addresses. Automatic assignment of IPv6
addresses can be done with the help of the router-advertising daemon radvd.

Fedora users can install the radvd-0.9.1 package from their Yum repositories.
Debian users can install the radvd package and read the file /usr/share/doc/radvd/
README.Debian.

radvd listens to router solicitations and sends router advertisements as described in
RFC 2461, “Neighbor Discovery for IP Version 6 (IPv6).” Hosts can automatically con-
figure their addresses and choose their default routers based on these advertisements.

radvd supports a simple protocol. You’ll also find its configuration simple. An exam-
ple of a fully configured /etc/radvd.conf file looks like this:

interface ethO
{
 AdvSendAdvert on;
 prefix 0:70:lfOQ:96::/64
 {
 };
};

If you wish to use radvd, you’ll need to change the prefix to the one for your net-
work and set up the service. You will also need to configure DNS on your client
workstations separately.

You can find the radvd project home page at http://www.litech.org/radvd.

Gateway Services
Linux has facilities for LAN users to browse the Internet without exposing their indi-
vidual IP addresses to the public. The typical setup hides activities inside an organi-
zation from the public by using Linux as a router. On the private side of the router,
local activities go undetected by anyone on the public side.

People sometimes also refer to a gateway as a bastion host. You might think of it as a
network entity that provides a single entrance and exit point to the Internet. Bastion
hosts help prevent the cracking of a network by providing a barrier between private
and public areas. We refer to the services they provide as gateway services.

http://www.litech.org/radvd/

174 | Chapter 8: Local Network Services

Linux system administrators implement gateway services by using a combination of
packet forwarding and firewall rules known as iptables. You might also see other
names for gateway services, such as masquerading or Network Address Translation
(NAT).

In small organizations and home networks, a gateway can exist on a single server and
include basic security, a firewall, and DHCP, caching DNS, and mail services. In
larger organizations, such services are generally spread across several servers, with a
demilitarized zone (DMZ) isolating the gateway.

For our purposes, we’ll limit the gateway configuration to packet forwarding; we
won’t spend time on a DMZ, which requires more equipment and effort. To build a
gateway, you need:

• A dedicated computer to act as the gateway

• A connection to the Internet and two network cards

• A small switch for client machines to connect to the gateway

• iptables installed

We’ll assume that eth0 is your Internet connection and eth1 is your internal gateway
in this configuration. Edit the configuration file for eth0, which is in /etc/sysconfig/
networking/devices/ifcfg-eth0, to include the following lines:

ONBOOT=yes
USERCTL=no
IPV6INIT=no

Role of a DMZ
In computer security, the term demilitarized zone refers to a perimeter network, which
is a subnet or network that sits between an internal network and the Internet. For
example, your private network might use an internal network of 192.168.1.0, the DMZ
10.0.0.0, and the public Internet block 70.253.158.0.

DMZs are used to contain servers that need to be accessible from the outside world,
such as email, web, and DNS servers. Connections from the Internet to the DMZ are
usually controlled using Port Address Translation (PAT).

The source and destination for every IP packet contain an IP address and a port. Port
translation makes changes to both the sender’s and recipient’s addresses on data pack-
ets. Port numbers, not IP addresses, are used to designate different computers on the
inside network.

A DMZ typically sits in the middle of two gateways or firewalls and connects to both,
with one network interface card connected to the internal network and the other to the
Internet. A DMZ can prevent accidental misconfiguration that would allow access
from the Internet to the internal network. We call this a screened-subnet firewall.

Gateway Services | 175

PEERDNS=yes
GATEWAY=70.253.158.46
TYPE=Ethernet
DEVICE=eth0
HWADDR=00:04:61:43:75:ee
BOOTPROTO=none
NETMASK=255.255.255.248
IPADDR=70.253.158.43

Similarly, the configuration for eth1 should look like this:

ONBOOT=yes
USERCTL=no
IPV6INIT=no
PEERDNS=yes
TYPE=Ethernet
DEVICE=eth1
HWADDR=00:13:46:e6:e5:83
BOOTPROTO=none
NETMASK=255.255.255.0
IPADDR=192.168.1.1

Information on these configuration parameters can be found in the file sysconfig.txt,
which you’ll find in a directory with a name similar to /usr/share/doc/initscripts-7.93.7.

With your network cards configured, you need to make sure you’ve installed ipta-
bles. You should see the following result:

[root@host2 devices]# rpm -q iptables
iptables-1.3.5-1.2
[root@host2 devices]#

If you don’t have iptables installed, install it now and load the modules.

Fedora 5 will install iptables using the Add/Remove Software applica-
tion, located directly above the Applications menu on the GNOME
panel. It also loads the kernel modules as part of the installation process.

Then run:

iptables -t nat -A POSTROUTING -o eth0 -j MASQUERADE
service iptables save
echo 1 > /proc/sys/net/ipv4/ip_forward

Now edit /etc/sysctl.conf, changing net.ipv4.ip_forward = 0 to 1 to keep this
enabled at reboot. You make the system re-read /etc/sysctl.conf by typing:

sysctl -p

Finally, if you have a small organization, you can add DHCP to the server using a
simple version of dhcpd.conf:

ddns-update-style interim;

default-lease-time 600;
max-lease-time 7200;

176 | Chapter 8: Local Network Services

subnet 192.168.1.0 netmask 255.255.255.0 {
 option routers 192.168.1.1;
 option subnet-mask 255.255.255.0;
 option domain-name-servers server1.centralsoft.org,
 server2.centralsoft.org;
 range 192.168.1.2 192.168.100.254;
}

Another Approach to Gateway Services
This section covers the use of packaged gateway and firewall combination products
with multiple feature sets. Several free packages exist, such as Firestarter, IPCop,
Netfilter, and Shorewall. You will see Smoothwall and ClarkConnect mentioned in
Linux literature, but these are commercial products that install an entire Linux distri-
bution, not standalone applications.

For use in this chapter, we chose Firestarter. However, you may want to take a look
at Shorewall, a configuration utility for Netfilter (a command-line tool).

You can download Firestarter from the Fedora repositories. Our installation had the
following package:

[root@host2 ~]# rpm -q firestarter
firestarter-1.0.3-11.fc5
[root@host2 ~]#

The Firestarter Firewall Wizard (Figure 8-5) launches when an administrator starts
the program the first time. You can relaunch the wizard from the Firewall menu in
the main interface, as well as change the choices through the Preferences option.

Figure 8-5. The Firestarter Firewall Wizard

Gateway Services | 177

After the initial splash screen there will be a series of configuration screens, starting
with the Network device setup screen (Figure 8-6), which can setup dual network
cards.

Firestarter refers to its primary function as connection sharing. However, since it uses
NAT it functions as a gateway, so client PCs on an internal LAN look like a single
machine with a single IP address to the Internet. This becomes evident, for example,
in the preferences screen shown in Figure 8-7. Notice that the first device descrip-
tion refers to the “Internet connected network device” and the second description
refers to the “local network connected device.”

You can also see toward the bottom of Figure 8-7 that Firestarter allows the adminis-
trator to use an existing DHCP configuration or create a new one. Here’s Fire-
starter’s dhcpd.conf file:

DHCP configuration generated by Firestarter
ddns-update-style interim;
ignore client-updates;

subnet 192.168.1.0 netmask 255.255.255.0 {
 option routers 192.168.1.1;
 option subnet-mask 255.255.255.0;
 option domain-name-servers 70.253.158.42, 70.253.158.45, 151.164.1.8;
 option ip-forwarding off;
 range dynamic-bootp 192.168.1.10 192.168.1.254;
 default-lease-time 21600;
 max-lease-time 43200;
}

Figure 8-6. The Network device setup screen

178 | Chapter 8: Local Network Services

The resolv.conf file on the gateway shows up on DHCP client machine configura-
tion settings as Firestarter reads that file and places the DNS server addresses in
dhcpd.conf.

The main interface of Firestarter provides a view of the gateway’s status and connec-
tions to DHCP hosts. It also provides a summary of events and activity, as shown in
Figure 8-8.

In Figure 8-9, you can see a view of events from the second tab of the main interface.
In this view, you can see the blocked connections.

The Events panel provides a log of attempts to exploit the firewall. You might find it
useful when intruders attempt to break into your systems. If they seem to persist,
add their IP addresses to the /etc/hosts.deny file. If someone attempts to enter
through ssh’s port 22 using a dictionary attack, you can simply close the port with
Firestarter.

The Firestarter icon turns red when it sees a potential exploit in the making. Notice
the message above it in Figure 8-10: “Hit from 221.237.38.68 detected.” That’s
worth investigating.

The third tab on the main interface allows you to set policies for services you will or
will not allow. For example, we allow SSH connections into the firewall from the
outside, so we set a policy to allow SSH on port 22.

Figure 8-7. Firestarter Preferences screen

Gateway Services | 179

Firestarter uses a wizard to configure gateway policies. You can get a glimpse of how
this works in Figure 8-11.

Figure 8-11 shows a window named “Add new inbound rule.” This screen appears
after you select Add Rule on the Policy tab. In this window, you can see a selection of
options you can use to allow services into the network. A similiar screen eixts for
outbound services you provide your users.

You will find Firestarter an easy application to configure. The project community has
done an outstanding job of documenting the procedures in a well-written and suc-
cinct user guide, which you can find at http://fs-security.com/docs.php.

Figure 8-8. Firestarter’s main interface

http://fs-security.com/docs.php

180 | Chapter 8: Local Network Services

At this point, you may be wondering why we’ve included an applica-
tion dependent on the GNOME desktop. Recall that when we chose
Fedora as the distribution for local networking, we did so because of
its extensive tool set. Adding Firestarter fits into our philosophy with-
out removing our ability to use the command-line interface.

Figure 8-9. Firestarter’s Events panel

Figure 8-10. Panel icons showing an attempted intrusion

Print Services | 181

Print Services
As a Linux system administrator, printers can cause you serious headaches. You’re
bound to find hardware, software, and operating system incompatibilities. Because
such a wide variety of systems and methods of configuring printers exists, this area of
administration has the potential to put you in a bad mood for months—or at least
until you get a handle on the situation.

Let’s start with hardware. Most system administrators will discover four types of
hardware for networking printers. In existing networks, you may find any combina-
tion of these configured:

• Printers attached to users’ PCs

• Dedicated PCs used as printer servers

Figure 8-11. Policy configurations for Firestarter

182 | Chapter 8: Local Network Services

• Network-enabled printers with built-in Ethernet cards

• Printer server devices connecting printers directly to a LAN

In most medium-sized office buildings, you’ll probably see several of these solutions
in use every time you turn a corner. The flexibility provided by modern desktop sys-
tems often causes problems.

Let’s say that one of your users, Sally Jean, buys an inkjet printer, goes down to the
petty cash window and gets reimbursed for it, then connects it directly to her PC.
Billy Bob, who’s seated at the desk next to her, then asks if he can use her printer. So,
she right clicks the printer on her desktop and selects “Share.” Billy Bob tries to con-
nect to Sally’s printer, but it doesn’t work. Why? He doesn’t have the driver
installed.

So, these two users call the system administrator (that’s you) to come fix the prob-
lem. You install the driver on Billy Bob’s PC, and suddenly, just like magic, it works.
Later, Sally Jean calls and complains that her PC needs more memory and a faster
processor. Why? Ten people are now using her printer because she has an open
share, and it’s slowing her down.

When you check out the situation, you see that just around the corner a large-volume
laser printer with a print direct card is sitting idle. Why aren’t all those users printing
to that printer? As it turns out, it doesn’t show up on the network because no one’s
bothered to add it to the domain controller.

What this hypothetical anecdote shows is that you, as a system administrator, need
to prepare a strategy for managing your printer infrastructure. This section of the
chapter will provide you with a high-level overview and enough practical informa-
tion to get you started. You can begin the process with a hardware inventory and
some decision making regarding software and operating systems.

Because there are so many types of printers and combinations of devices, operating
systems, and software out there, you’ll have to do most of your printing-related
learning on the job. The best approach to learning about printing involves develop-
ing a strategy for your own infrastructure. That narrows down the amount of infor-
mation you’ll need to digest.

Printing Software Considerations
Linux and Windows started off with completely different printing models. Fortu-
nately, progress has been made in getting everyone to cooperate and play nicely. But
until you configure the printers in your network, they’re still not likely to work
together.

Originally, Linux used the Unix standard for printing known as Line Printer Dae-
mon (LPD); later, an upgraded daemon called LPRng was added. Linux distribu-
tions also used the LPD tools for printing and interoperability with Unix variants.

Print Services | 183

Linux distributors continue to ship LPDs and their tools, but they’ve also added sup-
port for a new system known as the Common Unix Printing System (CUPS). Unlike
LPD, CUPS is also compatible with the Windows and Mac OSs. CUPS and LPD use
different network printing protocols. Whereas LDP cannot query a print job for basic
characteristics, CUPS can. CUPS also works directly in heterogeneous networks and
can couple with Samba if necessary. Not all Linux distributions enable the interface,
but Red Hat includes CUPS in Fedora by default.

As a system administrator, you will want to familiarize yourself with CUPS adminis-
trative tools. In Fedora, simply type http://localhost:631 in a browser, and you will
see the management interface presented in Figure 8-12.

The interface is self-explanatory, so we’ll leave its exploration up to you. If you lack
familiarity with CUPS, take a look at the management interface or go to the project
web site at http://www.cups.org/book/index.php and read the book.

Cross-Platform Printing
Now, let’s consider some of the printing dilemmas you’re likely to face in today’s
enterprise environments. You’ll almost certainly find situations where you want to
share Linux printers with Windows machines. (In fact, you’ll probably want to use

Figure 8-12. The CUPS configuration interface

http://www.cups.org/book/index.php

184 | Chapter 8: Local Network Services

Linux as a print server in a Windows network to save license fees.) You may also
want to share Windows printers with Linux machines. How do you do that?

First, let’s look at giving Windows users access to Linux-connected printers. Typi-
cally, you’ll need to set up a Samba workgroup or domain, and you will need to
install CUPS on your Linux PCs. You’ll also need to configure CUPS for Samba,
which you can do with the following command:

ln -s `which smbspool` /usr/lib/cups/backend/smb

Edit /etc/samba/smb.conf to create a printer share on a Samba server. In a real-life sit-
uation you’re likely to restrict access to certain systems or users for each printer, but
in the following example the Linux PC will share all of its printers with any systems
on your network that you’ve configured Samba to serve:

[printers]
 comment = All Printers
 printing = cups
 printcap name = cups

Your Windows PCs can now access printers over the network. You will probably
need the Windows print drivers, either from your Windows version’s media or the
media that came with your printer.

In the next scenario, you need to enable your Linux users to use printers connected
to Windows servers. Again, you need CUPS and Samba to do this. On the Windows
PCs, share the printers as you normally would: under Windows NT, 2000, and/or
XP, enable the guest account and provide permissions for everyone to access the
shared printers. Then install CUPS on the Samba server and configure it for Samba as
described earlier.

Now install the Windows printers you want to make available on the Samba server
with CUPS, using the CUPS web interface.

You will need to log in as root. On some Linux systems, you need to set up root as
the CUPS system admin first. You can do that with the adduser command:

~$ su
Password:
adduser cupsys shadow
Adding user `cupsys' to group `shadow'...
Done.
/etc/init.d/cupsys restart
Restarting Common Unix Printing System: cupsd [ok]
#

Then you can log in as root.

Click on “Add Printer” and enter the printer name from the Windows system. We’ll
use “BrotherHL1440” (see Figure 8-13). Then enter the location and description.
When you get to the device window, click on the drop-down menu and select “Win-
dows Printer via SAMBA.”

Print Services | 185

In the next window, “Device URI for,” enter the device URI. “BrotherHL1440-2” is
connected to Philadelphia on Windows 2003, so you must enter the “guest” user-
name and hostname:

smb://guest@philadelphia/brotherhl1440-2

At this point, you have to select the printer driver. You should also print a test page.
On your Linux client, open the CUPS interface, and you should see the printer.
Linux clients on the LAN can now use this printer.

Controlling Print Queues from the Command Line
You can ssh to a remote Linux print server and use CUPS commands to control print
queues. CUPS CLI commands usually require root privileges.

Let’s take a brief look at those commands:

lpc
Allows various forms of control over printers. With lpc status, you can see a list
of available queues and the status of each.

lpstat
Displays a list of jobs queued for printing on the system’s printers. You can use
various options to modify this command’s output.

lpq
Displays the status of the current queue or the queue specified with the -P queue
option.

Figure 8-13. Adding Windows printers

186 | Chapter 8: Local Network Services

lppasswd
Changes the CUPS password used by the system. Set AuthType to Digest in the
cupsd.conf configuration file.

enable and disable
Starts or stops the specified queue. The most frequently used command is dis-
able with the -c option, to stop a queue and cancel all the jobs currently in the
queue.

accept and reject
Causes the print queue to begin accepting or rejecting new jobs.

lprm
Removes a job from the queue. You can specify the queue (-P queue) and the job
identifier (obtained with lpstat).

lpmove
Moves a print job from one queue to another with a job identifier and a queue
name (e.g., lpmove queue1-46 queue2).

You can try these commands on your own. Here’s an example of the first one on the
printer we just set up using the CUPS interface:

lpc status
BrotherHL1440:
 printer is on device 'parallel' speed -1
 queuing is enabled
 printing is enabled
 no entries
 daemon present

User Management
In Linux, you can manage users (add, change, delete) in many ways. In the begin-
ning of this section, we’re going to assume that each server you administer has its
own database of users, found in the /etc/passwd file. We’re also going to assume that
you know the basics of adding and deleting user accounts with the commands
adduser and useradd for whatever distribution you use, since they differ from distro
to distro.

Different Linux distributions have changed the default behavior of the adduser/user-
add commands. You can access manual pages for either command, but they proba-
bly won’t work as the manpages indicate. You’ll have to experiment to see how your
distribution behaves. In Fedora, the two commands seem to behave the same: they
both add an account and a user directory. If you type either adduser tadelste or use-
radd tadelste, the commands will add the user and create a home directory, but they
won’t ask for a temporary password or go through the standard Linux questions you
might expect to see.

User Management | 187

On other distributions, you might see output like this:

... # adduser tadelste
Adding user `tadelste'...
Adding new group `tadelste' (1001).
Adding new user `tadelste' (1001) with group `tadelste'.
Creating home directory `/home/tadelste'.
Copying files from `/etc/skel'
Enter new UNIX password: passwd1
Retype new UNIX password: passwd1
passwd: password updated successfully
Changing the user information for tadelste
Enter the new value, or press ENTER for the default
 Full Name []: New User
 Room Number []:
 Work Phone []: 999-555-1212
 Home Phone []:
 Other []:
Is the information correct? [y/N] y

On Fedora, however, the output stops at the “Copying files…” line. The administra-
tor is then expected to create the first password for the user. But what if the adminis-
trator doesn’t immediately assign the new user a password? Could the added user
access the server through ssh, for instance? Let’s try it:

$ ssh tadelste@host2.centralsoft.org
tadelste@host2.centralsoft.org's password:
Permission denied, please try again.
tadelste@host2.centralsoft.org's password:
Permission denied, please try again.
tadelste@host2.centralsoft.org's password:
Permission denied (publickey,gssapi-with-mic,password).
$

As you can see, the answer is no. The user doesn’t just have a blank password; he
doesn’t have a password at all. The ssh_config file has the password requirement
enabled, so the user can’t use SSH to log in either.

The root user must therefore add a password for the user, which an administrator
can do as follows:

[root@host2 ~]# passwd tadelste
Changing password for user tadelste.
New UNIX password: passwd1
Retype new UNIX password: passwd1
passwd: all authentication tokens updated successfully.
[root@host2 ~]#

The output states that the passwd command is changing the password for the user,
but it’s not; it does not ask for the (nonexistent) original password.

As a user, once you’ve been assigned a password, you can change it yourself:

$ passwd
Changing password for user tadelste.
Changing password for tadelste

188 | Chapter 8: Local Network Services

(current) UNIX password: passwd1
New UNIX password: passwd1
Password unchanged
New UNIX password: passwd2
Retype new UNIX password: passwd2
passwd: all authentication tokens updated successfully.
$

Fedora first verifies that you have a password (if you don’t, you won’t be able to log
onto the server). It also verifies that the new password you enter is different from
your existing password. If you enter the same password, Fedora does not accept it
and prompts you again.

Since Fedora uses Red Hat’s protocol, you have to assume that some security issues
must exist around the adding of users and setting of passwords.

When you installed Fedora, the installation script prompted you to create a pass-
word for the root account and an optional primary user account besides root. Other
than that, you may have only scant experience with adding users, and little if any
with group administration.

System administrators need to know:

• How to create and set up accounts

• How to delete or disable accounts

• The potential for security exploits associated with user management, and how to
remedy them

You should also be aware that user accounts serve a number of purposes on Linux
systems, and that some “users” are not people. You’ll see two major types of
accounts:

Accounts for real people
Each user is given an account that is associated with a few configuration options,
such as a password, a home directory, and a shell that runs when the user logs
in. Providing separate accounts for each user allows people to set permissions on
their files, so they can control who has access to them.

Accounts for system services such as mail or a database server
These accounts ensure that services run with very restricted privileges and have
access only to a few necessary files, in case a programming error or a malicious
intruder causes them to try to affect other parts of the system. Typically, when a
service is installed, the installation process or the system administrator creates a
user and group of the same name (postfix, mysql, etc.) and assigns them to all
files and directories controlled by the service. Services are not given passwords,
home directories, or shells, because only intruders would be likely to use these.

As stated previously, if you’re reading this book, you should already know how to
add users, set passwords, and so on. Now, we want to focus on the issues an admin-
istrator needs to know about users from a security point of view.

User Management | 189

Removing a User
Employee turnover in many organizations runs high. So, unless you run a small shop
with a stable user base, you need to learn how to clean up after an employee leaves.
Too many so-called system administrators do not understand the stakes involved
when they manage users. Disgruntled former employees can often cause significant
trouble for a company by gaining access to the network.

Removing a user isn’t a one-step process—you need to manage all of the user’s files,
mailboxes, mail aliases, print jobs, recurring (automatic) personal processes (such as
the backing up of data or remote syncing of directories), and other references to the
user. It is a good idea to first disable the user’s account in /etc/passwd; after that, you
can search for the user’s files and other references. Once all traces of the user have been
cleaned up, you can remove the user completely (if you remove the entry from /etc/
passwd while these other references exist, you have a harder time specifying them).

When you remove a user, it’s a good idea to follow a predetermined course of action
so you don’t forget any important steps; you may even want to make a checklist so
that you have a routine laid out.

The first task is to disable the user’s password, effectively locking him out. You can
do this with a command like the following:

passwd -l tadelste

Sometimes it’s necessary to temporarily disable an account without removing it. For
example, a user might go on maternity leave or take a post for 90 days in another
country. You may also discover from your system logs that someone has gained
unauthorized control of an account by guessing its password. The passwd -l com-
mand is useful for these situations as well.

Next, you have to decide what to do with the user’s files. Remember that users may
have files outside their home directories. The find command can find them:

find / -user tadelste
[root@host2 ~]# find / -user tadelste
/home/tadelste
/home/tadelste/.zshrc
/home/tadelste/.bashrc
/home/tadelste/.bash_profile
/home/tadelste/.gtkrc
/home/tadelste/.bash_logout.......

You can then decide whether to delete these files or keep them. If you decide to
delete them, back them up in case you need data from them later.

As extra security, you can change the user’s login shell to a dummy value. Simply
change the last field in the passwd file to /bin/false.

If your organization uses Secure Shell (SSH, usually provided on Linux by OpenSSH-
server) and you allow remote RSA or DSA key authentication, a user can get access to
your system even if his password is disabled. This is because SSH uses separate keys.

190 | Chapter 8: Local Network Services

For instance, even after you have disabled Tom Adelstein’s password, he can get on
another computer somewhere and run a command such as:

$ ssh -f -N -L8000:intranet.yourcompany.com:80 my.domain.com

This forwards traffic to port 80 (the port on which a web server usually listens) on
your internal server.

Obviously, if your system offers SSH, you should remove authorized keys from the
appropriate directories (e.g., ~tadelste/.ssh or .~tadelste/.ssh2) in order to stop the
user from regaining access to his account this way:

$ cd .ssh
:~/.ssh$ ls
authorized_keys known_hosts
:~/.ssh$ rm authorized_keys
:~/.ssh$ ls
known_hosts
:~/.ssh$

Likewise, look for .shosts and .rhosts files in the user’s home directory (for example,
~tadelste/.shosts and ~tadelste/.rhosts).

Also, check to see if the user still has any processes running on the system. Such pro-
cesses might act as a backdoor to allow the user into your network. The following
command will tell you if a user currently has any running processes:

ps aux |grep -i ^tadelste

Some other questions a system administrator might ask about a personal user who
has left the company include:

• Could the user execute CGI scripts from his home directory or on one of the
company’s web servers?

• Do any email forwarding files such as ~tadelste/.forward exist? Users can use for-
warders to send mail to their accounts and cause programs to be executed on the
system where they supposedly do not have access.

Sealing the Home Directory
You will often find that management wants to retain the information in the home
directory of an employee who leaves. All the email and other documents in a per-
sonal user’s account belong to the company. In the event that a disgruntled former
employee becomes litigious, the company’s legal counsel may want access to these
files. Many analysts consider the keeping such directories good practice.

You can save the contents of a user’s home directory by renaming it. Simply execute
a move command:

mv /home/tadelste /home/tadelste.locked

User Management | 191

This prevents the former employee from logging in or making use of configuration
files such as the .forward file discussed in the previous section. The contents remain
intact in case they’re needed later.

Graphical User Managers
As Linux’s market penetration began to increase earlier in the decade, companies
such as Sun Microsystems, Novell, Computer Associates, HP, and IBM started port-
ing their administrative toolkits to Red Hat, SUSE, and other Linux platforms. Addi-
tionally, the administrative tools bundled with Linux distributions began to mature,
with increases in both function and usability.

Since you now have some knowledge of the commands and processes required to
create and clean up a personal user account, you should find these utilities easy to
use. Generally, though, you will find them less flexible than using the command line.

Let’s take a look at an example of one such tool, originally built on a SUSE utility called
YaST2. Sun’s Java Desktop Configurator is pictured in Figure 8-14. Descriptions of the
functions you can perform with this tool are provided in the panel on the left.

Figure 8-14. Sun Microsystems’s JDS User Manager

192 | Chapter 8: Local Network Services

Notice that the dialog box at the top is asking whether you want to delete the direc-
tory /home/tadelste. As we discussed previously, your company may wish to retain
the home directories of former employees. In this case, the graphical tool gives you
only two options: either to delete the directory or not. It does not give you the option
of renaming the directory, which, as we discussed earlier, may be the most secure
and convenient course to take.

In Figure 8-15, you can see another example taken from our Fedora system.

With the Fedora graphical user management tool, you can perform the same basic
functions as the ones outlined in Figure 8-14. Again, it may not provide all of the
options you need to properly manage the accounts of departing users.

Figure 8-15. Fedora User Manager graphical user management tool

User Management | 193

Although it’s not technically a user manager, Fedora offers another tool that you can
use to configure a number of services related to users. Take a look at Figure 8-16, the
graphical tool provided by Fedora when you type the text command setup.

This is another example of the many ways Linux provides to manage user accounts.
It does not require you to run the X Window System.

Figure 8-16. Red Hat Authentication Configurator

194

Chapter 9CHAPTER 9

Virtualization in the
Modern Enterprise

In this chapter, we address an area experiencing explosive growth in demand for
Linux system administrators. Linux virtualization lies at the heart of today’s trends in
data center consolidation, high-performance computing, rapid provisioning, busi-
ness continuity, and workload management. Enterprises are seeing real cost savings
because of Linux virtualization, and analysts are noting that the technology is chang-
ing the business landscape.

Virtualization is a concept that has gained popularity thanks to the successful com-
pany VMware (http://www.vmware.com) and the open source project Xen (http://
www.cl.cam.ac.uk/research/srg/netos/xen). It refers to one piece of hardware running
multiple kernels (which are sometimes all the same and sometimes from completely
different operating systems) on top of a lower layer of software that manages their
access to the hardware. Each kernel, called a guest, acts as if it has the whole proces-
sor to itself.

The different guests are isolated from each other much more than processes are iso-
lated within a single operating system. This isolation provides security and robust-
ness, because a failure or compromise in one guest doesn’t affect the others. The
virtualization layer performs many functions of an operating system, managing
access to processor time, devices, and memory for each guest.

At the time of this writing, the Linux developers are working on a new system called
the Kernal-based Virtual Machine (KVM), which will be part of the kernal.

Why Virtualization Is Popular
To understand who is using virtualization and the environments in which it’s valu-
able, you should understand a bit about current business needs. This section pro-
vides that background before we explain how Linux virtualization works.

The entire field of information technology has grown exponentially since the advent
of common distributed filesystems. Organizations have seen their infrastructures

http://www.vmware.com
http://www.cl.cam.ac.uk/research/srg/netos/xen/
http://www.cl.cam.ac.uk/research/srg/netos/xen/

Why Virtualization Is Popular | 195

expand year by year. Many attribute this growth to constant improvements in com-
puter components and software. But that’s not the whole picture.

Computer technology has evolved from a focus on managing transactions to harness-
ing business processes. Some firms specialize in human resource management, oth-
ers in finance and accounting, and still others in manufacturing and supply chain
management. This specialization has created fiefdoms in data centers and among IT
staffs.

Traditional networks are now able to capture and manage more and different kinds
of transactions than ever before, and this has created the need for increased comput-
ing power and subsequently more storage. Growth has also occurred in the number
of places and ways we store data, which in itself has created server sprawl (see
Figure 9-1).

Now add another piece to the mix: specialized applications for fields such as
accounting and finance nearly always run on separate, highly available servers with
redundant hardware for the sake of ensuring business continuity. This combination
of factors has transformed the IT landscape into a welter of isolated, single-function,
oversized and underutilized physical servers.

On top of all this comes the increasing burden of regulatory compliance, which
causes costs to grow again: you have to increase your capacity to store and retrieve
documents, and in many cases you’re expected to store them for up to 25 years.

Consider what that means. Your successors won’t necessarily have the technology
available to produce the documents an auditor or attorney might want a decade from
now, much less in a quarter of a century.

Let’s take another look at the results of computer growth. We have:

• Single-function servers and applications (often known as “silos”) with underused
capacity

• Additional cost increases because of the complexity of software and the need to
manage ever-increasing amounts of data

Figure 9-1. Sprawling server farms, one operating system per box

Server sprawl

196 | Chapter 9: Virtualization in the Modern Enterprise

• The need for staff to specialize into functional areas where you will find a lack of
documentation and high levels of personnel turnover

• The need to train and support users and administrators and keep software up-to-
date

Now you might understand why enterprise virtualization has gained popularity and
become one of the few areas where technology can change the business landscape.
With virtual images, you can easily compress your data together with all the pro-
grams, configuration settings, operating system libraries, and other metadata that
make a whole system. Restoring an image restores the system exactly as it was run-
ning at the time, thus making it easier to reproduce documents. Virtualization has
the following benefits:

• It replaces wasteful arrays of systems with fewer, better-utilized systems.

• It simplifies administration, because separate kernels with one application run-
ning on each are more secure and manageable than one kernel running many
applications. It also maintains the environment in which documents were cre-
ated, to meet regulatory requirements.

• Reduced hardware and complexity allows reduced staff.

• Virtualization may help reverse the trend of server sprawl.

High-Performance Computing
Linux has become the preferred host operating system for virtual machines because
of its ability to run and manage massive PC clusters and grids. It took a while for the
major hardware vendors to catch on, but once they did they saw big dollar signs. For
several years Linux has enjoyed benefactors willing to contribute personnel and
advanced technology to its development effort. Such contributors include IBM, Intel,
AMD, HP, Novell, Red Hat, Unisys, Fujitsu, and dozens of others.

For example, IBM needed a utility operating system for its OpenPower initiative.
Suddenly, Linux ran on Big Blue’s Virtualization Engine in the form of an open
source hypervisor and accompanying technologies. IBM’s engine allows Linux to cre-
ate and manage partitions and dynamically allocate I/O resources to them.

Then Linux kernel developers announced their new simultaneous multi-threading
(SMT) and hyper-threading technology. Linux can now enable two threads to exe-
cute simultaneously on the same processor—an essential technology to act as a host
for guest operating systems. Thus, VMware runs well on top of Linux and provides a
virtualization layer for other instances of Linux or other operating systems.
User-Mode Linux (UML) is another example of Linux forming a foundation
for virtualization.

The 2.6 Linux kernel fits well with IBM’s SMT technology. Prior to this version of
the kernel, Linux had insufficient thread-scheduling and arbitration-response

High-Performance Computing | 197

characteristics. The 2.6 kernel fixed that problem and greatly expanded the number
of processors on which the kernel could run.

This is important for two reasons. First, as a host for virtual machines, Linux has to
perform well and excel at managing its hardware. Second, as a guest divorced from
its physical hardware, it has to maintain its performance and capacity to handle vari-
ous processes as the host. Today, Linux makes both a great host and a great guest
OS. It manages hardware and virtual partitioning and runs well in the guest parti-
tions, thanks to HP and IBM.

If you’ve ever wondered why companies like XenSource and Virtual Iron suddenly
appeared out of thin air, now you know: it’s because of open source hypervisor con-
tributions. Like the hardware vendors that realized Linux could enhance PC and data
center component sales, software vendors jumped on the bandwagon. Even
Microsoft eventually realized it needed to get in on the Linux game, contributing to
both XenSource and Virtual Iron.

Business Continuity and Workload Management
Even on a small scale, your organization will benefit from separating email, DNS,
and web servers and directories, gateways, and databases. Placing each of these ser-
vices on a unique server ensures that if one server goes down, your entire infrastruc-
ture doesn’t collapse. But separating your services on physical hardware requires a
lot of time, space, money, and overhead. You also need to back up and restore your
data, provide for catastrophes, and deploy the best hardware for the job.

With Linux virtualization, you can partition a single physical server into a group of
virtual ones. Each virtual server appears like a physical one to system administrators.
You can create a separate server instance for each service you want to provide: email,
DNS, web serving, and so on. If one fails, you won’t mangle the others.

Partitioning the physical host also enables you to create a different configuration for
each virtual server on the same physical hardware. In one environment, for example,
we created smaller virtual machines (VMs) for our DNS servers and larger ones for
email and web serving. This allowed us to spread the workload and maintain the
same physical hardware. Figure 9-2 gives a sense of what you can accomplish with a
single physical server.

Rapid Provisioning
We first accomplished virtualization on our network by creating a minimal installa-
tion of Debian in a VM. Once we got it tuned to our needs, we compressed it and
put it on CD-R media. We then set up our additional virtual machines using
VMware with different configurations, and copied the compressed image into each
directory we specified for a VM.

198 | Chapter 9: Virtualization in the Modern Enterprise

Each VM lives in a directory. For example, our main directory, /var/
lib/vmware/Virtual Machines, contains several subdirectories such as
debian-31r0a-i386-netinst-kernel2.6. We simply compressed that sub-
directory and used it for deployment to other subdirectories with
slightly different names.

We also set up Xen virtual machines using Fedora minimal installations. We then
added the components we needed for each service we wanted to provide. For exam-
ple, our primary DNS server runs in a Xen virtual machine, while our web and mail
servers run in separate instances of VMware.

After we got a server (say, email) running, we made a compressed copy of it and
burned it to a CD-R. We regularly and systematically back up each virtual server
onto visual media such as CDs and DVDs. We also tried moving the images to differ-
ent distributions of Linux, and they ran just as they had previously.

How Virtualization Helps
What did we accomplish with virtualization? First, we eliminated several physical
servers. We deployed our preferred operating system as an image, so we needed to
go through the installation process only once. We then created virtual machines on
spare hardware and systematically copied our virtual images to allow for instant
recovery in case of a system failure.

Virtualization works well for small companies, allowing them to build an infrastruc-
ture with free software. Imagine the cost savings just from licensing fees! Now, imag-
ine what kinds of strategies large companies can implement using Linux.

Figure 9-2. Partitioning a single physical server into multiple virtual machines

Single physical server

Virtual servers

Installing Xen on Fedora 5 | 199

By now, you may be anxious to see how all of this works. So, let’s go through the
process of installing and configuring Xen and VMware and demonstrate how to vir-
tualize a server network.

Installing Xen on Fedora 5
In this section of the chapter, we’ll show you how to install Xen on a single machine
to manage two operating systems. As Xen makes its way into the standard Linux dis-
tributions, installation will become smoother. But for now, some manual labor is
needed.

We’re using Fedora Core 5 (FC5) as the Xen host operating system, since it supports
Xen 3.0 out of the box. Let’s ask yum (a package manager similar to Debian’s apt-get
or Red Hat’s up2date) about Xen:

yum info xen
Loading "installonlyn" plugin
Setting up repositories
core [1/3]
updates [2/3]
extras [3/3]
Reading repository metadata in from local files
Available Packages
Name : xen
Arch : i386
Version: 3.0.2
Release: 3.FC5
Size : 1.4 M
Repo : updates
Summary: Xen is a virtual machine monitor
Description:
 This package contains the Xen hypervisor and Xen tools, needed to
run virtual machines on x86 systems, together with the kernel-xen*
packages. Information on how to use Xen can be found at the Xen
project pages.

Virtualisation can be used to run multiple versions or multiple
Linux distributions on one system, or to test untrusted applications
in a sandboxed environment. Note that the Xen technology is still
in development, and this RPM has received extremely little testing.
Don't be surprised if this RPM eats your data, drinks your coffee
or makes fun of you in front of your friends.

That sounds encouraging. Let’s try it, but first check some requirements:

• The system must have at least 256 MB of RAM.

• grub must be your boot loader.

• SELINUX must be disabled or permissive, but not enforcing.

200 | Chapter 9: Virtualization in the Modern Enterprise

Run the system-config-securitylevel program or edit /etc/selinux/config to looks as
follows:

This file controls the state of SELinux on the system.
SELINUX= can take one of these three values:
enforcing - SELinux security policy is enforced.
permissive - SELinux prints warnings instead of enforcing.
disabled - SELinux is fully disabled.
SELINUX=Disabled
SELINUXTYPE= type of policy in use. Possible values are:
targeted - Only targeted network daemons are protected.
strict - Full SELinux protection.
SELINUXTYPE=targeted

If you changed the SELINUX value from enforcing, you’ll need to reboot Fedora before
proceeding.

This command will install the Xen hypervisor, a Xen-modified Fedora kernel called
domain 0, and various utilities:

yum install kernel-xen0

The need for a special Xen-modified Linux kernel may disappear in
the future as Intel and AMD introduce virtualization support in their
chips. Windows Vista is also expected to support virtualization at the
processor level.

This adds xen0 as the first kernel choice in /boot/grub/grub.conf, but not the default:

grub.conf generated by anaconda
#
Note that you do not have to rerun grub after making changes to this file
NOTICE: You have a /boot partition. This means that
all kernel and initrd paths are relative to /boot/, eg.
root (hd0,0)
kernel /vmlinuz-version ro root=/dev/VolGroup00/LogVol00
initrd /initrd-version.img
#boot=/dev/hda
default=1
timeout=5
splashimage=(hd0,0)/grub/splash.xpm.gz
hiddenmenu
title Fedora Core (2.6.17-1.2157_FC5xen0)
 root (hd0,0)
 kernel /xen.gz-2.6.17-1.2157_FC5
 module /vmlinuz-2.6.17-1.2157_FC5xen0 ro root=/dev/VolGroup00/LogVol00
 module /initrd-2.6.17-1.2157_FC5xen0.img
title Fedora Core (2.6.17-1.2157_FC5)
 root (hd0,0)
 kernel /vmlinuz-2.6.17-1.2157_FC5 ro root=/dev/VolGroup00/LogVol00
 initrd /initrd-2.6.17-1.2157_FC5.img
title Fedora Core (2.6.15-1.2054_FC5)
 root (hd0,0)

Installing Xen on Fedora 5 | 201

 kernel /vmlinuz-2.6.15-1.2054_FC5 ro root=/dev/VolGroup00/LogVol00
 initrd /initrd-2.6.15-1.2054_FC5.img
default=0

To make the Xen kernel the default, change this line:

default=1

to:

default=0

Now you can reboot. Xen should start automatically, but let’s check:

/usr/sbin/xm list
Name ID Mem(MiB) VCPUs State Time(s)
Domain-0 0 880 1 r----- 20.5

The output should show that Domain-0 is running. Domain 0 controls all the guest
operating systems that run on the processor, similarly to how the kernel controls
processes in an operating system.

Installing a Xen Guest OS
Xen is now in control of the processor, but you need to add at least one guest operat-
ing system. We’ll start with installing a Fedora Core 5 guest, because it facilitates the
job, and then we’ll offer some tips for other variants of Linux.

Fedora Core 5

Fedora Core 5 has a Xen guest installation script that simplifies the process, although
it installs only FC5 guests. The script expects to access the FC5 install tree via FTP,
the Web, or NFS; for some reason, you can’t specify a directory or file. We’ll use our
FC5 installation DVD and serve it with Apache:

mkdir /var/www/html/dvd
mount -t iso9660 /dev/dvd /var/www/html/dvd
apachectl start

Now we’ll run the installation script and answer its questions:

xenguest-install.py
What is the name of your virtual machine? guest1
How much RAM should be allocated (in megabytes)? 256
What would you like to use as the disk (path)? /xenguest
What is the install location? http://127.0.0.1/dvd

At this point, the FC5 installation begins. Choose between text mode and graphic
mode (if X is running) via vnc. If you choose text mode, you’ll be connected to a con-
sole. Proceed as you normally would for a Fedora or Red Hat installation. On the IP
address screen, give the guest a different address from the host, or use DHCP (if you
said dhcp="dhcp" in the Xen configuration file, which is explained in the next sec-
tion). The last screen will ask you to reboot. Unmount the DVD and eject it. You will
be rebooting only your new guest system, not Xen or the host.

202 | Chapter 9: Virtualization in the Modern Enterprise

Xen does not start the guest operating system automatically. You need to type this
command on the host:

xm create guest1

At this point, you’ll have two operating systems (host1 and guest1) operating inde-
pendently and living in harmony, each with its own filesystems, network connec-
tions, and memory. To prove that both servers are running, try these commands:

xm list
Name ID Mem(MiB) VCPUs State Time(s)
Domain-0 0 128 1 r----- 686.0
guest1 3 256 1 -b---- 14.5
xentop
xentop - 21:04:38 Xen 3.0-unstable
2 domains: 1 running, 1 blocked, 0 paused, 0 crashed, 0 dying, 0 shutdown
Mem: 982332k total, 414900k used, 567432k free CPUs: 1 @ 2532MHz

NAME STATE CPU(sec) CPU(%) MEM(k) MEM(%) MAXMEM(k) MAXMEM(%) VCPUS NETS
NETTX(k) NETRX(k) SSID
Domain-0 -----r 686 0.3 131144 13.4 no limit n/a 1 8

1488528 80298 0
guest1 --b--- 14 0.1 261996 26.7 262144 26.7 1 1

129 131 0

To start Xen domains automatically, use these commands:

/sbin/chkconfig --level 345 xendomains on
/sbin/service xendomains start

Other guests

If you want a guest OS other than FC5, you’ll need to edit a Xen guest configuration
file, which is a text file (actually, a Python script) in the /etc/xen directory.
xmexample1 and xmexample2 are commented sample files. For the full file syntax,
see:

man xmdomain.cfg

When we ran xenguest-install.py in the previous section, it generated the Xen guest
configuration /etc/xen/guest1, with a few extra lines:

Automatically generated Xen config file
name = "guest1"
memory = "256"
disk = ['file:/xenguest,xvda,w']
vif = ['mac=00:16:3e:63:c7:76']
uuid = "bc2c1684-c057-99ea-962b-de44a038bbda"
bootloader="/usr/bin/pygrub"

on_reboot = 'restart'
on_crash = 'restart'

This contains some, but not all, of the directives a guest needs. A minimal guest con-
figuration file looks something like this:

Installing Xen on Fedora 5 | 203

1. A unique guest domain name:
name="vm01"

2. A Xen-enabled kernel image pathname for the guest domain:
kernel="/boot/vmlinuz-2.6.12.6-xenU"

3. A root device for the guest domain:
root="/dev/hda1"

4. Initial memory allocation for the guest, in megabytes:
memory=128

The sum of the memory for all Xen guests must not exceed physical
memory minus 64 MB for Xen itself.

5. The disk space for the guest domain. This is defined in one or more disk block
device stanzas, each enclosed in single or double quotes:

disk = ['stanza1', 'stanza2']

A stanza consists of a string of three parameters ('host_dev, guest_dev, mode').
host_dev is the domain’s storage area as seen by the host. This may be one of:

file:pathname
A loopback file image (a single local file that Xen treats as a filesystem); this
is created when you run xm create or the xen-create-image program.

phy:device
A physical device.

guest_dev is the physical device as seen by the guest domain, and mode is r for
read-only or w for read-write. Thus, a sample disk directive for two guests is:

disk=['file:/vserver/images/vm01.img, hda1, w', 'file:/vserver/images/vm01-swap.
img, hda2, w']

6. Network interface information in a vif directive. This directive may contain a
stanza for each network device. The default network is specified with:

vif=['']

A dhcp directive controls whether DHCP is used or the interface information is
hard-coded. The following specifies the use of DHCP:

dhcp="dhcp"

If the dhcp directive is missing or set to "off", you must specify network informa-
tion statically, as you do when configuring a system:

ip="192.168.0.101"
netmask="255.255.255.0"
gateway="192.168.0.1"
hostname="vm01.example.com"

204 | Chapter 9: Virtualization in the Modern Enterprise

The xm manpage gives the following example of a minimal guest, with a loopback
file image on the host appearing as the root device on the guest:

kernel = "/boot/vmlinuz-2.6-xenU"
memory = 128
name = "MyLinux"
root = "/dev/hda1 ro"
disk = ["file:/var/xen/mylinux.img,hda1,w"]

Once you have a guest configuration file, create the Xen guest with this command:

xm create -c guest_name

where guest_name can be a full pathname or a relative filename (in which case Xen
places it in /etc/xen/guest_name). Xen will create the guest domain and try to boot it
from the given file or device. The -c option attaches a console to the domain when it
starts, so you can answer the installation questions that appear.

Installing VMware
VMware has made its server available for free, and the code is even open source. You
can find it at http://www.vmware.com/products/server. We found it robust and user-
friendly. You can read about VMware’s open source and community source initia-
tives on its web site.

As we mentioned earlier, startups such as XenSource and Virtual Iron have taken
advantage of the Linux kernel’s support of hypervisor technology from IBM. Under
competitive pressure from Xen, VMware has also submitted its own open source
contributions to the kernel developers, realizing that VMware will run better on
Linux if VMware gives the Linux kernel a little help.

While we ran Xen using Fedora Core 5, we decided to install VMware on an Ubuntu
server as our host and used Debian as our guest operating system. We also managed
remote VMware instances from an Ubuntu desktop using the VMware console.
Later, we installed FC5 under a VMware virtual machine.

We downloaded Vmware-server-1.0.1-29996.tar.gz and decompressed it to an instal-
lation directory called vmware-server-distrib. Inside the directory we found vmware-
install.pl and ran it with the command ./vmware-install.pl. Soon afterward, the instal-
lation program began and displayed the following messages:

Creating a new installer database using the tar3 format.

Installing the content of the package.

In which directory do you want to install the binary files?
[/usr/bin]

VMware Server’s installation begins with several questions like this, based on the
installation script’s sniffing of your operating system and file layouts.

http://www.vmware.com/products/server/

Installing VMware | 205

During the installation process, the script asks you to accept VMware’s product
license. You should read it before accepting it. After you agree to the license,
VMware verifies that the compiler and header files on your system are compatible
with each other and builds the VMware binaries using your compiler. You will see
messages such as:

The path "/usr/lib/vmware" does not exist currently. This program is going
to create it, including needed parent directories. Is this what you want?
[yes]

Additionally, you will see code compilations like the following example:

make[1]: Entering directory '/usr/src/linux-headers-2.6.15-26-k7'
 CC [M] /tmp/vmware-config0/vmnet-only/driver.o
 CC [M] /tmp/vmware-config0/vmnet-only/hub.o
 CC [M] /tmp/vmware-config0/vmnet-only/userif.o
 CC [M] /tmp/vmware-config0/vmnet-only/netif.o
 CC [M] /tmp/vmware-config0/vmnet-only/bridge.o
 CC [M] /tmp/vmware-config0/vmnet-only/procfs.o
 CC [M] /tmp/vmware-config0/vmnet-only/smac_compat.o
 SHIPPED /tmp/vmware-config0/vmnet-only/smac_linux.x386.o
 LD [M] /tmp/vmware-config0/vmnet-only/vmnet.o
 Building modules, stage 2.
 MODPOST

Toward the end of the installation, the script will inform you that installation of the
code has completed and offer you a command you can use if you ever want to unin-
stall the server:

The installation of VMware Server 1.0.1 build-29996 for Linux completed
successfully. You can decide to remove this software from your system at any
time by invoking the following command: "/usr/bin/vmware-uninstall.pl".

The installation script will also ask you to run the configuration command:

Before running VMware Server for the first time, you need to configure it by
invoking the following command: "/usr/bin/vmware-config.pl". Do you want
this program to invoke the command for you now? [yes]

As the installation process ends, you will see the following messages:

Starting VMware services:
Virtual machine monitor done
Virtual Ethernet done
Bridged networking on /dev/vmnet0 done
Host-only networking on /dev/vmnet1 (background) done
Host-only networking on /dev/vmnet8 (background) done
NAT service on /dev/vmnet8 done
Starting VMware virtual machines done

The configuration of VMware Server 1.0.1 build-29996 for Linux for this
running kernel completed successfully.

206 | Chapter 9: Virtualization in the Modern Enterprise

You can download an existing operating system image, which VMware calls an
appliance, from http://www.vmware.com/vmtn/appliances/directory. We chose
debian-31r0a-i386-netinst-kernel2.6.zip, which we placed under the /var/lib/vmare/
Virtual Machines directory and decompressed.

Once we had our basic image, we started the VMware management console on a
remote Ubuntu desktop behind a firewall at a remote location. We ran the command:

$ gksu vmware-server-console

We then configured the console to connect to our guest operating system remotely.
With the VMware Server Console running, we connected to the remote virtual
machine and logged on as root, as shown in Figure 9-3.

After we connected to the remote host, VMware prompted us to create a virtual
machine. Because we’d already created one, we instead clicked on the File menu and
opened the directory that contained our existing instance of Debian. This action
added Debian to the VM inventory. Our console then appeared similar to Figure 9-4,
which gave us an idea of the operating functions available.

We were then able to start Debian. As the system booted, Debian began to run the
later phases of its installation script. We let it run, and within a short time we got to
the screen in Figure 9-5.

We opted to configure Debian manually instead of choosing one of the predefined
configurations. That allowed us to create a default Debian server to deploy in addi-
tional instances of VMware Server. Figure 9-6 shows the running Debian system.

The screenshot shows us running the command ifconfig. We tested this instance to
make sure our virtual Ethernet cards were correctly bound to the IP addresses we set up.

Figure 9-3. Connecting to a remote virtual host

http://www.vmware.com/vmtn/appliances/directory/

Installing VMware | 207

Once we had our basic Debian image, we zipped it up and burned it to CD-R media.
We then deployed that image on the other hosts, after we’d determined each guest
system’s role and resource requirements.

Figure 9-7 provides a summary of the Debian image. On the right side of the screen
you can see the configuration of the host. We can alter the virtual server dynamically
to add memory, disk space, Ethernet cards, processors, and various devices as the
need arises and as we set up additional machines.

Figure 9-4. Connected to a remote host ready to start up

Figure 9-5. The Debian installation script running under a remote virtual machine

208 | Chapter 9: Virtualization in the Modern Enterprise

Figure 9-6. The installed instance of Debian on its remote host

Figure 9-7. Console summary of our basic Debian guest image

Installing VMware | 209

Installing a VMware Guest OS
For our final task, installing another operating system, we downloaded Fedora Core
5 from VMware’s community site, moved it to the Virtual Machines directory, and
decompressed it as we did with Debian. Next, we added it to our inventory through
the File menu. Figure 9-8 shows a question about a unique identifier; you can keep
the existing one.

VMware’s management console noticed we added an image. In order to distinguish
between possible multiple images, it prompted us for a unique identifier (UUID) in
the dialog shown in Figure 9-8. Because we copied Fedora 5 and have all the files
making up the image, it did not matter which option we chose from the dialog.

When you open a new virtual machine, VMware gives you a chance to verify the vir-
tual hardware configuration. Figure 9-9 gives you an idea of the virtual hardware
inventory available for Fedora Core 5.

In addition to downloading images and loading them into the management con-
sole, you can install a Linux operating system from a standard Linux distribution’s
CD-ROM.

Figure 9-8. VMware asks about a virtual machine image’s unique identifier

210 | Chapter 9: Virtualization in the Modern Enterprise

Virtualization: A Passing Fad?
Many analysts say they will sit on the sidelines and wait to see whether Linux virtual-
ization takes hold. As a system administrator, you might want to weigh the risks and
rewards of mastering this technology. Virtualization is not the equivalent of IBM’s
introduction of the PC or Microsoft’s introduction of distributed filesystems. The
impact of hypervisor technology doesn’t even compare to that of ERP programs such
as SAP, PeopleSoft, or Oracle Financials.

In any case, technologies such as Xen and VMware have undeniable benefits. Virtual-
ization improves the utilization of servers and reduces overprovisioning of hardware
by consolidating system resources. By running your current software in a virtual
environment, you can not only preserve your investment in that software but take
greater advantage of low-cost, industry-standard servers.

Hopefully, this chapter has provided you with the knowledge and skills you need to
implement your own virtualized environments. You now have the opportunity to
experiment and have fun with free virtualization technology. Doing so could posi-
tion you as a specialist in a field few understand.

Figure 9-9. VMware virtual hardware configuration for Fedora Core 5

211

Chapter 10 CHAPTER 10

Scripting

As a Linux system administrator, you’ll use two tools more than any others: a text
editor to create and edit text files, and a shell to run commands. At some point you’ll
tire of typing repetitive commands and look for ways to save your fingers and reduce
errors. That’s when you’ll combine the text editor and the shell to create the sim-
plest Linux programs: shell scripts.

Linux itself uses shell scripts everywhere, especially for customizable tasks such as
service and process management. If you understand how those system scripts are
written, you can interpret the steps they’re taking and adapt them for your own
needs.

The shell (an interface to the operating system) is one of many innovations inherited
from Linux’s great-grandfather, Unix. In 1978, Bell Labs researcher Stephen Bourne
developed the Bourne Shell for Version 7 Unix. It was called sh (Unix valued terse-
ness), and it defined the standard features that all shells still display. Shells evolved
from that foundation, leading to the development of the Korn shell (ksh, or course),
the C shell (csh), and finally the Bash shell (bash) that is now standard on GNU/
Linux systems. bash is a pun/acronym for Bourne-Again Shell, and it still supports
scripts written for the original Bourne shell.

This chapter starts with the bash basics: shell prompts, commands and arguments,
variables, expressions, and I/O redirection. If you’re familiar with these already, you
won’t miss much by skipping ahead a few pages (except perhaps a cure for insomnia).

Every tool has its limits, and at some point you may find that bash is not the best
solution to all your problems. Toward the end of this chapter we’ll examine a small
application written in a number of scripting languages: bash as well as Perl, PHP, and
Python (the three Ps associated with the LAMP acronym we mentioned in
Chapter 6). You can compare their style, syntax, expressiveness, ease of use, and
applicability to different domains. Not every problem is a nail, but a big enough
hammer can treat it like one.

212 | Chapter 10: Scripting

bash Beginnings
Many operating systems offered command-line interfaces in the early days, and they
typically allowed commands to be stored in text files and run as batch jobs (a readily
understood concept at the time). It soon became natural to introduce ways to sub-
mit parameters to scripts and allow the scripts to change their behavior under differ-
ent conditions. Unix’s shell made tremendous leaps in flexibility, turning the shell
into a true programming language.

Our interactive examples will show a sample shell prompt, a command with optional
arguments, and the command’s output, like this:

admin@server1:~$ date
Thu Aug 24 09:16:56 CDT 2006

We’ll show the contents of a shell script like this:

#!/bin/bash
contents of script...

The first line is special in Linux scripts: if it starts with the two characters #!, the rest
of the first line is the filename of the command to run to process the rest of the
script. (If the # character is not followed by a !, it’s interpreted as a comment that
continues until the end of the line.) This trick lets you use any program to interpret
your script files. If the program is a traditional shell like sh or bash, the file is called a
shell script. At the end of the chapter we’ll show scripts for Perl, PHP, and Python.

Microsoft Windows uses the suffix of the filename to define the file
type and what interpreter should run it. If you change a file’s suffix, it
may stop working. In Linux, filenames have nothing to do with execu-
tion (although following conventions can be useful for other reasons).

Use your favorite text editor (or even one you don’t care for) to create this three-line
file, and save it to a file called hello:

#!/bin/bash
echo hello world
echo bonjour monde

This file is not a working script yet. We’ll show how to actually run it in the next sec-
tion, but first we need to explain some basic syntax rules.

The /bin/bash shell will interpret this script line by line. It expects each command to
be on a single line, but if you end a line with a backslash (\), bash will treat the next
line as a continuation:

#!/bin/bash
echo \
hello\
world

bash Beginnings | 213

This is a good way to make complex lines more readable.

The shell ignores lines filled with whitespace (spaces, tabs, empty lines). It also
ignores everything from a comment character (#) to the end of the line. When bash
reads the second line of this script (echo hello world), it treats the first word (echo)
as the command to run and the other words (hello world) as its arguments. The echo
command just copies its arguments to its output. The third line runs another echo
command, but with different arguments.

To see what you’ve put in the file hello, you can print its contents to the screen:

admin@server1:~$ cat hello
#!/bin/bash
echo hello world
echo bonjour monde

Pathnames and Permissions
The hello file can be executed by running the bash command with a hello argument:

admin@server1:~$ bash hello
hello world
bonjour monde
admin@server1:~$

Now let’s try to run hello without its bash chaperon:

admin@server1:~$ hello
bash: hello: command not found

Why can’t bash find it? When you specify a command, Linux searches a list of direc-
tories called the path for a file of that name and runs the first one it finds. In this
case, hello was not in any of these directories. If you tell the system what directory
hello is in, it will run it. The pathname can be absolute (/home/admin/hello) or rela-
tive (./hello means the hello file in the current directory). We’ll describe how to spec-
ify the directories in your path in the next section, but first we have to deal with
permissions.

A shell script won’t run without certain file permissions. Let’s check the permissions
on hello:

admin@server1:~$ ls -l hello
-rw-r--r-- 1 admin admin 48 2006-07-25 13:25 hello

A – indicates that the flag is not set. The leading – is the directory flag; it's d for a
directory or – for a file. Next come the permissions for the file's owner, the group to
which the owner belongs, and everyone else. The owner (admin) can read (r) and
write (w) this file, while others in the group (in this case, also named admin) and
everyone else can only read it (r--). No one can execute (run) the file, because the
third character in each three-character set is a – instead of an x.

214 | Chapter 10: Scripting

Now let’s try to run hello with a relative pathname:

admin@server1:~$./hello
bash: ./hello: Permission denied

This time Linux found it but didn’t run it. It failed because the hello file does not
have executable permissions. You need to decide who will be allowed to execute it:
only you (the owner), anyone in your group, and/or users in other groups. This is a
practical security decision that administrators must make frequently. If permissions
are too broad, others can run your script without your knowledge; if they’re too nar-
row, the script might not run at all.

The command to change permissions is called chmod (for change mode), and it can
use old-style Unix octal numbers or letters. Let’s try it both ways, giving read/write/
execute permissions to yourself, read/execute permissions to your group, and noth-
ing to others (what have they ever given you?). For the octal style, read=4, write=2,
and execute=1. The user number will be 4+2+1 (7), the group 4+1 (5), and others 0:

admin@server1:~$ chmod 750 hello
admin@server1:~$ ls -l hello
-rwxr-x--- 1 admin admin 50 2006-08-03 15:44 hello

The other style of permission arguments, using letters, is probably more intuitive:

admin@server1:~$ chmod u=rwx,g=rx hello
admin@server1:~$ ls -l hello
-rwxr-x--- 1 admin admin 50 2006-08-03 15:44 hello

To quickly add read and execute permissions for yourself, your group, and others,
enter:

admin@server1:~$ chmod +xr hello
admin@server1:~$ ls -l hello
-rwxr-xr-x 1 admin admin 50 2006-08-03 15:44 hello

Now we can run the script from the command line:

admin@server1:~$./hello
hello world
bonjour monde

The Default Path
The list of directories through which bash should search for commands is specified in
a shell environment variable called PATH. To see what’s in your path, enter:

admin@server1:~$ echo $PATH
/bin:/usr/bin

Linux reserves the special names . for the current directory and .. for the current
directory’s parent directory. If you want Linux to always find commands like hello in
your current directory, add the current directory to PATH:

admin@server1:~$ PATH=$PATH:.

bash Beginnings | 215

To make changes such as this one stick, you’ll need to make a permanent change to
your PATH. This can be done by an individual user in the .bashrc file located in the
user’s home directory, or by the system administrator in a system-wide startup file
(usually located in the /etc directory); just add a statement to the file like the com-
mand just shown.

Alternatively, you could move the hello script to one of the directories already in the
PATH. However, these directories are usually protected so that only the root user can
put files there, to preserve security.

For a script more complex than hello (i.e., almost any script), either method has
security implications. If . is in your PATH, you run the risk that if someone else puts a
different script named hello in another directory and you blunder into that directory
and type hello, you’ll execute the other user’s hello and not the one you intended.

The correctness of the script is also a concern. We’re reasonably sure about what our
hello script does now, but we might not be after adding a hundred more lines.

A common practice is to put your own scripts in a directory like /usr/local/bin or a pri-
vate ~/bin rather than a system directory like /bin, /sbin, or /usr/bin. To add this direc-
tory to your PATH permanently, add a line like the following at the end of your .bashrc
file:

export PATH=$PATH:/usr/local/bin

I/O Redirection
I/O redirection and pipes are more Unix innovations that Microsoft and many others
have copied without shame. The shell gives you access to these features in a very
intuitive way.

When you’re typing a command at the console or in a text window, your fingers pro-
vide the command’s standard input, and your eyes read the command’s standard out-
put and standard error output. However, you can produce input or capture that
output by replacing your fingers or your eyes with a file. Let’s run the ls command
with its standard output going to the screen as usual, and then redirected (with >) to
a file:

admin@server1:~$ ls
hello
admin@server1:~$ ls > files.txt
admin@server1:~$

In the second example, the redirection happens silently. If any errors occurred, how-
ever, you would see them on the display rather than in the file (that’s why standard
error exists):

admin@server1:~$ ls ciao > files.txt
ls: ciao: No such file or directory
admin@server1:~$

216 | Chapter 10: Scripting

Be aware that if files.txt exists before you run these commands, it will be overwrit-
ten. If you want to append new content to the file rather than overwriting it, use the
append (>>) characters instead:

admin@server1:~$ ls -l >> files.txt

If files.txt does not exist, it will be created before the appending starts.

You can also redirect standard error. Here is a dazzling display that redirects both
standard output and standard error at the same time:

admin@server1:~$ ls -l > files.txt 2> errors.txt

The inelegant 2> is the standard error redirection magic. Standard error redirection
can be useful with long processes such as compilations, so you can review any error
messages later rather than hovering over the screen.

If you want to redirect standard output and standard error to the same file, do this:

admin@server1:~$ ls -l > files.txt 2>&1

The &1 means “the same place as standard output,” which in this case is files.txt. A
shortcut for the previous command is:

admin@server1:~$ ls -l >& files.txt

Use >> rather than > anywhere you want to append rather than overwrite.

It’s only fair that standard input may also be redirected. Here’s a contrived example
that searches for filenames containing the string foo:

admin@server1:~$ ls -l > files.txt
admin@server1:~$ grep foo < files.txt
admin@server1:~$ rm files.txt

The first step creates the temporary file files.txt. The second step reads from it, and in
the third step we practice good disk hygiene and get rid of it. The temporary file’s life
was short but productive.

We can combine these three steps into one and avoid the temporary file with Unix’s
best invention, the pipe. A pipe connects the output of one command to the input of
another command. The pipe symbol is |, like a > and < meeting at great speed. The
standard output of the first command becomes standard input for the second com-
mand, simplifying our earlier steps:

admin@server1:~$ ls -l | grep foo

You can also chain pipes together:

admin@server1:~$ ls -l | grep foo | wc -l

This command will count the number of times the string foo appears in any of the
files in the current directory.

bash Beginnings | 217

Variables
bash is a programming language, and programming languages have common fea-
tures. One of the most basic is the variable: a symbol that contains a value. bash vari-
ables are strings unless you specify otherwise with a declare statement. You don’t
need to declare or define bash variables before you use them, unlike with many other
languages.

A variable’s name is a string starting with a letter and containing letters, numbers, or
underscores (_). A variable’s value is obtained by putting a $ character before the
variable’s name. Here’s a shell script that assigns a string value to the variable hw,
then prints it:

#!/bin/bash
hw="hello world"
echo $hw

The variable hw is created by the assignment in line 2. In line 3, the contents of the
variable hw will replace the $hw reference. Because bash and other shells treat
whitespace characters (spaces and tabs) as command argument separators rather
than normal argument characters, to preserve them you must surround the whole
string with double quote (") or single quote (') characters. The difference is that shell
variables (and other special shell syntax) are expanded within double quotes and
treated literally within single quotes. Look at the difference in output from the two
echo commands in the following script:

admin@server1:~$ cat hello2
#!/bin/bash
hw="hello world"
echo "$hw"
echo '$hw'
admin@server1:~$./hello2
hello world
$hw
admin@server1:~$

You can assign the standard output of a command to a variable with the $(command)
or `command` (using little grave accents) syntax:

admin@server1:~$ cat today
#!/bin/bash
dt=$(date)
dttoo=`date`
echo "Today is $dt"
echo "And so is $dttoo"
admin@server1:~$./today
Today is Tue Jul 25 14:56:01 CDT 2006
And so is Tue Jul 25 14:56:01 CDT 2006
admin@server1:~$

Special variables represent command-line arguments. The $ character followed by a
number n refers to the nth argument on the command line, starting from 1. The $0

218 | Chapter 10: Scripting

variable is the name of the script itself. The $* variable contains all the arguments as
one string value. These variables can then be passed along to commands the script
runs:

admin@server1:~$ cat files
#!/bin/bash
ls -Alv $*
admin@server1:~$./files hello hello2 today
-rwxr-xr-x 1 admin admin 48 2006-07-25 13:25 hello
-rwxr-xr-x 1 admin admin 51 2006-07-25 14:45 hello2
-rwxr-xr-x 1 admin admin 45 2006-07-25 14:49 today
admin@server1:~$

The special variable $$ contains the current process’s process ID. This can be used to
create a unique temporary filename. If multiple copies of the same script are running
at the same time, each will have a different process ID and thus a different tempo-
rary filename.

Another useful variable is $?, which contains the return status of the most recent
command executed. We’ll use this later in this chapter to check for the success or
failure of program execution in a script.

Useful Elements for bash Scripts
We’ve introduced the basic elements of bash that you’ll use in the everyday running
of interactive commands. Now let’s look at some things that will help you write
effective scripts.

Expressions
bash expressions contain variables and operators such as == (equals) and > (greater
than). These are usually used in tests, which can be specified in several ways:

test $file == "test"
[$file == "test"]
[[$file == "test"]]

If you use the test command, remember that some symbols have multiple meanings
(for instance, in an earlier section we used > for output redirection), so they need to
be enclosed in quotes. You don’t have to worry about the quotes if you use the sin-
gle or double square bracket syntax. The double brackets do everything the single
ones do and a bit more, so it’s safest to use double brackets with your expressions.

bash has some useful special built-in operators:

-a file # true if file exists
-d file # true if file exists and is a directory
-f file # true if file exists and is a file
-r file # true if file exists and is readable
-w file # true if file exists and is writable
-x file # true if file exists and is executable

Useful Elements for bash Scripts | 219

Arithmetic
bash is heavily weighted toward text such as commands, arguments, and filenames.
It can evaluate the usual arithmetic expressions (using +, -, *, /, and other operators)
by surrounding them with a pair of double parentheses: ((expression)). Because
many arithmetic characters—including *, (, and)—are specially interpreted by the
shell, it’s best to quote shell arguments if they will be treated as math expressions in
the script:

admin@server1:~$ cat arith
#!/bin/bash
answer=$(($*))
echo $answer
admin@server1:~$./arith "(8+1)*(7-1)-60"
-6
admin@server1:~$./arith "2**60"
1152921504606846976
admin@server1:~$

The latest version of bash supports 64-bit integers (–9223372036854775808 to
9223372036854775807). Older versions support only 32-bit integers (with a puny
range of –2147483648 to 2147483647). Floating-point numbers are not supported.
Scripts that need floating-point or more advanced operators can use an external pro-
gram such as bc.

In arithmetic expressions, you can use variables without the $ character that would
be used to substitute their values in other settings:

admin@server1:~$ cat arithexp
#!/bin/bash
a=$1
b=$((a+2))
echo "$a + 2 = $b"
c=$((a*2))
echo "$a * 2 = $c"
admin@server1:~$./arithexp 6
6 + 2 = 8
6 * 2 = 12
admin@server1:~$

If...
Given expressions, you can execute different chunks of code depending on the
results of tests. bash uses the if ... fi (backwards if) syntax, with optional elif
(else if) and else sections:

if expression1 ; then
 (commands)
elif expression2 ; then
 (commands)
 ...

220 | Chapter 10: Scripting

elif expressionN ; then
 (commands)
else (commands)
fi

The ; then phrase at the end of a line can also be expressed as a plain then on the
next line:

if expression
then
 (commands)
fi

If you’re in the same directory as the hello script you made earlier, try this:

admin@server1:~$ if [[-x hello]]
> then
> echo "hello is executable"
> fi
hello is executable
admin@server1:~$

Here’s a fancier script that searches the /etc/passwd file for an account name:

#!/bin/bash
USERID="$1"
DETECTED=$(egrep -o "^$USERID:" < /etc/passwd)
if [[-n "${DETECTED}"]] ; then
 echo "$USERID is one of us :-)"
else
 echo "$USERID is a stranger :-("
fi

Let’s call this script friendorfoe, make it executable, and try it with first a known
account on our system (root) and then a made-up account (sasquatch):

admin@server1:~$./friendorfoe root
root is one of us :-)
admin@server1:~$./friendorfoe sasquatch
sasquatch is a stranger :-(

The first argument is assigned to the shell variable USERID. The egrep command is run
within $() to assign its output to the DETECTED shell variable. egrep -o prints only the
string it matches, rather than the whole line. "^$USERID:" matches the contents of the
USERID variable only if the contents of the variable appear at the start of a line and are
immediately followed by a colon. The if expression is surrounded with double square
brackets to contain it, evaluate it, and return its result. The -n "${DETECTED}" expres-
sion returns true if the shell variable DETECTED is a non-empty string. Finally, the vari-
able DETECTED is quoted ("${DETECTED}") to treat it as a single string.

Wherever the if statement takes an expression, you can put in a command, or even a
sequence of commands. If the last command in the sequence succeeds, the if state-
ment considers that the expression returned a true result. If the last command in the
sequence fails, it’s considered that the expression returned a false result, and the else
expression will be executed. We’ll see examples in upcoming sections.

Useful Elements for bash Scripts | 221

Troubleshooting a Simple Script
Let’s perform some surgery on a script that is supposed to delete its argument (a file
or a directory) but has a few problems:

admin@server1:~$ cat delete
#!/bin/bash
if rm $1
 then
 echo file $1 deleted
else
 if rmdir $1
 then
 echo directory $1 deleted
 fi
fi

The script is intended to delete the file passed as an argument using rm, and to print
a message if it succeeds. If rm fails, the script assumes the argument refers to a direc-
tory and tries rmdir instead.

Here are some results:

admin@server1:~$./delete hello2
file hello2 deleted
admin@server1:~$./delete hello2
rm: cannot remove `hello2': No such file or directory
rmdir: `hello2': No such file or directory
admin@server1:~$ mkdir hello3
admin@server1:~$./delete hello3
rm: cannot remove `hello3': Is a directory
directory hello3 deleted
admin@server1:~

Using these error messages, let’s try to fix the script. First, we’ll use I/O redirection
to save results to log and error files, which we can review in our copious free time.
Next, we’ll catch the return value of the rm command to generate a success or fail-
ure message. We’ll also capture the current date and time to include in the output
log:

admin@server1:~$ cat removefiles
#!/bin/bash
removefiles deletes either files or directories
echo "$0 ran at" $(date) >> delete.log
if rm $1 2>> delete-err.log
 then
 echo "deleted file $1" >> delete.log
elif rmdir $1 2>> delete-err.log
 then
 echo "deleted directory $1" >> delete.log
else
 echo "failed to delete $1" >> delete.log
fi

222 | Chapter 10: Scripting

The script still has some warts: it doesn’t check if the file even exists, and it doesn’t
distinguish between a file and a directory. We can use some of the built-in operators
that we mentioned earlier to fix these problems:

admin@server1:~$ cat removefiles
#!/bin/bash
removefiles deletes either files or directories
echo "$0 ran at" $(date) >> delete.log
if [! -e $1]
 then
 echo "$1 does not exist" >> delete.log
elif [-f $1]
 then
 echo -n "file $1 " >> delete.log
 if rm $1 2>> delete-err.log
 then
 echo "deleted" >> delete.log
 else
 echo "not deleted" >> delete.log
 fi
elif [-d $1]
 then
 echo "directory $1 " >> delete.log
 if rmdir $1 2>> delete-err.log
 then
 echo "deleted" >> delete.log
 else
 echo "not deleted" >> delete.log
 fi
fi

This looks pretty good, but we have one more curve to throw you: what if the file or
directory name contains spaces? (You’re guaranteed to see this if you get any files
from Windows or Mac systems.) Create a file called my file, then try to delete it with
our trusty script:

admin@server1:~$./removefiles my file

Then the last line of delete.log will contain:

my does not exist

Since we didn’t put quotes around my file, the shell split my and file into the script’s
$1 and $2 variables. So, let’s quote my file to keep it in $1:

admin@server1:~$./removefiles "my file"
./removefiles: [: my: binary operator expected
./removefiles: [: my: binary operator expected

Oops. We got the string my file into the shell’s $1 variable, but we need to quote it
again inside the script to protect it for the name tests and remove commands:

admin@server1:~$ cat removefiles
#!/bin/bash
removefiles deletes either files or directories

Useful Elements for bash Scripts | 223

echo "$0 ran at" $(date) >> delete.log
if [! -e "$1"]
 then
 echo "$1 does not exist" >> delete.log
elif [-f "$1"]
 then
 echo -n "file $1 " >> delete.log
 if rm "$1" 2>> delete-err.log
 then
 echo "deleted" >> delete.log
 else
 echo "not deleted" >> delete.log
 fi
elif [-d "$1"]
 then
 echo -n "directory $1 " >> delete.log
 if rmdir "$1" 2>> delete-err.log
 then
 echo "deleted" >> delete.log
 else
 echo "not deleted" >> delete.log
 fi
fi

Now, at last, when you run the command:

admin@server1:~$./removefiles "my file"

the last line of delete.log will be:

file my file deleted

Loops
If you want to do something more than once, you need a loop. bash has three fla-
vors: for, while, and until.

The lovely and talented for loop has this general appearance:

for arg in list
do
commands
done

It executes the commands action (which can cover as many lines and separate com-
mands as you want) specified between do and done for each item in list. When the
commands run, they can access the current item from list through the variable $arg,
The syntax may be a bit confusing at first: in the for statement you must specify arg
without the dollar sign, but in the commands you must specify $arg with the dollar
sign.

Some simple examples are:

admin@server1:~$ for stooge in moe larry curly
> do

224 | Chapter 10: Scripting

> echo $stooge
> done
moe
larry
curly

admin@server1:~$ for file in *
> do
> ls -l $file
> done
-rw-r--r-- 1 admin admin 48 2006-08-26 14:12 hello

admin@server1:~$ for file in $(find / -name *.gif)
> do
> cp $file /tmp
> done

The while loop runs while the test condition is true:

while expression
do
stuff
done

Here’s an example script that uses the arithmetic expressions mentioned earlier to
create a C-style while loop (the indentation isn’t necessary, but we like it):

#!/bin/bash
MAX=100
((cur=1)) # Treat cur like an integer
while ((cur < MAX))
 do
 echo -n "$cur "
 ((cur+=1)) # Increment as an integer
 done

The until loop is the opposite of while. It loops until the test condition is true:

until expression
do
stuff
done

An example is:

#!/bin/bash
gameover="q"
until [[$cmd == $gameover]]
 do
 echo -n "Your commmand ($gameover to quit)? "
 read cmd
 if [[$cmd != $gameover]]; then $cmd; fi
 done

Useful Elements for bash Scripts | 225

To escape from a loop, use break. Let’s rewrite our until example as a while loop
with a break:

#!/bin/bash
gameover="q"
while [[true]]
 do
 echo -n "Your commmand ($gameover to quit)? "
 read cmd
 if [[$cmd == $gameover]]; then break; fi
 $cmd
 done

To skip the rest of the loop and jump back to the start, use continue:

#!/bin/bash
gameover="q"
while [[true]]
 do
 echo -n "Your commmand ($gameover to quit)? "
 read cmd
 if [[$cmd != $gameover]]; then $cmd; continue; fi
 break
 done

cron Jobs
Shell scripts are often used to glue programs together. A common example in Linux
is the definition of cron jobs. cron is the standard Linux job scheduler. If you want
something to happen the third Tuesday of every month at the uncivilized hour of
01:23, you can get cron to do it for you without any of the negative feedback that
you would get from a person. The cron daemon checks every minute to see whether
it’s time to do something, or if any cron job specifications have changed.

You specify cron jobs by editing a crontab file. You can view the contents of your
crontab, if any, as follows:

admin@server1:~$ crontab -l
no crontab for admin

To edit your crontab, enter:

admin@server1:~$ crontab -e

Each line of a crontab file contains a day/time specification and a command, in this
format:

minute hour day_of_month month day_of_week command

This requires more than a little explanation:

• minute is between 0 and 59.

• hour uses the 24-hour clock and is between 0 and 23.

• day_of_month ranges from 1 to 31.

226 | Chapter 10: Scripting

• month is a number between 1 and 12 or a name such as February.

• day_of_week is a number between 0 and 7 (0 or 7 is Sunday, 6 is Saturday) or a
name such as Tuesday.

• day_of_month and day_of_week are ORed together, which may cause surprises.
For instance, if each field contains a 1, cron will execute the command in Janu-
ary as well as on Mondays. Usually, the crontab line puts a specific value in only
one of these fields.

• In any field, a value means an exact match; for instance, a 1 in the month field
means only January.

• An asterisk (*) means any value.

• Two values separated by a hyphen indicate a range. Thus, 11-12 in the month
field means November through December.

• To specify more than one value, separate the values with commas. A month list of
2,3,5-6 means February, March, and May through June.

• A step modifier may follow values and a slash (/), and it indicates how many
units to increment between values. A month value of */3 means every third
month. A month value of 4-9/2 means months 4, 6, and 8.

The shell executes the command, so it can use the features mentioned in this chap-
ter. Some examples using direct commands rather than scripts are:

5 * * * * rm /tmp/*.gif # remove all GIF files every 5 minutes
5 * * * * rm -v /tmp/*.gif >> /tmp/gif.log # the same, logged

When cron runs the command, it emails its standard output and standard error to
the owner of the crontab. To prevent being pelted with such emails, you can redirect
the standard output and standard error to a place where the sun doesn’t shine:

command > /dev/null 2>&1

Scripting Language Shootout
The main use of a shell is to run commands and expand filename patterns, and shells
were designed to make these operations easy. Other tasks, such as performing arith-
metic calculations, are harder, because their text needs to be protected from word
splitting and * expansion. In complex shell scripts, the pile of parentheses, brackets,
and other symbols begins to resemble a cartoon character swearing.

In the old days (“We had zeroes and ones then, and we were lucky to have ones!”),
how-to articles often featured long shell scripts to add users, download and build
packages, back up files, and so on. Nowadays you may prefer to carry out these tasks
using a more advanced scripting language, for several reasons:

• Over time, applications such as adduser and apt-get have automated some tradi-
tional shell-script tasks.

• Shell scripts don’t scale well, and they get hard to maintain.

Scripting Language Shootout | 227

• Shell scripts run slower.

• Shell syntax is icky.

Perl initially filled the gap as administrators looked for more productive tools, but
now PHP has migrated out of its web niche, and Python has gained a reputation for
productivity. We’ll write one application in each of these languages; several others,
such as Ruby and Tcl, are also available on Linux.

Our application will search the /etc/passwd file for name, user ID, hat size, or what-
ever else we can find in there. You’ll see how to open a file, read records, parse for-
mats, search for patterns, and print results. Then we’ll look at ways to avoid some of
this work, because sweat != productivity. You’ll be able to apply these techniques to
other files, such as logs or web pages. This is an example of data munging, and you’re
probably doing a lot of it already.

Let’s invent some requirements for our application and express them with this
pseudocode:

read a search string from the user
open the places file
for each line:
 parse the fields (columns)
 search the name field for a match
 if there's a match:
 print the other fields in a readable format

By now, many programmers would have rushed in and started typing (some without
having read the data format or requirements). Readers of this book are more disci-
plined, though, as well as better looking. They’ve had to fix the messes that the other
programmers have made and don’t want to make the same mistakes themselves.

Data Format: The /etc/passwd File
The password file usually contains standard system accounts such as the mighty
root, application accounts such as apache, and user accounts. Here are snips of such
a file:

System
root:x:0:0:root:/root:/bin/bash
bin:x:1:1:bin:/bin:/sbin/nologin
daemon:x:2:2:daemon:/sbin:/sbin/nologin
...
Applications
postgres:x:26:26:PostgreSQL Server:/var/lib/pgsql:/bin/bash
apache:x:48:48:Apache:/var/www:/bin/false
...
Users
adedarc:x:500:500:Alfredo de Darc:/home/adedarc:/bin/bash
rduxover:x:501:501:Ransom Duxover:/home/rduxover:/bin/bash

228 | Chapter 10: Scripting

cbarrel:x:502:502:Creighton Barrel:/home/cbarrel:/bin/bash
cmaharias:x:503:503:C Maharias:/home/cmaharias:/bin/bash
pgasquette:x:504:504:Papa Gasquette:/home/pgasquette:/bin/bash
bfrapples:x:505:505:Bob Frapples:/home/bfrapples:/bin/bash

The colon-separated fields are:

• Account name

• Encrypted password, or x if /etc/shadow is used

• User ID (uid)

• Group ID (gid)

• Full name or description

• Home directory

• Shell

We’re interested in the fifth field (full name or description). In the ancient Unix
scrolls, this was called the gecos field, for reasons that were obsolete even then. The
name persists, and it’s useful to know.

Script Versions
We’ll start each of the following sections with a minimal script that searches for a
string anywhere in the /etc/passwd file and prints the matching line. We know this is
too broad, but we want to get the script working before we get too fancy.

Next, we’ll split the input lines into fields and restrict the pattern matching to the
gecos field that contains our users’ names.

Then we’ll further restrict the search to lines in which the value of the uid field is
greater than 500. In our case, normal user IDs start at 501, so this will exclude sys-
tem accounts and other automatons.

By this point we’ll be pretty tired of the previous steps, so we’ll look for some tools
that can do some of this work for us.

The bash script

Most languages provide function libraries for various tasks. Programs fill this role for
the shell, and experienced shell scripters are familiar with the most useful Linux utili-
ties (cat, head, tail, awk, cut, grep, egrep, and others). We’ll use some of these for our
bash script.

Here’s a quick and dirty version (finduser.sh) that reads the user’s search string as its
argument, searches for a case-independent match anywhere on the line, and prints
any matching line verbatim:

#!/bin/bash
grep -i "$1" /etc/passwd

Scripting Language Shootout | 229

admin@server1:~$ chmod +x finduser.sh
admin@server1:~$./finduser.sh alf
adedarc:x:500:500:Alfredo de Darc:/home/adedarc:/bin/bash

This wasn’t any faster than just typing:

admin@server1:~$ grep -i alf /etc/passwd

But what if alf had also matched a system account named gandalf, or a string in some
other field? If we want to restrict the search to the name field and to normal user
accounts (i.e., accounts with user IDs greater than 500), our script is going to grow a
bit.

Digging through bash documentation reveals that bash can split its input on charac-
ters other than whitespace, using its IFS variable. In the following version of the
script, we read /etc/passwd line by line, splitting each line into field variables. If we
find a match, we need to rebuild the line to print it in its original form:

#!/bin/bash
pattern=$1
IFS=":"
while read account password uid gid name directory shell
 do
 # Exact case-sensitive matches only!
 if [[$name == $pattern]]; then
 echo "$account:$password:$uid:$gid:$name:$directory:$shell"
 fi
 done < /etc/passwd

But now we run into a problem with matching: unlike grep, bash does not have a
built-in case-insensitive partial string match. We’ll have to put in more sophisticated
pattern matching with an external helper, egrep:

#!/bin/bash
pattern=$1
IFS=":"
while read account password uid gid name directory shell
 do
 if [[$(echo $name | egrep -i -c "$pattern") -gt 0]]; then
 echo "$account:$password:$uid:$gid:$name:$directory:$shell"
 fi
 done < /etc/passwd

For our final script, let’s add our check on the uid numbers:

#!/bin/bash
pattern=$1
IFS=":"
while read account password uid gid name directory shell
 do
 # Exact matches only!
 if [[$uid -gt 500 && $(echo $name | egrep -i -c "$pattern") -gt 0]]; then
 echo "$account:$password:$uid:$gid:$name:$directory:$shell"
 fi
 done < /etc/passwd

230 | Chapter 10: Scripting

If you run a shell script with a -v or -x option, bash will print each command before
executing it. This can help you see what the script is actually doing.

The Perl script

Perl is terse, and it’s really, really good at text. A Perl equivalent of our first bash
script is:

admin@server1:~$ perl -ne 'print if /alf/i' /etc/passwd

The /pattern/ matches pattern while the following i ignores case. Here’s an equivalent
script version that we’ll use to beef up the program to meet our other requirements:

#!/usr/bin/perl
my $pattern = shift;
while (<>) {
 if (/$pattern/i) {
 print;
 }
}

Many elements of Perl syntax are cryptic, but some are reminiscent of shell syntax
(or other common Unix tools) and therefore not too hard to remember once you
know those tools. In particular, you can see while and if statements in the previous
script, and they behave as you might expect having learned about the shell equiva-
lents. The <> syntax is also reminiscent of the < and > of shell redirection; it causes
each iteration of the while loop to read one line of input. Note that unlike with bash,
variables in Perl require the initial $ even when you’re assigning values. The print
statement displays what <> finds.

Perl has an alternative backward if syntax that saves a few characters:

#!/usr/bin/perl
my $pattern = shift;
while (<>) {
 print if /$pattern/i;
}

The script (call it finduser.pl) assumes the password file is read from standard input,
so you would run it like this:

admin@server1:~$./finduser.pl alf < /etc/passwd

The next version opens the password file directly:

#!/usr/bin/perl
my $fname = "/etc/passwd";
my $pattern = shift;
open(FILE, $fname) or die("Can't open $fname\n");
while (<FILE>) {
 if (/$pattern/i) {
 print;
 }
}
close(FILE);

Scripting Language Shootout | 231

To restrict matches to the name field as we did in the bash section, we play to Perl’s
strengths:

#!/usr/bin/perl
my $fname = "/etc/passwd";
my $pattern = shift;
open(FILE, $fname) or die("Can't open $fname\n");
while (<FILE>) {
 $line = $_;
 @fields = split/:/;
 if ($fields[4] =~ /$pattern/i) {
 print $line;
 }
}
close(FILE);

An argument supplied by the user is read into the $pattern variable using the shift
statement. The script also defines another kind of variable: an array named @fields.
Perl’s split function puts each colon-separated element of a line into a single ele-
ment of the array. We can then extract element number 4 (which is really the fifth
element, because elements are numbered starting from 0) and compare it in a case-
insensitive manner to the user’s argument.

All of these scripts have involved reading text input lines and matching patterns.
Because /etc/passwd is such an important file in Linux, you’d think someone would
have automated some of this work by now. Fortunately, someone has: good old Perl
provides a built-in function called getpwent that returns the contents of /etc/passwd a
line at a time as an array of strings. In the following version of our script, we assign
each field its own variable; in the subsequent version, we’ll use the array @list to
hold all of them. In each case, we want the gecos field (called gcos in the Perl docu-
mentation). Note that this is field 6 as returned by getpwent, not field 4, because
getpwent supports two other fields that appear in the passwd files on some systems:

#!/usr/bin/perl
$pattern = shift;
while (($name,$passwd,$uid,$gid,
 $quota,$comment,$gcos,$dir,
 $shell,$expire) = getpwent) {
 if ($gcos =~ /$pattern/i) {
 print "$gcos\n";
 }
}

#!/usr/bin/perl
$pattern = shift;
while (@fields = getpwent) {
 if ($fields[6] =~ /$pattern/i) {
 print "$fields[6]\n";
 }
}

232 | Chapter 10: Scripting

For our final bit of self-torture, let’s restrict searches to normal users (uid > 500). It’s
an easy addition:

#!/usr/bin/perl
$pattern = shift;
while (@fields = getpwent) {
 if ($fields[6] =~ /$pattern/i and $fields[2] > 500) {
 print "$fields[6]\n"
 }
}

The PHP script

PHP can be run by a web server (using CGI) or on its own (using the CLI). We’ll use
the CLI version. If you don’t have the CLI version, you can install it on Debian-based
systems with apt-get install php4-cli.* Our first PHP script will look like our early Perl
scripts:

#!/usr/bin/php
<?
$pattern = $argv[1];
$file = fopen("/etc/passwd", "r");
while ($line = fgets($file, 200)) {
 if (eregi($pattern, $line))
 echo $line;
}
fclose($file);
?>

Thanks to its origin as an accompaniment to web pages, PHP makes the unusual
assumption that the default content of the file to be interpreted is plain text, and that
PHP code is recognized only between an opening <? or <?php tag and a closing ?> tag.
It echoes text to standard output. The eregi function does a regular-expression com-
parison in a case-insensitive manner.

Because PHP has borrowed a lot from Perl, it’s not surprising that it has a split
function:

#!/usr/bin/php
<?
$pattern = $argv[1];
$file = fopen("/etc/passwd", "r");
while ($line = fgets($file, 200)) {
 $fields = split(":", $line);
 if (eregi($pattern, $fields[4]))
 echo $line;
}
fclose($file);
?>

* Or php5-cli, when it’s available.

Scripting Language Shootout | 233

But can we call a function like Perl’s getpwent to slice and dice the password file for
us? PHP doesn’t appear to have an equivalent, so we’ll stick with the parsing
approach to restrict the search to uid values over 500:

#!/usr/bin/php
<?
$pattern = $argv[1];
$file = fopen("/etc/passwd", "r");
while ($line = fgets($file, 200)) {
 $fields = split(":", $line);
 if (eregi($pattern, $fields[4]) and $fields[2] > 500)
 echo $line;
}
fclose($file);
?>

The Python script

Python scripts look different from Perl and PHP scripts, because statements are ter-
minated with whitespace rather than C-style semicolons or curly braces. Tab charac-
ters are also significant. Our first Python script, like our earlier attempts in the other
languages, searches the password file and prints any line that contains the matching
text:

#!/usr/bin/python
import re, sys
pattern = "(?i)" + sys.argv[1]
file = open("/etc/passwd")
for line in file:
 if re.search(pattern, line):
 print line

Python has namespaces (as does Perl) to group functions, which is why the functions
in this script are preceded by the strings sys. and re.. This helps keep code modules
a little more, well, modular. The "(?i)" in the third line of the script makes the
match case-insensitive, similar to /i in Perl.

The next iteration, which splits the input line into fields, involves a straightforward
addition to the first:

#!/usr/bin/python
import re, sys
pattern = "(?i)" + sys.argv[1]
file = open("/etc/passwd")
for line in file:
 fields = line.split(":")
 if re.search(pattern, fields[4]):
 print line

234 | Chapter 10: Scripting

Python has an equivalent to Perl’s getpwent function that enables us to restrict the
search to the field that contains names. Save the following script as finduser.py:

#!/usr/bin/python
import re, sys, pwd
pattern = "(?i)" + sys.argv[1]
for line in pwd.getpwall():
 if re.search(pattern, line.pw_gecos):
 print line

Now let’s see how it works:

admin@server1:~$./finduser.py alf
('adedarc', 'x', 501, 501, 'Alfredo de Darc', '/home/adedarc', '/bin/bash')

In this script, the line we printed was a Python list rather than a string, and it was
pretty-printed. To print the line in its original format, use this:

#!/usr/bin/python
import re, sys, pwd
pattern = "(?i)" + sys.argv[1]
for line in pwd.getpwall():
 if re.search(pattern line.pw_gecos):
 print ":".join(["%s" % v for v in line])

The last line is needed to turn each field into a string (pw_uid and pw_gid are inte-
gers) before joining them into one long, colon-separated string. Although Perl and
PHP let you treat a variable as a string or a number, Python is stricter.

The final step is to restrict the searches to accounts with uid > 500:

#!/usr/bin/python
import re, sys, pwd
pattern = "(?i)" + sys.argv[1]
for line in pwd.getpwall():
 if line.pw_uid > 500 and re.search(pattern line.pw_gecos):
 print ":".join(["%s" % v for v in line])

Choosing a Scripting Language
The choice of a programming language, like the choice of a text editor or operating
system, is largely a matter of taste. Some people find Perl unreadable, and others
resist Python’s whitespace rules. Often the comparison goes no further; if you don’t
like beets, why eat them?

If you’re comfortable with the style of the language, the most important criterion is
productivity for the task. bash is a quick way to create one-liners and short scripts,
but it drags when scripts get over a hundred lines or so. Perl can be hard to read, but
it’s powerful and has the benefit of the huge CPAN library. PHP looks like C, lacks
namespaces, easily mingles code and output, and has some good libraries. Python
may be the easiest to read and write, which is a special advantage for large scripts.

Further Reading | 235

Further Reading
Appendix contains some longer bash scripts that may be useful to system administra-
tors. Linux Shell Scripting with Bash by Ken Burtch (Sams) and the Advanced Bash-
Scripting Guide (http://www.tldp.org/LDP/abs/html) are good resources. If you ven-
ture into the other scripting languages, any computer book with an animal on the
cover should be a safe bet (unless you find Curious George Learns COBOL in the
children’s section).

http://www.tldp.org/LDP/abs/html/

236

Chapter 11CHAPTER 11

Backing Up Data

Computers fail—disks break, chips fry, wires short circuit, and drinks dribble into
the cases. Sometimes computers are stolen or are victims of human error. You may
lose not only hardware and software but, more importantly, data. Restoring lost data
takes time and money. In the meantime, your customers will be unhappy, and the
government may take an interest if the data is needed for compliance with regula-
tions. Making backup copies of all important data is cheap insurance against poten-
tially expensive disasters, and business continuity requires a backup and recovery
plan.

In this chapter we’ll cover several tools for backing up data that can be useful in dif-
ferent circumstances:

rsync
Sufficient for most user files; transfers files efficiently over a network to another
system, from which you can retrieve them if disaster strikes the local system

tar
Traditional Unix program for creating compressed collections of files; creates
convenient bundles of data that you can back up using other tools in this chapter

cdrecord/cdrtools
Records files to CD-Rs or DVDs

Amanda
Automates backups to tape; useful in environments with large amounts of data

MySQL tools
Provide ways to solve the particular requirements of databases

Backing Up User Data to a Server with rsync | 237

Backing Up User Data to a Server with rsync
The most critical data to back up is data that is impossible, or very costly, to re-cre-
ate. Usually this is user data that has grown over months or years of work. You can
typically restore system data relatively easily by reinstalling from the original distribu-
tion media.

We’ll focus here on making backups of user data from Linux desktop computers. A
backup server needs enough disk space to store all of your user files. A dedicated
machine is recommended. For a large office, disks may have a RAID (Redundant
Array of Independent Disks) configuration to further protect against multiple failures.

The Linux utility rsync is a copy program designed to replicate large quantities of
data. It can skip previously copied files and fragments and encrypt data transfers
with ssh, making remote backups with rsync faster and more secure than they are
with traditional tools like cp, cpio, or tar. To check whether rsync is on your system,
enter:

rsync --help
bash: rsync: command not found

If you see that message, you have to get the rsync package. To install it in Debian,
enter:

apt-get install rsync

Usually, you’ll want your backups to preserve the original ownership and permis-
sions. Thus, you’ll need to ensure that all users have accounts and home directories
on the backup server.

rsync Basics
The syntax of the rsync command is:

rsync options source destination

The major command-line options for rsync are:

-a
Archive. This option fulfills most of the previously mentioned requirements, and
it’s easier to type and pronounce than its equivalent, -Dgloprt.

-b
Make backup copies of already existing destination files instead of replacing
them. You usually won’t want to use this option unless you want to keep old
versions of every file. It can result in the backup servers being filled up very
quickly.

-D
Preserve devices. This option is used when replicating system files; it is not
needed for user files. Works only when rsync is run as root. Included in -a.

238 | Chapter 11: Backing Up Data

-g
Preserve the group ownership of files being replicated. This is important for
backups. Included in -a.

-H
Preserve hard links. If two names being replicated refer to the same file inode,
this preserves the same relationship in the destination. This option slows down
rsync somewhat, but its use is recommended.

-l
Copy symlinks as symlinks. You’ll almost always want to include this option;
without it, a symlink to a file would be copied as a regular file. Included in -a.

-n
Dry run: see what files would be transferred, but don’t actually transfer them.

-o
Preserve the user ownership of files being replicated. This is important for back-
ups. Included in -a.

-p
Preserve file permissions. This is important for backups. Included in -a.

-P
Enable --partial and --progress.

--partial
Enable partial file transfers. If rsync is aborted, it will be able to complete the
remainder of the file transfer when it resumes later.

--progress
Display file transfer progress.

-r
Enable recursion, transferring all subdirectories. Included in -a.

--rsh='ssh'
Use SSH for file transfer. This is recommended because the default transfer pro-
tocol (rsh) is not secure. You can also set the RSYNC_RSH environment variable to
ssh to get the same effect.

-t
Preserve the modification times on each file. Included in -a.

-v
List the files being transferred.

-vv
Like -v, but also list the files being skipped.

-vvv
Like -vv, but also print rsync debugging info.

-z
Enable compression; more useful over the Internet than on a high-speed LAN.

Backing Up User Data to a Server with rsync | 239

There are many more rsync options that may come in useful in specialized situa-
tions. You can find these on the manpage.

After the options, the arguments are the source and destination. Both source and
destination can be paths to local files on the computer where rsync is running, rsync
server designations (generally used for download file servers), or user@host:path des-
ignations for ssh. Because rsync takes so many options and long arguments that
won’t regularly change, next we’ll write a bash script to run it.

Making a User Backup Script
This section presents a simple bash script that makes a backup from a user’s desktop
to the backup server. The name of the backup server is assigned to the variable dest
in this script. The variable user is assigned the username of the account that runs the
script by running the whoami command and capturing the output as a string. The cd
command changes the current directory to the user’s home directory. The logical-OR
test condition that follows the cd command aborts the script if there is a failure. The
one dot (.) all by itself specifies the current directory as the source argument. For the
destination argument, we specify the username and hostname to log in as via ssh,
followed by a dot to specify the current home directory on the destination host.

Here’s the script:

#!/bin/bash
export RSYNC_RSH=/usr/bin/ssh
dest=backup1
user=$(whoami)
cd || exit 1
rsync -aHPvz . "${user}@${dest}:."

The RSYNC_RSH environment variable contains the name of the shell that rsync will
use. The default is /usr/bin/rsh, so we change it to /usr/bin/ssh here. Running this
script replicates all the files in the home directory of the user who runs it into that
user’s home directory on the backup server. Let’s take a look at how this works by
running it for our sample user (after logging into her desktop):

amy@desk12:~$./backup
Password:
building file list ...
14 files to consider
./
new-brochure.sxw
 37412 100% 503.91kB/s 0:00:00 (1, 62.5% of 16)
sales-plan-2006-08.sxw
 59513 100% 1.46MB/s 0:00:00 (2, 68.8% of 16)
sales-plan-2006-09.sxw
 43900 100% 691.47kB/s 0:00:00 (3, 75.0% of 16)
sales-plan-2006-10.sxw
 41285 100% 453.00kB/s 0:00:00 (4, 81.2% of 16)

240 | Chapter 11: Backing Up Data

vacation-request.sxw
 15198 100% 154.60kB/s 0:00:00 (5, 87.5% of 16)

sent 185942 bytes received 136 bytes 24810.40 bytes/sec
total size is 210691 speedup is 1.13
amy@desk12:~$

rsync tells us that it is considering 14 files. It backs up only five files, though, because
the other nine files are already on the backup server and have not been changed. This
output shows the progress output as 100 percent when the files are complete and
indicates how long each transfer took. On a high-speed LAN the transfer time will
usually be less than one second for small or medium-sized files. On slower connec-
tions or for very large files, you will see a progress status that gives the size and per-
centage transferred so far, and an estimate of time to completion.

Listing Files on the Backup Server
rsync can also provide a list of the files on the backup server. This is useful for verify-
ing whether new and important files are really there, as well as for finding files that
need to be restored because they’ve been lost or because the user needs to recover an
old version.

To get this listing, omit the options and destination arguments. Here’s a simple bash
script that obtains the desired results:

#!/bin/bash
dest=server1
user=$(whoami)
cd || exit 1
rsync "${user}@${dest}:." | more

Running this script produces results similar to the following:

amy@desk12:~$./backlist
Password:
drwx------ 4096 2006/08/09 13:20:41 .
-rw------- 10071 2006/08/09 12:35:21 .bash_history
-rw-r--r-- 632 2006/07/27 23:03:06 .bash_profile
-rw-r--r-- 1834 2006/07/26 19:59:08 .bashrc
-rwxr-xr-x 108 2006/07/27 23:06:51 .path
-rwxr-xr-x 79 2006/08/09 13:18:34 backlist
-rwxr-xr-x 137 2006/08/09 13:19:29 backrestore
-rwxr-xr-x 88 2006/08/09 13:03:46 backup
-rw-r--r-- 37412 2006/07/17 14:40:52 new-brochure.sxw
-rw-r--r-- 59513 2006/07/19 09:16:41 sales-plan-2006-08.sxw
-rw-r--r-- 43900 2006/07/19 22:51:54 sales-plan-2006-09.sxw
-rw-r--r-- 41285 2006/07/17 16:24:19 sales-plan-2006-10.sxw
-rw-r--r-- 15198 2006/07/10 14:42:23 vacation-request.sxw
drwx------ 4096 2006/08/09 13:12:25 .ssh
amy@desk12:~$

Backing Up User Data to a Server with rsync | 241

Restoring Lost or Damaged Files
No backup system is any good if lost files cannot be restored. Not only must we
must be ready in case disaster strikes, but we must also test our recovery and restora-
tion plans to make sure they will work when they are most needed.

Our restoration script is just slightly more complicated than the previous script.
We’ve added a way to specify individual files to be restored:

#!/bin/bash
dest=server1
user=$(whoami)
cd || exit 1
for file in "$@" ; do
 rsync -aHPvz "${user}@${dest}:./${file}" "./${file}"
done

To restore files, we simply run the script, passing the names of the files to be restored
as arguments on the command line. In the following example, we will intentionally
remove one of our files and then watch it be restored:

amy@desk12:~$ rm sales-plan-2006-10.sxw
amy@desk12:~$./backrestore sales-plan-2006-10.sxw
Password:
receiving file list ...
1 file to consider
sales-plan-2006-10.sxw
 41285 100% 6.56MB/s 0:00:00 (1, 100.0% of 1)

sent 42 bytes received 39299 bytes 6052.46 bytes/sec
total size is 41285 speedup is 1.05
amy@desk12:~$

We can also restore all the files at once by using a dot as the filename.

Automated Backups
Backups can be automated using scripts similar to these run as cron jobs (discussed
in Chapter 10). SSH requires the user’s password to be entered, so you’ll need to
include your users’ public keys in their SSH configurations in order to make the SSH
logins work when the users are not present (say, nightly at 3 A.M.).

You have many options for creating backups. You might want to run a cron job
script on the server daily or weekly, to make backups on another server. Businesses
with remote offices may want to make regular backups of data from those offices
over the Internet. Backups can also be burned to CD-Rs, DVDs, or tape, to make
long-term archival copies that can be transported offsite.

242 | Chapter 11: Backing Up Data

tar Archives
The tar command creates an archive file from one or more specified files or directo-
ries. It can also list the contents of an archive, or extract files and directories from an
archive. A tar archive file is also known as a tarfile or a tarball.

A tar archive file offers several advantages over a directory of separate files. For
example, it makes sending a whole directory by email a lot easier. Directories con-
taining lots of similar files can be compressed more efficiently when the compression
operates on all the data in a single file.

A common use for a tar archive is to aid in the distribution of the source program
files for free or open source software. In most cases, the tar archives are compressed
with the gzip or bzip2 programs. However, if all the files being archived are already
compressed (which is usually true of audio, video, and OpenOffice.org files), com-
pressing the archive itself will not have much benefit.

You can name a tarred file anything you want, but certain file extensions are conven-
tionally used to tell recipients how to unpack the file. The most common extensions
are:

.tar
For uncompressed tar archives

.tar.gz or .tgz
For tar archives that have been compressed with the gzip compression program

.tar.bz2 or .tbz
For tar archives that have been compressed with the bzip2 compression program

The syntax of a tar command is:

tar options arguments

The options are traditionally given as single letters without a dash (-) character,
although many versions of tar also accept a dash. The most useful options are:

-b
Specify the block size (the default is units of 512 bytes).

-c
Create (write) a new archive.

-f filename
Read from or write to the archive filename. If filename is omitted or is -, the
archive file is written to standard output or read from standard input.

-j
Compress or uncompress the archive using bzip2 or bunzip2. Archives com-
pressed with bzip2 usually have the .bz2 suffix.

tar Archives | 243

-p
Preserve file permissions.

-t
List the files in an existing archive.

-v
When creating or unpacking archives, list the contents. With the -t option, pro-
vide more detail about the listed files.

-x
Extract (read) files from an existing archive.

-z
Compress or uncompress the archive using gzip or gunzip. Archives compressed
with gzip usually have the .gz suffix.

Creating a New Archive
You can create a tar archive just to save a group of files for your own archiving pur-
poses, to send them to someone else by email, or to make them available to the pub-
lic (for example, on an FTP server). Some typical commands to archive the directory
work-docs are as follows:

• To create the archive work-docs.tar from the directory work-docs:
$ tar -cf work-docs.tar work-docs

• To create the compressed archive work-docs.tar.gz from the directory work-docs:
$ tar -czf work-docs.tar.gz work-docs

• To create the compressed archive work-docs.tar.bz2 from the directory work-docs:
$ tar -cjf work-docs.tar.bz2 work-docs

Extracting from an Archive
At different times, you may need to extract files from an archive you created earlier
(such as a backup), from an archive someone has mailed to you, or from an archive
you have downloaded from the Internet (say, the source code for some software you
need).

Before you extract an archive, you should list and review its contents. You don’t
want to accidentally replace existing files on your system with files from the archive,
nor do you want to wind up with a mess of files that you have to clean up.

Files in an archive should be arranged inside a directory, but not everyone does this,
so you need to be careful to avoid extracting files into your current directory. It is
usually a good idea to create a new directory on your computer in which to extract a
tar archive. This keeps the extracted files apart from your other files, so they don’t
get mixed up. It can also prevent the extraction from overwriting existing files.

244 | Chapter 11: Backing Up Data

The -t option lists the names of the files in the archive and the directories they’ll be in
when the archive is unpacked. Adding the -v option increases the verbosity to give
details about each file in the tar archive, including the size of each file and its last
modification time. Here are some example commands:

• To list the files in the archive collection.tar:
$ tar -tf collection.tar

• To list the files in the archive collection.tar.bz2 with extra details:
$ tar -tvjf collection.tar.bz2

To extract the files in collection.tar into the current directory, while preserving
the original permissions:

$ tar -xpf collection.tar

The -x option extracts the files into the current directory. tar works silently
unless the -v option is also used to list the files. The -p option preserves the origi-
nal permissions, so the extracted files will have the same permission settings as
the files that were archived.

• To extract the files in collection.tar.gz into the current directory, while preserv-
ing the original permissions:

$ tar -xpzf collection.tar.gz

• To extract the files in collection.tar.bz2 into the current directory, while preserv-
ing the original permissions:

$ tar -xpjf collection.tar.bz2

• To list and extract the files in collection.tar.bz2 into the current directory, while
preserving the original permissions:

$ tar -xpvjf collection.tar.bz2

A Complete Example of Packing and Unpacking with tar
The following shell session demonstrates the creation of a tar archive from a direc-
tory of files:

amy@desk12:~$ ls -dl monthly-reports
drwxr-xr-x 2 amy amy 4096 2006-08-11 14:15 monthly-reports
amy@desk12:~$ ls -l monthly-reports
total 228
-rw-r--r-- 1 amy amy 50552 2006-05-09 11:09 mr-2006-04.sxw
-rw-r--r-- 1 amy amy 51284 2006-06-06 15:44 mr-2006-05.sxw
-rw-r--r-- 1 amy amy 51428 2006-07-06 14:30 mr-2006-06.sxw
-rw-r--r-- 1 amy amy 54667 2006-08-07 10:06 mr-2006-07.sxw
amy@desk12:~$ tar -czf monthly-reports-aug.tar.gz monthly-reports
amy@desk12:~$ ls -l monthly-reports-aug.tar.gz
-rw-r--r-- 1 amy amy 199015 2006-08-14 12:46 monthly-reports-aug.tar.gz

The following shell session demonstrates listing the contents of the tar archive:

amy@desk12:~$ ls -l monthly-reports-aug.tar.gz
-rw-r--r-- 1 amy amy 199015 2006-08-14 12:46 monthly-reports-aug.tar.gz

Saving Files on Optical Media | 245

amy@desk12:~$ tar -tzf monthly-reports-aug.tar.gz
monthly-reports/
monthly-reports/mr-2006-04.sxw
monthly-reports/mr-2006-05.sxw
monthly-reports/mr-2006-06.sxw
monthly-reports/mr-2006-07.sxw
amy@desk12:~$ tar -tvzf monthly-reports-aug.tar.gz
drwxr-xr-x amy/amy 0 2006-08-11 14:15:12 monthly-reports/
-rw-r--r-- amy/amy 50552 2006-05-09 11:09:12 monthly-reports/mr-2006-04.sxw
-rw-r--r-- amy/amy 51284 2006-06-06 15:44:33 monthly-reports/mr-2006-05.sxw
-rw-r--r-- amy/amy 51428 2006-07-06 14:30:19 monthly-reports/mr-2006-06.sxw
-rw-r--r-- amy/amy 54667 2006-08-07 10:06:57 monthly-reports/mr-2006-07.sxw
amy@desk12:~$

The following shell session demonstrates extracting the contents of a tar archive:

amy@desk12:~$ mkdir extract.dir
amy@desk12:~$ cd extract.dir
amy@desk12:~/extract.dir$ tar -xzf ../monthly-reports-aug.tar.gz
amy@desk12:~/extract.dir$ tar -xvzf ../monthly-reports-aug.tar.gz
monthly-reports/
monthly-reports/mr-2006-04.sxw
monthly-reports/mr-2006-05.sxw
monthly-reports/mr-2006-06.sxw
monthly-reports/mr-2006-07.sxw
amy@desk12:~/extract.dir$ tar -xvvzf ../monthly-reports-aug.tar.gz
drwxr-xr-x amy/amy 0 2006-08-11 14:15:12 monthly-reports/
-rw-r--r-- amy/amy 50552 2006-05-09 11:09:12 monthly-reports/mr-2006-04.sxw
-rw-r--r-- amy/amy 51284 2006-06-06 15:44:33 monthly-reports/mr-2006-05.sxw
-rw-r--r-- amy/amy 51428 2006-07-06 14:30:19 monthly-reports/mr-2006-06.sxw
-rw-r--r-- amy/amy 54667 2006-08-07 10:06:57 monthly-reports/mr-2006-07.sxw
amy@desk12:~/extract.dir$ cd
amy@desk12:~$

Summary
The most important things to remember about tar are:

• -c reads from your files and creates (writes to) a tar file.

• -x extracts (reads from) a tar file and writes to your files.

Most Unix and Linux administrators have mixed up these options at least once.

Saving Files on Optical Media
Recordable CD and DVD media, called CD-Rs, DVD-Rs, and DVD+Rs, allow you to
save files in a convenient and compact form. They can be used for making backups
that can be stored offsite, and for distributing software or data to users or custom-
ers. A CD-R can hold upwards of 700 MB of data, while a DVD-R or DVD+R can
hold upward of 4.7 GB. A dual-layer version of DVD+R also exists, with a capacity
of 8.55 GB.

246 | Chapter 11: Backing Up Data

The difference between a DVD-R and a DVD+R is the technology used to locate the
laser into the track groove for recording. The two methods are incompatible, so if
your drive supports only either DVD-R or DVD+R, you must use matching record-
able media. (Drives do exist that support both, allowing the use of either recordable
DVD media type.)

Recording files on a CD or DVD is not as straightforward or flexible as saving files on
a hard disk. Rewritable media can get around some of the limitations, but they have
a higher cost and reduced compatibility. In this section, we’ll focus on saving files on
CD-Rs. The methods for DVDs are similar.

A data CD consists of an array of sectors of 2048 bytes each. A special filesystem
known as ISO-9660 is used to organize the files on the CD so that it can be read on a
wide range of computers and other devices. Newer CD music players also support
data CDs written in the ISO-9660 format, so they can access music files in com-
pressed formats such as MP3. DVDs use a newer filesystem called Universal Disk
Format (UDF).

To record data, all CD and most DVD recorders require that the data be streamed to
the drive continuously. If the data cannot be made available when the laser is trying
to record it, the laser will have to stop, which breaks up the continuity of the record-
ing. The methods used to record a CD were designed for slower computer systems,
to maximize the reliability of these recordings. Today’s faster computers still face the
challenge of providing data nonstop to today’s faster recording devices; however,
many recorders now support Buffer Underrun Free technologies that enable them to
continue the writing process even if the data buffer becomes empty at some point.

The files to be recorded are typically first collected into a file called an ISO image file,
which usually has the extension .iso. This file is then recorded directly to the CD-R.
It is possible to record files directly to a CD-R without creating an .iso file first, but
this method increases the risk that something else running on your computer could
slow things down at the wrong time.

The software needed to record a CD or DVD on Linux is located in a package called
cdrecord (note that this package is undergoing a name change to cdrtools). If this
package is not yet installed on your system, you should install it now using the meth-
ods you have already learned. On Debian Sarge, you would run the command:

apt-get install cdrecord mkisofs

Debian 4.0 forked the cdrecord package to one called wodim. Other packages include
dvd+rw-tools (described at http://www.debianhelp.co.uk/burningdvd.htm) and K3b
(http://www.k3b.org).

http://www.debianhelp.co.uk/burningdvd.htm
http://www.k3b.org

Saving Files on Optical Media | 247

Accessing Your CD-R Drive
Linux supports recording on IDE ATAPI CD-R drives through a special driver called
ide-scsi. Most Linux distributions also include this driver in the kernel. If your sys-
tem does not have the driver, you will need to load the driver module (installing it if
needed), or possibly recompile your kernel.

The ide-scsi driver emulates a SCSI device for software that is designed just for SCSI
devices. Your IDE ATAPI CD drive and DVD drive will appear as if they are SCSI
devices when the ide-scsi driver is active.

The following command will list the SCSI devices on your system, so you can locate
the emulated SCSI device number for your CD-R drive. It may list other devices as
well, including any real SCSI devices if your computer actually has them. Run the
command as root:

cdrecord -scanbus

The output might look similar to this:

Cdrecord-Clone 2.01 (i686-pc-linux-gnu) Copyright (C) 1995-2004 Jörg Schilling
scsidev: 'ATA'
devname: 'ATA'
scsibus: -2 target: -2 lun: -2
Linux sg driver version: 3.5.27
Using libscg version 'schily-0.8'.
scsibus1:
 1,0,0 100) 'SONY ' 'CD-RW CRX195E1 ' 'ZYS5' Removable CD-ROM
 1,1,0 101) 'DVD-16X ' 'DVD-ROM BDV316E ' '0052' Removable CD-ROM
 1,2,0 102) *
 1,3,0 103) *
 1,4,0 104) *
 1,5,0 105) *
 1,6,0 106) *
 1,7,0 107) *

Look for the device description that matches your CD-R recorder. If you have more
than one device, the brand name and model should help identify the correct device.
The output should at least list CD-R or CD-RW in the description. In this example,
our CD recorder is on emulated SCSI device 1,0,0.

If the ide-scsi driver is not installed or not active, you may get output like this:

Cdrecord-Clone 2.01 (i686-pc-linux-gnu) Copyright (C) 1995-2004 Jörg Schilling
cdrecord: No such file or directory. Cannot open '/dev/pg*'. Cannot open SCSI driver.
cdrecord: For possible targets try 'cdrecord -scanbus'.
cdrecord: For possible transport specifiers try 'cdrecord dev=help'.
cdrecord:
cdrecord: For more information, install the cdrtools-doc
cdrecord: package and read /usr/share/doc/cdrecord/README.ATAPI.setup .

If you get this kind of output, you will need to activate the ide-scsi driver before
doing the actual recording step.

248 | Chapter 11: Backing Up Data

Setting Defaults
A number of cdrecord parameters can be configured. For instance, you can configure
cdrecord to recognize names for recording devices (so you don’t have to memorize
the device numbers), and you can designate a default device. To configure cdrecord,
log in as (or use su - to switch to) root. Then create a text file with your editor:

vi /etc/default/cdrecord

We will put the following lines of text in this file to match the devices shown in our
previous cdrecord -scanbus output. You will need to change these values to match the
values for your own devices. Use any names you choose in place of cd and dvd. The
whitespace between the fields on each line must be tabs, not spaces:

CDR_DEVICE=cd
cd=1,0,0 -1 -1 ""
dvd=1,1,0 -1 -1 ""

If your Linux kernel is Version 2.6, you will most likely need to specify the device
with the prefix ATA:, due to a redesign of the driver. In this case, the configuration
file may look like this:

CDR_DEVICE=cd
cd=ATA:1,0,0 -1 -1 ""
dvd=ATA:1,1,0 -1 -1 ""

You can also set the default recording speed for each device, right after the device
number. -1 indicates that the default value should be used. The next number is the
FIFO buffer size; once again, -1 specifies the default on the Linux system. The last
item on the line allows you to pass a driver-specific option; we left it as an empty
string.

Newer versions of cdrecord support the option driveropts=burnfree to protect
against buffer underruns.

Preparing Files to Record on a CD-R
The mkisofs command creates an ISO filesystem image file. It should contain all the
files to be recorded on the CD-R. There are a lot of options for this command, but
these are the important ones that we will use:

-J
Include Joliet names for Windows compatibility.

-r
Include Rock Ridge names for Unix/Linux compatibility.

-v
Set verbose mode to show the progress status.

-V id_string
Specify a volume ID to name the disc to be created.

Saving Files on Optical Media | 249

-o filename
Specify the filename of the ISO image being created.

Here is a sample command to include all the files from a specified directory:

mkisofs -JrvV "disc name" -o backup.iso /home/amy

You will see a lot of output from this command. The output is useful for large file
collections to indicate an estimate of how much time remains. If you prefer not to
have this output, omit the -v option from the command.

Recording the CD-R
You can now record a CD-R with the ISO image you created. To perform the actual
recording, log in as (or use su - to switch to) root. Root permissions are needed by
the cdrecord program to access the raw SCSI layer, to modify process priorities, and
to lock buffer space into RAM to avoid swapping. CD writing has critical timing
dependencies, so it helps to keep the rest of the system as idle as possible.

If you are using a rewritable CD-RW disc in a CD-RW drive, you need to erase
(blank) the CD-RW before doing the recording:

cdrecord blank=fast padsize=63s -pad -dao -v -eject

Some drives require the media to be ejected to reset the drive for the
next operation. Unless you have discovered that your drive does not
need this, use the -eject option, as shown here.

To record the ISO image created in the previous section, enter:

cdrecord padsize=63 -pad -dao -v -eject backup.iso

Avoid doing any other work on a computer that is recording a CD or DVD.

Some modern drives have special features such as burnfree that help avoid problems
when the computer is not operating fast enough. Discs recorded with these fix-ups
taking place may not be compatible with some older devices. If you find that your
recordings sometimes fail, do them at a slower speed. You can change the speed by
including the speed= option, which is documented in the cdrecord manpage. Slowing
down the recording speed may be particularly important if the image file being
recorded is on a network filesystem.

Padding is necessary for some IDE ATAPI CD readers to work correctly with read-
ahead operations that Linux and other systems usually do. You may find that omit-
ting the padding works with newer drives, but because the problem occurs during
reading, you should include padding to ensure that older drives will be able to read
the CD-Rs you record. Otherwise, you may find that your critical backup files are
not readable on a temporary replacement computer.

250 | Chapter 11: Backing Up Data

Verifying the Recording
After you’ve recorded a CD or DVD, it’s a good idea to verify that the recording
reads back correctly. The media may be defective, or the computer may have been
bumped during the recording, causing the laser to be moved out of the groove.

The correct way to verify a recording is to either compare the sectors recorded with
the sectors on the hard disk or generate checksums of those sectors and compare
them. Both methods must be used only with the actual data sectors, not the padding
sectors. The following bash shell script makes this verification easy when the origi-
nal ISO image file is available:

#!/bin/bash
if [[$# -lt 1]] ; then
 echo "usage: isomd5 <file_or_device> ..." 1>&2
 exit 1
fi
for name in "$@" ; do
 isoinfo -di "${name}" 1>/dev/null || exit 1
done
for name in "$@" ; do
 count=($(isoinfo -di "${name}" \
 | egrep "^Volume size is: "))
 count="${count[3]}"
 bsize=($(isoinfo -di "${name}" \
 | egrep "^Logical block size is: "))
 bsize="${bsize[4]}"
 md5=$(dd \
 if="${name}" \
 ibs="${bsize}" \
 obs=4096 count="${size}" \
 2>/tmp/isomd5.$$.err \
 | md5sum)
 if [[$? != 0]] ; then
 cat /tmp/isomd5.$$.err
 rm -f /tmp/isomd5.$$.err
 exit 1
 fi
 rm -f /tmp/isomd5.$$.err
 echo "${md5:0:32}" "" "${name}"
done

This script works by obtaining the number of sectors used by the ISO filesystem in
the image file. It limits the number of sectors read into the MD5 checksum hashing
program to exactly the number used. This avoids reading any padding sectors, which
could vary in number.

We call this script isomd5. Give it the name of the ISO image file, as well as the name
of the CD device normally used to read CD-Rs (with the newly recorded CD-R rein-
serted). You should get a result similar to this:

amy@desk12:~$ isomd5 backup.iso /dev/sr0
d41d8cd98f00b204e9800998ecf8427e backup.iso

Backing Up and Archiving to Tape with Amanda | 251

d41d8cd98f00b204e9800998ecf8427e /dev/sr0
amy@desk12:~$

The checksum from the MD5 program is the 32-character hexadecimal part. If it is
not the same for both the ISO image file and the contents of the CD-R drive, the
recording is defective.

A failed recording is derisively called a “coaster.” You can use it to protect your cof-
fee table from unsightly rings, but unlike a real drinks coaster, it’ll explode into a
shower of sharp fragments and sparks in a microwave.

When a write to disc fails, try in turn:

1. Repeating the recording with another blank disc

2. Recording at a slower speed

3. Using a different batch or different brand of blank discs

If failures persist, you may have a defective recording drive.

Backing Up and Archiving to Tape with Amanda
Tape is still a popular backup medium. The Advanced Maryland Automated Net-
work Disk Archiver (Amanda) is an open source package that manages tape back-
ups. Developed at the University of Maryland, it’s included in many distributions of
Linux, including Debian. Amanda’s features include:

• The use of traditional Unix backup formats such tar and dump

• Operation over a LAN, backing up client data to a central tape server

• Support for backing up Windows clients via file shares

• Support for standard tape devices and many tape changers, jukeboxes, and
stackers

• Ability to balance full backups over a multi-day backup cycle

• Support for incremental backups to write daily changes

• Data compression on either the client or the server, or via devices that include
hardware compression

• Prevention of accidental overwriting of the wrong media

DVD Backups
The steps shown in this section are specific to CD media, but DVD media can be
recorded in similar ways, using the same software in the cdrecord or cdrtools package.
Some DVD media—notably, the rare DVD-RAM—can operate much like hard drives,
but these require a special drive that supports this mode of operation.

252 | Chapter 11: Backing Up Data

• A holding disk strategy that allows for staged or delayed writing to media

• Authentication through Kerberos or its own authentication scheme

• Data encryption for protection over unsafe networks

Installing Amanda
Amanda has client and server components. The client is used on systems that have
data that needs to be backed up. The server is used on systems that perform the
backup work and write data to tape.

Run the following command to install Amanda on the backup server:

apt-get install amanda-server

Run the following command to install Amanda on each client Linux machine:

apt-get install amanda-client

When you install these packages, the other packages that are needed will be
included. If you wish to use the amplot program in Amanda, you will need to also
install the gnuplot package.

Amanda uses files in many different directories. These settings are configurable, but
the defaults are:

/etc/amanda
Configuration files (server)

/root
The file /root/.amandahosts

/usr/man/man8
Manpages

/usr/share/doc/amanda-common
Documentation files

/usr/share/doc/amanda-client
Client-specific documentation files

/usr/lib
Shared libraries used by Amanda programs

/usr/lib/amanda
Daemon programs and internal utilities

/usr/sbin
Command programs

/var/lib/amanda
Running state, log, and other files

Backing Up and Archiving to Tape with Amanda | 253

Configuring Amanda
The /etc/services file should already have entries with the following names and port
numbers. If these entries are not present, edit the /etc/services file and add them at
the end. The comments are optional:

/etc/services:
amanda 10080/udp # amanda backup services
amandaidx 10082/tcp # amanda backup services
amidxtape 10083/tcp # amanda backup services

You may also need to edit the /etc/inetd.conf file, which should contain the following
entries:

/etc/inetd.conf: (for clients)
amanda dgram udp wait backup /usr/sbin/tcpd /usr/lib/amanda/amandad

/etc/inetd.conf: (for server)
amandaidx stream tcp nowait backup /usr/sbin/tcpd /usr/lib/amanda/amindexd
amidxtape stream tcp nowait backup /usr/sbin/tcpd /usr/lib/amanda/amidxtaped

The first entry, named amanda, is needed on all clients. The other two entries are
needed only on the server. If these lines are not present, edit the /etc/inetd.conf file
and add them at the end.

Amanda uses random ports after the initial communication. You should use Amanda
over the Internet only through a VPN. This prevents the need to open a wide range
of ports from the Internet into your LAN.

Amanda runs as the user backup with disk group permissions. You will need to set
access permissions for all files that you want to back up so that they can be read by
Amanda.

The Amanda server needs to be well connected to the local network, with sufficient
bandwidth for the volume of data to be transferred. It should have a very large hold-
ing disk, with enough space to hold twice the largest per-run dump size. A fast CPU
is also needed if the server will be performing software compression.

Amanda supports multiple configurations. Each configuration consists of a set of
three files in a subdirectory of /etc/amanda:

amanda.conf
The main configuration file. You edit this to specify the disklist (see next item),
tape device, backup frequency, your email address, reporting formats, and a
huge array of other options.

disklist
This file specifies the hosts and disks to be backed up.

tapelist
This file lists active tapes, including dates when each was written. Amanda man-
ages this file, so you can look at it but shouldn’t edit it.

254 | Chapter 11: Backing Up Data

Reporting the full details of all of Amanda’s options would take sev-
eral pages, so we’ll leave their exploration up to you. Sample files with
useful comments are provided in the /etc/amanda/DailySet1 directory
when you install the Debian amanda-server package. For details on
these configuration files, see the Amanda manpage or http://wiki.
zmanda.com.

Amanda produces a report for each backup run. These detailed reports are sent by
email to the user specified in the mailto option in the amanda.conf configuration file.
You should review the reports regularly, particularly checking for errors and review-
ing runtimes.

Restoring Files Backed Up by Amanda
Amanda uses standard Unix backup formats (tar or dump), which you specify in the
configuration file. This allows backup tapes to be used to restore system files even if
the Amanda system is not present. This can be crucial when restoring files after a
complete disk failure.

Amanda also provides indexed recovery tools to allow restoring of selected files. Be
sure to configure index yes to have Amanda create the needed index files. The
amrecover manpage provides full details.

Backing Up MySQL Data
Until now, we’ve been backing up files and directories. Databases have some special
quirks that we need to address. Our examples use MySQL, but the same principles
apply to PostgreSQL and other relational databases.

If your MySQL server does not need to be available 24x7, a fast and easy offline raw
backup method is:

1. Stop the MySQL server:
/etc/init.d/mysqld stop

2. Copy MySQL’s data files and directories. For example, if your MySQL data
directory is /var/lib/mysql and you want to save it to /tmp/mysql-backup:

cp -r /var/lib/mysql /tmp/mysql-backup

Instead of cp, you can use rsync, tar, gzip, or other commands mentioned earlier
in this chapter.

3. Start the server again:
/etc/init.d/mysqld start

Online backups are trickier. If you have mutually independent MyISAM tables (no
foreign keys or transactions), you could lock each one in turn, copy its files, and

http://wiki.zmanda.com
http://wiki.zmanda.com

Backing Up MySQL Data | 255

unlock it. But you may have InnoDB tables, or someone could write a transaction
involving multiple tables. Fortunately there are several reasonable noncommercial
solutions, including mysqlhotcopy, mysqlsnapshot, replication, and mysqldump.

mysqlhotcopy is a Perl script that does online raw backups of ISAM or MyISAM
tables. The manpage includes many options, but here’s how to back up a single data-
base named drupal:

mysqlhotcopy -u user -p password drupal /tmp
Locked 57 tables in 0 seconds.
Flushed tables (`drupal`.`access`, `drupal`.`accesslog`, `drupal`.`aggregator_
category`, `drupal`.`aggregator_category_feed`, `drupal`.`aggregator_category_item`,
`drupal`.`aggregator_feed`, `drupal`.`aggregator_item`, `drupal`.`authmap`, `drupal`.
`blocks`, `drupal`.`book`, `drupal`.`boxes`, `drupal`.`cache`, `drupal`.`client`,
`drupal`.`client_system`, `drupal`.`comments`, `drupal`.`contact`, `drupal`.`file_
revisions`, `drupal`.`files`, `drupal`.`filter_formats`, `drupal`.`filters`,
`drupal`.`flood`, `drupal`.`forum`, `drupal`.`history`, `drupal`.`locales_meta`,
`drupal`.`locales_source`, `drupal`.`locales_target`, `drupal`.`menu`, `drupal`.
`node`, `drupal`.`node_access`, `drupal`.`node_comment_statistics`, `drupal`.`node_
counter`, `drupal`.`node_revisions`, `drupal`.`permission`, `drupal`.`poll`,
`drupal`.`poll_choices`, `drupal`.`poll_votes`, `drupal`.`profile_fields`, `drupal`.
`profile_values`, `drupal`.`role`, `drupal`.`search_dataset`, `drupal`.`search_
index`, `drupal`.`search_total`, `drupal`.`sequences`, `drupal`.`sessions`, `drupal`.
`system`, `drupal`.`term_data`, `drupal`.`term_hierarchy`, `drupal`.`term_node`,
`drupal`.`term_relation`, `drupal`.`term_synonym`, `drupal`.`url_alias`, `drupal`.
`users`, `drupal`.`users_roles`, `drupal`.`variable`, `drupal`.`vocabulary`,
`drupal`.`vocabulary_node_types`, `drupal`.`watchdog`) in 0 seconds.
Copying 171 files...
Copying indices for 0 files...
Unlocked tables.
mysqlhotcopy copied 57 tables (171 files) in 1 second (1 seconds overall).

mysqlsnapshot is even easier. It backs up all the ISAM or MyISAM tables on your
server to one tar file per database:

./mysqlsnapshot -u user -p password -s /tmp --split -n
checking for binary logging... ok
backing up db drupal... done
backing up db mysql... done
backing up db test... done
snapshot completed in /tmp

You’ll find mysqlsnapshot at http://jeremy.zawodny.com/mysql/mysqlsnapshot.

If you’ve set up MySQL replication for 24x7 availability, you can back up from a
slave server using one of the methods just decribed. You’ll also need to save replica-
tion info (logs, configuration files, and so on). See Chapters 7 and 9 of High Perfor-
mance MySQL by Jeremy D. Zawodny and Derek J. Balling (O’Reilly) for the gritty
details.

For extra protection from hardware corruption (but not human error), set up replica-
tion and provide your slave (and/or master) with RAID 1 (mirrored) disks.

http://jeremy.zawodny.com/mysql/mysqlsnapshot/

256 | Chapter 11: Backing Up Data

Many MySQL sites migrate data from MyISAM to InnoDB tables to get true data-
base transactions and better write performance. The authors of the InnoDB module
have a commercial product for online InnoDB backups named InnoDB Hot Backup,
which you can order from http://www.innodb.com/order.php.

The last method is usually the first mentioned in most documentation: mysqldump.
Rather than a raw (verbatim) copy, mysqldump produces an ASCII dump of the spec-
ified databases and tables. It works with all MySQL table types, including InnoDB.
It’s relatively slow and the text files it produces are large, although they compress
fairly well. It’s useful to create these dumps from time to time, because they contain
a straightforward script for re-creating your databases and tables from scratch. You
can use editors, grep, and other text tools to search through or modify the dump
files.

To lock all of your tables and dump them to a single file, enter:

mysqldump -u user -ppassword -x --all-databases > /tmp/mysql.dump

You can pipe the output through gzip to save some time and space:

mysqldump -u user -ppassword -x --all-databases | gzip > /tmp/mysql.dump.gz

A new open source tool (free download, pay for support) called Zmanda Recovery
Manager for MySQL provides a useful frontend to many of these alternatives. The
Zmanda web site (http://www.zmanda.com/backup-mysql.html) has the details, but
we’ll mention some of the notable features here:

• Has a command-line interface.

• Backs up local databases, or remote databases over SSL.

• Emails the status of the backup procedure.

• Handles all table types, including InnoDB.

• Does not provide any new backup methods. Instead, it chooses among mysql-
dump, mysqlhotcopy, MySQL replication, or LVM snapshots.

• Supports recovery to a particular transaction or point in time.

Zmanda provides .tar.gz and .rpm files for many Linux distributions. For an installa-
tion how-to for Debian, see http://www.howtoforge.com/mysql_zrm_debian_sarge.

http://www.innodb.com/order.php
http://www.zmanda.com/backup-mysql.html
http://www.howtoforge.com/mysql_zrm_debian_sarge

257

Appendix APPENDIX

bash Script Samples

This appendix contains several scripts that can be useful to you in your daily work,
as well as serving as models for writing other scripts. You can download the scripts
from http://www.centralsoft.org.

Adding Users
If you have a lot of turnover (such as in a university, where new students enter in
bunches once or several times a year), this script can help you add them to your sys-
tem quickly. It reads a file listing information about each user and invokes useradd
with the proper arguments (see the section “User Management” in Chapter 8 for
details about useradd and its variants):

#!/bin/bash

expiredate=2009-02-18

if [[-z "$1"]] ; then
 echo ""
 echo "Please give exactly one file name."
 echo "The file will have one user per line."
 echo "Each line will have:"
 echo " username"
 echo " group"
 echo " personal real name"
 echo ""
 echo "Sample line:
 echo "alfredo marketing Alfredo de Darc"
 exit 1
fi

cat "$1" | while read username groupname realname
do
 # Skip blank lines.
 if [[-z $username || -z $groupname || -z $realname]]; then
 continue
 fi

http://www.centralsoft.org

258 | Appendix: bash Script Samples

 # Check whether the user already exists.
 # If so, report this and skip this user.
 result=$(egrep "^$username:" < /etc/passwd)
 if [[-n "$result"]] ; then
 echo "User '$username' already exists"
 continue
 fi

 # Check whether the group already exists.
 # If not, add the group.
 result=$(egrep "^$groupname:" < /etc/group)
 if [[-z "$result"]] ; then
 groupadd "$groupname"
 fi

 # Add the user.
 useradd -c "$realname" \
 -d "/home/$username" \
 -e "$expiredate" \
 -f 365 \
 -g "$groupname" \
 -m \
 -s /bin/bash \
 "$username"

 if [[$? == 0]]; then
 echo "Successfully added user '$username'."
 else
 echo "Error adding user '$username' (group \
 '$groupname', real name '$realname')"
 exit 1
 fi

done

Random Password Generator
Here’s a script that generates a password of any requested length, in ASCII characters:

#!/bin/bash
n="$1"
[[-n "$n"]] || n=12
if [[$n -lt 8]]; then
 echo "A password of length $n would be too weak"
 exit 1
fi
p=$(dd if=/dev/urandom bs=512 count=1 2>/dev/null \

 | tr -cd 'a-zA-Z0-9' \
 | cut -c 1-$n)

echo "${p}"

Random Password Generator | 259

If this makes perfect sense to you as it stands, you deserve a reward.* While you’re
out, the rest of us will look a bit more closely at the inherent flaws in this code.

This code is typical of something you might inherent from a previous developer: no
comments, unhelpful variable names, and some magic incantations. Since you want
to make the world a better place, there are a few things you can do when writing
scripts like this one.

At the very least, you can leave comments describing the code’s purpose. These com-
ments should be split into two parts: an overview right in the header (for example,
indicating what the arguments passed to the script should specify, and any defaults),
and explicit explanations in close proximity to difficult-to-understand processes.
Don’t waste time just running through the basic commands used, because the main-
tainer can look those up if he’s unfamiliar with them. However, where you employ a
more exotic variant of a command, you should explicitly describe its effect and how
you achieve it.

Overall, you should aim to document the results you’re seeking with command sets,
and why you’re pursuing those results in the manner you’ve chosen.

Now, here’s the explanation of the code for the password generator, in detail you’re
unlikely to see in the real world. The script begins with the usual starting comment
that tells the system to run the bash interpreter. Next, we assign the first argument
string to the variable n, which will be the number of characters to generate. We put
this in quotes because it may be a null string when the script is run with no argu-
ments. That string is then tested to determine whether it actually is null. The -n argu-
ment means “non-zero length,” so the test is actually true if a string is given.

The two vertical bars will execute the assignment that follows if the test fails. This
forces a default length of 12 for our password. The next four lines check to see
whether the given length is too small; we have decided (based on classic recommen-
dations by security experts) that the minimum length should be 8.

The first statement in the loop body uses three system commands in a pipeline to
generate one trial password. All three lines in the pipeline are placed inside $() to
capture the output as a string that is then assigned to the variable p.

To generate a random password, we need a source of random data; the system pro-
vides that by combining a variety of sources of statistics into the /dev/urandom
pseudodevice. The dd command reads some binary data from the device. The tr com-
mand with the -cd option deletes all characters that are not in the ranges a-z, A-Z, and
0-9. The last command in the pipeline, cut, extracts the desired number of characters.

* Go to Starbucks. Order a Venti Mocha Frappuccino. Tell them it’s on the house. Run.

260 | Appendix: bash Script Samples

Don’t try to execute this command at your terminal and view the
results on the screen. You’ll go blind for 10 minutes and your dog will
start meowing. Did you give in to the temptation to do so? You may
have to execute an stty sane command to restore the screen to a useful
state.

Authoritative DNS Lookup
This script uses the dig command introduced in Chapter 3 to do DNS lookups,
bypassing the cache of the local DNS caching server. One feature of this script is that
it uses its own name to specify what DNS record type to look up. If the script is
named a, it looks up DNS A records. If it is named soa, it looks up DNS SOA records.
The name ptr is a special case that takes an IPv4 address and converts it to the proper
in-addr.arpa form to do the actual lookup. You should make a copy of this script
with the appropriate name for each of the common DNS record types you may need
to look up: a, aaaa, mx, and so on. You can also use hard links or symlinks to create
the aliases.

Regardless of the name, the script takes a list of hostnames to look up as arguments:

#!/bin/bash
#--
Copyright © 2006 - Philip Howard - All rights reserved
#

script a, aaaa, cname, mx, ns, ptr, soa, txt
#
purpose Perform direct DNS lookups for authoritative DNS
data. This lookup bypasses the local DNS cache
server.
#
syntax a [names ...]
aaaa [names ...]
any [names ...]
cname [names ...]
mx [names ...]
ns [names ...]
ptr [names ...]
soa [names ...]
txt [names ...]
#
author Philip Howard
#--

For use with ptr query.
function inaddr {
 awk -F. '{print $4 "." $3 "." $2 "." $1 ".in-addr.arpa.";}'
}

Authoritative DNS Lookup | 261

query_type=$(exec basename "${0}")

Get and query for each host.
for hostname in "$@" ; do
 if [["${query_type}" == ptr]] ; then
 # A typical scripting trick: when a case can begin
 # with a numeral, place a dummy character such as x in
 # front because the case syntax expects an alphanumeric
 # character.
 case "x${hostname}y" in
 (x[0-9]*\.[0-9]*\.[0-9]*\.[0-9]*y)
 hostname=$(echo "${hostname}" | inaddr)
 ;;
 (*)
 ;;
 esac
 fi

 # Execute the query.
 dig +trace +noall +answer "${query_type}" "${hostname}" | \
 egrep "^${hostname}"
done
exit

Sending Files Between Shell Sessions
You can use the script presented in this section to send a file, or a directory of files
(including all subdirectories), from one system to another using a shell session on
each system. The script works by creating an rsync daemon (rsync is discussed in
Chapter 11) in the foreground to send the specified file or directory. It displays a few
different forms of rsync commands that could be used to receive that file or directory.
This script does not need to exist on the receiving system, so it can even be used to
send a copy of itself. The rsync package, however, must be installed on both systems.

The sending system must have network access open for the port num-
ber it uses to accept incoming rsync connections. The port number is
chosen at random from the range 12288 through 28671. You can over-
ride the random port selection by using the -p option followed by a
port number. If your firewall rules only allow one or a few ports to be
connected, you must use those port numbers with this script.

To transfer data, first run this script on the sending system. Once it outputs the sam-
ple commands, select which command would be appropriate to use based on the IP
address or hostname that can reach the sending system, and the target location
where the file or directory is to be stored on the receiving system. Copy the selected
command line, and paste that command into the shell of the receiving system to exe-
cute the rsync command that receives the data. The daemon will continue to run

262 | Appendix: bash Script Samples

when the transfer is complete, allowing you to transfer a file or directory multiple
times to different computers. Stop the daemon when the transfers are complete by
pressing Ctrl-C in the sending system’s shell window.

This script has no security. Anyone who can reach the address and
port number on which it’s listening can retrieve the data being trans-
ferred. You should not use this script to transfer confidential or secret
data; try scp or sftp instead. Be sure to terminate the daemon once the
desired transfers are completed.

The suggested name for this script is rsend:

#!/bin/bash
#--
Copyright © 2006 - Philip Howard - All rights reserved
#

script rsend
#
purpose To start an rsync daemon in the shell foreground
to send a specified directory or file when
retrieved using one of the rsync command lines
shown, by pasting it in a shell session on another
host.
#
usage rsend [options] directory | file
#
options -c include checksum in the rsync command lines
-d change daemon to the specified directory
-n include dryrun in the rsync command lines
-p use the specified port number, else random
-s include sparse in the rsync command lines
-u user to run as, if started as root
-v show extra information
#
author Philip Howard
#--
umask 022
hostname=$(exec hostname -f)
whoami=$(exec whoami)
uid="${whoami}"

#--
Set defaults.
#--
checksum=""
delete=""
delmsg=""
dryrun=""
padding="-------"
port=""
sparse=""

Authoritative DNS Lookup | 263

verbose=""

bar1="--------------------------"
bar1="#${bar1}${bar1}${bar1}"

bar2="##########################"
bar2="#${bar2}${bar2}${bar2}"

#--
Include paths for ifconfig.
#--
export PATH="${PATH}:/usr/sbin:/sbin"

#--
Scan options.
#--
while [[$# -gt 0 && "x${1:0:1}" = "x-"]]; do
 case "x${1}" in
 (x-c | x--checksum)
 checksum="c"
 ;;
 (x--delete)
 delete=" --delete"
 delmsg="/delete"
 padding=""
 ;;
 (x-d | x--directory)
 shift
 cd "${1}" || exit 1
 ;;
 (x--directory=*)
 cd "${1:12}" || exit 1
 ;;
 (x-n | x--dry-run)
 dryrun="n"
 ;;
 (x-p | x--port)
 shift
 port="${1}"
 ;;
 (x--port=*)
 port="${1:7}"
 ;;
 (x-s | x--sparse)
 sparse="S"
 ;;
 (x-u | x--user)
 shift
 uid="${1}"
 ;;
 (x--user=*)
 uid="${1:7}"
 ;;

264 | Appendix: bash Script Samples

 (x-v | x--verbose)
 verbose=1
 ;;
 esac
 shift
done

#--
Get a random number for a port.
#--
if [[-z "${port}" || "${port}" = 0 || "${port}" = .]]; then
 port=$(dd if=/dev/urandom ibs=2 obs=2 count=1 2>/dev/null \
 | od -An -tu2 | tr -d ' ')
 port=$[$port % 16384]
 port=$[$port + 12288]
fi

#--
Make up names for temporary files to be used.
#--
conffile="/tmp/rsync-${whoami}-${port}-$$.conf"
lockfile="/tmp/rsync-${whoami}-${port}-$$.lock"

#--
This function adds quotes to strings that need them.
Add single quotes if it has one of these: space $ " `
Add double quotes if it has one of these: '
Note: not all combinations will work.
#--
function strquote {
 local str

 str=$(echo "${1}" | tr -d ' $"`')
 if [["${str}" != "${1}"]]; then
 echo "'${1}'"
 return
 fi
 str=$(echo "${1}" | tr -d "'")
 if [["${str}" != "${1}"]]; then
 echo '"'"${1}"'"'
 return
 fi
 echo "${1}"
 return 0
}

#--
Only one name can be handled.
#--
if [[$# -gt 1]]; then
 echo "Only one name (directory or file)" 1>&2
 exit 1

Authoritative DNS Lookup | 265

elif [[$# -eq 1]]; then
 name="${1}"
else
 name=$(exec pwd)
fi

#--
Set up a temporary config file.
#
Arguments:
$1 Directory transferred, or where transfer is starting
$2 Not used (AO: Should be removed)
$3 File transferred (if single file specified)
#--
function configout {
 echo "lock file = ${lockfile}"
 echo "log file = /dev/stderr"
 echo "use chroot = false"
 echo "max connections = 32"
 echo "socket options = SO_KEEPALIVE"
 echo "list = yes"
 echo "[.]"
 echo "path = ${1}"
 echo "read only = yes"
 echo "uid = ${uid}"
 echo "comment = ${2}"
 if [[-n "${3}"]]; then
 echo "include = **/${3}"
 echo "exclude = **"
 fi
}

#--
Get directory and file.
#--
if [[! -e "${name}"]]; then
 echo "does not exist:" $(strquote "${name}") 1>&2
 exit 1
elif [[-d "${name}"]]; then
 p=$(exec dirname "${name}")
 b=$(exec basename "${name}")
 d="${name}"
 f=""
 r=$(cd "${name}" && exec pwd)
 announce="${d}"
 rsyncopt="-a${checksum}${dryrun}H${sparse}vz${delete}"
 configout "${d}/." "directory:${d}/" >"${conffile}"
elif [[-f "${name}"]]; then
 p=$(exec dirname "${name}")
 b=$(exec basename "${name}")
 d="${p}"
 f="${b}"
 r=$(cd "${p}" && exec pwd)

266 | Appendix: bash Script Samples

 r="${r}/${b}"
 announce="${d}/${f}"
 rsyncopt="-a${checksum}${dryrun}${sparse}vz"
 configout "${d}/." "file:${d}/${f}" >"${conffile}"
elif [[-L "${name}"]]; then
 p=$(exec dirname "${name}")
 b=$(exec basename "${name}")
 d="${p}"
 f="${b}"
 r=$(cd "${p}" && exec pwd)
 r="${r}/${b}"
 announce="${d}/${f}"
 rsyncopt="-a${checksum}v"
 configout "${d}/." "symlink:${d}/${f}" "${f}" >"${conffile}"
fi

#--
Show config file if verbose is requested.
#--
if [[-n "${verbose}"]]; then
 echo "${bar2}"
 ls -ld "${conffile}"
 echo "${bar2}"
 cat "${conffile}"
fi

#--
This function outputs example receive commands.
#--
function showrsync {
 echo -n "rsync ${rsyncopt} "
 if [[-n "${oldfmt}"]]; then
 echo "--port=${port}" $(strquote "${1}::${2}") $(strquote "${3}")
 else
 echo $(strquote "rsync://${1}:${port}/${2}") $(strquote "${3}")
 fi
 return
}

#--
These functions show rsync commands for hostname and IP address.
#--
function getip {
 case $(exec uname -s) in
 (SunOS)
 netstat -i -n | awk '{print $4;}'
 ;;
 (Linux)
 ifconfig -a | awk '{if($1=="inet")print substr($2,6);}'
 ;;
 (*)
 netstat -i -n | awk '{print $4;}'
 ;;
 esac
 return

Authoritative DNS Lookup | 267

}

function ipaddr {
 getip \
 | egrep '^[0-9]*\.[0-9]*\.[0-9]*\.[0-9]*$' \
 | egrep -v '^0\.|^127\.' \
 | head -2 \
 | while read ipv4 more ; do
 showrsync "${ipv4}" "$@"
 done
 return
}

function showcmd {
 ipaddr "${2}" "${3}"
 showrsync "${1}" "${2}" "${3}"
 return
}

#--
Announce the shell commands to receive this data.
#--
echo "${bar2}"
echo "# sending ${announce}"
echo "# paste ONE of these commands in a remote shell to receive"

if [[-d "${name}"]]; then
 echo "${bar1}"
 showcmd "${hostname}" . .

 echo "${bar1}"
 showcmd "${hostname}" . "${b}"

 if [["${d}" != "${b}" && "${d}" != "${r}"]]; then
 echo "${bar1}"
 showcmd "${hostname}" . "${d}"
 fi

 echo "${bar1}"
 showcmd "${hostname}" . "${r}"
else
 echo "${bar1}"
 showcmd "${hostname}" "./${f}" "${b}"

 s=$(exec basename "${d}")
 s="${s}/${f}"
 if [["${s}" != "${b}"]]; then
 echo "${bar1}"
 showcmd "${hostname}" "./${f}" "${s}"
 fi

 if [["${name}" != "${b}" \
 && "${name}" != "${s}" \
 && "${name}" != "${r}"]]; then

268 | Appendix: bash Script Samples

 echo "${bar1}"
 showcmd "${hostname}" "./${f}" "${name}"
 fi

 echo "${bar1}"
 showcmd "${hostname}" "./${f}" "${r}"
fi

echo "${bar1}"
echo "# press ^C here when done"
echo "${bar2}"

#--
Start rsync in daemon mode.
#--
s="DONE"
trap 's="SIGINT ... DONE"' INT
trap 's="SIGTERM ... DONE"' TERM
rsync --daemon --no-detach "--config=${conffile}" "--port=${port}"
rm -f "${conffile}" "${lockfile}"
echo "${s}"

Integrating ssh and screen
You should already be familiar with the ssh command, which connects to another
computer and starts a shell there in a secure manner. The screen command is a use-
ful tool that allows such a shell session to be held in an active state, with its screen
contents intact, when you disconnect from the remote computer. The held shell ses-
sion can then be reconnected later, even from a different computer. It is also possi-
ble to have two or more connections to the same shell session.

The following script makes an ssh connection and starts a named screen session in
one command. The benefit of using this script is quicker connecting and disconnect-
ing when working with multiple servers.

This script is used much like the ssh command. The ssh syntax that specifies the
username and hostname of the remote session is expanded to also include a session
name. You can create multiple sessions on the remote host under the same user-
name with different session names. The session name is optional. If it is not given,
this script runs the ssh command in the normal way, without running screen. The full
syntax of this script, including the ssh options it supports, can be seen in the script’s
comments.

The suggested name for this script is ss:

#!/usr/bin/env bash
#--
Copyright © 2006 - Philip Howard - All rights reserved
#

Integrating ssh and screen | 269

command ss (secure screen)
#
purpose Establish a screen based background shell session
via secure shell communications.
#
syntax ss [options] session/username@hostname
ss [options] session@username@hostname
ss [options] username@hostname/session
ss [options] username@hostname session
#
options -h hostname
-h=hostname
-i identity
-i=identity
-l loginuser
-l=loginuser
-m Multi-display mode
-p portnum
-p=portnum
-s session
-s=session
-t Use tty allocation (default)
-T Do NOT use tty allocation
-4 Use IPv4 (default)
-6 Use IPv6
-46 | -64 Use either IPv6 or IPv4
#
requirements The local system must have the OpenSSH package
installed. The remote system must have the
OpenSSH package installed and have the sshd
daemon running. It must also have the screen(1)
program installed. Configuring a .screenrc
file on each system is recommended.
#
note The environment variable SESSION_NAME will be set
in the session created under the screen command
for potential use by other scripts.
#
author Philip Howard
#--
whoami=$(exec whoami)
hostname=$(exec hostname)

h=""
i=()
m=""
p=()
s=''
t=(-t)
u="${whoami}"
v=(-4)

#--
Parse options and arguments.
#--

270 | Appendix: bash Script Samples

while [[$# -gt 0]]; do
 case "x${1}" in
 (x*/*@*)
 # Example: session1/lisa@centrhub
 u=$(echo "x${1}" | cut -d @ -f 1)
 u="${u:1}"
 s=$(echo "x${u}" | cut -d / -f 2)
 u=$(echo "x${u}" | cut -d / -f 1)
 u="${u:1}"
 h=$(echo "x${1}" | cut -d @ -f 2)
 shift
 break
 ;;
 (x*@*/*)
 # Example: lisa@centrhub/session1
 u=$(echo "x${1}" | cut -d @ -f 1)
 u="${u:1}"
 h=$(echo "x${1}" | cut -d @ -f 2)
 s=$(echo "x${h}" | cut -d / -f 2)
 h=$(echo "x${h}" | cut -d / -f 1)
 h="${h:1}"
 shift
 break
 ;;
 (x*@*@*)
 # Example: session1@lisa@centrhub
 s=$(echo "x${1}" | cut -d @ -f 1)
 s="${s:1}"
 u=$(echo "x${1}" | cut -d @ -f 2)
 h=$(echo "x${1}" | cut -d @ -f 3)
 shift
 break
 ;;
 (x*@*)
 # Example: lisa@centrhub
 u=$(echo "x${1}" | cut -d @ -f 1)
 u="${u:1}"
 h=$(echo "x${1}" | cut -d @ -f 2)
 # Next argument should be session name.
 shift
 if [[$# -gt 0]]; then
 s="${1}"
 shift
 fi
 break
 ;;
 (x-h=*)
 h="${1:3}"
 ;;
 (x-h)
 shift
 h="${1}"
 ;;
 (x-i=*)

Integrating ssh and screen | 271

 i="${1:3}"
 if [[-z "${i}"]]; then
 i=()
 else
 i=(-i "${1:3}")
 fi
 ;;
 (x-i)
 shift
 i=(-i "${1}")
 ;;
 (x-l=* | x-u=*)
 u="${1:3}"
 ;;
 (x-l | x-u)
 shift
 u="${1}"
 ;;
 (x-m | x--multi)
 m=1
 ;;
 (x-p=*)
 p="${1:3}"
 if [[-z "${p}"]]; then
 p=()
 else
 p=(-p "${1:3}")
 fi
 ;;
 (x-p)
 shift
 p=(-p "${1}")
 ;;
 (x-s=*)
 s="${1:3}"
 ;;
 (x-s)
 shift
 s="${1}"
 ;;
 (x-t)
 t=(-t)
 ;;
 (x-T)
 t=()
 ;;
 (x-4)
 v=(-4)
 ;;
 (x-6)
 v=(-6)
 ;;
 (x-46 | x-64)
 v=()
 ;;

272 | Appendix: bash Script Samples

 (x-*)
 echo "Invalid option: '${1}'"
 die=1
 ;;
 (*)
 echo "Invalid argument: '${1}'"
 die=1
 ;;
 esac
 shift
done

#--
Make sure essential information is present.
#--
if [[-z "${u}"]]; then
 echo "User name is missing"
 die=1
fi

if [[-z "${h}"]]; then
 echo "Host name is missing"
 die=1
fi

[[-z "${die}"]] || exit 1

#--
Run screen on the remote only if a session name is given.
#--
c=(ssh "${v[@]}" "${i[@]}" "${p[@]}" "${t[@]}" "${u}@${h}")
if [[-n "${s}"]]; then
 o="-DR"
 [[-n "${m}"]] && o="-x"
 x="exec /usr/bin/env SESSION_NAME='${s}' screen ${o} '${s}'"
 c=("${c[@]}" "${x}")
fi
exec "${c[@]}"

273

We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

Index

Symbols
\ (backslash), 212
[[]] (double brackets), 218
$ (dollar sign), 217
$? (dollar question), 218
$$ (double dollar sign), 218
` (grave), 217
% (percent), 141
(pound sign), 213, 169
" (double quotes), 217
' (single quote), 217
_ (underscore), 217

A
ab (benchmarking program, Apache), 144
access log files, 140
adduser command, 184, 186
Alias directives, 134
Amanda, 236, 251–254

configuring, 253
installing, 252
restores from, 254

Apache, 16, 33–34, 122–152
alternatives to, 162
benchmarking, 144
configuration files, 127–140

authentication and authorization, 130
containers and aliases, 133
directives, 128–130
pattern matching, 133
PHP module-specific directives, 138
resource directives, 134

server-side includes, 134–138
virtual hosts, 138–140

DNS and, 124, 140, 149
installation, 124
logging, 140–142

cron jobs, 140
log splitting and rotation, 140
vlogger, 141
Webalizer, 142

models and prefork model, 144
mod_php installation, 125
scripting language modules, 123
SSL/TLS encryption, 142
suEXEC support, 143

APC, 162
apt-get, 15

quota package, installing, 17
arguments, command line, 212
authentication and authorization, 130

B
backslash (\), 212
backups, 236

automation of, 241
listing files on the backup server, 240
MySQL databases, 254–256
optical media, 245–251
restores, 241
rsync, 237–240

bash script, 239
source and destination arguments, 239
tape backup using Amanda, 251–254
tar archives, 242–245

274 | Index

bash, 211
arithmetic, 219
backup script, 239
bash script samples, 257–272

adding users, 257
authoritative DNS lookup, 260
file transfers between shell

sessions, 261
random password generation, 258
ssh and screen commands,

integrating, 268
cron jobs, 225
default path, 214
expressions, 218
if, elif, and then, 219
I/O redirection, 215
loops, 223
pathnames, 213
permissions, 213
pipes, 215
script troubleshooting, 221
shell variables, 220
variables, 217

bastion hosts, 173
batch jobs, 212
benchmarking, 144
Beowulf, 154
BIND (Berkeley Internet Name

Daemon), 40–71
BIND 4, 40
BIND tools, 62–65
chroot environments and non-root

usage, 42
components, 40
initial minimal setup, 18
troubleshooting, 66–71
versions, 40

Bourne, Stephen, 211
break command, 225
Brehm, Till, 74
bzip2, 242

C
CAs (certificate authorities), 143
cdrecord, 246

configuration, 248
CD-Rs, 245

accessing, 247
preparation for recording, 248
recording, 249

certificates, 143

CGI (Common Gateway Interface), 123
CGI directories and interpreters, 137
chkconfig command, 171
chmod command, 214
chroot environments, 18, 42
CIFS (Common Internet File System), 164
ClarkConnect, 176
clock synchronization, 36
clusters, 154

HA (high-availability) configuration, 161
Linux Virtual Server, 154
load balancing (see load balancing)
realservers, 157

configuring, 157
scaling without LB and HA, 162
testing, 159–161

code caches, 162
command, 212
comment character (#), 213
Common Gateway Interface (CGI), 123
Common Unix Printing System (see CUPS)
Common Vulnerabilities and Exposures

(CVE) list, 22
Comprehensive Perl Archive Network

(CPAN), 36
conf.d directory, 127
connection sharing, 177
containers, 133
continue command, 225
CPAN (Comprehensive Perl Archive

Network), 36
cron jobs, 225
crontab file, 225
CUPS (Common Unix Printing System), 183

CLI commands, 185
CVE (Common Vulnerabilities and

Exposures) list, 22

D
daemon-monitoring daemons (DMDs), 96
data caches, 162
data munging, using scripts, 227
databases (see MySQL)
Debian, 9

default packages, changing, 15
installation, 10
mail transport agents, 105
Postfix (see Postfix)
startup scripts, modifying, 16

demilitarized zone (DMZ), 174

Index | 275

DHCP (Dynamic Host Configuration
Protocol), 168–172

installing, 169
IPv6 addressing with radvd, 172
starting up, 171
static IP addressing, 172

dhcpd.conf file, 171, 175
Firestarter version, 177

dhcpd.leases file, 171
dig command, 41, 260
directives, 128
Directory directives, 133
disk usage, managing (see quotas)
distributed filesystems, 164
distribution, reasons for choosing, 9, 163,

176
dist.txt, 77
djbdns, 40
DMDs (daemon-monitoring daemons), 96
DMZ (demilitarized zone), 174
DNS (Domain Name System), 38

administrative responsibilities, 45
bash script for authoritative lookups, 260
caching-only servers, 49
configuration files, editing, 50–62
finding domains, 46
firewall issues, 48
initial minimal setup, 18
primary and secondary servers, 47–49
queries, 46–47
server setup, 14, 41–44

configuration, 44
troubleshooting, 66–71

DocumentRoot directives, 130
domain controllers, 165
domain name space, 38
drop-in replacements, 22
Drupal, 145–149

configuring, 148
installing, 146–148

apt-get, 146
from source, 147

DSOs (dynamic shared objects), 124
DVD-Rs and DVD+Rs, 245
dvd+rw-tools, 246
dynamic files, 122
Dynamic Host Configuration Protocol (see

DHCP)
dynamic shared objects (DSOs), 124

E
e-accelerator, 162
echo command, 213
egrep command, 220
email client configuration, 120
email (see mail services)
error log files, 140
Exim, 12
Exim 4, 105

F
FastCGI, 123
Fedora Core, 163, 199, 201
Feigenbaum, Barry, 164
file sharing, 164

enabling between Windows XP and
98, 167

filenames, 222
Files and FilesMatch directives, 133
Firestarter, 176–180
firewalls

DMZs and, 174
DNS and, 48
gateway and firewall products, 176
iptables, 174
screened-subnet firewalls, 174
(see also gateway services)

for loop, 223
FTP services, 34

G
gateway servers, 170
gateway services, 173–180
group files, 130, 132
guest, 194
gzip, 242

H
HA (high availability), 155
headless mode, 12
heartbeat, 155
high availability (HA), 155
high-performance computing, 196
.htaccess files, 127, 162
.htpasswd file, 130

276 | Index

I
ide-scsi driver, 247
IMAP, 22–32, 119
inetd, 16
InnoDB Hot Backup, 256
install_ispconfig directory, 77, 80
I/O redirection, 215
IP-based virtual hosts, 138
IPCop, 176
ipopd-ssl, 119
iptables, 174
IPv6 addressing, 172
IPVS (IP Virtual Server), 155

configuration, 155
ISO image files, 246
ISO-9660 filesystem, 246
isomd5 bash script, 250
ISPConfig, 73–96

Apache server compilation, 78
clients and web sites, adding, 83
directory structure, 82
email clients, configuring, 95
email management, 91
hierarchical model for web site files, 89
installing, 74
procedures on compilation failure, 80
requirements, 74
server and users, setting up, 83
services configured using, 74
special daemons, 76
user management, 91
web site setup, 83

K
K3b, 246
KeepAlive directive, 134
KeepAliveTimeout directive, 134

L
LAMP (Linux, Apache, MySQL,

PHP/Perl/Python), 123
LB (see load balancing)
ldirectord, 155, 156
libc client, 11
lighttpd, 162
Linux system administration

job opportunities and
responsibilities, 4–7

required skills and knowledge, 1
skill sets, 5

Linux Virtual Server, 154
Listen directive, Apache, 130
load balancing, 154–162

example configuration, 155
high-availability, adding, 161
IPVS, 155
lb server configuration, 158
ldirectord, 156
software for, 155
testing, 159–161

local network services (see network services)
Location directive, Apache, 133
loops, 223
LPD and LPRng, 182
LVS-NAT, LVS-DR, and LVS-TUN, 157

M
mail command, 111
mail delivery agents (MDAs), 103
mail services, 22, 102–121

email client configuration, 120
IMAP, 119
POP3, 119
setup, 22–32

Spam Assassin, 36
testing, 110

mail transport agents (see MTAs)
mail user agents (MUAs), 103
maildir format, 119
maildir versus libc clients, 11
masquerading, 174
MaxClients directive, Apache, 134
MaxRequestsPerChild directive,

Apache, 134
mbox storage format, 119
MDAs (mail delivery agents), 103

POP3 and IMAP, 119
memcached, 162
mkisofs command, 248
mod_expires, 162
mod_php, 125
mods-enabled directory, 127
mod_vhost_alias, 139
monit, 97

installing and configuring, 98–101
MTAs (mail transport agents), 11, 12, 103
MUAs (mail user agents), 103
mutt, 111
MySQL, 20, 125

data backups, 254–256
InnoDB Hot Backup, 256

Index | 277

mysqldump, 256
mysqlhotcopy, 255
mysqlsnapshot, 255
root user password, setting, 126

N
name-based virtual hosts, 139
named, 40, 47

function, checking, 44
nameservers, 38
NAT (Network Address Translation), 174
Netfilter, 176
netsetup.exe, 167
Network Address Translation (NAT), 174
Network File System (NFS), 167
network services, 163–168

configuration, 165
cross platform file sharing,

configuring, 167
distributed filesystems, 164
internet gateways (see gateway services)
packaged gateway and firewall

products, 176–180
print services (see print services)
Samba, 164
user management (see user management)

NFS (Network File System), 167
NTP (Network Time Protocol) services, 36

O
open relaying, 103
Open SSL, 115–118
operators, 218
optical media, 245–251

cdrecord package, 246
ide-scsi driver, 247
ISO image files, 246
verifying recordings, 250

output, 212

P
passwd command, 186–189

adding a user, 186
disabling a user, 189

password file, 227
PAT (Port Address Translation), 174
pathnames, 213
paths, 213

default path, 214
percent (%), 141

Perl, 36
Apache module, 123
script example, 230
SpamAssassin, installing modules needed

by, 36
permissions, 213
PHP, 125

Apache module, 123
module-specific directives, 138
script example, 232

pipes, 215
POP3, 22–32, 119
Port Address Translation (PAT), 174
postconf command, 27
Postfix, 22–32, 105

configuration, 108–110
Debian packages for, 105
installing, 106–108

pound (#) sign, 169
print services, 181–186

cross-platform printing, 183
CUPS (see CUPS)
networking hardware types, 181
print queue control via command

line, 185
printing software, 182

ProFTPD, 34
Projektfarm GmbH, 74
prompt, 212
Python, 233

Q
quotas, 17

R
radvd, 172
realservers, 157

configuring, 157
refresh values, 48
relational databases, 20
remote login, 12
replication, 162
resolv.conf file, 40, 47, 178
resolver, 40
restores from backups, 241
retry values, 49
root directories, 38
root servers, 45
root user, 11
round-robin DNS, 155
rsend, 262

278 | Index

rsync, 236, 237–240
backup server, listing files on, 240
restores from backups, 241
sending files between shell sessions, 261
syntax and options, 237

rule files, BIND, 47

S
Samba, 164, 184
SASL (Simple Authentication and Security

Layer), 23, 111–115
scalability, 154
screen command, 268
screened-subnet firewalls, 174
scripting, 211, 226

bash example, 228
bash (see bash)
Perl example, 230
PHP example, 232
Python example, 233
scripting languages, choosing, 234
troubleshooting scripts, 221

Secure Shell
disabling access, 189

Secure Sockets Layer (see SSL)
security, 96–101

chroot environments, 18, 42
daemon-monitoring daemons, 96
DNS and BIND, 42
mail services, 23
Sendmail vulnerabilities, 103
spam, 103

self-signed certificates, 143
SELINUX, 199
Sendmail, 103

versus Exim, 12
vulnerabilities, 22

serial number, 48
Server Message Block (see Samba)
server setup, 8

Apache, 33–34
components, 9
Debian installation (see Debian)
DNS servers (see DNS)
FTP services, 34
headless mode, 12
mail services, 22–32

SpamAssassin, 36
network configuration, 13
NTP services, 36
relational databases, 20
remote login, 12

requirements, 9
system clock synchronization, 36
user, root, and postmaster accounts, 11
web hosting services (see ISPConfig)
web statistics summarization, 35
weight, 159

server-side includes, 122, 134–138
shares, 164
shell scripts, 211
shell variables, 220
Shorewall, 176
silos, 195
Simple Authentication and Security Layer

(SASL), 23
simultaneous multi-threading (SMT), 196
sites-enabled directory, 127
SMB (see Samba)
Smoothwall, 176
SMT (simultaneous multi-threading), 196
smtpd.conf file, 27
SpamAssassin, 36
spammers, 104
Squid, 162
ss script, 268
SSH clients, 12
ssh command, 268

remote administration using, 12
SSI (see server-side includes)
SSL (Secure Sockets Layer), 23, 115–118,

142
certificate and key generation, 27
https, 119

standard input, standard output, and
standard error, 215

static files, 122
static IP addressing, 10, 172
static linking, 124
su command, 11
suEXEC, Apache, 78, 143
sysconfig.txt, 175
system administration requirements, 4–7
system clock synchronization, 36
system data, 237
system-config-securitylevel program, 200

T
tar archives, 76, 236, 242–245

backup to tape (see Amanda)
-c and -x options, 245
creating an archive, 243
example packing and unpacking, 244
extracting files from archives, 243

Index | 279

file extensions used in, 242
tar command syntax and options, 242
tarballs, 76

Timme, Falko, 74
TLDs (see top-level domains)
TLS (Transport Layer Security), 23,

115–118, 142
top-level domains, 38, 45
touch command, 171
Transport Layer Security (see TLS)

U
UBEs (unsolicited bulk emailers), 104
Ubuntu, 204
UDF (Universal Disk Format), 246
Ultra Monkey, 156
UML (User-Mode Linux), 196
unsolicited bulk emailers (UBEs), 104
until loop, 223
User and Group directives, 129
user data, 237
user files, 130–132
user management, 186–193

adding users
bash shell script, 257

graphical user managers, 191
user removal, 189

home direcories, locking, 190
Secure Shell access, disabling, 189

useradd command, 186
User-Mode Linux (UML), 196
uw-imapd-ssl, 119

V
variables, 217
Venema, Wietse, 102
virtual hosting, 16, 138–140

mod_vhost_alias, 139
virtual servers for load balancing, 157–159
virtualization, 194–196

advantages and benefits, 197–199
future potential, 210

high-performance computing, 196
VMware (see VMware)
Xen (see Xen)

vlogger, 141
VMware, 194, 204–209

guest operating system installation, 209
installing, 204

W
web hosting services (see ISPConfig)
web servers (see Apache)
web services, 122

CGI, 123
LAMP setups, 123
MySQL database, 125
scalable software, 162
static and dynamic files, 122
troubleshooting, 149–153

web statistics summarization, 35
Webalizer, 35, 142
weight, 159
while loop, 223
Windows file sharing in Linux

environments, 166
wodim, 246

X
Xandros, 165
Xen, 194, 199–204

guest hosts, installing, 201
installation, 199

requirements, 199

Y
yum, 199

Z
Zmanda Recovery Manager for MySQL, 256
zone files, 44

About the Authors
Tom Adelstein began his career in investment banking, where his technical skills
helped financial service companies become industry leaders. He is now a full-time
system administrator and a technical writer.

Bill Lubanovic started developing software with Unix in the 1970s, GUIs in the
1980s, and the Web in the 1990s. He now does web visualization work for a wind
energy company.

Colophon
The image on the cover of Linux System Administration is a cowboy running cattle.

The cover image and chapter opening images are from the Dover Pictorial Archive.
The cover font is Adobe ITC Garamond. The text font is Linotype Birka; the heading
font is Adobe Myriad Condensed; and the code font is LucasFont’s TheSans Mono
Condensed.

	Linux System Administration
	Table of Contents
	Preface
	How This Book Is Organized
	Conventions Used in This Book
	Using Code Examples
	Safari® Enabled
	How to Contact Us
	Acknowledgments

	Requirements for a Linux System Administrator
	About This Book
	How Can We Help?
	Where Do You Start?
	Do You Need a Book?
	Who Needs You?
	Help Wanted
	Analyzing Skill Sets

	What System Managers Should Know About Linux
	What’s Next

	Setting Up a Linux Multifunction Server
	Server Requirements
	Installing Debian
	Logging in Remotely
	Configuring the Network
	Changing the Default Debian Packages
	Setting Up Quotas
	Providing Domain Name Services
	Adding a Relational Database: MySQL
	Configuring Mail Securely with Postfix, POP3, and IMAP
	Putting Apache to Work
	Adding FTP Services with ProFTPD
	Summarizing Your Web Statistics with Webalizer
	Synchronizing the System Clock
	Installing Perl Modules Needed by SpamAssassin
	What’s Next

	The Domain Name System
	DNS Basics
	Advantages of Localized DNS Administration

	Getting into the BIND
	Components of BIND

	Setting Up a DNS Server
	Using a chroot Environment for Security

	Configuring an Authoritative DNS Server
	Your Responsibility in DNS
	The Distributed Method of Resolving Domain Names
	Finding a Domain
	Answering Queries
	Primary and Secondary DNS Servers
	Caching-Only Servers

	Editing the Configuration Files
	named.conf
	The Primary Zone File
	Enhancements and advanced features
	Putting it all together

	The Reverse Zone File
	PTR records

	Testing Lookups
	Configuring the Secondary Nameserver

	BIND Tools
	nslookup
	rndc

	Troubleshooting BIND
	Cannot Connect Using rndc
	named Starts but Does Not Resolve Names
	Hosts Aren’t Recognized

	What’s Next

	An Initial Internet-Ready Environment
	Installing ISPConfig
	Requirements
	Getting Started
	ISPConfig Directory Structure

	Setting Up a Server and Users with ISPConfig
	Adding Clients and Web Sites
	Managing Users and Email
	User, email, home, and public web directories

	Email Client Configuration

	Safeguarding a Linux Web Server
	The Role of a Daemon-Monitoring Daemon
	Installing and Configuring monit

	What’s Next

	Mail
	Key Mail Service Terms
	Postfix, Sendmail, and Other MTAs
	The Postfix SMTP Mail Server on Debian
	Debian Postfix-Related Packages
	Installing Postfix on Debian
	Basic Postfix Configuration
	Testing Mail

	Adding Authentication and Encryption
	SASL Authentication
	Configuring Postfix with SASL to authenticate users with accounts
	The saslauthd daemon
	Configuring Postfix with SASL to authenticate users without accounts

	TLS Encryption

	Configuring POP3 and IMAP Mail Delivery Agents
	Email Client Configuration
	What’s Next

	Administering Apache
	Static and Dynamic Files
	A Simple LAMP Setup
	Installation
	Apache
	PHP
	MySQL

	Apache Configuration Files
	Configuration File Directives
	User and Group directives
	Listen directive
	DocumentRoot directive

	Authentication and Authorization
	User files
	Group files

	Containers and Aliases
	Absolute pathnames: Directory
	Relative pathnames: Location
	Pattern matching: Files and FilesMatch
	Aliases

	Limits
	Server-Side Includes
	CGI
	Location
	File suffix

	PHP Module-Specific Directives
	Virtual Hosts
	IP-based virtual hosts
	Name-based virtual hosts
	mod_vhost_alias

	Logfiles
	Log Splitting and Rotation
	Splitting Logs with vlogger
	Analyzing Logs with Webalizer

	SSL/TLS Encryption
	suEXEC Support
	Benchmarking
	Installing and Administering Drupal
	Installing Drupal with apt-get
	Installing Drupal from Source
	Configuring Drupal

	Troubleshooting
	Web Page Doesn’t Appear in Browser
	Virtual Hosts Don’t Work
	SSI Doesn’t Work
	CGI Program Doesn’t Run
	SSL Doesn’t Work

	Further Reading

	Load-Balanced Clusters
	Load Balancing and High Availability
	Load-Balancing Software
	IPVS on the Load Balancer
	ldirectord
	Configuring the Realservers (Apache Nodes)
	Configuring the Load Balancer
	Testing the System
	Adding HA to LB
	Adding Other LB Services

	Scaling Without LB and HA
	Further Reading

	Local Network Services
	Distributed Filesystems
	Introduction to Samba
	Configuring the Network
	DHCP
	Installing DHCP
	Starting Your DHCP Service
	Providing Static IP Addresses
	Assigning IPv6 Addresses with radvd

	Gateway Services
	Another Approach to Gateway Services

	Print Services
	Printing Software Considerations
	Cross-Platform Printing
	Controlling Print Queues from the Command Line

	User Management
	Removing a User
	Sealing the Home Directory
	Graphical User Managers

	Virtualization in the Modern Enterprise
	Why Virtualization Is Popular
	High-Performance Computing
	Business Continuity and Workload Management
	Rapid Provisioning
	How Virtualization Helps

	Installing Xen on Fedora 5
	Installing a Xen Guest OS
	Fedora Core 5
	Other guests

	Installing VMware
	Installing a VMware Guest OS

	Virtualization: A Passing Fad?

	Scripting
	bash Beginnings
	Pathnames and Permissions
	The Default Path
	I/O Redirection
	Variables

	Useful Elements for bash Scripts
	Expressions
	Arithmetic
	If...
	Troubleshooting a Simple Script
	Loops
	cron Jobs

	Scripting Language Shootout
	Data Format: The /etc/passwd File
	Script Versions
	The bash script
	The Perl script
	The PHP script
	The Python script

	Choosing a Scripting Language

	Further Reading

	Backing Up Data
	Backing Up User Data to a Server with rsync
	rsync Basics
	Making a User Backup Script
	Listing Files on the Backup Server
	Restoring Lost or Damaged Files
	Automated Backups

	tar Archives
	Creating a New Archive
	Extracting from an Archive
	A Complete Example of Packing and Unpacking with tar
	Summary

	Saving Files on Optical Media
	Accessing Your CD-R Drive
	Setting Defaults
	Preparing Files to Record on a CD-R
	Recording the CD-R
	Verifying the Recording

	Backing Up and Archiving to Tape with Amanda
	Installing Amanda
	Configuring Amanda
	Restoring Files Backed Up by Amanda

	Backing Up MySQL Data

	bash Script Samples
	Adding Users
	Random Password Generator
	Authoritative DNS Lookup
	Sending Files Between Shell Sessions

	Integrating ssh and screen

	Index

