
Orestis Polychroniou

Kenneth A. Ross

Columbia University

 In a Glimpse

 Our Motivation

 Problem Definition

 Algorithmic Design

 Implementation & SIMD

 Experimental Results

 Closing Remarks

Manager: “I want a plot of our sales per product.”

Employee: “All products ?”

Manager: “Yes all products.”

Employee: “But most of our income comes from X, Y, Z products.”

Manager: “Well tell me about the top products then.”

Employee: “Ok wait…”

…………..

Manager: “Not ready yet ?”

Employee: “Well the system does most work for all products.”

Manager: “Is this necessary ?”

Employee: “Well maybe… Could it do better ?”

 What do you do ?

 Best effort aggregation for heavy hitters

 What is so special about it ?

 We do it only for heavy hitters and it is fast

 Why do you do it ?

 People see and use top results

 Hardware is faster on smaller working sets

 Analytics & Business Intelligence

 Big data are available everywhere

 Results used for human decisions

 Common Properties

 Very large input handled by machine

 Small output handled by humans

 Observation # 1

No matter how big the data, a small

part of the output will be considered

by the human factor (analysts, …).

 Common Analytics

 Select – Project – Join: large intermediate results

 Aggregate – Sort (Rank): use top results

 Aggregation Step

 May produce few results / groups

 If not, top results will be seen anyway

 Observation # 2

The DBMS will aggregate before returning

any results. It will work for 1,000,000,000

groups, even if you use 100 groups.

 Caches are fast

 Faster than RAM by 1-2 orders of magnitude
 Can still fit thousands of groups

 Private caches allow shared nothing parallelism

 Caches levels have variable speeds
`

 L1 is 2-4 cycles, L3 is 25-40 cycles

 Tradeoff between speed & capacity

 Observation # 3

The smaller the working (result) set,

the faster the scan/probe phase.

But there are many tradeoffs.

 Skewed data are common

 Zipf distribution is important

 Skewed distributions for synthetic data

 Strategic real data exhibit skew

 Importance of items by rank (frequency)

 Sampling can estimate result
\

 Top-K items will be in a sample
 A verification step is required

 Avoid going over the data multiple times

 Heavy hitter groups

 Aggregate top K groups by tuple cardinality

 Defined by higher input frequency
 Hopefully important groups for analysis

 Example query

select product_id, count(*)

from sales

group by product_id

order by count(*) desc

limit 1000;

 Identify possible heavy hitters

 Sample input randomly

 Extract heavy hitter candidates
 Configure & build a hash table

 Scan over input data & probe

 Update candidates found in the table

 Increment non-candidate counts

 Verify heavy hitter groups

 Max non-candidate is threshold
 Like an 1D count sketch

 Candidate Aggregates

 Non-Candidate Counts

 Verified Aggregates

counts sum(X) max(Y)

 Candidate aggregates

 Store the whole incomplete aggregate

 If smaller then higher in cache & faster

 If larger more candidates & more accurate

 Non-candidate counts

 Store only a count
 Less counts make it faster
 More counts more accurate

 Goal

 Choose fastest configuration

 Accurate enough to verify top K

 Conventional Aggregation

 Small group-by cardinality

 Optimization Step

 Loop over configurations

 Estimate configurations using sample

 Choose best configuration

 Early failure detection

 Verified < K

 On failure roll back to conventional

 Fast enough to retry other configuration

 Correct top K are not among the candidates

 Sample size was small and inaccurate

 Cannot distinguish top groups by sampling

 Cannot verify K candidates

 Not enough non-candidate counts

 High verification threshold

 Wrong table configuration

 Not enough candidate aggregates

 Not enough non-candidate counts

 Multiplicative hashing

 Fast computation

 Random multiplier

 Perfect hashing

 No branching and branch mispredictions

 Fast reply for “ is key X in the table ? ”

 Birthday paradox explains small load factor

 Bucketized hashing

 Load factor of perfect hashing increases

 Fast branch free probe through SIMD

 Cuckoo hashing

 Two choice probe without branching

 2X perfect hashing with larger load factor

 Combine with bucketized hashing

 Hash configurations

 Cuckoo or perfect ?

 Bucket size ?

 Cache level ?

 # of non-candidate counts ?

 More choices more tradeoffs

 Branch free update

 Updates nullified if keys do not match

 Non candidate counts updated offline

 Why SIMD ?

 Scalar code uses slower control flags

 Transform to data dependencies

 SIMD where ?

 To batch compare keys

 To update & nullify faster

 Perfect

hashing

 2-wide

bucket

select count(*),
sum(value)

from table
group by key
order by count(*)

desc
limit …

 Perfect
hashing

select count(*), sum(X),
max(X), min(X), sum(X*X)

from table group by key
order by count(*) desc …

 4-wide
bucket

 Single pass

 Large hash table
for aggregates with
random hits on RAM

 PLAT method used
for cross-core cache
invalidations due
to heavy hitters
[Ye, DaMoN11]

 Multiple passes

 Bound by RAM

throughput
 Hash tables

on cache

• 2 CPUs @

2.4 GHz

• Intel Nehalem
Appeared 2008

• 4 physical

cores / CPU

• 2 hardware

threads / core

• 32 KB L1 cache

private / core

• 256 KB L2 cache

private / core

• Version SIMD
SSE 4.2

 Wikipedia

 Hourly Wikipedia visits for January 2012

 Group by URL & get average visit hour

 Skew

 3,463,321,585 visits

 102,216,378 distinct URLs

 Top-3 URLs are 1.6 % of total

 Top-100 URLs are 6.65 % of total

 Top-10,000 URLs are 25.3 % of total

 # verified top groups

 min (Kth item) frequency (x 10-4)

 execution time (seconds)

select count(*) as visits,
avg(hour) as mean_visit_hour

from wikipedia
group by URL
order by count(*) desc;

 Usefulness

 Applied on specific queries

 Requires skew in data

 Best effort approach

 Useful for data exploration

 Quality

 5-20x faster than conventional aggregation

 Get top 250 results out of > 25 GB in time < 5 sec

 Smallest forms 0.006 % of total

