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What is a policy?

 Last time, we saw a few examples of “policies”
» Searching over a graph
» Learning when to sell an asset

 A policy is any rule/function that maps a state to an action.
» This is the reason why a state must be all the information you need 

to make a decision (now or in the future).  
 Policies come in many forms, but these can be organized 

into major groups:
» Policy function approximations (PFAs)
» Policies based on cost function approximations (CFAs)
» Policies based on value function approximations (VFAs)
» Lookahead policies



What is a policy?

1) Policy function approximations (PFAs)
» Lookup table

• Recharge the battery between 2am and 6am each morning, and 
discharge as needed.

» Parameterized functions
• Recharge the battery when the price is below              and 

discharge when the price is above 
» Regression models

» Neural networks

 2
0 1 2( | )PFA
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What is a policy?

2) Cost function approximations (CFAs)
» Take the action that maximizes contribution (or minimizes 

cost) for just the current time period:

» We can parameterize myopic policies with bonus and 
penalties to encourage good long-term behavior.

» We may use a cost function approximation:

The cost function approximation                     may be 
designed to produce better long-run behaviors.

( ) arg max ( , )
t

M
t x t tX S C S x
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What is a policy?

3) Value function approximations (VFAS)
» Using the exact value function

This is how we solved the budgeting problem earlier.

» Or by approximating the value function in some way:

» This is what most people associate with “approximate dynamic 
programming” or “reinforcement learning”

 1 1( ) arg max ( , ) ( )
t
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What is a policy?

 Four fundamental classes of policies:
» 4) Lookahead policies

• Plan over the next T periods, but implement only the action it 
tells you to do now.

• This strategy assumes that we forecast a perfect future, and 
solve the resulting deterministic optimization problem.  There 
are more advanced strategies that explicitly model uncertainty 
in the future, but this is for advanced research groups.
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Policy function approximations

 Lookup tables
» When in discrete state S, take discrete action a (or x).
» These are popular with

• Playing games (black jack,backgammon, Connect 4, ..)
• Routing over graphs
• … many others

» Black jack
• State is cards that you are holding
• Actions

– Double down?
– Take a card/hold

• Let            be a proposed action for each state.  This represents 
a policy.  Fix the policy, and play the game many times.

• Estimate the probability of winning from each state while 
following this “policy”

( )tA S
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Policy function approximations

 Policy function approximation:
» Parametric functions

• Example 1 – Our pricing problem.
– Sell if the price exceeds a smoothed estimate by a specific 

margin

– We have to choose a parameter    that determines how 
much the price has risen over the long run average

• Example 2 – Inventory ordering policies

– Need to determine (Q,q)

1 if 
( )

0 Otherwise    
t t

t

p p
X S  

 




If        
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0 Otherwise    
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Policy function approximations

 In the presence of fixed order costs and under certain 
conditions (recall EOQ derivation), an optimal policy is to 
“order up to” a limit Q:

Q

Time

Order periods



Policy function approximations

 Optimizing a policy for battery arbitrage
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We had to design a simple, implementable policy that 
did not cheat!

We need to search for the best values of the 
parameters 

Withdraw
Store

and .Store Withdraw 

Policy function approximations
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Cost function approximation

Myopic policy
»

»

»

» Myopic policies can give silly results, but there are problems 
where it works perfectly well!

Let ( , ) be the cost of being in state  and taking action .
For example, this could be the cost of traversing link ( , ),
we would choose the link with the lowest cost.

C s x s x
i j

In more complex situations, this means minimizing costs in
one day, or month or year, ignoring the impact of decisions
now on the future.

We write this policy mathematically using:
         ( ) arg min( max) ( , )t x tX S or C S x
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Cost function approximation

 Simple examples:
» Buying the cheapest laptop.
» Taking the job that offers the highest salary.
» In a medical emergency, choose the closest ambulance.
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Schneider National
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Cost function approximation

t t+1 t+2
 Assigning drivers to loads over time.

Drivers    Loads
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Cost function approximation

Managing blood inventories
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Cost function approximation

Managing blood inventories over time
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Cost function approximation
 Sometimes it is best to modify the cost function to obtain 

better performance over time
» Rather than buy the cheapest  laptop over the internet, you 

purchase it from Best Buy so you can get their service plan.  A 
higher cost now may lower costs in the future.
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Purchase 
cost

$495          None                   $495Buy.com

Best Buy

Amazon.com

$575    Geek squad               $474

$519        None                     $519

Service
plan

Adjusted
“cost”



Cost function approximation

 Original objective 
function

 Cost function 
approximation
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Set of stores
True purchase cost
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Cost function approximation

 Other adjustments:
» Ambulance example

• Instead of choosing the closest ambulance, we may need to 
make an adjustment to discourage pulling ambulances from 
areas which have few alternatives.
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Busy area
Less-busy area

Ambulance A

Ambulance B
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Value function approximations

 Basic idea
» Take an action, and identify the “state” that an action 

lands you in.
• The state of the chess board.
• The state of your resume from taking a job.
• A physical location when the action involves moving from one 

place to another.
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 The previous post-decision state: trucker in Texas

Value function approximations
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 Pre-decision state: we see the demands

$300

$150

$350

$450

Value function approximations
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We use initial value function approximations…

0 ( ) 0V CO 

0 ( ) 0V MN 

$300

$150

$350

$450
0 ( ) 0V CA 

0 ( ) 0V NY 

Value function approximations
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… and make our first choice:  

$300

$150

$350

$450

0 ( ) 0V CO 

0 ( ) 0V CA 

0 ( ) 0V NY 

Value function approximations
1x

0 ( ) 0V MN 
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 Update the value of being in Texas.

1( ) 450V TX 

$300

$150

$350

$450

0 ( ) 0V CO 

0 ( ) 0V CA 

0 ( ) 0V NY 

Value function approximations

0 ( ) 0V MN 
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 Now move to the next state, sample new demands and 
make a new decision

$600

$400

$180

$125

0 ( ) 0V CO 

0 ( ) 0V CA 

0 ( ) 0V NY 

1( ) 450V TX 

Value function approximations

0 ( ) 0V MN 
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 Update value of being in NY

0 ( ) 600V NY 

$600

$400

$180

$125

0 ( ) 0V CO 

0 ( ) 0V CA 

1( ) 450V TX 

Value function approximations

0 ( ) 0V MN 
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Move to California.

$150

$400

$200

$350

0 ( ) 0V CA 

0 ( ) 0V CO 

1( ) 450V TX 

Value function approximations

0 ( ) 600V NY 

0 ( ) 0V MN 
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 Make decision to return to TX and update value of being in 
CA

$150

$400

$200

$350

0 ( ) 800V CA 

0 ( ) 0V CO 

1( ) 450V TX 

0 ( ) 500V NY 

Value function approximations

0 ( ) 0V MN 
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 Back in TX, we repeat the process, observing a different 
set of demands.

1( ) 450V TX 

$275

$800

$385

$125

0 ( ) 0V CO 
0 ( ) 500V NY 

Value function approximations

0 ( ) 800V CA 

0 ( ) 0V MN 
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 We get a different decision and a new estimate of the value 
of being in TX

1( ) 450V TX 

0 ( ) 0V CO 

$275

$800

$385

$125

0 ( ) 500V NY 

Value function approximations

0 ( ) 800V CA 

0 ( ) 0V MN 
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 Updating the value function:

1

2

2 1 2

Old value:
     ( ) $450

New estimate:
ˆ      ( ) $800

How do we merge old with new?
ˆ      ( ) (1 ) ( ) ( ) ( )

                   (0.90)$450+(0.10)$800
                   $485

V TX

v TX

V TX V TX v TX 





  



Value function approximations
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 An updated value of being in TX

1( ) 485V TX 

0 ( ) 0V CO 
0 ( ) 600V NY 

$275

$800

$385

$125

Value function approximations

0 ( ) 800V CA 

0 ( ) 0V MN 



Value function approximation

 Notes:
» At each step, our truck driver makes a decision based 

on previously computed estimates of the value of being 
in each location.

» Using these value function approximations, decisions 
which capture (approximately) downstream impacts 
become quite easy.

» But you have to trust the quality of your approximation.
» There is an entire field of research that focuses on how 

to approximate value functions known as “approximate 
dynamic programming.”  
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Lookahead policies

 It is common to “peek” into the future:



Lookahead policies
 Shortest path problems

» Solve shortest path to 
destination to figure out the 
next step.  We solve the 
shortest path using a point 
estimate of the future.

» As car advances, Google 
updates traffic estimations (or 
you may react to traffic as 
you see it).

» As the situation changes, we 
recalculate the shortest path 
to find an updated route.
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Lookahead policies

 Decision trees
» A form of lookup table 

representation

• Square nodes – Make a decision

• Circles – Outcome nodes
– Represents state-action pairs

» Solving decision trees means 
finding the value at each outcome 
node.

Do not use

weather report

Us
e w

ea
the

r r
ep

or
t

Forecast sunny .6
Schedule game

Cancel game

Schedule game

Cancel game

Schedule game

Cancel game

Schedule game

Cancel game

Forecast cloudy .3

Forecast r
ain .1

-$1400

-$200

$2300

-$200

$3500

-$200

$2400

-$200



Rain .8   -$2000
Clouds .2  $1000
Sun .0  $5000
Rain .8  -$200
Clouds .2  -$200
Sun .0  -$200
Rain .1 -$2000
Clouds .5  $1000
Sun .4 $5000
Rain .1 -$200
Clouds .5 -$200
Sun .4 -$200
Rain .1  -$2000
Clouds .2 $1000
Sun .7  $5000
Rain .1 -$200
Clouds .2 -$200
Sun .7 -$200Rain .2 -$2000

Clouds .3  $1000
Sun .5  $5000
Rain .2 -$200
Clouds .3 -$200
Sun .5 -$200

- Decision nodes

- Outcome nodes

Information

Action

Information

Action


State

State
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-$1400

-$200

$2300

-$200

$3500

-$200

$2400

-$200
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-$200

$2300

$3500

$2400

-$200
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$2770

$2400

Approximate value of being in this state
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After rolling back, we use the value 
at each node to make the best 
decision.  This value captures the 
effect of all future information and 
decisions. 



Lookahead policies

 Sometimes, our lookahead policy involves solving a 
linear program over multiple time periods:

» This strategy requires that we pretend we know everything 
that will happen in the future, and then optimize 
deterministically.

' '
' 1

( ) arg min
T

t ti ti t i t i
i t t i

X S c x c x
 

   
1, ,...,t t t Tx x x  

Optimizing into the future
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We can handle vector-valued decisions by solving 
linear (or integer) programs over a horizon.

Lookahead policies
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We optimize into the future, but then ignore the 
decisions that would not be implemented until later.

Lookahead policies
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 Assume that this is the full model (over T time 
periods)

Lookahead policies

T
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 But we solve a smaller lookahead model (from t to t+H)

Lookahead policies

0 0+H
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 Following a lookahead policy

Lookahead policies

1 1+H
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… which rolls forward in time.

Lookahead policies

2 2+H
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… which rolls forward in time.

Lookahead policies

3 3+H
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… which rolls forward in time.

Lookahead policies

t t+H



Lookahead policies

 Notes on lookahead policies:
» They construct the value of being in a state in the future 

“on the fly,” which allows the calculation to take into 
account many other variables (e.g. the status of the 
entire chess board).

» Lookahead policies are brute force – searching the tree 
of all possible outcomes and decisions can get 
expensive.  Compute times grow exponentially with the 
length of the horizon.

» But, they are simple to understand.
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Finding good policies

 The process of searching for a good policy 
depends on the nature of the policy space:

» 1) Small number of discrete policies
» 2) Single, continuous parameter
» 3) Two or more continuous parameters
» 4) Finding the best of a subset
» …. other more complicated stuff.
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Finding good policies

 Evaluating policies
» We learned we can write our objective function as

We now have to deal with:
» How do we design a policy?

• Choose the best type of policy (PFA, CFA, VFA, Look-ahead, 
hybrid)

• Tune the parameters of the policy

» How do we search for the best policy?

 min , ( )t t
t ij

E C S X S



 
 
 

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Finding good policies

 Finding the best of two policies
» We simulate a policy N times and take an average:

»

» How big should N be (or, is N big enough)?
• Have to compute confidence intervals.  The variance of an 

estimate of the value of a policy is given by the usual formula:

1

1 ( )
N

n

n
F F

N
  



 

1 2

1 2

1 2

If we simulate policies  and ,  we would like to conclude
that  is better than  if

      F F 

 
 



 
2

2,

1

1 1 ( )
1

N
n

n
s F F

N N
  



 
    


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Finding good policies

 Now construct confidence interval for the 
difference:
»
» Assume that the estimates of the value of each policy 

were performed independently.  The variance of the 
difference is then

•

» Now construct a confidence interval around the 
difference:

•

1 2 Point estimate of differenceF F    

1 22, 2,2s s s 
  

 /2 /2,z s z s     
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Finding good policies

 Better way:
» Evaluate each policy using the same set of random 

variables (the same sample path)
» Compute a sample realization of the difference:

•

• Now compute confidence interval in the usual way.

 

1 2

1

2
2

1

( ) ( ) ( )
1 ( )

1 1 ( )
1

N
n

n

N
n

n

F F

N

s
N N

 



   

  

  





 



 
    




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Finding good policies

 Notes:
» First method requires 2N simulations
» Second method requires N simulations, but they have to 

be coordinated (e.g. run in parallel).
» There is another method which further minimizes how 

many simulations are needed.  Will describe this later in 
the course.
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We had to design a simple, implementable policy that 
did not cheat!

We need to search for the best values of the 
parameters 

Withdraw
Store

and .Store Withdraw 

Finding good policies
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Finding good policies

 Finding the best policy (“policy search”)
» Let                                    be the “policy” that chooses the 

actions.
» We wish to maximize the function

WithdrawStore

 
0

min ( , ) , ( | )
T

t
t t

t
F W C S X S

   


  

( | , )store withdraw
tX S  
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Finding good policies

 Illustration of policy search
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Finding good policies

 SMART-Solar
» See http://energysystems.princeton.edu/smartfamily.htm
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Parameters 
that control 
the behavior 
of the policy.



Finding good policies

 The control policy determines when the battery is 
charged or discharged.

» Different values of the charge/discharge prices are simulated to 
determine which works the best.  This is a form of policy search.
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Energy level in the battery:

Energy level in the battery:
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Optimizing continuous parameters

 The problem of finding the best policy can be 
written as a classic stochastic search problem:

» … where x is a vector of continuous parameters
» W represents all the random variables involved in 

evaluating a policy. 

 min ( , )x E F x W



© 2013 W.B.Powell 72

Optimizing continuous parameters

 We can find x using a classic stochastic gradient algorithm
» Let

» Now assume that we can find the derivative with respect to each 
parameter in the policy (not always true).  We would write this as

» The stochastic gradient algorithm is then

» We then use       for iteration n+1 (for sample path       )

 ( ) ( , )F x E F x W

( , ) ( , ( ))g x F x W 

1 1
1 ( , )n n n n

nx x g x  
 

nx n



© 2013 W.B.Powell 73

Optimizing continuous parameters

 Notes:
» If we are maximizing, we use

» This algorithm is provably convergent if we use a 
stepsize such as

» Need to choose      to solve the difference in units 
between the derivative and the parameters.

1 1
1 ( , )n n n n

nx x g x  
 

0         1, 2,...
1n n

a n
  
 

0
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Optimizing continuous parameters

 Computing a gradient generally requires some 
insight into the structure of the problem.

 An alternative is to use a finite difference.
 Assume that x is a scalar.  We can find a gradient 

using

» Very important: note that we are running the simulation 
twice using the same sample path.

( , ) ( , ( )) ( , ( ))g x F x W F x W     


