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What is a policy?
B
W Last time, we saw a few examples of “policies”
» Searching over a graph
» Learning when to sell an asset

B A policy is any rule/function that maps a state to an action.

» This iIs the reason why a state must be all the information you need
to make a decision (now or in the future).
B Policies come in many forms, but these can be organized
INto major groups:

Policy function approximations (PFAS)

Policies based on cost function approximations (CFAS)

Policies based on value function approximations (VFAS)

Lookahead policies
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What is a policy?

1) Policy function approximations (PFAS)

» Lookup table
* Recharge the battery between 2am and 6am each morning, and
discharge as needed.

» Parameterized functions
 Recharge the battery when the price is below
discharge when the price is above @

» Regression models
X PA(S,10) = 6, +6,S, +6,(S,)

gcharge and

» Neural networks




What is a policy?

I 0000
2) Cost function approximations (CFAS)

» Take the action that maximizes contribution (or minimizes
cost) for just the current time period:

X" (S,) =argmax, C(S;,x,)

» We can parameterize myopic policies with bonus and
penalties to encourage good long-term behavior.

» We may use a cost function approximation:
X °A(S, |6) =argmax, C*(S,,x | 6)

The cost function approximation C*(S,, x, | #) may be
designed to produce better long-run behaviors.



What is a policy?

|
3) Value function approximations (VFAS)

» Using the exact value function
X'[VFA(St) — arg maXXt (C(St 1 Xt) + 7Vt+1(St+1))

This is how we solved the budgeting problem earlier.

» Or by approximating the value function in some way:

X (S,) =argmax, (C(S,,%)+7EV,.4(S...))

» This i1s what most people associate with “approximate dynamic
programming” or “reinforcement learning”



What is a policy?

B Four fundamental classes of policies:

» 4) Lookahead policies

» Plan over the next T periods, but implement only the action it
tells you to do now.

]
XM (s)=argmax, , . > C(S;, %)
t'=t

 This strategy assumes that we forecast a perfect future, and
solve the resulting deterministic optimization problem. There
are more advanced strategies that explicitly model uncertainty
In the future, but this is for advanced research groups.
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Policy function approximations
|

B Lookup tables
» When iIn discrete state S, take discrete action a (or x).

» These are popular with
» Playing games (black jack,backgammon, Connect 4, ..)

* Routing over graphs
... many others

» Black jack
e State Is cards that you are holding

e Actions
— Double down?

— Take a card/hold
e Let A*(S,)be a proposed action for each state. This represents

a policy. Fix the policy, and play the game many times.
 Estimate the probability of winning from each state while

following this “policy”

© 2013 W.B.Powell



Policy function approximations
|

B Policy function approximation:

» Parametric functions
o Example 1 — Our pricing problem.
— Sell if the price exceeds a smoothed estimate by a specific
margin

Xﬁ(st):{l ifpt>ﬁt+ﬂ

0 Otherwise

— We have to choose a parameter £ that determines how
much the price has risen over the long run average
o Example 2 — Inventory ordering policies

Q-S, IfS <q

X7*(S,) =
(5 { 0  Otherwise

— Need to determine (Q,q)

© 2013 W.B.Powell



Policy function approximations

B In the presence of fixed order costs and under certain
conditions (recall EOQ derivation), an optimal policy is to
“order up to” a limit Q:

Order periods

~

Time
© 2013 W.B.Powell 10



Policy function approximations

B Optimizing a policy for battery arbitrage

ERCOT (Texas) price data
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Policy function approximations

B \We had to design a simple, implementable policy that
did not cheat!

140.00

120.00

100.00

80.00

withdraw %% ’A

P 40.00 %‘ fﬁv \ f ¢
Store _

P 20.00 \‘\OJ
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B \\Ve need to search for the best values of the
parame’[ers pStore and pWithdraW.
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Cost function approximation
|

B Myopic policy
» Let C(s, X) be the cost of being in state s and taking action x.

For example, this could be the cost of traversing link (i, J),
we would choose the link with the lowest cost.

» In more complex situations, this means minimizing costs in
one day, or month or year, ignoring the impact of decisions
now on the future.

» \We write this policy mathematically using:
X (S,) =argmin(or max), C(S,, X)

» Myopic policies can give silly results, but there are problems
where it works perfectly well!

© 2013 W.B.Powell 14



Cost function approximation
|

B Simple examples:
» Buying the cheapest laptop.
» Taking the job that offers the highest salary.
» In a medical emergency, choose the closest ambulance.

© 2013 W.B.Powell 15
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Cost function approximation

B Assigning drivers to loads over time.

L +1 {+2

Drivers Loads

© 2013 W.B.Powell
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Cost function approximation

B Managing blood inventories

Type of Type of
Donated Blood Recipient Blood
AB+ AB+
AB- 5| AB-
A+ 7 A+
- A-

il

B+ o B+

s ———— _mm
O+

Ll

0 > 0
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Cost function approximation

B Managing blood inventories over time

Week 0 Week 1 Week 2 Week 3

© 2013 W.B.Powell Slide 20



Cost function approximation

B Sometimes it Is best to modify the cost function to obtain
better performance over time

» Rather than buy the cheapest laptop over the internet, you
purchase it from Best Buy so you can get their service plan. A
higher cost now may lower costs in the future.

Purchase Service Adjusted
cost plan “cost”
Buy.com $495 None $495
Best Buy $575 Geek squad $474
Amazon.com| $519  None $519

© 2013 W.B.Powell
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Cost function approximation

B Original objective B Cost function
function approximation
F=> cX, F=>) cix

ded ded
® = Set of stores D = Set of stores
c, = I'rue purchase cost c, = True purchase cost

c; = Modified cost
= ¢, + Adjustment for service

The "policy" is captured by the adjustment.

© 2013 W.B.Powell 22
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Cost function approximation

B Other adjustments:

» Ambulance example

« Instead of choosing the closest ambulance, we may need to

make an adjustment to discourage pulling ambulances from
areas which have few alternatives.
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Value function approximations
I 0000

B Basic idea

» Take an action, and identify the “state” that an action

lands you In.
« The state of the chess board.
* The state of your resume from taking a job.
A physical location when the action involves moving from one

place to another.

© 2013 W.B.Powell 25



Value function approximations

B The previous post-decision state: trucker in Texas

© 2013 W.B.Powell 26



Value function approximations

B Pre-decision state: we see the demands

© 2013 W.B.Powell 27



Value function approximations

B \We use Initial value function approximations...

&
1 4

VO(MN) =0

7°(C0) =0 VO(NY)=0

© 2013 W.B.Powell 28



Value function approximations

M ... and make our first choice: X'

VO(MN) =0

V°(CO) =0

© 2013 W.B.Powell 29



Value function approximations

B Update the value of being in Texas.

VO(MN) =0

V°(CO) =0

b

N

.m.: ,
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Value function approximations

B Now move to the next state, sample new demands and
make a new decision

] s

VO(MN) =0

180

~~ VP(NY)=0
~
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P il

~ ~l\ * l‘i.
N -
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Value function approximations

B Update value of being in NY

VO(MN) =0

180

~~V°(NY) = 600

é

V°(CO)=0
Ty
- ~l Bl

\. .\l
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Value function approximations

B Move to California.

VO(MN) =0

}.‘ V°(NY) =600

"4' L
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Value function approximations

B Make decision to return to TX and update value of being in
CA

VO(MN) =0

] s

V°(CO) =0

;‘- o
2

V°(CA) =800

N

N _Bmal )
\. .\l
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Value function approximations

B Back in TX, we repeat the process, observing a different

set of demands.
7(C0) =0 }‘ V(NY) =500

] -
1 ., *
N § D

VO(MN) =0

(7 gl
\. \ \l
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Value function approximations

B \We get a different decision and a new estimate of the value

of being In TX
}‘ V°(NY) =500

VO(MN) =0

) 3

Ay

V°(CO) =0

V(TX) = 450

|\.
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Value function approximations

I 0000
B Updating the value function:

Old value:
V1(TX)=$450

New estimate:
V2 (TX) =$800

How do we merge old with new?
VATX)=1L-—a)V(TX)+ (a)V*(TX)
= (0.90)$450+(0.10)$800
=$485

© 2013 W.B.Powell
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Value function approximations

B An updated value of being in TX

| & ‘
V°(CO)=0 }'. v (V) =600

V°(CA) =800 o lé
‘ [ 9190 ot

VO(MN) =0

| /H(TX =48
S NS
\. .\l
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Value function approximation

B Notes:

» At each step, our truck driver makes a decision based
on previously computed estimates of the value of being
In each location.

» Using these value function approximations, decisions
which capture (approximately) downstream impacts
become quite easy.

» But you have to trust the quality of your approximation.

» There is an entire field of research that focuses on how
to approximate value functions known as “approximate
dynamic programming.”

© 2013 W.B.Powell 39
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ookahead policies

M |t IS common to “peek” into the future:
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ookahead policies

B Shortest path problems

» Solve shortest path to
destination to figure out the
next step. We solve the
shortest path using a point
estimate of the future.

» AS car advances, Google
updates traffic estimations (or
you may react to traffic as
you see it).

» AS the situation changes, we
recalculate the shortest path
to find an updated route.

Fast
] ] |

% T
™

LT -
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ookahead policies
|

B Decision trees

» A form of lookup table
representation

« Square nodes — Make a decision

e Circles — Outcome nodes
— Represents state-action pairs

» Solving decision trees means
finding the value at each outcome
node.

© 2013 W.B.Powell 43



Information

State _ ~
Action _Rain.8 _-$2000
Information . “ Clouds .2 $1000
N \\< %aﬁ\
g V] gone® ~ Sun..0_$5000
.\’ Cance] Same - _RQID _-8_ :$_290
_ Clouds .2_-$200
. Sun .0_-$200
- Rain .1 -$2000
"_ Clouds .5_$1000
A0S
o nedts ~_ Sun .4 $5000
CaHCe] Zame - _RQ‘ID _'1_ '_$2QO
_ Clouds .5-$200
. Sun .4-$200.
. Rain_.1 -$2000
e (). - Clouds 2:$1000
o st ~_ Sun .7_$5000
Cancel gan _-Rain .1 -$200
_ Clouds .2 -$200
-Rain .2 -$2000 ~"<_ syn 7.-$200.
_ Clouds .3_$1000 .
Sun 5_$5000 - Decision nodes
- Rain_.2 -$200Q
_ Clouds .3 -$200 O - Outcome nodes
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Sc‘oed“\e
Cancel Same
-$200
Sc‘(\ea‘“\e a
Cancel Same
me $3500
‘50‘036“\6 -
CﬂnCeI game
$2400
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-$200

$2300

$3500
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Approximate value of being in this state

After rolling back, we use the value
at each node to make the best

decision. This value captures the

effect of all future information and
decisions.

$2400
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ookahead policies

B Sometimes, our lookahead policy involves solving a
linear program over multiple time periods:

X (S,) =arg minzctixti T i th'ixt'i

I t'=t+1 |
Xis Xpsqreen Xipy

& J/
4

Optimizing into the future

» This strategy requires that we pretend we know everything
that will happen in the future, and then optimize
deterministically.

© 2013 W.B.Powell 48



ookahead policies

B \We can handle vector-valued decisions by solving
linear (or integer) programs over a horizon.

49



ookahead policies

B \We optimize into the future, but then ignore the
decisions that would not be implemented until later.

50



ookahead policies

B Assume that this is the full model (over T time

periods)

51



ookahead policies

B But we solve a smaller lookahead model (from t to t+H)

0+H
>

0
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ookahead policies

B Following a lookahead policy

1

SR
AN WY l"?‘

[\ r
[/,

X\ AN
" NN N\
e \

53



ookahead policies

. which rolls forward in time.

54



ookahead policies

. which rolls forward in time.
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ookahead policies

. which rolls forward in time.
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ookahead policies

B Notes on lookahead policies:

» They construct the value of being in a state in the future
“on the fly,” which allows the calculation to take into

account many other variables (e.g. the status of the
entire chess board).

» Lookahead policies are brute force — searching the tree
of all possible outcomes and decisions can get

expensive. Compute times grow exponentially with the
length of the horizon.

» But, they are simple to understand.

© 2013 W.B.Powell 57
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Finding good policies
|

B The process of searching for a good policy
depends on the nature of the policy space:

» 1) Small number of discrete policies

» 2) Single, continuous parameter

» 3) Two or more continuous parameters
» 4) Finding the best of a subset

» .... other more complicated stuff.

© 2013 W.B.Powell
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Finding good policies
|

B Evaluating policies
» We learned we can write our objective function as

nine (T 3C(5,x°(5)))

B \Ve now have to deal with:

» How do we design a policy?
* Choose the best type of policy (PFA, CFA, VFA, Look-ahead,
hybrid)
* Tune the parameters of the policy

» How do we search for the best policy?

© 2013 W.B.Powell 60



Finding good policies
|

B Finding the best of two policies
» We simulate a policy N times and take an average:

_ o1
F7"==> F"(o")
N n=1
» If we simulate policies 7, and r,, we would like to conclude
that 7z, is better than 7z, if

F™ > F™

» How big should N be (or, is N big enough)?
* Have to compute confidence intervals. The variance of an
estimate of the value of a policy is given by the usual formula:

N

e A1 X 2
s _N(N_lz(F (") F)]

n=1

© 2013 W.B.Powell 61



Finding good policies
I
B Now construct confidence interval for the

difference:

» § =F™ - F™ = Point estimate of difference

» Assume that the estimates of the value of each policy
were performed independently. The variance of the
difference is then

I

» Now construct a confidence interval around the
difference:

’ (5 — 2,850 + Za/ZSé)

© 2013 W.B.Powell 62



Finding good policies
|

B Better way:

» Evaluate each policy using the same set of random
variables (the same sample path)

» Compute a sample realization of the difference:

" 6(0)=F"(0)-F"(w)

SO

1{ 1 N
52 = N[N_l;(a(a) )—5)]

« Now compute confidence interval in the usual way.

© 2013 W.B.Powell
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Finding good policies
|

B Notes:

» First method requires 2N simulations

» Second method requires N simulations, but they have to
be coordinated (e.g. run in parallel).

» There Is another method which further minimizes how
many simulations are needed. Will describe this later in
the course.

© 2013 W.B.Powell 64



Finding good policies
I 0000
B \We had to design a simple, implementable policy that

did not cheat!

140.00

120.00

100.00

80.00

withdraw °*%° ’A

P 40.00 %‘ fﬁv \ f ¢
Store _

P 20.00 \‘\OJ

000 r-r—r—r+rr—r—rrr—r—rrrrrrrrUUTTTTTTTTTT T T T T T T T T T T
1 3 5 7 9111315171921 23252729 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71

B \\Ve need to search for the best values of the
parame’[ers pStore and pWithdraW.
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Finding good policies
|

B Finding the best policy (“policy search”)

» Let X7 (S, | o™, p"""*") be the “policy” that chooses the
actions.

» \We wish to maximize thTe function
min  EF (p,W) =EY"»'C(S,, X" (S, | p))
t=0

Withdraw

© 2013 W.B.Powell 66



Finding good policies

I 0000
B |llustration of policy search

loss
Smeothing
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Finding good policies

B SMART-Solar
» See http://energysystems.princeton.edu/smartfamily.htm

SMART-Solar: Co-optimization of solar and storage

Payback Years 5.58
Met Revenue Syr (SB67,078.29)
Net Revenue 10yr $4,229,776.26
MNet Revenue 15yr 58,345,079.40
MNet Revenue 20yr 511,578,315.69
NPV 5yr (52,533,117.84)
NPV 10yr $985,043.93

Regular Charge @ $

Regular Discharge @ 5
Cold Charge @ $

Cold Discharge @ $
Hot Charge @ &

Hot Discharge @ 5
Grid Charge @ $

Grid Discharge @ $ NPV 15yr $3,174,578.03
Temp (F) NPV 20yr $4,522,756.86
Hot RO Syr -6.14%
Cold 20 Parameters ROI 10yr 29.96%
Inverter loss 20% ROI 15yr 59.10%
Total battery size [MWh) 8 that ContrOI ROI 2w¥r 82.00%
Rate (MW) 4 the behaV|0r Revenue from ES [annual, ¥r 1) 580,772.68
Upper boundary 00% . Revenue from FR (annual, ¥r1) £1,012,252.39
Lower boundary 10% Of the pOI ICy Revenue from Solar (annual, vr1) $346,068.10
Interconnection approval (MW) 8.5 Revenue from SREC [annual, ¥r1) 5543,422.98
Battery size for ES (MWh) 6
Battery size for FR (MWh) 2 Help
Battery in use Yes
Policy/CPLEX Policy

*All bold values can be changed®

© Trustees of Princeton University




Finding good policies

B The control policy determines when the battery Is
charged or discharged.

Battery Level and LMP

Energy level In the battery
IR L __tf_t|

g |‘ | .
| | “l |

| fl

— —
—
_'.—_'___L
| |
——

TSR f\/\t T .
HALLE G o
Energy level In the batter

TL LI L L L i i i i L ff i iiL LI i LI LI L LS L LSS IR S X L Lo

b= T~ - - I - - (- - |
I I rr R e iiiiiifEdEdi i iEEEN A 5644598568 AF5FTFTEETEY

» Different values of the charge/discharge prices are simulated to
determine which works the best. This is a form of policy search.

© 2013 W.B.Powell
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Myopic cost function approximations
ookahead policies
Policies based on value function approximations
Policy function approximations
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Optimizing continuous parameters
|

B The problem of finding the best policy can be
written as a classic stochastic search problem:

min, E {F(x,W)}

» ... Where X Is a vector of continuous parameters

» W represents all the random variables involved in
evaluating a policy.
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Optimizing continuous parameters
|

B \We can find x using a classic stochastic gradient algorithm
» Let

F(x)=E{F(x,W)}

» Now assume that we can find the derivative with respect to each
parameter in the policy (not always true). We would write this as

g(x, @) = VF (x,W(w))

» The stochastic gradient algorithm is then
Xn _ Xn—l _an_lg(xn—l’ a)n)

» We then use X for iteration n+1 (for sample path @" )
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Optimizing continuous parameters
|

B Notes:
» |f we are maximizing, we use

n

X"=x""+a _,g(xX"", o")
» This algorithm is provably convergent if we use a

stepsize such as

o
a, = 0 n=12,...
a+n-1
» Need to choose &, to solve the difference in units
between the derivative and the parameters.
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Optimizing continuous parameters
|

B Computing a gradient generally requires some
Insight into the structure of the problem.

B An alternative Is to use a finite difference.
B Assume that x Is a scalar. We can find a gradient
using
g(X,w) =F(X+0,W(w))—F(X,W(w))

» Very important: note that we are running the simulation
twice using the same sample path.
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