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Week 1 - Monday

Introduction
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Sample applications
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My experience

Economics
» Analysis of SREC certificates 

for valuing solar energy 
credits.

» System for valuing 10-year 
forward contracts for 
electricity.

» Optimizing cash for mutual 
funds.
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Learning the market in Africa
How do African consumers 
respond to energy pricing 
strategies for recharging cell 
phones?

» Cell phone use is widespread in 
Africa, but the lack of a reliable 
power grid complicates recharging 
cell phone batteries.

» A low cost strategy is to encourage 
an entrepreneurial market to 
develop which sells energy from 
small, low cost solar panels.

» We do not know the demand curve, 
and we need to learn it as quickly 
as possible.
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Drug discovery

Designing molecules

» X and Y are sites where we can hang substituents to change the 
behavior of the molecule
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Drug discovery

We express our belief using a linear, additive QSAR model
»
»

0
  

ij ij
sites i substituents j

Y X    
  Indicator variable for molecule .m m

ij ij
X X m 
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Drug discovery

Knowledge gradient versus pure exploration for 99 compounds
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Optimal learning
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Health applications

Health sciences
» Sequential design of 

experiments for drug discovery

» Drug delivery – Optimizing the 
design of protective 
membranes to control drug 
release

» Medical decision making –
Optimal learning for medical 
treatments.
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State-dependent applications

Materials science
» Optimizing payloads: reactive 

species, biomolecules, 
fluorescent markers, …

» Controllers for robotic scientist 
for materials science 
experiments

» Optimizing nanoparticles to 
maximize photoconductivity
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E-commerce
Revenue management
» Optimizing prices to maximize 

total revenue for a particulate 
night in a hotel.

Ad-click optimization
» How much to bid for ads on the 

internet.

Personalized offer 
optimization
» Designing offers for individual 

customers.
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Policy function approximations

Battery arbitrage – When to charge, when to 
discharge, given volatile LMPs
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Grid operators require that batteries bid charge and 
discharge prices, an hour in advance.

We have to search for the best values for the policy 
parameters 

Discharge
Charge

Charge Dischargeand . 

Policy function approximations
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Policy function approximations

Our policy function might be the parametric 
model (this is nonlinear in the parameters):

charge

charge discharge

charge

1 if 
( | ) 0 if 

1 if 
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Energy in storage:

Price of electricity:
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Policy function approximations

Finding the best policy
» We need to maximize

» We cannot compute the expectation, so we run simulations:

DischargeCharge

 
0

max ( ) , ( | )
T

t
t t t

t
F C S X S

   


 
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Energy storage
How much energy to store in a battery to handle the 
volatility of wind and spot prices to meet demands?
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Planning cash reserves
How much money should we hold in cash given variable 
market returns and interest rates to meet the needs of a 
business?

Bonds

Stock prices
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Electricity forward contracts
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Fleet management

Fleet management problem
» Optimize the assignment of drivers to loads over time.
» Tremendous uncertainty in loads being called in
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Pre-decision state: we see the demands
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We use initial value function approximations…
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… and make our first choice:  
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Update the value of being in Texas.
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Now move to the next state, sample new demands and make a new 
decision
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Update value of being in NY
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Move to California.
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Make decision to return to TX and update value of being in CA

$150

$400

$200

$350

0 ( ) 800V CA 

0 ( ) 0V CO 

1( ) 450V TX 

0 ( ) 500V NY 

Nomadic trucker illustration

2 2
ˆ( , )

2t t

CA
S D

t 

 
   

0 ( ) 0V MN 

© 2019 Warren Powell



Updating the value function:

» We are updating the previous post-decision state 
(describe).

1

2

2 1 2

Old value:
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An updated value of being in TX
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Real-time logistics
Uber
» Provides real-time, on-demand 

transportation.
» Drivers are encouraged to enter or leave 

the system using pricing signals and 
informational guidance.

Decisions:
» How to price to get the right balance of 

drivers relative to customers.
» Assigning and routing drivers to 

manage Uber-created congestion.
» Real-time management of drivers.
» Pricing (trips, new services, …)
» Policies (rules for managing drivers, 

customers, …)
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Effect of Current Decision on the Future

Closest car…. but it 
moves car away from 
busy downtown area

and strands other car in 
low density area. 

Assigning car in less 
dense area allows closer 
car to handle potential 
demands in more dense 

areas.
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Cost function approximations

RidersCars
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Optimizing over time

t t+1 t+2
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Optimizing over time

t t+1 t+2
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Optimizing over time

t t+1 t+2

The assignment of cars to riders evolves over time, with new riders 
arriving, along with updates of cars available.
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t t+1 t+2

Autonomous EVs
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Matching buyers with sellers
Now we have a logistic curve for 
each origin-destination pair (i,j)

Number of offers for each (i,j) pair 
is relatively small.
Need to generalize the learning 
across hundreds to thousands of 
markets.

0

0( , | )
1
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  
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ij ij ij

p a
Y

p a

eP p a
e

Buyer Seller

Offered price
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Industrial sponsors
Air Liquide
» Largest industrial gases 

company with 64,000 
employees.

» Consumes 0.1 percent of 
global electricity.

Challenges
» Faces a variety of 

challenges to manage risk:
» Spikes in natural gas prices, 

electricity prices.
» Pipeline outages due to 

storms.
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An energy generation portfolio 
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Wind in the U.S.
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Energy from wind

1 year

 Wind power from all PJM wind farms

Jan     Feb     March    April    May    June    July    Aug    Sept      Oct    Nov     Dec 
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Energy from wind

30 days

 Wind from all PJM wind farms
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Solar energy

Princeton solar array

Solar energy in the PJM region
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Solar energy

PSE&G solar farms

Sept    Oct     Nov     Dec     Jan      Feb     March     April     May     June     July    Aug   
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Solar energy

Solar from a single solar farm
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Solar energy

Within-day sample trajectories
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Locational marginal prices on the gridLMPs – Locational marginal prices

$977/MW !!!
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Locational marginal prices on the grid
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Planning under uncertainty

Battery arbitrage – When to charge, when to 
discharge, given volatile LMPs
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Planning under uncertainty

Snapshot of electricity prices for New Jersey:
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Planning under uncertainty

Stochastic prices

© 2019 Warren Powell



The models in these papers allow decisions to see into the 
future:
» Strategy posed by the battery manufacturer: “Buy low, sell high”
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Don’t gamble; take all your savings 
and buy some good stock and hold 
it till it goes up, then sell it.  If it 
don’t go up, don’t buy it.

Will Rogers

It is not enough to mix “optimization” (intelligent decision 
making) and uncertainty.  You have to be sure that each decision 
has access to the information available at the time.

Planning under uncertainty
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From deterministic to stochastic
Imagine that you would like to solve the time-dependent 
linear program:

» subject to

We can convert this to a proper stochastic model by 
replacing     with              and taking an expectation:

The policy               has to satisfy                   with transition function:

0 ,...,
0

min
T

T

x x t t
t

c x



0 0 0

1 1 ,    1.t t t t t

A x b
A x B x b t 


  

tx ( )t tX S

0
min ( )

T

t t t
t

c X S





( )t tX S
t t tA x R

 1 1, ,M
t t t tS S S x W 

© 2019 Warren Powell



Known customers in outage







Unknown outages

Outage calls
(known)

Network outages
(unknown)

Storm 
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Problem Description - Emergency Storm Response
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Lookahead policies

Decision trees:
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Decision         Outcome     Decision      Outcome      Decision
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Monte Carlo tree search

Steps of MCTS:

C. Browne, E. Powley, D. Whitehouse, S. Lucas, P. I. Cowling, P. Rohlfshagen, S. Tavener, D. Perez,  S. Samothrakis and S. 
Colton, “A survey of Monte Carlo tree search methods,” IEEE Transactions on Computational Intelligence and AI in Games, 
vol. 4, no. 1, pp. 1–49, March 2012. © 2019 Warren Powell



© 2019 Warren Powell



Monte Carlo tree search

AlphaGo
» Much more complex state 

space.
» Uses hybrid of policies:

• MCTS
• PFA
• VFA
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Canonical problems
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Stochastic 
programming

Markov 
decision 
processes

Reinforcement 
learning

Optimal 
control

Model 
predictive 

control

Robust 
optimization

Approximate 
dynamic 

programming

Online 
computation

Simulation 
optimization

Stochastic 
search

Decision

analysis

Stochastic 
control

Simulation 
optimization

Dynamic
Programming

and
control

Optimal 
learning

Bandit
problems
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Canonical problems

Decision trees
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Canonical problems

Stochastic search (derivative based)
» Basic problem:

» Stochastic gradient

» Asymptotic convergence:

» Finite time performance

max ( , )x F x W

1 1( , )n n n n
n xx x F x W   

*lim ( , ) ( , )n
n F x W F x W  








Manufacturing network (x=design)
Unit commitment problem (x=day ahead decisions)
Inventory system (x=design, replenishment policy)
Battery system (x=choice of material)
Patient treatment cost (x=drug, treatments)
Trucking company (x=fleet size and mix)

,max ( , )     where  is an algorithm (or policy)nF x W
 
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Canonical problems

Ranking and selection (derivative free)
» Basic problem:

» We need to design a policy              that finds a design 
given by 

» We refer to this objective as maximizing the final 
reward.

 1 ,...,max ( , )
Mx x x F x W 

( )nX S

 ,max ,NF x W
 

,Nx
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Canonical problems

Multi-armed bandit problems
» We learn the reward from playing each 

“arm”

» We need to find a policy             for 
playing machine x that maximizes:

where

We refer to this problem as maximizing 
cumulative reward.

( )nX S

1
1

0

max ( ( ), )
N

n n

n

F X S W








1 "winnings"
State of knowledge 

( )

 





n

n

n n

W
S
x X S Choose next “arm” to play

New information

What we know about each slot machine
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Canonical problems

(Discrete) Markov decision processes
» Bellman’s optimality equation

» This is also the same as solving

where the optimal policy has the form

  1 1

1 1 1
'

( ) min ( , ) ( ) |

min ( , ) ( ' | , ) ( )

t

t

t t a t t t t t

a t t t t t t t
s

V S C S a V S S

C S a p S s S a V S





  

   

 

 
   

 


A

A



{ }( )1 1( ) arg min ( , ) ( ) | ,
tt x t t t t t tX S C S x V S S xp

+ += +

  0
0

min , ( ) |
T

t t t
t

E C S X S S




 
 
 

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Value function approximations

Reinforcement learning (computer science)
» Q-learning (for discrete actions)

» The second edition of Reinforcement Learning (Sutton 
and Barto, forthcoming) includes other solution 
approaches:

• Policy search (Boltzmann policies)
• Upper confidence bounding
• Monte Carlo tree search

1
'

1
1 1

ˆ      ( , ) ( , ) max ( ', ')
ˆ      ( , ) (1 ) ( , ) ( , )

Policy:
      ( ) arg max ( , )

n n n n n n
a

n n n n n n n n n
n n

n
a

q s a r s a Q s a

Q s a Q s a q s a

s Q s a

g

a a

p

-

-
- -

= +

= - +

=



Canonical problems

Optimal stopping I
» Model:

• Exogenous process:

• Decision:

• Reward:

» Optimization problem:

where      is a “stopping time” (or                                              )

1 If we stop and sell at time 
( )

0 Otherwise                          t

t
X 


 


 1 2, ,..., Sequence of stock pricesTp p p  

Price received if we stop at time tp t

max p X  
 " measurable function"tF 
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Canonical problems

Optimal stopping II
» Model:

• Exogenous process:

• State:

• Policy:

» Optimization problem:

1              
( | )

0 Otherwise              
t t

t t

p p
X S




 
 


 1 2

1

, ,..., Sequence of stock prices
(1 )

T

t t t

p p p
p p p


 

 

  

0 0
max ( | ) max ( | )

T T

t t t t
t t

p X S p X S 
  

 

  

1 if we are holding asset, 0 otherwise.
( , , )

t

t t t t

R
S R p p

=

=
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Canonical problems

Linear quadratic regulation (LQR)
» A popular optimal control problem in engineering 

involves solving:

» where:

» Possible to show that the optimal policy looks like:

where      is a complicated function of Q and R.

 
0 ,...,

0
min ( ) ( )

T

T
T T

u u t t t t
t

x Qx u Ru




1

State at time 
Control at time  (must be measurable)

( , )     (  is random at time )

t

t t

t t t t t

x t
u t F

x f x u w w t


 
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*( )t t t tU x K x

tK
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Canonical problems

Stochastic programming
» A (two-stage) stochastic programming problem

where

» This is the canonical form of stochastic programming, 
which might also be written over multiple periods:

0 0 0 0 0 1min ( , )x X c x Q x  

1 10 1 ( ) ( ) 1 1( , ( )) min ( ) ( )x XQ x c x    

0 0
1

min ( ) ( ) ( )
T

t t
t

c x p c x


  
 

  
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Canonical problems

Stochastic programming
» A (two-stage) stochastic programming policy

where

» This is the canonical form of stochastic programming, 
which might also be written over multiple periods:

1min ( , )
t tx X t t t tc x Q x  

1 11 ( ) ( ) 1 1( , ( )) min ( ) ( )
t tt t x X t tQ x c x    
    

' '
' 1

min ( ) ( ) ( )
t t

t H

t t t tt tt
t t

c x p c x


  


  

  
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Canonical problems

A robust optimization problem would be written

» This means finding the best design x for the worst 
outcome w in an “uncertainty set” 

» This has been adapted to multiperiod problems

( )min max ( , )x X w F x w W

0 1 0,..., ( ,..., ) ( ) ' ' '
' 0

min max ( )
T

T

x x w w t t t
t

c w x



( )
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Canonical problems

A robust optimization problem would be written

» This means finding the best design x for the worst 
outcome w in an “uncertainty set” 

» … but it is often used as a policy

( )min max ( , )x X w F x w W

( )

,..., ( ,..., ) ( ) ' ' '
'

min max ( )
t t H t t H

t H

x x w w t t t
t t

c w x 






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Canonical problems

Stochastic control (from text by Rene Carmona)

» This is mathematically correct, but does not suggest a path 
to computation, or even how to model a real problem.
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Canonical problems

Why do we need a unified framework?

» The classical frameworks and algorithms are fragile.  

» Small changes to problems invalidate optimality 
conditions, or make algorithmic approaches 
intractable. 

» Practitioners need robust approaches that will provide 
high quality solutions for all problems.
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A modeling framework
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Modeling

We propose to model problems along five 
fundamental dimensions:

» State variables
» Decision variables
» Exogenous information
» Transition function
» Objective function

» This framework draws heavily from Markov decision 
processes and the control theory communities, but it is 
not the standard form used anywhere.
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Modeling dynamic problems

The system state:

 

Controls community
        "Information state"
Operations research/MDP/Computer science
        , , System state, where:
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Bizarrely, only the controls community has a tradition of 
actually defining state variables.  We return to state 
variables later.© 2019 Warren Powell Slide 90



Modeling dynamic problems

Decisions:
Markov decision processes/Computer science
     Discrete action
Control theory
     Low-dimensional continuous vector
Operations research
     Usually a discrete or continuous but high-dimensional
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At this point, we do not specify  to make a decision.
Instead, we define the function ( ) (or ( ) or ( )),  
where  specifies the type of policy. " " carries information
about the type of functi

how
X s A s U s  

 
.on , and any tunable parameters ff  
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Problem classes

Types of decisions
» Binary

» Finite

» Continuous scalar

» Continuous vector

» Discrete vector

» Categorical

 0,1x X 

 1,2,...,x X M 

 ,x X a b 

1( ,..., ),    K kx x x x 

1( ,..., ),    K kx x x x 

1( ,..., ),     is a category (e.g. red/green/blue)I ix a a a
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Modeling dynamic problems

Exogenous information:
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 
New information that first became known at time 

ˆ ˆ ˆˆ     = , , ,

ˆ    Equipment failures, delays, new arrivals
            New drivers being hired to the network

ˆ    New customer demands
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ˆ    Changes in prices
ˆ     Information about the environment (temperature, ...) 
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Note: Any variable indexed by t is known at time t. This 
convention, which is not standard in control theory, 
dramatically simplifies the modeling of information.

 
1 2Below, we let  represent a sequence of actual observations , ,....  

 refers to a sample realization of the random variable .t t

W W
W W



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Modeling dynamic problems

The transition function
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( ,   ,   )
ˆ             Inventories
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ˆ                 Market demands
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Also known as the:
“System model”
“State transition model”
“Plant model”
“Plant equation”
“Transition law”

“Transfer function”
“Transformation function”
“Law of motion”
“Model”

For many applications, these equations are unknown. This 
is known as “model-free” dynamic programming. 
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Modeling dynamic problems

The objective function
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Dimensions of objective functions
» Type of performance metric
» Final cost vs. cumulative cost
» Expectation or risk measures
» Mathematical properties (convexity, 

monotonicity, continuity, 
unimodularity, …)

» Time to compute (fractions of seconds 
to minutes, to hours, to days or months)
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Objective functions
» Cumulative reward (“online learning”)

• Policies have to work well over time.
» Final reward (“offline learning”)

• We only care about how well the final decision 𝑥గ,ே works.
» Risk

 1 0
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t t t t t
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 0 0 0 1 1 1 0max ( , ( )), ( , ( )),..., ( , ( )) |T T TC S X S C S X S C S X S S  
 

Elements of a dynamic model
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The complete model:
» Objective function

• Cumulative reward (“online learning”)

• Final reward (“offline learning”)

• Risk:

» Transition function:

» Exogenous information:
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Elements of a dynamic model
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Elements of a dynamic model

The modeling process
» I conduct a conversation with a domain expert to fill in 

the elements of a problem:

State
variables

Decision
variables

New
information

Transition
function

Objective
function

What we need to know
(and only what we need)

What we control

What we didn’t know
when we made our decision

How the state variables evolve

Performance metrics
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Course overview
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Course overview

Requirements

» Weekly problem sets.  These will emphasize modeling 
and the testing of different algorithmic strategies

» Take-home midterm and final

» “Diary problem” – You will propose a problem of your 
choosing, and we will periodically return to this 
problem to develop a model and suggest solution 
approaches.

» Active participation in class – We have a diverse class 
with different backgrounds and contexts.  I need active 
discussion to relate the notation to your problems.
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Course overview

Programming

» Most numerical work will require nothing more than 
Excel.

» We have two libraries available for testing more 
advanced algorithms:

• Python – This is a newer set of modules.
• Matlab – We have an older package, MOLTE, that was 

developed to illustrate a wide range of algorithms.
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Course overview

Prerequisites
» ORF 544 primarily needs a basic course in statistics and 

probability.  From this we will need:
• General understanding of probability distributions and random 

variables.
• Basic understanding of conditional probability and Bayes 

theorem.
• In this course, we will emphasize recursive statistics which is 

covered in chapter 3.

» So why is this a grad course?
• Translating real problems into notation (mathematical 

modeling) requires some patience and an interest in solving 
problems using analytics.

• Stochastic modeling, which means modeling the flow of 
decisions and information, can be fairly subtle.
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Course overview

What you have to do.
» Most important, ask questions!!! If you are not going to 

ask questions, then just read the book!
» The course will follow the structure of the book 

Stochastic Optimization and Learning.  I will present  
selected topics from most chapters, with the goal that 
you will feel comfortable reading the rest of the chapter 
on your own.

» You will best understand the material when you can 
relate the notation to problems you are familiar with.

» I will do my best to provide a range of applications, but 
it really helps when you contribute your own problems.  
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