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Week 1 - Monday

Introduction
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Sample applications
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My experience

® Economics

» Analysis of SREC certificates
for valuing solar energy

credits.

» System for valuing 10-year
forward contracts for

electricity.

» Optimizing cash for mutual

funds.
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Learning the market in Africa
N

® How do African consumers
respond to energy pricing
strategies for recharging cell
phones?

» Cell phone use is widespread in
Africa, but the lack of a reliable
power grid complicates recharging
cell phone batteries.

» A low cost strategy is to encourage
an entrepreneurial market to
develop which sells energy from
small, low cost solar panels.

» We do not know the demand curve,
and we need to learn it as quickly
as possible.

Cell Charging Challenges:
Using Optimal Learning to Determine
the Profitability of a Solar Mobile
Charging System in Africa

Interim Progress Report

Megan J. Wong
1/31/2011
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Drug discovery

N
@® Designing molecules

Br CH,
|
X N.
CH,
Y x HCI
disubstituted N.N - Dimethvl-a-bromophenethvlamines.

» X and Y are sites where we can hang substituents to change the
behavior of the molecule

H Br  CH,

- X N.

Cl CH,
Br

. Y x HCI
Me
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Drug discovery
N

® We express our belief using a linear, additive QSAR model

? XM = (Xi;“ )_j = Indicator variable for molecule m.

TY=6+Y, Y 6X

sites i substituents j

Hugo Kubinyi, www .kubinyi.de
[ UEERE R R B g i
meta para log 1/iC meta- para- log 1iC
(X) () obs. F CI Br | Me F CI Br | Me -cale
H H 748 7.82 i
H F 8.18 1 8.16 Matrix for
H Cl 868 1 8.59 :
H Br §.89 1 8.84 Free W_Ilson
H 1 925 1 9.26 Analysis
H Me 9.30 1 9.08
F H 752 1 7.52
Cl H 818 1 8.03
Br H 830 1 8.26 Br CH,
| H .40 1 8.40 X N.
Me H 3848 1 8.28 CH,
¢l F 819 1 1 8.37
Br F 857 1 1 ss0 Y x HCI
Me F 882 1 1 8.62
¢l cl 889 1 1 8.80
Br cl §.92 1 1 9.02
Me CI 8.9% 1 1 9.04
Cl Br  9.00 1 1 9.08
Br Br 9.35 1 1 9.28
Me Br 9.22 1 1 9.30
Me Me  9.30 1 1 9.53
Br Me 9.52 1 1 9.5
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Drug discovery
N

® Knowledge gradient versus pure exploration for 99 compounds
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Performance under best possible
oo o o —

af HI Pure exploration ]
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2b| il —— Optimal learning -
oL et - Wiz 2 2 = S T
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Number of molecules tested (out of 99)
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Health applications
N

® Health sciences

» Sequential design of
experiments for drug discovery

» Drug delivery — Optimizing the
design of protective
membranes to control drug
release

» Medical decision making —
Optimal learning for medical
treatments.
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State-dependent applications
|

® Materials science

Payload

» Optimizing payloads: reactive o mter @ 3
. . droplet
species, biomolecules, B )
fluorescent markers, ... N

» Controllers for robotic scientist
for materials science
experiments

» Optimizing nanoparticles to
maximize photoconductivity

© 2019 Warren Powell



E-commerce

@® Revenue management

» Optimizing prices to maximize
total revenue for a particulate
night in a hotel.

Digital Marketing Solutions

@® Ad-click optimization

» How much to bid for ads on the
internet.

® Personalized offer
optimization

» Designing offers for individual
customers.
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Policy function approximations
N

@ Battery arbitrage — When to charge, when to
discharge, given volatile LMPs

ERCOT (Texas) price data

g
B

g
H

g
&

g
8

Dollars per megawatt-hour

Average price ~ $50/megawatt-hour |

T e
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Policy function approximations
N

® Grid operators require that batteries bid charge and
discharge prices, an hour in advance.

140.00

120.00

100.00

80.00

ischarge 0009 ’A
A s '\V‘“\ ? 7
QCharge _H /

20.00

L o e o o o e e e L o o B o e o e B LI B o o o o B o e e I NI e e o o o o o
1 357 9111315171921 23252729 313335373941 43454749 51 53555759 616365676971

® We have to search for the best values for the policy
parameters 6" and 6"
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Policy function approximations
N

® Our policy function might be the parametric
model (this 1s nonlinear in the parameters):

+1 if p, < @
XS, 10)=10 1f gehares < p, < gaiseharee
\—1 it p, > geharee
:ﬁ Pﬂﬁﬁgmsﬁo@&eﬁ n_[u'l alild jﬁ_ﬂdf u - ‘| — [
=—i—| Price of electricity: —¢ | |
(an ﬁ Fly | W mm\Wnﬂnﬂ f‘a\ . 1
Ve WA i AV VAN A
IJ i . i '
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Policy function approximations
N

® Finding the best policy
» We need to maximize

4
max, F(0) =B y'C(S,, X[ (S, 10))
t=0

» We cannot compute the expectation, so we run simulations:

HDischarge
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Energy storage

® How much energy to store in a battery to handle the
volatility of wind and spot prices to meet demands?

Wind speed

Demand
ey fi
. Ilﬁ‘a'm '.II

\ ||Im\JII 1III| | *'\ J".'"Hv;ﬁ'l

I'l.,a’U 1\ h) HJ 1"&_

Electricityprices
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Planning cash reserves
N

® How much money should we hold in cash given variable
market returns and interest rates to meet the needs of a
business?

© 2019 Warren Powell



“in Sombination with stocks, ETFs -
from Dna-account on a single sgre PER CONTRACT

plus exchange, regulatory and carrying fees

Markets Tech Pursuits Politics Opinion Businessweek

The Big Issues Facing Fed
Chair Janet Yellen

Janet Yellen faces some knotty questions as she prepares to take the
helm of the Federal Reserve. The answers aren’t academic

by PeterCoy

W petercoy
fron BloombergBusinessweek Subscribe | Reprints
January 9, 2014 — 6:1 AM EST f v ~»

On Feb. 1, Janet Yellen will become the chairman of the Federal Reserve. Considering
that the Federal Reserve System just celebrated its 100th birthday and employs more
Ph.D. economists than any other institution on earth, you’d think it would have
monetary policy down pat. It doesn’t. Yellen herself acknowledges that setting interest
rates sometimes involves groping in the dark. “I consider it essential, in making
judgments about the stance of policy, to recognize at the outset the limits of our
understanding regarding the dynamics of the economy and the transmission of
monetary policy,” she said in a 2012 speech to the Money Marketeers of New York
University.

Yellen is wise to be humble, as just about every issue she will confront is fraught with

uncertainty. Is the U.S. economy stagnating, or threatening to overheat? How quickly
should the Fed taper its purchases of long-term Treasury bonds and mortgage-backed
securities? When should it begin to raise the federal funds rate, which has been nailed to B
the floor at zero to 0.25 percent since the end of 2008?

These debates are typically viewed through the familiar hawk-vs.-dove monetary prism,
but they are deeper and more interesting. Here’s a guide to three of the Big Questions
that will keep Madame Chairman occupied in the years ahead:

© 2019 Warren Powell Slide 19



Optimal Control

Lev Pontryagin, born in Moscow in 1908, was 14 years old when his family’s kerosene
stove exploded, blinding him, yet he became one of the greatest mathematicians of tt
20th century. Among other things, he built the foundation for optimal control theory,
which explains how to maximize the effectiveness of a process given constraints on ct

or time. In 1953 the American Richard Bellman developed a variant called dynamic
programming that became a mainstay of science and engineering—it was even used f
landing the Apollo Lunar Module.

Yellen has repeatedly expressed fascination with the possibility that the Fed could
“optimally control” the U.S. economy by raising and lowering interest rates in a more
scientific manner. Under the optimal control approach, Fed economists would use a
macroeconomic model to calculate the mathematically ideal path of short-term inter:
1ates needed to hit established inflation and unemployment targets.

If Yellen started channeling Pontryagin and got the rest of the Federal Open Market
Comimittee to buy in, short-term interest rates could stay near zero longer than anyon
is expecting. In her 2012 talk to the Money Marketeers, she flashed a “purely
illustrative” graph of what the economy might look like under optimal control. The Fed
would keep the funds rate low longer, and nnemleleut would fall faster. Inflation

would rise slightly above the Fed’s target, but only for a few years. Overall, that’s much
better than the current outlook.

There is a catch, and Yellen is the first to admit it, Optimal control assumes that the Fed
has perfect foresight and flawless data about the economy, and also that inflationary
psychology never takes hold, because businesspeople and consumers unfailingly trust
the Fed to keep prices under control. That’s not realistic, of course. So Yellen in her 2012
presentation also considered a “simple rule” that prescribes an interest rate based on

nothing more than available data about the divergence of inflation and economic
output from their targets. (This is the Taylor Rule, named after conservative economist
John Taylor of the Hoover Im;titmion.TTaylor Rule is more straightforward but has
its own drawback, Yellen told the Marketeers: After periods of extreme weakness like
the past few years, it calls for rates to rise too much, too soon.

In other words, you can have a rate-setting rule that’s very good but unreliable, or one
that’s reliable but not very good. Some choice. “A dose of good judgment will always be
essential as well,” Yellen concluded. That’s also known as trusting your gut.

© 2019 Warren Powell Slide 20



Electricity forward contracts

SMART-Trader @

_ (=] Input data (& Spot price calibration | K spot price simulation | @:| Forward price computatiun: {Z] Results &=/ Spot-Forward Model

Calibrated Parameters
Forward Model

Spot price model: . ] Open Forward price model: | Open Computed Forward Prices Final price: 80.05
|| ] Open Computed (Optimal) Risk Premiums
|| ] Open Progress Of Forward Computation

| ] Open Forward Prices at the Initial given risk premiums

Simulation

Descriptive statistics

Descriptive statistics file: .| ] Open Price distribution viewer: @ Load
Simualted paths

Gas: |/ ]1Open |Load: || 1Open | XFactor: || 1Open | Price:
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Fleet management

® Fleet management problem
» Optimize the assignment of drivers to loads over time.

» Tremendous uncertainty in loads being called in
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Nomadic trucker illustration

® Pre-decision state: we see the demands
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Nomadic trucker illustration

® We use 1nitial value function approximations. ..

}‘ VO(NY)=0
) 4
5450

VO(MN)=0

© 2019 Warren Powell



Nomadic trucker illustration

® ... and make our first choice: X'

VO(MN) =0

V°(CO)=0 VE(NY) =0

NS N —
. :(( NY]) \.

t+1

g
2

.
B t.\
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Nomadic trucker illustration

@ Update the value of being 1n Texas.

VO(MN) =0

V°(CO)=0 V_(NY) =0

i

N\

g
2

X _
@Il [

y
- (( NY]) \.

t+1

.
B t.\
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Nomadic trucker illustration

@ Now move to the next state, sample new demands and make a new
decision

VO(MN) =0

r

~~{V°(NY)=0
"~

é
ﬁ *

|
\~ ~

* \
su=( [0 e ..\
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Nomadic trucker illustration

® Update value of being in NY

VO(MN) =0

QQ 180

~~V"(NY) =600

V°(C0)=0 )

P it

N 70X = 450 L
S Z([sz) . \. - .\

t+1
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Nomadic trucker illustration

® Move to California.

VO(MN) =0

V(NY) =600

T

.
St+2 = ([ jaljuz) \.
t+2
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Nomadic trucker illustration

@® Make decision to return to TX and update value of being in CA

VO(MN) =0

] s

VO (NY) =500

V°(CA) =800
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Nomadic trucker 1llustration
I

® Updating the value function:

Old value:
V!(TX) =$450

New estimate:
A (TX)=$800

How do we merge old with new?
VITX)=1-a)V'(TX)+(x)V*(TX)
=(0.90)$450+(0.10)$800
=$485

» We are updating the previous post-decision state
(describe).
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Nomadic trucker 1llustration

® An updated value of being in TX

)‘ V°(NY) = 600

VO(MN) =0

V°(C0)=0

N N

St+3 = ((t n 3j t+3)

l\.
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Real-time logistics
N

® Uber

»

» Drivers are encouraged to enter or leave

Provides real-time, on-demand
transportation.

the system using pricing signals and
informational guidance.

® Decisions:

»

»

»

»

»

How to price to get the right balance of
drivers relative to customers.

Assigning and routing drivers to
manage Uber-created congestion.

Real-time management of drivers.
Pricing (trips, new services, ...)

Policies (rules for managing drivers,
customers, ...)

© 2019 Warren Powell
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Effect of Current Decision

on the Future
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Cost function approximations
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Optimizing over time
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Optimizing over time
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Optimizing over time
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Autonomous EVs
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Matching buyers with sellers

® Now we have a logistic curve for
each origin-destination pair (i,))

Buyer Seller

05 +0; p+05a

Y —
Pl(p.al )=

0.80

® Number of offers for each (i,)) pair
is relatively small.

Probability of success
(=] (=]

0.20

@ Need to generalize the learning
across hundreds to thousands of
markets.

0.00

0 04 08 12 16 2 24 28 32 36 4 44 48 52 56 6 64 68 72 76 8 84 88 92 96 10

Offered price

© 2019 Warren Powell



Industrial sponsors

@ Air Liquide

» Largest industrial gases

company with 64,000
employees.
» Consumes 0.1 percent of =
global electricity. R /
““qu‘iqﬁ
i %‘1 100 ' Challenges
v | w r| . » Faces a variety of
= L | | - challenges to manage risk:
% 36 {| "|| Y A Ml \ E . : :
ﬁf ‘J!h 10 Bfl el o & » Spikes in natural gas prices,
34 1 ' =) & | I .« . .
1r U N Al S | electricity prices.
SRR Y {]‘;](Mﬁ "*""L ol d
W ’h« ’-ll-"-k » Pipeline outages due to
WERY ¢ WURR N L storms.
"R I T R A G R R
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_ An energy generation portfolio
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UNITED STATES ANNUAL AVERAGE WIND POWER
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Energy from wind
N

Q Wind power from all PJM wind farms

| year
| |

JTM 4

M m M‘Wﬂ w,

A

Jan Feb March April May June July Aug Sept Oct Nov Dec
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Energy from wind

a Wind from all PJM wind farms

30 days
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\ - Solar energy in the PJM region
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Solar energy
N

® PSE&G solar farms

Entire year

||

Sept
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Nov

Dec

Jan

Feb March April
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Solar energy

600

Solar power from a single solar farm
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Kilowatts
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Solar energy
N

® Within-day sample trajectories

30
20
15

10

Power output (MW)

| > | | | T |
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Locational marginal prices on the grid
N

PJM Real-time prices
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Planning under uncertainty
N

@ Battery arbitrage — When to charge, when to
discharge, given volatile LMPs

ERCOT (Texas) price data
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Planning under uncertainty
N

® Snapshot of electricity prices for New Jersey:

Tone, PSEG current, hourlyavg(2,00) ——
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Planning under uncertainty
N

ARTICLES nature

Value of storage technologies for wind and

solar energy
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Planning under uncertainty
N

@® The models 1n these papers allow decisions to see into the
future:
» Strategy posed by the battery manufacturer: “Buy low, sell high”
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Planning under uncertainty

—f—= CINEMA CLASS(CS.COLLECTI
b3 ) ". |

Don’t gamble; take all your savings
and buy some good stock and hold
It till it goes up, then sell it. 1f it
don’t go up, don’t buy it.

Will Rogers

It is not enough to mix “optimization” (intelligent decision
making) and uncertainty. You have to be sure that each decision
has access to the information available at the time.

© 2019 Warren Powell



From deterministic to stochastic
I

@ Imagine that you would like to solve the time-dependent

linear program:

N
Rb:ulzma-x (Z p“)(xgm:nb:c“) +x¢.ic.\;rgc“)—xd'.~:p:“)/n))
(=0

» Subjec

ono T b0

A\Xt N Bt—lxt—l :bt9 t=>1.

® Wecanc
replacin

>
min, B ¢ X/ (S,)
t=0

nvert this to a proper stochastic model by
with X[ (S,) and taking an expectation:

The policy X" (S,) has to satisfy AX, = R, with transition function:

St+1 =S" (St7Xt7Wt+1)

© 2019 Warren Powell
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Problem Description - Emergency Storm Response
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Escalation Algorithm
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Escalation Algorithm
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Escalation Algorithm

Building
House

Transformer

Protective Device

Power Line

Pole

=1 2e0@

Roadway

© 2019 Warre



Escalation Algorithm

|
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Lookahead policies

® Decision trees:

Decisions Experiment Decision Experiment
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Monte Carlo tree search

@& Steps of MCTS:
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Rollout

Tree policy policy

N
v

(a) (b) (c) (d)

C. Browne, E. Powley, D. Whitehouse, S. Lucas, P. I. Cowling, P. Rohlfshagen, S. Tavener, D. Perez, S. Samothrakis and S.
Colton, “A survey of Monte Carlo tree search methods,” IEEE Transactions on Computational Intelligence and Al in Games,

vol. 4, no. 1, pp. 1-49, March 2012. © 2019 Warren Powell
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Monte Carlo tree search

® AlphaGo

» Much more complex state
space.

» Uses hybrid of policies:
« MCTS
« PFA
* VFA

© 2017 Warren B. Powell



Canonical problems
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Canonical problems

® Decision trees

Decisions Experiment Decision Experiment
A A A A
s “r \r \r ) |
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Canonical problems
|

® Stochastic search (derivative based)

» Basic problem:

Manufacturing network (x=design)

Unit commitment problem (x=day ahead decisions)

max EF (X,W) ) gl;;;ltory system £x=d§sign, repler.lishment policy)
ry system (x=choice of material)

Patient treatment cost (x=drug, treatments)

Trucking company (x=fleet size and mix)

» Stochastic gradient
X" =x"+a V. F(X",W")

» Asymptotic convergence:
lim,__EF(X",W)—EF(x",W)

» Finite time performance
max _EF(x"",W) where 7 is an algorithm (or policy)

© 2019 Warren Powell



Canonical problems
|

® Ranking and selection (derivative free)

» Basic problem:

» We need to design a policy X7 (S") that finds a design
given by x™"

max_EF (x”"\' ,W)

» We refer to this objective as maximizing the final
reward.

© 2019 Warren Powell



Canonical problems
N

@® Multi-armed bandit problems

» We learn the reward from playing each
“arm,’

» We need to find a policy X * (S") for
playing machine X that maximizes:

N-1
max, EY F(X7(S"),W"™")

n=0
where

W ™! ="winnings" New information
S" =State of knowledge =~ What we know about each slot machine

X" =X"(S") Choose next “arm” to play

We refer to this problem as maximizing

cumulative reward.
© 2019 Warren Powell



Canonical problems
|

® (Discrete)

Markov decision processes

» Bellman’s optimality equation
Vi(S,) =min, _, (C(S;,a,)+7BE{V,.,(5.))1S.})

= minateﬂ (C(Sta a[)"‘ 7/2 p(St+1 =S'| St ) a‘[)Vt+1(St+l)j

» This 1s al

so the same as solving

min_ E <

ic(st, X7 (S))] SO}

where the optimal policy has the form

X" (S;) = argmin, (C(SU X)+E {Vt+1(St+1) | Ses %, })

© 2019 Warren Powell



Value function approximations
N

® Reinforcement learning (computer science)

» Q-learning (for discrete actions)
§"(s",a")=r(s",a")+~ymax, Q" '(s"a")

Q"(s",a)y=(1—«, Q" '(s",a") +a, 4" (s",a")
Policy:

m(s) = argmax, Q"(s,a)

» The second edition of Reinforcement Learning (Sutton
and Barto, forthcoming) includes other solution

approaches:
 Policy search (Boltzmann policies)
« Upper confidence bounding
* Monte Carlo tree search



Canonical problems
|

® Optimal stopping I
» Model:

* Exogenous process:

®=(P,, Pys---» Pr ) = Sequence of stock prices

e Decision:
1 If we stop and sell at time t
Xt (a)) = )
0 Otherwise
e Reward:

p, = Price received 1f we stop at time t

» Optimization problem:
max_[Ep_X_

where 7 is a “stopping time” (or " F, —measurable function™)

© 2019 Warren Powell



Canonical problems
|

® Optimal stopping II
» Model:

* Exogenous process:
@ =(P,, Pys---» Py ) = Sequence of stock prices

P, = (1- a)ﬁt—l +ap
o State:

R, =1 1f we are holding asset, 0 otherwise.

S; = (R, P> P)
* Policy:

X@|@—1 P, =P +0
e 10 Otherwise

» Optimization problem:
T T
max, B pX"(S,|0)=max,E) pX"(S,|0)
t=0 t=0

© 2019 Warren Powell



Canonical problems
|

® Linear quadratic regulation (LQR)

» A popular optimal control problem in engineering
involves solving:
T

.....

t=0
» where:

X, = State at time t
u, = Control at time t (must be F, — measurable)

X, = f(x,u)+w, (W, is random at time t)

» Possible to show that the optimal policy looks like:

Ut*(xt) = KX,
where K, 1s a complicated function of Q and R.

© 2019 Warren Powell



Canonical problems
|

® Stochastic programming
» A (two-stage) stochastic programming problem

minXOEXO CoXo + EQ(X,6))

where

Q(Xy, 5 () = minxl(a))exl(a)) C,(w)X (w)

» This 1s the canonical form of stochastic programming,
which might also be written over multiple periods:

minc,x, + 3 p@)Y ¢ (@) (o)

we) t

© 2019 Warren Powell



Canonical problems
|

® Stochastic programming
» A (two-stage) stochastic programming policy

min, . CX +BQMX, 6.

where

QX & (@) = minxm(a))exm(a)) Ci (@)X, (@)

» This 1s the canonical form of stochastic programming,

which might also be written over multiple periods:
t+H

min C X, + Z p(@,) Z Cyp (@) Xy (@)

o, €Q, t'=t+1

© 2019 Warren Powell



Canonical problems
|

@ A robust optimization problem would be written
min, _, mMax, ., F(X, W)

XxeX

» This means finding the best design X for the worst
outcome W 1n an “uncertainty set” V) (6)

» This has been adapted to multiperiod problems

© 2019 Warren Powell



Canonical problems
|

@ A robust optimization problem would be written
min, _, mMax, ., F(X, W)

XxeX

» This means finding the best design X for the worst
outcome W 1n an “uncertainty set” V) (6)

» ... but it 1s often used as a policy

t+H

© 2019 Warren Powell



Canonical problems
|

® Stochastic control (from text by Rene Carmona)

3.1.3 = The Optimization Problem

We assume that we are given an Fp-measurable random variable representing the terminal
cost. It is assumed to be square integrable. Most often, it will be of the form g(Xr).
where g : Q x R? — R is Fr x B(R¥)-measurable, and of polynomial growth in = € R?
uniformly in w € ). We also assume that the cost includes a running cost given by a
function f : [0,T] x  x B? x A — IR satisfying the same assumptions (S1) and (S2) as
the drift b. Finally, we define the cost functional .J by

T
J(a)=E / f(s, Xs,a5)ds + g(XT)|, o € A (3.4)
Jo

As explained earlier, the goal of a stochastic control problem is to find an admissible control
o € A which minimizes the cost functional .J(cx). The cost functional .J is often called the
objective. or objective functional.

» This 1s mathematically correct, but does not suggest a path
to computation, or even how to model a real problem.

© 2019 Warren Powell



Canonical problems
|

® Why do we need a unified framework?
» The classical frameworks and algorithms are fragile.

» Small changes to problems invalidate optimality
conditions, or make algorithmic approaches
intractable.

» Practitioners need robust approaches that will provide
high quality solutions for all problems.

© 2019 Warren Powell



A modeling framework
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Modeling

® We propose to model problems along five
fundamental dimensions:

» State variables

» Decision variables

» Exogenous information
» Transition function

» Objective function

» This framework draws heavily from Markov decision
processes and the control theory communities, but it 1s
not the standard form used anywhere.

© 2019 Warren Powell



Modeling dynamic problems

e ——
® The system state:

Controls community
2 X, = "Information state"
Operations research/MDP/Computer science
S, =(R,. 1, K,) = System state, where:
R, = Resource state (physical state)
Location/status of truck/train/plane
Energy in storage
|, = Information state

Prices

Weather
K, = Knowledge state ("belief state")
Belief about traffic delays

) Belief about the status of equipment

Bizarrely, only the controls community has a tradition of
actually defining state variables. We return to state

variables l@ep019 Warren Powell Slide 90



Modeling

dynamic problems

® Decisions:

Markov decision processes/Computer science
a, = Discrete action

Control theory
U, = Low-dimensional continuous vector

Operations research

X, = Usually a discrete or continuous but high-dimensional

vector of decisions.

At this point, we do not specify how to make a decision.
Instead, we define the function X ”*(S) (or A*(S) or U”*(9)),

where 7 specifies the type of policy. "7z" carries information

about the type of function f, and any tunable parameters 8 c ®"

© 2019 Warren Powell Slide 91



Problem classes
L

@ Types of decisions

» Binary
Xe X = {0,1}
» Finite
Xe X ={1,2,..., I\/I}
» Continuous scalar
Xe X = [a,b]
» Continuous vector
X=(X,..., X ), X, €R
» Discrete vector
X=(X,.er X )» X, €Z
» Categorical
X=(a,...,a,), a 1sa category (e.g. red/green/blue)

© 2019 Warren Powell



Modeling dynamic problems

® Exogenous information:

W, = New information that first became known at time t

- (R.B, p.E)

N

R = Equipment failures, delays, new arrivals

New drivers being hired to the network

D, = New customer demands

. P, = Changes in prices

E, = Information about the environment (temperature, ...)

Note: Any variable indexed by t is known at time t. This
convention, which is not standard in control theory,
dramatically simplifies the modeling of information.

Below, we let w represent a sequence of actual observations W, ,W,,....

W, (@) refers to a sample realization of the random variable W,.

© 2019 Warren Powell Slide 93



Modeling dynamic problems

B ]
® The transition function

) St+1 =S" (SD X5 Wt+1)
R, =R +X+ F\A’t+1 Inventories
Py =P + f)t+1 SPOt pl‘ices

N

D.=D, + D,,  Marketdemands
>
Also known as the:
“System model” “Transfer function”
“State transition model” “Transformation function”
“Plant model” “Law of motion”
“Plant equation” “Model”

“Transition law”
For many applications, these equations are unknown. This
IS known as “model-free”” dynamic programming.

© 2019 Warren Powell Slide 94




Modeling dynamic problems

e —
® The objective function

. Dimensions of objective functions
» Type of performance metric

» Final cost vs. cumulative cost

» Expectation or risk measures

» Mathematical properties (convexity,
monotonicity, continuity,
unimodularity, ...)

» Time to compute (fractions of seconds
to minutes, to hours, to days or months)

© 2019 Warren Powell Slide 95



Elements of a dynamic model
|

@ Objective functions
» Cumulative reward (“online learning”)

.
max [ {Z C, (St , X (S,),W,_, ) | SO}
t=0

* Policies have to work well over time.
» Final reward (“offline learning”)

max ]E{F(x”"\' W) SO}

« We only care about how well the final decision x™" works.

» Risk

max ,O{C(Soa Xo (So)),C(S,, X[ (5))),--, C(Sr, X7 (Sr)) | So}

© 2019 Warren Powell



FElements of a dynamic model g (5%

S o
g CONTROL! SOF
® The complete model: G . B
» Objective function = N

e Cumulative reward (“online learning”)

max_ E{i C,(Se, X[ (S)W,,, ), SO}
 Final rewardt;)‘ofﬂine learning”)
max_ E{F(x”"\' W) so}
* Risk:
max, P {C(Sy, X7 (S4)),C(S1, X[ (8))sees C (S, X7 (S, ) S, }
» Transition function:
SRS S" (St9 Xt9Wt+1)
» Exogenous information:
(SO,WI,WQ,...,WT )

© 2019 Warren Powell



Elements of a dynamic model

® The modeling process

» I conduct a conversation with a domain expert to fill in
the elements of a problem:

State Decision
variables variables

&
N

New
information

Transition
function

Objective
function

&
N

&
™~

&
N

\

\

\

Performance metrics

\

How the state variables evolve

What we didn’t know

when we made our decision

Vv

What we control

What we need to know
(and only what we need)

© 2019 Warren Powell




Course overview
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Course overview
]

® Requirements

» Weekly problem sets. These will emphasize modeling
and the testing of different algorithmic strategies

» Take-home midterm and final

» “Diary problem” — You will propose a problem of your
choosing, and we will periodically return to this
problem to develop a model and suggest solution
approaches.

» Active participation in class — We have a diverse class
with different backgrounds and contexts. I need active
discussion to relate the notation to your problems.

© 2019 Warren Powell



Course overview
]

® Programming

» Most numerical work will require nothing more than
Excel.

» We have two libraries available for testing more

advanced algorithms:

* Python — This 1s a newer set of modules.
e Matlab — We have an older package, MOLTE, that was
developed to 1llustrate a wide range of algorithms.

© 2019 Warren Powell



Course overview
]

® Prerequisites

» ORF 544 primarily needs a basic course 1n statistics and

probability. From this we will need:
* General understanding of probability distributions and random
variables.
 Basic understanding of conditional probability and Bayes
theorem.
* In this course, we will emphasize recursive statistics which is
covered 1n chapter 3.

» So why is this a grad course?
 Translating real problems into notation (mathematical
modeling) requires some patience and an interest in solving
problems using analytics.
 Stochastic modeling, which means modeling the flow of
decisions and information, can be fairly subtle.

© 2019 Warren Powell



Course overview
]

® What you have to do.

»

»

»

»

Most important, ask questions!!! If you are not going to
ask questions, then just read the book!

The course will follow the structure of the book
Stochastic Optimization and Learning. I will present
selected topics from most chapters, with the goal that
you will feel comfortable reading the rest of the chapter
on your own.

You will best understand the material when you can
relate the notation to problems you are familiar with.

I will do my best to provide a range of applications, but
it really helps when you contribute your own problems.

© 2019 Warren Powell



